Science.gov

Sample records for annular array imaging

  1. Photoacoustic Imaging of Animals with an Annular Transducer Array

    NASA Astrophysics Data System (ADS)

    Yang, Di-Wu; Zhou, Zhi-Bin; Zeng, Lv-Ming; Zhou, Xin; Chen, Xing-Hui

    2014-07-01

    A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.

  2. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    NASA Astrophysics Data System (ADS)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  3. High-frequency ultrasound annular-array imaging. Part I: array design and fabrication.

    PubMed

    Snook, Kevin A; Hu, Chang-Hong; Shrout, Thomas R; Shung, K Kirk

    2006-02-01

    This is Part I of a series of two papers describing the development of a digital high-frequency, annular-array, ultrasonic imaging system. In this paper, the design and fabrication of a high-frequency annular array as well as its performance will be reported. A six-element, 50 MHz array, which incorporated an acoustic lens to provide an initial focal point, was designed and fabricated. A submicron size grain lead titanate piezoelectric ceramic was used to both reduce lateral coupling and keep the electrical impedance matched close to the 50 ohm receive electronics. The array elements were isolated using laser micromachining to fully separate the annuli, and electrical interconnection was achieved by directly soldering thin wires to the elements. The resulting array attained an average impulse response that exhibited a 43 MHz center frequency, 30% relative bandwidth, and an average insertion loss of 31 dB at 45 MHz. Maximum next-element crosstalk was -27 dB in water. PMID:16529104

  4. High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.

    PubMed

    Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk

    2006-02-01

    This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned. PMID:16529105

  5. Reconfigurable mosaic annular arrays.

    PubMed

    Thomenius, Kai E; Wodnicki, Robert; Cogan, Scott D; Fisher, Rayette A; Burdick, Bill; Smith, L Scott; Khuri-Yakub, Pierre; Lin, Der-Song; Zhuang, Xuefeng; Bonitz, Barry; Davies, Todd; Thomas, Glen; Woychik, Charles

    2014-07-01

    Mosaic annular arrays (MAA) based on reconfigurable array (RA) transducer electronics assemblies are presented as a potential solution for future highly integrated ultrasonic transducer subsystems. Advantages of MAAs include excellent beam quality and depth of field resulting from superior elevational focus compared with 1-D electronically scanned arrays, as well as potentially reduced cost, size, and power consumption resulting from the use of a limited number of beamforming channels for processing a large number of subelements. Specific design tradeoffs for these highly integrated arrays are discussed in terms of array specifications for center frequency, element pitch, and electronic switch-on resistance. Large-area RAs essentially function as RC delay lines. Efficient architectures which take into account RC delay effects are presented. Architectures for integration of the transducer and electronics layers of large-area array implementations are reviewed. PMID:24960699

  6. Synthetic-Focusing Strategies for Real-Time Annular-Array Imaging

    PubMed Central

    Ketterling, Jeffrey A.; Filoux, Erwan

    2012-01-01

    Annular arrays provide a means to achieve enhanced image quality with a limited number of elements. Synthetic-focusing (SF) strategies that rely on beamforming data from individual transmit-to-receive (TR) element pairs provide a means to improve image quality without specialized TR delay electronics. Here, SF strategies are examined in the context of high-frequency ultrasound (>15 MHz) annular arrays composed of five elements, operating at 18 and 38 MHz. Acoustic field simulations are compared with experimental data acquired from wire and anechoic-sphere phantoms, and the values of lateral beamwidth, SNR, contrast-to-noise ratio (CNR), and depth of field (DOF) are compared as a function of depth. In each case, data were acquired for all TR combinations (25 in total) and processed with SF using all 25 TR pairs and SF with the outer receive channels removed one by one. The results show that removing the outer receive channels led to an overall degradation of lateral resolution, an overall decrease in SNR, and did not reduce the DOF, although the DOF profile decreased in amplitude. The CNR was >1 and remained fairly constant as a function of depth, with a slight decrease in CNR for the case with just the central element receiving. The relative changes between the calculated and measured quantities were nearly identical for the 18- and 38-MHz arrays. B-mode images of the anechoic phantom and an in vivo mouse embryo using full SF with 25 TR pairs or reduced TR-pair approaches showed minimal qualitative difference. PMID:22899130

  7. A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays

    PubMed Central

    Dhar, Sulochana; Lo, Justin Y.; Palmer, Gregory M.; Brooke, Martin A.; Nichols, Brandon S.; Yu, Bing; Ramanujam, Nirmala; Jokerst, Nan M.

    2012-01-01

    Diffuse reflectance spectroscopy (DRS) is a well-established method to quantitatively distinguish between benign and cancerous tissue for tumor margin assessment. Current multipixel DRS margin assessment tools are bulky fiber-based probes that have limited scalability. Reported herein is a new approach to multipixel DRS probe design, which utilizes direct detection of the DRS signal by using optimized custom photodetectors in direct contact with the tissue. This first fiberless DRS imaging system for tumor margin assessment consists of a 4 × 4 array of annular silicon photodetectors and a constrained free-space light delivery tube optimized to deliver light across a 256 mm2 imaging area. This system has 4.5 mm spatial resolution. The signal-to-noise ratio measured for normal and malignant breast tissue-mimicking phantoms was 35 dB to 45 dB for λ = 470 nm to 600 nm. PMID:23243571

  8. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging.

    PubMed

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V; Aristizábal, Orlando; Ketterling, Jeffrey A

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature. PMID:23742556

  9. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  10. Means of manufacturing annular arrays

    DOEpatents

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  11. Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer

    PubMed Central

    Chitnis, Parag V.; Aristizábal, Orlando; Filoux, Erwan; Sampathkumar, Ashwin; Mamou, Jonathan; Ketterling, Jeffrey A.

    2016-01-01

    This paper presents an adaptive synthetic-focusing scheme that, when applied to photoacoustic (PA) data acquired using an annular array, improves focusing across a greater imaging depth and enhances spatial resolution. The imaging system was based on a 40-MHz, 5-element, annular-array transducer with a focal length of 12 mm and an 800-μm diameter hole through its central element to facilitate coaxial delivery of 532-nm laser. The transducer was raster-scanned to facilitate 3D acquisition of co-registered ultrasound and PA image data. Three synthetic-focusing schemes were compared for obtaining PA A-lines for each scan location: delay-and-sum (DAS), DAS weighted with a coherence factor (DAS + CF), and DAS weighted with a sign-coherence factor (DAS + SCF). Bench-top experiments that used an 80-μm hair were performed to assess the enhancement provided by the two coherence-based schemes. Both coherence-based schemes increased the signal-to-noise ratio by approximately 10 dB. When processed using the DAS-only scheme, the lateral dimension of the hair in a PA image with 20 dB dynamic range was between 300 μm and 1 mm for imaging depth ranging from 8 to 20 mm. In comparison, the DAS + CF scheme resulted in a lateral dimension of 200 to 450 μm over the same range. The DAS + SCF synthetic focusing further improved the smallest-resolvable dimension, which was between 150 and 400 μm over the same range of imaging depth. When used on PA data obtained from a 12-day-old mouse embryo, the DAS + SCF processing improved visualization of neurovasculature. PMID:25925675

  12. Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer.

    PubMed

    Chitnis, Parag V; Aristizábal, Orlando; Filoux, Erwan; Sampathkumar, Ashwin; Mamou, Jonathan; Ketterling, Jeffrey A

    2016-01-01

    This paper presents an adaptive synthetic-focusing scheme that, when applied to photoacoustic (PA) data acquired using an annular array, improves focusing across a greater imaging depth and enhances spatial resolution. The imaging system was based on a 40-MHz, 5-element, annular-array transducer with a focal length of 12 mm and an 800-µm diameter hole through its central element to facilitate coaxial delivery of 532-nm laser. The transducer was raster-scanned to facilitate 3D acquisition of co-registered ultrasound and PA image data. Three synthetic-focusing schemes were compared for obtaining PA A-lines for each scan location: delay-and-sum (DAS), DAS weighted with a coherence factor (DAS + CF), and DAS weighted with a sign-coherence factor (DAS + SCF). Bench-top experiments that used an 80-µm hair were performed to assess the enhancement provided by the two coherence-based schemes. Both coherence-based schemes increased the signal-to-noise ratio by approximately 10 dB. When processed using the DAS-only scheme, the lateral dimension of the hair in a PA image with 20 dB dynamic range was between 300 µm and 1 mm for imaging depth ranging from 8 to 20 mm. In comparison, the DAS + CF scheme resulted in a lateral dimension of 200 to 450 µm over the same range. The DAS + SCF synthetic focusing further improved the smallest-resolvable dimension, which was between 150 and 400 µm over the same range of imaging depth. When used on PA data obtained from a 12-day-old mouse embryo, the DAS + SCF processing improved visualization of neurovasculature. PMID:25925675

  13. Design and analysis of annular antenna arrays with different reflectors.

    PubMed

    Shi, G; Joines, W T

    2004-09-01

    The design and performance of annular antenna arrays with reflectors is presented. Arrays with three shapes of reflectors are analysed and simulated. These include the corner reflector, the circular reflector and the elliptical reflector. Power-density distributions within the annular arrays with and without reflectors are obtained by using the FDTD method. Also, the image theory method is used to verify the FDTD results in one case. By comparing the power-density distribution pattern of all four of the array designs (three with different reflectors, one without reflector), it is readily seen in each case that the array with reflectors yields better power-efficiency than the array without reflectors and the elliptical reflector yields the best performance. Comparisons of each array are made using 4, 6 and 8 antennae in the annular array. By using the optimized results of the elliptical reflector, the requirement for the input-power level to each antenna is greatly reduced. PMID:15370818

  14. Annular pancreas (image)

    MedlinePlus

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  15. Annular array and method of manufacturing same

    DOEpatents

    Day, Robert A.

    1989-01-01

    A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.

  16. Annular Arrays Of Solar Cells For Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    1995-01-01

    Report proposes annular arrays of solar photovoltaic cells installed on spin-stabilized spacecraft. Annular array faces Sun. Typical array consists of two stacked annuli of solar cells: one annulus fixed about spin axis, while other divided into deployable sectors mounted on dual swing arms and stowed by folding them atop fixed annulus. Once released, deployable sectors swing outward under spring or centrifugal force and expose fixed array so it generates additional power.

  17. Operational verification of a 40-MHz annular array transducer

    PubMed Central

    Ketterling, Jeffrey A.; Ramachandran, Sarayu; Aristizäbal, Orlando

    2006-01-01

    An experimental system to take advantage of the imaging capabilities of a 5-ring polyvinylidene fluoride (PVDF) based annular array is presented. The array has a 6 mm total aperture and a 12 mm geometric focus. The experimental system is designed to pulse a single element of the array and then digitize the received data of all array channels simultaneously. All transmit/receive pairs are digitized and then the data are post-processed with a synthetic focusing technique to achieve an enhanced depth of field (DOF). The performance of the array is experimentally tested with a wire phantom consisting of 25-μm diameter wires diagonally spaced at 1 mm by 1 mm intervals. The phantom permitted the efficacy of the synthetic focusing algorithm to be tested and was also used for two-way beam characterization. Experimental results are compared to a spatial impulse response method beam simulation. After synthetic focusing, the two-way echo amplitude was enhanced over the range of 8 to 19 mm and the 6-dB DOF spanned from 9 to 15 mm. For a wire at a fixed axial depth, the relative time delays between transmit/receive ring pairs agreed with theoretical predictions to within ± 2 ns. To further test the system, B-mode images of an excised bovine eye are rendered. PMID:16555771

  18. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect

    John D. Bess; James D. Cleaver

    2009-06-01

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  19. Hyperthermia and inhomogeneous tissue effects using an Annular Phased Array

    SciTech Connect

    Turner, P.F.

    1984-08-01

    A regional hyperthermia Annular Phased Array (APA) applicator is described, and examples of its various heating patterns, obtained by scanning the electric fields with a small E-field sensor, are illustrated. Also shown are the effects of different frequencies of an elliptical phantom cylinder having a 1-cm-thick artificial fat wall and the general dimensions of the human trunk. These studies show the APA's ability to achieve uniform heating at lower frequencies (below 70 MHz) or to focus central heating at moderately higher frequencies (above 70 MHz). The influence of human anatomical contours in altering heating patterns is discussed using results obtained with a female mannequin having a thin latex shell filled with tissue-equivalent phantom. Field perturbations caused by internally embedded low-dielectric structures are presented, showing the localized effects of small objects whose surfaces are perpendicular to the electric field.

  20. Design and fabrication of a 40-MHz annular array transducer

    PubMed Central

    Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.

    2006-01-01

    This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516

  1. Array tomography: imaging stained arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  2. Imaging performance of annular apertures. II - Line spread functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1978-01-01

    Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.

  3. A High-Frequency Annular-Array Transducer Using an Interdigital Bonded 1-3 Composite

    PubMed Central

    Chabok, Hamid Reza; Cannata, Jonathan M.; Kim, Hyung Ham; Williams, Jay A.; Park, Jinhyoung; Shung, K. Kirk

    2011-01-01

    This paper reports the design, fabrication, and characterization of a 1–3 composite annular-array transducer. An interdigital bonded (IB) 1–3 composite was prepared using two IB operations on a fine-grain piezoelectric ceramic. The final composite had 19-μm-wide posts separated by 6-μm-wide polymer kerfs. A novel method to remove metal electrodes from polymer portions of the 1–3 composite was established to eliminate the need for patterning and aligning the electrode on the composite to the electrodes on a flexible circuit. Unloaded epoxy was used for both the matching and backing layers and a flexible circuit was used for interconnect. A prototype array was successfully fabricated and tested. The results were in reasonable agreement with those predicted by a circuit-analogous model. The average center frequency estimated from the measured pulse-echo responses of array elements was 33.5 MHz and the −6-dB fractional bandwidth was 57%. The average insertion loss recorded was 14.3 dB, and the maximum crosstalk between the nearest-neighbor elements was less than −37 dB. Images of a wire phantom and excised porcine eye were obtained to show the capabilities of the array for high-frequency ultrasound imaging. PMID:21244988

  4. Linearization of an annular image by using a diffractive optic

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1996-01-01

    The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.

  5. Dual Frequency Band Annular Probe for Volumetric Pulse-echo Optoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Kalkhoran, Mohammad Azizian; Varray, François; Vray, Didier

    Optoacoustic (OA) pulse echo (PE) imaging is a hybridized modality that is capable of providing physiological information on the basis of anatomical structure. In this work, we propose a dual frequency band annular probe for backward mode volumetric PE/OA imaging. The performance of this design is evaluated based on the spatio-temporal impulse response, three dimensional steerability of the transducer and point spread function. Optimum settings for number of elements in each ring and maximum steering are suggested. The transducer design and synthetic array beamforming simulation are presented. The resolution performance and reconstruction capabilities are shown with the in-silico measurements.

  6. Phased annular array transducers for omnidirectional guided wave mode control in isotropic plate like structures

    NASA Astrophysics Data System (ADS)

    Koduru, Jaya P.; Momeni, Sepandarmaz; Rose, Joseph L.

    2013-12-01

    Ultrasonic guided waves are fast emerging as a reliable tool for continuous structural health monitoring. Their multi-modal nature along with their long range propagation characteristics offer several possibilities for interrogating structures. Transducers commonly used to generate guided waves in structures excite multiple modes at any frequency; their complex scattering and reflection from defects and boundaries often complicates the extraction of useful information. Often it is desirable to control the guided wave modes propagating in a structure to take advantage of their unique properties for different applications. Earlier attempts at guided wave mode control involved developing fixed wavelength linear and annular array transducers. Their only disadvantage is that the transducer is limited to a particular wavelength and a change in wavelength necessitates a change in the transducer. In this paper, we propose the development of an annular array transducer that can generate mode controlled omnidirectional guided waves by independently controlling the amplitude and phase of the array elements. A simplified actuator model that approximates the transducer loading on the structure to a constant pressure load under the array elements is assumed and an optimization problem is set up to compute the excitation voltage and phase of the elements. A five element annular array transducer is designed utilizing 1-3 type piezocomposite materials. The theoretical computations are experimentally verified on an aluminum plate like structure by exciting A0 and S0 guided wave modes.

  7. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.

    PubMed

    Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing

    2015-02-24

    Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers. PMID:25639937

  8. Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array

    PubMed Central

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324

  9. Imaging antenna arrays

    NASA Technical Reports Server (NTRS)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  10. Method of improving image sharpness for annular-illumination scanning electron microscopes

    NASA Astrophysics Data System (ADS)

    Enyama, Momoyo; Hamada, Koichi; Fukuda, Muneyuki; Kazumi, Hideyuki

    2016-06-01

    Annular illumination is effective in enhancing the depth of focus for scanning electron microscopes (SEMs). However, owing to high side lobes of the point-spread function (PSF), annular illumination results in poor image sharpness. The conventional deconvolution method, which converts the PSF to a delta function, can improve image sharpness, but results in artifacts due to noise amplification. In this paper, we propose an image processing method that can reduce the deterioration of image sharpness. With this method, the PSF under annular illumination is converted to that under standard illumination. Through simulations, we verified that the image sharpness of SEM images under annular illumination with the proposed method can be improved without noise amplification.

  11. Panoramic Imaging and Holographic Interferometry Using a Panoramic Annular Lens.

    NASA Astrophysics Data System (ADS)

    Puliparambil, Joseph Thomas

    1992-01-01

    Ideally, a device for making measurements of the inner surface of a cavity should be rugged, compact, and capable of obtaining an unobstructed, complete, and comprehensive image of the cavity space in every direction. The first attempt to patent a system for panoramic imaging was made by Mangin in 1878 and since that time several other devices have been patented. Most of these devices depend on a scanning system or on a complex set of lenses and mirrors and as such they are not very practical for use. However, in 1984 Dr. Pal Greguss invented a simple lens known as a Panoramic Annular Lens (PAL) capable of giving a full 360 degree surround image of the area around the lens. This lens can be utilized along with digital cameras and computer programs to inspect and measure the interior walls of cavities. If a cavity can be regarded as a cylindrical rather than a spherical volume, the image information can be transformed, using stretching methods, onto a flat surface creating a two-dimensional representation of a three-dimensional cylindrical surface. This phenomenon called Flat Cylindrical Perspective (FCP) forms the basis for the image produced by a PAL. To apply standard methods of analysis on an image and also for visual interpretation, image processing algorithms were developed to linearize a PAL image. These programs can be used for endoscopy which is a technique for imaging the inner part of a volume or cavity. Such techniques have applications in the fields of medicine, civil engineering and aerospace; indeed, anywhere tubes and pipes are involved. Holographic interferometry has become an important diagnostic tool in non-destructive testing, but due to lack of panoramic imaging systems this work could not be effectively used for the analysis of cavities. Now, the PAL can be used for panoramic holographic interferometry which can be used to measure submicron deformations of cavity walls caused by small perturbations in temperature, pressured and mechanical loads

  12. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    SciTech Connect

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I.; Belkhir, Abderrahmane

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  13. Nonlinear phased array imaging

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  14. Theoretical and measured electric field distributions within an annular phased array: consideration of source antennas.

    PubMed

    Zhang, Y; Joines, W T; Jirtle, R L; Samulski, T V

    1993-08-01

    The magnitude of E-field patterns generated by an annular array prototype device has been calculated and measured. Two models were used to describe the radiating sources: a simple linear dipole and a stripline antenna model. The stripline model includes detailed geometry of the actual antennas used in the prototype and an estimate of the antenna current based on microstrip transmission line theory. This more detailed model yields better agreement with the measured field patterns, reducing the rms discrepancy by a factor of about 6 (from approximately 23 to 4%) in the central region of interest where the SEM is within 25% of the maximum. We conclude that accurate modeling of source current distributions is important for determining SEM distributions associated with such heating devices. PMID:8258444

  15. Array tomography: semiautomated image alignment.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. Successful array tomography requires that the captured images be properly stacked and aligned, and the software to achieve these ends is freely available. This protocol describes the construction of volumetric image stacks from images of fluorescently labeled arrays for three-dimensional image visualization, analysis, and archiving. PMID:21041400

  16. A top-crossover-to-bottom addressed segmented annular array using piezoelectric micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo

    2015-11-01

    We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.

  17. Solid state image sensing arrays

    NASA Technical Reports Server (NTRS)

    Sadasiv, G.

    1972-01-01

    The fabrication of a photodiode transistor image sensor array in silicon, and tests on individual elements of the array are described along with design for a scanning system for an image sensor array. The spectral response of p-n junctions was used as a technique for studying the optical-absorption edge in silicon. Heterojunction structures of Sb2S3- Si were fabricated and a system for measuring C-V curves on MOS structures was built.

  18. Annular and Cylindrical Phased Array Geometries for Transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and Piezocomposite Materials

    NASA Astrophysics Data System (ADS)

    Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.

    2005-03-01

    This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.

  19. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.

    PubMed

    Liang, Yuzhang; Peng, Wei; Li, Lixia; Qian, Siyu; Wang, Qiao

    2015-08-15

    Introducing a conducting metal layer and the structural asymmetry to elliptical annular aperture arrays, multiple plasmonic coupled-resonant modes are generated under normal incidence in the visible light range. The electromagnetic fields can be strongly enhanced at resonant modes in this device, which increases the interaction volume of the detected analyte and optical fields; therefore, multiple plamonic coupled modes exhibit higher refractive index sensitivity than as large as 610 nm/RIU. The distinct Fano-like resonance around a wavelength of 681 nm originates from the interference between bonding dipolar and the quadrupolar modes. Due to the excitation of sharp spectral features as narrow as 7 nm, high figure of merits of 94 at the Fano-like dip is obtained in a wide refractive index range of 1.33-1.40. Furthermore, to generate strong Fano-like resonance, the geometric shape of ellipse is selected, which is a good geometric shape candidate compared to the circle shape. This device is promising for biosensing applications with high sensitivity and low limit of detection. PMID:26274691

  20. Development of Parallel Image Detection System Using Annular Pupils for Scanning Transmission Electron Microscope

    SciTech Connect

    Matsutani, Takaomi; Taya, Masaki; Ikuta, Takashi; Tanaka, Takeo; Kimura, Yoshihide; Takai, Yoshizo; Kawasaki, Tadahiro; Ichihashi, Mikio

    2010-10-13

    A parallel image detection system using an annular pupil for electron optics were developed to realize an increase in the depth of focus, aberration-free imaging and separation of amplitude and phase images under scanning transmission electron microscopy (STEM). Apertures for annular pupils able to suppress high-energy electron scattering were developed using a focused ion beam (FIB) technique. The annular apertures were designed with outer diameter of oe 40 {mu}m and inner diameter of oe32 {mu}m. A taper angle varying from 20 deg. to 1 deg. was applied to the slits of the annular apertures to suppress the influence of high-energy electron scattering. Each azimuth angle image on scintillator was detected by a multi-anode photomultiplier tube assembly through 40 optical fibers bundled in a ring shape. To focus the image appearing on the scintillator on optical fibers, an optical lens relay system attached with CCD camera was developed. The system enables the taking of 40 images simultaneously from different scattered directions.

  1. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  2. Array technology for terahertz imaging

    NASA Astrophysics Data System (ADS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-06-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  3. Atomic-resolution incoherent high-angle annular dark field STEM images of Si(011)

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Yamazaki, T.; Kikuchi, Y.; Kotaka, Y.; Kawasaki, M.; Hashimoto, I.; Shiojiri, M.

    2001-02-01

    Characteristic atomic-resolution incoherent high-angle annular dark field (HAADF) scanning transmission electron microscope (STEM) images of [011]-orientated Si have been experimentally obtained by a through-focal series. Artificial bright spots appear at positions where no atomic columns exist along the electron beam, in some experimental images. Image simulation, based on the Bloch wave description by the Bethe method, reproduces the through-focal experimental images. It is shown that atomic-resolution HAADF STEM images, which are greatly influenced by the Bloch wave field depending on the incident electron beam probe, cannot always be interpreted intuitively as the projected atomic images. It is also found that the atomic-resolution HAADF STEM images can be simply explained using the relations to the probe functions without the need for complex dynamical simulations.

  4. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.

    PubMed

    Lebeau, James M; Stemmer, Susanne

    2008-11-01

    This paper reports on a method to obtain atomic resolution Z-contrast (high-angle annular dark-field) images with intensities normalized to the incident beam. The procedure bypasses the built-in signal processing hardware of the microscope to obtain the large dynamic range necessary for consecutive measurements of the incident beam and the intensities in the Z-contrast image. The method is also used to characterize the response of the annular dark-field detector output, including conditions that avoid saturation and result in a linear relationship between the electron flux reaching the detector and its output. We also characterize the uniformity of the detector response across its entire area and determine its size and shape, which are needed as input for image simulations. We present normalized intensity images of a SrTiO(3) single crystal as a function of thickness. Averaged, normalized atom column intensities and the background intensity are extracted from these images. The results from the approach developed here can be used for direct, quantitative comparisons with image simulations without any need for scaling. PMID:18707809

  5. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  6. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  7. Turbulence effects on short-exposure imaging through circular and annular apertures

    NASA Astrophysics Data System (ADS)

    Tofsted, David H.

    Short exposure imaging through optical turbulence is an important problem in terms of characterization of turbulence effects for system engineering purposes. The standard theory of short-exposure imaging through turbulence was developed by D.L. Fried in 1966. Fried developed a theory describing the mean short-exposure modulation transfer function (MTF) due to turbulence. But inconsistencies between Fried's results and experiments have been noted for many years. This dissertation corrects Fried's theory and expands the standard model to include annular (reflector telescope) aperture systems and the means to handle path varying turbulence. The standard theory is updated by retaining a tilt-phase correlation term. Inclusion of this term modifies the computed mid- and high-angular frequency responses of the turbulent MTF. At high frequencies the new theory predicts decay of response instead of the recovery to diffraction limited behavior. At mid-range frequencies, the new model predicts additional spectral energy. To model the new theory a database of 38,007 computed results was analyzed and a model based on three dimensionless parameters has been developed. One of these parameters characterizes turbulence strength; a second characterizes diffraction influences; the third is a dimensionless angular frequency. The new analytic model eliminates the near-field/far-field dichotomy of Fried's standard theory. The resulting model exhibits a 0.000175 RMS accuracy of the combined short-exposure MTF. Extension of the model to the annular aperture case involves an angle-ofarrival analysis for variable central obscuration size, extension of the tilt-phase computation to the annular case, and use of a stochastic least squares analysis technique to adapt the circular aperture model to evolution of the solution in the annular dimension, where the circular aperture case is equivalent to the limiting behavior as the central obscuration goes to zero. Results are obtained up to an

  8. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  9. Breadboard linear array scan imager program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The performance was evaluated of large scale integration photodiode arrays in a linear array scan imaging system breadboard for application to multispectral remote sensing of the earth's resources. Objectives, approach, implementation, and test results of the program are presented.

  10. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    NASA Astrophysics Data System (ADS)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  11. A rapid two-photon fabrication of tube array using an annular Fresnel lens.

    PubMed

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Li, Guoqiang; Chu, Jiaru; Huang, Wenhao

    2014-02-24

    A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds. PMID:24663719

  12. Tomographical imaging using uniformly redundant arrays

    NASA Technical Reports Server (NTRS)

    Cannon, T. M.; Fenimore, E. E.

    1979-01-01

    An investigation is conducted of the behavior of two types of uniformly redundant array (URA) when used for close-up imaging. One URA pattern is a quadratic residue array whose characteristics for imaging planar sources have been simulated by Fenimore and Cannon (1978), while the second is based on m sequences that have been simulated by Gunson and Polychronopulos (1976) and by MacWilliams and Sloan (1976). Close-up imaging is necessary in order to obtain depth information for tomographical purposes. The properties of the two URA patterns are compared with a random array of equal open area. The goal considered in the investigation is to determine if a URA pattern exists which has the desirable defocus properties of the random array while maintaining artifact-free image properties for in-focus objects.

  13. CMUT-based Volumetric Ultrasonic Imaging Array Design for Forward Looking ICE and IVUS Applications

    PubMed Central

    Zahorian, Jaime; Xu, Toby; Rashid, Muhammad W.; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F. Levent

    2014-01-01

    Designing a mechanically flexible catheter based volumetric ultrasonic imaging device for intravascular and intracardiac imaging is challenging due to small transducer area and limited number of cables. With a few parallel channels, synthetic phased array processing is necessary to acquire data from a large number of transducer elements. This increases the data collection time and hence reduces frame rate and causes artifacts due to tissue-transducer motion. Some of these drawbacks can be resolved by different array designs offered by CMUT-on-CMOS approach. We recently implemented a 2.1-mm diameter single chip 10 MHz dual ring CMUT-on-CMOS array for forward looking ICE with 64-transmit and 56-receive elements along with associated electronics. These volumetric arrays have the small element size required by high operating frequencies and achieve sub mm resolution, but the system would be susceptible to motion artifacts. To enable real time imaging with high SNR, we designed novel arrays consisting of multiple defocused annular rings for transmit aperture and a single ring receive array. The annular transmit rings are utilized to act as a high power element by focusing to a virtual ring shaped line behind the aperture. In this case, image reconstruction is performed by only receive beamforming, reducing total required firing steps from 896 to 14 with a trade-off in image resolution. The SNR of system is improved more than 5 dB for the same frequency and frame rate as compared to the dual ring array, which can be utilized to achieve the same resolution by increasing the operating frequency. PMID:23366605

  14. Annular pancreas

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  15. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  16. Astronomical imaging with InSb arrays

    NASA Astrophysics Data System (ADS)

    Pipher, Judith L.

    Ten years ago, Forrest presented the first astronomical images with a Santa Barbara Research Center (SBRC) 32 x 32 InSb array camera at the first NASA-Ames Infrared Detector Technology Work-shop. Soon after, SBRC began development of 58 x 62 InSb arrays, both for ground-based astronomy and for the Space Infrared Telescope Facility (SIRTF). By the time of the 1987 Hilo workshop 'Ground-based Astronomical Observations with Infrared Array Dectectors' astronomical results from cameras based on SBRC 32 x 32 and 58 x 62 InSb arrays, a CE linear InSb array, and a French 32 x 32 InSb charge injection device (CID) array were presented. And at the Tucson 1990 meeting 'Astrophysics with Infrared Arrays', it was clear that this new technology was no longer the province of 'IR pundits', but provided a tool for all astronomers. At this meeting, the first astronomical observations with SBRC's new, gateless passivation 256 x 256 InSb arrays will be presented: they perform spectacularly] In this review, I can only broadly brush on the interesting science completed with InSb array cameras. Because of the broad wavelength coverage (1-5.5 micrometer) of InSb, and the extremely high performance levels throughout the band, InSb cameras are used not only in the near IR, but also from 3-5.5 micrometer, where unique science is achieved. For example, the point-like central engines of active galactic nuclei (AGN) are delineated at L' and M', and Bra and 3.29 micrometer dust emission images of galactic and extragalactic objects yield excitation conditions. Examples of imaging spectroscopy, high spatial resolution imaging, as well as deep, broad-band imaging with InSb cameras at this meeting illustrate the power of InSb array cameras.

  17. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    SciTech Connect

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  18. Analysis of the imaging performance of panoramic annular lens with conic conformal dome

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Bai, Jian

    2015-10-01

    Panoramic annular lens (PAL) is a kind of the specific wide angle lenses which is widely applied in panoramic imaging especially in aerospace field. As we known, to improve the aerodynamic performance of the aircraft, conformal dome, which notably reduces the drag of an aircraft, is also functioning as an optical window for the inbuilt optical system. However, there is still no report of the specific analysis of the imaging performance of PAL with conformal dome, which is imperative in its aerospace-related applications. In this paper, we propose an analysis of the imaging performance of a certain PAL with various conic conformal domes. Working in visible wavelength, the PAL in our work observes 360° surroundings with a large field of view (FOV) ranging from 30° ~105° . Meanwhile, various thicknesses, half-vertex angles, materials of the conic dome and the central distances between the dome and PAL are considered. The imaging performances, mainly indicated by modulation transfer function (MTF) as well as RMS radius of the spot diagram, are systematically compared. It is proved that, on the contrary to the general cases, the dome partly contributes to the imaging performance of the inbuilt PAL. In particular, with a conic conformal dome in material of K9 glass with a half-vertex angle of 25° and a thickness of 6mm, the maximum MTF at 100lp/mm could be improved by 6.68% with nearly no degeneration of the minimum MTF, and the RMS radius could be improved by 14.76% to 19.46% in different FOV. It is worth to note that the PAL is adaptive to panoramic aerospace applications with conic or quasi-conic conformal dome and the co-design of both PAL and the dome is very important.

  19. Quantitative annular dark-field imaging of single-layer graphene—II: atomic-resolution image contrast

    PubMed Central

    Yamashita, Shunsuke; Koshiya, Shogo; Nagai, Takuro; Kikkawa, Jun; Ishizuka, Kazuo; Kimoto, Koji

    2015-01-01

    We have investigated how accurately atomic-resolution annular dark-field (ADF) images match between experiments and simulations to conduct more reliable crystal structure analyses. Quantitative ADF imaging, in which the ADF intensity at each pixel represents the fraction of the incident probe current, allows us to perform direct comparisons with simulations without the use of fitting parameters. Although the conventional comparison suffers from experimental uncertainties such as an amorphous surface layer and specimen thickness, in this study we eliminated such uncertainties by using a single-layer graphene as a specimen. Furthermore, to reduce image distortion and shot noises in experimental images, multiple acquisitions with drift correction were performed, and the atomic ADF contrast was quantitatively acquired. To reproduce the experimental ADF contrast, we used three distribution functions as the effective source distribution in simulations. The optimum distribution function and its full-width at half-maximum were evaluated by measuring the residuals between the experimental and simulated images. It was found that the experimental images could be explained well by a linear combination of a Gaussian function and a Lorentzian function with a longer tail than the Gaussian function. PMID:26347577

  20. Passive cavitation imaging with ultrasound arrays

    PubMed Central

    Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas

    2009-01-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921

  1. Staring arrays - The future lightweight imagers

    NASA Astrophysics Data System (ADS)

    Dennis, P. N. J.; Dann, R. J.

    1985-01-01

    High performance thermal imagers, such as the common modules, are now readily available. These systems generally employ a scanning mechanism to generate the two-dimensional display which makes their adaptation to cheap, lightweight, small imagers difficult. However, with the advent of two-dimensional close packed arrays of infrared detectors the development of such a system is now becoming feasible. A small imager using cadium mercury telluride detectors has been produced commercially. The system has been designed to be adaptable to use both 3-5-micrometer and 8-14-micrometer arrays, and to study various electronic correction mechanisms.

  2. Mechanically expandable annular seal

    DOEpatents

    Gilmore, Richard F.

    1983-01-01

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.

  3. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  4. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging.

    PubMed

    Beyer, Andreas; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-01

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible. PMID:27391526

  5. Imaging Arrays With Improved Transmit Power Capability

    PubMed Central

    Zipparo, Michael J.; Bing, Kristin F.; Nightingale, Kathy R.

    2010-01-01

    Bonded multilayer ceramics and composites incorporating low-loss piezoceramics have been applied to arrays for ultrasound imaging to improve acoustic transmit power levels and to reduce internal heating. Commercially available hard PZT from multiple vendors has been characterized for microstructure, ability to be processed, and electroacoustic properties. Multilayers using the best materials demonstrate the tradeoffs compared with the softer PZT5-H typically used for imaging arrays. Three-layer PZT4 composites exhibit an effective dielectric constant that is three times that of single layer PZT5H, a 50% higher mechanical Q, a 30% lower acoustic impedance, and only a 10% lower coupling coefficient. Application of low-loss multilayers to linear phased and large curved arrays results in equivalent or better element performance. A 3-layer PZT4 composite array achieved the same transmit intensity at 40% lower transmit voltage and with a 35% lower face temperature increase than the PZT-5 control. Although B-mode images show similar quality, acoustic radiation force impulse (ARFI) images show increased displacement for a given drive voltage. An increased failure rate for the multilayers following extended operation indicates that further development of the bond process will be necessary. In conclusion, bonded multilayer ceramics and composites allow additional design freedom to optimize arrays and improve the overall performance for increased acoustic output while maintaining image quality. PMID:20875996

  6. Far-infrared imaging antenna arrays

    NASA Technical Reports Server (NTRS)

    Neikirk, D. P.; Rutledge, D. B.; Muha, M. S.; Park, H.; Yu, C.-X.

    1982-01-01

    A far-infrared monolithic imaging antenna array with diffraction-limited resolution has been demonstrated. The optical system is similar to an oil-immersion microscope, except that the position of the object and the image are interchanged. The array is a series of evaporated silver bow-tie antennas of 75 nm thick, spaced at 310 microns, on a fused-quartz substrate; the bow angle of 60 deg gives an impedance of 150 ohm to match to bismuth microbolometers. The measured responsivity of the array elements is 1-2 V/W at the relatively low bias of 1 mA. Previous measurements have shown that the bolometers are 1/f noise limited up to 100 kHz and that they have a frequency response of 5 MHz. The antenna array should be adequate for far-infrared plasma interferometer measurements.

  7. Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Lotnyk, Andriy Poppitz, David; Gerlach, Jürgen W.; Rauschenbach, Bernd

    2014-02-17

    In this report, we show that an annular dark-field detector in an aberration-corrected scanning transmission electron microscope allows the direct observation of light element columns in crystalline lattices. At specific imaging conditions, an enhancement of the intensities of light element columns in the presence of heavy element columns is observed. Experimental results are presented for imaging the nitrogen and carbon atomic columns at the GaN-SiC interface and within the GaN and SiC compounds. The crystal polarity of GaN at the interface is identified. The obtained findings are discussed and are well supported by image simulations.

  8. Complementary lattice arrays for coded aperture imaging

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Noshad, Mohammad; Tarokh, Vahid

    2016-05-01

    In this work, we consider complementary lattice arrays in order to enable a broader range of designs for coded aperture imaging systems. We provide a general framework and methods that generate richer and more flexible designs than existing ones. Besides this, we review and interpret the state-of-the-art uniformly redundant arrays (URA) designs, broaden the related concepts, and further propose some new design methods.

  9. Image Enhancement with Polymer Grid Triode Arrays

    NASA Astrophysics Data System (ADS)

    Heeger, Alan J.; Heeger, David J.; Langan, John; Yang, Yang

    1995-12-01

    An array of polymer grid triodes connected by a common grid functions as a "plastic retina," providing local contrast gain control for image enhancement. This simple device, made from layers of conducting polymers, functions as an active resistive network that performs center-surround filtering. The polymer grid triode array with common grid is a continuous analog of the discrete approach of Mead, with a variety of fabrication advantages and significant savings in area within the unit cell of each pixel.

  10. Synthesized Bistatic Echo Imaging Using Phased Arrays

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad

    1990-01-01

    An object illuminated by a source produces a scattered signal; this signal depends upon both the source and the physical properties of the object. The problem of deducing coordinates, shape and/or certain physical properties of the object from the measurements of the returned signal is an inverse problem called echo imaging. The problem of echo imaging arises in medical imaging, remote sensing (radar; sonar; geophysical exploration), and non-destructive testing. In this paper, we address the problem of imaging an object form its returned signals using a phased array. Our approach is to exploit the array's various radiation patterns and the recordable portion of the returned signal's spectrum to generate the data base for this echo imaging system. Rapid steering of a phased array's radiation patterns can be achieved electronically. These steered waves can be utilized to synthesize waves with varying angles of propagation. In this case, the recorded returned signal for each direction of propagation can be viewed as data obtained by a bistatic array configuration. We first formulate the imaging problem for a plane wave source in a bistatic configuration. We utilize the two-way propagation time and amplitude of the returned signal to relate the object's properties, reflectivity function and coordinates, to the measured data (system modeling). This relationship is the basis for deducing the object's reflectivity function from the recorded data (inverse problem). We then extend these results for an arbitrary radiation pattern and synthesized radiation patterns generated by an array capable of beam steering in cross-range. We show that the recorded returned signals can be related to the spatial frequency contents of the reflectivity function. We also show that these array processing principles can be utilized to formulate a system model and inversion for synthetic aperture radar (SAR) imaging that incorporates wavefront curvature.

  11. Plane wave imaging using phased array

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2014-02-01

    Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.

  12. Dual Frequency Coil Array for MR Imaging

    NASA Astrophysics Data System (ADS)

    Amador-Baheza, R.; Sacristan-Rock, E.; Rodríguez, A. O.

    2002-08-01

    An array coil to perform in vivo Magnetic Resonance Imaging and Spectroscopy was developed to study the intestinal wall. It consisted of two surface rectangular-shaped coils mounted on cylindrical structure forming an orthogonal assembly. Since this design is intended to generate images and spectra, each element was tuned to a different resonant frequency: a) imaging: 200 MHz (1H) and b) spectroscopy: 81 MHz (31P). However, at this stage of the research, imaging experiments were only conducted on a Bruker 4.7 Tesla animal system. High-resolution images were obtained from a saline filled phantom and from the intestinal wall of a fully anaesthetised rabbit. The dual frequency coil array can be used to study the pathophysiology of intestinal ischemia.

  13. A Prototype Imager for the CHARA Array

    NASA Astrophysics Data System (ADS)

    Turner, Nils Henning

    1998-11-01

    Traditional methods of data collection in active fringe tracking Michelson stellar interferometers involve logging and analyzing the signals within the fringe tracking system for the scientific information about the object being observed. While these methods are robust and have produced excellent scientific results, they become more problematic as next-generation Michelson stellar interferometers are built with more telescopes and the aim of performing routine imaging. The Center for High Angular Resolution Astronomy (CHARA) Array is one such next-generation instrument presently under construction on Mount Wilson, north of Los Angeles, California. The CHARA Array will feature a separation of the tasks of active fringe tracking and imaging, thereby increasing the bandwidth, sensitivity, and data acquisition rate. Presented is a prototype version of an imager for the CHARA Array. The prototype imager employs single-mode fiber optic strands to convey the light from simulated telescopes to a smaller, non-redundant, remapped pupil plane, which in turn feeds a low resolution prism spectrograph. The spectrograph features two cylindrical optical elements whose net effect is to focus the light to a smaller plate scale in the spectral dimension than in the orthogonal spatial dimension. The actual Array imager will build on lessons learned from the prototype and will include capability for five telescopes, further degrees of freedom in adjustment, a computer interface, and automatic intensity calibration.

  14. Spin scan tomographic array-based imager.

    PubMed

    Hovland, Harald

    2014-12-29

    This work presents a novel imaging device based on tomographic reconstruction. Similar in certain aspects to the earlier presented tomographic scanning (TOSCA) principle, it provides several important enhancements. The device described generates a stream of one-dimensional projections from a linear array of thin stripe detectors onto which the (circular) image of the scene is rotated. A two-dimensional image is then reproduced from the one-dimensional signals using tomographic processing techniques. A demonstrator is presented. Various aspects of the design and construction are discussed, and resulting images and movies are presented. PMID:25607168

  15. Image Rotation Correction With CORDIC Array Processor

    NASA Astrophysics Data System (ADS)

    Shyu, Keh-Hwa; Jeng, Bor-Shenn; Jou, I.-Chang; Ting, Pei-Yih

    1988-10-01

    In the document analysis system or the understanding system[1,2], the rotation of the document's image will cause optical character recognition error. Then the document must be scanned and recognized again. This phenomenon will degrade the performance of the automatic document input system. In this paper, we propose a method to estimate the unexpected rotational angle of the image. And we suggest using the pipelined CORDIC array processor architecture to rotate the image back quickly. Thus the performance of the automatic document input system will increase.

  16. Image enhancement with polymer grid triode arrays

    SciTech Connect

    Heeger, A.J.; Heeger, D.J.; Langan, J.

    1995-12-08

    An array of polymer grid triodes connected by a common grid functions as a {open_quotes}plastic retina,{close_quotes} providing local contrast gain control for image enhancement. This simple device, made from layers of conducting polymers, functions as an active resistive network that performs center-surround filtering. The polymer grid triode array with common grid is a continuous analog of the discrete approach of Mead, with a variety of fabrication advantages and significant savings in area within the unit cell of each pixel. 6 refs., 4 figs.

  17. Extended arrays for nonlinear susceptibility magnitude imaging.

    PubMed

    Ficko, Bradley W; Giacometti, Paolo; Diamond, Solomon G

    2015-10-01

    This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2>0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044

  18. The SORDS trimodal imager detector arrays

    NASA Astrophysics Data System (ADS)

    Wakeford, Daniel; Andrews, H. R.; Clifford, E. T. H.; Li, Liqian; Bray, Nick; Locklin, Darren; Hynes, Michael V.; Toolin, Maurice; Harris, Bernard; McElroy, John; Wallace, Mark; Lanza, Richard

    2009-05-01

    The Raytheon Trimodal Imager (TMI) uses coded aperture and Compton imaging technologies as well as the nonimaging shadow technology to locate an SNM or radiological threat in the presence of background. The heart of the TMI is two arrays of NaI crystals. The front array serves as both a coded aperture and the first scatterer for Compton imaging. It is made of 35 5x5x2" crystals with specially designed low profile PMTs. The back array is made of 30 2.5x3x24" position-sensitive crystals which are read out at both ends. These crystals are specially treated to provide the required position resolution at the best possible energy resolution. Both arrays of detectors are supported by aluminum superstructures. These have been efficiently designed to allow a wide field of view and to provide adequate support to the crystals to permit use of the TMI as a vehicle-mounted, field-deployable system. Each PMT has a locally mounted high-voltage supply that is remotely controlled. Each detector is connected to a dedicated FPGA which performs automated gain alignment and energy calibration, event timing and diagnostic health checking. Data are streamed, eventby- event, from each of the 65 detector FPGAs to one master FPGA. The master FPGA acts both as a synchronization clock, and as an event sorting unit. Event sorting involves stamping events as singles or as coincidences, based on the approximately instantaneous detector hit pattern. Coincidence determination by the master FPGA provides a pre-sorting for the events that will ultimately be used in the Compton imaging and coded aperture imaging algorithms. All data acquisition electronics have been custom designed for the TMI.

  19. Simultaneous multispectral imaging using lenslet arrays

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James

    2013-03-01

    There is a need for small compact multispectral and hyperspectral imaging systems that simultaneously images in many spectral bands across the infrared spectral region from short to long-wave infrared. This is a challenge for conventional optics and usually requires large, costly and complex optical systems. However, with the advances in materials and photolithographic technology, Micro-Optical-Electrical-Machine-Systems (MOEMS) can meet these goals. In this paper Pacific Advanced Technology and ECBC will present the work that we are doing under a SBIR contract to the US Army using a MOEMS based diffractive optical lenslet array to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. Under this program we will develop a proof of concept system that demonstrates how a diffractive optical (DO) lenslet array can image 1024 x 1024 pixels in 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The purpose of this work is to simultaneously image multiple colors each frame and reduce the temporal changes between colors that are apparent in sequential multispectral imaging. Translating the lenslet array will collect hyperspectral image data cubes as will be explained later in this paper. Because the optics is integrated with the detector the entire multispectral/hyperspectral system can be contained in a miniature package. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information each frame of the camera. Thus enabling the implementation of spectral-temporal-spatial algorithms in real-time with high sensitivity for the detection of weak signals in a high background clutter environment with low sensitivity to camera motion. Using MOEMS actuation the DO lenslet array is translated along the optical axis to complete the full hyperspectral data cube in just a few frames of the

  20. 10 and 20 micron imaging with arrays

    NASA Technical Reports Server (NTRS)

    Jones, B.; Pina, R. K.; Puetter, R. C.

    1994-01-01

    We discuss imaging with arrays in the thermal IR. Aspects of the design and performance of the 'Golden Gopher', an infrared array camera are presented. This instrument operates in a high-background environment, for ground-based astronomical imaging from 5 to 27 micrometers. It is built around a 20 x 64 element Si:As Impurity Band Conduction (IBC) device manufactured by GenCorp Aerojet Electronic Systems Division, and has a noise-equivalent flux density (NEFD) of 23.5 mJy (min(exp -1/2) (arcsec(exp -2) at lambda = 10 micrometers, delta-lambda = 1 micrometer, on the Mt. Lemmon 1.5m telescope. We present and discuss a sample of the data. In addition we discuss the design and expected performance of the 'Long Wavelength Spectrometer' which is now under construction for the Keck telescope.

  1. Imaging performance of annular apertures. IV - Apodization and point spread functions. V - Total and partial energy integral functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1983-01-01

    Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.

  2. Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling

    PubMed Central

    Zhang, Jack Y.; Hwang, Jinwoo; Isaac, Brandon J.; Stemmer, Susanne

    2015-01-01

    Variable-angle high-angle annular dark-field (HAADF) imaging in scanning transmission electron microscopy is developed for precise and accurate determination of three-dimensional (3D) dopant atom configurations. Gd-doped SrTiO3 films containing Sr columns containing zero, one, or two Gd dopant atoms are imaged in HAADF mode using two different collection angles. Variable-angle HAADF significantly increases both the precision and accuracy of 3D dopant profiling. Using image simulations, it is shown that the combined information from the two detectors reduces the uncertainty in the dopant depth position measurement and can uniquely identify certain atomic configurations that are indistinguishable with a single detector setting. Additional advances and applications are discussed. PMID:26206489

  3. Smart pixel imaging with computational-imaging arrays

    NASA Astrophysics Data System (ADS)

    Fernandez-Cull, Christy; Tyrrell, Brian M.; D'Onofrio, Richard; Bolstad, Andrew; Lin, Joseph; Little, Jeffrey W.; Blackwell, Megan; Renzi, Matthew; Kelly, Mike

    2014-07-01

    Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plane array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digitalpixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3D) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs - a SWIR pixelprocessing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudorandom, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,t) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.

  4. Tomographic image reconstruction using systolic array algorithms

    SciTech Connect

    Azevedo, S.G.; DeGroot, A.J.; Schneberk, D.J.; Brase, J.M.; Martz, H.E.; Jain, A.K.; Current, K.W.; Hurst, P.J.

    1988-12-22

    Image reconstruction for Computed Tomography (CT) is a time consuming operation on current uniprocessor computers and even on array processors. This is particularly true for three-dimensional data sets or for limited-data reconstructions requiring iterative procedures. In these cases, the projection operation (Radon transform) and its inverse (filtered back-projection) are major computational tasks that are performed many times. Multiprocessor computers, especially in systolic array configurations, can provide dramatic improvements in reconstruction times at reasonable costs. An in-house systolic processor, called SPRINT, has been programmed to demonstrate these improved speeds while achieving near 100% efficiency of all processor elements. We report on these results in this paper. In addition, two proposed hardware implementations of a new architecture are shown to have even greater speedup possibilities. One, using standard DSP chips, has been simulated to give a factor of three improvement over SPRINT, while the other, using custom VLSI that is now in the early stages of design, could potentially perform 512/sup 2/ reconstructions at video rates (100 times further speedup). These processors are also interconnected in a systolic array configuration. Experimental and projected results, with future plans, are also reported in this paper. 11 refs., 5 figs., 1 tab.

  5. Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment

    NASA Astrophysics Data System (ADS)

    Jimbo, Hayato; Takagi, Ryo; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method for cancer treatment. One of the disadvantages of this method is that it has a long total treatment time because of the smallness of the treatment volume by a single exposure. To solve this problem, we have proposed a method of cavitation-enhanced heating, which utilized the heat generated by oscillating the cavitation bubbles, in combination with the method of lateral enlargement of a HIFU focal zone to minimize the surface volume ratio. In a previous study, focal spot scanning at multiple points was employed for the enlargement. This method involves nonlinear propagation and absorption due to the high spatial-peak temporal-peak (SPTP) intensity in addition to the cavitation-enhanced heating. However, it is difficult to predict the size and position of the coagulation volume because they are significantly affected by the nonlinear parameters of the tissue. In this study, a sector vortex method was employed to directly synthesize an annular focal pattern. Since this method can keep the SPTP intensity at a manageably low level, nonlinear propagation and absorption can be minimized. Experimental results demonstrate that the coagulation was generated only in the region where both the cavitation cloud and the heating ultrasound were matched. The proposed method will make the cavitation-enhanced HIFU treatment more accurate and predictable.

  6. Reconstruction Techniques for Sparse Multistatic Linear Array Microwave Imaging

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.

    2014-06-09

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. In this paper, a sparse multi-static array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated and measured imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  7. 802GHz integrated horn antennas imaging array

    NASA Astrophysics Data System (ADS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-05-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  8. Granuloma annulare.

    PubMed

    Gupta, Diptesh; Hess, Brian; Bachegowda, Lohith

    2010-01-01

    We present a case of a 77-year-old, diabetic male with a 20-year history of a migratory erythematous, asymptomatic, generalized, nonscaly, and nonitchy rash that started over the dorsum of his left hand. On examination, there were multiple annular erythematous plaques, distributed symmetrically and diffusely over his torso and arms, with central clearing and no scales. A punch biopsy of the skin helped us to arrive at the diagnosis of a generalized granuloma annulare (GA). GA is a benign, self-limiting skin condition of unknown etiology that is often asymptomatic. The cause of this condition is unknown, but it has been associated with diabetes mellitus, infections such as HIV, and malignancies such as lymphoma. These lesions typically start as a ring of flesh-colored papules that slowly progress with central clearing. Lack of symptoms, scaling, or associated vesicles helps to differentiate GA from other skin conditions such as tinea corporis, pityriasis rosea, psoriasis, or erythema annulare centrifugum. Treatment is often not needed as the majority of these lesions are self-resolving within 2 years. Treatment may be pursued for cosmetic reasons. Available options include high-dose steroid creams, PUVA, cryotherapy, or drugs such as niacinamide, infliximab, Dapsone, and topical calcineurin inhibitors. PMID:20209383

  9. Regional hyperthermia in the treatment of clinically advanced, deep seated malignancy: results of a pilot study employing an annular array applicator

    SciTech Connect

    Sapozink, M.D.; Gibbs, F.A. Jr.; Gates, K.S.; Stewart, J.R.

    1984-06-01

    From October 1980 through December 1982, 46 patients were entered into a pilot study at the University of Utah Medical Center to assess the feasibility and safety of heating deep-seated, advanced, pelvic and abdominal malignancies with an annular array of electromagnetic wave (EMW) applicators. The patients, most of whom were heavily pretreated, were treated on a protocol in which most of the patients received combined hyperthermia and low dose X ray therapy. Discomforting local symptoms were the predominant treatment related acute side effects in 28 patients with pelvic disease, while systemic hyperthermia and associated symptoms were the predominant side effects in 18 patients with abdominal disease. Minor subacute toxicity was minimal and no serious treatment related, chronic toxicity was observed. The treatments of 22 patients with sufficiently detailed thermometry were analyzed at arbitrary index temperatures of 41/sup 0/C and 43/sup 0/C. Objective response rates in 22 evaluable patients were 67% and 9% for pelvic and abdominal sites respectively.

  10. DEPMOS arrays for x-ray imaging

    NASA Astrophysics Data System (ADS)

    Lutz, Gerhard; Richter, Rainer H.; Strueder, Lothar

    2000-07-01

    For future x-ray satellite missions and other applications we propose a novel sensor which is based on the `DEPleted Field Effect Transistor (DEPFET)'. MOS-type DEPFETs (DEPMOS) are employed in prototype designs of pixel detectors ready for production. The device operated on a fully depleted silicon wafer allows an internal charge amplification directly above the position where the signal conversion takes place. A very low gate capacitance of the DEPMOS transistor leads to low noise amplification. In contrast to CCDs neither transfer loss nor `out of time events' can occur in a DEPFET-array. Fast imaging and low power consumption can be achieved by a row by row selection mode. The signal charge stored in a potential minimum below the transistor channel can be read out non destructively and repeatedly. By shifting the charge between two neighboring DEPMOS amplifiers the repeated signal readout leads to significant noise reduction. Concept, design and device simulations are presented and consequences of the expected properties for applications in x-ray imaging are discussed.

  11. Advances in passive imaging elements with micromirror array

    NASA Astrophysics Data System (ADS)

    Maekawa, Satoshi; Nitta, Kouichi; Matoba, Osamu

    2008-02-01

    We have proposed a new passive imaging optics which consists of a grid array of micro roof mirrors working as dihedral corner reflectors. Although this element forms mirror-like images at opposite side of objects, the images are real. Because the imaging principle of the proposed element is based on accumulation of rays, the design of each light path makes many kinds of devices possible. So, we propose two variations of such a device. One device consists of an array of micro retroreflectors and a half mirror, and it can also form real mirror-like images. The advantage of this device is wide range of view, because the displacement of each retororeflector is not limited on a plane unlike the roof mirror grid array. The other consists of an array of long dihedral corner reflectors. Although this structure has been already known as a roof mirror array, it can be used for imaging. This device forms two heterogeneous images. One is real at the same side of an object, and the other is virtual at the opposite side. This is a conjugate imaging optics of a slit mirror array whose mirror surface is perpendicular to the device surface. The advantage of a roor mirror array is that the real image has horizontal parallax and can be seen in air naturally.

  12. Granuloma Annulare.

    PubMed

    Keimig, Emily Louise

    2015-07-01

    Granuloma annulare (GA) is a noninfectious granulomatous skin condition that can present with a variety of cutaneous morphologies. It is characterized by collagen degeneration, mucin deposition, and palisaded or interstitial histiocytes. Although the mechanism underlying development of GA is unknown, studies point to a cell-mediated hypersensitivity reaction to an as-yet undetermined antigen. Systemic associations with diabetes, thyroid disorders, lipid abnormalities, malignancy, and infection are described in atypical GA. Treatment is divided into localized skin-directed therapies and systemic immunomodulatory or immunosuppressive therapies. The selected treatment modality should be based on disease severity, comorbid conditions, consideration of potential side effects, and patient preference. PMID:26143416

  13. Reconstruction techniques for sparse multistatic linear array microwave imaging

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.

    2014-06-01

    Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. The Pacific Northwest National Laboratory (PNNL) has developed this technology for several applications including concealed weapon detection, groundpenetrating radar, and non-destructive inspection and evaluation. These techniques form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images. Recently, a sparse multi-static array technology has been developed that reduces the number of antennas required to densely sample the linear array axis of the spatial aperture. This allows a significant reduction in cost and complexity of the linear-array-based imaging system. The sparse array has been specifically designed to be compatible with Fourier-Transform-based image reconstruction techniques; however, there are limitations to the use of these techniques, especially for extreme near-field operation. In the extreme near-field of the array, back-projection techniques have been developed that account for the exact location of each transmitter and receiver in the linear array and the 3-D image location. In this paper, the sparse array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.

  14. [Granuloma annulare].

    PubMed

    Butsch, F; Weidenthaler-Barth, B; von Stebut, E

    2015-11-01

    Granuloma annulare is a benign, chronic inflammatory skin disease. Its pathogenesis is still unclear, but reports on infections as a trigger can be found. In addition, some authors reported an association with other systemic disease, e.g., cancer, trauma, and diabetes mellitus; however, these have not been verified. The clinical picture of granuloma annulare ranges from the localized form predominantly at the extremities to disseminated, subcutaneous, or perforating forms. Diagnosis is based on the typical clinical presentation which may be confirmed by a biopsy. Histologically, necrobiotic areas within granulomatous inflammation are typical. The prognosis of the disease is good with spontaneous resolution being frequently observed, especially in localized forms. Disseminated manifestations tend to persist longer, and recurrences are reported. When choosing between different therapeutic options, the benign disease character versus the individual degree of suffering and the potential therapy side effects must be considered. For local treatment, topical application of corticosteroids is most common. Disseminated forms can be treated systemically with corticosteroids for several weeks; alternatively, dapsone, hydroxychloroquine, retinoids, fumaric acid, cyclosporine, and anti-TNFα appear to be effective. PMID:26487494

  15. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  16. Imaging antenna array at 119 microns. [for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.

    1982-01-01

    A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.

  17. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. PMID:26744830

  18. Cd1-xZnxTe detector imaging array

    NASA Astrophysics Data System (ADS)

    Butler, Jack F.; Friesenhahn, Stan J.; Lingren, Clinton L.; Apotovsky, Boris A.; Doty, F. P.; Ashburn, William L.; Dillon, William P.

    1993-09-01

    A prototype portable gamma ray camera using 32 X 32 channels was developed. An experimental 3 X 3 sub-array of 5 mm X 5 mm CZT detectors was fabricated for use in system checkout and to investigate the applicability of CZT imaging arrays to nuclear medical imaging. Experiments were carried out to make a direct comparison of the imaging capabilities of the CZT sub-array with a state-of-the-art Anger camera. In a linespread study using a Tc-99m source embedded in a tissue equivalent absorber, contrasts of 9.5 for the CZT array and 3.4 for the Anger camera were observed. In a dynamic imaging experiment, the CZT imager appeared to have comparable resolution to and be somewhat more regular than the Anger camera.

  19. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  20. Volumetric imaging with an amplitude-steered array

    NASA Astrophysics Data System (ADS)

    Frazier, Catherine H.; Hughes, W. Jack; O'Brien, William D.

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results.

  1. Volumetric imaging with an amplitude-steered array.

    PubMed

    Frazier, Catherine H; Hughes, W Jack; O'Brien, William D

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results. PMID:12508995

  2. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  3. Underwater Imaging Using a 1 × 16 CMUT Linear Array.

    PubMed

    Zhang, Rui; Zhang, Wendong; He, Changde; Zhang, Yongmei; Song, Jinlong; Xue, Chenyang

    2016-01-01

    A 1 × 16 capacitive micro-machined ultrasonic transducer linear array was designed, fabricated, and tested for underwater imaging in the low frequency range. The linear array was fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested in a water tank, and the array has a resonant frequency of 700 kHz, with pressure amplitude 182 dB (μPa·m/V) at 1 m. The -3 dB main beam width of the designed dense linear array is approximately 5 degrees. Synthetic aperture focusing technique was applied to improve the resolution of reconstructed images, with promising results. Thus, the proposed array was shown to be suitable for underwater imaging applications. PMID:26938536

  4. Underwater Imaging Using a 1 × 16 CMUT Linear Array

    PubMed Central

    Zhang, Rui; Zhang, Wendong; He, Changde; Zhang, Yongmei; Song, Jinlong; Xue, Chenyang

    2016-01-01

    A 1 × 16 capacitive micro-machined ultrasonic transducer linear array was designed, fabricated, and tested for underwater imaging in the low frequency range. The linear array was fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested in a water tank, and the array has a resonant frequency of 700 kHz, with pressure amplitude 182 dB (μPa·m/V) at 1 m. The −3 dB main beam width of the designed dense linear array is approximately 5 degrees. Synthetic aperture focusing technique was applied to improve the resolution of reconstructed images, with promising results. Thus, the proposed array was shown to be suitable for underwater imaging applications. PMID:26938536

  5. Imaging performance of annular apertures. III - Apodization and modulation transfer functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1979-01-01

    Apodization functions with decreasing transmission and their opposite, functions with increasing transmission, are investigated for various central obstruction ratios. The resultant modulation transfer functions are presented for various transmission functions and central obstruction ratios. Conclusions applicable to the improvement of imaging performance are discussed.

  6. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  7. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor

  8. Identification of the Position and Thickness of the First Annular Pulley in Sonographic Images.

    PubMed

    Yang, Tai-Hua; Lin, Yi-Hsun; Chuang, Bo-I; Chen, Hsin-Chen; Lin, Wei-Jr; Yang, Dee-Shan; Wang, Shyh-Hau; Sun, Yung-Nien; Jou, I-Ming; Kuo, Li-Chieh; Su, Fong-Chin

    2016-05-01

    The purpose was to identify the A1 pulley's exact location and thickness by comparing measurements from a clinical high-frequency ultrasound scanner system (CHUS), a customized high-frequency ultrasound imaging research system (HURS) and a digital caliper. Ten cadaveric hands were used. We explored the pulley by layers, inserted guide pins and scanned it with the CHUS. After identifying the pulley, we measured each long finger's thickness using the CHUS and excised the pulley to measure its thickness with a digital caliper and the HURS. The thin hypo-echoic layer was revealed to be the synovial fluid space, and the pulley appears hyper-echoic regardless of scan direction. We also defined the pulley's boundaries. Moreover, the CHUS provided a significantly lower measurement of the pulley's thickness than the digital caliper and HURS. Likewise, based on the digital caliper's measurement, the HURS had significantly lower mean absolute and relative errors than the CHUS. PMID:26831343

  9. Image-like illumination with LED arrays: design.

    PubMed

    Moreno, Ivan

    2012-03-01

    An array of spatially distributed light-emitting diodes (LEDs) can produce an illumination pattern that approaches an image by individually modulating each LED. In this letter, I analyze the first-order design of such systems in order to achieve the best match between the illumination distribution and a desired image. In particular, simple formulas are given for the optimal number of LEDs, working distance, array size, and LED beam pattern. The analysis developed here may be applied to the design of LED systems such as architecture lighting, energy-efficient lighting, backlight local dimming for displays, and structured illumination microscopy with micro-LED arrays. PMID:22378411

  10. Transceiver array development for submillimeter-wave imaging radars

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.; Reck, Theodore A.; Jung-Kubiak, Cecile; Lee, Choonsup; Siles, Jose V.; Lin, Robert H.; Peralta, Alejandro; Decrossas, Emmanuel; Schlecht, Erich T.; Chattopadhyay, Goutam; Mehdi, Imran

    2013-05-01

    The Jet Propulsion Laboratory (JPL) is developing compact transceiver arrays housing discrete GaAs Schottky diodes with integrated waveguides in order to increase the frame rate and lower the cost of active submillimeter-wave imaging radar systems. As part of this effort, high performance diode frequency multiplier and mixer devices optimized for a 30 GHz bandwidth centered near 340 GHz have been fabricated using JPL's MoMeD process. A two-element array unit cell was designed using a layered architecture with three-dimensional waveguide routing for maximum scalability to multiple array elements. Prototype two-element arrays have been built using both conventionally machined metal blocks as well as gold-plated micromachined silicon substrates. Preliminary performance characterization has been accomplished in terms of transmit power, and conversion loss, and promising 3D radar images of concealed weapons have been acquired using the array.

  11. Imaging of high-angle annular dark-field scanning transmission electron microscopy and observations of GaN-based violet laser diodes.

    PubMed

    Shiojiri, M; Saijo, H

    2006-09-01

    The first part of this paper is devoted to physics, to explain high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and to interpret why HAADF-STEM imaging is incoherent, instructing a strict definition of interference and coherence of electron waves. Next, we present our recent investigations of InGaN/GaN multiple quantum wells and AlGaN/GaN strained-layer superlattice claddings in GaN-based violet laser diodes, which have been performed by HAADF-STEM and high-resolution field-emission gun scanning electron microscopy. PMID:17059523

  12. A doublet microlens array for imaging micron-sized objects

    PubMed Central

    Tripathi, A; Chronis, N

    2011-01-01

    We present a high-numerical aperture, doublet microlens array for imaging micron-sized objects. The proposed doublet architecture consists of glass microspheres trapped on a predefined array of silicon microholes and covered with a thin polymer layer. A standard silicon microfabrication process and a novel fluidic assembly technique were combined to obtain an array of 56 μm diameter microlenses with a numerical aperture of ~0.5. Using such an array, we demonstrated brightfield and fluorescent image formation of objects directly on a CCD sensor without the use of intermediate lenses. The proposed technology is a significant advancement toward the unmet need of inexpensive, miniaturized optical modules which can be further integrated with lab-on-chip microfluidic devices and photonic chips for a variety of high-end imaging/detection applications. PMID:22003271

  13. Flexible transceiver array for ultrahigh field human MR imaging.

    PubMed

    Wu, Bing; Zhang, Xiaoliang; Wang, Chunsheng; Li, Ye; Pang, Yong; Lu, Jonathan; Xu, Duan; Majumdar, Sharmila; Nelson, Sarah J; Vigneron, Daniel B

    2012-10-01

    A flexible transceiver array, capable of multiple-purpose imaging applications in vivo at ultrahigh magnetic fields was designed, implemented and tested on a 7 T MR scanner. By alternately placing coil elements with primary and secondary harmonics, improved decoupling among coil elements was accomplished without requiring decoupling circuitry between resonant elements, which is commonly required in high-frequency transceiver arrays to achieve sufficient element-isolation during radiofrequency excitation. This flexible array design is capable of maintaining the required decoupling among resonant elements in different array size and geometry and is scalable in coil size and number of resonant elements (i.e., number of channels), yielding improved filling factors for various body parts with different geometry and size. To investigate design feasibility, flexibility, and array performance, a multichannel, 16-element transceiver array was designed and constructed, and in vivo images of the human head, knee, and hand were acquired using a whole-body 7 T MR system. Seven Tesla parallel imaging with generalized autocalibrating partially parallel acquisitions (GRAPPA) performed using this flexible transceiver array was also presented. PMID:22246803

  14. Guided wave phased array beamforming and imaging in composite plates.

    PubMed

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures. PMID:26907891

  15. 3D electrical tomographic imaging using vertical arrays of electrodes

    NASA Astrophysics Data System (ADS)

    Murphy, S. C.; Stanley, S. J.; Rhodes, D.; York, T. A.

    2006-11-01

    Linear arrays of electrodes in conjunction with electrical impedance tomography have been used to spatially interrogate industrial processes that have only limited access for sensor placement. This paper explores the compromises that are to be expected when using a small number of vertically positioned linear arrays to facilitate 3D imaging using electrical tomography. A configuration with three arrays is found to give reasonable results when compared with a 'conventional' arrangement of circumferential electrodes. A single array yields highly localized sensitivity that struggles to image the whole space. Strategies have been tested on a small-scale version of a sludge settling application that is of relevance to the industrial sponsor. A new electrode excitation strategy, referred to here as 'planar cross drive', is found to give superior results to an extended version of the adjacent electrodes technique due to the improved uniformity of the sensitivity across the domain. Recommendations are suggested for parameters to inform the scale-up to industrial vessels.

  16. Removing image artefacts in wire array metamaterials.

    PubMed

    Habib, Md Samiul; Tuniz, Alessandro; Kaltenecker, Korbinian J; Chateiller, Quentin; Perrin, Isadora; Atakaramians, Shaghik; Fleming, Simon C; Argyros, Alexander; Kuhlmey, Boris T

    2016-08-01

    Hyperlenses and hyperbolic media endoscopes can overcome the diffraction limit by supporting propagating high spatial frequency extraordinary waves. While hyperlenses can resolve subwavelength details far below the diffraction limit, images obtained from them are not perfect: resonant high spatial frequency slab modes as well as diffracting ordinary waves cause image distortion and artefacts. In order to use hyperlenses as broad-band subwavelength imaging devices, it is thus necessary to avoid or correct such unwanted artefacts. Here we introduce three methods, namely convolution, field averaging, and power averaging, to remove imaging artefacts over wide frequency bands, and numerically demonstrate their effectiveness based on simulations of a wire medium endoscope. We also define a projection in spatial Fourier space to effectively filter out all ordinary waves, leading to considerable reduction in image distortion. These methods are outlined and demonstrated for simple and complex apertures. PMID:27505766

  17. Plastic retina: image enhancement using polymer grid triode arrays

    NASA Astrophysics Data System (ADS)

    Heeger, Alan J.; Heeger, David J.; Langan, John D.; Yang, Yang

    1996-02-01

    An array of polymer grid triodes (PGTs) connected through a common grid functions as a 'plastic retina' which provides local contrast gain control for image enhancement. This device, made from layers of conducting polymers, functions as an active resistive network that performs center-surround filtering. The PGT array with common grid is a continuous analog of the discrete approach of Mead, with a variety of fabrication advantages and with a significant saving of 'real estate' within the unit cell of each pixel.

  18. Coded aperture imaging with self-supporting uniformly redundant arrays

    DOEpatents

    Fenimore, Edward E.

    1983-01-01

    A self-supporting uniformly redundant array pattern for coded aperture imaging. The present invention utilizes holes which are an integer times smaller in each direction than holes in conventional URA patterns. A balance correlation function is generated where holes are represented by 1's, nonholes are represented by -1's, and supporting area is represented by 0's. The self-supporting array can be used for low energy applications where substrates would greatly reduce throughput. The balance correlation response function for the self-supporting array pattern provides an accurate representation of the source of nonfocusable radiation.

  19. Astronomical imaging with infrared array detectors.

    PubMed

    Gatley, I; Depoy, D L; Fowler, A M

    1988-12-01

    History shows that progress in astronomy often stems directly from technological innovation and that each portion of the electromagnetic spectrum offers unique insights into the nature of the universe. Most recently, the widespread availability of infrared-sensitive two-dimensional array detectors has led to dramatic improvements in the capabilities of conventional ground-based observatories. The impact of this new technology on our understanding of a wide variety of phenomena is illustrated here by infrared pictures of star-forming regions, of nebulae produced by the late stages of stellar evolution, of the nucleus of our own galaxy(the Milky Way), and of activity in other galaxies. PMID:17817072

  20. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  1. Pyroelectric sensor arrays for detection and thermal imaging

    NASA Astrophysics Data System (ADS)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  2. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  3. Arrayed imaging reflectometry for inexpensive and label-free protein arrays

    NASA Astrophysics Data System (ADS)

    Striemer, Christopher C.; Mace, Charles R.; Carter, Jared A.; Mehta, Sourabh D.; Miller, Benjamin L.

    2009-02-01

    Highly sensitive optical techniques, capable of detecting very small quantities of specific proteins in a label-free format, offer great promise for pathogen detection because they avoid the complexity, expense, and process time associated with the use of secondary reporter elements. Arrayed Imaging Reflectometry (AIR) is one of the simplest label-free methodologies, combining laser reflectance imaging of a thermally oxidized silicon chip with standard microarray printing technology to create a platform with the potential to identify and quantify 100's of target proteins in a matter of minutes. This technique exploits a reflectance zero condition that is formed when s-polarized light strikes the surface of a silicon wafer with a single-layer oxide coating. In the vicinity of this deep reflectance minimum, picometer-scale variations in film thickness (surface relief) can be imaged directly in a reflected laser signal imaged with a CCD camera. By directly arraying probe molecules onto this substrate, minute changes in the optical thickness of each spot, corresponding to binding of the target of interest, can be measured. Array size is limited only by the resolution of the imaging system and the array printer, enabling complex protein signatures, indicative of specific pathogens or disease states to be measured in a biosample. The cost-effectiveness of a low-complexity substrate and reader, combined with the short assay times associated with label-free detection make AIR a promising new technology for pathogen and toxic exposure assessment.

  4. Modulation transfer function measurement technique for image sensor arrays

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Jiang, Huilin; Zhang, XiaoHui

    2010-08-01

    A new technique is demonstrated for measurement of modulation transfer function (MTF) on image sensor arrays. Fourier analysis of a low frequency bar target pattern is used to extract MTF at odd harmonics of a target pattern frequency up to and beyond Nyquist. The technique is particularly useful for linear image arrays (either conventional linescan or time-delay- integration devices) where conventional slanted-edge technique is not always applicable. The technique is well suited to simple implementation and can provide live presentation of the MTF curve, which helps to ensure optimal alignment conditions are achieved. Detailed analysis of the technique and demonstration of experimental results are presented.

  5. Subcutaneous granuloma annulare.

    PubMed

    Requena, Luis; Fernández-Figueras, María Teresa

    2007-06-01

    Subcutaneous granuloma annulare is a rare clinicopathologic variant of granuloma annulare, characterized by subcutaneous nodules that may appear alone or in association with intradermal lesions. The pathogenesis of this deep variant of granuloma annulare remains uncertain. Subcutaneous granuloma annulare appears more frequently in children and young adults, and the lesions consist of subcutaneous nodules with no inflammatory appearance at the skin surface, most commonly located on the anterior aspects of the lower legs, hands, head, and buttocks. Usually, subcutaneous granuloma annulare is an authentic and exclusive panniculitic process with no dermal participation, although in 25% of the patients lesions of subcutaneous granuloma annulare coexist with the classic findings of granuloma annulare in the dermis. Histopathologically, subcutaneous granuloma annulare consist of areas of basophilic degeneration of collagen bundles with peripheral palisading granulomas involving the connective tissue septa of the subcutis. Usually, the area of necrobiosis in subcutaneous granuloma annulare is larger than in the dermal counterpart. The central necrobiotic areas contain increased amounts of connective tissue mucin and nuclear dust from neutrophils between the degenerated collagen bundles. Eosinophils are more common in subcutaneous granuloma annulare than in the dermal counterpart. There are not descriptions of subcutaneous granuloma annulare showing a histopathologic pattern of the so-called incomplete or interstitial variant. Histopathologic differential diagnosis of subcutaneous granuloma annulare includes rheumatoid nodule, necrobiosis lipoidica and epithelioid sarcoma. PMID:17544961

  6. High-resolution seismic array imaging using teleseismic scattered waves

    NASA Astrophysics Data System (ADS)

    Tong, P.; Liu, Q.; Chen, C.; Basini, P.; Komatitsch, D.

    2013-12-01

    The advent of dense seismic networks, new modeling and imaging techniques, and increased HPC capacity makes it feasible to resolve subsurface interfaces and structural anomalies beneath seismic arrays at unprecedented details based on teleseismic scattered records. To accurately and efficiently simulate the full propagation of teleseismic waves beneath receiver arrays at the frequencies relevant to scattering imaging, we develop a hybrid method that interfaces a frequency-wavenumber (FK) calculation, which provides semi-analytical solutions to one-dimensional layered background models, with a 2D/3D spectral-element (SEM) numerical solver to calculate synthetic responses of local media to plane-wave incidence. This hybrid method accurately deals with local heterogeneities and discontinuity undulations, and represents an efficient tool for the forward modelling of teleseismic coda (including converted and scattered) waves. Meanwhile, adjoint tomography is a powerful tool for high-resolution imaging in heterogeneous media, which can resolve large velocity contrasts through the use of 2D/3D initial models and full numerical simulations for forward wavefields and sensitivity kernels. In the framework of adjont tomography and hybrid method, we compute sensitivity kernels for teleseismic coda waves, which provide the basis for mapping variations in subsurface discontinuities, density and velocity structures through nonlinear conjugate-gradient methods. Various 2D synthetic imaging examples show that inversion of teleseismic coda phases based on the 2D SEM-FK hybrid method and adjoint techniques is a promising tool for structural imaging beneath dense seismic arrays. 3D synthetic experiments will be performed to test the feasibility of seismic array imaging using adjoint method and 3D SEM-FK hybrid method. We will also apply this hybrid imaging techniques to realistic seismic data, such as the recorded SsPmP phases in central Tibet, to explore high-resolution subsurface

  7. Submillimeter video imaging with a superconducting bolometer array

    NASA Astrophysics Data System (ADS)

    Becker, Daniel Thomas

    Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) bolometers makes them ideal for passive imaging of thermal signals at millimeter and submillimeter wavelengths. I have built a 350 GHz video-rate imaging system using an array of feedhorn-coupled TES bolometers. The system operates at standoff distances of 16 m to 28 m with a measured spatial resolution of 1.4 cm (at 17 m). It currently contains one 251-detector sub-array, and can be expanded to contain four sub-arrays for a total of 1004 detectors. The system has been used to take video images that reveal the presence of weapons concealed beneath a shirt in an indoor setting. This dissertation describes the design, implementation and characterization of this system. It presents an overview of the challenges associated with standoff passive imaging and how these problems can be overcome through the use of large-format TES bolometer arrays. I describe the design of the system and cover the results of detector and optical characterization. I explain the procedure used to generate video images using the system, and present a noise analysis of those images. This analysis indicates that the Noise Equivalent Temperature Difference (NETD) of the video images is currently limited by artifacts of the scanning process. More sophisticated image processing algorithms can eliminate these artifacts and reduce the NETD to 100 mK, which is the target value for the most demanding passive imaging scenarios. I finish with an overview of future directions for this system.

  8. Code-modulated interferometric imaging system using phased arrays

    NASA Astrophysics Data System (ADS)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  9. Fourier Spectral Filter Array for Optimal Multispectral Imaging.

    PubMed

    Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo

    2016-04-01

    Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data. PMID:26849867

  10. Interlaced linear array sampling technique for electromagnetic wave imaging

    SciTech Connect

    Sheen, David M; McMakin, Douglas L

    2009-06-16

    An arrangement of receivers and transmitters used in wideband holographic imaging using a reduced number of physical antenna elements compared to established techniques and systems. At least one of the receivers is configured to receive the reflected signal from three or more of transmitters, and at least one transmitter is configured to transmit a signal to an object, the reflection of which will be received by at least three receivers. The improved arrays are easily incorporated into existing microwave and millimeter wave holographic imaging equipment utilizing the existing mechanical features of this equipment, as well as the existing wideband holographic imaging algorithms and electronics for constructing images.

  11. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  12. Improved Phased Array Imaging of a Model Jet

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Podboy, Gary G.

    2010-01-01

    An advanced phased array system, OptiNav Array 48, and a new deconvolution algorithm, TIDY, have been used to make octave band images of supersonic and subsonic jet noise produced by the NASA Glenn Small Hot Jet Acoustic Rig (SHJAR). The results are much more detailed than previous jet noise images. Shock cell structures and the production of screech in an underexpanded supersonic jet are observed directly. Some trends are similar to observations using spherical and elliptic mirrors that partially informed the two-source model of jet noise, but the radial distribution of high frequency noise near the nozzle appears to differ from expectations of this model. The beamforming approach has been validated by agreement between the integrated image results and the conventional microphone data.

  13. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry

    SciTech Connect

    Zhang, Zhigang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan E-mail: wgchu@nanoctr.cn; Wu, Xiaoping; Dong, Fengliang; Chu, Weiguo E-mail: wgchu@nanoctr.cn

    2014-10-15

    Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.

  14. High-speed imaging by use of a photoswitch array

    NASA Astrophysics Data System (ADS)

    Chen, Anshi; Zu, Jing

    1996-09-01

    A new technique for recording the shadow image of a moving projectile is presented. The technique is both simple to understand as well as efficient in image recording and processing. The key to the method is the way in which the photoswitch array produces two analog output corresponding to the positions of the upper edge and the lower edge of the projectile. The two outputs are converted into a digital data stream and acquired by a computer. A simple computation is applied to reconstruct the image. Analytical results for system transfer function and time response is evaluated and verified experimentally.

  15. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  16. Depth-Enhanced Integral Imaging with a Stepped Lens Array or a Composite Lens Array for Three-Dimensional Display

    NASA Astrophysics Data System (ADS)

    Choi, Heejin; Park, Jae-Hyeung; Hong, Jisoo; Lee, Byoungho

    2004-08-01

    In spite of the many advantages of integral imaging, the depth of reconstructed three-dimensional (3D) image is limited to around the only one image plane. Here, we propose a novel method for increasing the depth of a reconstructed image using a stepped lens array (SLA) or a composite lens array (CLA). We confirm our idea by fabricating SLA and CLA with two image planes each. By using a SLA or a CLA, it is possible to form the 3D image around several image planes and to increase the depth of the reconstructed 3D image.

  17. Compressive spectral integral imaging using a microlens array

    NASA Astrophysics Data System (ADS)

    Feng, Weiyi; Rueda, Hoover; Fu, Chen; Qian, Chen; Arce, Gonzalo R.

    2016-05-01

    In this paper, a compressive spectral integral imaging system using a microlens array (MLA) is proposed. This system can sense the 4D spectro-volumetric information into a compressive 2D measurement image on the detector plane. In the reconstruction process, the 3D spatial information at different depths and the spectral responses of each spatial volume pixel can be obtained simultaneously. In the simulation, sensing of the 3D objects is carried out by optically recording elemental images (EIs) using a scanned pinhole camera. With the elemental images, a spectral data cube with different perspectives and depth information can be reconstructed using the TwIST algorithm in the multi-shot compressive spectral imaging framework. Then, the 3D spatial images with one dimensional spectral information at arbitrary depths are computed using the computational integral imaging method by inversely mapping the elemental images according to geometrical optics. The simulation results verify the feasibility of the proposed system. The 3D volume images and the spectral information of the volume pixels can be successfully reconstructed at the location of the 3D objects. The proposed system can capture both 3D volumetric images and spectral information in a video rate, which is valuable in biomedical imaging and chemical analysis.

  18. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  19. Multianode microchannel array detectors for Space Shuttle imaging applications

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array detectors that have been developed and qualified specifically for use in space. MAMA detectors with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of imaging and tracking applications. These photo-emissive detectors can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA detectors are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these detectors are outlined. Performance characteristics of the MAMA detectors that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array detectors such as the CCDs and CIDs.

  20. Two-dimensional pixel array image sensor for protein crystallography

    SciTech Connect

    Beuville, E.; Beche, J.-F.; Cork, C.

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  1. Nineteen-Channel Receive Array and Four-Channel Transmit Array Coil for Cervical Spinal Cord Imaging at 7T

    PubMed Central

    Zhao, Wei; Cohen-Adad, Julien; Polimeni, Jonathan R.; Keil, Boris; Guerin, Bastien; Setsompop, Kawin; Serano, Peter; Mareyam, Azma; Hoecht, Philipp; Wald, Lawrence L.

    2016-01-01

    Purpose To design and validate a radiofrequency (RF) array coil for cervical spinal cord imaging at 7T. Methods A 19-channel receive array with a four-channel transmit array was developed on a close-fitting coil former at 7T. Transmit efficiency and specific absorption rate were evaluated in a B1+ mapping study and an electromagnetic model. Receive signal-to-noise ratio (SNR) and noise amplification for parallel imaging were evaluated and compared with a commercial 3T 19-channel head–neck array and a 7T four-channel spine array. The performance of the array was qualitatively demonstrated in human volunteers using high-resolution imaging (down to 300 μm in-plane). Results The transmit and receive arrays showed good bench performance. The SNR was approximately 4.2-fold higher in the 7T receive array at the location of the cord with respect to the 3T coil. The g-factor results showed an additional acceleration was possible with the 7T array. In vivo imaging was feasible and showed high SNR and tissue contrast. Conclusion The highly parallel transmit and receive arrays were demonstrated to be fit for spinal cord imaging at 7T. The high sensitivity of the receive coil combined with ultra-high field will likely improve investigations of microstructure and tissue segmentation in the healthy and pathological spinal cord. PMID:23963998

  2. VERITAS: the Very Energetic Radiation Imaging Telescope Array System

    NASA Astrophysics Data System (ADS)

    Weekes, T. C.; Badran, H.; Biller, S. D.; Bond, I.; Bradbury, S.; Buckley, J.; Carter-Lewis, D.; Catanese, M.; Criswell, S.; Cui, W.; Dowkontt, P.; Duke, C.; Fegan, D. J.; Finley, J.; Fortson, L.; Gaidos, J.; Gillanders, G. H.; Grindlay, J.; Hall, T. A.; Harris, K.; Hillas, A. M.; Kaaret, P.; Kertzman, M.; Kieda, D.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Lessard, R.; Lloyd-Evans, J.; Knapp, J.; McKernan, B.; McEnery, J.; Moriarty, P.; Muller, D.; Ogden, P.; Ong, R.; Petry, D.; Quinn, J.; Reay, N. W.; Reynolds, P. T.; Rose, J.; Salamon, M.; Sembroski, G.; Sidwell, R.; Slane, P.; Stanton, N.; Swordy, S. P.; Vassiliev, V. V.; Wakely, S. P.

    2002-05-01

    The Very Energetic Radiation Imaging Telescope Array System (VERITAS) represents an important step forward in the study of extreme astrophysical processes in the universe. It combines the power of the atmospheric Cherenkov imaging technique using a large optical reflector with the power of stereoscopic observatories using arrays of separated telescopes looking at the same shower. The seven identical telescopes in VERITAS, each of aperture 10 m, will be deployed in a filled hexagonal pattern of side 80 m; each telescope will have a camera consisting of 499 pixels with a field of view of 3.5°. VERITAS will substantially increase the catalog of very high energy ( E>100 GeV) γ-ray sources and greatly improve measurements of established sources.

  3. Separation of multiple images via directional guidance using structured prism and pyramid arrays.

    PubMed

    Lee, Hyemin; Seo, Hyein; Kang, Sunghwan; Yoon, Hyunsik

    2016-09-01

    We propose a new concept of separating images through a directional guide of multi-visuals by using structured prism or pyramid arrays. By placing prism arrays onto two different image arrays, the two collective images below the facets are guided to different directions. Using optical calculations, we identify a condition for successful image separation. Transparent pyramid arrays are used to separate four images into four directions. The direction of refracted rays can be controlled by the refractive index of prisms and liquid filled into the voids. In addition, the images can be switched by stretching and releasing an elastomeric prism array. PMID:27607698

  4. Fiber Scanning Array for 3 Dimensional Topographic Imaging

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Rabine, David L.; Poulios, Demetrios; Blair, J. Bryan; Stysley, Paul R.; Kay, Richard; Clarke, Greg; Bufton, Jack

    2013-01-01

    We report on the design and development of a fiber optic scanning 3-D LIDAR employing a switched fiber array. This design distributes ns length laser pulses over a sample field, collects the return pulses, and assembles them into a 3-D image. This instrument is a reduced size version consisting of 35 beams, and will serve as a proof-of-principle demonstration for a planned 1000 beam instrument for Earth and planetary topographical missions.

  5. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  6. Adaptive optics scanning ophthalmoscopy with annular pupils

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2012-01-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435

  7. Hexagonal uniformly redundant arrays for coded-aperture imaging

    NASA Technical Reports Server (NTRS)

    Finger, M. H.; Prince, T. A.

    1985-01-01

    Uniformly redundant arrays are used in coded-aperture imaging, a technique for forming images without mirrors or lenses. The URAs constructed on hexagonal lattices, are outlined. Details are presented for the construction of a special class of URAs, the skew-Hadamard URAs, which have the following properties: (1) nearly half open and half closed (2) antisymmetric upon rotation by 180 deg except for the central cell and its repetitions. Some of the skew-Hadamard URAs constructed on a hexagonal lattice have additional symmetries. These special URAs that have a hexagonal unit pattern, and are antisymmetric upon rotation by 60 deg, called hexagonal uniformly redundant arrays (HURAs). The HURAs are particularly suited to gamma-ray imaging in high background situations. In a high background situation the best sensitivity is obtained with a half open and half closed mask. The hexagonal symmetry of an HURA is more appropriate for a round position-sensitive detector or a closed-packed array of detectors than a rectangular symmetry.

  8. Holographic arrays for multi-path imaging artifact reduction

    DOEpatents

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.

    2007-11-13

    A method and apparatus to remove human features utilizing at least one transmitter transmitting a signal between 200 MHz and 1 THz, the signal having at least one characteristic of elliptical polarization, and at least one receiver receiving the reflection of the signal from the transmitter. A plurality of such receivers and transmitters are arranged together in an array which is in turn mounted to a scanner, allowing the array to be passed adjacent to the surface of the item being imaged while the transmitter is transmitting electromagnetic radiation. The array is passed adjacent to the surface of the item, such as a human being, that is being imaged. The portions of the received signals wherein the polarity of the characteristic has been reversed and those portions of the received signal wherein the polarity of the characteristic has not been reversed are identified. An image of the item from those portions of the received signal wherein the polarity of the characteristic was reversed is then created.

  9. Imaging Ferromagnetic Tracers with a Magnetoresistive Sensors Array

    NASA Astrophysics Data System (ADS)

    Leyva, Juan A.; Carneiro, Antonio A. O.; Murta, Luís O.; Baffa, O.

    2006-09-01

    The aim of this work was to study the feasibility to obtain images from a distribution of ferromagnetic tracers using a magnetoresistive multichannel sensor array (MRA). A magnetic imaging system formed by a linear array composed of 12 magnetoresistive sensors (Honeywell HMC 1001) was constructed covering a scanning area of (16×18) cm2. The signal was pre-processed for off-set correction and interpolation to generate a matrix of (256×256). The point spread function of the MRA was evaluated and the sensors were spaced accordingly. The magnetic images were generated by mapping the response of the MRA at short distances from the presence of a magnetite powder dispersed in planar phantoms with different shapes. The phantoms were magnetized by a pulse field of approximately 80 mT produced by a Helmholtz coil. Using the Wiener filtering, the magnetic source images were obtained. We conclude that this biomagnetic method can be successfully used to generate planar functional images of the gastrointestinal tract using magnetic markers in the near field.

  10. Development of a Magnetic Nanoparticle Susceptibility Magnitude Imaging Array

    PubMed Central

    Ficko, Bradley W.; Nadar, Priyanka M.; Hoopes, P. Jack; Diamond, Solomon G.

    2014-01-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over 5 dilutions (R2 > 0.98, p <0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 nm and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe/ml mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. PMID:24504184

  11. Development of a magnetic nanoparticle susceptibility magnitude imaging array.

    PubMed

    Ficko, Bradley W; Nadar, Priyanka M; Hoopes, P Jack; Diamond, Solomon G

    2014-02-21

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R(2) > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml(-1) mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. PMID:24504184

  12. Development of a magnetic nanoparticle susceptibility magnitude imaging array

    NASA Astrophysics Data System (ADS)

    Ficko, Bradley W.; Nadar, Priyanka M.; Hoopes, P. Jack; Diamond, Solomon G.

    2014-02-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R2 > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml-1 mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution.

  13. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  14. Control of satellite imaging arrays in multi-body regimes

    NASA Astrophysics Data System (ADS)

    Millard, Lindsay Demoore

    In the current study, control strategies are investigated for spacecraft imaging formations in multi-body regimes. The specific focus of the analysis is spacecraft motion as modeled in the circular restricted three-body problem, where two large gravitational bodies affect the motion of spacecraft in their vicinity. Five equilibrium points, or libration points, exist as solutions to the differential equations of motion in the circular restricted three-body problem. A specific periodic solution to these equations is an orbit in the vicinity of a libration point, i.e., a halo orbit. Halo orbits are ideal locations for spacecraft imaging arrays as they remain at a nearly fixed distance from the larger, or primary, bodies in the system. For example, if the Sun and Earth are considered the primary bodies, a spacecraft array can be placed near a libration point on the far side of the Earth, protected from the harsh radiation of the Sun at all times. A model of image reconstruction is developed for two common satellite imaging platform designs: an interferometric sparse aperture array and an occulter-telescope formation. The resolution of an image produced by an array is largely determined by the corresponding coverage of the (u, v) plane. The (u, v) plane is not a physical plane, but rather a relationship between frequencies and amplitudes in the Fourier expansion of the electromagnetic signal from the object of interest. Coverage of the (u, v) plane is derived based on several characteristics of the spacecraft configuration and the motion in physical space. Therefore, to determine formation motion history that may be advantageous to imaging, a mathematical model relating spacecraft motion in physical space to coverage of the (u, v) plane, and thus image reconstruction, is necessary. From these models, two control algorithms are developed that increase the resolution of the images produced by the formation while exploiting multi-body dynamics to reduce satellite fuel

  15. A 94 GHz imaging array using slot line radiators

    NASA Astrophysics Data System (ADS)

    Korzeniowski, T. L.

    1985-09-01

    A planar endfire slotted-line antenna structure was investigated. It was found that the H-plane beamwidths are basically dependent upon the substrate properties, whereas the E-plane beamwidths are more strongly a function of the slot's shape and size. It is shown that these antennas produce symmetrical E and H-plane beamwidths while following Zucker's standard traveling-wave antenna beamwidth curves over some range of antenna normalized length. An empircally derived design formula for effective substrate thickness is shown to predict this range for linearly tapered slotted-line antennas. The experimental imaging properties of these arrays are presented and imaging theory is discussed. It is shown that a minimum spacing of elements is necessary for exact reconstruction for a sampled image in a diffraction limited system. Because these LTSA elements employ the traveling-wave mechanism of radiation, they can be spaced two times closer than a conical feed horn of comparable beamwidth.

  16. Stochastic Resonance Magnetic Force Microscopy imaging of Josephson Arrays

    NASA Astrophysics Data System (ADS)

    Naibert, Tyler; Polshyn, Hryhoriy; Wolin, Brian; Durkin, Malcolm; Garrido Menacho, Rita; Mondragon Shem, Ian; Chua, Victor; Hughes, Taylor; Mason, Nadya; Budakian, Raffi

    Vortex interactions are key to explaining the behavior of many two dimensional superconducting systems. We report on the development of a technique to locally probe vortex interactions in a 2D array of Josephson junctions. Scanning a magnetic tip attached to an ultra-soft cantilever over the array produces changes in the frequency of the cantilever along certain lines, forming geometric patterns in the scans. Different tip-surface separations and external magnetic fields produce a number of different patterns. These patterns correspond to tip locations in which two configurations of vortices in the lattice have degenerate energies. By imaging the locations of these degeneracies, information on the local vortex interactions may be obtained.

  17. Micropolarizer arrays in the MWIR for snapshot polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Kemme, S. A.; Cruz-Cabrera, A. A.; Nandy, R.; Boye, R. R.; Wendt, J. R.; Carter, T. R.; Samora, S.

    2007-04-01

    We report on the design, fabrication, and simulation of a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for remote sensing and military applications. The fabricated pixelated polarizers have measured extinction ratios larger than 100:1 for pixel sizes greater than 9 microns by 9 microns, with transmitted signals greater than 50%. That exceeds, by 7 times, previously reported device extinction ratios for 15 micron by 15 micron pixels. Traditionally, sequential polarimetric imaging sensors produce scenes with polarization information through a series of assembled images. Snapshot polarimetric imaging collects the spatial distribution of all four Stokes' parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. In this paper, we will quantify near-field and diffractive effects of the finite pixel apertures upon detection. We have designed and built an experimental setup that models a pixel within a focal plane array (FPA) to measure crosstalk from adjacent gold wiregrid micropolarizers. This configuration simulates a snapshot polarization imaging device where the two substrates are stacked; micropolarizer array substrate on top of an FPA. Modeling and measured data indicate crosstalk between the adjacent pixels up to a few microns behind the polarizer plane. Crosstalk between adjacent pixels increases uncertainty in the measured polarization states in a scene of interest. Measured and simulated data confirm that the extinction ratio of a micropolarizer pixel in a super-cell will be reduced by 17% when moving the FPA from 0.5 microns to 1.0 microns away from the polarizer. These changes in extinction ratio are significant since typical glue separation is on the order of 10 microns.

  18. CdZnTe arrays for nuclear medicine imaging

    SciTech Connect

    Barber, H.B.

    1996-12-31

    In nuclear medicine, a gamma-ray-emitting radiotracer is injected into the body, and the resulting biodistribution is imaged using a gamma camera. Current gamma cameras use a design developed by Anger. An Anger camera makes use of a slab of scintillation detector that is viewed by an array of photomultiplier tubes and uses an analog position estimation technique to determine the position of the gamma ray`s interaction. The image-forming optics is usually a multi-bore collimator made of lead. Such cameras are characterized by poor, system spatial resolution ({approximately}1 cm) due to poor detector resolution ({approximately}0.4 cm) and poor collimator performance. Arrays of semiconductor detectors are an attractive alternative to scintillators for use in gamma cameras. Semiconductor detectors have excellent energy resolution. High spatial resolution is also possible because large semiconductor detector arrays with small pixel sizes can be produced using photolithography techniques. A new crystal growth technique (high-pressure vertical Bridgman) allows production of detector grade CdTe and CdZnTe in multikilogram ingots. Although the cost of CdZnTe detectors has come down substantially in the last few years, in part because of economies of scale, costs are still more than an order of magnitude higher than those required for a commercial camera ($20--$50/gram). High detector costs are perhaps the major stumbling block to developing a semiconductor gamma camera. The photolithography techniques required to make large CdZnTe arrays have already been demonstrated. This paper discusses the recent developments made in CdZnTe detectors.

  19. Floating three-dimensional image display using micro-mirror array imaging element

    NASA Astrophysics Data System (ADS)

    Miyazaki, Daisueke; Maeda, Yuki; Maekawa, Satoshi

    2015-05-01

    Autostereoscopic three-dimensional display technologies using novel optical imaging systems based on retro-reflection with mirror arrays, a dihedral corner reflector array (DCRA) and a roof mirror array (RMA) are described. The proposed methods can generate a low-distortion aerial 3-D image with high numerical aperture on the basis of retro-reflection imaging. As the examples of 3-D displays based on retro-reflective imaging, a multi-view stereoscopic display using a DCRA and a volumetric display using a RMA were described. The multi-view stereoscopic display can achieve not only aerial image formation of display images but also that of the pupils of projectors around viewing position using a DCRA. This feature is effective in keeping consistency between accommodation and convergence cues for stereoscopic display. The volumetric display using a RMA can generate a 3-D image with natural depth information by light points are arranged in a 3-D volume using relatively simple optical configuration. This method can provide natural perception of depth and accessibility to an image. Experimental demonstrations of the generation of floating autostereoscopic images are presented to verify the validity of our proposed methods.

  20. Passive THz Imaging with Superconducting NbN microbolometer Arrays

    NASA Astrophysics Data System (ADS)

    Helistö, Panu

    2007-03-01

    Passive THz imaging applications indoors require temperature difference resolution well below 1 K and integration times down to 0.1 ms. Recently we have shown that such resolution, approaching the photon noise limit, can be achieved using an antenna-coupled superconducting microwire bolometer with about 10 K transition temperature. The bolometer signal is read out with a low-noise room-temperature amplifier, thus eliminating the need for SQUID amplifiers. The readout method utilizes electro-thermal feedback at the I-V curve minimum of a voltage-biased bolometer. At this working point, the very high power gain of the bolometer makes noise matching of the readout to the detector straightforward. The readout amplifier can be used with transition bolometers and calorimeters operating even at mK temperatures. We are presently developing a video-rate THz imager for concealed weapon detection, utilizing conical scanning and a 128-pixel NbN bolometer array, cooled down to 4 K with a pulse-tube cryocooler. We will characterize the bolometer arrays and the readout electrically and compare the results with the theory. We will also present the design of the system and results of preliminary imaging experiments. The work is done in collaboration between VTT, Millilab and NIST.

  1. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  2. Gain calibrating nonuniform image-array data using only the image data

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Lin, H.; Loranz, D.

    1991-01-01

    An algorithm is developed for calibrating the spatial nonuniformity of image-array (CCD-type) detectors. Like other techniques this approach uses multiple, spatially displaced images. In circumstances where high-precision flat fields are not available by other means (i.e., sky flats) this technique is advantageous as it uses the data frames for gain calibration even when the array images extended, nonuniform, sources. Numerical experiments and direct observations with intrinsically uniform and quite nonuniform detectors show that this algorithm is useful when data frames are crowded with sources - circumstance where 'median filtering' flatfielding techniques often fail. The algorithm described is robust and efficiently uses information from multiple data frames to determine pixel gain variations, using visible and IR array observations of extended sources.

  3. Techniques for radar imaging using a wideband adaptive array

    NASA Astrophysics Data System (ADS)

    Curry, Mark Andrew

    A microwave imaging approach is simulated and validated experimentally that uses a small, wideband adaptive array. The experimental 12-element linear array and microwave receiver uses stepped frequency CW signals from 2--3 GHz and receives backscattered energy from short range objects in a +/-90° field of view. Discone antenna elements are used due to their wide temporal bandwidth, isotropic azimuth beam pattern and fixed phase center. It is also shown that these antennas have very low mutual coupling, which significantly reduces the calibration requirements. The MUSIC spectrum is used as a calibration tool. Spatial resampling is used to correct the dispersion effects, which if not compensated causes severe reduction in detection and resolution for medium and large off-axis angles. Fourier processing provides range resolution and the minimum variance spectral estimate is employed to resolve constant range targets for improved angular resolution. Spatial smoothing techniques are used to generate signal plus interference covariance matrices at each range bin. Clutter affects the angular resolution of the array due to the increase in rank of the signal plus clutter covariance matrix, whereas at the same time the rank of this matrix is reduced for closely spaced scatterers due to signal coherence. A method is proposed to enhance angular resolution in the presence of clutter by an approximate signal subspace projection (ASSP) that maps the received signal space to a lower effective rank approximation. This projection operator has a scalar control parameter that is a function of the signal and clutter amplitude estimates. These operations are accomplished without using eigendecomposition. The low sidelobe levels allow the imaging of the integrated backscattering from the absorber cones in the chamber. This creates a fairly large clutter signature for testing ASSP. We can easily resolve 2 dihedrals placed at about 70% of a beamwidth apart, with a signal to clutter ratio

  4. Imaging Radio Photospheres with the Jansky Very Large Array

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Reid, M. J.; Menten, K. M.

    2015-08-01

    Using the Jansky Very Large Array (JVLA), we have imaged the radio photosphere of the long-period variable star W Hya at 45 GHz (˜ 7 mm) with a resolution of ˜ 40 mas. Our data reveal a non-spherical photospheric shape, consistent with earlier measurements. We also find evidence for an elongation along PA ≍ -5°, the orientation of which is consistent with the previously measured projected magnetic field direction and an extension in the 18 μm dust emission, both at larger scales.

  5. Array imaging of austenitic welds by measuring weld material map

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Lowe, M.

    2014-02-01

    It is difficult to inspect for defects in austenitic welds ultrasonically due to complicated material properties inside the weld. Weld microstructures typically lead to weld stiffnesses that are both anisotropic and inhomogeneous, so that ultrasonic waves tend to deviate and scatter. A weld performance map is commonly used to describe how the material properties vary throughout the weld, and this idea has been applied to wave propagation models. In this work, we developed a non-destructive method to measure this map using ultrasonic arrays. A material model (previously published by others) with a small number of parameters has been applied to describe the weld performance map. It uses the information of the welding procedure and rules for crystalline growth to predict the orientations, therefore it has a good physical foundation. An inverse model has then been developed to measure the weld performance map based on the matching of predictions by the ray tracing method to selected experimental array measurements. The process is validated by both finite element models and experiments. The results have been applied to correct array images to compensate for deviations of the ultrasonic rays.

  6. Development of segmented semiconductor arrays for quantum imaging

    NASA Astrophysics Data System (ADS)

    Mikulec, B.; Medipix2 Collaboration

    2003-09-01

    The field of pixel detectors has grown strongly in recent years through progress in CMOS technology, which permits many hundreds of transistors to be implemented in an area of 50-200 μm 2. Pulse processing electronics with noise of the order of 100 e - RMS permits to distinguish photons of a few kilo-electron-Volts from background noise. Techniques are under development, which should allow single chip systems (area ˜1 cm 2) to be extended to larger areas. This paper gives an introduction into the concept of quantum imaging using direct conversion in segmented semiconductor arrays. An overview of projects from this domain using strip, pad and in particular hybrid pixel detectors will be presented. One of these projects, the Medipix project, is described in more detail. The effect of different correction methods like threshold adjustment and flat field correction is illustrated and new measurement results and images are presented.

  7. Behavior interrelationships in annular flow

    NASA Astrophysics Data System (ADS)

    Schubring, Duwayne

    Two-phase gas-liquid flow occurs in many types of industrial boiling and condensing heat transfer equipment, including the reactor cores of boiling water nuclear reactors (BWRs) and the steam generators of pressurized water reactors (PWRs). In annular flow, the liquid phase often travels as both a thin film around the wall (containing disturbance waves and base film) and as entrained droplets in the central gas core. Gas bubbles are also often entrained into this film. Annular flow displays several quantifiable flow behaviors, including pressure loss, disturbance waves, and film thickness, along with micro-scale velocity profiles and fluctuations in the liquid film. The conventional approach to annular flow closely links film thickness and pressure loss, but relies on an assumed film velocity profile and does not consider disturbance waves explicitly. The present work seeks to explore a more complete range of behaviors in both horizontal and vertical flow to explore the relationships among them and thereby improve modeling of annular flow. Several of these investigations employ quantitative visualization. Modern optics and computing (in the form of non-trivial data reduction codes) are applied to the study of two-phase flow to process images of a physical experiment to quantify behavior information. Quantitative visualization allows for rapid acquisition of a large volume of flow behavior data, which allows for analysis of the flow behaviors themselves and how they relate to one another and to global modeling. By integrating behavior data from these quantitative visualizations and other conventional experimental investigations, a new two-region (base film and disturbance wave) model is proposed that can be implemented given only flow rates, external geometry, and fluid properties.

  8. Breadboard linear array scan imager using LSI solid-state technology

    NASA Technical Reports Server (NTRS)

    Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.

    1976-01-01

    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.

  9. Construction and hyperspectral imaging of quantum dot lysate arrays.

    PubMed

    Rosenblatt, Kevin P; Huebschman, Michael L; Garner, Harold R

    2012-01-01

    The emerging field of proteomic molecular profiling will be driven by new technologies that can measure dozens to hundreds of proteins from a small sample input from a patient's biopsy. Lysate arrays, or reverse-phase protein microarrays, provide a platform for complex mixtures of proteins extracted from cells and tissues to be directly immobilized onto a solid support (such as a biochip with protein binding capacity) in diminutive volumes (picoliter-to-nanoliter). The proteins are spotted using precision robotics and then quantitatively assayed using primary antibodies; important posttranslational modifications, such as phosphorylations that are important for protein activation, may also be assayed to provide an estimate of the regulation of cellular signaling. Until recently, chromogenic signals and fluorescence (using organic fluorophores) detection were two strategies relied upon for signal detection. Emerging regents such as quantum dots (Qdot® nanocrystals; QD) are now employed for improved performance. QD embody a more versatile detection system because the robust signals may be time averaged and the narrow spectral emissions enable many protein targets to be quantified within the same lysate spot. Previously, we found that commercially available pegylated, streptavidin-conjugated QD were effective detection agents, with low-background affinities to spurious components within heterogeneous protein mixtures. Hyperspectral imaging allows the simultaneous detection of the different colored QD reagents within a single lysate spot. Here, we described the construction and imaging of QD lysate arrays. This technology is an emerging, enabling tool within the exciting, clinically oriented field of clinical tissue proteomics. PMID:22081354

  10. Unexploded ordnance detection using imaging giant magnetoresistive (GMR) sensor arrays

    SciTech Connect

    Chaiken, A., LLNL

    1997-05-06

    False positive detections account for a great part of the expense associated with unexploded ordnance (UXO) remediation. Presently fielded systems like pulsed electromagnetic induction systems and cesium-vapor magnetometers are able to distinguish between UXO and other metallic ground clutter only with difficulty. The discovery of giant magnetoresistance (GMR) has led to the development of a new generation of integrated-circuit magnetic sensors that are far more sensitive than previously available room-temperature-operation electronic devices. The small size of GMR sensors makes possible the construction of array detectors that can be used to image the flux emanating from a ferrous object or from a non-ferrous object with eddy currents imposed by an external coil. The purpose of a GMR-based imaging detector would be to allow the operator to easily distinguish between UXO and benign objects (like shrapnel or spent bullets) that litter formerly used defense sites (FUDS). In order to demonstrate the potential of a GMR-based imaging technology, a crude magnetic imaging system has been constructed using commercially available sensors. The ability to roughly determine the outline and disposition of magnetic objects has been demonstrated. Improvements to the system which are necessary to make it into a high-performance UXO detector are outlined.

  11. ULTRASONIC IMAGING USING A FLEXIBLE ARRAY: IMPROVEMENTS TO THE MAXIMUM CONTRAST AUTOFOCUS ALGORITHM

    SciTech Connect

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-03

    In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.

  12. An LED-array-based range imaging system used for enhancing three-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Wang, Huanqin; Xu, Jun; He, Deyong; Zhao, Tianpeng; Wang, Anting; Ming, Hai; Kong, Deyi

    2010-11-01

    An LED-array-based range imaging system is proposed for three-dimensional (3-D) shape measurement. The range image is obtained by time-division electronic scanning of the LED Time-of-Flight (TOF) range finders in array, and no complex mechanical scanning is needed. By combining with a low cost CCD/CMOS sensor for capturing the twodimensional (2-D) image, the proposed range imaging system can be used to accomplish a high quality 3-D imaging. A sophisticated co-lens optical path is designed to assure the natural registration between the range image and 2-D image. Experimental tests for evaluation of the imaging system performance are described. It was found that the 3-D images can be acquired at a rate of 10 frames per second with a depth resolution better than 5mm in the range of 50 - 1000mm, which is sufficient for many practical applications, including the obstacle detection in robotics, machine automation, 3-D vision, virtual reality games and 3-D video.

  13. Design and numerical evaluation of a volume coil array for parallel MR imaging at ultrahigh fields

    PubMed Central

    Pang, Yong; Wong, Ernest W.H.; Yu, Baiying

    2014-01-01

    In this work, we propose and investigate a volume coil array design method using different types of birdcage coils for MR imaging. Unlike the conventional radiofrequency (RF) coil arrays of which the array elements are surface coils, the proposed volume coil array consists of a set of independent volume coils including a conventional birdcage coil, a transverse birdcage coil, and a helix birdcage coil. The magnetic fluxes of these three birdcage coils are intrinsically cancelled, yielding a highly decoupled volume coil array. In contrast to conventional non-array type volume coils, the volume coil array would be beneficial in improving MR signal-to-noise ratio (SNR) and also gain the capability of implementing parallel imaging. The volume coil array is evaluated at the ultrahigh field of 7T using FDTD numerical simulations, and the g-factor map at different acceleration rates was also calculated to investigate its parallel imaging performance. PMID:24649435

  14. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics.

    PubMed

    Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A

    2014-11-01

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array. PMID:25430218

  15. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    SciTech Connect

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Yoshinaga, T.; Yamaguchi, S.; Yoshikawa, M.; Kohagura, J.; Sugito, S.; Kogi, Y.; Mase, A.

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  16. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  17. Imaging protoplanetary disks with a square kilometer array

    NASA Astrophysics Data System (ADS)

    Wilner, D. J.

    2004-12-01

    The recent detections of extrasolar giant planets has revealed a surprising diversity of planetary system architectures, with many very unlike our Solar System. Understanding the origin of this diversity requires multi-wavelength studies of the structure and evolution of the protoplanetary disks that surround young stars. Radio astronomy and the square kilometer array (SKA) will play a unique role in these studies by imaging thermal dust emission in a representative sample of protoplanetary disks at unprecedented sub-AU scales in the innermost regions, including the "habitable zone" that lies within a few AU of the central stars. Radio observations will probe the evolution of dust grains up to centimeter-sized "pebbles", the critical first step in assembling giant planet cores and terrestrial planets, through the wavelength dependence of dust emissivity, which provides a diagnostic of particle size. High resolution images of dust emission will show directly mass concentrations and features in disk surface density related to planet building, in particular the radial gaps opened by tidal interactions between planets and disks, and spiral waves driven by embedded protoplanets. Moreover, because orbital timescales are short in the inner disk, synoptic studies over months and years will show proper motions and allow for the tracking of secular changes in disk structure. SKA imaging of protoplanetary disks will reach into the realm of rocky planets for the first time, and they will help clarify the effects of the formation of giant planets on their terrestrial counterparts.

  18. Matrix phased array (MPA) imaging technology for resistance spot welds

    SciTech Connect

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  19. Matrix phased array (MPA) imaging technology for resistance spot welds

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  20. Optical Imaging of Water Condensation on Lubricant Impregnated Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2015-11-01

    We explored the condensation of water drops on a lubricant-impregnated surface, i.e., a micropillar patterned surface impregnated with a ionic liquid. Growing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. On a lubricant-impregnated hydrophobic micropillar array, different stages of condensation can be discriminated: - Nucleation on a lubricant surface. - Regular alignement between micropillars and formation of a three-phase contact line on a bottom of the substrate. - Deformation and bridging by coalescence, leading to a detachment of the drops from the bottom substrate to pillars'top faces. However, on a lubricant-impregnated hydrophilic micropillar array, the condensed water covers the micropillars by dewetting the lubricant. As a result, the surface loses its slippery property. Our results provide fundamental concepts how these solid/liquid hybrid surfaces can be applied for facile removal of condensed water, as well as necessity of the appropriate surface treatment. Financial support from ERC for the advanced grant 340391-SUPRO is gratefully acknowledged.

  1. Combatting infrared focal plane array nonuniformity noise in imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Kumar, Rakesh; Black, Wiley; Boger, James K.; Tyo, J. Scott

    2005-08-01

    One of the most significant challenges in performing infrared (IR) polarimetery is the focal plane array (FPA) nonuniformity (NU) noise that is inherent in virtually all IR photodetector technologies that operate in the midwave IR (MWIR) or long-wave IR (LWIR). NU noise results from pixel-to-pixel variations in the repsonsivity of the photodetectors. This problem is especially severy in the microengineered IR FPA materials like HgCdTe and InSb, as well as in uncooled IR microbolometer sensors. Such problems are largely absent from Si based visible spectrum FPAs. The pixel response is usually a variable nonlinear response function, and even when the response is linearized over some range of temperatures, the gain and offset of the resulting response is usually highly variable. NU noise is normally corrected by applying a linear calibration to the data, but the resulting imagery still retains residual nonuniformity due to the nonlinearity of the photodetector responses. This residual nonuniformity is particularly troublesome for polarimeters because of the addition and subtraction operations that must be performed on the images in order to construct the Stokes parameters or other polarization products. In this paper we explore the impact of NU noise on full stokes and linear-polarization-only IR polarimeters. We compare the performance of division of time, division of amplitude, and division of array polarimeters in the presence of both NU and temporal noise, and assess the ability of calibration-based NU correction schemes to clean up the data.

  2. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    PubMed Central

    Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.

    2012-01-01

    We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606

  3. Multiplex detection of disease marker proteins with arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Yadav, Amrita; Sriram, Rashmi; Miller, Benjamin L.

    2010-02-01

    Arrayed Imaging Reflectometry, or "AIR", is a new label-free optical technique for detecting proteins. AIR relies on binding-induced changes in the response of an antireflective coating on the surface of a silicon chip. Thus far, we have demonstrated the use of AIR for the detection of pathogenic E. coli, and for multiplex detection of a broad range of proteins in human serum. Creation of the near-perfect antireflective coating on the surface of silicon requires careful control over preparation of the chip surface prior to probe molecule immobilization. We present methods for highly reproducible, solution-phase silanization and glutaraldehyde functionalization of silicon chips carrying a layer of thermal oxide. Following functionalization with antibodies and passivation of remaining reactive groups, these surfaces provide exceptional performance in the AIR assay.

  4. Photon-Counting Arrays for Time-Resolved Imaging.

    PubMed

    Antolovic, I Michel; Burri, Samuel; Hoebe, Ron A; Maruyama, Yuki; Bruschini, Claudio; Charbon, Edoardo

    2016-01-01

    The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach. PMID:27367697

  5. Photon-Counting Arrays for Time-Resolved Imaging

    PubMed Central

    Antolovic, I. Michel; Burri, Samuel; Hoebe, Ron A.; Maruyama, Yuki; Bruschini, Claudio; Charbon, Edoardo

    2016-01-01

    The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach. PMID:27367697

  6. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  7. Application of sparse array and MIMO in near-range microwave imaging

    NASA Astrophysics Data System (ADS)

    Qi, Yaolong; Wang, Yanping; Tan, Weixian; Hong, Wen

    2011-11-01

    Near range microwave imaging systems have broad application prospects in the field of concealed weapon detection, biomedical imaging, nondestructive testing, etc. In this paper, the techniques of MIMO and sparse line array are applied to near range microwave imaging, which can greatly reduce the complexity of imaging systems. In detail, the paper establishes two-dimensional near range MIMO imaging geometry and corresponding echo model, where the imaging geometry is formed by arranging sparse antenna array in azimuth direction and transmitting broadband signals in range direction; then, by analyzing the relationship between MIMO and convolution principle, the paper develops a method of arranging sparse line array which can be equivalent to a full array; and the paper deduces the backprojection algorithm applied to near ranging MIMO imaging geometry; finally, the imaging geometry and corresponding imaging algorithm proposed in this paper are investigated and verified by means of theoretical analysis and numerical simulations.

  8. Tilted Microstrip Phased Arrays With Improved Electromagnetic Decoupling for Ultrahigh-Field Magnetic Resonance Imaging

    PubMed Central

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B.; Zhang, Xiaoliang

    2014-01-01

    Abstract One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T. PMID:25526481

  9. Semiconductor arrays with multiplexer readout for gamma-ray imaging: results for a 48 × 48 Ge array

    NASA Astrophysics Data System (ADS)

    Barber, H. B.; Augustine, F. L.; Barrett, H. H.; Dereniak, E. L.; Matherson, K. L.; Meyers, T. J.; Perry, D. L.; Venzon, J. E.; Woolfenden, J. M.; Young, E. T.

    1994-12-01

    We are developing a new kind of gamma-ray imaging device that has sub-millimeter spatial resolution and excellent energy resolution. The device is composed of a slab of semiconductor detector partitioned into an array of detector cells by photolithography and connected to a monolithic circuit chip called a multiplexer (MUX) for readout. Our application is for an ultra-high-resolution SPECT system for functional brain imaging using an injected radiotracer. We report here on results obtained with a Hughes 48 × 48 Ge PIN-photodiode array with MUX readout, originally developed as an infrared focal-plane-array imaging sensor. The device functions as an array of individual gamma-ray detectors with minimal interpixel crosstalk. Linearity of energy response is excellent up to at least 140 keV. The array exhibits excellent energy resolution, ˜ 2 keV at ≤ 140 keV or 1.5% FWHM at 140 keV. The energy resolution is dominated by MUX readout noise and so should improve with MUX optimization for gamma-ray detection. The spatial resolution of the 48 × 48 Ge array is essentially the same as the pixel spacing, 125 μm. The quantum efficiency is limited by the thin Ge detector (0.25 mm), but this approach is readily applicable to thicker Ge detectors and room-temperature semiconductor detectors such as CdTe, HgI 2 and CdZnTe.

  10. Imaging collective magnonic modes in 2D arrays of magnetic nanoelements.

    PubMed

    Kruglyak, V V; Keatley, P S; Neudert, A; Hicken, R J; Childress, J R; Katine, J A

    2010-01-15

    We have used time resolved scanning Kerr microscopy to image collective spin wave modes within a 2D array of magnetic nanoelements. Long wavelength spin waves are confined within the array as if it was a continuous element of the same size but with effective material properties determined by the structure of the array and its constituent nanoelements. The array is an example of a magnonic metamaterial, the demonstration of which provides new opportunities within the emerging field of magnonics. PMID:20366622

  11. Imaging Collective Magnonic Modes in 2D Arrays of Magnetic Nanoelements

    NASA Astrophysics Data System (ADS)

    Kruglyak, V. V.; Keatley, P. S.; Neudert, A.; Hicken, R. J.; Childress, J. R.; Katine, J. A.

    2010-01-01

    We have used time resolved scanning Kerr microscopy to image collective spin wave modes within a 2D array of magnetic nanoelements. Long wavelength spin waves are confined within the array as if it was a continuous element of the same size but with effective material properties determined by the structure of the array and its constituent nanoelements. The array is an example of a magnonic metamaterial, the demonstration of which provides new opportunities within the emerging field of magnonics.

  12. Programmable hyperspectral image mapper with on-array processing

    NASA Technical Reports Server (NTRS)

    Cutts, James A. (Inventor)

    1995-01-01

    A hyperspectral imager includes a focal plane having an array of spaced image recording pixels receiving light from a scene moving relative to the focal plane in a longitudinal direction, the recording pixels being transportable at a controllable rate in the focal plane in the longitudinal direction, an electronic shutter for adjusting an exposure time of the focal plane, whereby recording pixels in an active area of the focal plane are removed therefrom and stored upon expiration of the exposure time, an electronic spectral filter for selecting a spectral band of light received by the focal plane from the scene during each exposure time and an electronic controller connected to the focal plane, to the electronic shutter and to the electronic spectral filter for controlling (1) the controllable rate at which the recording is transported in the longitudinal direction, (2) the exposure time, and (3) the spectral band so as to record a selected portion of the scene through M spectral bands with a respective exposure time t(sub q) for each respective spectral band q.

  13. Erythematous Granuloma Annulare

    PubMed Central

    Jang, Eun Joo; Lee, Ji Yeoun; Kim, Mi Kyeong

    2011-01-01

    Granuloma annulare (GA) is a common, benign, chronic inflammatory disorder, which is characterized by grouped papules in an enlarging annular shape. It has been described in several clinical subtypes, including localized, generalized, subcutaneous, perforating, and erythematous types. Even though generalized, subcutaneous, and perforating types of GA are unusual, there are several reports of those types. However, erythematous or patch GA, has not been reported yet in the Korean literature. Herein, we report a 42-year-old woman with pruritic erythematous patches, which occurred on the extremities without preceding event, and showed typical clinical and histopatologic findings of erythematous GA. PMID:21909221

  14. Design, implementation and investigation of an image guide-based optical flip-flop array

    NASA Technical Reports Server (NTRS)

    Griffith, P. C.

    1987-01-01

    Presented is the design for an image guide-based optical flip-flop array created using a Hughes liquid crystal light valve and a flexible image guide in a feedback loop. This design is used to investigate the application of image guides as a communication mechanism in numerical optical computers. It is shown that image guides can be used successfully in this manner but mismatch match between the input and output fiber arrays is extremely limiting.

  15. The effective image denoising method for MEMS based IR image arrays

    NASA Astrophysics Data System (ADS)

    Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin; Liu, Ming; Hui, Mei; Zhou, Xiaoxiao

    2008-12-01

    MEMS have become viable systems to utilize for uncooled infrared imaging in recent years. They offer advantages due to their simplicity, low cost and scalability to high-resolution FPAs without prohibitive increase in cost. An uncooled thermal detector array with low NETD is designed and fabricated using MEMS bimaterial microcantilever structures that bend in response to thermal change. The IR images of objects obtained by these FPAs are readout by an optical method. For the IR images, processed by a sparse representation-based image denoising and inpainting algorithm, which generalizing the K-Means clustering process, for adapting dictionaries in order to achieve sparse signal representations. The processed image quality is improved obviously. Great compute and analysis have been realized by using the discussed algorithm to the simulated data and in applications on real data. The experimental results demonstrate, better RMSE and highest Peak Signal-to-Noise Ratio (PSNR) compared with traditional methods can be obtained. At last we discuss the factors that determine the ultimate performance of the FPA. And we indicated that one of the unique advantages of the present approach is the scalability to larger imaging arrays.

  16. A Simplified Sum-Frequency Vibrational Imaging Setup Used for Imaging Lipid Bilayer Arrays

    PubMed Central

    Smith, Kathryn A.; Conboy, John C.

    2012-01-01

    Given the complexity of cell membranes, there is a need for an analytical technique which can explore the physical properties of lipid membranes in a high-throughput and noninvasive manner. A simplified sum-frequency vibrational imaging (SFVI) setup has been developed and characterized using asymmetrically prepared 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):1,2-distearoyl(d70)-sn-glycero-3-phosphocholine (DSPC-d70) lipid bilayer arrays. Exploiting the vibrational selectivity and inherent symmetry constraints of sum-frequency generation, SFVI was successfully used to probe the transition temperature of a patterned DSPC:DSPC-d70 lipid bilayer array. SFVI was also used to study the phase behavior in a multi-component micropatterned lipid bilayer array (MLBA) prepared using three different binary lipid mixtures (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):DSPC, DOPC:1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC:DSPC). This paper demonstrates that a simplified SFVI setup provides the necessary chemical imaging capabilities with the spatial resolution, sensitivity and field of view required for exploring lipid membrane properties in a high-throughput array based assay. PMID:22947074

  17. A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays.

    PubMed

    Smith, Kathryn A; Conboy, John C

    2012-10-01

    Given the complexity of cell membranes, there is a need for an analytical technique which can explore the physical properties of lipid membranes in a high-throughput and noninvasive manner. A simplified sum-frequency vibrational imaging (SFVI) setup has been developed and characterized using asymmetrically prepared 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC):1,2-distearoyl(d70)-sn-glycero-3-phosphocholine (DSPC-d(70)) lipid bilayer arrays. Exploiting the vibrational selectivity and inherent symmetry constraints of sum-frequency generation, SFVI was successfully used to probe the transition temperature of a patterned DSPC:DSPC-d(70) lipid bilayer array. SFVI was also used to study the phase behavior in a multicomponent micropatterned lipid bilayer array (MLBA) prepared using three different binary lipid mixtures (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):DSPC, DOPC:1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC:DSPC). This paper demonstrates that a simplified SFVI setup provides the necessary chemical imaging capabilities with the spatial resolution, sensitivity, and field of view required for exploring lipid membrane properties in a high-throughput array based assay. PMID:22947074

  18. Ultrasonic phased array inspection imaging technology for NDT of offshore platform structures

    NASA Astrophysics Data System (ADS)

    Shan, Baohua; Wang, Hua; Liang, Yongning; Duan, Zhongdong; Ou, Jinping

    2008-03-01

    In order to improve inspection result repetition and flaw ration veracity of manual ultrasonic inspection of offshore platform structure, an ultrasonic phased array inspection imaging technology for NDT of offshore platform structures is proposed in this paper. Aimed at the practical requirement of tubular joint welds inspection of offshore platform structures, the ultrasonic phased array inspection imaging system for offshore platform structures is developed, which is composed of computer, ultrasonic circuit system, scanning device, phased array transducer and inspection imaging software system. The experiment of Y shape tubular joint model of 60 degree is performed with the ultrasonic phased array inspection imaging system for offshore platform structures, the flaws characteristic could be exactly estimated and the flaws size could be measured through ultrasonic phased array inspection imaging software system for offshore platform structures. Experiment results show that the ultrasonic phased array inspection imaging technology for offshore platform structures is feasible, the ultrasonic phased array inspection imaging system could detect flaws in tubular joint model, the whole development trend of flaws is factually imaging by the ultrasonic phased array inspection technology of offshore platform structures.

  19. MAGPIS: A MULTI-ARRAY GALACTIC PLANE IMAGING SURVEY

    SciTech Connect

    Helfand, D J; Becker, R H; White, R L; Fallon, A; Tuttle, S

    2005-11-10

    We present the Multi-Array Galactic Plane Imaging Survey (MAGPIS), which maps portions of the first Galactic quadrant with an angular resolution, sensitivity and dynamic range that surpasses existing radio images of the Milky Way by more than an order of magnitude. The source detection threshold at 20 cm is in the range 1-2 mJy over the 85% of the survey region (5{sup o} < l < 32{sup o}, |b| < 0.8{sup o}) not covered by bright extended emission; the angular resolution is {approx} 6''. We catalog over 3000 discrete sources (diameters mostly < 30'') and present an atlas of {approx} 400 diffuse emission regions. New and archival data at 90 cm for the whole survey area are also presented. Comparison of our catalogs and images with the MSX mid-infrared data allow us to provide preliminary discrimination between thermal and non-thermal sources. We identify 49 high-probability supernova remnant candidates, increasing by a factor of seven the number of known remnants with diameters smaller than 50 in the survey region; several are pulsar wind nebula candidates and/or very small diameter remnants (D < 45''). We report the tentative identification of several hundred H II regions based on a comparison with the mid-IR data; they range in size from unresolved ultra-compact sources to large complexes of diffuse emission on scales of half a degree. In several of the latter regions, cospatial nonthermal emission illustrates the interplay between stellar death and birth. We comment briefly on plans for followup observations and our extension of the survey; when complemented by data from ongoing X-ray and mid-IR observations, we expect MAGPIS to provide an important contribution to our understanding of the birth and death of massive stars in the Milky Way.

  20. Effect analysis and design on array geometry for coincidence imaging radar based on effective rank theory

    NASA Astrophysics Data System (ADS)

    Zha, Guofeng; Wang, Hongqiang; Yang, Zhaocheng; Cheng, Yongqiang; Qin, Yuliang

    2016-03-01

    As a complementary imaging technology, coincidence imaging radar (CIR) achieves super-resolution in real aperture staring radar imagery via employing the temporal-spatial independent array detecting (TSIAD) signals. The characters of TSIAD signals are impacted by the array geometry and the imaging performance are influenced by the relative imaging position with respect to antennas array. In this paper, the effect of array geometry on CIR system is investigated in detail based on the judgment criteria of the effective rank theory. In course of analyzing of these influences, useful system design guidance about the array geometry is remarked for the CIR system. With the design guidance, the target images are reconstructed based on the Tikhonov regularization algorithm. Simulation results are presented to validate the whole analysis and the efficiency of the design guidance.

  1. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method. PMID:20051345

  2. 2D aperture synthesis for Lamb wave imaging using co-arrays

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  3. Phased array beamforming and imaging in composite laminates using guided waves

    NASA Astrophysics Data System (ADS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-04-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple simulated defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple simulated defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  4. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  5. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff

    2014-03-01

    Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.

  6. Focal plane resolution and overlapped array time delay and integrate imaging

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Cota, Stephen A.; Lomheim, Terrence S.; Kalman, Linda S.

    2010-06-01

    In this paper we model sub-pixel image registration for a generic earth-observing satellite system with a focal plane using two offset time delay and integrate (TDI) arrays in the focal plane to improve the achievable ground resolution over the resolution achievable with a single array. The modeling process starts with a high-resolution image as ground truth. The Parameterized Image Chain Analysis & Simulation Software (PICASSO) modeling tool is used to degrade the images to match the optical transfer function, sampling, and noise characteristics of the target system. The model outputs a pair of images with a separation close to the nominal half-pixel separation between the overlapped arrays. A registration estimation algorithm is used to measure the offset for image reconstruction. The two images are aligned and summed on a grid with twice the capture resolution. We compare the resolution in images between the inputs before overlap, the reconstructed image, and a simulation for the image which would have been captured on a focal plane with twice the resolution. We find the performance to always be better than the lower resolution baseline, and to approach the performance of the high-resolution array in the ideal case. We show that the overlapped array imager significantly outperforms both the conventional high- and low-resolution imagers in conditions with high image smear.

  7. Quantitative ultrasound images generated by a PE-CMOS sensor array: scatter modeling and image restoration

    NASA Astrophysics Data System (ADS)

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T.; Lasser, Marvin E.; Lasser, Bob; Kula, John; Wang, Yue Joseph

    2007-03-01

    In the projection geometry, the detected ultrasound energy through a soft-tissue is mainly attributed to the attenuated primary intensity and the scatter intensity. In order to extract ultrasound image of attenuated primary beam out of the detected raw data, the scatter component must be carefully quantified for restoring the original image. In this study, we have designed a set of apparatus to modeling the ultrasound scattering in soft-tissue. The employed ultrasound imaging device was a C-Scan (projection) prototype using a 4th generation PE-CMOS sensor array (model I400, by Imperium Inc., Silver Spring, MD) as the detector. Right after the plane wave ultrasound transmitting through a soft-tissue mimicking material (Zerdine, by CIRS Inc., Norfolk, VA), a ring aperture is used to collimate the signal before reaching the acoustic lens and the PE-CMOS sensor. Three sets of collimated ring images were acquired and analyzed to obtain the scattering components as a function of the off-center distance. Several pathological specimens and breast phantoms consisting of simulated breast tissue with masses, cysts and microcalcifications were imaged by the same C-Scan imaging prototype. The restoration of these ultrasound images were performed by using a standard deconvolution computation. Our study indicated that the resultant images show shaper edges and detailed features as compared to their unprocessed counterparts.

  8. Computation of optimized arrays for 3-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.

    2014-12-01

    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.

  9. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  10. Fundamental limitations of reciprocal path imaging through the atmosphere with dilute subaperture arrays

    SciTech Connect

    Harvey, J.E.; Kotha, A.; Phillips, R.L.

    1994-12-31

    When synthesizing a large aperture with an array of smaller subapertures for high resolution imaging applications, it is important not only to arrange the subapertures to achieve minimal spatial frequency redundancy, but also to choose the size of the subapertures necessary to achieve the best possible image quality. Spurious or ``ghost`` images often occur even for non-redundant dilute subaperture arrays. In this paper the authors show that array configurations producing a uniform modulation transfer function will not exhibit these undesirable ghost images. A method is then presented for constructing both one-dimensional and two-dimensional configurations of dilute subaperture arrays that result in uniform spatial frequency response with arbitrarily high spatial resolution for reciprocal path imaging applications (i.e., imaging laser radar applications).

  11. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    NASA Astrophysics Data System (ADS)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  12. Experimental verification of SNR and parallel imaging improvements using composite arrays.

    PubMed

    Maunder, Adam; Fallone, B Gino; Daneshmand, Mojgan; De Zanche, Nicola

    2015-02-01

    Composite MRI arrays consist of triplets where two orthogonal upright loops are placed over the same imaging area as a standard surface coil. The optimal height of the upright coils is approximately half the width for the 7 cm coils used in this work. Resistive and magnetic coupling is shown to be negligible within each coil triplet. Experimental evaluation of imaging performance was carried out on a Philips 3 T Achieva scanner using an eight-coil composite array consisting of three surface coils and five upright loops, as well as an array of eight surface coils for comparison. The composite array offers lower overall coupling than the traditional array. The sensitivities of upright coils are complementary to those of the surface coils and therefore provide SNR gains in regions where surface coil sensitivity is low, and additional spatial information for improved parallel imaging performance. Near the surface of the phantom the eight-channel surface coil array provides higher overall SNR than the composite array, but this advantage disappears beyond a depth of approximately one coil diameter, where it is typically more challenging to improve SNR. Furthermore, parallel imaging performance is better with the composite array compared with the surface coil array, especially at high accelerations and in locations deep in the phantom. Composite arrays offer an attractive means of improving imaging performance and channel density without reducing the size, and therefore the loading regime, of surface coil elements. Additional advantages of composite arrays include minimal SNR loss using root-sum-of-squares combination compared with optimal, and the ability to switch from high to low channel density by merely selecting only the surface elements, unlike surface coil arrays, which require additional hardware. PMID:25388793

  13. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  14. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  15. Granuloma annulare, patch type.

    PubMed

    Victor, Frank C; Mengden, Stephanie

    2008-01-01

    A 64-year-old man was referred to the Bellevue Hospital Center Dermatology Clinic for evaluation of an asymptomatic eruption on his left inner arm, which had been present for 4 months and was unresponsive to topical anti-fungal therapy. One month after the initial eruption, 2 similar, asymptomatic lesions appeared on the right inner arm. The lesions were slowly expanding. A biopsy specimen from the left medial arm was consistent with interstitial granuloma annulare. The patient's clinical presentation was consistent with patch-type granuloma annulare. He was treated with a mid-potency topical glucocorticoid twice daily for 4 weeks without benefit. Since the eruption was asymptomatic, treatment was discontinued. PMID:18627757

  16. A Gold Sensors Array for Imaging The Real Tissue Phantom in Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Kanti Bera, Tushar; Nagaraju, J.

    2015-02-01

    Surface electrodes in Electrical Impedance Tomography (EIT) phantoms usually reduce the SNR of the boundary potential data due to their design and development errors. A novel gold sensors array with high geometric precision is developed for EIT phantoms to improve the resistivity image quality. Gold thin films are deposited on a flexible FR4 sheet using electro-deposition process to make a sixteen electrode array with electrodes of identical geometry. A real tissue gold electrode phantom is developed with chicken tissue paste and the fat cylinders as the inhomogeneity. Boundary data are collected using a USB based high speed data acquisition system in a LabVIEW platform for different inhomogeneity positions. Resistivity images are reconstructed using EIDORS and compared with identical stainless steel electrode systems. Image contrast parameters are calculated from the resistivity matrix and the reconstructed images are evaluated for both the phantoms. Image contrast and image resolution of resistivity images are improved with gold electrode array.

  17. Implementation of total focusing method for phased array ultrasonic imaging on FPGA

    NASA Astrophysics Data System (ADS)

    Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2015-02-01

    This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.

  18. Imaging slow earthquakes in Cascadia using seismic arrays

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit

    Slow earthquakes have been observed in major plate boundaries worldwide, and accommodate a significant part of the plate motion through slow slip in the transition zone of the faults. They occur down-dip of the locked zone, where large damaging fast earthquakes nucleate. The physical processes that control slow quakes, however, remain enigmatic. To understand slow earthquakes, I study non-volcanic tremor, a form of seismic radiation associated with slow quakes. It is challenging to detect and locate tremor due to its lack of clear impulsive arrivals. I develop a new beam-backprojection technique to image slow earthquakes in high resolution by detecting and precisely locating tremor using small aperture seismic arrays. This technique can detect more duration of tremor, gives high resolution in tremor locations compared to a conventional envelope cross-correlation method, and also resolve tremor depth. I apply this technique in Cascadia, and show that the majority of tremor is occurring near the plate interface suggesting that they are possibly a result of shear slip on the subduction fault. Transition zone producing tremor appears to be fairly heterogeneous. Three patches down-dip of the transition zone produce majority of the tremor during small to moderate-sized tremor episodes. The patches repeat 10--15 times in 15 months. On the other hand, several up-dip patches are responsible for most of the tremor activity during large slow quakes. Moreover, I find that tremor behavior changes dramatically over different time scales. Over the time scale of several minutes, tremor propagates rapidly sub-parallel to the slip direction of the subduction zone at a velocity of ˜100 km/hr. This quasi-continuous streaking of tremor produces slip-parallel tremor bands over the time scale of several hours. Tremor bands migrate along-strike resulting in the slow rupture propagation at an average velocity of ˜8 km/day. Along-strike slow rupture propagation velocity during a large

  19. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    magnitide are obtained. To achieve the short integration times necessary in acousto-optic applications. t he wide dynamic range detector has been implemented into a tapped array architecture with eight outputs and 256 photoelements. Operation of each 01)1,1)111 at 16 MHz yields detector integration times of 2 micro-seconds. Buried channel two phase CCD shift register technology is utilized to minimize image sensor noise improve video output rates and increase ease of operation.

  20. Sparse Multi-Static Arrays for Near-Field Millimeter-Wave Imaging

    SciTech Connect

    Sheen, David M.

    2013-12-31

    This paper describes a novel design technique for sparse multi-static linear arrays. The methods described allow the development of densely sampled linear arrays suitable for high-resolution near-field imaging that require dramatically fewer antenna and switch elements than the previous state of the art. The techniques used are related to sparse array techniques used in radio astronomy applications, but differ significantly in design due to the transmit-receive nature of the arrays, and the application to linear arrays that achieve dense uniform sampling suitable for high-resolution near-field imaging. As many as 3 to 5 or more samples per antenna can be obtained, compared to 1 sample per antenna for the current state of the art. This could dramatically reduce cost and improve performance over current active millimeter-wave imaging systems.

  1. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  2. Mechanical Analysis of High Power Internally Cooled Annular Fuel

    SciTech Connect

    Zhao Jiyun; No, Hee Cheon; Kazimi, Mujid S.

    2004-05-15

    Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The structural behavior issues arising from the higher flow rate required to cool the fuel are assessed here, including buckling, vibrations, and potential wear problems. Five flow-induced vibration mechanisms are addressed: buckling instability, vortex-induced vibration, acoustic resonance, fluid-elastic instability, and turbulence-induced vibration. The structural behavior of the 17 x 17 traditional solid fuel array is compared with that of two types of annular fuels, a 15 x 15 array, and a 13 x 13 array.It is seen that the annular fuels are superior to the reference fuel in avoiding vibration-induced damage, even at a 50% increase in flow velocity above today's reactors. The higher resistance to vibration is mainly due to their relatively larger cross section area making them more rigid. The 13 x 13 annular fuel shows better structural performance than the 15 x 15 one due to its higher rigidity. Analysis of acoustic resonance of the inner channel cladding with pump blade passing frequencies showed that the acoustic frequencies are within 120% of the pulsation frequency. The annular fuel exhibits reduced impact, sliding, and fretting wear than the solid fuel, even at 150% flow rate of today's reactors.

  3. Compensated individually addressable array technology for human breast imaging

    DOEpatents

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  4. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging.

    PubMed

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  5. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging

    PubMed Central

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  6. Multi-Channel Microstrip Transceiver Arrays Using Harmonics for High Field MR Imaging in Humans

    PubMed Central

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-01-01

    RF transceiver array design using primary and higher order harmonics for in-vivo parallel MR imaging and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging. PMID:21878410

  7. Production and preliminary testing of multianalyte imaging sensor arrays

    SciTech Connect

    Richards, J.B.; Brown, S.B.; Milanovich, F.P.; Healey, B.G.; Chadha, S.; Walt, D.R.

    1994-11-01

    This report covers the production and preliminary testing of fiber optic sensors that contain a discrete array of analyte specific sensors on their distal ends. The development of the chemistries associated with this technology is covered elsewhere.

  8. Classification of tea category using a portable electronic nose based on an odor imaging sensor array.

    PubMed

    Chen, Quansheng; Liu, Aiping; Zhao, Jiewen; Ouyang, Qin

    2013-10-01

    A developed portable electronic nose (E-nose) based on an odor imaging sensor array was successfully used for classification of three different fermentation degrees of tea (i.e., green tea, black tea, and Oolong tea). The odor imaging sensor array was fabricated by printing nine dyes, including porphyrin and metalloporphyrins, on the hydrophobic porous membrane. A color change profile for each sample was obtained by differentiating the image of sensor array before and after exposure to tea's volatile organic compounds (VOCs). Multivariate analysis was used for the classification of tea categories, and linear discriminant analysis (LDA) achieved 100% classification rate by leave-one-out cross-validation (LOOCV). This study demonstrates that the E-nose based on odor imaging sensor array has a high potential in the classification of tea category according to different fermentation degrees. PMID:23810847

  9. First Results On The Imaging Capabilities Of A DROID Array In The UV/Visible

    SciTech Connect

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Venn, R.

    2009-12-16

    Within the SCAM project of the European Space Agency the next step in the development of a cryogenic optical photon counting imaging spectrometer would be to increase the field of view using DROIDs (Distributed Read-Out Imaging Detector). We present the results of the first system test using an array of 60 360x33.5 {mu}m{sup 2} DROIDs in a 3x20 format for optical photon detection. This is an increase in area by a factor of 5.5 compared to the successful S-Cam 3 detector. The responsivity of the DROID array tested is too low for actual use on the telescope. However the spatial resolution of {approx}35 {mu}m is just above the size of a virtual pixel and imaging capabilities of the array can be demonstrated. With increasing responsivity this will improve, yielding a DROID array which can be used as an astronomical optical photon counting imaging spectrometer.

  10. First Results On The Imaging Capabilities Of A DROID Array In The UV/Visible

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Venn, R.

    2009-12-01

    Within the SCAM project of the European Space Agency the next step in the development of a cryogenic optical photon counting imaging spectrometer would be to increase the field of view using DROIDs (Distributed Read-Out Imaging Detector). We present the results of the first system test using an array of 60 360×33.5 μm2 DROIDs in a 3×20 format for optical photon detection. This is an increase in area by a factor of 5.5 compared to the successful S-Cam 3 detector. The responsivity of the DROID array tested is too low for actual use on the telescope. However the spatial resolution of ˜35 μm is just above the size of a virtual pixel and imaging capabilities of the array can be demonstrated. With increasing responsivity this will improve, yielding a DROID array which can be used as an astronomical optical photon counting imaging spectrometer.

  11. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  12. High frame rate photoacoustic imaging using multiple wave-length LED array light source

    NASA Astrophysics Data System (ADS)

    Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Shigeta, Yusuke; Tanaka, Chizuyo

    2016-03-01

    We have successfully imaged photoacoustic differences of light absorbance between two images acquired by different wave-length LED array light source. Compared to photoacoustic imaging system using conventional solid-state laser light source, LED light source can be driven at higher frequency pulses, so we were able to get the subtraction image at higher frame rate that calculated from two images which were captured at each wave-length LED light pulse timing. We developed LED array light source which is composed to have two different wave-length chips, so each wave-length light pulse can be controlled and emitted freely. Thus LED array light source can be composed as multiple selectable wavelength more than two, and a various combination of subtraction image may become available at high frame rate.

  13. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    SciTech Connect

    Classen, I. G. J. Bogomolov, A. V.; Domier, C. W.; Luhmann, N. C.; Suttrop, W.; Boom, J. E.; Tobias, B. J.; Donné, A. J. H.

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  14. Wearable Ultrasound Array for Point-of-Care Imaging and Patient Monitoring.

    PubMed

    Mierzwa, Andrzej P; Huang, Sean P; Nguyen, Kristen T; Culjat, Martin O; Singh, Rahul S

    2016-01-01

    A versatile, flexible piezoceramic array has been developed for a variety of ultrasound applications. The transducer can be configured as a linear or curvilinear transducer array, or mounted directly onto the body as a patch or wearable device. Results using a prototype 16-element array demonstrated equivalence to commercial linear array probes in accuracy of vessel diameter measurements in vascular phantoms. The ability to view needle insertion for peripherally inserted central catheter (PICC) procedures was also demonstrated. Opportunities for wearable ultrasound devices include point-of-care imaging, combat casualty care, ultrasound therapy, patient monitoring, and personal health. PMID:27046585

  15. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade.

    PubMed

    Classen, I G J; Domier, C W; Luhmann, N C; Bogomolov, A V; Suttrop, W; Boom, J E; Tobias, B J; Donné, A J H

    2014-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments. PMID:25430246

  16. Fast photo-acoustic imaging based on multi-element linear transducer array

    NASA Astrophysics Data System (ADS)

    Yin, Bangzheng; Xing, Da; Yang, Diwu; Tan, Yi; Chen, Qun

    2005-04-01

    Photoacoustic imaging combines the contrast advantage of pure optical imaging and the resolution advantage of pure ultrasonic imaging. It has become a popular research subject at present. A fast photoacoustic imaging system based on multi-element linear transducer array and phase-controlled focus method was developed and tested on phantoms and tissues. A Q switched Nd:YAG laser operating at 532nm was used in our experiment as thermal source. The multi-element linear transducer array consists of 320 elements. By phase-controlled focus method, 64 signals, one of which gathered by 11-group element, make up of an image. Experiment results can map the distribution of the optical absorption correctly. The same transducer array also can operate as a conventional phase array and produced ultrasound imaging. Compared to other existing technology and algorithm, the PA imaging based on transducer array was characterize by speediness and convenience. It can provide a new approach for tissue functional imaging in vivo, and may have potentials in developing into an appliance for clinic diagnosis.

  17. Optimization of element length for imaging small volumetric reflectors with linear ultrasonic arrays

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2016-02-01

    A 3D ultrasonic simulation study is presented, aimed at understanding the effect of element length for imaging small volumetric flaws with linear arrays in ultrasonically noisy materials. The geometry of a linear array can be described by the width, pitch and total number of the elements along with the length perpendicular to imaging plane. This paper is concerned with the latter parameter, which tends to be ignored in array optimization studies and is often chosen arbitrarily for industrial array inspections. A 3D analytical model based on imaging a point target is described, validated and used to make calculations of relative Signal-to-Noise Ratio (SNR) as a function of element length. SNR is found to be highly sensitive to element length with a 12dB variation observed over the length range investigated. It is then demonstrated that the optimal length can be predicted directly from the Point Spread Function (PSF) of the imaging system as well as the natural focal point of the array element from 2D beam profiles perpendicular to the imaging plane. This result suggests that the optimal length for any imaging position can be predicted without the need for a full 3D model and is independent of element pitch and the number of elements. Array element design guidelines are then described with respect to wavelength and extensions of these results are discussed for application to realistically-sized defects and coarse-grained materials.

  18. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  19. Endoscopic measurements using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1992-01-01

    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.

  20. Design of high-T{sub c} superconducting bolometers for a far infrared imaging array

    SciTech Connect

    Verghese, S.; Richards, P.L.; Fork, D.K.; Char, K.; Geballe, T.H.

    1992-08-01

    The design of high-{Tc} superconducting bolometers for use in a far infrared imaging array from wavelengths 30--100{mu}m is discussed. Measurements of the voltage noise in thin films of YBa{sub 2}CU{sub 3}O{sub 7-{var_sigma}} on yttria-stabilized zirconia buffer layers on silicon substrates are used to make performance estimates. Useful opportunities exist for imaging and spectroscopy with bolometer arrays made on micro-machined silicon membranes. A circuit on each pixel which performs some signal integration can improve the sensitivity of large two-dimensional arrays of bolometers which use multiplexed readout amplifiers.

  1. Development of a 1K x 1K GaAs QWIP Far IR Imaging Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.

    2003-01-01

    In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.

  2. Annular recuperator design

    DOEpatents

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  3. Noninvasive imaging using an array of electric potential sensors

    SciTech Connect

    Gebrial, W.; Prance, R. J.; Harland, C. J.; Clark, T. D.

    2006-06-15

    We present a design for a linear array of eight electric potential sensors arranged with 1 mm spacing and configured to measure spatially varying potential at the microscopic scale. The array successfully detects a 50 {mu}m wide feature associated with one of the samples tested. In a single sensor arrangement we have demonstrated <1 {mu}m resolution, but the data acquisition times can become prohibitive. The sensors operate noninvasively by capacitively coupling to the sample. The issues associated with using an array of sensors in close proximity are addressed. Cross coupling and strategies for matching the response of the sensors are described in detail. Results are presented for a range of samples including a resistive potential divider, a ceramic microwave circuit board, and a section taken from an oil drill pipe containing a known fault. The data acquisition times are compared with those of a single sensor system, with improvements of 4.5 times in speed reported. In one case real-time simultaneous data acquisition is demonstrated using all eight sensors. Since these sensors operate via the displacement current they may also be applied to the characterization of material properties, including, for example, insulators, dielectrics, and poorly conducting composite materials. It is concluded that we see significant improvements in the data acquisition times for the linear array over a single sensor as expected and are able to overcome the difficulties associated with operating an array of sensors in close proximity.

  4. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    SciTech Connect

    Solis, S. E.; Tomasi, D.; Rodriguez, A. O.

    2008-08-11

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  5. A Novel ASI Array for Redline Auroral Imaging across Northern Canada

    NASA Astrophysics Data System (ADS)

    Unick, C.; Donovan, E.; Spanswick, E.; Jackel, B. J.; Groves, P.; McGuffin, N.; Chaddock, D.; James, S.; Lambrinoudis, C.

    2014-12-01

    The redline aurora is a tracer of magnetospheric structure and dynamics. From drifting polar cap patches to bursty bulk flows (BBFs) in the mid-tail, the redline aurora provides key information about system-level dynamics and coupling between plasma regimes. In this paper we present a new all-sky imager (ASI) array that measures the 6300Å emission line from neutral Oxygen in the aurora. The array coverage extends from south of Gillam, Manitoba, to north of Resolute Bay, Nunavut, and to the west of Fort Smith, NWT, and the array is synchronized at 3 second cadence in the same manner that the THEMIS ASI array is. The camera has superior resolution and noise performance compared to previous generations of auroral cameras. The imager employs only one filter and thus monitors one auroral line throughout the array simultaneously and continuously (at high cadence). The new design has better immunity to internal scatter and produces images of faint aurora when the moon is in the field of view, which corrects another deficiency of some currently deployed auroral imager systems. We present the new instrument design, test data from the commissioning phase of the array deployment, and thoughts on the scientific potential of the array.

  6. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  7. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  8. Reconstruction of quasimonochromatic images for multispectral x-ray imaging with a pinhole array and a flat Bragg mirror

    SciTech Connect

    Izumi, N.; Barbee, T. W.; Koch, J. A.; Mancini, R. C.; Welser, L. A.

    2006-08-15

    We have developed a software package for reconstruction of quasimonochromatic images from a multiple monochromatic x-ray imager for inertial confinement fusion implosions. The instrument consists of a pinhole array, a multilayer Bragg mirror, and an image detector. The pinhole array projects hundreds of images onto the detector after reflection off the multilayer Bragg mirror, which introduces spectral dispersion along the reflection axis. The quasimonochromatic images of line emissions and continuum emissions can be used for measurement of temperature and density maps of implosion plasmas. In this article, we describe a computer-aided processing technique for systematic reconstruction of quasimonochromatic images from raw data. This technique provides flexible spectral bandwidth selection and allows systematic subtraction of continuum emission from line emission images.

  9. A decoupled coil detector array for fast image acquisition in magnetic resonance imaging.

    PubMed

    Kwiat, D; Einav, S; Navon, G

    1991-01-01

    A method for magnetic resonance imaging (MRI) is investigated here, whereby an object is put under a homogeneous magnetic field, and the image is obtained by applying inverse source procedures to the data collected in an array of coil detectors surrounding the object. The induced current in each coil due to the precession of the magnetic dipole in each voxel depends on the characteristics of both the magnetic dipole frequency and strength, together with its distance from the coil, the coil direction in space, and the electrical properties of the coils. By calculating the induced current signals over an array of coil detectors, a relationship is established between the set of signals and the structure of the body under investigation. The linear relation can then be represented in matrix notation, and inversion of this matrix will produce an image of the body. Important problems which must be considered in the proposed method are signal-to-noise ratio (SNR) and coupling between adjacent coils. Solutions to these problems will provide a new method for obtaining an instantaneous image by NMR, with no need for gradient switching for encoding. A general algorithm for decoupling of the coils is presented and fast sampling of the signal, instead of filtering, is used in order to reduce both noise and numerical roundoff errors at the same time. Sensitivity considerations are made with respect to the number of coils that is required and its connection with coil radius and SNR. A computer simulation demonstrates the feasibility of this new modality. Based on the solutions presented here for the problems involved in the use of a large number of coils for a simultaneous recording of the signal, an improved method of multicoil recording is suggested, whereby it is combined with the conventional zeugmatographic method with read and phase gradients, to result in a novel method of magnetic resonance imaging. In the combined method, there are no phase-encoding gradients. Only a

  10. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    SciTech Connect

    Ambroziński, Łukasz Stepinski, Tadeusz Uhl, Tadeusz

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.