Science.gov

Sample records for anode current response

  1. MAPMT H7546B anode current response study for ILC SiD muon system prototype

    SciTech Connect

    Dyshkant, A.; Blazey, G.; Francis, K.; Hedin, D.; Zutshi, V.; Fisk, H.; Milstene, C.; Abrams, R.; /Indiana U.

    2007-10-01

    The proposed Silicon Detector (SiD) concept for the ILC has barrel and end cap muon systems. An SiD scintillator based muon system prototype has 256 strips and was constructed from extruded strips, WLS fibers, clear fibers, and multianode photo multiplier tubes (MAPMT) Hamamatsu H7546B. Six MAPMTs were used. As a first step to understand strip output, the response of every anode to a given brightness of light and applied voltage must be measured. For the test, a custom made light source was used. Each MAPMT output was measured independently. The anode currents were measured at constant (green) input light brightness and the same photocathode to anode voltage (800V). The anode currents have a wide spread; for all tubes the maximum value is 5.23 times larger than the minimum value. The MAPMT cross talk was measured for one of the central inputs. The maximum cross talk value is about 4.9%. The average cross talk for the nearest four neighboring channels is 3.9%, for the farthest four is 1%. To assure the reproducibility and repeatability of the measurements, the double reference method was used.

  2. No Effect of Anodal Transcranial Direct Current Stimulation Over the Motor Cortex on Response-Related ERPs during a Conflict Task.

    PubMed

    Conley, Alexander C; Fulham, W R; Marquez, Jodie L; Parsons, Mark W; Karayanidis, Frini

    2016-01-01

    Anodal transcranial direct current stimulation (tDCS) over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs) during a cued go/nogo task after anodal tDCS over dominant primary motor cortex (M1) in young adults (Experiment 1) and both dominant and non-dominant M1 in older adults (Experiment 2). In both experiments, anodal tDCS had no effect on either response time (RT) or response-related ERPs, including the cue-locked contingent negative variation (CNV) and both target-locked and response-locked lateralized readiness potentials (LRP). Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on RT or response-related ERPs during a cued go/nogo task in either young or older adults. PMID:27547180

  3. No Effect of Anodal Transcranial Direct Current Stimulation Over the Motor Cortex on Response-Related ERPs during a Conflict Task

    PubMed Central

    Conley, Alexander C.; Fulham, W. R.; Marquez, Jodie L.; Parsons, Mark W.; Karayanidis, Frini

    2016-01-01

    Anodal transcranial direct current stimulation (tDCS) over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs) during a cued go/nogo task after anodal tDCS over dominant primary motor cortex (M1) in young adults (Experiment 1) and both dominant and non-dominant M1 in older adults (Experiment 2). In both experiments, anodal tDCS had no effect on either response time (RT) or response-related ERPs, including the cue-locked contingent negative variation (CNV) and both target-locked and response-locked lateralized readiness potentials (LRP). Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on RT or response-related ERPs during a cued go/nogo task in either young or older adults. PMID:27547180

  4. Predicting Modulation in Corticomotor Excitability and in Transcallosal Inhibition in Response to Anodal Transcranial Direct Current Stimulation

    PubMed Central

    Davidson, Travis W.; Bolic, Miodrag; Tremblay, François

    2016-01-01

    Introduction: Responses to neuromodulatory protocols based either on transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation (TMS) are known to be highly variable between individuals. In this study, we examined whether variability of responses to anodal tDCS (a-tDCS) could be predicted from individual differences in the ability to recruit early or late indirect waves (I-waves), as reflected in latency differences of motor evoked potentials (MEPs) evoked by TMS of different coil orientation. Methods: Participants (n = 20) first underwent TMS to measure latency of MEPs elicited at different coil orientations (i.e., PA, posterior-anterior; AP, anterior-posterior; LM, latero-medial). Then, participants underwent a-tDCS (20 min @ 2 mA) targeting the primary motor cortex of the contralateral preferred hand (right, n = 18). Individual responses to a-tDCS were determined by monitoring changes in MEP amplitude at rest and in the duration of the contralateral silent period (cSP) and ipsilateral silent period (iSP) during contraction; the latter providing an index of the latency and duration of transcallosal inhibition (LTI and DTI). Results: Consistent with previous reports, individual responses to a-tDCS were highly variable when expressed in terms of changes in MEP amplitude or in cSP duration with ~50% of the participants showing either little or no modulation. In contrast, individual variations in measures of transcallosal inhibition were less variable, allowing detection of significant after-effects. The reduced LTI and prolonged DTI observed post-tDCS were indicative of an enhanced excitability of the transcallosal pathway in the stimulated hemisphere. In terms of predictions, AP-LM latency differences proved to be good predictors of responses to a-tDCS when considering MEP modulation. Conclusion: The present results corroborate the predictive value of latency differences derived from TMS to determine who is likely to express

  5. Anode current density distribution in a cusped field thruster

    SciTech Connect

    Wu, Huan Liu, Hui Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  6. Anode current density distribution in a cusped field thruster

    NASA Astrophysics Data System (ADS)

    Wu, Huan; Liu, Hui; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-01

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  7. Testing and Characterization of Anode Current in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Wang, Yongliang; Tie, Jun; Sun, Shuchen; Tu, Ganfeng; Zhang, Zhifang; Zhao, Rentao

    2016-06-01

    Anode current is an important parameter in the aluminum reduction process, but to test the anode current accurately is difficult at present. This study tested the individual anode current using the fiber-optic current sensor. The testing results show that this method can effectively avoid the interference of the electromagnetic field, and the current is measured with high precision which error is less than 1 pct. In the paper, the test currents under different cell conditions, including anode changing, metal tapping, abnormal current, and anode effect, are investigated using the method of time-domain and frequency-domain analysis, and the simulation method is also combined to investigate the cell conditions. The results prove that different cell conditions will show different anode current characteristics, and the individual current can monitor the cell conditions, especially the localized cell conditions. Some abnormal cell conditions can be found through anode current rather than cell voltage. The anode current can also be used for early detection of anode effect.

  8. Flexible graphite as battery anode and current collector

    NASA Astrophysics Data System (ADS)

    Yazici, M. S.; Krassowski, D.; Prakash, J.

    In making graphite-based electrodes and current collectors, there is significant simplification if a flexible graphite process is used. The lithium intercalation capacity of Grafoil ® flexible graphite sheet and its powder was evaluated using electrochemical charge-discharge cycling in half-cell configuration (coin cell with Li anode and graphite cathode). The sheet form was used with and without a copper current collector. Excellent electrical conductivity of the monolithic material with very low interface resistance helps as current collector and electrode. The comparatively low capacity of Grafoil ® sheet is thought to be due to diffusion limitation of the structure, especially in the light of the very high capacity of its powder form. The highly irreversible capacity of the powdered material may be due to unfunctionalized graphitic structures or impurities present in the powder. Impedance response for the first intercalation-deintercalation was different than responses taken after several cycles. The presence of a second impedance arc suggests structural modification is taking place in the graphite anode, possibly through formation of a porous structure as a result of graphite expansion. ®GRAFOIL is a registered trademark of Advanced Energy Technology Inc.

  9. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  10. Anodal tDCS over the Motor Cortex on Prepared and Unprepared Responses in Young Adults

    PubMed Central

    Marquez, Jodie; Parsons, Mark W.; Heathcote, Andrew

    2015-01-01

    Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been proposed as a possible therapeutic rehabilitation technique for motor impairment. However, despite extensive investigation into the effects of anodal tDCS on motor output, there is little information on how anodal tDCS affects response processes. In this study, we used a cued go/nogo task with both directional and non-directional cues to assess the effects of anodal tDCS over the dominant (left) primary motor cortex on prepared and unprepared motor responses. Three experiments explored whether the effectiveness of tDCS varied with timing between stimulation and test. Healthy, right-handed young adults participated in a double-blind randomised controlled design with crossover of anodal tDCS and sham stimulation. In Experiment 1, twenty-four healthy young adults received anodal tDCS over dominant M1 at least 40 mins before task performance. In Experiment 2, eight participants received anodal tDCS directly before task performance. In Experiment 3, twenty participants received anodal tDCS during task performance. In all three experiments, participants responded faster to directional compared to non-directional cues and with their right hand. However, anodal tDCS had no effect on go/nogo task performance at any stimulation – test interval. Bayesian analysis confirmed that anodal stimulation had no effect on response speed. We conclude that anodal tDCS over M1 does not improve response speed of prepared or unprepared responses of young adults in a go/nogo task. PMID:25933204

  11. Influence of cathodic and anodic currents on cavitation erosion

    SciTech Connect

    Auret, J.G.; Damm, O.F.R.A.; Wright, G.J. . Div. of Materials Science and Technology); Robinson, F.P.A. . Dept. of Metallurgy and Materials Engineering)

    1993-11-01

    A vibratory-type cavitation test rig was constructed to study the effect of polarizing currents applied to a cavitating body. The generation of gas by electrolysis reduced mechanical damage suffered by a cavitating body because of bubble collapse cushioning. However, the net effect on overall damage depended on several factors, including the intensity of mechanical attack, corrosion rate, and surface geometrical effects. A cathodic current was shown to always decrease the total volume loss rate, but the volume loss rate sometimes was increased and sometimes was reduced in the anodic current range.

  12. Structural changes of anodic layer on titanium in sulfate solution as a function of anodization duration in constant current mode

    NASA Astrophysics Data System (ADS)

    Komiya, Shinji; Sakamoto, Kouta; Ohtsu, Naofumi

    2014-03-01

    The present study investigated the effect of anodization time, in constant current mode, on the anodic oxide layer formed on titanium (Ti). Anodization of the Ti substrate was carried out in a 0.1 M (NH4)2SO4 aqueous solution with reaction times of various durations, after which the characteristics and photocatalytic activity were investigated in detail. The TiO2 layer fabricated in a short duration exhibited comparatively flat surface morphology and an anatase-type crystal structure. This layer acted as a photocatalyst only under ultraviolet light (UV) illumination. Upon prolonging the anodization, the layer structure changed drastically. The surface morphology became rough, and the crystal structure changed to rutile-type TiO2. Furthermore, the layer showed photocatalytic activity both under UV and visible light illumination. Further anodization increased the amount of methylene blue (MB) adsorbed on the surface, but did not cause additional change to the structure of the anodic layer. The surface morphology and crystal structure of the anodic layer were predominantly controlled by the anodization time; thus, the anodization time is an important parameter for controlling the characteristics of the anodic layer.

  13. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    PubMed Central

    Kidgell, Dawson J.; Daly, Robin M.; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J.

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities. PMID:23577272

  14. Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture.

    PubMed

    Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2014-12-01

    This paper describes the detrimental effect of photosynthetically evolved oxygen on anodic current generation in the presence of riboflavin upon illumination of a mixed phototrophic culture enriched from a freshwater pond at +0.6 V vs standard hydrogen electrode. In the presence of riboflavin, the phototrophic biomass in the anodic compartment produced an electrical current in response to light/dark cycles (12 h/12 h) over 12 months of operation, generating a maximum current density of 17.5 mA x m(-2) during the dark phase, whereas a much lower current of approximately 2 mA x m(-2) was generated during illumination. We found that the low current generation under light exposure was caused by high rates of reoxidation of reduced riboflavin by oxygen produced during photosynthesis. Quantification of biomass by fluorescence in situ hybridization images suggested that green algae were predominant in both the anode-based biofilm (55.1%) and the anolyte suspension (87.9%) with the remaining biovolume accounted for by bacteria. Genus-level sequencing analysis revealed that bacteria were dominated by cyanobacterium Leptolyngbia (∼35%), while the prevailing algae were Dictyosphaerium, Coelastrum, and Auxenochlorella. This study offers a key comprehension of mediator sensitivity to reoxidation by dissolved oxygen for improvement of microbial solar cell performance. PMID:25364824

  15. Thermal investigation of an electrical high-current arc with porous gas-cooled anode

    NASA Technical Reports Server (NTRS)

    Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.

    1984-01-01

    The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.

  16. 3D Numerical simulation of high current vacuum arc in realistic magnetic fields considering anode evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Huang, Xiaolong; Jia, Shenli; Deng, Jie; Qian, Zhonghao; Shi, Zongqian; Schellenkens, H.; Godechot, X.

    2015-06-01

    A time-dependent 3D numerical model considering anode evaporation is developed for the high current vacuum arc (VA) under a realistic spatial magnetic field. The simulation work contains steady state 3D numerical simulation of high current VA considering anode evaporation at nine discrete moments of first half wave of 50 Hz AC current, transient numerical simulation of anode activity, and realistic spatial magnetic field calculation of commercial cup-shaped electrodes. In the simulation, contact opening and arc diffusion processes are also considered. Due to the effect of electrode slots, the simulation results of magnetic field and temperature of anode plate exhibit six leaves shape (SLS). During 6-8 ms, the strong evaporation of anode surface seriously influence the parameter distributions of VA. Ions emitted from anode penetrate into arc column and the axial velocity distribution on the anode side exhibits SLS. The ions emitted from anode surface have the same temperature with anode surface, which cool the arc plasma and lead to a relative low temperature area formed. The seriously evaporation of anode leads to the accumulation of ions near the anode, and then the current density is more uniform.

  17. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  18. Task-Specific Facilitation of Cognition by Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex.

    PubMed

    Pope, Paul A; Brenton, Jonathan W; Miall, R Chris

    2015-11-01

    We previously speculated that depression of cerebellar excitability using cathodal transcranial direct current stimulation (tDCS) might release extra cognitive resources via the disinhibition of activity in prefrontal cortex. The objective of the present study was to investigate whether anodal tDCS over the prefrontal cortex could similarly improve performance when cognitive demands are high. Sixty-three right-handed participants in 3 separate groups performed the Paced Auditory Serial Addition Task (PASAT) and the more difficult Paced Auditory Serial Subtraction Task (PASST), before and after 20 min of anodal, cathodal, or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC). Performance was assessed in terms of the accuracy, latency, and variability of correct verbal responses. All behavioral measures significantly improved for the PASST after anodal DLPFC stimulation, but not the PASAT. There were smaller practice effects after cathodal and sham stimulation. Subjective ratings of attention and mental fatigue were unchanged by tDCS over time. We conclude that anodal stimulation over the left DLPFC can selectively improve performance on a difficult cognitive task involving arithmetic processing, verbal working memory, and attention. This result might be achieved by focally improving executive functions and/or cognitive capacity when tasks are difficult, rather than by improving levels of arousal/alertness. PMID:25979089

  19. Task-Specific Facilitation of Cognition by Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex

    PubMed Central

    Pope, Paul A.; Brenton, Jonathan W.; Miall, R. Chris

    2015-01-01

    We previously speculated that depression of cerebellar excitability using cathodal transcranial direct current stimulation (tDCS) might release extra cognitive resources via the disinhibition of activity in prefrontal cortex. The objective of the present study was to investigate whether anodal tDCS over the prefrontal cortex could similarly improve performance when cognitive demands are high. Sixty-three right-handed participants in 3 separate groups performed the Paced Auditory Serial Addition Task (PASAT) and the more difficult Paced Auditory Serial Subtraction Task (PASST), before and after 20 min of anodal, cathodal, or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC). Performance was assessed in terms of the accuracy, latency, and variability of correct verbal responses. All behavioral measures significantly improved for the PASST after anodal DLPFC stimulation, but not the PASAT. There were smaller practice effects after cathodal and sham stimulation. Subjective ratings of attention and mental fatigue were unchanged by tDCS over time. We conclude that anodal stimulation over the left DLPFC can selectively improve performance on a difficult cognitive task involving arithmetic processing, verbal working memory, and attention. This result might be achieved by focally improving executive functions and/or cognitive capacity when tasks are difficult, rather than by improving levels of arousal/alertness. PMID:25979089

  20. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-02-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  1. Potential threshold of anode materials for foldable lithium-ion batteries featuring carbon nanotube current collectors

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hui; Zhong, Sheng Wen; Hu, Jing Wei; Liu, Ting; Zhu, Xian Yan; Chen, Jing; Hong, Yin Yan; Wu, Zi Ping

    2016-04-01

    Flexible carbon nanotube macro-films (CMFs) are perfect current collectors for preparing foldable lithium-ion batteries (LIBs). However, selecting appropriate anodes for electrode is difficult because of the different potentials (vs. Li/Li+) of carbon nanotubes and traditional metallic current collector. This study demonstrated an additional reaction at potential below 0.9 V (vs. Li/Li+) caused by CMF, And Li+ will be constrained, which decreased capacity of anode/CMF electrode. Conversely, results changed when the anode potential exceeded 0.9 V (vs. Li/Li+) because Li+ passed the potential threshold, and the CMF retained its electrochemical inactivity. Consequently, the CMF-based foldable LIBs performed well. The potential threshold mechanism of anode is expected to provide new impetus to both academia and industry for exploring flexible or foldable LIBs.

  2. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  3. Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.

    PubMed

    Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef

    2015-07-29

    The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents. PMID:26154401

  4. Effect of current connection to the anode nozzle on plasma torch efficiency

    SciTech Connect

    Collares, M.P.; Pfender, E.

    1997-10-01

    Experiments have been performed to demonstrate the influence of the location of the electric power connection to the anode nozzle on the efficiency of dc plasma torches. The dc plasma torch used in these experiments offers the flexibility to work with different anode geometries and the possibility of connecting the electrical power to the anode at two different locations. For each set of experiments, the controllable parameters such as total gas flow rate, gas composition, and electric current were kept constant, changing only the location of the electrical connection to the anode nozzle. The efficiency of the torch, derived from a conventional energy balance, shows a significant change as the location of the electrical connection to the anode nozzle is changed. The measured mean voltage as well as the amplitude of the voltage fluctuations were also affected by the location of the electrical connection to the anode nozzle. An explanation for the arc behavior is given, based on an analysis of the forces acting on the anode arc column and their influence on the variation of the arc column length. Experimental data are in good agreement with analytical predictions.

  5. A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector

    SciTech Connect

    Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

    2010-11-09

    Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modified tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically depo­sited 3D silicon anodes demonstrate outstanding rate performance, cycling stability, and rate capability. Electrodeposition thus provides a unique means of fabricating silicon anode materials on complex substrates at low cost.

  6. Cell response of anodized nanotubes on titanium and titanium alloys.

    PubMed

    Minagar, Sepideh; Wang, James; Berndt, Christopher C; Ivanova, Elena P; Wen, Cuie

    2013-09-01

    Titanium and titanium alloy implants that have been demonstrated to be more biocompatible than other metallic implant materials, such as Co-Cr alloys and stainless steels, must also be accepted by bone cells, bonding with and growing on them to prevent loosening. Highly ordered nanoporous arrays of titanium dioxide that form on titanium surface by anodic oxidation are receiving increasing research interest due to their effectiveness in promoting osseointegration. The response of bone cells to implant materials depends on the topography, physicochemistry, mechanics, and electronics of the implant surface and this influences cell behavior, such as adhesion, proliferation, shape, migration, survival, and differentiation; for example the existing anions on the surface of a titanium implant make it negative and this affects the interaction with negative fibronectin (FN). Although optimal nanosize of reproducible titania nanotubes has not been reported due to different protocols used in studies, cell response was more sensitive to titania nanotubes with nanometer diameter and interspace. By annealing, amorphous TiO2 nanotubes change to a crystalline form and become more hydrophilic, resulting in an encouraging effect on cell behavior. The crystalline size and thickness of the bone-like apatite that forms on the titania nanotubes after implantation are also affected by the diameter and shape. This review describes how changes in nanotube morphologies, such as the tube diameter, the thickness of the nanotube layer, and the crystalline structure, influence the response of cells. PMID:23436766

  7. Electronic currents and the formation of nanopores in porous anodic alumina

    NASA Astrophysics Data System (ADS)

    Zhu, Xu-Fei; Song, Ye; Liu, Lin; Wang, Chen-Yu; Zheng, Jie; Jia, Hong-Bing; Wang, Xin-Long

    2009-11-01

    The formation processes of barrier anodic alumina (BAA) and porous anodic alumina (PAA) are discussed in detail. The anodizing current JT within the oxide includes ionic current jion and electronic current je during the anodizing process. The jion is used to form an oxide and the je is used to give rise to oxygen gas or sparking. The je results from the impurity centers within the oxide. For a given electrolyte, the je is dependent on the impurity centers and independent of the JT. The formation of nanopores can be ascribed to the oxygen evolution within the oxide. Oxygen gas will begin to be released at the critical thickness dc. The manner of the development of PAA is in accordance with that of BAA. The differences between PAA and BAA are the magnitude of je or the continuity of oxygen evolution. There are two competitive reactions, i.e. oxide growth (\\mathrm {2Al^{3+}+3O^{2-}} \\to \\mathrm {Al_{2}O_{3}} ) and oxygen evolution (\\mathrm {2O^{2-}} \\to \\mathrm {O_{2}} {\\uparrow } +4\\rme ). The former keeps the wall of the channel lengthened, the latter keeps the channel open. By controlling the release rate of oxygen gas under different pressures, the shape of the channels can be adjusted. The present results may open up some opportunities for fabricating special templates.

  8. Delayed plastic responses to anodal tDCS in older adults

    PubMed Central

    Fujiyama, Hakuei; Hyde, Jane; Hinder, Mark R.; Kim, Seok-Jin; McCormack, Graeme H.; Vickers, James C.; Summers, Jeffery J.

    2014-01-01

    Despite the abundance of research reporting the neurophysiological and behavioral effects of transcranial direct current stimulation (tDCS) in healthy young adults and clinical populations, the extent of potential neuroplastic changes induced by tDCS in healthy older adults is not well understood. The present study compared the extent and time course of anodal tDCS-induced plastic changes in primary motor cortex (M1) in young and older adults. Furthermore, as it has been suggested that neuroplasticity and associated learning depends on the brain-derived neurotrophic factor (BDNF) gene polymorphisms, we also assessed the impact of BDNF polymorphism on these effects. Corticospinal excitability was examined using transcranial magnetic stimulation before and following (0, 10, 20, 30 min) anodal tDCS (30 min, 1 mA) or sham in young and older adults. While the overall extent of increases in corticospinal excitability induced by anodal tDCS did not vary reliably between young and older adults, older adults exhibited a delayed response; the largest increase in corticospinal excitability occurred 30 min following stimulation for older adults, but immediately post-stimulation for the young group. BDNF genotype did not result in significant differences in the observed excitability increases for either age group. The present study suggests that tDCS-induced plastic changes are delayed as a result of healthy aging, but that the overall efficacy of the plasticity mechanism remains unaffected. PMID:24936185

  9. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes

    PubMed Central

    Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng; Li, Nian-Wu; Guo, Yu-Guo

    2015-01-01

    Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan. PMID:26299379

  10. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.

    PubMed

    Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng; Li, Nian-Wu; Guo, Yu-Guo

    2015-01-01

    Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan. PMID:26299379

  11. Electronic properties of anodized TiO2 electrodes and the effect on in vitro response.

    PubMed

    Löberg, Johanna; Gretzer, Christina; Mattisson, Ingela; Ahlberg, Elisabet

    2014-05-01

    For dental implants, improved osseointegration is obtained by modifying the surface roughness as well as oxide morphology and composition. A combination of different effects contributes to enhanced performance, but with surface roughness as the dominant factor. To single out the effect of oxide conductivity on biological response, oxide films with similar thickness and surface roughness but different electronic properties were formed using galvanostatic anodization. Three different current densities were used, 2.4, 4.8, and 11.9 mA cm(-2) , which resulted in growth rates ranging from 0.2 to 2.5 V s(-1) . The electronic properties were evaluated using cyclic voltammetry and impedance spectroscopy, while the biological response was studied by cell activity and apatite formation. The number of charge carrier in the oxide film close to the oxide/solution interface decreased from 5.8 × 10(-19) to 3.2 × 10(-19) cm(-2) with increasing growth rate, that is, the conductivity decreased correspondingly. Cell response of the different surfaces was tested in vitro using human osteoblast-like cells (MG-63). The results clearly show decreased osteoblast proliferation and adhesion but higher mineralization activity for the oxide with lower conductivity at the oxide/solution interface. The apatite-forming ability was examined by immersion in simulated body fluid. At short times the apatite coverage was ∼26% for the anodized surfaces, significantly larger than for the reference with only 3% coverage. After 1 week of immersion the apatite coverage ranged from 73 to 56% and a slight differentiation between the anodized surfaces was obtained with less apatite formation on the surface with lower conductivity, in line with the cell culture results. PMID:24259480

  12. Anodal transcranial direct current stimulation over the supramarginal gyrus facilitates pitch memory.

    PubMed

    Schaal, Nora K; Williamson, Victoria J; Banissy, Michael J

    2013-11-01

    Functional neuroimaging studies have shown activation of the supramarginal gyrus during pitch memory tasks. A previous transcranial direct current stimulation study using cathodal stimulation over the left supramarginal gyrus reported a detrimental effect on short-term pitch memory performance, indicating an important role of the supramarginal gyrus in pitch memory. The current study aimed to determine whether pitch memory could be improved following anodal stimulation of the left supramarginal gyrus. The performances of non-musicians on two pitch memory tasks (pitch recognition and recall) and a visual memory control task following anodal or sham transcranial direct current stimulation were compared. The results show that, post-stimulation, the anodal group but not the control group performed significantly better on both pitch memory tasks; performance did not differ on the face memory task. These findings provide strong support for the causal involvement of the left supramarginal gyrus in the pitch memory process, and highlight the potential efficacy of transcranial direct current stimulation as a tool to improve pitch memory. PMID:23968283

  13. Magnetic properties of pulse-reverse electrodeposited nanocrystalline NiFe/Cu composite wires in relation to the anodic current

    NASA Astrophysics Data System (ADS)

    Seet, H. L.; Li, X. P.; Lee, K. S.; Chia, H. Y.; Zheng, H. M.; Ng, W. C.

    2007-12-01

    Ni80Fe20/Cu composite wires were developed using the pulse-reverse electrodeposition technique with the cathodic (positive) current Ic fixed at 1 mA and the anodic (negative) current IA varied from 10 to 90% of Ic. The relationship between the magnetic properties of pulse reverse electrodeposited nanocrystalline NiFe/Cu composite wires and the anodic current was investigated. The results showed that the smaller the magnitude of the anodic current, the smaller was the average nanocrystalline grain size of the deposited material and the better was the uniformity of the surface, and consequently, the better the magnetic properties.

  14. Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes.

    PubMed

    Yun, Qinbai; He, Yan-Bing; Lv, Wei; Zhao, Yan; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2016-08-01

    A 3D porous Cu current collector is fabricated through chemical dealloying from a commerial Cu-Zn alloy tape. The interlinked porous framework naturally integrated can accommodate Li deposition, suppressing dendrite growth and alleviating the huge volume change during cycling. The Li metal anode combined with such a porous Cu collector demonstrates excellent performance and commerial potentials in Li-based secondary batteries. PMID:27219349

  15. Wettability and cellular response of UV light irradiated anodized titanium surface

    PubMed Central

    Park, Kyou-Hwa; Koak, Jai-Young; Kim, Seong-Kyun

    2011-01-01

    PURPOSE The object of this study was to investigate the effect of UV irradiation (by a general commercial UV sterilizer) on anodized titanium surface. Surface characteristics and cellular responses were compared between anodized titanium discs and UV irradiated anodized titanium discs. MATERIALS AND METHODS Titanium discs were anodized and divided into the following groups: Group 1, anodized (control), and Group 2, anodized and UV irradiated for 24 hours. The surface characteristics including contact angle, roughness, phase of oxide layer, and chemical elemental composition were inspected. The osteoblast-like human osteogenic sarcoma (HOS) cells were cultured on control and test group discs. Initial cellular attachment, MTS-based cell proliferation assay, and ALP synthesis level were compared between the two groups for the evaluation of cellular response. RESULTS After UV irradiation, the contact angle decreased significantly (P<.001). The surface roughness and phase of oxide layer did not show definite changes, but carbon showed a considerable decrease after UV irradiation. Initial cell attachment was increased in test group (P=.004). Cells cultured on test group samples proliferated more actively (P=.009 at day 2, 5, and 7) and the ALP synthesis also increased in cells cultured on the test group (P=.016 at day 3, P=.009 at day 7 and 14). CONCLUSION UV irradiation induced enhanced wettability, and increased initial cellular responses of HOS cells on anodized titanium surface. PMID:21814613

  16. Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance.

    PubMed

    Lu, Lei-Lei; Ge, Jin; Yang, Jun-Nan; Chen, Si-Ming; Yao, Hong-Bin; Zhou, Fei; Yu, Shu-Hong

    2016-07-13

    Lithium metal is one of the most attractive anode materials for next-generation lithium batteries due to its high specific capacity and low electrochemical potential. However, the poor cycling performance and serious safety hazards, caused by the growth of dendritic and mossy lithium, has long hindered the application of lithium metal based batteries. Herein, we reported a rational design of free-standing Cu nanowire (CuNW) network to suppress the growth of dendritic lithium via accommodating the lithium metal in three-dimensional (3D) nanostructures. We demonstrated that as high as 7.5 mA h cm(-2) of lithium can be plated into the free-standing copper nanowire (CuNW) current collector without the growth of dendritic lithium. The lithium metal anode based on the CuNW exhibited high Coulombic efficiency (average 98.6% during 200 cycles) and outstanding rate performance owing to the suppression of lithium dendrite growth and high conductivity of CuNW network. Our results demonstrate that the rational nanostructural design of current collector could be a promising strategy to improve the performance of lithium metal anode enabling its application in next-generation lithium-metal based batteries. PMID:27253417

  17. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shen, Zhen; Hu, Yi; Chen, Yanli; Zhang, Xiangwu; Wang, Kehao; Chen, Renzhong

    2015-03-01

    Metallic Sn is a promising high-capacity anode material for use in lithium-ion batteries (LIBs), but its huge volume variation during lithium ion insertion/extraction typically results in poor cycling stability. To address this, we demonstrate the fabrication of Sn nanoparticle-loaded porous carbon nanofiber (Sn-PCNF) composites via the electrospinning of Sn(II) acetate/mineral oil/polyacrylonitrile precursors in N,N-dimethylformamide solvent and their subsequent carbonization at 700 °C under an argon atmosphere. This is shown to result in an even distribution of pores on the surface of the nanofibers, allowing the Sn-PCNF composite to be used directly as an anode in lithium-ion batteries without the need to add non-active materials such as polymer binders or electrical conductors. With a discharge capacity of around 774 mA h g-1 achieved at a high current of 0.8 A g-1 over 200 cycles, this material clearly has a high rate capability and excellent cyclic stability, and thanks to its unique structure and properties, is an excellent candidate for use as an anode material in high-current rechargeable lithium-ion batteries.

  18. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. PMID

  19. High-efficiency, nickel-ceramic composite anode current collector for micro-tubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wu, Zhentao; Li, K.

    2015-04-01

    High manufacturing cost and low-efficient current collection have been the two major bottlenecks that prevent micro-tubular SOFCs from large-scale application. In this work, a new nickel-based composite anode current collector has been developed for anode-supported MT-SOFC, addressing reduced cost, manufacturability and current collection efficiencies. Triple-layer hollow fibers have been successfully fabricated via a phase inversion-assisted co-extrusion process, during which a thin nickel-based inner layer was uniformly coated throughout the interior anode surface for improved adhesion with superior process economy. 10 wt.% CGO was added into the inner layer to prevent the excessive shrinkage of pure NiO, thus helping to achieve the co-sintering process. The electrochemical performance tests illustrate that samples with the thinnest anodic current collector (15% of the anode thickness) displayed the highest power density (1.07 W cm-2). The impedance analysis and theoretical calculations suggest that inserting the anodic current collector could dramatically reduce the percentage of contact loss down to 6-10 % of the total ohmic loss (compared to 70% as reported in literatures), which proves the high efficiencies of new current collector design. Moreover, the superior manufacturability and process economy suggest this composite current collector suitable for mass-scale production.

  20. Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Shibata, Takuo; Yoshimoto, Nobuko; Ishikawa, Masashi

    The anodic behavior of aluminum (Al) current collector of Li-ion batteries has been investigated in organic electrolyte solutions containing lithium bis[trifluoromethylsulfonyl]imide (Li(CF 3SO 2) 2N: LiTFSI) with different compositions of solvents. The Al anode was subjected to anodic corrosion in the LiTFSI solution, but the degree of the corrosion depended on the solvent composition. The surface of Al pre-treated by mechanical polishing has suffered serious corrosion in the mixed solvent solution of ethylene carbonate (EC) and dimethyl carbonate (DMC), whereas the Al surface pre-treated by electro-polishing was relatively stable in the mixed solvent of γ-butyrolactone (GBL) and DMC. The results of electrochemical quartz crystal microbalance (EQCM) experiments showed that the mass change of the Al surface during the potential cycling in GBL + DMC was much different from that in the EC + DMC solution. Scanning electron microscope (SEM) observation proved that the corrosion pits evolved on the electro-polished Al surface after potential cycling, but GBL resulted in a smaller amount of the corrosion product on the Al surface.

  1. Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yu; Chang, Chun-Chi; Duh, Jenq-Gong

    2016-09-01

    Silicon nitride coated silicon (N-Si) has been synthesized by two-step DC sputtering on Cu Micro-cone arrays (CMAs) at ambient temperature. The electrochemical properties of N-Si anodes with various thickness of nitride layer are investigated. From the potential window of 1.2 V-0.05 V, high rate charge-discharge and long cycle test have been executed to investigate the electrochemical performances of various N-Si coated Si-based lithium ion batteries anode materials. Higher specific capacity can be obtained after 200 cycles. The cycling stability is enhanced via thinner nitride layer coating as silicon nitride films are converted to Li3N with covered Si thin films. These N-Si anodes can be cycled under high rates up to 10 C due to low charge transfer resistance resulted from silicon nitride films. This indicates that the combination of silicon nitride and silicon can effectively endure high current and thus enhance the cycling stability. It is expected that N-Si is a potential candidate for batteries that can work effectively under high power.

  2. Modeling of the Plasma Flow and Anode Region Inside a Direct Current Plasma Gun

    NASA Astrophysics Data System (ADS)

    Bolot, Rodolphe; Coddet, Christian; Allimant, Alain; Billières, Dominique

    2011-01-01

    This study is devoted to the modeling of the arc formation in a direct current plasma gun newly commercialized by Saint-Gobain Coating Solutions (Avignon, France). The CFD computations were performed using the FLUENT code. The electromagnetic coupling was implemented on the basis of a three-dimensional model using additional scalars for the electromagnetic equations and user-defined functions to set up the problem. Whereas most of earlier models include the arc region only, the CFD domain was extended to the gas injection region (i.e., upstream part of the gun, including the gas diffuser), thus allowing a better description of the swirl injection on the plasma flow. Similarly, whereas numerous earlier works include the fluid domain only, the present model takes the fluid/solid coupling problem in the anode into account. In particular, the thermal and the electromagnetic equations are solved not only in the fluid parts but also in the tungsten and copper parts of the anode. This change was found to be important because the internal surface of the anode is no more a boundary of the domain. Thus, its temperature (and electric potential) becomes variable and is thus not necessarily imposed. Finally, the implemented model provides interesting results describing the arc behavior inside the plasma gun.

  3. Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex.

    PubMed

    Egorova, Natalia; Yu, Rongjun; Kaur, Navneet; Vangel, Mark; Gollub, Randy L; Dougherty, Darin D; Kong, Jian; Camprodon, Joan A

    2015-07-01

    Placebo and nocebo play an important role in clinical practice and medical research. Modulating placebo/nocebo responses using noninvasive brain stimulation methods, such as transcranial direct current stimulation (tDCS), has the potential to harness these effects to therapeutic benefit in a clinical setting. In this study, we assessed the effect of anodal and cathodal tDCS over the right dorsolateral prefrontal cortex (rDLPFC) on conditioned placebo/nocebo cue response to heat pain. Two matched groups of healthy volunteers were subjected to an identical session of conditioning, during which low and high cues (abstract images) were associated with low and high pain levels, respectively. Twenty-minute 2-mA tDCS (either anodal or cathodal) over the rDLPFC was applied. The influence of tDCS current polarity (anodal vs cathodal) on placebo and nocebo was assessed, using subjects' pain ratings in response to identical pain preceded by the conditioned high or low cues. The duration of cue presentation varied to allow either fully conscious or subliminal processing. Significant placebo and nocebo effects in the anodal but not the cathodal group were elicited with the conditioning paradigm. This study provides evidence of a possibility to modulate the conditioned placebo and nocebo effect by changing the excitability of the rDLPFC using tDCS. PMID:25806605

  4. Emotional Distraction and Bodily Reaction: Modulation of Autonomous Responses by Anodal tDCS to the Prefrontal Cortex

    PubMed Central

    Schroeder, Philipp A.; Ehlis, Ann-Christine; Wolkenstein, Larissa; Fallgatter, Andreas J.; Plewnia, Christian

    2015-01-01

    Prefrontal electric stimulation has been demonstrated to effectively modulate cognitive processing. Specifically, the amelioration of cognitive control (CC) over emotional distraction by transcranial direct current stimulation (tDCS) points toward targeted therapeutic applications in various psychiatric disorders. In addition to behavioral measures, autonomous nervous system (ANS) responses are fundamental bodily signatures of emotional information processing. However, interactions between the modulation of CC by tDCS and ANS responses have received limited attention. We here report on ANS data gathered in healthy subjects that performed an emotional CC task parallel to the modulation of left prefrontal cortical activity by 1 mA anodal or sham tDCS. Skin conductance responses (SCRs) to negative and neutral pictures of human scenes were reduced by anodal as compared to sham tDCS. Individual SCR amplitude variations were associated with the amount of distraction. Moreover, the stimulation-driven performance- and SCR-modulations were related in form of a quadratic, inverse-U function. Thus, our results indicate that non-invasive brain stimulation (i.e., anodal tDCS) can modulate autonomous responses synchronous to behavioral improvements, but the range of possible concurrent improvements from prefrontal stimulation is limited. Interactions between cognitive, affective, neurophysiological, and vegetative responses to emotional content can shape brain stimulation effectiveness and require theory-driven integration in potential treatment protocols. PMID:26733808

  5. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-11-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  6. Duty Cycling Influences Current Generation in Multi-Anode Environmental Microbial Fuel Cells

    SciTech Connect

    Gardel, EJ; Nielsen, ME; Grisdela, PT; Girguis, PR

    2012-05-01

    Improving microbial fuel cell (MFC) performance continues to be the subject of research, yet the role of operating conditions, specifically duty cycling, on MFC performance has been modestly addressed. We present a series of studies in which we use a 15-anode environmental MFC to explore how duty cycling (variations in the time an anode is connected) influences cumulative charge, current, and microbial composition. The data reveal particular switching intervals that result in the greatest time-normalized current. When disconnection times are sufficiently short, there is a striking decrease in current due to an increase in the overall electrode reaction resistance. This was observed over a number of whole cell potentials. Based on these results, we posit that replenishment of depleted electron donors within the biofilm and surrounding diffusion layer is necessary for maximum charge transfer, and that proton flux may be not limiting in the highly buffered aqueous phases that are common among environmental MFCs. Surprisingly, microbial diversity analyses found no discernible difference in gross community composition among duty cycling treatments, suggesting that duty cycling itself has little or no effect. Such duty cycling experiments are valuable in determining which factors govern performance of bioelectrochemical systems and might also be used to optimize field-deployed systems.

  7. Electric current generation by sulfur-reducing bacteria in microbial-anode fuel cell

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2012-10-01

    Sulfur - reducing bacteria are a part of normal microflora of natural environment. Their main function is supporting of reductive stage of sulfur cycle by hydrogen sulfide production in the process of dissimilative sulfur-reduction. At the same time these bacteria completely oxidize organic compounds with CO2 and H2O formation. It was shown that they are able to generate electric current in the two chamber microbial-anode fuel cell (MAFC) by interaction between these two processes. Microbial-anode fuel cell on the basis of sulfur- and ferric iron-reducing Desulfuromonas acetoxidans bacteria has been constructed. It has been shown that the amount of electricity generation by investigated bacteria is influenced by the concentrations of carbon source (lactate) and ferric iron chloride. The maximal obtained electric current and potential difference between electrodes equaled respectively 0.28-0.29 mA and 0.19-0.2 V per 0.3 l of bacterial suspension with 0.4 g/l of initial biomass that was grown under the influence of 0.45 mM of FeCl3 and 3 g/l of sodium lactate as primal carbon source. It has also been shown that these bacteria are resistant to different concentrations of silver ions.

  8. Effects of anodal transcranial direct current stimulation on visually guided learning of grip force control.

    PubMed

    Minarik, Tamas; Sauseng, Paul; Dunne, Lewis; Berger, Barbara; Sterr, Annette

    2015-01-01

    Anodal transcranial Direct Current Stimulation (tDCS) has been shown to be an effective non-invasive brain stimulation method for improving cognitive and motor functioning in patients with neurological deficits. tDCS over motor cortex (M1), for instance, facilitates motor learning in stroke patients. However, the literature on anodal tDCS effects on motor learning in healthy participants is inconclusive, and the effects of tDCS on visuo-motor integration are not well understood. In the present study we examined whether tDCS over the contralateral motor cortex enhances learning of grip-force output in a visually guided feedback task in young and neurologically healthy volunteers. Twenty minutes of 1 mA anodal tDCS were applied over the primary motor cortex (M1) contralateral to the dominant (right) hand, during the first half of a 40 min power-grip task. This task required the control of a visual signal by modulating the strength of the power-grip for six seconds per trial. Each participant completed a two-session sham-controlled crossover protocol. The stimulation conditions were counterbalanced across participants and the sessions were one week apart. Performance measures comprised time-on-target and target-deviation, and were calculated for the periods of stimulation (or sham) and during the afterphase respectively. Statistical analyses revealed significant performance improvements over the stimulation and the afterphase, but this learning effect was not modulated by tDCS condition. This suggests that the form of visuomotor learning taking place in the present task was not sensitive to neurostimulation. These null effects, together with similar reports for other types of motor tasks, lead to the proposition that tDCS facilitation of motor learning might be restricted to cases or situations where the motor system is challenged, such as motor deficits, advanced age, or very high task demand. PMID:25738809

  9. Modeling the effects of anode secondary electron emission on transmitted current in crossed-field diodes

    NASA Astrophysics Data System (ADS)

    Gopinath, Venkatesh; Vanderberg, Bo

    1996-11-01

    Recent experimental measurements of transmitted current in a crossed-field switch by Vanderberg and Eninger ( B. H. Vanderberg and J. E. Eninger, ``Space-charge limited current cut-off in crossed fields,'' presented at IEEE ICOPS'95, Madison, Wi. ) have shown that the measured values of transmitted current are significantly smaller than the theoretically predicted limit. The experiments also showed larger decrease in transmitted current for higher magnetic fields, implying an effect due to the higher angle of incidence of incident electrons (i.e., at values of B closer to B_H). Studies by Verboncoeur and Birdsall ( J. P. Verboncoeur and C. K. Birdsall. ``Rapid current transition in a crossed-field diode,'' Phys. Plasmas 3) 3, March 1996. have shown that even small amount ( < 1%) of over injection in a crossed-field diode near cut-off led to substantial decrease in transmitted current. In our current work, we show that the same effect can be triggered by the presence of secondary electron emission from the anode. This study models the dependence of emission upon incident electron angle and energy. Since the yield of secondary electrons increases with incident angle, this model follows the experimental results as B approaches B_Hull accurately. This work was supported in part by ONR under grant FD-N00014-90-J-1198

  10. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m‑2 & 3.09  ±  0.04 W m‑2 and 17.7  ±  0.03 A m‑2 & 7.72  ±  0.09 W m‑2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  11. Characterization of Electrical Current-Generation Capabilities from Thermophilic Bacterium Thermoanaerobacter pseudethanolicus Using Xylose, Glucose, Cellobiose, or Acetate with Fixed Anode Potentials.

    PubMed

    Lusk, Bradley G; Khan, Qaiser Farid; Parameswaran, Prathap; Hameed, Abdul; Ali, Naeem; Rittmann, Bruce E; Torres, Cesar I

    2015-12-15

    Thermoanaerobacter pseudethanolicus 39E (ATCC 33223), a thermophilic, Fe(III)-reducing, and fermentative bacterium, was evaluated for its ability to produce current from four electron donors-xylose, glucose, cellobiose, and acetate-with a fixed anode potential (+ 0.042 V vs SHE) in a microbial electrochemical cell (MXC). Under thermophilic conditions (60 °C), T. pseudethanolicus produced high current densities from xylose (5.8 ± 2.4 A m(-2)), glucose (4.3 ± 1.9 A m(-2)), and cellobiose (5.2 ± 1.6 A m(-2)). It produced insignificant current when grown with acetate, but consumed the acetate produced from sugar fermentation to produce electrical current. Low-scan cyclic voltammetry (LSCV) revealed a sigmoidal response with a midpoint potential of -0.17 V vs SHE. Coulombic efficiency (CE) varied by electron donor, with xylose at 34.8% ± 0.7%, glucose at 65.3% ± 1.0%, and cellobiose at 27.7% ± 1.5%. Anode respiration was sustained over a pH range of 5.4-8.3, with higher current densities observed at higher pH values. Scanning electron microscopy showed a well-developed biofilm of T. pseudethanolicus on the anode, and confocal laser scanning microscopy demonstrated a maximum biofilm thickness (Lf) greater than ~150 μm for the glucose-fed biofilm. PMID:26569143

  12. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    PubMed

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. PMID:27054908

  13. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex

    PubMed Central

    Hsu, Wan-Yu; Zanto, Theodore P.; Anguera, Joaquin A.; Lin, Yung-Yang; Gazzaley, Adam

    2015-01-01

    Background The dorsolateral prefrontal cortex (DLPFC) has been proposed to play an important role in neural processes that underlie multitasking performance. However, this claim is underexplored in terms of direct causal evidence. Objective The current study aimed to delineate the causal involvement of the DLPFC during multitasking by modulating neural activity with transcranial direct current stimulation (tDCS) prior to engagement in a demanding multitasking paradigm. Methods The study is a single-blind, crossover, sham-controlled experiment. Anodal tDCS or sham tDCS was applied over left DLPFC in forty-one healthy young adults (aged 18–35 years) immediately before they engaged in a 3-D video game designed to assess multitasking performance. Participants were separated into three subgroups: real-sham (i.e., real tDCS in the first session, followed by sham tDCS in the second session one hour later), sham-real (sham tDCS first session, real tDCS second session), and sham-sham (sham tDCS in both sessions). Results The real-sham group showed enhanced multitasking performance and decreased multitasking cost during the second session, compared to first session, suggesting delayed cognitive benefits of tDCS. Interestingly, performance benefits were observed only for multitasking and not on a single-task version of the game. No significant changes were found between the first and second sessions for either the sham-real or the sham-sham groups. Conclusions These results suggest a causal role of left prefrontal cortex in facilitating the simultaneous performance of more than one task, or multitasking. Moreover, these findings reveal that anodal tDCS may have delayed benefits that reflect an enhanced rate of learning. PMID:26073148

  14. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems.

    PubMed

    Guo, Kun; Donose, Bogdan C; Soeriyadi, Alexander H; Prévoteau, Antonin; Patil, Sunil A; Freguia, Stefano; Gooding, J Justin; Rabaey, Korneel

    2014-06-17

    Stainless steel (SS) can be an attractive material to create large electrodes for microbial bioelectrochemical systems (BESs), due to its low cost and high conductivity. However, poor biocompatibility limits its successful application today. Here we report a simple and effective method to make SS electrodes biocompatible by means of flame oxidation. Physicochemical characterization of electrode surface indicated that iron oxide nanoparticles (IONPs) were generated in situ on an SS felt surface by flame oxidation. IONPs-coating dramatically enhanced the biocompatibility of SS felt and consequently resulted in a robust electroactive biofilm formation at its surface in BESs. The maximum current densities reached at IONPs-coated SS felt electrodes were 16.5 times and 4.8 times higher than the untreated SS felts and carbon felts, respectively. Furthermore, the maximum current density achieved with the IONPs-coated SS felt (1.92 mA/cm(2), 27.42 mA/cm(3)) is one of the highest current densities reported thus far. These results demonstrate for the first time that flame oxidized SS felts could be a good alternative to carbon-based electrodes for achieving high current densities in BESs. Most importantly, high conductivity, excellent mechanical strength, strong chemical stability, large specific surface area, and comparatively low cost of flame oxidized SS felts offer exciting opportunities for scaling-up of the anodes for BESs. PMID:24911921

  15. The Homeostatic Interaction Between Anodal Transcranial Direct Current Stimulation and Motor Learning in Humans is Related to GABAA Activity

    PubMed Central

    Amadi, Ugwechi; Allman, Claire; Johansen-Berg, Heidi; Stagg, Charlotte J.

    2015-01-01

    Background The relative timing of plasticity-induction protocols is known to be crucial. For example, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability and typically enhances plasticity, can impair performance if it is applied before a motor learning task. Such timing-dependent effects have been ascribed to homeostatic plasticity, but the specific synaptic site of this interaction remains unknown. Objective We wished to investigate the synaptic substrate, and in particular the role of inhibitory signaling, underpinning the behavioral effects of anodal tDCS in homeostatic interactions between anodal tDCS and motor learning. Methods We used transcranial magnetic stimulation (TMS) to investigate cortical excitability and inhibitory signaling following tDCS and motor learning. Each subject participated in four experimental sessions and data were analyzed using repeated measures ANOVAs and post-hoc t-tests as appropriate. Results As predicted, we found that anodal tDCS prior to the motor task decreased learning rates. This worsening of learning after tDCS was accompanied by a correlated increase in GABAA activity, as measured by TMS-assessed short interval intra-cortical inhibition (SICI). Conclusion This provides the first direct demonstration in humans that inhibitory synapses are the likely site for the interaction between anodal tDCS and motor learning, and further, that homeostatic plasticity at GABAA synapses has behavioral relevance in humans. PMID:26279408

  16. A glucose anode for enzymatic fuel cells optimized for current production under physiological conditions using a design of experiment approach.

    PubMed

    Kumar, Rakesh; Leech, Dónal

    2015-12-01

    This study reports a design of experiment methodology to investigate and improve the performance of glucose oxidizing enzyme electrodes. Enzyme electrodes were constructed by co-immobilization of amine-containing osmium redox complexes, multiwalled carbon nanotubes and glucose oxidase in a carboxymethyldextran matrix at graphite electrode surfaces to provide a 3-dimensional matrix for electrocatalytic oxidation of glucose. Optimization of the amount of the enzyme electrode components to produce the highest current density under pseudo-physiological conditions of 5 mM glucose in saline buffer at 37 °C was performed using response surface methodology. A statistical analysis showed that the proposed model had a good fit with the experimental results. From the validated model, the addition of multiwalled carbon nanotubes and carboxymethyldextran components was identified as major contributing factors to the improved performance. Based on the optimized amount of components, enzyme electrodes display current densities of 1.2±0.1 mA cm(-2) and 5.2±0.2 mA cm(-2) at 0.2 V vs. Ag/AgCl in buffer containing 5 mM and 100 mM glucose, respectively, largely consistent with the predicted values. This demonstrates that use of a design of experiment approach can be applied effectively and efficiently to improve the performance of enzyme electrodes as anodes for biofuel cell device development. PMID:26116416

  17. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  18. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors

    NASA Astrophysics Data System (ADS)

    Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair

    2016-04-01

    Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.

  19. Electrochemical oxidation of humic acid and sanitary landfill leachate: Influence of anode material, chloride concentration and current density.

    PubMed

    Fernandes, A; Santos, D; Pacheco, M J; Ciríaco, L; Lopes, A

    2016-01-15

    The influence of applied current density and chloride ion concentration on the ability of Ti/Pt/PbO2 and Ti/Pt/SnO2-Sb2O4 anodes for the electrochemical oxidation of humic acid and sanitary landfill leachate samples was assessed and compared with that of BDD anode. For the experimental conditions used, results show that both organic load and nitrogen removal rates increase with the applied current density and chloride ion concentration, although there is an optimum COD/[Cl-]0 ratio below which there is no further increase in COD removal. Metal oxide anodes present a similar performance to that of BDD, being the results obtained for Ti/Pt/PbO2 slightly better than for Ti/Pt/SnO2-Sb2O4. Contrary to BDD, Ti/Pt/PbO2 promotes lower nitrate formation and is the most suitable material for total nitrogen elimination. The importance of the optimum ratio of Cl-/COD/NH4 +initial concentrations is discussed. PMID:26410703

  20. Anodal transcranial direct current stimulation over the auditory cortex improved hearing impairment in a patient with brainstem encephalitis.

    PubMed

    Mori, Takayuki; Takeuchi, Naoyuki; Suzuki, Sakiko; Miki, Mika; Kawase, Tetsuaki; Izumi, Shin-Ichi

    2016-06-01

    Transcranial direct current stimulation (tDCS) can alter cortical excitability, and has been effective in treating some neurological disorders. This case report describes the use of tDCS in a 13-year-old female who developed bilateral hearing impairment after brainstem encephalitis when she was 6 years old. Her auditory function was more impaired in her right ear than her left. Anodal stimulation (1 mA) was applied for 10 min to the left auditory cortex once per day for 4 consecutive days to improve her right ear speech discrimination score. Sustained and significant improvement in maximum speech discrimination was observed after the four tDCS treatments. To our knowledge, this is the first case report of improvement in speech discrimination after anodal stimulation of the auditory cortex. These results encourage further studies investigating the beneficial effects of tDCS in patients with hearing impairments. PMID:26920927

  1. Investigations of x-ray response of single wire anode Ar-N 2 flow type gas scintillation proportional counters

    NASA Astrophysics Data System (ADS)

    Garg, S. P.; Sharma, R. C.

    1984-05-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon + nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy resolutions obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interactions in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique.

  2. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    NASA Astrophysics Data System (ADS)

    Banakh, Oksana; Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine; Kalinichenko, Oleg; Sereda, Olha; Moussa, Mira; Durual, Stéphane; Snizhko, Lyubov

    2016-08-01

    The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca3(PO4)2, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  3. Development of Point of Care Testing Device for Neurovascular Coupling From Simultaneous Recording of EEG and NIRS During Anodal Transcranial Direct Current Stimulation

    PubMed Central

    Jindal, Utkarsh; Sood, Mehak; Dutta, Anirban; Chowdhury, Shubhajit Roy

    2015-01-01

    This paper presents a point of care testing device for neurovascular coupling (NVC) from simultaneous recording of electroencephalogram (EEG) and near infrared spectroscopy (NIRS) during anodal transcranial direct current stimulation (tDCS). Here, anodal tDCS modulated cortical neural activity leading to hemodynamic response can be used to identify the impaired cerebral microvessels functionality. The impairments in the cerebral microvessels functionality may lead to impairments in the cerebrovascular reactivity (CVR), where severely reduced CVR predicts the chances of transient ischemic attack and ipsilateral stroke. The neural and hemodynamic responses to anodal tDCS were studied through joint imaging with EEG and NIRS, where NIRS provided optical measurement of changes in tissue oxy-(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$HbO2)$ \\end{document} and deoxy-(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Hb$ \\end{document}) hemoglobin concentration and EEG captured alterations in the underlying neuronal current generators. Then, a cross-correlation method for the assessment of NVC underlying the site of anodal tDCS is presented. The feasibility studies on healthy subjects and stroke survivors showed detectable changes in the EEG and the NIRS responses to a 0.526 A/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mathrm{m}^{2}$ \\end{document} of anodal tDCS. The NIRS system

  4. Switching off perceptual learning: Anodal transcranial direct current stimulation (tDCS) at Fp3 eliminates perceptual learning in humans.

    PubMed

    Civile, Ciro; Verbruggen, Frederick; McLaren, Rossy; Zhao, Di; Ku, Yixuan; McLaren, I P L

    2016-07-01

    Perceptual learning can be acquired as a result of experience with stimuli that would otherwise be difficult to tell apart, and is often explained in terms of the modulation of feature salience by an error signal based on how well that feature can be predicted by the others that make up the stimulus. In this article we show that anodal transcranial Direct Current Stimulation (tDCS) at Fp3 directly influences this modulation process so as to eliminate and possibly reverse perceptual learning. In 2 experiments, anodal stimulation disrupted perceptual learning (indexed by an inversion effect) compared with sham (Experiment 1) or cathodal (Experiment 2) stimulation. Our findings can be interpreted as showing that anodal tDCS severely reduced or even abolished the modulation of salience based on error, greatly increasing generalization between stimuli. This result supports accounts of perceptual learning based on variations in salience as a consequence of pre-exposure, and opens up the possibility of controlling this phenomenon. (PsycINFO Database Record PMID:27379720

  5. Pain Reduction in Myofascial Pain Syndrome by Anodal Transcranial Direct Current Stimulation Combined with Standard Treatment: A Randomized Controlled Study

    PubMed Central

    Sakrajai, Piyaraid; Janyacharoen, Taweesak; Jensen, Mark P.; Sawanyawisuth, Kittisak; Auvichayapat, Narong; Tunkamnerdthai, Orathai; Keeratitanont, Keattichai; Auvichayapat, Paradee

    2014-01-01

    Background Myofascial pain syndrome (MPS) in the shoulder is among the most prevalent pain problems in the middle-aged population worldwide. Evidence suggests that peripheral and central sensitization may play an important role in the development and maintenance of shoulder MPS. Given previous research supporting the potential efficacy of anodal transcranial direct current stimulation (tDCS) for modulating pain-related brain activity in individuals with refractory central pain, we hypothesized that anodal tDCS when applied over the primary motor cortex (M1) combined with standard treatment will be more effective for reducing pain in patients with MPS than standard treatment alone. Method Study participants were randomized to receive either (1) standard treatment with 5-consecutive days of 1 mA anodal tDCS over M1 for 20 min or (2) standard treatment plus sham tDCS. Measures of pain intensity, shoulder passive range of motion, analgesic medication use, and self-reported physical functioning were administered before treatment and again at post-treatment and 1-, 2-, 3-and 4-week follow-up. Results Thirty-one patients with MPS were enrolled. Participants assigned to the active tDCS condition reported significantly more pre- to post-treatment reductions in pain intensity that were maintained at 1-week post-treatment, and significant improvement in shoulder adduction PROM at 1-week follow-up than participants assigned to the sham tDCS condition. Conclusion 5 consecutive days of anodal tDCS over M1 combined with standard treatment appears to reduce pain intensity, and may improve PROM, faster than standard treatment alone. Further tests of the efficacy and duration of effects of tDCS in the treatment of MPS are warranted. PMID:25373724

  6. Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects.

    PubMed

    Roche, N; Lackmy, A; Achache, V; Bussel, B; Katz, R

    2011-06-01

    In recent years, two techniques have become available for the non-invasive stimulation of human motor cortex: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). The effects of TMS and tDCS when applied over motor cortex should be considered with regard not only to cortical circuits but also to spinal motor circuits. The different modes of action and specificity of TMS and tDCS suggest that their effects on spinal network excitability may be different from that in the cortex. Until now, the effects of tDCS on lumbar spinal network excitability have never been studied. In this series of experiments, on healthy subjects, we studied the effects of anodal tDCS over the lower limb motor cortex on (i) reciprocal Ia inhibition projecting from the tibialis anterior muscle (TA) to the soleus (SOL), (ii) presynaptic inhibition of SOL Ia terminals, (iii) homonymous SOL recurrent inhibition, and (iv) SOL H-reflex recruitment curves. The results show that anodal tDCS decreases reciprocal Ia inhibition, increases recurrent inhibition and induces no modification of presynaptic inhibition of SOL Ia terminals and of SOL-H reflex recruitment curves. Our results indicate therefore that the effects of tDCS are the opposite of those previously described for TMS on spinal network excitability. They also indicate that anodal tDCS induces effects on spinal network excitability similar to those observed during co-contraction suggesting that anodal tDCS activates descending corticospinal projections mainly involved in co-contractions. PMID:21502292

  7. Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task.

    PubMed

    Saimpont, Arnaud; Mercier, Catherine; Malouin, Francine; Guillot, Aymeric; Collet, Christian; Doyon, Julien; Jackson, Philip L

    2016-01-01

    Motor imagery (MI) training and anodal transcranial direct current stimulation (tDCS) applied over the primary motor cortex can independently improve hand motor function. The main objective of this double-blind, sham-controlled study was to examine whether anodal tDCS over the primary motor cortex could enhance the effects of MI training on the learning of a finger tapping sequence. Thirty-six right-handed young human adults were assigned to one of three groups: (i) who performed MI training combined with anodal tDCS applied over the primary motor cortex; (ii) who performed MI training combined with sham tDCS; and (iii) who received tDCS while reading a book. The MI training consisted of mentally rehearsing an eight-item complex finger sequence for 13 min. Before (Pre-test), immediately after (Post-test 1), and at 90 min after (Post-test 2) MI training, the participants physically repeated the sequence as fast and as accurately as possible. An anova showed that the number of sequences correctly performed significantly increased between Pre-test and Post-test 1 and remained stable at Post-test 2 in the three groups (P < 0.001). Furthermore, the percentage increase in performance between Pre-test and Post-test 1 and Post-test 2 was significantly greater in the group that performed MI training combined with anodal tDCS compared with the other two groups (P < 0.05). As a potential physiological explanation, the synaptic strength within the primary motor cortex could have been reinforced by the association of MI training and tDCS compared with MI training alone and tDCS alone. PMID:26540137

  8. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems.

    PubMed

    Guo, Kun; Freguia, Stefano; Dennis, Paul G; Chen, Xin; Donose, Bogdan C; Keller, Jurg; Gooding, J Justin; Rabaey, Korneel

    2013-07-01

    The focus of this study was to investigate the effects of surface charge and surface hydrophobicity on anodic biofilm formation, biofilm community composition, and current generation in bioelectrochemical systems (BESs). Glassy carbon surfaces were modified with -OH, -CH3, -SO3(-), or -N(+)(CH3)3 functional groups by electrochemical reduction of aryl diazonium salts and then used as anodes with poised potential of -0.2 V (vs Ag/AgCl). The average startup times and final current densities for the -N(+)(CH3)3, -OH, -SO3(-), and -CH3, electrodes were (23 d, 0.204 mA/cm(2)), (25.4 d, 0.149 mA/cm(2)), (25.9 d, 0.114 mA/cm(2)), and (37.2 d, 0.048 mA/cm(2)), respectively. Biofilms on different surfaces were analyzed by nonturnover cyclic voltammetry (CV), fluorescence in situ hybridization (FISH), and 16S rRNA gene amplicon pyrosequencing. The results demonstrated that 1) differences in the maximum current output between surface modifications was correlated with biomass quantity, and 2) all biofilms were dominated by Geobacter populations, but the composition of -CH3-associated biofilms differed from those formed on surfaces with different chemical modification. This study shows that anode surface charge and hydrophobicity influences biofilm development and can lead to significant differences in BESs performance. Positively charged and hydrophilic surfaces were more selective to electroactive microbes (e.g. Geobacter) and more conducive for electroactive biofilm formation. PMID:23745742

  9. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.

    PubMed

    Yuan, Yong; Zhao, Bo; Zhou, Shungui; Zhong, Shengkui; Zhuang, Li

    2011-07-01

    This study investigates the effects of anodic pH on electricity generation in microbial fuel cells (MFCs) and the intrinsic reasons behind them. In a two-chamber MFC, the maximum power density is 1170 ± 58 mW m(-2) at pH 9.0, which is 29% and 89% higher than those working at pH 7.0 and 5.0, respectively. Electrochemical measurements reveal that pH affects the electron transfer kinetics of anodic biofilms. The apparent electron transfer rate constant (k(app)) and exchange current density (i(0)) are greater whereas the charge transfer resistance (R(ct)) is smaller at pH 9.0 than at other conditions. Scanning electron microscopy verifies that alkaline conditions benefit biofilm formation in MFCs. These results demonstrate that electrochemical interactions between bacteria and electrodes in MFCs are greatly enhanced under alkaline conditions, which can be one of the important reasons for the improved MFC output. PMID:21530241

  10. Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Peng, Chengxin; Yang, Li; Zhang, Zhengxi; Tachibana, Kazuhiro; Yang, Yong

    The anodic behaviors of aluminum current collector for lithium ion batteries were investigated in a series of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide room temperature ionic liquids (RTILs) and EC + DMC electrolytes. It was found that the aluminum corrosion, which occurred in EC + DMC electrolytes containing LiTFSI, was not observed in the RTIL electrolytes. Further research showed that a passive film with amide compounds as main components formed firmly on aluminum surface during the anodic polarization in the RTIL electrolytes, which inhabited the aluminum corrosion. In addition, the additives generally used in the batteries, such as ethylene carbonate, ethylene sulfite and vinyl carbonate, as well as temperature did not obviously affect the aluminum passive film, the oxidation of the RTILs increased at the elevated temperature, which only resulted in the corrosion potential of aluminum in the RTIL electrolytes shifted to more negative potential, a passive film still firmly formed on the aluminum surface to surpassed the further oxidation of the aluminum current collector. Those results lead to a potential for the practical use of LiTFSI salt in the room temperature ionic liquid electrolytes for lithium ion batteries.

  11. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex.

    PubMed

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC)between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application. PMID:25894253

  12. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex

    NASA Astrophysics Data System (ADS)

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC) between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.

  13. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia

    PubMed Central

    Bradnam, Lynley V.; Graetz, Lynton J.; McDonnell, Michelle N.; Ridding, Michael C.

    2015-01-01

    There is increasing evidence that the cerebellum has a role in the pathophysiology of primary focal hand dystonia and might provide an intervention target for non-invasive brain stimulation to improve function of the affected hand. The primary objective of this study was to determine if cerebellar transcranial direct current stimulation (tDCS) improves handwriting and cyclic drawing kinematics in people with hand dystonia, by reducing cerebellar-brain inhibition (CBI) evoked by transcranial magnetic stimulation (TMS). Eight people with dystonia (5 writer’s dystonia, 3 musician’s dystonia) and eight age-matched controls completed the study and underwent cerebellar anodal, cathodal and sham tDCS in separate sessions. Dystonia severity was assessed using the Writer’s Cramp Rating Scale (WRCS) and the Arm Dystonia Disability Scale (ADDS). The kinematic measures that differentiated the groups were; mean stroke frequency during handwriting and fast cyclic drawing and average pen pressure during light cyclic drawing. TMS measures of cortical excitability were no different between people with FHD and controls. There was a moderate, negative relationship between TMS-evoked CBI at baseline and the WRCS in dystonia. Anodal cerebellar tDCS reduced handwriting mean stroke frequency and average pen pressure, and increased speed and reduced pen pressure during fast cyclic drawing. Kinematic measures were not associated with a decrease in CBI within an individual. In conclusion, cerebellar anodal tDCS appeared to improve kinematics of handwriting and circle drawing tasks; but the underlying neurophysiological mechanism remains uncertain. A study in a larger homogeneous population is needed to further investigate the possible therapeutic benefit of cerebellar tDCS in dystonia. PMID:26042019

  14. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water.

    PubMed

    Guzmán-Duque, Fernando L; Palma-Goyes, Ricardo E; González, Ignacio; Peñuela, Gustavo; Torres-Palma, Ricardo A

    2014-08-15

    Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If icurrent density (i(lim)), CV is mainly degraded by OH radicals, whereas if i>i(lim), generated oxidants play a major role in the CV elimination. When IrO2 was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na2SO4 on IrO2 seems to occur via IrO3; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na2SO4 electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO2. Thus, the IrO2/Cl(-) and BDD/SO4(2-) systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO4(2-) and IrO2/Cl(-) systems is favored at low and high current densities, respectively. PMID:24981674

  15. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression

    PubMed Central

    Podda, Maria Vittoria; Cocco, Sara; Mastrodonato, Alessia; Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Colussi, Claudia; Ripoli, Cristian; Grassi, Claudio

    2016-01-01

    The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity. PMID:26908001

  16. Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response

    PubMed Central

    Poinern, Gérrard Eddy Jai; Shackleton, Robert; Mamun, Shariful Islam; Fawcett, Derek

    2011-01-01

    Tissue engineering is a multidisciplinary field that can directly benefit from the many advancements in nanotechnology and nanoscience. This article reviews a novel biocompatible anodic aluminum oxide (AAO, alumina) membrane in terms of tissue engineering. Cells respond and interact with their natural environment, the extracellular matrix, and the landscape of the substrate. The interaction with the topographical features of the landscape occurs both in the micrometer and nanoscales. If all these parameters are favorable to the cell, the cell will respond in terms of adhesion, proliferation, and migration. The role of the substrate/scaffold is crucial in soliciting a favorable response from the cell. The size and type of surface feature can directly influence the response and behavior of the cell. In the case of using an AAO membrane, the surface features and porosity of the membrane can be dictated at the nanoscale during the manufacturing stage. This is achieved by using general laboratory equipment to perform a relatively straightforward electrochemical process. During this technique, changing the operational parameters of the process directly controls the nanoscale features produced. For example, the pore size, pore density, and, hence, density can be effectively controlled during the synthesis of the AAO membrane. In addition, being able to control the pore size and porosity of a biomaterial such as AAO significantly broadens its application in tissue engineering. PMID:24198483

  17. Characterization of plasma ion source utilizing anode spot with positively biased electrode for stable and high-current ion beam extraction

    SciTech Connect

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S.

    2011-12-15

    The operating conditions of a rf plasma ion source utilizing a positively biased electrode have been investigated to develop a stably operating, high-current ion source. Ion beam characteristics such as currents and energies are measured and compared with bias currents by varying the bias voltages on the electrode immersed in the ambient rf plasma. Current-voltage curves of the bias electrode and photographs confirm that a small and dense plasma, so-called anode spot, is formed near an extraction aperture and plays a key role to enhance the performance of the plasma ion source. The ion beam currents from the anode spot are observed to be maximized at the optimum bias voltage near the knee of the characteristic current-voltage curve of the anode spot. Increased potential barrier to obstruct beam extraction is the reason for the reduction of the ion beam current in spite of the increased bias current indicating the density of the anode spot. The optimum bias voltage is measured to be lower at higher operating pressure, which is favorable for stable operation without severe sputtering damage on the electrode. The ion beam current can be further enhanced by increasing the power for the ambient plasma without increasing the bias voltage. In the same manner, noble gases with higher atomic number as a feedstock gas are preferable for extracting higher beam current more stably. Therefore, performance of the plasma ion source with a positively biased electrode can be enhanced by controlling the operating conditions of the anode spot in various manners.

  18. Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask

    PubMed Central

    Scheldrup, Melissa; Greenwood, Pamela M.; McKendrick, Ryan; Strohl, Jon; Bikson, Marom; Alam, Mahtab; McKinley, R. Andy; Parasuraman, Raja

    2014-01-01

    There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation—specifically transcranial Direct Current Stimulation (tDCS)—has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical. PMID:25249958

  19. Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask.

    PubMed

    Scheldrup, Melissa; Greenwood, Pamela M; McKendrick, Ryan; Strohl, Jon; Bikson, Marom; Alam, Mahtab; McKinley, R Andy; Parasuraman, Raja

    2014-01-01

    There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation-specifically transcranial Direct Current Stimulation (tDCS)-has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical. PMID:25249958

  20. The effect of ion current density amplification in a diode with passive anode in magnetic self-isolation mode

    SciTech Connect

    Pushkarev, Alexander I.; Isakova, Yulia I.; Vakhrushev, Dmitry V.

    2010-12-15

    The results of a study on gigawatt power pulsed ion beam parameters are presented here. The pulsed ion beam is formed by a diode with an explosive-emission potential electrode, in magnetic self-isolation mode [A. I. Pushkarev, J. I. Isakova, M. S. Saltimakov et al., Phys. Plasmas 17, 013104 (2010)]. The ion current density is 20-40 A/cm{sup 2}, the energy of the ions is 200-250 keV, and the beam composition is of protons and carbon ions. Experiments have been performed on the TEMP-4M accelerator, set in double-pulse formation mode. To measure the beam parameters, we used a time-of-flight diagnosis. It is shown that the carbon ion current density, formed in a planar diode with graphite potential electrode, is five to seven times higher than the values calculated from the Child-Langmuir ratio. A model of ion current density amplification in a diode with magnetic self-isolation is proposed. The motion of electrons in the anode-cathode gap is simulated using the program CST PARTICLE STUDIO.

  1. A dual-structured anode/Ni-mesh current collector hollow fibre for micro-tubular solid oxide fuel cells (SOFCs)

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wu, Zhentao; Li, K.

    2014-04-01

    In this study, a unique dual-structured hollow fibre design has been developed for micro-tubular solid oxide fuel cells (MT-SOFCs), using a single-step phase-inversion assisted co-extrusion technique. The dual-structured design consists of an outer anode layer and an inner anodic current collecting layer that are formed simultaneously during fabrication. Meanwhile, a plurality of micro-channels initiating from the exterior surface of the anode layer penetrate through the two layers, forming a highly asymmetric anode and a mesh current collecting layer, which significantly facilitates the gas transport. With the increasing thickness of the current collecting layer (approximately 15-60 μm), electrical conductivity increases from 1.9 × 104 S cm-1 to 4.0 × 104 S cm-1, while the mechanical strength drops slightly from approximately 168-113 MPa due to its 'dragging effect' during co-sintering. The benefits of improved current collection may potentially overweigh the reduced mechanical property, especially when dual-structured hollow fibres of this type are bundled together to form a stack. Moreover, benefiting from this innovative design, sustainable development of a larger scale of MT-SOFC stack or system becomes less challenging, since technical issues, such as concentration polarization and efficient current collection, hampering the MT-SOFC system design, can be completely overcome.

  2. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response.

    PubMed

    Oliveira, Natássia Cristina Martins; Moura, Camilla Christian Gomes; Zanetta-Barbosa, Darceny; Mendonça, Daniela Baccelli Silveira; Cooper, Lyndon; Mendonça, Gustavo; Dechichi, Paula

    2013-05-01

    In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors' secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p<0.05), but with greater fold induction for Porous and Vulcano. The secretion of transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) was not significantly affected by surface treatment in any experimental time (p>0.05). Although no significant correlation was found for growth factors' secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response. PMID:23498218

  3. Effect of anodization current density on pore geometry in macroporous silicon

    NASA Astrophysics Data System (ADS)

    Peckham, J.; Andrews, G. T.

    2013-10-01

    Macroporous silicon films were fabricated by electrochemical etching of p--type silicon with a resistivity range of 9.0-13.0 Ω cm for 10 min in an electrolyte containing hydrofluoric acid, water, and acetonitrile. Samples were studied using scanning electron microscopy. The onset of macropore formation was observed to occur at a current density of ˜3.6 mA cm-2. At larger current densities, cross-sectional micrographs revealed macropores of approximately columnar shape. Average pore diameter was estimated from plan view micrographs using an image processing algorithm and found to be consistent with a square root dependence on the etching current density in the range investigated.

  4. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte.

    PubMed

    Porta-I-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J; Marsal, Lluis F

    2016-12-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate. PMID:27550052

  5. Differential response to anodal tDCS and PAS is indicative of impaired focal LTP-like plasticity in schizophrenia.

    PubMed

    Strube, Wolfgang; Bunse, Tilmann; Nitsche, Michael A; Palm, Ulrich; Falkai, Peter; Hasan, Alkomiet

    2016-09-15

    Increasing evidence suggests that neural plasticity impairments, observed in schizophrenia patients, are driven by dysfunctional integration of neural signaling. However, what is less clear is whether this impairment is resultant from a general deficit in plastic induction or whether a specific plastic mechanism is affected. In the current study we aimed to assess whether schizophrenia has a selective impact on focal or non-focal plasticity induction. To pursue this goal we utilized two non-invasive stimulation techniques that differ in the mechanism of long-term potentiation (LTP)-like plasticity induction: focal paired associative stimulation (PAS) and non-focal anodal transcranial direct current stimulation (a-tDCS). 20 schizophrenia patients and 20 matched healthy controls received PAS and a-tDCS in two separate sessions. Cortical excitability and cortical plasticity were assessed by transcranial magnetic stimulation (TMS)-elicited motor evoked potentials (MEP). In both study groups, non-focal a-tDCS resulted in a significant increase of mean MEP magnitude indicating the successful induction of non-focal LTP-like plasticity. In contrast, an increase in mean MEP magnitude following PAS was only observed in the control group, suggesting impaired focal LTP-like plasticity in schizophrenia. Additionally, we observed significantly impaired short-latency intracortical inhibition (SICI) in schizophrenia. This is the first study to comparatively evaluate non-focal and focal plasticity mechanisms in schizophrenia patients. The differential patterns of LTP-like plasticity responses indicate that reduced plasticity in schizophrenia could be ascribed to impairments in spatially and temporally restricted signal integration. This impairment, coupled with an observed reduction of inhibitory circuit efficacy, might further contribute to impairments in coordinating focal signals. PMID:27185738

  6. PIG Ion Source with Permanent Magnets: Model Based Anode Current Return Circuit

    NASA Astrophysics Data System (ADS)

    Babapour Ghadikolaee, Mohammad Reza

    2012-12-01

    Ion sources are widely used in fusion technologies. A new high voltage pulsed power supply for use in penning ion gauge ion sources is proposed in this paper. To use discharge current, a diode-capacitor bank is included. The power supply is composed of 3 stages. A fast switching transistor is used as a single switch which is trigged by a pulse generator. A transformer is used to level up the voltage up to 2 kV without power loss. It is also used to isolate input and high voltage output. Also; the proposed high voltage power supply implementation uses a diode-capacitor bank whose capacitors are charged during plasma discharge. This system structure gives compactness and easiness to implement the total system which in combination with inexpensive commercially available components, makes the unit versatile and inexpensive.

  7. Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch

    NASA Astrophysics Data System (ADS)

    Amirov, R. H.; Isakaev, E. Kh; Shavelkina, M. B.; Shatalova, T. B.

    2014-11-01

    In this study we propose the high-performance technology to produce carbon nanotubes (CNT) in plasma jet reactor by means of a direct current plasma torch. This technology provides excellent opportunities to investigate a direct evaporation of materials and their subsequent condensation on the carbon surface. Experiments were carried out at the electric power of a plasma torch up to 30 kW. Helium and argon served as plasma gases. CNT synthesis at pyrolysis of soot was catalyzed by the metal disperse powders of Ni, Co, Y2O3. We applied x-ray diffraction and electronic microscopy to investigate the structure of obtained products. Also we utilize the thermogravimetric analysis to determine the phase structure of carbon nanomaterials. Using available experimental data we were able to sequentially scale the production process of CNT of desirable space structure. Finally we established that structural and morphological properties of CNT produced at evaporation of soot in the presence of high- percentage combined catalysts depend upon the catalyst structure.

  8. Brain mechanisms of semantic interference in spoken word production: An anodal transcranial Direct Current Stimulation (atDCS) study.

    PubMed

    Meinzer, Marcus; Yetim, Özlem; McMahon, Katie; de Zubicaray, Greig

    2016-01-01

    When naming pictures, categorically-related compared to unrelated contexts typically slow production. We investigated proposed roles for the left inferior frontal gyrus (LIFG) and posterior middle and superior temporal gyri (pMTG/STG) in mediating this semantic interference effect. In a three-way, cross-over, sham-controlled study, we applied online anodal transcranial Direct Current Stimulation (atDCS) to LIFG or pMTG/STG while 24 participants performed parallel versions of the blocked cyclic naming paradigm. Significant effects of semantic context and cycle, and interactions of context and cycle, were observed on naming latencies in all three stimulation sessions. Additionally, atDCS over left pMTG/STG facilitated naming in related blocks from the second cycle onward, significantly reducing but not eliminating the interference effect. Applying atDCS over left LIFG likewise reduced the magnitude of interference compared to sham stimulation, although the facilitation was limited to the first few cycles of naming. We interpret these results as indicating semantic interference in picture naming reflects contributions of two complementary mechanisms: a relatively short-lived, top-down mechanism to bias selection and a more persistent lexical-level activation mechanism. PMID:27180210

  9. Nonlinear alternating current responses of dipolar fluids

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Yu, K. W.; Karttunen, Mikko

    2004-07-01

    The frequency-dependent nonlinear dielectric increment of dipolar fluids in nonpolar fluids is often measured by using a stationary relaxation method in which two electric fields are used: The static direct current (dc) field of high strength causing the dielectric nonlinearity, and the probing alternating current (ac) field of low strength and high frequency. When a nonlinear composite is subjected to a sinusoidal electric field, the electric response in the composite will, in general, consist of ac fields at frequencies of higher-order harmonics. Based on the Fröhlich model, we present a theory to investigate the nonlinear ac responses of dipolar fluids containing both polarizable monomers and dimers. In the case of monomers only, our theory reproduces the known results. We obtain the fundamental, second-, and third-order harmonics of the Fröhlich field by performing a perturbation expansion. The even-order harmonics are induced by the coupling between the ac and dc fields, although the system under consideration has a cubic nonlinearity only. The harmonics of the Fröhlich field can be affected by the field frequency, temperature, dispersion strength, and the characteristic frequency of the dipolar fluid, as well as the dielectric constant of the nonpolar fluid. The results are found to be in agreement with recent experimental observations.

  10. [Current options to manage clopidogrel poor responsiveness].

    PubMed

    Fileti, Luca; Campo, Gianluca; Valgimigli, Marco; Marchesini, Jlenia; Ferrari, Roberto

    2010-12-01

    Antiplatelet therapy (aspirin + clopidogrel) is the cornerstone of treatment for patients with acute coronary syndromes and/or undergoing percutaneous coronary interventions (PCI). More than 40 million patients worldwide receive clopidogrel, but about 20% of them are nonresponders or poor responders. Many studies using different techniques, platelet agonists and definitions have shown that patients who are poor responders to clopidogrel have an increased risk of death, reinfarction and stent thrombosis. The mechanisms leading to poor responsiveness are not fully elucidated and are likely multifactorial: genetic factors, accelerated platelet turnover, up-regulation of the P2Y12 pathways, high baseline platelet reactivity, poor compliance, underdosing and drug-drug interactions. The management of these patients is very difficult, but evidence does exist showing that a strategy of higher maintenance dose or switch to different thienopyridines (e.g. ticlopidine or prasugrel) or use of glycoprotein IIb/IIIa inhibitors during PCI may be helpful to overcome poor responsiveness and improve the long-term clinical outcome. This review describes the impact of poor responsiveness to clopidogrel on clinical outcomes, the mechanisms leading to poor effect, and the different assays to assess it. Finally, current and future options for its management are discussed. PMID:21355335

  11. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, Robert F.

    1983-01-01

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.

  12. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, R.F.

    1983-09-27

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.

  13. Effects of Anodal High-Definition Transcranial Direct Current Stimulation on Bilateral Sensorimotor Cortex Activation During Sequential Finger Movements: An fNIRS Study.

    PubMed

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Ward, Tomas; Perrey, Stephane

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. Before (Pre), during (Online), and after (Offline) anodal HD-tDCS (2 mA, 20 min) targeting the left SMC, eight healthy subjects performed a simple finger sequence (SFS) task with their right or left hand in an alternating blocked design (30-s rest and 30-s SFS task, repeated five times). In order to determine the level of bilateral SMC activation during the SFS task, an Oxymon MkIII fNIRS system was used to measure from the left and right SMC, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentration values. The fNIRS data suggests a finding that compared to the Pre condition both the "Online" and "Offline" anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task. PMID:26782232

  14. A new, high current output, galvanic (sacrificial) anode, electrochemical rehabilitation system for reinforced and prestressed concrete structures

    SciTech Connect

    Clear, K.C.

    1999-07-01

    This paper summarizes 1995 through 1998 laboratory, outdoor exposure facility, and field data on the subject concrete rehab system. The system shows promise as a means of providing cathodic protection to the reinforcing, as a chloride removal process, as a re-alkalization process, and/or as a lithium injection procedure to minimize alkali-aggregate reactions in the concrete. Unique characteristics of the system include: (1) Surrounding each galvanic anode with a highly corrosive liquid which maintains it (the anode) at peak output voltage throughout its life; and (2) Placing an ionic transfer layer between the anode and the concrete surface that is high volume, low resistivity and deliquescent (i.e. pulls water vapor out of the air at relative humidities of 35% or higher). The ionic transfer layer typically consists of sponge, felt or sand loaded with calcium chloride (and/or other chemicals such as sodium hydroxide, potassium acetate, and lithium-salts). In some cases it also contains a wetting agent and is encapsulated (fully or partially) in vapor permeable, but water impermeable materials. The ionic transfer layer will not freeze at temperatures as low as {minus}20 C ({minus}5 F), and provides sufficient space for all anode corrosion products, thus preventing undesirable stresses on the concrete, the anode assembly and any cosmetic covering.

  15. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes.

    PubMed

    Meinzer, Marcus; Lindenberg, Robert; Antonenko, Daria; Flaisch, Tobias; Flöel, Agnes

    2013-07-24

    The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. Twenty healthy elderly adults were assessed in a crossover sham-controlled design using functional magnetic resonance imaging (fMRI) and concurrent transcranial DCS administered to the left inferior frontal gyrus. Effects on performance and task-related brain activity were evaluated during overt semantic word generation, a task that is negatively affected by advanced age. Task-absent resting-state fMRI (RS-fMRI) assessed atDCS-induced changes at the network level independent of performance. Twenty matched younger adults served as controls. During sham stimulation, task-related fMRI demonstrated that enhanced bilateral prefrontal activity in older adults was associated with reduced performance. RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future. PMID:23884951

  16. Controlling the Emotional Bias: Performance, Late Positive Potentials, and the Effect of Anodal Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Faehling, Florian; Plewnia, Christian

    2016-01-01

    Cognitive control of emotional processing is essential for adaptive human behavior. Biased attention toward emotionally salient information is critically linked with affective disorders and is discussed as a promising treatment target. Anodal (activity enhancing) transcranial direct current stimulation (tDCS) has been shown to increase healthy and impaired cognitive control over emotional distraction and is therefore widely used for the investigation and experimental treatment of this disorder. In this study, event-related potential (ERP) were recorded parallel to tDCS to track its online effects. Healthy volunteers (n = 87) performed a delayed working memory paradigm with emotional salient and neutral distractors during stimulation with different intensities (sham, 0.5, 1, 1.5 mA). Measuring the late positive potential (LPP), an ERP that indexes attention allocation, we found that a valence-specific increase of the early portion of the LPP (eLPP, 250–500 ms) was associated with less emotional distraction in the sham group. Of note, stimulation with tDCS exerted an intensity related effect on this correlation. The later part of the LPP (lLPP, 500–1000 ms) was found to be correlated with reaction time, regardless of valence. General effect of tDCS on LPPs and task performance were not observed. These findings demonstrate that ERP recordings parallel to tDCS are feasible to investigate the neuronal underpinnings of stimulation effects on executive functions. Furthermore, they support the notion that the LPP induced by a distractive stimulus during a working memory task mirrors the additional allocation of neuronal resources with a specific sensitivity of the early LPP for highly arousing negative stimuli. Finally, together with the variable magnitude and direction of the emotional bias, the lack of systematic modulations of LPPs and behavior by tDCS further underlines the important influence of the individual brain activity patterns on stimulation effects both on

  17. Label-Free Detection of Telomerase Activity in Urine Using Telomerase-Responsive Porous Anodic Alumina Nanochannels.

    PubMed

    Liu, Xu; Wei, Min; Liu, Yuanjian; Lv, Bingjing; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2016-08-16

    Telomerase is closely related to cancers, which makes it one of the most widely known tumor marker. Recently, many methods have been reported for telomerase activity measurement in which complex label procedures were commonly used. In this paper, a label-free method for detection of telomerase activity in urine based on steric hindrance changes induced by confinement geometry in the porous anodic alumina (PAA) nanochannels was proposed. Telomerase substrate (TS) primer was first assembled on the inside wall of PAA nanochannels by Schiff reaction under mild conditions. Then, under the action of telomerase, TS primer was amplified and extended to repeating G-rich sequences (TTAGGG)x, which formed multiplex G-quadruplex in the presence of potassium ions (K(+)). This configurational change led to the increment of steric hindrance in the nanochannels, resulting in the decrement of anodic current of potassium ferricyanide (K3[Fe(CN)6]). Compared with previously reported methods based on PAA nanochannels (usually one G-quadruplex formed), multiplex repeating G-quadruplex formed on one TS primer in this work. As a result, large current drop (∼3.6 μA, 36%) was obtained, which gave facility to improve the detection sensitivity. The decreased ratio of anodic current has a linear correlation with the logarithm of HeLa cell number in the range of 10-5000 cells, with the detection limit of seven cells. The method is simple, reliable, and has been successfully applied in the detection of telomerase in urine with good accuracy, selectivity and reproducibility. In addition, the method is nondestructive test compared to blood analysis and pathology tests, which is significant for cancer discovery, development, and prognosis. PMID:27420905

  18. In vivo and in vitro response to electrochemically anodized Ti-6Al-4V alloy.

    PubMed

    Lee, Yu Mi; Lee, Eun Jung; Yee, Sung Tae; Kim, Byung Il; Choe, Eun Sang; Cho, Hyun Wook

    2008-05-01

    Tissues' reactions to metals depend on a variety of properties of the metal, most notably surface structure. Anodizing has been shown to alter the surface properties of metal, thus eliciting a change in the biocompatibility of the metal. In order to evaluate the biocompatibility of unoxidized titanium alloy (Ti-6Al-4V) and anodized titanium alloy samples, the samples were implanted in murine abdominal subcutaneous tissues, and maintained for 2 and 4 weeks. The reaction of the abdominal subcutaneous connective tissues to the samples was then assessed. Fibrous connective tissue capsules were observed around the vicinity of the sample, and these capsules were shown to harbor fibroblasts, fibrocytes, and other cells, including neutrophils, macrophages, and giant multinucleated cells. The average thickness of the fibrous capsules observed around the anodized alloy samples was less than that of the capsules seen around samples of the unoxidized titanium alloy. Blood was obtained from the tails of the experimental mice, and blood cell analyses were conducted in order to assess the levels of leukocytes, red blood cells, and thrombocytes. The blood analysis results of the unoxidized control group and treatment group were all within normal ranges. In addition, the biocompatibility of the titanium alloy samples was evaluated using cell culture techniques. The numbers of MG-63 cells cultured on oxidized samples tended to be greater than those in the controls; however, these increases were not statistically significant. The alkaline phosphatase activity of the sample oxidized at 310 V evidenced significantly higher activity than was observed in the control group. These results indicate that the anodized Ti-6Al-4V alloy will be of considerable utility in biomedical applications. PMID:17914611

  19. Osteoblast response on co-modified titanium surfaces via anodization and electrospinning

    NASA Astrophysics Data System (ADS)

    Bayram, Cem; Demirbilek, Murat; Yalçın, Eda; Bozkurt, Murat; Doğan, Metin; Denkbaş, Emir Baki

    2014-01-01

    Topography plays a key role in osseointegration and surface modifications at the subcellular level, increasing initial cell attachment in the early period. In the past decade, nanosized texture on metal like a nanotube layer and also more recently extracellular matrix like surface modifications - such as polymeric nanofibrils - have been proposed for a better osseointegration in the literature. Here, we investigate two types of nanoscaled modifications alone and together for the first time. We characterized different types of surface modifications morphologically and investigated how they affected osteoblast cells in vitro, in terms of cell adhesion, proliferation, alkaline phosphatase activity and calcium content. We anodized titanium samples with a thickness of 0.127 mm to obtain a nanotubular titania layer and the silk fibroin (SF), as a biocompatible polymeric material, was electrospun onto both anodized and unanodized samples to acquire 4 sample groups. We analyzed the resulting samples morphologically by scanning electron microscopy (SEM). Cell adhesion, proliferation, alkaline phosphatase (ALP) activity and calcium content were evaluated at 3, 7 and 14 days. We found that cell proliferation increased by 70% on the groups having two modifications respect to unmodified titanium and after 7 days, ALP activity and calcium content were 110% and 150%, respectively, higher on surfaces having both surface treatments than that of unmodified group. In conclusion, a nanotube layer and SF nanofibers on a titanium surface enhanced cell attachment and proliferation most. Comodification of titanium surfaces by anodization and SF electrospinning may be useful to enhance osseointegration but it requires in vivo confirmation.

  20. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury.

    PubMed

    Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Tsai, Yun-An; Tang, Shuen-Chang; Kawakami, Michiyuki; Mizuno, Katsuhiro; Kodama, Mitsuhiko; Masakado, Yoshihisa; Liu, Meigen

    2016-06-01

    Supraspinal excitability and sensory input may play an important role for the modulation of spinal inhibitory interneurons and functional recovery among patients with incomplete spinal cord injury (SCI). Here, we investigated the effects of anodal transcranial direct current stimulation (tDCS) combined with patterned electrical stimulation (PES) on spinal inhibitory interneurons in patients with chronic incomplete SCI and in healthy individuals. Eleven patients with incomplete SCI and ten healthy adults participated in a single-masked, sham-controlled crossover study. PES involved stimulating the common peroneal nerve with a train of ten 100 Hz pulses every 2 s for 20 min. Anodal tDCS (1 mA) was simultaneously applied to the primary motor cortex that controls the tibialis anterior muscle. We measured reciprocal inhibition and presynaptic inhibition of a soleus H-reflex by stimulating the common peroneal nerve prior to tibial nerve stimulation, which elicits the H-reflex. The inhibition was assessed before, immediately after, 10 min after and 20 min after the stimulation. Compared with baseline, simultaneous application of anodal tDCS with PES significantly increased changes in disynaptic reciprocal inhibition and long-latency presynaptic inhibition in both healthy and SCI groups for at least 20 min after the stimulation (all, p < 0.001). In patients with incomplete SCI, anodal tDCS with PES significantly increased the number of ankle movements in 10 s at 20 min after the stimulation (p = 0.004). In conclusion, anodal tDCS combined with PES could induce spinal plasticity and improve ankle movement in patients with incomplete SCI. PMID:26790423

  1. Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors

    NASA Astrophysics Data System (ADS)

    Kühnel, Ruben-Simon; Balducci, Andrea

    2014-03-01

    In this work, the influence of two common ionic liquid (IL) anions on the anodic stability of Al current collectors was studied. Namely, the Al corrosion/passivation process in N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) is compared to the one in N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI). It is shown, that Al slowly corrodes in PYR14FSI, while it is much better passivated in PYR14TFSI, although the ionic liquids were prepared in the same way. Float tests were carried out to illustrate the consequences of these different anodic stabilities of Al on the cycling stability of supercapacitors. Interestingly, when the chloride content of PYR14FSI was <1 ppm, Al electrodes were also pretty stable in this IL, and a similar cycling stability during float tests than for PYR14TFSI could be obtained.

  2. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    NASA Astrophysics Data System (ADS)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  3. Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xinxi; Wang, Lijuan; Li, Chengfei; Chen, Baokuan; Zhao, Qiang; Zhang, Guoqing

    2016-03-01

    Lithium zinc titanate (Li2ZnTi3O8) is a desirable anode material for lithium ion batteries (LIBs) due to its low cost, non-toxicity and high safety. However, the low electronic conductivity and not perfect rate capability hinder the commercial application of Li2ZnTi3O8. Here, a facile and effective strategy is developed to fabricate the Li2ZnTi3O8 electrode using the Cu foil with grown graphene and deposited Au nanoparticles as the current collector. The graphene and Au nanoparticles greatly enhance the electrical conductivity of the current collector. The structured Cu current collector has rough interface which can strengthen the adhesion between the Li2ZnTi3O8 active material layer and the current collector, providing an excellent electron transport network and reducing the internal resistance of LIBs. The Li2ZnTi3O8 material supported on the unique structured Cu current collector demonstrates outstanding Li+ storage properties with the reversible capacity of 172.2 mAh g-1 after 100 cycles at high current density of 4 A g-1. Even at 6 A g-1, 148.4 mAh g-1 can be delivered. The improved rate capability of the structured Li2ZnTi3O8 electrode makes it a promising anode candidate for high performance LIBs.

  4. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  5. Anodic plasma in Hall thrusters

    SciTech Connect

    Keidar, Michael

    2008-03-01

    In this paper plasma dynamics and ionization of propellant gas are modeled within the anode holes used for gas injection of a Hall thruster. Under conditions of anode coating with dielectric material, the discharge current should close within these holes, which results in ionization and formation of plasma jets emanating from the openings. The model shows that gas ionization inside the anode holes is very significant. For instance, the electron density increases by two orders of magnitude under certain conditions. The potential drop in the anode region which includes the electrostatic sheath inside the hole and potential drop along the hole might be positive or negative, depending on the anode hole radius.

  6. Impact of Anodal and Cathodal Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex during Attention Bias Modification: An Eye-Tracking Study

    PubMed Central

    Heeren, Alexandre; Baeken, Chris; Vanderhasselt, Marie-Anne; Philippot, Pierre; de Raedt, Rudi

    2015-01-01

    People with anxiety disorders show an attentional bias for threat (AB), and Attention Bias Modification (ABM) procedures have been found to reduce this bias. However, the underlying processes accounting for this effect remain poorly understood. One explanation suggests that ABM requires the modification of attention control, driven by the recruitment of the dorsolateral prefrontal cortex (DLPFC). In the present double-blind study, we examined whether modifying left DLPFC activation influences the effect of ABM on AB. We used transcranial direct current stimulation (tDCS) to directly modulate cortical excitability of the left DLPFC during an ABM procedure designed to reduce AB to threat. Anodal tDCS increases excitability, whereas cathodal tDCS decreases it. We randomly assigned highly trait-anxious individuals to one of three conditions: 1) ABM combined with cathodal tDCS, 2) ABM combined with anodal tDCS, or 3) ABM combined with sham tDCS. We assessed the effects of these manipulations on both reaction times and eye-movements on a task indexing AB. Results indicate that combining ABM and anodal tDCS over the left DLPFC reduces the total duration that participants’ gaze remains fixated on threat, as assessed using eye-tracking measurement. However, in contrast to previous studies, there were no changes in AB from baseline to post-training for participants that received ABM without tDCS. As the tendency to maintain attention to threat is known to play an important role in the maintenance of anxiety, the present findings suggest that anodal tDCS over the left DLPFC may be considered as a promising tool to reduce the maintenance of gaze to threat. Implications for future translational research combining ABM and tDCS are discussed. PMID:25909846

  7. Current nuclear threats and possible responses

    NASA Astrophysics Data System (ADS)

    Lamb, Frederick K.

    2005-04-01

    Over the last 50 years, the United States has spent more than 100 billion developing and building a variety of systems intended to defend its territory against intercontinental-range ballistic missiles. Most of these systems never became operational and ultimately all were judged ineffective. The United States is currently spending about 10 billion per year developing technologies and systems intended to defend against missiles that might be acquired in the future by North Korea or Iran. This presentation will discuss these efforts ad whether they are likely to be more effective than those of the past. It will also discuss the proper role of anti-ballistic programs at a time when the threat of a nuclear attack on the U.S. by terrorists armed with nuclear weapons is thought to be much higher than the threat of an attack by nuclear-armed ballistic missles.

  8. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  9. Intensity-dependent effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer's disease.

    PubMed

    Yu, Xuehong; Li, Yiyan; Wen, Huizhong; Zhang, Yinghui; Tian, Xuelong

    2015-09-01

    Single-session anodal transcranial direct current stimulation (tDCS) can improve the learning-memory function of patients with Alzheimer's disease (AD). After-effects of tDCS can be more significant if the stimulation is repeated regularly in a period. Here the behavioral and the histologic effects of the repetitive anodal tDCS on a rat model of AD were investigated. Sprague-Dawley rats were divided into 6 groups, the sham group, the β-amyloid (Aβ) group, the Aβ+20μA tDCS group, the Aβ+60μA tDCS group, the Aβ+100μA tDCS group and the Aβ+200μA tDCS group. Bilateral hippocampus of the rats in the Aβ group and the Aβ+tDCS groups were lesioned by Aβ1-40 to produce AD models. One day after drug injection, repetitive anodal tDCS (10 sessions in two weeks, 20min per session) was applied to the frontal cortex of the rats in the tDCS groups, while sham stimulation was applied to the Aβ group and the sham group. The spatial learning and memory capability of the rats were tested by Morris water maze. Bielschowsky's silver staining, Nissl's staining, choline acetyltransferase (ChAT) and glial-fibrillary-acidic protein (GFAP) immunohistochemistry of the hippocampus were conducted for histologic analysis. Results show in the Morris water maze task, rats in the Aβ+100μA and the Aβ+200μA tDCS groups had shorter escape latency and larger number of crossings on the platform. Significant histologic differences were observed in the Aβ+100μA and the Aβ+200μA tDCS groups compared to the Aβ group. The behavioral and the histological experiments indicate that the proposed repetitive anodal tDCS treatment can protect spatial learning and memory dysfunction of Aβ1-40-lesioned AD rats. PMID:26070657

  10. Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors

    SciTech Connect

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A

    2011-01-01

    Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium at the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.

  11. Anodizing Process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This anodizing process traces its origin to the 1960's when Reynolds Metals Company, under contract with Goddard Space Flight Center, developed a multipurpose anodizing electrolyte (MAE) process to produce a hard protective finish for spacecraft aluminum. MAE produces a high-density, abrasion-resistant film prior to the coloring step, in which the pores of the film are impregnated with a metallic form of salt. Tru-Color product applications include building fronts, railing, curtain walls, doors and windows.

  12. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  13. Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce

    2008-01-01

    Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

  14. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  15. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature. PMID:24710725

  16. Sulfur tolerant anode materials

    SciTech Connect

    Not Available

    1987-02-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  17. Arcjet anode

    NASA Technical Reports Server (NTRS)

    Lichon, Paul G. (Inventor)

    1995-01-01

    There is disclosed an anode for an arcjet thruster which resists erosion during start-up on constriction during steady-state operation. The anode includes a converging upstream portion, a diverging downstream portion and a constricted portion disposed therebetween. In one embodiment of the invention, rails formed in the constricted portion accelerate the passage of an arc during start-up reducing erosion. In a second embodiment, a higher strength material resists bulging as a result of the thermal gradient within the nozzle.

  18. Mussel-inspired Polydopamine-treated Copper Foil as a Current Collector for High-performance Silicon Anodes.

    PubMed

    Cho, Inseong; Gong, Seokhyeon; Song, Danoh; Lee, Young-Gi; Ryou, Myung-Hyun; Lee, Yong Min

    2016-01-01

    A new Cu current collector was prepared by introducing a mussel-inspired polydopamine coating onto a Cu foil surface to improve the electrochemical performance of a Si electrode. The polydopamine coating covalently bonded the polymeric binder (with hydroxyl functional groups) via a condensation reaction. The coating improved the adhesion strength between the Si composite electrode and the Cu current collector (245.5 N m(-1), 297.5 N m(-1), and 353.2 N m(-1) for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively). We demonstrate that the detachment between the Si composite electrode and the current collector plays an important role in determining the electrochemical performance of the Si electrode. The cycle life and rate capability of the Si electrode improved when the polydopamine surface-treated Cu current collector was used (963.9 mAh g(-1), 1361.1 mAh g(-1), and 1590.0 mAh g(-1) for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively, at C/2 after 500 cycles). PMID:27530802

  19. Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells

    EPA Science Inventory

    High current density of 10.0-14.6 A/m2 and COD removal up to 96% were obtained in a microbial electrochemical cell (MEC) fed with digestate at hydraulic retention time (HRT) of 4d and 8d. Volatile fatty acids became undetectable in MEC effluent (HRT 8d), except for trivial acetat...

  20. Mussel-inspired Polydopamine-treated Copper Foil as a Current Collector for High-performance Silicon Anodes

    PubMed Central

    Cho, Inseong; Gong, Seokhyeon; Song, Danoh; Lee, Young-Gi; Ryou, Myung-Hyun; Lee, Yong Min

    2016-01-01

    A new Cu current collector was prepared by introducing a mussel-inspired polydopamine coating onto a Cu foil surface to improve the electrochemical performance of a Si electrode. The polydopamine coating covalently bonded the polymeric binder (with hydroxyl functional groups) via a condensation reaction. The coating improved the adhesion strength between the Si composite electrode and the Cu current collector (245.5 N m−1, 297.5 N m−1, and 353.2 N m−1 for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively). We demonstrate that the detachment between the Si composite electrode and the current collector plays an important role in determining the electrochemical performance of the Si electrode. The cycle life and rate capability of the Si electrode improved when the polydopamine surface-treated Cu current collector was used (963.9 mAh g−1, 1361.1 mAh g−1, and 1590.0 mAh g−1 for the Si electrodes based on bare Cu, polydopamine-treated Cu without thermal treatment, and polydopamine-treated Cu with thermal treatment, respectively, at C/2 after 500 cycles). PMID:27530802

  1. Summer monsoon response of the Northern Somali Current, 1995

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Fischer, Jürgen; Garternicht, Ulf; Quadfasel, Detlef

    Preliminary results on the development of the northern Somali Current regime and Great Whirl during the summer monsoon of 1995 are reported. They are based on the water mass and current profiling observations from three shipboard surveys of R/V Meteor and on the time series from a moored current-meter and ADCP array. The monsoon response of the GW was deep-reaching, to more than 1000m. involving large deep transports. The northern Somali Current was found to be disconnected from the interior Arabian Sea in latitude range 4°N-12°N in both, water mass properties and current fields. Instead, communication dominantly occurs through the passages between Socotra and the African continent. From moored stations in the main passage a northward throughflow from the Somali Current to the Gulf of Aden of about 5 Sv was determined for the summer monsoon of 1995.

  2. Anode film formation and control

    DOEpatents

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  3. Anode film formation and control

    DOEpatents

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  4. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    PubMed

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. PMID:25862431

  5. Anode power deposition in magnetoplasmadynamic thrusters

    NASA Astrophysics Data System (ADS)

    Gallimore, A. D.; Kelly, A. J.; Jahn, R. G.

    1993-06-01

    Results of anode heat-flux and anode fail measurements from a multimegawatt self-field quasi-steady magnetoplasmadynamic (MPD) thruster are presented. Measurements were obtained with argon and helium propellants for a variety of currents and mass flow rates. Anode heat flux was directly measured with thermocouples attached to the inner surface of a hollowed section. Anode falls were determined both from floating probes and through heat flux measurements. Comparison of data acquired through either method shows excellent agreement. Anode falls varied between 4-50 V with anode power fractions reaching 70 percent with helium at 150 kW, and 50 percent with argon at 1.9 MW. The anode fall was found to correlate well with electron Hall parameters calculated from triple Langmuir and magnetic probe data collected near the anode. Two possible explanations for this result are proposed: (1) the establishment of large electric fields at the anode to maintain current conduction across the strong magnetic fields; and (2) anomalous resistivity resulting from the onset of microturbulence in the plasma. To investigate the latter hypothesis, electric field, magnetic field, and current density profiles measured in the vicinity of the anode were incorporated into Ohm's law to estimate the electrical conductivity. Results of this analysis show a substantial deviation of the measured conductivity from that calculated with classical formulas. These results imply that anomalous effects are present in the plasma near the anode.

  6. Anode power deposition in magnetoplasmadynamic thrusters

    NASA Technical Reports Server (NTRS)

    Gallimore, A. D.; Kelly, A. J.; Jahn, R. G.

    1993-01-01

    Results of anode heat-flux and anode fail measurements from a multimegawatt self-field quasi-steady magnetoplasmadynamic (MPD) thruster are presented. Measurements were obtained with argon and helium propellants for a variety of currents and mass flow rates. Anode heat flux was directly measured with thermocouples attached to the inner surface of a hollowed section. Anode falls were determined both from floating probes and through heat flux measurements. Comparison of data acquired through either method shows excellent agreement. Anode falls varied between 4-50 V with anode power fractions reaching 70 percent with helium at 150 kW, and 50 percent with argon at 1.9 MW. The anode fall was found to correlate well with electron Hall parameters calculated from triple Langmuir and magnetic probe data collected near the anode. Two possible explanations for this result are proposed: (1) the establishment of large electric fields at the anode to maintain current conduction across the strong magnetic fields; and (2) anomalous resistivity resulting from the onset of microturbulence in the plasma. To investigate the latter hypothesis, electric field, magnetic field, and current density profiles measured in the vicinity of the anode were incorporated into Ohm's law to estimate the electrical conductivity. Results of this analysis show a substantial deviation of the measured conductivity from that calculated with classical formulas. These results imply that anomalous effects are present in the plasma near the anode.

  7. Current Trends in Gamma Ray Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-08-18

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

  8. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  9. Anode power in quasisteady magnetoplasmadynamic accelerators

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1978-01-01

    Anode heat flux in a quasi-steady MPD accelerator has been measured directly and locally by thermocouples attached to the inside surface of a shell anode. These measurements show that over a range of arc current from 5.5 to 44 kA, and argon mass flow from 1 to 48 g/s, the fraction of the total arc power deposited in the anode decreases from 50% at 200 kW to 10% at 20 MW. A theoretical model of the anode heat transfer asserts that energy exchange between electrons and heavy particles in the plasma near the anode occurs over distances greater than the anode sheath thickness, and hence the usual anode fall voltage, electron temperature, and work function contributions to the anode heat flux are supplemented by a contribution from the interelectrode potential. Calculations of anode heat flux using the measured current density, plasma potential, and electron temperature in the plasma adjacent to the anode agree with the direct measurements and indicate that the decrease in anode power fraction at higher arc powers can be attributed to the smaller mean free paths in the interelectrode plasma.

  10. Anodes for cathodic protection of reinforced concrete

    SciTech Connect

    S.J. Bullard; B.S. Covino, Jr.; S.D. Cramer; G.R. Holcomb; J.H. Russell

    2000-03-01

    Consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where de-icing salts are employed. The anode materials include Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. ICCP anodes were electrochemically aged at a factor of 15 times greater than used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m{sup 2} based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. The pH at the anode-concrete interface fell to 7 to 8.5 with electrochemical age. Bond strength between the anodes and concrete decreased with electrochemical aging. Interfacial chemistry was the critical link between long-term anode performance and electrochemical age. Zn-hydrogel and the rmal-sprayed Zn and Al-12Zn-0.2In GCP anodes appear to supply adequate protection current to rebar in the Cape Perpetua Viaduct.

  11. Current Domain Challenges in the Emergency Response Community

    SciTech Connect

    Barr, Jonathan L.; Peddicord, Annie M Boe; Burtner, Edwin R.; Mahy, Heidi A.

    2011-05-08

    This paper describes the development of a framework targeted to technology providers in order to better understand the grand domain challenges of the emergency response and management community (EM). In developing this framework, Pacific Northwest National Laboratory researchers interviewed subject matter experts (SMEs) across the EM domain and corroborated these findings with current literature. We are currently examining relationships and dependencies within the framework. A thorough understanding of these gaps and dependencies will allow for a more informed approach prioritizing research, developing tools, and applying technology to enhance performance in the EM community.

  12. ANODIC TREATMENT OF URANIUM

    DOEpatents

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  13. Final report on the characterization of the film on inert anodes

    SciTech Connect

    Windisch, C.F. Jr.; Stice, N.D.

    1991-01-01

    Results of post-test microscopic and elemental analysis of the reaction zone on polarized cermet inert anodes, over a range of current densities and alumina concentrations, suggest that an alumina film does not form to protect the anode from dissolution. Rather, significant morphological and compositional changes occur at or near the anode surface. These changes and the chemical reactions that cause them involve the cermet material itself and appear to be responsible for properties that were previously assigned to an alumina film. In particular, a reaction layer formed from the cermet material may have protective properties, while changes in roughness and porosity may contribute to the electrochemical impedance.

  14. Dynamic Response of Magnetic Reconnection Due to Current Sheet Variability

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.; Burch, J. L.; Hesse, M.; Pollock, C. J.

    2014-12-01

    Magnetic reconnection is a process which regulates the interaction between regions of magnetized plasma. While many factors have an impact on the evolution of this process, there still remains a lack of understanding of the key behaviors involved in the triggering of fast reconnection. Despite an abundance of in-situ measurements, indicating the high degree of variability in the thickness, density and composition along the current sheet, no simulation studies exist which account for such current sheet variations. 2D and 3D simulations have a periodic boundary in the dimension along the current sheet and so tend to neglect these variations in the current sheet originating external to the modeled reconnection region. Here we focus on the effects on reconnection due to the variability in the thickness and density of the current sheet. Using 2.5D kinetic simulations of 2-species plasma, we isolate and explore the dynamic effects on reconnection associated with variations in the current sheet originating externally to the reconnection region. While periodic boundary conditions are still used, in the direction along the current sheet, a step-change perturbation in thickness or density of the current sheet is introduced once a stable reconnection rate is reached. The dynamic response of the overall system, after introducing the perturbation, is then evaluated, with a focus on the reconnection rate. When the reconnection rate is slowed significantly over time, loading of the inflow region occurs (a build-up of plasma and magnetic energy/pressure. This state is indicated by an asymptotic behavior in the reconnection rate over time. If a sudden variation in the current sheet is introduced under these conditions, a resultant triggering of fast reconnection may occur, which could lead to an episode of fast reconnection, saw-tooth-crash condition or even act as a trigger for sub-storms.

  15. Effect of Anode Dielectric Coating on Hall Thruster Operation

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch; V. Semenov

    2003-10-20

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode.

  16. Studies of TLP dynamic response under wind, waves and current

    NASA Astrophysics Data System (ADS)

    Gu, Jia-yang; Yang, Jian-min; Lv, Hai-ning

    2012-09-01

    Investigated is the coupled response of a tension leg platform (TLP) for random waves. Inferred are the mass matrix, coupling stiffness matrix, damping matrix in the vibration differential equation and external load of TLP in moving coordinating system. Infinitesimal method is applied to divide columns and pontoons into small parts. Time domain motion equation is solved by Runge-Kutta integration scheme. Jonswap spectrum is simulated in the random wave, current is simulated by linear interpolation, and NPD spectrum is applied as wind spectrum. The Monte Carlo method is used to simulate random waves and fluctuated wind. Coupling dynamic response, change of tendon tension and riser tension in different sea conditions are analyzed by power spectral density (PSD). The influence of approach angle on dynamic response of TLP and tendon tension is compared.

  17. A chronoamperometric study of anodic processes at various types of carbon anode in Al[sub 2]O[sub 3]-Na[sub 3]AlF[sub 6] melts used in the electrolytic production of aluminum

    SciTech Connect

    Djokic, S.S.; Conway, B.E. . Dept. of Chemistry); Belliveau, T.F. . Arvida Research and Development Centre)

    1994-08-01

    The performance of four graphites and glassy carbon as sensor anode materials in chronoamperometry experiments for possible determination of Al[sub 2]O[sub 3] were comparatively examined in alumina-cryolite melts at 1,010 C. With graphite anode materials, the anode process(es) is (are) not fully diffusion controlled nor are the results adequately reproducible. Only at glassy carbon is (are) the anodic process(es) diffusion controlled. Consequently, at glassy-carbon sensor anodes, the dependence of the response current function on Al[sub 2]O[sub 3] concentration is found to be approximately linear. The presence or absence of Al metal, dissolved in the melt, as arises in the practical technology of electrolytic aluminum smelting, has a significant effect on the results due mainly to background current contributions from oxidation of dissolved Al.

  18. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principle performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power deposition resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  19. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principal performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power depositions resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  20. A review of anode phenomena in vacuum arces

    SciTech Connect

    Miller, H.C.

    1988-09-01

    This report discusses arc modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveforms of the particular vacuum arc being considered. In specific experimental conditions, either magnetic constriction in the gap plasma or gross anode melting or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma. 88 refs., 6 figs., 8 tabs.

  1. Fabrication of highly ordered TiO2 nanotubes from fluoride containing aqueous electrolyte by anodic oxidation and their photoelectrochemical response.

    PubMed

    Chin, Lim Ying; Zainal, Zulkarnain; Hussein, Mohd Zobir; Tee, Tan Wee

    2011-06-01

    The fabrication of TiO2 nanotubes (TNT) was carried out by electrochemical anodization of Ti in aqueous electrolyte containing NH4F. The effect of electrolyte pH, applied voltage, fluoride concentration and anodization duration on the formation of TNT was investigated. It was observed that self-organized TNT can be formed by adjusting the electrolyte to pH 2-4 whereby applied voltage of 10-20 V can be performed to produce highly ordered, well-organized TNT. At 20 V, TNT can be fabricated in the concentration range of 0.07 M to 0.20 M NH4F. Higher fluoride concentration leads to etching of Ti surface and reveals the Ti grain boundaries. The prepared TNT films also show an increase in depth and in size with time and the growth of TNT films reach a steady state after 120 minutes. The morphology and geometrical aspect of the TNT would be an important factor influencing the photoelectrochemical response, with higher photocurrent response is generally associated with thicker layer of TNT. Consequently, one can tailor the resulting TNT to desired surface morphologies by simply manipulating the electrochemical parameters for wide applications such as solar energy conversion and photoelectrocatalysis. PMID:21770120

  2. Response of upper ocean currents to Typhoon Fanapi

    NASA Astrophysics Data System (ADS)

    Hormann, Verena; Centurioni, Luca R.; Rainville, Luc; Lee, Craig M.; Braasch, Lancelot J.

    2014-06-01

    The response of upper ocean currents to Typhoon Fanapi in fall 2010 was studied using an extensive air-deployed drifter array. Separation of the observations into near-inertial and sub-inertial motions quantified the importance of strong advection by the sub-inertial circulation for the evolution of the cold wake formed by Typhoon Fanapi. The near-inertial currents generated during the storm showed the expected rightward bias, with peak magnitudes of up to 0.6 m/s and an e-folding time of about 4 days for the strong currents within the cold wake. The shear of the near-inertial currents is crucial for the storm-induced cooling and deepening of the mixed layer and such instabilities were here directly observed across the base of the mixed layer in Typhoon Fanapi's cold wake. During the recovery, the diurnal cycle—a dominant process for the wake warming—was found to be noticeably reduced when the near-inertial motions were strongest.

  3. Repeatability and oblique flow response characteristics of current meters

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.

    1993-01-01

    Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.

  4. Monsoon response of the Somali Current and associated upwelling

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich

    The Somali Current typically develops in different phases in response to the onset of the summer monsoon. Each of these phases exists quasistationary for some time ranging from weeks to months. These periods of rather constant circulation patterns are separated by periods of rapid transition. In the early phase of the monsoon response, during May, with weak southerly winds off Somalia, a cross equatorial inertial current develops which turns offshore a few degrees north of the equator with a coastal upwelling wedge just north of the offshore flow. North of that region, an Ekman upwelling regime exists all the way up the coast. At the onset of strong winds in June, a northern anticyclonic gyre develops north of 5°N and a second cold wedge forms north of 8°-9°N, where that current turns offshore. The most drastic change of upwelling pattern occurs in the late phase of the summer monsoon, August/September, when the southern cold wedge propagates northward, indicating a break-down of the two-gyre pattern and development of a continuous boundary current from south of the equator to about 10°N. The wedge propagation during 1976-1978 is discussed, based on satellite observations (EVANS and BROWN, 1981), moored station data during 1978, 1979 and shipboard hydrographic data during 1979. A simple relation between the decrease of local monsoon winds offshore and wedge propagation cannot be determined. The southward coastal undercurrent, which is part of the Ekman upwelling regime north of 5° during the early summer monsoon, seems to turn offshore between 3° and 5°, probably due to a zonal excursion of depth contours in that area. With the spin-up of the deep-reaching northern gyre the undercurrent is extinguished during July to August but seems to get reestablished after the coalescence of the two gyres.

  5. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  6. Current radar responsive tag development activities at Sandia National Laboratories.

    SciTech Connect

    Plummer, Kenneth W.; Ormesher, Richard C.

    2003-09-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking

  7. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode.

    PubMed

    Wu, Jie; Zhang, Hui; Oturan, Nihal; Wang, Yan; Chen, Lu; Oturan, Mehmet A

    2012-05-01

    The removal of antibiotic tetracycline (TC) from water by electrochemical advanced oxidation process (EAOP) was performed using a carbon-felt cathode and a DSA (Ti/RuO(2)-IrO(2)) anode. The influence of applied current, initial pH and initial TC concentration on TC removal efficiency was investigated. Response surface methodology (RSM) based on Box-Behnken statistical experiment design (BBD) was applied to analyze the experimental variables. The positive and negative effects of variables and the interaction between variables on TC removal efficiency were determined. The applied current showed positive effect, while the initial pH value and initial tetracycline concentration gave negative effect on TC removal. The interaction between applied current and initial pH value was significant, while the interactions of initial TC concentration with applied current or initial pH were not pronounced. The results of adequacy check confirmed that the proposed models were accurate and reliable to analyze the variables of EAOP. The reaction intermediates were identified by high-performance liquid chromatography-mass spectrometry (LC-MS) technique and a plausible degradation pathway for tetracycline degradation was proposed. The acute toxicity experiments illustrated that the Daphnia magna immobilization rate reached the maximum after 240 min of electrolysis and then decreased with the progress of the reaction. PMID:22342334

  8. Global temperature responses to current emissions from the transport sectors

    PubMed Central

    Berntsen, Terje; Fuglestvedt, Jan

    2008-01-01

    Transport affects climate directly and indirectly through mechanisms that cause both warming and cooling of climate, and the effects operate on very different timescales. We calculate climate responses in terms of global mean temperature and find large differences between the transport sectors with respect to the size and mix of short- and long-lived effects, and even the sign of the temperature response. For year 2000 emissions, road transport has the largest effect on global mean temperature. After 20 and 100 years the response in net temperature is 7 and 6 times higher, respectively, than for aviation. Aviation and shipping have strong but quite uncertain short-lived warming and cooling effects, respectively, that dominate during the first decades after the emissions. For shipping the net cooling during the first 4 decades is due to emissions of SO2 and NOx. On a longer timescale, the current emissions from shipping cause net warming due to the persistence of the CO2 perturbation. If emissions stay constant at 2000 levels, the warming effect from road transport will continue to increase and will be almost 4 times larger than that of aviation by the end of the century. PMID:19047640

  9. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    NASA Astrophysics Data System (ADS)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-04-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  10. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    NASA Astrophysics Data System (ADS)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  11. Thin flexible intercalation anodes

    SciTech Connect

    Levy, S.C.; Cieslak, W.R.; Klassen, S.E.; Lagasse, R.R.

    1994-10-01

    Poly(acrylonitrile) fibers have been pyrolyzed under various conditions to form flexible carbon yarns capable of intercalating lithium ions. These fibers have also been formed into both woven and non woven cloths. Potentiostatic, potentiodynamic and galvanostatic tests have been conducted with these materials in several electrolytes. In some tests, a potential hold was used after each constant current charge and discharge. These tests have shown some of these flexible materials to reversibly intercalate lithium ions to levels that are suitable for use as a practical battery anode.

  12. Current trends in gamma radiation detection for radiological emergency response

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  13. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

  14. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  15. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  16. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  17. Transient Eddy Current Response Due to a Conductive Cylindrical Rod

    NASA Astrophysics Data System (ADS)

    Fu, Fangwei; Bowler, J. R.

    2007-03-01

    Transient eddy current test systems have been developed for the inspection of aircraft structures and for oil and gas pipelines. This work is supported by theoretical developments in which transient fields and time domain signals are determined for the geometry of interest. However most of the models to date have been aimed at structures that are planar, relatively little attention being paid to the corresponding problems in cylindrical geometries. In order to rectify this deficiency, we have examined theoretically the transient probe signal response due to a cylindrical conductive rod excited by an encircling coil. The transient fields can be calculated from a Fourier transform of the frequency domain solutions for infinite rods or tubes but, as with planar structures, we have found that it is better to use series solutions in the time domain since these provide more accurate and flexible representations of transient fields. Two types of series are used; one which converges faster at short times and one which converges faster at longer times. Calculations using these series show that they are in mutual agreement and agree with results computed using the fast Fourier transform.

  18. Epidemics: Lessons from the past and current patterns of response

    NASA Astrophysics Data System (ADS)

    Martin, Paul

    2008-09-01

    Hippocrates gave the term 'epidemic' its medical meaning. From antiquity to modern times, the meaning of the word epidemic has continued to evolve. Over the centuries, researchers have reached an understanding of the varying aspects of epidemics and have tried to combat them. The role played by travel, trade, and human exchanges in the propagation of epidemic infectious diseases has been understood. In 1948, the World Health Organization was created and given the task of advancing ways of combating epidemics. An early warning system to combat epidemics has been implemented by the WHO. The Global Outbreak Alert and Response Network (GOARN) is collaboration between existing institutions and networks that pool their human and technical resources to fight outbreaks. Avian influenza constitutes currently the most deadly epidemic threat, with fears that it could rapidly reach pandemic proportions and put several thousands of lives in jeopardy. Thanks to the WHO's support, most of the world's countries have mobilised and implemented an 'Action Plan for Pandemic Influenza'. As a result, most outbreaks of the H5N1 avian flu virus have so far been speedily contained. Cases of dengue virus introduction in countries possessing every circumstance required for its epidemic spread provide another example pertinent to the prevention of epidemics caused by vector-borne pathogens.

  19. Tip-like anodic alumina

    NASA Astrophysics Data System (ADS)

    Sun, Q. W.; Ding, G. Q.; Li, Y. B.; Zheng, M. J.; Shen, W. Z.

    2007-05-01

    Porous anodic alumina membranes and various nanotips have been demonstrating individually their unique usefulness in current nanotechnology. We present a one-step electrochemical approach to fabricate nanoscale alumina tips (tip-like anodic alumina, TAA) in order to combine the benefits of porous anodic alumina and a nanoscale tip array. The realized TAA has an ordered tip surface with controllable aspect ratio and high sheet density of ~1011 cm-2. The formation of alumina nanotips is due to the heat-driven dissolution of the nanopore surface. We have further shown that the surface nanostructure in TAA leads to the wettability reversal, and preferred nucleation and growth during material deposition. The easy and large-scale fabrication of TAA makes it possible for novel nanodevice applications.

  20. Advances in aluminum anodizing

    NASA Technical Reports Server (NTRS)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  1. FLUORINE CELL ANODE ASSEMBLY

    DOEpatents

    Cable, R.E.; Goode, W.B. Jr.; Henderson, W.K.; Montillon, G.H.

    1962-06-26

    An improved anode assembly is deslgned for use in electrolytlc cells ln the productlon of hydrogen and fluorlne from a moIten electrolyte. The anode assembly comprises a copper post, a copper hanger supported by the post, a plurality of carbon anode members, and bolt means for clamplng half of the anode members to one slde of the hanger and for clamplng the other half of the anode members to the other slde of the hanger. The heads of the clamplng bolts are recessed withln the anode members and carbon plugs are inserted ln the recesses above the bolt heads to protect the boIts agalnst corroslon. A copper washer is provided under the head of each clamplng boIt such that the anode members can be tightly clamped to the hanger with a resultant low anode jolnt resistance. (AEC)

  2. Anode Biofilms of Geoalkalibacter ferrihydriticus Exhibit Electrochemical Signatures of Multiple Electron Transport Pathways.

    PubMed

    Yoho, Rachel A; Popat, Sudeep C; Rago, Laura; Guisasola, Albert; Torres, César I

    2015-11-17

    Thriving under alkaliphilic conditions, Geoalkalibacter ferrihydriticus (Glk. ferrihydriticus) provides new applications in treating alkaline waste streams as well as a possible new model organism for microbial electrochemistry. We investigated the electrochemical response of biofilms of the alkaliphilic anode-respiring bacterium (ARB) Glk. ferrihydriticus voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. We observed there to be at least four dominant electron transfer pathways, with their contribution to the overall current produced dependent on the set anode potential. These pathways appear to be manifested at midpoint potentials of approximately -0.14 V, -0.2 V, -0.24 V, and -0.27 V vs standard hydrogen electrode. The individual contributions of the pathways change upon equilibration from a set anode potential to another anode potential. Additionally, the contribution of each pathway to the overall current produced is reversible when the anode potential is changed back to the original set potential. The pathways involved in anode respiration in Glk. ferrihydriticus biofilms follow a similar, but more complicated, pattern as compared to those in the model ARB, Geobacter sulfurreducens. This greater diversity of electron transport pathways in Glk. ferrihydriticus could be related to its wider metabolic capability (e.g., higher pH and larger set of possible substrates, among others). PMID:26488071

  3. Transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex affects stimulus conflict but not response conflict.

    PubMed

    Zmigrod, S; Zmigrod, L; Hommel, B

    2016-05-13

    When the human brain encounters a conflict, performance is often impaired. Two tasks that are widely used to induce and measure conflict-related interference are the Eriksen flanker task, whereby the visual target stimulus is flanked by congruent or incongruent distractors, and the Simon task, where the location of the required spatial response is either congruent or incongruent with the location of the target stimulus. Interestingly, both tasks share the characteristic of inducing response conflict but only the flanker task induces stimulus conflict. We used a non-invasive brain stimulation technique to explore the role of the right dorsolateral prefrontal cortex (DLPFC) in dealing with conflict in the Eriksen flanker and Simon tasks. In different sessions, participants received anodal, cathodal, or sham transcranial direct current stimulation (tDCS) (2 mA, 20 min) on the right DLPFC while performing these tasks. The results indicate that cathodal tDCS over the right DLPFC increased the flanker interference effect while having no impact on the Simon effect. This finding provides empirical support for the role of the right DLPFC in stimulus-stimulus rather than stimulus-response conflict, which suggests the existence of multiple, domain-specific control mechanisms underlying conflict resolution. In addition, methodologically, the study also demonstrates the way in which brain stimulation techniques can reveal subtle yet important differences between experimental paradigms that are often assumed to tap into a single process. PMID:26924018

  4. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    NASA Astrophysics Data System (ADS)

    Rose, M. A.; Williamson, M. A.; Willit, J.

    2015-12-01

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  5. Electrochemical oxidation of phenol using graphite anodes

    SciTech Connect

    Awad, Y.M.; Abuzaid, N.S.

    1999-02-01

    The effects of current and pH on the electrochemical oxidation of phenol on graphite electrodes is investigated in this study. There was no sign of deterioration of the graphite bed after 5 months of operation. Phenol removal efficiency was a function of the current applied and was around 70% at a current of 2.2 A. The increase of phenol removal efficiency with current is attributed to the increase of ionic transport which increases the rate of electrode reactions responsible for the removal process. The percentage of complete oxidation of phenol increases with current, with a maximum value of about 50%. However, at pH 0.2 it is slightly higher than that at pH 0.5 at all currents. The phenol removal rate increases with increases of current and pH. While the current (CO{sub 2}) efficiency reaches a maximum value in the current range of 1.0--1.2 A, it increases with an increase of acid concentration. The findings of this study have important implications: while anodic oxidation of phenol on graphite can achieve acceptable removal of phenol, the extent of oxidation should not be overlooked.

  6. Current Debate: A Response to the Debate Blahs.

    ERIC Educational Resources Information Center

    Kovalcheck, Kassian A.

    Intercollegiate debaters often have difficulty coming up with relevant topics for debate. Even when they do find current topics, by the end of an eight-month preparation period both the coaches and the debaters are bored. One possible alternative to this extension of the debate season might be found in current issues debate. Additional emphasis on…

  7. Pilot demonstration of cerium oxide coated anodes

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  8. Experimental studies of anode sheath phenomena in a hall thruster.

    SciTech Connect

    Dorf, L. A.; Fisch, N. J.; Raitses, Yevgeny F.

    2004-01-01

    Both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in a Hall thruster were identified experimentally by performing accurate, non-disturbing near-anode measurements with biased and emissive probes. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. Probe measurements in a Hall thruster with three different magnetic field configurations show that an anode fall at the clean anode is a function of the radial magnetic field profile inside the channel. A positive anode fall formation mechanism suggested in this work is that: (1) when the anode front surface is coated with dielectric, a discharge current closes to the anode at the surfaces that remain conductive, (2) a total thermal electron current toward the conductive area is significantly smaller than the discharge current, therefore an additional electron flux needs to be attracted toward the conductive surfaces by the electronattracting sheath that appears at these surfaces.

  9. Alternate anode materials for cathodic protection of steel reinforced concrete

    SciTech Connect

    Russell, James H.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Cryer, Curtis B.

    2001-01-01

    Consumable and non-consumable anodes were evaluated in the laboratory for use in cathodic protection (CP) systems for steel reinforced concrete bridges in coastal environments and in areas where deicing salts are employed. The anode materials included Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, Al-12Zn-0.2In, and cobalt-sprayed Ti. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. Impressed current CP anodes were electrochemically aged at a current density 15 times as great as that used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m2 based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. Bond strength between the anodes and concrete decreased with electrochemical aging. The Zn-15Al and Al-12Zn-0.2In anodes provided adequate protection in GCP but their life was too short in the accelerated ICCP tests. Zinc had an adequate life in ICCP tests but was inadequate as a galvanic anode. Zinc-hydrogel performed well in both tests when the hydrogel was kept moist. Titanium was an excellent anode for ICCP, but is not suitable for GCP.

  10. Inhomogeneity of anodic oxide films of Al and Al alloys characterized by scanning electron microscopy observation and analysis of frequency response behavior

    NASA Astrophysics Data System (ADS)

    Ozawa, Kiyoshi; Majima, Teiji

    1999-02-01

    Inhomogeneity of anodic oxide films of pure Al, Al-0.42 at. % Ta, Al-1.1 at. % Ta, Al-0.5 at. % Ti, and Al-1.0 wt % Si formed in various electrolyte solutions has been investigated. Scanning electron microscopy observation of their cross sections revealed their structural inhomogeneity: they consist of an inner layer element with a smooth texture and an outer layer element distinguished by its textural properties such as roughness and macroscopic voids. An imaginary part of the impedance for those oxides revealed their electrical inhomogeneity: their impedance spectra were fitted by the summation of characteristic Debye functions, PC, PV1, and PV2, in the frequency regime where direct current conduction predominated. This indicates that three differing processes of charge transport coexist. Only PC which had the shortest conductivity relaxation time was manifested for the oxide, where a smooth texture was observed. PV1 which had the second shortest relaxation time was predominantly manifested for the oxide, where a rough texture indicating the existence of minute voids was observed. PV2 which had the longest relaxation time was predominantly manifested for the oxide, where macroscopic voids were observed. Based on the close correlation between the texture and the impedance spectra, PC, PV1, and PV2 were attributed to the traps induced at the microvoids, minute voids, and macroscopic voids. The temperature dependence of the conductivities, as derived from the Debye peaks, showed that oxides had a well-defined trap level 2.0±0.2 eV below the conduction band edge. The trap density was least for the oxide with a smooth texture and it was higher by more than an order of magnitude for the oxide with a rough texture. As regards the anodization behavior, it was shown that the oxidizing reactants migrating toward the matrix metal was OH- and that the reaction to produce H2 near the oxide-matrix metal interface was suppressed by the predominant reaction to form an Si-H bond

  11. Corrosion control acceptance criteria for sacrificial anode type, cathodic protection systems (user guide)

    NASA Astrophysics Data System (ADS)

    Hock, Vincent F.; Noble, Michael; McLeod, Malcolm E.

    1994-07-01

    The Army currently operates and maintains more than 20,000 underground storage tanks and over 3000 miles of underground gas pipelines, all of which require some form of corrosion control. Cathodic protection is one method of corrosion control used to prevent corrosion-induced leaks when a steel structure is exposed to an aggressive soil. The corrosion control acceptance criteria for sacrificial anode type CP systems provides guidelines for the DEH/DPW cathodic protection installation inspectors whose responsibilities are to ensure that the materials and equipment specified are delivered to the job site and subsequently installed in accordance with the engineering drawings and specifications. The sacrificial anode CP acceptance criteria includes all components for the sacrificial anode system such as insulated conductors, anodes, anode backfills, and auxiliary equipment. The sacrificial anode CP acceptance criteria is composed of a checklist that lists each component and that contains a space for the inspector to either check 'yes' or 'no' to indicate whether the component complies with the job specifications. In some cases, the inspector must measure and record physical dimensions or electrical output and compare the measurements to standards shown in attached tables.

  12. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.

    PubMed

    Jiang, Yong; Liang, Peng; Zhang, Changyong; Bian, Yanhong; Yang, Xufei; Huang, Xia; Girguis, Peter R

    2015-08-01

    The application of microbial fuel cell (MFC)-based toxicity sensors to real-world water monitoring is partly impeded by the limited sensitivity. To address this limitation, this study optimized the flow configurations and the control modes. Results revealed that the sensitivity increased by ∼15-41times with the applying of a flow-through anode, compared to those with a flow-by anode. The sensors operated in the controlled anode potential (CP) mode delivered better sensitivity than those operated in the constant external resistance (ER) mode over a broad range of anode potentials from -0.41V to +0.1V. Electrodeposition of Cu(II) was found to bias the toxicity measurement at low anode potentials. The optimal anode potential was approximately -0.15V, at which the sensor achieved an unbiased measurement of toxicity and the highest sensitivity. This value was greater than those required for electrodeposition while smaller than those for power overshoot. PMID:25965954

  13. Nonlinear response of superconductors to alternating fields and currents

    SciTech Connect

    McDonald, J.

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  14. Alternative consumable anodes for cathodic protection of reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B.; Laylor, H.M.

    1999-01-01

    Alternative consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where deicing salts are employed. The anode materials included zinc hydrogel foil and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In alloys. They were evaluated for service in both impressed current (ICCP) and galvanic (GCP) cathodic protection systems. ICCP anodes were electrochemically aged at current densities of five to fifteen times that used by the Oregon Department of Transportation (Oregon DOT) in typical coastal CP systems (2.2 mA/m2 based on anode area). GCP anodes were electrochemically aged at a rate defined by the steel-anode couple. Both types of anodes were exposed to 80°F, a relative humidity of 85 pct, and were periodically wetted with deionized water. The Zn anode gave the best performance in ICCP systems. The four anodes all produced sufficient current density suitable for use in GCP systems. The anodes materials, ranked in increasing order of GCP current output, were: thermal-sprayed Al-12Zn-0.2In, Zn hydrogel, thermal-sprayed Zn-15Al, and thermal-sprayed Zn.

  15. Current Status of Proteomic Studies on Defense Responses in Rice.

    PubMed

    Chen, Xifeng; Bhadauria, Vijai; Ma, Bojun

    2016-01-01

    Biotic stresses are constraints to plant growth and development negatively impacting crop production. To counter such stresses, plants have developed stress-specific adaptations as well as simultaneous responses. The efficacy and magnitude of inducible adaptive responses are dependent on activation of signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification of proteins associated with defense mechanisms. Proteomics plays an important role in elucidating plant defense mechanisms by mining the differential regulation of proteins to various biotic stresses. Rice, one of the most widely cultivated food crops in world, is constantly challenged by a variety of biotic stresses, and high-throughput proteomics approaches have been employed to unravel the molecular mechanism of the biotic stresses-response in rice. In this review, we summarize the latest advances of proteomic studies on defense responses and discuss the potential relevance of the proteins identified by proteomic means in rice defense mechanism. Furthermore, we provide perspective for proteomics in unraveling the molecular mechanism of rice immunity. PMID:26364119

  16. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  17. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  18. Nonlinear current response of a d-wave superfluid

    NASA Astrophysics Data System (ADS)

    Dahm, T.; Scalapino, D. J.

    1999-11-01

    Despite several efforts the nonlinear Meissner effect in d-wave superconductors, as has been discussed by Yip and Sauls in 1992, has not been verified experimentally in high-Tc superconductors at present. Here, we reinvestigate the nonlinear response expected in a d-wave superconductor. While the linear \\|H-->\\| field dependence of the penetration depth, predicted by Yip and Sauls, is restricted by the lower critical field and can be masked by nonlocal effects, we argue that the upturn of the nonlinear coefficient of the quadratic field dependence is more stable and remains observable over a broader range of parameters. We investigate this by studying the influence of nonmagnetic impurities on the nonlinear response. We discuss the difficulties of observing this intrinsic d-wave signature in present day high-Tc films and single crystals.

  19. Host Response to Nontuberculous Mycobacterial Infections of Current Clinical Importance

    PubMed Central

    Orme, Ian M.

    2014-01-01

    The nontuberculous mycobacteria are a large group of acid-fast bacteria that are very widely distributed in the environment. While Mycobacterium avium was once regarded as innocuous, its high frequency as a cause of disseminated disease in HIV-positive individuals illustrated its potential as a pathogen. Much more recently, there is growing evidence that the incidence of M. avium and related nontuberculous species is increasing in immunocompetent individuals. The same has been observed for M. abscessus infections, which are very difficult to treat; accordingly, this review focuses primarily on these two important pathogens. Like the host response to M. tuberculosis infections, the host response to these infections is of the TH1 type but there are some subtle and as-yet-unexplained differences. PMID:24914222

  20. Transient response of superconducting microbridges to supercritical currents

    NASA Astrophysics Data System (ADS)

    Frank, D. J.

    1983-06-01

    We have made time-resolved measurements of the voltage waveforms on one-dimensional superconducting strips caused by current pulses in excess of their critical currents. We report the first known observations of the kinetic inductance spike the non-zero minimum voltage, and the time-domain development of phase-slip centers. These measurements were made on indium microbridges and represent an important extension of the work of Pals and Wolter to a higher critical temperature material. We have also measured the delay time between the application of the current pulse and the development of the first phase slip center in these bridges and have used it in conjunction with the SST theory (Schmidt, Schon and Tinkham 1980) to estimate a Tau sub E of 140 picoseconds for indium. In addition we have made a few measurements on dirty aluminum strips which also show the time domain development of phase slip centers. We have compare the data with the nonequilibrium superconductivity theory SST wherever possible. To do this, we have developed a computer program that approximation. From these numerical solutions we have found that, for the most part, the theory is in good agreement with the data. We have also used this exact solution to test the validity of several simpler approximations.

  1. Transient Response of Superconducting Microbridges to Supercritical Currents.

    NASA Astrophysics Data System (ADS)

    Frank, David James

    We have made time-resolved measurements of the voltage waveforms on one-dimensional superconducting strips caused by current pulses in excess of their critical currents. We report the first known observations of the kinetic inductance spike, the non-zero minimum voltage, and the time-domain development of phase slip centers. These measurements were made on indium microbridges and represent an important extension of the work of Pals and Wolter (1979) to a higher critical temperature material. We have also measured the delay time between the application of the current pulse and the development of the first phase slip center in these bridges and have used it in conjunction with the SST theory (Schmid, Schon and Tinkham 1980) to estimate a (tau)(,E) of 140 picoseconds for indium. In addition, we have made a few measurements on dirty aluminum strips which also show the time-domain development of phase slip centers. We have compared the data with the nonequilibrium superconductivity theory of SST wherever possible. To do this, we have developed a computer program that numerically solves the SST equations exactly in the one-dimensional, uniform strip approximation. From these numerical solutions we have found that, for the most part, the theory is in good agreement with the data. We have also used this exact solution to test the validity of several simpler approximations. These experiments have been carried out using conventional electronics in the laboratory at Harvard and using a superconducting sampler circuit and pulse generator in a collaboration with IBM. This is the first known use of this superconducting circuitry for a nonequilibrium superconductivity experiment. In both types of experiments, the microbridges were fabricated using a small photolithographic facility that we helped to develop at Harvard.

  2. Anodized Ti3SiC2 As an Anode Material for Li-ion Microbatteries.

    PubMed

    Tesfaye, Alexander T; Mashtalir, Olha; Naguib, Michael; Barsoum, Michel W; Gogotsi, Yury; Djenizian, Thierry

    2016-07-01

    We report on the synthesis of an anode material for Li-ion batteries by anodization of a common MAX phase, Ti3SiC2, in an aqueous electrolyte containing hydrofluoric acid (HF). The anodization led to the formation of a porous film containing anatase, a small quantity of free carbon, and silica. By varying the anodization parameters, various oxide morphologies were produced. The highest areal capacity was achieved by anodization at 60 V in an aqueous electrolyte containing 0.1 v/v HF for 3 h at room temperature. After 140 cycles performed at multiple applied current densities, an areal capacity of 380 μAh·cm(-2) (200 μA·cm(-2)) has been obtained, making this new material, free of additives and binders, a promising candidate as a negative electrode for Li-ion microbatteries. PMID:27282275

  3. Anodized aluminum on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  4. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  5. Transcranial Direct Current Stimulation (tDCS) of the Right Inferior Frontal Gyrus Attenuates Skin Conductance Responses to Unpredictable Threat Conditions.

    PubMed

    Herrmann, Martin J; Beier, Jennifer S; Simons, Bibiane; Polak, Thomas

    2016-01-01

    Patients with panic and post-traumatic stress disorders seem to show increased psychophysiological reactions to conditions of unpredictable (U) threat, which has been discussed as a neurobiological marker of elevated levels of sustained fear in these disorders. Interestingly, a recent study found that the right inferior frontal gyrus (rIFG) is correlated to the successful regulation of sustained fear during U threat. Therefore this study aimed to examine the potential use of non-invasive brain stimulation to foster the rIFG by means of anodal transcranial direct current stimulation (tDCS) in order to reduce psychophysiological reactions to U threat. Twenty six participants were randomly assigned into an anodal and sham stimulation group in a double-blinded manner. Anodal and cathodal electrodes (7 * 5 cm) were positioned right frontal to target the rIFG. Stimulation intensity was I = 2 mA applied for 20 min during a task including U threat conditions (NPU-task). The effects of the NPU paradigm were measured by assessing the emotional startle modulation and the skin conductance response (SCR) at the outset of the different conditions. We found a significant interaction effect of condition × tDCS for the SCR (F (2,48) = 6.3, p < 0.01) without main effects of condition and tDCS. Post hoc tests revealed that the increase in SCR from neutral (N) to U condition was significantly reduced in verum compared to the sham tDCS group (t (24) = 3.84, p < 0.001). Our results emphasize the causal role of rIFG for emotional regulation and the potential use of tDCS to reduce apprehension during U threat conditions and therefore as a treatment for anxiety disorders. PMID:27462211

  6. Transcranial Direct Current Stimulation (tDCS) of the Right Inferior Frontal Gyrus Attenuates Skin Conductance Responses to Unpredictable Threat Conditions

    PubMed Central

    Herrmann, Martin J.; Beier, Jennifer S.; Simons, Bibiane; Polak, Thomas

    2016-01-01

    Patients with panic and post-traumatic stress disorders seem to show increased psychophysiological reactions to conditions of unpredictable (U) threat, which has been discussed as a neurobiological marker of elevated levels of sustained fear in these disorders. Interestingly, a recent study found that the right inferior frontal gyrus (rIFG) is correlated to the successful regulation of sustained fear during U threat. Therefore this study aimed to examine the potential use of non-invasive brain stimulation to foster the rIFG by means of anodal transcranial direct current stimulation (tDCS) in order to reduce psychophysiological reactions to U threat. Twenty six participants were randomly assigned into an anodal and sham stimulation group in a double-blinded manner. Anodal and cathodal electrodes (7 * 5 cm) were positioned right frontal to target the rIFG. Stimulation intensity was I = 2 mA applied for 20 min during a task including U threat conditions (NPU-task). The effects of the NPU paradigm were measured by assessing the emotional startle modulation and the skin conductance response (SCR) at the outset of the different conditions. We found a significant interaction effect of condition × tDCS for the SCR (F(2,48) = 6.3, p < 0.01) without main effects of condition and tDCS. Post hoc tests revealed that the increase in SCR from neutral (N) to U condition was significantly reduced in verum compared to the sham tDCS group (t(24) = 3.84, p < 0.001). Our results emphasize the causal role of rIFG for emotional regulation and the potential use of tDCS to reduce apprehension during U threat conditions and therefore as a treatment for anxiety disorders. PMID:27462211

  7. Harm reduction history, response, and current trends in Asia.

    PubMed

    Thomson, Nicholas

    2013-12-01

    HIV epidemics in Asia have been initially driven through injecting drug use and the use of shared needles and syringes. Molecular epidemiological work has shown that where there is heroin trafficking and use, so too is there HIV. Given the often strict enforcement of national anti-narcotic laws, harm reduction responses to HIV infections driven by injecting drug use have been historically slow. As it became clear that preventing HIV meant embracing harm reduction, many countries in the region have adopted harm reduction as part of their national AIDS strategy and increasingly as part of their national drug strategy. Initial successes have proven that harm reduction, as it pertains to HIV among IDUs, can and does work in Asia. These initial successes have led to more comprehensive scale-up of other essential components of HIV prevention among IDUs, including increased availability of opiate substitution programs. Still, multiple challenges remain as overall coverage of services in the region remains poor. Changes in the availability and patterns of use of drugs, including the exponential increase in the use of amphetamine-type stimulants, is providing ongoing challenges to both the law enforcement and public health sectors. This paper reflects on the history of harm reduction in Asia and the shifting trends forcing policy makers to adapt and expand harm reduction strategies to include an ever widening approach to criminal justice, policing, public health, and human rights. PMID:25264414

  8. Review of current neutron detection systems for emergency response

    DOE PAGESBeta

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-05

    Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutronmore » detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.« less

  9. Review of current neutron detection systems for emergency response

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-05

    Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  10. Operational results of pilot cell test with cermet inert'' anodes

    SciTech Connect

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. . Mfg. Technology Lab.); Windisch, C.F. Jr.; Strachan, D.M. ); Gregg, J.S.; Frederick, M.S. )

    1993-02-01

    The operational performance of a six-pack'' of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds' Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe[sub 2]O[sub 4]-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm[sup 2] anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  11. Operational results of pilot cell test with cermet ``inert`` anodes

    SciTech Connect

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E.; Windisch, C.F. Jr.; Strachan, D.M.; Gregg, J.S.; Frederick, M.S.

    1993-02-01

    The operational performance of a ``six-pack`` of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds` Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe{sub 2}O{sub 4}-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm{sup 2} anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  12. Anode conductor for alkaline cells

    SciTech Connect

    Schrenk, D.J.; Murphy, P.E.

    1988-12-13

    This patent describes an electrochemical cell comprised of an anode comprised of zinc; a cathode; and alkaline electrolyte; and a current collector comprised of a silicon bronze alloy that is comprised of 85-98% by weight copper and 1-5% by weight silicon with the remainder being comprised of at least one of manganese, iron, zinc, aluminum, tin, lead, or mixtures thereof; and a strip of metal tab stock welded to the current collector, the tab stock being a metal other than silicon bronze alloy.

  13. Electromagnetic response of buried cylindrical structures for line current excitation

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Ponti, Cristina

    2013-04-01

    The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[2]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground [3]. Obstacles of general shape can be simulated through the CWA with good results, by using a suitable set of small circular-section cylinders [4]. Recently, we improved the CWA by facing the fundamental problem of losses in the ground [5]: this is of significant importance in remote-sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. While in previous works concerning the CWA a monochromatic or pulsed plane-wave incident field was considered, in the present work a different source of scattering is present: a cylindrical wave radiated by a line source. Such a source is more suitable to model the practical illumination field used in GPR surveys. The electric field radiated by the line current is expressed by means of a first-kind Hankel function of 0-th order. The theoretical solution to the scattering problem is developed for both dielectric and perfectly-conducting cylinders buried in a dielectric half-space. The approach is implemented in a Fortran code; an accurate numerical evaluation of the involved spectral integrals is performed, the highly-oscillating behavior of the homogeneous waves is correctly followed and evanescent contributions are taken into account. The electromagnetic field scattered in both air and ground can be obtained, in near- and far-field regions, for arbitrary radii and permittivity of the buried cylinders, as well as for

  14. Performance of a dual anode nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    An experimental study was conducted to characterize the voltage performance of a nickel hydrogen cell containing a hydrogen electrode on both sides of the nickel electrode. The dual anode cell was compared with a convenient single anode cell using the same nickel electrode. Higher discharge voltages and lower charge voltages were obtained with the dual anode cell during constant current discharges to 10C, pulse discharges to 8C, and polarization measurements at 50 percent of charge.

  15. Chemical enhancement of metallized zinc anode performance

    SciTech Connect

    Bennett, J.

    1998-12-31

    Galvanic current delivered to reinforced concrete by a metallized zinc anode was studied relative to the humidity of its environment and periodic direct wetting. Current decreased quickly at low humidity to values unlikely to meet accepted cathodic protection criteria, but could be easily restored by direct wetting of the anode. Thirteen chemicals were screened for their ability to enhance galvanic current. Such chemicals, when applied to the exterior surface of the anode, are easily transported by capillary action to the anode-concrete interface where they serve to maintain the interface conductive and the zinc electrochemically active. The most effective chemicals were potassium and lithium bromide, acetate, chloride and nitrate, which increased galvanic current by a factor of 2--15, depending on relative humidity and chloride contamination of the concrete. This new technique is expected to greatly expand the number of concrete structures which can be protected by simple galvanic cathodic protection, The use of lithium-based chemicals together with metallized zinc anode is also proposed for mitigation of existing problems due to ASR. In this case, lithium which prevents or inhibits expansion due to ASR can be readily injected into the concrete. A new process, electrochemical maintenance of concrete (EMC), is also proposed to benefit reinforced concrete structures suffering from chloride-induced corrosion.

  16. Electrochemical response in aprotic ionic liquid electrolytes of TiO2 anatase anodes based on mesoporous mesocrystals with uniform colloidal size

    NASA Astrophysics Data System (ADS)

    Amarilla, Jose Manuel; Morales, Enrique; Sanz, Jesus; Sobrados, Isabel; Tartaj, Pedro

    2015-01-01

    Mesocrystals (superstructures of crystallographically-oriented inorganic nanocrystals) represent sophisticated configurations generated from biomineralization processes, and an example of nonclassical crystallization mechanisms. Being the closest relatives to single-crystals at the nanoscale, porous mesocrystals are considered as ideal configurations to improve functional properties, and to correlate structural and textural features with materials functionality. Here we show that TiO2 anatase mesoporous colloidal mesocrystals, synthesized by a self-assembly/seeding method, can be easily processed as active materials in anode composites. These anode composites can be efficiently infiltrated during battery operation with safe aprotic ionic liquid electrolytes down to the mesoporosity of mesocrystals (3-4 nm), and operate over a wider temperature window than organic carbonates. For example, after continuous galvanostatic cycling for 1 month at high temperatures (15 days at 60 °C + 15 days at 80 °C, ∼130 cycles), these anode composites sustain a capacity at 67 mA g-1 that is still remarkable for TiO2-based anodes (155 mAh g-1 or 200 mAh cm-3, coulombic efficiency of ∼99%). On contrast, in organic carbonates the capacity decays down to 80 mAh g-1 after only 15 days at 60 °C. Our results suggest that the principles derived from porous anatase mesocrystal/ionic liquid electrolyte combinations could constitute the basis for battery applications in which safety, durability and variability in operating temperature represent the primary concerns.

  17. Modeling a short dc discharge with thermionic cathode and auxiliary anode

    SciTech Connect

    Bogdanov, E.; Demidov, V. I.; Kaganovich, I. D.; Koepke, M. E.; Kudryavtsev, A. A.

    2013-10-15

    A short dc discharge with a thermionic cathode can be used as a current and voltage stabilizer, but is subject to current oscillation. If instead of one anode two anodes are used, the current oscillations can be reduced. We have developed a kinetic model of such a discharge with two anodes, where the primary anode has a small opening for passing a fraction of the discharge current to an auxiliary anode. The model demonstrates that the current-voltage relationship of the discharge with two anodes is characterized everywhere by positive slope, i.e., positive differential resistance. Therefore, the discharge with two anodes is expected to be stable to the spontaneous oscillation in current that is induced by negative differential resistance. As a result, such a discharge can be used in an engineering application that requires stable plasma, such as a current and voltage stabilizer.

  18. Metal assisted anodic etching of silicon

    NASA Astrophysics Data System (ADS)

    Lai, Chang Quan; Zheng, Wen; Choi, W. K.; Thompson, Carl V.

    2015-06-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P+-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N+-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si.Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed

  19. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  20. Fibrous zinc anodes for high power batteries

    NASA Astrophysics Data System (ADS)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  1. Metal assisted anodic etching of silicon.

    PubMed

    Lai, Chang Quan; Zheng, Wen; Choi, W K; Thompson, Carl V

    2015-07-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P(+)-type and N(+)-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P(+)-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N(+)-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si. PMID:26059556

  2. Pack aluminization of nickel anode for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Chun, H. S.; Park, G. P.; Lim, J. H.; Kim, K.; Lee, J. K.; Moon, K. H.; Youn, J. H.

    1994-04-01

    The aluminum pack cementation (pack aluminization) process on a porous nickel anode for molten carbonate fuel cells has been studied to improve anode creep resistance. The porous nickel substrates used in this study were fabricated by doctor blade equipment followed by sintering (850 C). Packs surrounding the Ni anode were made by mixing Al2O3 powder, Al powder, and NaCl as activator. The pack aluminization was performed at 700 to 850 C for 0.5-5.0 h. After pack aluminization, the principal Ni-Al intermetallic compounds detected were Ni3Al at 700 C, NiAl at 750 C and Ni3Al2 at 800 C. The aluminum content in the aluminized Ni anode was proportional to the square root of pack aluminizing time. With increasing the Al content in the anode, the creep of the anode decreased. It was nearly constant (2.0%) when the Al content was above 5.0%. Although the exchange current density (24 mA/sq cm) for the aluminized (2.5 wt.%) Ni anode was somewhat lower than that of the pure Ni anode (40 mA/sq cm), the performance of a single cell using an aluminized Ni anode was similar to that of the one with pure Ni anode.

  3. Anodes - Technology review

    NASA Astrophysics Data System (ADS)

    Wallis, L.; Wills, R. G. A.

    2014-06-01

    Many electrochemical energy storage technologies utilize anodes that are specific to the chemistry of the device. Anodes must be designed for devices including primary and secondary batteries, fuel cells and capacitors. These applications include a diverse range of operational conditions, including aqueous, solid or organic media. This paper will provide a brief overview of anode technologies for medium (e.g. electric and hybrid electric vehicles) and large (e.g. integration of renewable energy generation to electrical networks) battery applications. Established and developing storage technologies will be discussed to provide an insight into how anodes (materials, manufacturing processes and modes of operation) differ between specific applications and devices. Lead-acid batteries are used as a case study to provide a practical example and guide discussion onto the question of future challenges and opportunities.

  4. Anode insulator for electrolytic cell

    SciTech Connect

    Robinson, D.J.

    1986-10-28

    An improved anode insulator is described for use in an electrowinning cell, including spaced anodes each supported by an anode header bar, each having the improved anode insulators disposed thereon for preventing contact with spaced cathodes that are respectively disposed between adjacent anodes, each improved anode insulator comprising: (a) first and second elongated insulating means disposed along intermediate portions of opposite faces of one of the anodes for preventing any contact between the faces of that anode and adjacent cathodes; (b) upper connecting means disposed around the top and side portions of the anode header bar supporting that anode and conforming to the shape of the header bar; and (c) lower connecting means for joining the lower end portions of the first and second elongated insulating means.

  5. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition.

    PubMed

    Willis, Megan L; Murphy, Jillian M; Ridley, Nicole J; Vercammen, Ans

    2015-12-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  6. Finding Platinum-Coating Gaps On Titanium Anodes

    NASA Technical Reports Server (NTRS)

    Bodemeijer, Ronnald; Flowers, Cecil E.

    1990-01-01

    Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.

  7. Mesh-on-lead anodes for copper electrowinning

    NASA Astrophysics Data System (ADS)

    Moats, Michael; Hardee, Kenneth; Brown, Carl

    2003-07-01

    ELTECH System Corporation has developed and patented a Mesh-on-Lead™ (MOL™) (Mesh-on-Lead and MOL are trademarks of ELTECH Systems Corporation) anode for primary copper electrowinning operations. Over the past five years, ELTECH has demonstrated the MOL concept with full-scale anodes at several premier commercial tankhouses. During these demonstrations MOL anodes exhibited numerous performance advantages relative to standard Pb-Ca-Sn anodes, including reduced power consumption due to lower oxygen evolution over-potential, improved cathode quality, minimized lead sludge generation, eliminated cobalt addition as a result of stabilized lead substrate, and improved current efficiency due to reduced short circuiting.

  8. Principal component analysis of Birkeland currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.

    2015-12-01

    Principal component analysis is performed on Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. Principal component analysis (PCA) identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The regions 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns.

  9. Anode Interactions with Coal Gas Contaminants

    SciTech Connect

    Marina, Olga A.; Coffey, Greg W.; Coyle, Christopher A.; Nguyen, Carolyn D.; Thomsen, Edwin C.; Pederson, Larry R.

    2008-08-13

    This report describes efforts to characterize the interactions nickel anodes with phosphorus in coal gas using three different button cell configurations to emphasize particular degradation modes. Important parameters addressed included contaminant concentration, temperature, reaction time, fuel utilization, and current density. In addition, coupon tests in flow-through and flow-by arrangements were conducted to complement cell tests. The studies have involved extensive electrochemical testing using both dc and ac methods. Post-test analyses to determine the composition and extent of nickel modification are particularly important to understanding reactions that have occurred. This report also provides a thermodynamic assessment of contaminant reactions with nickel in a coal gas environment with regard to alteration phase formation. Contaminants addressed were phosphorus, arsenic, sulfur, selenium, and antimony. Phosphorus was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Even in button cell tests where the fuel utilization was low, phosphorus was found to be nearly completely captured by the nickel anode. For anode-supported cells, an important degradation mode involved loss of electronic percolation, the result of nickel phosphide formation, grain growth, and inducement of micro-fractures within the anode support. Even with excessive anode support conversion, electrochemical degradation rates were often very low. This is attributed to a “shadowing effect,” whereby a dense structure such as current leads prevent phosphorus from reacting with the nickel directly underneath. This effect maintains an electrical pathway to the active interface, and allows the cell to operate with minimal degradation until the anode is essentially completely consumed. In a planar stack, ribs on the interconnect plate would be expected to provide this conductive pathway in the

  10. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOEpatents

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  11. Anode sheath contributions in plasma thrusters

    NASA Astrophysics Data System (ADS)

    Riggs, John F.

    1994-03-01

    Contributions of the anode to Magnetoplasmadynamic (MPD) thruster performance are considered. High energy losses at this electrode, surface erosion, and sheath/ionization effects must be controlled in designs of practical interest. Current constriction or spotting at the anode, evolving into localized surface damage and considerable throat erosion, is shown to be related to the electron temperature's T(sub e) rise above the gas temperature T(sub o). An elementary one-dimensional description of a collisional sheath which highlights the role of T(sub e) is presented. Computations to model the one-dimensional sheath are attempted using a set of five coupled first-order, nonlinear differential equations describing the electric field, as well as the species current and number densities. For a large temperature nonequilibrium (i.e., T(sub e) greater than T(sub o)), the one-dimensional approach fails to give reasonable answers and a multidimensional description is deemed necessary. Thus, anode spotting may be precipitated by the elevation of T sub e among other factors. A review of transpiration cooling as a means of recouping some anode power is included. Active anode cooling via transpiration cooling would result in (1) quenching T(sub e), (2) adding 'hot' propellant to exhaust, and (3) reducing the local electron Hall parameter.

  12. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    PubMed Central

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H2SO4) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications

  13. On the dynamical mechanisms of influence of synaptic currents on the neuron model with response differentiation

    NASA Astrophysics Data System (ADS)

    Zakharov, D. G.; Kuznetsov, A. S.

    2015-08-01

    The combined effect of synaptic NMDA, AMPA, and GABA currents on the neuron model with response differentiation has been considered. It has been shown that the GABA and NMDA currents can compensate the effects of each other, whereas the AMPA current not only leads to the suppression of oscillations but also significantly amplifies the high-frequency activity of the neuron induced by the NMDA current. Two bifurcation scenarios underlying these effects have been revealed. It has been predicted which scenario takes place under the combined influence of all three currents.

  14. Anodic electrosynthesis of some peroxy compounds on glassy carbon electrodes

    SciTech Connect

    Khomutov, N.E.; Zakhodyakina, N.A.; Svirida, L.V.; Nesvat, N.V.

    1987-11-10

    The authors present the results of a study of the anodic electrosynthesis of hydrogen peroxide and its derivatives on glassy carbon in solutions of sodium carbonate and sodium carbonate with sodium borate. We studied the kinetics of anodic processes on glassy carbon with the aid of polarization measurements and a method for determining the concentrations of active oxygen in the anolyte and the current efficiency. The current efficiencies with respect to active oxygen obtained on glassy carbon in the mixed solution of sodium borate and sodium carbonate are close to the current efficiencies which are observed on platinum anodes in the industrial electrosynthesis of perborates.

  15. Performance of thermal-sprayed zinc anodes treated with humectants in cathodic protection systems

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Russell, James H.; Bennett, John E.; Milius, John K.; Cryer, Curtis B.; Soltesz, Steven M.

    2001-01-01

    Thermal-sprayed Zn anodes are used for impressed current cathodic protection (ICCP) systems in Oregon's reinforced concrete coastal bridges to minimize corrosion damage. Thermal-sprayed Zn performs well as an ICCP anode but the voltage requirement can increase with increasing electrochemical age. It also performs well as a galvanic (GCP) anode but current output can decrease with increasing electrochemical age. Past research has shown that increasing moisture at the Zn anode-concrete interface improves the operation of the thermal-sprayed Zn anode. Humectants, hygroscopic materials that are applied to the surface of the Zn-anode, can increase the moisture at the zinc-concrete interface, thereby improving the performance and extending the anode service life. Results are given for humectant-treated (LiBr and LiNO3) thermal-sprayed Zn anodes used in the laboratory electrochemical aging studies and in field studies on the Yaquina Bay Bridge, Oregon, USA.

  16. Anode power in a quasi-steady MPD thruster. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Saber, A. J.

    1974-01-01

    Local anode heat flux in a quasi-steady MPD thruster is measured by thermocouples attached to the inside surface of a shell anode. Over a range of arc currents J from 5.5 to 44 kiloamperes and argon propellant mass flows m from 1 to 48 g/sec, with the ratio J2/m held constant, the fraction of arc power deposited in the anode is found to decrease with increasing arc power. Specifically, this anode power fraction decreases from 50% at 200 kW arc power, to 10% at 20 MW. In an effort to account for this functional behavior, the current density, plasma potential, and electron temperature in the plasma adjacent to the anode are measured with probes, and the results are used in a theoretical anode heat flux model. The model asserts that energy exchange between electrons and heavy particles in the plasma near the anode occur over distances greater than the anode sheath thickness.

  17. Focused cathode design to reduce anode heating during vircator operation

    NASA Astrophysics Data System (ADS)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-01

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  18. Interfacial chemistry of zinc anodes for reinforced concrete structures

    SciTech Connect

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R.; McGill, G.E.; Cryer, C.B.; Stoneman, A.; Carter, R.R.

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  19. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  20. Low cost MCFC anodes

    SciTech Connect

    Erickson, D.S.

    1996-12-31

    This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

  1. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    NASA Astrophysics Data System (ADS)

    Xu, Shoutao

    . Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to

  2. Long-term performance of aluminum anodes in seawater and marine soil

    SciTech Connect

    Baptista, W.; Costa, J.C.M. da )

    1999-01-01

    Four manufacturers' aluminum sacrificial anodes protecting bare steel specimens were exposed for 6 months in seawater and two types of marine soil to determine their relative electrochemical efficiencies. The operating potentials and currents, and the electrochemical efficiencies of each anode were measured. A cathodic protection system with aluminum and zinc anodes to protect the same cathode also was tested, in a protection system with aluminum and zinc, the zinc anodes became passivated.

  3. Rechargeable sodium alloy anode

    SciTech Connect

    Jow, T.R.

    1988-06-28

    A secondary battery is described comprising: (a) an anode which comprises an alloy of sodium and one or metals selected from the group consisting of tin, lead antimony, bismuth, selenium and tellerium, (b) an electrolyte comprising one or more organic solvents and one or more sodium salts dissolved therein forming dissolved sodium cations in solution; and (c) a cathode; the sodium cations from the electrolyte alloying with the one or more metals of the alloy in the anode during the charging of the battery and sodium in the alloy disoloving in the electrolyte during the discharging of the battery.

  4. Gulf of Mexico Loop Current mechanical energy and vorticity response to a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Eric Walter

    The ocean mixed layer response to a tropical cyclone within, and immediately adjacent to, the Gulf of Mexico Loop Current is examined using a combination of ocean profiles and a numerical model. A comprehensive set of temperature, salinity, and current profiles acquired from aircraft-deployed expendable probes is utilized to analyze the three-dimensional oceanic energy and circulation evolution in response to Hurricane Lili's (2002) passage. Mixed-layer temperature analyses show that the Loop Current cooled <1° C in response to the storm, in contrast to typically observed larger decreases of 3-5° C. Correspondingly, vertical current shears, which are partly responsible for entrainment mixing, were found to be up to 50% weaker, on average, than observed in previous studies within the directly-forced region. The Loop Current, which separates the warmer, lighter Caribbean Subtropical water from the cooler, heavier Gulf Common water, was found to decrease in intensity by -0.18 +/- 0.25 m s-1 over an approximately 10-day period within the mixed layer. Contrary to previous tropical cyclone ocean response studies which have assumed approximately horizontally homogeneous ocean structure prior to storm passage, a kinetic energy loss of 5.8 +/- 6.3 kJ m-2, or approximately -1 wind stress-scaled energy unit, was observed. Using near-surface currents derived from satellite altimetry data, the Loop Current is found to vary similarly in magnitude, suggesting storm-generated energy is rapidly removed by the pre-exiting Loop Current. Further examination of the energy response using an idealized numerical model reveals that due to: (1) favorable coupling between the wind stress and pre-existing current vectors; and (2) wind-driven currents flowing across the large horizontal pressure gradient; wind energy transfer to mixed-layer kinetic energy can be more efficient in these regimes as compared to the case of an initially horizontally homogeneous ocean. However, nearly all of this

  5. Anode initiated surface flashover switch

    DOEpatents

    Brainard, John P.; Koss, Robert J.

    2003-04-29

    A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.

  6. Influence of anode surface chemistry on microbial fuel cell operation.

    PubMed

    Santoro, Carlo; Babanova, Sofia; Artyushkova, Kateryna; Cornejo, Jose A; Ista, Linnea; Bretschger, Orianna; Marsili, Enrico; Atanassov, Plamen; Schuler, Andrew J

    2015-12-01

    Self-assembled monolayers (SAMs) modified gold anodes are used in single chamber microbial fuel cells for organic removal and electricity generation. Hydrophilic (N(CH3)3(+), OH, COOH) and hydrophobic (CH3) SAMs are examined for their effect on bacterial attachment, current and power output. The different substratum chemistry affects the community composition of the electrochemically active biofilm formed and thus the current and power output. Of the four SAM-modified anodes tested, N(CH3)3(+) results in the shortest start up time (15 days), highest current achieved (225 μA cm(-2)) and highest MFC power density (40 μW cm(-2)), followed by COOH (150 μA cm(-2) and 37 μW cm(-2)) and OH (83 μA cm(-2) and 27 μW cm(-2)) SAMs. Hydrophobic SAM decreases electrochemically active bacteria attachment and anode performance in comparison to hydrophilic SAMs (CH3 modified anodes 7 μA cm(-2) anodic current and 1.2 μW cm(-2) MFC's power density). A consortium of Clostridia and δ-Proteobacteria is found on all the anode surfaces, suggesting a synergistic cooperation under anodic conditions. PMID:26025340

  7. Inert Anode Report

    SciTech Connect

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  8. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  9. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  10. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  11. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  12. Neurokinins inhibit low threshold inactivating K+ currents in capsaicin responsive DRG neurons

    PubMed Central

    Sculptoreanu, Adrian; Artim, Debra E.; de Groat, William C.

    2009-01-01

    Neurokinins (NK) released from terminals of dorsal root ganglion (DRG) neurons may control firing of these neurons by an autofeedback mechanism. In this study we used patch clamp recording techniques to determine if NKs alter excitability of rat L4-S3 DRG neurons by modulating K+ currents. In capsaicin (CAPS)-responsive phasic neurons substance P (SP) lowered action potential (AP) threshold and increased the number of APs elicited by depolarizing current pulses. SP and a selective NK2 agonist, [βAla8]-neurokinin A (4–10) also inhibited low threshold inactivating K+ currents isolated by blocking non-inactivating currents with a combination of high TEA, (−) verapamil and nifedipine. Currents recorded under these conditions were heteropodatoxin-sensitive (Kv4 blocker) and α-dendrotoxin insensitive (Kv1.1 and Kv1.2 blocker). SP and NKA elicited a >10 mV positive shift of the voltage dependence of activation of the low threshold currents. This effect was absent in CAPS-unresponsive neurons. The effect of SP or NKA on K+ currents in CAPS-responsive phasic neurons was fully reversed by an NK2 receptor antagonist (MEN10376) but only partially reversed by a PKC inhibitor (bisindolylmaleimide). An NK1 selective agonist ([Sar9, Met11]-substance P) or direct activation of PKC with phorbol 12,13-dibutyrate, did not change firing in CAPS-responsive neurons, but did inhibit various types of K+ currents that activated over a wide range of voltages. These data suggest that the excitability of CAPS-responsive phasic afferent neurons is increased by activation of NK2 receptors and that this is due in part to inhibition and a positive voltage shift in the activation of heteropodatoxin-sensitive Kv4 channels. PMID:19631644

  13. Comparison of corrosion and oxygen evolution behaviors between cast and rolled Pb-Ag-Nd anodes

    NASA Astrophysics Data System (ADS)

    Zhong, Xiao-cong; Yu, Xiao-ying; Liu, Zheng-wei; Jiang, Liang-xing; Li, Jie; Liu, Ye-xiang

    2015-10-01

    The corrosion and oxygen evolution behaviors of cast and rolled Pb-Ag-Nd anodes were investigated by metalloscopy, environmental scanning electron microscopy, X-ray diffraction analysis, and various electrochemical measurements. The rolled anode exhibits fewer interdendritic boundaries and a dispersed distribution of Pb-Ag eutectic mixtures and Nd-rich phases in its cross-section. This feature inhibits rapid interdendritic corrosion into the metallic substrate along the interdendritic boundary network. In addition, the anodic layer formed on the rolled anode is more stable toward the electrolyte than that formed on the cast anode, reducing the corrosion of the metallic substrate during current interruption. Hence, the rolled anode has a higher corrosion resistance than the cast anode. However, the rolled anode exhibits a slightly higher anodic potential than the cast anode after 72 h of galvanostatic polarization, consistent with the larger charge transfer resistance. This larger charge transfer resistance may result from the oxygen-evolution reactive sites being blocked by the adsorption of more intermediates and oxygen species at the anodic layer/electrolyte interfaces of the rolled anode than at the interfaces of cast anode.

  14. Experimental studies of anode sheath phenomena in a Hall thruster discharge

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Raitses, Y.; Fisch, N. J.

    2005-05-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N. J. Fisch, Appl. Phys. Lett. 84, 1070 (2004)]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, such as a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures.

  15. Experimental studies of anode sheath phenomena in a Hall thruster discharge

    SciTech Connect

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2005-05-15

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N. J. Fisch, Appl. Phys. Lett. 84, 1070 (2004)]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, such as a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures.

  16. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch

    2004-12-17

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures.

  17. Prototypic MHD anode designs and confirmation test results

    SciTech Connect

    Pian, C.C.P.; Petty, S.W.; Schmitt, E.W.

    1993-12-31

    This paper reviews the design and the design rationale for the anode electrodes of the Integrated Topping Cycle (ITC) MHD power generator. This power generator is currently undergoing proof-of-concept (POC) duration testing at the U.S. Department of Energy`s Component Development and Integration Facility (CDIF) in Butte, Montana. The major anode lifetime-limiting mechanisms, as well as the design features adopted to overcome these mechanisms, are described in detail in the full paper. Anode fabrication procedures are reviewed. Also described is the nondestructive ultrasonic inspection technique used to evaluate the braze joints of all production electrode pieces. Finally, the test results from the coal-fired confirmation tests of the prototypic anode design are reported. These tests were carried out in the workhorse generator channel at the CDIF between 1991 and 1992. Several alternative anode designs also have projected lifetimes exceeding the ITC 2000-hour lifetime requirement.

  18. Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis.

    PubMed

    Bastani, A; Jaberzadeh, S

    2012-04-01

    The primary aim of this review is to evaluate the effects of anodal transcranial direct current stimulation (a-tDCS) on corticomotor excitability and motor function in healthy individuals and subjects with stroke. The secondary aim is to find a-tDCS optimal parameters for its maximal effects. Electronic databases were searched for studies into the effect of a-tDCS when compared to no stimulation. Studies which met the inclusion criteria were assessed and methodological quality was examined using PEDro and Downs and Black (D&B) assessment tools. Data from seven studies revealed increase in corticomotor excitability with a small but significant effect size (0.31 [0.14, 0.48], p=0.0003) in healthy subjects and data from two studies in subjects with stroke indicated significant results with moderate effect size (0.59 [0.24, 0.93], p=0.001) in favor of a-tDCS. Likewise, studies examining motor function demonstrated a small and non-significant effect (0.39 [-0.17, 0.94], p=0.17) in subjects with stroke and a large but non-significant effect (0.92 [-1.02, 2.87], p=0.35) in healthy subjects in favor of improvement in motor function. The results also indicate that efficacy of a-tDCS is dependent on current density and duration of application. A-tDCS increases corticomotor excitability in both healthy individuals and subjects with stroke. The results also show a trend in favor of motor function improvement following a-tDCS. A-tDCS is a non-invasive, cheap and easy-to-apply modality which could be used as a stand-alone technique or as an adds-on technique to enhance corticomotor excitability and the efficacy of motor training approaches. However, the small sample size of the included studies reduces the strength of the presented evidences and any conclusion in this regard should be considered cautiously. PMID:21978654

  19. Forget the Desk Job: Current Roles and Responsibilities in Entry-Level Reference Job Advertisements

    ERIC Educational Resources Information Center

    Detmering, Robert; Sproles, Claudene

    2012-01-01

    This study examines the evolving roles and responsibilities of entry-level academic reference positions, as stated in recent job advertisements posted on the American Library Association's JobLIST Web site and other sources. Findings from a content analysis of these advertisements indicate that current entry-level reference positions in academic…

  20. High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates

    PubMed Central

    Dhar, Sulochana; Miller, David M.; Jokerst, Nan M.

    2014-01-01

    We report thin film single crystal silicon photodetectors (PDs), composed of 13- 25 μm thick silicon, heterogeneously bonded to transparent Pyrex® and flexible Kapton® substrates. The measured responsivity and dark current density of the PDs on pyrex is 0.19 A/W – 0.34 A/W (λ = 470 nm – 600 nm) and 0.63 nA/cm2, respectively, at ~0V bias. The measured responsivity and dark current density of the flexible PDs is 0.16 A/W – 0.26 A/W (λ = 470 nm – 600 nm) and 0.42 nA/cm2, respectively, at a ~0V bias. The resulting responsivity-to-dark current density ratios for the reported rigid and flexible PDs are 0.3-0.54 cm2/nW and 0.38-0.62 cm2/nW, respectively. These are the highest reported responsivity-to-dark current density ratios for heterogeneously bonded thin film single crystal Si PDs, to the best of our knowledge. These PDs are customized for applications in biomedical imaging and integrated biochemical sensing. PMID:24663844

  1. Buried anode lithium thin film battery and process for forming the same

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  2. Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Maroni, F.; Raccichini, R.; Birrozzi, A.; Carbonari, G.; Tossici, R.; Croce, F.; Marassi, R.; Nobili, F.

    2014-12-01

    A graphene/silicon nanocomposite has been synthesized, characterized and tested as anode active material for lithium-ion batteries. A morphologically stable composite has been obtained by dispersing silicon nanoparticles in graphene oxide, previously functionalized with low-molecular weight polyacrylic acid, in eco-friendly, low-cost solvent such as ethylene glycol. The use of functionalized graphene oxide as substrate for the dispersion avoids the aggregation of silicon particles during the synthesis and decreases the detrimental effect of graphene layers re-stacking. Microwave irradiation of the suspension, inducing reduction of graphene oxide, and the following thermal annealing of the solid powder obtained by filtration, yield a graphene/silicon composite material with optimized morphology and properties. Composite anodes, prepared with high-molecular weight polyacrylic acid as green binder, exhibited high and stable reversible capacity values, of the order of 1000 mAh g-1, when cycled using vinylene carbonate as electrolyte additive. After 100 cycles at a current of 500 mA g-1, the anode showed a discharge capacity retention of about 80%. The mechanism of reversible lithium uptake is described in terms of Li-Si alloying/dealloying reaction. Comparison of the impedance responses of cells tested in electrolytes with or without vinylene carbonate confirms the beneficial effects of the additive in stabilizing the composite anode.

  3. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    NASA Astrophysics Data System (ADS)

    Xu, Shoutao

    . Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to

  4. Anode arc motion in high power arcjets

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-01-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  5. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  6. Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials.

    PubMed

    Lowy, Daniel A; Tender, Leonard M; Zeikus, J Gregory; Park, Doo Hyun; Lovley, Derek R

    2006-05-15

    Here, we report a comparative study on the kinetic activity of various anodes of a recently described microbial fuel cell consisting of an anode imbedded in marine sediment and a cathode in overlying seawater. Using plain graphite anodes, it was demonstrated that a significant portion of the anodic current results from oxidation of sediment organic matter catalyzed by microorganisms colonizing the anode and capable of directly reducing the anode without added exogenous electron-transfer mediators. Here, graphite anodes incorporating microbial oxidants are evaluated in the laboratory relative to plain graphite with the goal of increasing power density by increasing current density. Anodes evaluated include graphite modified by adsorption of anthraquinone-1,6-disulfonic acid (AQDS) or 1,4-naphthoquinone (NQ), a graphite-ceramic composite containing Mn2+ and Ni2+, and graphite modified with a graphite paste containing Fe3O4 or Fe3O4 and Ni2+. It was found that these anodes possess between 1.5- and 2.2-fold greater kinetic activity than plain graphite. Fuel cells were deployed in a coastal site near Tuckerton, NJ (USA) that utilized two of these anodes. These fuel cells generated ca. 5-fold greater current density than a previously characterized fuel cell equipped with a plain graphite anode, and operated at the same site. PMID:16574400

  7. Nickel anode electrode

    DOEpatents

    Singh, Prabhakar; Benedict, Mark

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  8. Inert anodes for aluminum smelting

    SciTech Connect

    Weyand, J.D.; Ray, S.P.; Baker, F.W.; DeYoung, D.H.; Tarcy, G.P.

    1986-02-01

    The use of nonconsumable or inert anodes for replacement of consumable carbon anodes in Hall electrolysis cells for the production of aluminum has been a technical and commercial goal of the aluminum industry for many decades. This report summarizes the technical success realized in the development of an inert anode that can be used to produce aluminum of acceptable metal purity in small scale Hall electrolysis cells. The inert anode material developed consists of a cermet composition containing the phases: copper, nickel ferrite and nickel oxide. This anode material has an electrical conductivity comparable to anode carbon used in Hall cells, i.e., 150 ohm {sup {minus}1}cm{sup {minus}1}. Metal purity of 99.5 percent aluminum has been produced using this material. The copper metal alloy present in the anode is not removed by anodic dissolution as does occur with cermet anodes containing a metallic nickel alloy. Solubility of the oxide phases in the cryolite electrolyte is reduced by: (1) saturated concentration of alumina, (2) high nickel oxide content in the NiO-NiFe{sub 2}O{sub 4} composition, (3) lowest possible cell operating temperature, (4) additions of alkaline or alkaline earth fluorides to the bath to reduce solubilities of the anode components, and (5) avoiding bath contaminants such as silica. Dissolution rate measurements indicate first-order kinetics and that the rate limiting step for dissolution is mass transport controlled. 105 refs., 234 figs., 73 tabs.

  9. Spin current generation and magnetic response in carbon nanotubes by the twisting phonon mode

    NASA Astrophysics Data System (ADS)

    Hamada, Masato; Yokoyama, Takehito; Murakami, Shuichi

    2015-08-01

    We theoretically investigate spin current and magnetic response induced by the twisting phonon mode in carbon nanotubes via the spin-rotation coupling. An effective magnetic field due to the twisting mode induces both spin and orbital magnetizations. The induced spin and orbital magnetizations have both radial and axial components. We show that ac pure spin current is generated by the twisting phonon mode. The magnitude of the spin current and orbital magnetization for a (10,10) armchair nanotube is estimated as an example. We find that the ac pure spin current is detectable in magnitude when the frequency of the twisting mode is of the order of GHz, and that the orbital magnetization is found to be larger than the spin magnetization.

  10. Transient Eddy Current Response Due to a Subsurface Crack in a Conductive Plate

    SciTech Connect

    Fangwei Fu

    2006-08-09

    Eddy current nondestructive evaluation (NDE) is usually carried out by exciting a time harmonic field using an inductive probe. However, a viable alternative is to use transient eddy current NDE in which a current pulse in a driver coil produces a transient .eld in a conductor that decays at a rate dependent on the conductivity and the permeability of the material and the coil configuration. By using transient eddy current, it is possible to estimate the properties of the conductive medium and to locate and size potential .aws from the measured probe response. The fundamental study described in this dissertation seeks to establish a theoretical understanding of the transient eddy current NDE. Compared with the Fourier transform method, the derived analytical formulations are more convenient when the transient eddy current response within a narrow time range is evaluated. The theoretical analysis provides a valuable tool to study the effect of layer thickness, location of defect, crack opening as well as the optimization of probe design. Analytical expressions have been developed to evaluate the transient response due to eddy currents in a conductive plate based on two asymptotic series. One series converges rapidly for a short time regime and the other for a long time regime and both of them agree with the results calculated by fast Fourier transform over all the times considered. The idea of asymptotic expansion is further applied to determine the induced electromotive force (EMF) in a pick-up coil due to eddy currents in a cylindrical rod. Starting from frequency domain representation, a quasi-static time domain dyadic Green's function for an electric source in a conductive plate has been derived. The resulting expression has three parts; a free space term, multiple image terms and partial reflection terms. The dyadic Green's function serves as the kernel of an electric field integral equation which defines the interaction of an ideal crack with the transient

  11. Surface characteristics and bioactivity of an anodized titanium surface

    PubMed Central

    Kim, Kyul; Lee, Bo-Ah; Piao, Xing-Hui; Chung, Hyun-Ju

    2013-01-01

    Purpose The aim of this study was to evaluate the surface properties and biological response of an anodized titanium surface by cell proliferation and alkaline phosphatase activity analysis. Methods Commercial pure titanium (Ti) disks were prepared. The samples were divided into an untreated machined Ti group and anodized Ti group. The anodization of cp-Ti was formed using a constant voltage of 270 V for 60 seconds. The surface properties were evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, and an image analyzing microscope. The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were analyzed. Cell adhesion, cell proliferation, and alkaline phosphatase activity were evaluated using mouse MC3T3-E1 cells. Results The anodized Ti group had a more porous and thicker layer on its surface. The surface roughness of the two groups measured by the profilometer showed no significant difference (P>0.001). The anodized Ti dioxide (TiO2) surface exhibited better corrosion resistance and showed a significantly lower contact angle than the machined Ti surface (P>0.001). Although there was no significant difference in the cell viability between the two groups (P>0.001), the anodized TiO2 surface showed significantly enhanced alkaline phosphatase activity (P<0.001). Conclusions These results suggest that the surface modification of Ti by anodic oxidation improved the osteogenic response of the osteoblast cells. PMID:24040573

  12. Effect of Stimulus Waveform of Biphasic Current Pulse on Retinal Ganglion Cell Responses in Retinal Degeneration (rd1) mice

    PubMed Central

    Ahn, Kun No; Ahn, Jeong Yeol; Kim, Jae-hyung; Cho, Kyoungrok; Koo, Kyo-in; Senok, Solomon S.

    2015-01-01

    A retinal prosthesis is being developed for the restoration of vision in patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Determining optimal electrical stimulation parameters for the prosthesis is one of the most important elements for the development of a viable retinal prosthesis. Here, we investigated the effects of different charge-balanced biphasic pulses with regard to their effectiveness in evoking retinal ganglion cell (RGC) responses. Retinal degeneration (rd1) mice were used (n=17). From the ex-vivo retinal preparation, retinal patches were placed ganglion cell layer down onto an 8×8 multielectrode array (MEA) and RGC responses were recorded while applying electrical stimuli. For asymmetric pulses, 1st phase of the pulse is the same with symmetric pulse but the amplitude of 2nd phase of the pulse is less than 10 µA and charge balanced condition is satisfied by lengthening the duration of the pulse. For intensities (or duration) modulation, duration (or amplitude) of the pulse was fixed to 500 µs (30 µA), changing the intensities (or duration) from 2 to 60 µA (60 to 1000 µs). RGCs were classified as response-positive when PSTH showed multiple (3~4) peaks within 400 ms post stimulus and the number of spikes was at least 30% more than that for the immediate pre-stimulus 400 ms period. RGC responses were well modulated both with anodic and cathodic phase-1st biphasic pulses. Cathodic phase-1st pulses produced significantly better modulation of RGC activity than anodic phase-1st pulses regardless of symmetry of the pulse. PMID:25729279

  13. Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Khmyrova, I.; Ryzhii, M.; Mitin, V.

    2004-01-01

    This paper deals with the comparison of quantum well, quantum wire and quantum dot infrared photodetectors (QWIPs, QRIPs and QDIPs, respectively) based on physical analysis of the factors determining their operation. The operation of the devices under consideration is associated with the intersubband (intraband) electron transitions from the bound states in QWs, QRs and QDs into the continuum states owing to the absorption of infrared radiation. The redistribution of the electric potential across the device active region caused by the photoionization of QWs, QRs and QDs affects the electron injection from the emitting contact. The injection current provides the effect of current gain. Since the electron thermoemission and capture substantially determine the electric potential distribution and, therefore, the injection current, these processes are also crucial for the device performance. To compare the dark current, responsivity and detectivity of QWIPs, QRIPs and QDIPs we use simplified but rather general semi-phenomenological formulae which relate these device characteristics to the rates of the thermoemission and photoemission of electrons from and their capture to the QWs and the QR and QD arrays. These rates are expressed via the photoemission cross-section, capture probability and so on, and the structural parameters. Calculating the ratios of the QWIP, QRIP and QDIP characteristics using our semi-phenomenological model, we show that: the responsivity of QRIPs and QDIPs can be much higher than the responsivity of QWIPs, however, higher responsivity is inevitably accompanied by higher dark current; the detectivity of QRIPs and QDIPs with low-density arrays of relatively large QRs and QDs is lower than that of QWIPs; the detectivity of QRIPs and QDIPs based on dense arrays can significantly exceed the detectivity of QWIPs.

  14. Optimization of the 3-Point Bending Failure of Anodized Aluminum Formed in Tartaric/Sulphuric Acid Using Doehlert Design

    NASA Astrophysics Data System (ADS)

    Bensalah, W.; Feki, M.; De-Petris Wery, M.; Ayedi, H. F.

    2015-02-01

    The bending failure of anodized aluminum in tartaric/sulphuric acid bath was modeled using Doehlert design. Bath temperature, anodic current density, sulphuric acid, and tartaric acid concentrations were retained as variables. Thickness measurements and 3-point bending experiments were conducted. The deflection at failure ( D f) and the maximum load ( F m) of each sample were, then, deducted from the corresponding flexural responses. The treatment of experimental results has established mathematical models of second degree reflecting the relation of cause and effect between the factors and the studied properties. The optimum path study of thickness, deflection at failure, and maximum load, showed that the three optima were opposite. Multicriteria optimization using the desirability function was achieved in order to maximize simultaneously the three responses. The optimum conditions were: C tar = 18.2 g L-1, T = 17.3 °C, J = 2.37 A dm-2, C sul = 191 g L-1, while the estimated response values were e = 57.7 µm, D f = 5.6 mm, and F m = 835 N. Using the established models, a mathematical correlation was found between deflection at failure and thickness of the anodic oxide layer. Before bending tests, aluminum oxide layer was examined by scanning electron microscopy (SEM) and atomic force microscopy. After tests, the morphology and the composition of the anodic oxide layer were inspected by SEM, optical microscopy, and glow-discharge optical emission spectroscopy.

  15. Cu-Ni-Fe anodes having improved microstructure

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  16. Self-adjusting anode power supply for a gyrotron

    SciTech Connect

    Brand, G.F.; Fekete, P.W.; Hong, K. ); Idehara, T.; Tatsukawa, T. )

    1991-02-01

    Sydney University's tunable cw gyrotrons use a simplified power supply arrangement to provide the voltages on the gun electrodes. The cathode supply is conventional, but the anode voltage is provided by a single high-value resistor connected between the anode and ground. A small fraction of the electrons in the beam are reflected and the anode automatically finds an optimum operating potential. This arrangement is shown to have lower starting currents. Two advantages follow. It becomes easier to operate low-power gyrotrons with modest power supplies and it becomes easier to achieve higher frequencies by exciting harmonics of the electron cyclotron frequency.

  17. Transient response in a dendritic neuron model for current injected at one branch.

    PubMed

    Rinzel, J; Rall, W

    1974-10-01

    Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185

  18. Response of High Latitude Birkeland Currents and Ionospheric Convection to Transitions in Solar Wind Forcing

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Merkin, V. G.; Barnes, R. J.; Ruohoniemi, J. M.

    2014-12-01

    Recent results from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) indicate that at least some transitions from northward to southward IMF produce a specific sequence in the development of large-scale Birkeland currents. First, a set of Region 1 and Region 2 currents forms on the dayside restricted to within a few hours of noon. After about 40 minutes, currents strongly intensify on the nightside, first near midnight local time associated with substorm onset, and then progressively further toward the dayside via dawn and dusk. Only after an hour or more after the transition to stronger solar wind forcing, is the complete Region 1, Region 2 current system developed. The results imply that the initial response to a transition from weak to strong forcing is convection into the polar cap and lobes without strong return convection to the dayside from the nightside magnetosphere. Return convection from the nightside begins with substorm onset and progresses to the dayside. This analysis is extended by examining a large number of transitions from prolonged auroral quiescence, associated with northward IMF, to southward IMF and the development of large-scale Region 1/Region 2 Birkeland currents, to assess whether the above progression holds in general. In addition, transition events to particularly intense driving, for example, associated with shocks are examined to assess how this ordering of events may be changed for onsets of particularly intense solar wind forcing.

  19. An inert metal anode for magnesium electrowinning

    SciTech Connect

    Moore, J. F.; Hryn, J. N.; Pellin, M. J.; Calaway, W. F.; Watson, K.

    1999-12-01

    Results from the development of a novel type of anode for electrowinning Mg are reported. A tailored alloy system based on the binary Cu-Al can be made to form a thin alumina layer on its surface that is relatively impervious to attack by the molten chloride melt at high temperature. This barrier is thin enough (5--50 nm) to conduct electrical current without significant IR loss. As the layer slowly dissolves, the chemical potential developed at the surface drives the diffusion of aluminum from the bulk alloy to reform (heal) the protective alumina layer. In this way, an anode that generates Cl{sub 2} (melt electrolysis) and O{sub 2} (wet feed hydrolysis) and no chlorocarbons can be realized. Further, the authors expect the rate of loss of the anode to be dramatically less than the coke-derived carbon anodes typically in use for this technology, leading to substantial cost savings and ancillary pollution control by eliminating coke plant emissions, as well as eliminating chlorinated hydrocarbon emissions from Mg electrowinning cells.

  20. Current Approaches, Challenges and Future Directions for Monitoring Treatment Response in Prostate Cancer

    PubMed Central

    Wallace, T.J.; Torre, T.; Grob, M.; Yu, J.; Avital, I.; Brücher, BLDM; Stojadinovic, A.; Man, Y.G.

    2014-01-01

    Prostate cancer is the most commonly diagnosed non-cutaneous neoplasm in men in the United States and the second leading cause of cancer mortality. One in 7 men will be diagnosed with prostate cancer during their lifetime. As a result, monitoring treatment response is of vital importance. The cornerstone of current approaches in monitoring treatment response remains the prostate-specific antigen (PSA). However, with the limitations of PSA come challenges in our ability to monitor treatment success. Defining PSA response is different depending on the individual treatment rendered potentially making it difficult for those not trained in urologic oncology to understand. Furthermore, standard treatment response criteria do not apply to prostate cancer further complicating the issue of treatment response. Historically, prostate cancer has been difficult to image and no single modality has been consistently relied upon to measure treatment response. However, with newer imaging modalities and advances in our understanding and utilization of specific biomarkers, the future for monitoring treatment response in prostate cancer looks bright. PMID:24396494

  1. Current views on the mechanisms of immune responses to trauma and infection

    PubMed Central

    Michalak, Grzegorz; Słotwiński, Robert

    2015-01-01

    According to the World Health Organization, post-traumatic mortality rates are still very high and show an increasing tendency. Disorders of innate immune response that may increase the risk of serious complications play a key role in the immunological system response to trauma and infection. The mechanism of these disorders is multifactorial and is still poorly understood. The changing concepts of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) early inflammatory response, presented in this work, have been extended to genetic studies. Overexpression of genes and increased production of immune response mediators are among the main causes of multiple organ dysfunction syndrome (MODS). Changes in gene expression detected early after injury precede the occurrence of subsequent complications with a typical clinical picture. Rapid depletion of energy resources leads to immunosuppression and persistent inflammation and immune suppression catabolism syndrome (PICS). Early diagnosis of immune disorders and appropriate nutritional therapy can significantly reduce the incidence of complications, length of hospital stay, and mortality. The study presents the development of knowledge and current views explaining the mechanisms of the immune response to trauma and infection. PMID:26557036

  2. Current views on the mechanisms of immune responses to trauma and infection.

    PubMed

    Binkowska, Aneta Małgorzata; Michalak, Grzegorz; Słotwiński, Robert

    2015-01-01

    According to the World Health Organization, post-traumatic mortality rates are still very high and show an increasing tendency. Disorders of innate immune response that may increase the risk of serious complications play a key role in the immunological system response to trauma and infection. The mechanism of these disorders is multifactorial and is still poorly understood. The changing concepts of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) early inflammatory response, presented in this work, have been extended to genetic studies. Overexpression of genes and increased production of immune response mediators are among the main causes of multiple organ dysfunction syndrome (MODS). Changes in gene expression detected early after injury precede the occurrence of subsequent complications with a typical clinical picture. Rapid depletion of energy resources leads to immunosuppression and persistent inflammation and immune suppression catabolism syndrome (PICS). Early diagnosis of immune disorders and appropriate nutritional therapy can significantly reduce the incidence of complications, length of hospital stay, and mortality. The study presents the development of knowledge and current views explaining the mechanisms of the immune response to trauma and infection. PMID:26557036

  3. Stray magnetic-field response of linear birefringent optical current sensors

    NASA Astrophysics Data System (ADS)

    MacDougall, Trevor W.; Hutchinson, Ted F.

    1995-07-01

    It is well known that the line integral, describing Faraday rotation in an optical medium, reduces to zero at low frequencies for a closed path that does not encircle a current source. If the closed optical path possesses linear birefringence in addition to Faraday rotation, the cumulative effects on the state of polarization result in a response to externally located current-carrying conductors. This effect can induce a measurable error of the order of 0.3% during certain steady-state operating conditions.

  4. Current transformer model with hysteresis for improving the protection response in electrical transmission systems

    NASA Astrophysics Data System (ADS)

    Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst

    2014-12-01

    In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.

  5. Process for anodizing aluminum foil

    SciTech Connect

    Ball, J.A.; Scott, J.W.

    1984-11-06

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80/sup 0/ C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V.

  6. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    NASA Astrophysics Data System (ADS)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  7. Virus-Enabled Silicon Anode for Lithium-Ion Batteries

    SciTech Connect

    Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, Chunsheng; Ghodssi, Reza; Culver, J. N.

    2010-08-13

    A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge-discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

  8. Corrosion of cermet anodes during low temperature electrolysis of alumina. Final report

    SciTech Connect

    Kozarek, R.L.; Ray, S.P.; Dawless, R.K.; LaCamera, A.F.

    1997-09-26

    Successful development of inert anodes to replace carbon anodes in Hall cells has the potential benefits of lower energy consumption,lower operating costs, and reduced CO{sub 2} and CO emissions. Using inert anodes at reduced current density and reduced operating temperature (800 C) has potential for decreasing the corrosion rate of inert anodes. It may also permit the use of new materials for containment and insulation. This report describes the fabrication characteristics and the corrosion performance of 5324-17% Cu Cermet anodes in 100 hour tests. Although some good results were achieved, the corrosion rate at low temperature (800 C) is varied and not significantly lower than typical results at high temperature ({approximately} 960 C). This report also describes several attempts at 200 hour tests, with one anode achieving 177 hours of continuous operation and another achieving a total of 235 hours but requiring three separate tests of the same anode. The longest run did show a lower wear rate in the last test; but a high resistance layer developed on the anode surface and forced an unacceptably low current density. It is recommended that intermediate temperatures be explored as a more optimal environment for inert anodes. Other electrolyte chemistries and anode compositions (especially high conductivity anodes) should be considered to alleviate problems associated with lower temperature operation.

  9. Passive films on magnesium anodes in primary batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.

    1988-01-01

    The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined nondestructively from an analysis of the transient and steady-state response of the electrode potential to low amplitude galvanostatic polarization under various experimental conditions viz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.

  10. Photoelectrochemical cell with nondissolving anode

    NASA Technical Reports Server (NTRS)

    Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S.

    1980-01-01

    Improved electrolytic cells have efficiencies comparable to those of best silicon solar cells but are potentially less expensive to manufacture. Cells consist of light-sensitive n-type semiconductor anode and metallic cathode immersed in electrolytic solution. Reversible redox cells produce no chemical change in electrolyte and stabilize anode against dissolving. Cell can produce more than 500 mW of power per square centimeter of anode area at output voltage of 0.4 V.

  11. [The influence of anodizing conditions on the activity of urease immobilized to anodized sheet aluminium (author's transl)].

    PubMed

    Grunwald, P; Grunsser, W; Pfaff, K P; Krause, R; Lutz, K

    1980-01-01

    The activity of urease immobilized by adsorption on anodized sheet aluminium strongly depends on the method chosen for preparation of these carriers. If oxalic acid is applied as electrolyte, only the anodizing temperature significantly influences the activity of the preparations. In case of the well-known GS process, however, the activity is not only affected by the temperature, but also by other conditions of anodizing, for example the current density and the electrolyte concentration. For both methods the correlation between the topography of the carrier surfaces and the activity of enzyme immobilized to the surface is described. PMID:7445681

  12. Plagiarism: A Shared Responsibility of All, Current Situation, and Future Actions in Yemen.

    PubMed

    Muthanna, Abdulghani

    2016-01-01

    As combating plagiarism is a shared responsibility of all, this article focuses on presenting the current situation of higher education in Yemen. The critical review of four implementable policy documents and interviews revealed the absence of research ethics code, research misconduct policy, and institutional policies in the country. This led to the presence of several acts of research dishonesty. The article concludes with an initiative for necessary future actions in the nation. PMID:26890365

  13. Electrochemical cell with gelled anode

    SciTech Connect

    Bahary, W.S.

    1983-04-19

    An electrochemical cell having a gelled anode, wherein the gelling agent is an anionic polysaccharide having a rigid ordered structure such as extracellular microbial polysaccharides, particularly xanthan gum.

  14. A dynamic inert metal anode.

    SciTech Connect

    Hryn, J. N.

    1998-11-09

    A new concept for a stable anode for aluminum electrowinning is described. The anode consists of a cup-shaped metal alloy container filled with a molten salt that contains dissolved aluminum. The metal alloy can be any of a number of alloys, but it must contain aluminum as a secondary alloying metal. A possible alloy composition is copper with 5 to 15 weight percent aluminum. In the presence of oxygen, aluminum on the metal anode's exterior surface forms a continuous alumina film that is thick enough to protect the anode from chemical attack by cryolite during electrolysis and thin enough to maintain electrical conductivity. However, the alumina film is soluble in cryolite, so it must be regenerated in situ. Film regeneration is achieved by the transport of aluminum metal from the anode's molten salt interior through the metal wall to the anode's exterior surface, where the transported aluminum oxidizes to alumina in the presence of evolving oxygen to maintain the protective alumina film. Periodic addition of aluminum metal to the anode's interior keeps the aluminum activity in the molten salt at the desired level. This concept for an inert anode is viable as long as the amount of aluminum produced at the cathode greatly exceeds the amount of aluminum required to maintain the anode's protective film.

  15. Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation

    SciTech Connect

    Gazizov, I. M.; Zaletin, V. M.; Kukushkin, V. M.; Khrunov, V. S.

    2011-05-15

    The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence of the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.

  16. Examining sexual assault survival of adult women: responses, mediators, and current theories.

    PubMed

    Hellman, Ann

    2014-01-01

    The purpose of this article is to examine the state of the science of sexual assault research to direct future research in three key areas: responses, mediators, and current theory with a religious or spiritual focus addressing recovery. Three research questions guided the investigation of literature and the formation of this article: (a) What are common survivor responses to, and long-term effects of, sexual assault?; (b) What are mediators for recovery after sexual assault?; and (c) What theory with a religious or spiritual focus exists to address recovery from sexual assault? This research identifies significant gaps in the literature underscoring the importance of future research that examines responses to and long-term effects of sexual assault, need for mediators during recovery, and need to develop theory using religious and spiritual tenets aiding in recovery from sexual assault. Further research is necessary to develop this science, expand understanding, and support sexual assault survivors on their recovery journey. PMID:25144589

  17. Analytical and Numerical Modeling of Pulsed Eddy Current Response to Thin Conducting Plates

    NASA Astrophysics Data System (ADS)

    Tetervak, A.; Krause, T. W.; Mandache, C.; Lefebvre, J. H. V.

    2010-02-01

    Modeling of transient eddy current response in planar structures requires incorporation of all elements within the system comprised of exciting and pick-up coils, and the conducting structure being investigated. The combined response includes the feedback processes that in turn modify the time constants within the system. In this work analytical and numerical methods are utilized to solve for those feedback mechanisms within the circuit-conductor system that generates the final pick-up coil response. Further, applying numerical analysis to results of the modeling, we parameterize probe-sample interaction via lumped-circuit analogies justified for thin samples. Results are compared with experimental measurements where these parameters have been characterized.

  18. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    SciTech Connect

    Pushkarev, A.

    2015-10-15

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B{sub r} external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°.

  19. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    NASA Astrophysics Data System (ADS)

    Pushkarev, A.

    2015-10-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350-400 kV, 6-8 kA, 80 ns) with a focusing conical diode with Br external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1-2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10-15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3-6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20-30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°-6°.

  20. 45 CFR 1303.21 - Procedures for appeal by current or prospective delegate agencies to the responsible HHS official...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Procedures for appeal by current or prospective... CURRENT OR PROSPECTIVE DELEGATE AGENCIES Appeals by Current or Prospective Delegate Agencies § 1303.21 Procedures for appeal by current or prospective delegate agencies to the responsible HHS official...

  1. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  2. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    PubMed Central

    Shen, Youliang; Zhou, Yan; Chen, Shuiliang; Yang, Fangfang; Zheng, Suqi; Hou, Haoqing

    2014-01-01

    Carbon nanofibers modified graphite fibers (CNFs/GF) composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration. PMID:24883348

  3. Specific features of an electric discharge operating between an electrolytic anode and a metal cathode

    NASA Astrophysics Data System (ADS)

    Gaisin, A. F.; Sarimov, L. R.

    2011-06-01

    Results are presented from experimental studies of a high-current electric discharge operating between an St45 steel cathode and a service water anode in a wide range of air pressures. Peculiarities of discharge ignition and specific features of cathode and anode spots were revealed. The behavior of the current density on a service water anode was investigated for the first time. Comparison of the current densities j on the steel cathode and service water anode shows that, in the parameter range under study, Hehl's law is not satisfied on the water anode. The two-dimensional distribution of the potential inside and on the surface of the service water anode was measured.

  4. Interconnected hollow carbon nanospheres for stable lithium metal anodes.

    PubMed

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes. PMID:25064396

  5. Nanoporous Anodic Edge Passivation of Si Solar Cells.

    PubMed

    Choi, Jaeho; Palei, Srikanta; Parida, Bhaskar; Ko, Seuk Yong; Kim, Keunjoo

    2015-11-01

    We investigated the anodization effect on edge passivation of Si solar cells. The Si anodization allowed SiO2 formation on the edges of the cell for electrical passivation. The edge passivated cell showed enhanced conversion efficiency with reduced carrier recombination which was observed from photoluminescence and electroluminescence images. The luminescences were reduced at the edges indicating prevention of edge current leakage. However, when the rear Al paste layer of a sample was contacted to the solution during the anodization process, the conversion efficiency of the cell was reduced. We characterized oxide thin films by performing the anodization process for front Al thin film layer deposited by evaporation and rear Al paste layer. The front anodic aluminum oxide covering the Si emitter layer showed the excellent phototransmission with small photoreflectance lower than 5% and the anodization of Al paste showed the formation of a thin SiO2 film as well as nanoporous Al2O3 layer originating from the microspherical Al paste. The rear Al paste anodization allowed the Al microspheres to be filled with the nanopores in the inner empty space. PMID:26726608

  6. Interconnected hollow carbon nanospheres for stable lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g-1) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm-2. The Coulombic efficiency improves to ˜99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

  7. [HOMOCYSTEINE-INDUCED MEMBRANE CURRENTS, CALCIUM RESPONSES AND CHANGES OF MITOCHONDRIAL POTENTIAL IN RAT CORTICAL NEURONS].

    PubMed

    Abushik, P A; Karelina, T V; Sibarov, D A; Stepanenko, J D; Giniatullin, R; Antonov, S M

    2015-01-01

    Homocysteine, a sulfur-containing amino acid, exhibits neurotoxic effects and is involved in the pathogenesis of several major neurodegenerative disorders. In contrast to well studied excitoxicity of glutamate, the mechanism of homocysteine neurotoxicity is not clearly understood. By using whole-cell patch-clamp, calcium imaging (fluo-3) and measurements of mitochondrial membrane potential (rhodamine 123) we studied transmembrane currents, calcium signals and changes in mitochondrial membrane potential induced by homocysteine versus responses induced by NMDA and glutamate in cultured rat cortical neurons. L-homocysteine (50 µM) induced inward currents that could be completely blocked by the selective antagonist of NMDA receptors - AP-5. In contrast to NMDA-induced currents, homocysteine-induced currents had a smaller steady-state amplitude. Comparison of calcium responses to homocysteine, NMDA or glutamate demonstrated that in all cortical neurons homocysteine elicited short, oscillatory-type calcium responses, whereas NMDA or glutamate induced sustained increase of intracellular calcium. Analysis of mitochondrial changes demonstrated that in contrast to NMDA homocysteine did not cause a drop of mitochondrial membrane potential at the early stages of action. However, after its long-term action, as in the case of NMDA and glutamate, the changes in mitochondrial membrane potential were comparable with the full drop of respiratory chain induced by protonophore FCCP. Our data suggest that in cultured rat cortical neuron homocysteine at the first stages of action induces neurotoxic effects through activation of NMDA-type ionotropic glutamate receptors with strong calcium influx through the channels of these receptors. The long-term action of homocysteine may lead to mitochondrial disfuction and appears as a drop of mitochondrial membrane potential. PMID:26547950

  8. Response of the equatorial ionosphere to the geomagnetic DP 2 current system

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R.

    2016-07-01

    The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and magnetosphere generates a convection electric field that can penetrate to the ionosphere and cause the DP 2 current system. The quasiperiodic DP 2 current system, which fluctuates coherently with fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.

  9. Mesoporous Silicon-Based Anodes

    NASA Technical Reports Server (NTRS)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  10. Perovskites for use as sulfur tolerant anodes

    NASA Astrophysics Data System (ADS)

    Howell, Thomas G.

    One of the major obstacles encountered when using solid oxide fuel cells with hydrocarbon fuels is sulfur poisoning. The current anode material used is Ni/YSZ and Ni is not sulfur tolerant; therefore, the performance of the cell will degrade over time due to the formation of NiS. Perovskites have demonstrated superior sulfur tolerance but lack the high conductivity and catalytic activity of Ni/YSZ cermets. One of the objectives of this effort is to explore the substitution of the A-site in an A2MgMoO 6 perovskite with Sr and Ba, to create Sr2MgMoO6 (SMMO) and Ba2MgMoO6 (BMMO), respectively, to improve the sulfur tolerance of solid oxide fuel cells (SOFCs). Sr2MgMoO 6, a double perovskite, has been previously studied and is suggested as a material of interest because of its relatively high conductivity and catalytic potential. Barium has not been previously studied and was selected as the dopant because the ionic radii (1.61 A) resulted in a calculated tolerance factor of 1.036 for BMMO when compared to SMMO, which has an ionic radii of 1.44 A and a calculated tolerance factor of 0.978. The tolerance factor for BaSrMgMoO6, a bi-substituted material synthesized for comparison as an intermediate formulation, was calculated to be 1.00. Another objective is to synthesize and characterize a series of lanthanum (La) doped Sr2MgMoO6 (SMMO) or La doped Sr2MgNbO 6 (SMNO) anode materials, which can be used in combination with electrolytes containing lanthanum to mitigate the effects of lanthanum poisoning in SOFCs. Currently, a La0.4Ce0.6O1.8 (LDC) transition layer is used with many perovskite-based anode materials to prevent La diffusion into the anode from the La0.8Sr0.2Ga0.8Mg 0.2O2.8 (LSGM) electrolyte, which can create a resistive La species that impedes electrochemical performance. To accomplish this, a new class of anode materials was synthesized with the goal of balancing La chemical potential between these neighboring materials. It was hypothesized that by

  11. Recent Development on Anodes for Na-Ion Batteries

    SciTech Connect

    Bommier, C; Ji, XL

    2015-01-23

    New discoveries in anode materials for sodium ion batteries (NIBs) are highly necessary to achieve the goals of widespread applications, such as electric vehicles (EVs) and grid-level energy storage. Carbon-based materials are critical for this task as they are inexpensive, abundant, and versatile. They contain a plethora of structures and morphologies, ranging from highly ordered graphite or nanotubes to highly disordered amorphous carbon, thus making them very attractive for electrochemical energy storage. This review attempts to cover past and recent progress in the development of carbon-based anode materials for NIBs. To give a larger context, the article will briefly cover other anode materials for NIBs as well. The aim of this paper is to provide a timely update for researchers currently involved in the respective fields or to serve as a starting point for individuals who would like to gain a greater knowledge of new NIB anode materials.

  12. The anodic oxidation of p-benzoquinone and maleic acid

    SciTech Connect

    Bock, C.; MacDougall, B.

    1999-08-01

    The oxidation of organics, in particular of p-benzoquinone and maleic acid, at high anodic potentials has been studied using a range of anode materials such as noble-metal-based oxides and antimony-doped tin oxides. The influence of the current density was also investigated showing that the oxidation rate of p-benzoquinone increased only slightly with increasing current density. The efficiency of the p-benzoquinone oxidation was found to depend on several properties of the anode material, not just its chemical nature. Furthermore, efficiencies for the partial oxidation of p-benzoquinone using specially prepared noble-metal-oxide-based anodes were found to be only somewhat smaller or even as high as those observed for PbO{sub 2} or antimony-doped tin oxide anodes, respectively. The anodic electrolysis of maleic acid solutions was found to decrease the activity of IrO{sub 2} for the oxidation of organic compounds. This was not observed when PbO{sup 2} was employed for the oxidation of maleic acid.

  13. Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard; Wachtel, Artur; Vollmer, Jürgen

    2015-10-01

    Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015), 10.1103/PhysRevE.92.042132] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical stalling as well as a negative differential mobility for superstalling forces.

  14. Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models.

    PubMed

    Altaner, Bernhard; Wachtel, Artur; Vollmer, Jürgen

    2015-10-01

    Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015)] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical stalling as well as a negative differential mobility for superstalling forces. PMID:26565194

  15. Local time resolved dynamics of field-aligned currents and their response to solar wind variability

    NASA Astrophysics Data System (ADS)

    He, Maosheng; Vogt, Joachim; Lühr, Hermann; Sorbalo, Eugen

    2014-07-01

    Using 10 years of CHAMP measurements condensed into the empirical model of field-aligned currents through empirical orthogonal function analysis, the dynamics of field-aligned currents (FACs) is modeled and studied in separate magnetic local time (MLT) sectors. We investigate the distributions of FAC intensity and latitude and evaluate their predictability in terms of geospace parameters which are ranked according to their relative importance measured by a multivariate regression procedure. The response time to changes in solar wind variables is studied in detail and found to be much shorter for dayside FACs than on the nightside (15-25 min versus 35-95 min). Furthermore, dayside FACs can be parameterized more accurately: R2 values maximize greater than 0.7 for FAC latitude and greater than 0.3 for FAC intensity, whereas the corresponding values on the nightside are smaller than 0.3 and 0.15, respectively. The results support the separation between directly driven coupling processes acting on the dayside and unloading processes controlling the nightside. In addition, the MLT-resolved standardized regression coefficients suggest that (1) FAC latitude is affected most significantly by the transpolar potential, substorm evolution, solar activity as represented by the F10.7 index and its square, and the dipole tilt; (2) Region-1/2 current intensity is controlled most efficiently by substorm evolution, IMF Bz and IMF By; and (3) cusp current intensity is influenced by conductivity, IMF By and their cross item.

  16. Response of guyed offshore towers to stochastic loads in the presence of steady current

    SciTech Connect

    Brynjolfsson, S.

    1987-01-01

    The validity of the widely used stochastic linearization method for analyzing the response of guyed towers to stochastic loads is investigated. The governing equations of a guyed tower have two main sources of nonlinearities, fluid-structure interaction and the restoring force of the cables. In this study, two models are considered. First, a linearized single degree of freedom (SDOF) model of a guyed tower is developed using the stochastic linearization approach. It is solved in the frequency domain, giving the statistical response of the guyed tower to random waves and earthquakes loading. The results are compared to the response statistics of a time simulation of a single degree of freedom system that fully incorporates the nonlinearities of the cable system and the fluid-structure interaction. Second, the dynamic response of a multiple degree of freedom (MDOF) model of a guyed offshore tower to stochastic earthquake loads and steady uniform current is investigated. The nonlinear cable stiffness and the fluid-structure interaction were again linearized using the stochastic linearization method. Numerical results for several load cases are presented and discussed.

  17. Effects of background noise on the response of rat and cat motoneurones to excitatory current transients.

    PubMed Central

    Poliakov, A V; Powers, R K; Sawczuk, A; Binder, M D

    1996-01-01

    1. We studied the responses of rat hypoglossal motoneurones to excitatory current transients (ECTs) using a brainstem slice preparation. Steady, repetitive discharge at rates of 12-25 impulses s-1 was elicited from the motoneurones by injecting long (40 s) steps of constant current. Poisson trains of the ECTs were superimposed on these steps. The effects of additional synaptic noise was simulated by adding a zero-mean random process to the stimuli. 2. We measured the effects of the ECTs on motoneurone discharge probability by compiling peristimulus time histograms (PSTHs) between the times of occurrence of the ECTs and the motoneurone spikes. The ECTs produced modulation of motoneurone discharge similar to that produced by excitatory postsynaptic currents. 3. The addition of noise altered the pattern of the motoneurone response to the current transients: both the amplitude and the area of the PSTH peaks decreased as the power of the superimposed noise was increased. Noise tended to reduce the efficacy of the ECTs, particularly when the motoneurones were firing at lower frequencies. Although noise also increased the firing frequency of the motoneurones slightly, the effects of noise on ECT efficacy did not simply result from noise-induced changes in mean firing rate. 4. A modified version of the experimental protocol was performed in lumbar motoneurones of intact, pentobarbitone-anaesthetized cats. These recordings yielded results similar to those obtained in rat hypoglossal motoneurones in vitro. 5. Our results suggest that the presence of concurrent synaptic inputs reduces the efficacy of any one input. The implications of this change in efficacy and the possible underlying mechanisms are discussed. PMID:8866358

  18. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    PubMed Central

    Ahmed, Rafay; Oborski, Matthew J; Hwang, Misun; Lieberman, Frank S; Mountz, James M

    2014-01-01

    Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas. PMID:24711712

  19. Report on the source of the electrochemical impedance on cermet inert anodes

    SciTech Connect

    Windisch, C.F. Jr.; Stice, N.D.

    1991-02-01

    the Inert Electrode Program at Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anode surface, and (c) to develop sensors for monitoring anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The electrochemical impedances of cermet inert anodes in alumina-saturated molten cryolite as a function of frequency, current density, and time indicated that a significant component of the impedance is due to the gas bubbles produced at the anode during electrolysis. The data also showed a connection between surface structure and impedance that appears to be related to the effects of surface structure on bubble flow. Given the results of this work, it is doubtful that a resistive film contributes significantly to the electrochemical impedances on inert anodes. Properties previously assigned to such a film are more likely due to the bubbles and those factors that affect the properties and dynamics of the bubbles at the anode surface. 12 refs., 16 figs., 3 tabs.

  20. Effect of Time Dependent Bending of Current Sheets in Response to Generation of Plasma Jets and Reverse Currents

    NASA Astrophysics Data System (ADS)

    Frank, Anna

    Magnetic reconnection is a basis for many impulsive phenomena in space and laboratory plasmas accompanied by effective transformation of magnetic energy. Reconnection processes usually occur in relatively thin current sheets (CSs), which separate magnetic fields of different or opposite directions. We report on recent observations of time dependent bending of CSs, which results from plasma dynamics inside the sheet. The experiments are carried out with the CS-3D laboratory device (Institute of General Physics RAS, Moscow) [1]. The CS magnetic structure with an X line provides excitation of the Hall currents and plasma acceleration from the X line to both side edges [2]. In the presence of the guide field By the Hall currents give rise to bending of the sheet: the peripheral regions located away from the X line are deflected from CS middle plane (z=0) in the opposite directions ±z [3]. We have revealed generation of reverse currents jy near the CS edges, i.e. the currents flowing in the opposite direction to the main current in the sheet [4]. There are strong grounds to believe that reverse currents are generated by the outflow plasma jets [5], accelerated inside the sheet and penetrated into the regions with strong normal magnetic field component Bz [4]. An impressive effect of sudden change in the sign of the CS bend has been disclosed recently, when analyzing distributions of plasma density [6] and current away from the X line, in the presence of the guide field By. The CS configuration suddenly becomes opposite from that observed at the initial stage, and this effect correlates well with generation of reverse currents. Consequently this effect can be related to excitation of the reverse Hall currents owing to generation of reverse currents jy in the CS. Hence it may be concluded that CSs may exhibit time dependent vertical z-displacements, and the sheet geometry depends on excitation of the Hall currents, acceleration of plasma jets and generation of reverse

  1. Optimization of Aluminum Anodization Conditions for the Fabrication of Nanowires by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Fucsko, Viola

    2005-01-01

    Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.

  2. Differences in dynamic response of California Current salmon species to changes in ocean conditions

    NASA Astrophysics Data System (ADS)

    Botsford, Louis W.; Lawrence, Cathryn A.; Forrest Hill, M.

    2005-01-01

    While changes in the northeast Pacific Ocean in the mid-1970s apparently caused changes in salmon population growth in the Gulf of Alaska and the California Current, the responses of California Current salmon species, coho salmon ( Oncorhynchus kisutch) and chinook salmon ( O. tshawytscha) differed. Coho salmon catches declined dramatically along the coasts of California, Oregon and Washington, while chinook salmon catches did not. This provides an opportunity for comparative analysis, a rarity in the study of long-term changes in the ocean. Here we test one possible explanation for that difference, that chinook salmon populations are inherently more persistent because chinook salmon populations spawn over a range of ages, while coho salmon spawn predominantly at age 3 yr. We extended a previous theoretical approach that had been used to assess the long-term response of salmon populations with various spawning age structures to different means and variances in environmental variability. New results indicate that populations with environmental variability at the age of return to freshwater have the same characteristic identified earlier for populations with variability in the age of entry: populations spawning at multiple ages are more persistent, but that increased persistence is gained in the first few percent of departure from all spawning at a single age. Thus, in both cases the results are too sensitive to values of uncertain parameters to depend on as an explanation of the differences in response. We also approached this question by subjecting model populations with coho and chinook salmon spawning age structures to an empirical estimate of actual marine survival of coho salmon over the years 1970-2002, asking the question, if chinook salmon had been subjected to the same ocean survivals would they have experienced the same decline. The differences in spawning age structure made little difference in population responses. The dominant factor influencing the

  3. Direct measurement of translingual epithelial NaCl and KCl currents during the chorda tympani taste response.

    PubMed Central

    Heck, G L; Persaud, K C; DeSimone, J A

    1989-01-01

    We have measured the NaCl or KCl currents under voltage clamp across the dorsal lingual epithelium of the rat and simultaneously the response of the taste nerves. Under short-circuit conditions a NaCl stimulus evoked an inward current (first current) that coincided with excitation of the chorda tympani. This was followed by a slower inward current (second current) that matched the kinetics of taste nerve adaptation. The peak first current and the coincident neural response satisfied the same saturating NaCl concentration dependence. Both first and second currents were partially blocked by amiloride as were the phasic and tonic components of the neural response. The NaCl-evoked second current was completely blocked by ouabain. Investigation of the NaCl-evoked current and the neural response over a range of clamped voltages showed that inward negative potentials enhanced the inward current and the neural response to 0.3 M NaCl. Sufficiently high inward positive potentials reversed the current, and made the neural response independent of further changes in voltage. Therefore, one of the NaCl taste transduction mechanisms is voltage dependent while the other is voltage independent. A KCl stimulus also evoked an inward short-circuit current, but this and the neural response were not amiloride-sensitive. The data indicate that neural adaptation to a NaCl stimulus, but not a KCl stimulus, is mediated by cell Na/K pumps. A model is proposed in which the connection between the NaCl-evoked second current and cell repolarization is demonstrated. PMID:2541822

  4. The Host Immune Response to Tissue-Engineered Organs: Current Problems and Future Directions.

    PubMed

    Wiles, Katherine; Fishman, Jonathan M; De Coppi, Paolo; Birchall, Martin A

    2016-06-01

    As the global health burden of chronic disease increases, end-stage organ failure has become a costly and intractable problem. De novo organ creation is one of the long-term goals of the medical community. One of the promising avenues is that of tissue engineering: the use of biomaterials to create cells, structures, or even whole organs. Tissue engineering has emerged from its nascent stage, with several proof-of-principle trials performed across various tissue types. As tissue engineering moves from the realm of case trials to broader clinical study, three major questions have emerged: (1) Can the production of biological scaffolds be scaled up accordingly to meet current and future demands without generating an unfavorable immune response? (2) Are biological scaffolds plus or minus the inclusion of cells replaced by scar tissue or native functional tissue? (3) Can tissue-engineered organs be grown in children and adolescents given the different immune profiles of children? In this review, we highlight current research in the immunological response to tissue-engineered biomaterials, cells, and whole organs and address the answers to these questions. PMID:26701069

  5. Spin caloritronics with superconductors: Enhanced thermoelectric effects, generalized Onsager response-matrix, and thermal spin currents

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Bathen, Marianne Etzelmüller

    2016-06-01

    It has recently been proposed and experimentally demonstrated that it is possible to generate large thermoelectric effects in ferromagnet/superconductor structures due to a spin-dependent particle-hole asymmetry. Here, we show theoretically that quasiparticle tunneling between two spin-split superconductors enhances the thermoelectric response manyfold compared to when only one such superconductor is used, generating Seebeck coefficients (S >1 mV/K) and figures of merit (Z T ≃40 ) far exceeding the best bulk thermoelectric materials, and it also becomes more resilient toward inelastic-scattering processes. We present a generalized Onsager response-matrix that takes into account spin-dependent voltage and temperature gradients. Moreover, we show that thermally induced spin currents created in such junctions, even in the absence of a polarized tunneling barrier, also become largest in the case in which spin-dependent particle-hole asymmetry exists on both sides of the barrier. We determine how these thermal spin-currents can be tuned both in magnitude and sign by several parameters, including the external field, the temperature, and the superconducting phase difference.

  6. Fractional modeling of the AC large-signal frequency response in magnetoresistive current sensors.

    PubMed

    Ravelo Arias, Sergio Iván; Ramírez Muñoz, Diego; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Z(t)(JF) is obtained considering it as the relationship between sensor output voltage and input sensing current, Z(t)(jf)= V(o, sensor)(jf)/I(sensor)(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  7. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions.

    PubMed

    Joshi, Rohit; Wani, Shabir H; Singh, Balwant; Bohra, Abhishek; Dar, Zahoor A; Lone, Ajaz A; Pareek, Ashwani; Singla-Pareek, Sneh L

    2016-01-01

    Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern "OMICS" analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought. PMID:27471513

  8. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    PubMed Central

    Arias, Sergio Iván Ravello; Muñoz, Diego Ramírez; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  9. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions

    PubMed Central

    Joshi, Rohit; Wani, Shabir H.; Singh, Balwant; Bohra, Abhishek; Dar, Zahoor A.; Lone, Ajaz A.; Pareek, Ashwani; Singla-Pareek, Sneh L.

    2016-01-01

    Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern “OMICS” analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought. PMID:27471513

  10. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current

    NASA Astrophysics Data System (ADS)

    Youngblood, Nathan; Chen, Che; Koester, Steven J.; Li, Mo

    2015-04-01

    Layered two-dimensional materials have demonstrated novel optoelectronic properties and are well suited for integration in planar photonic circuits. Graphene, for example, has been utilized for wideband photodetection. However, because graphene lacks a bandgap, graphene photodetectors suffer from very high dark current. In contrast, layered black phosphorous, the latest addition to the family of two-dimensional materials, is ideal for photodetector applications due to its narrow but finite bandgap. Here, we demonstrate a gated multilayer black phosphorus photodetector integrated on a silicon photonic waveguide operating in the near-infrared telecom band. In a significant advantage over graphene devices, black phosphorus photodetectors can operate under bias with very low dark current and attain an intrinsic responsivity up to 135 mA W-1 and 657 mA W-1 in 11.5-nm- and 100-nm-thick devices, respectively, at room temperature. The photocurrent is dominated by the photovoltaic effect with a high response bandwidth exceeding 3 GHz.

  11. Poor response to clopidogrel: current and future options for its management.

    PubMed

    Campo, Gianluca; Fileti, Luca; Valgimigli, Marco; Tebaldi, Matteo; Cangiano, Elisa; Cavazza, Caterina; Marchesini, Jlenia; Ferrari, Roberto

    2010-10-01

    Antiplatelet therapy is the cornerstone of treatment for patients with acute coronary syndromes and/or undergoing percutaneous coronary interventions (PCI). Clopidogrel, a thienopyridine antiplatelet agent, has been used to prevent vascular complication in atherothrombotic patients, to prevent stent thrombosis in patients undergoing PCI, and in long term prevention of cardiovascular and cerebrovascular events. More than 40 million patients in the world receive clopidogrel but unfortunately about 20% of these are either non or poor responders. Several methods have been used to assess clopidogrel-induced antiplatelet effects. However, none of these tests have been fully standardized or fully agreed upon to measure clopidogrel responsiveness. Nevertheless, many studies using different techniques, platelet agonists and definitions, showed that patients with a poor response to clopidogrel have an increased risk of death, reinfarction and stent thrombosis. The mechanisms leading to poor responsiveness are not fully clarified and are likely multifactorial: genetic factors, accelerated platelet turnover, up-regulation of the P2Y(12) pathways, high baseline platelet reactivity, poor compliance, under-dosing and drug-drug interactions. The management of these patients is very difficult, but some evidence showed that a strategy of higher maintenance dose or switch to different thienopyridine (e.g. ticlopidine or prasugrel) or use of glycoprotein IIb/IIIa inhibitors during PCI may be helpful to overcome poor responsiveness and improve the long-term clinical outcome. This paper reviews the impact of clopidogrel poor responsiveness on clinical outcomes, the mechanisms leading to poor effect and the different assays to assess it. Finally, current and future options for its management is discussed. PMID:20157839

  12. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    SciTech Connect

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.; Holcomb, Gordon R.; Russell, James H.; Collins, W. Keith; Laylor, Martin H.; Cryer, Curtis B.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodes on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry

  13. Introduction to CCE-LTER: Responses of the California Current Ecosystem to climate forcing

    NASA Astrophysics Data System (ADS)

    Goericke, R.; Ohman, M. D.

    2015-02-01

    The California Current Ecosystem Long Term Ecological Research (CCE-LTER) site has been in existence since 2004. One of its primary objectives is to understand the response of the southern California Current ecosystem to climate forcing. The CCE-LTER site cooperates with the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program and complements CalCOFI's work through more extensive observations, process studies, and a modeling program. This special issue is focused on the long-term observations made by the CCE-LTER and CalCOFI programs, describing and understanding long-term changes in the physical, chemical, and biotic environment in the region. The papers in this issue highlight the climatological conditions during recent years and employ modeling to diagnose the principal forcing of meridional currents and eddy transport, both of which affect biotic responses. Changes in source waters in the region, and altered flushing of the Santa Barbara Basin, are considered. Temporal variations in inherent optical properties and in higher trophic levels, including seabirds and marine mammals, are presented. Key methodological developments presented include the incorporation of subsurface phytoplankton and light distributions in order to improve remotely sensed measures of primary production, and the validation of multi-frequency acoustic estimates of mesopelagic fish biomass. Results also highlight significant spatial differences across the CCE-LTER region, including cross-shore trends in microbial assemblages, and glider-resolved frontal features and zones of mixing associated with abrupt topography. Alterations to the spatial structure of the pelagic ecosystem must also be considered when evaluating future climate-related changes.

  14. Lithium batteries with laminar anodes

    SciTech Connect

    Bruder, A.H.

    1986-11-04

    This patent describes a laminar electrical cell, comprising an anode, a cathode, and an electrolyte permeable separator between the anode and the cathode. The anode consists essentially of a layer of lithium having at least one surface of unreacted lithium metal in direct contact with and adhered to a layer of conductive plastic with no intermediate adhesive promoting adjuncts. The cathode comprises a slurry of MnO/sub 2/ and carbon particles in a solution of a lithium salt in an organic solvent, the solution permeating the separator and being in contact with the lithium.

  15. Measured Climate Induced Volume Changes of Three Glaciers and Current Glacier-Climate Response Prediction

    NASA Astrophysics Data System (ADS)

    Trabant, D. C.; March, R. S.; Cox, L. H.; Josberger, E. G.

    2003-12-01

    Small but hydrologically significant shifts in climate have affected the rates of glacier volume change at the three U.S. Geological Survey Benchmark glaciers. Rate changes are detected as inflections in the cumulative conventional and reference-surface mass-balances of Wolverine and Gulkana Glaciers in Alaska and South Cascade Glacier in Washington. The cumulative mass balances are robust and have recently been corroborated by geodetic determinations of glacier volume change. Furthermore, the four-decade length of record is unique for the western hemisphere. Balance trends at South Cascade Glacier in Washington are generally in the opposite sense compared with Wolverine Glacier in Alaska; NCEP correlation of winter balance with local winter temperatures is positive at 0.59 for Wolverine and -0.64 for South Cascade Glacier. At Wolverine Glacier, the negative trend of cumulative mass balances, since measurements began in 1965, was replaced by a growth trend \\(positive mass balances\\) during the late 1970s and 1980s. The positive mass-balance trend was driven by increased precipitation during the 1976/77 to 1989 period. At Gulkana Glacier, the cumulative mass-balance trend has been negative throughout its measurement history, but with rate-change inflection points that coincide with the interdecadal climate-regime shifts in the North Pacific indices. At South Cascade Glacier, the mass-loss trend, observed since measurements began in 1953, was replaced by a positive trend between 1970 and 1976 then became strongly and continuously negative until 1997 when the rate of loss generally decreased. Since 1989, the trends of the glaciers in Alaska have also been strongly negative. These loss rates are the highest rates in the entire record. The strongly negative trends during the 1990s agree with climate studies that suggest that the period since the 1989 regime shift has been unusual. Volume response time and reference surface balance are the current suggested methods for

  16. Tropical forest responses to increasing [CO2]: current knowledge and opportunities for future research

    SciTech Connect

    Cernusak, Lucas; Winter, Klaus; Dalling, James; Holtum, Joseph; Jaramillo, Carlos; Korner, Christian; Leakey, Andrew D.B.; Norby, Richard J; Poulter, Benjamin; Turner, Benjamin; Wright, S. Joseph

    2013-01-01

    Elevated atmospheric [CO2] (ca) will undoubtedly affect the metabolism of tropical forests worldwide; however, critical aspects of how tropical forests will respond remain largely unknown. Here we review the current state of knowledge about physiological and ecological responses, with the aim of providing a framework that can help to guide future experimental research. Modelling studies have indicated that elevated ca can potentially stimulate photosynthesis more in the tropics than at higher latitudes, because suppression of photorespiration by elevated ca increases with temperature. However, canopy leaves in tropical forests could also potentially reach a high temperature threshold under elevated ca that will moderate the rise in photosynthesis. Belowground responses, including fine root production, nutrient foraging, and soil organic matter processing, will be especially important to the integrated ecosystem response to elevated CO2. Water-use efficiency will increase as ca rises, potentially impacting upon soil moisture status and nutrient availability. Recruitment may be differentially altered for some functional groups, potentially decreasing ecosystem carbon storage. Whole-forest CO2 enrichment experiments are urgently needed to test predictions of tropical forest functioning under elevated ca. Smaller scale experiments in the understory and in gaps would also be informative, and could provide stepping stones toward stand-scale manipulations.

  17. Functional characterisation of letter-specific responses in time, space and current polarity using magnetoencephalography.

    PubMed

    Gwilliams, L; Lewis, G A; Marantz, A

    2016-05-15

    Recent neurophysiological evidence suggests that a hierarchical neural network of low-to-high level processing subserves written language comprehension. While a considerable amount of research has identified distinct regions and stages of processing, the relations between them and to this hierarchical model remain unclear. Magnetoencephalography (MEG) is a technique frequently employed in such investigations; however, no studies have sought to test whether the conventional method of reconstructing currents at the source of the magnetic field is best suited for such across-subject designs. The present study details the results of three MEG experiments addressing these issues. Neuronal populations supporting responses to low-level orthographic properties were housed posteriorly near the primary visual cortex. More anterior regions along the fusiform gyrus encoded higher-level processes and became active ~80ms later. A functional localiser of these early letter-specific responses was developed for the production of functional regions of interest in future studies. Previously established response components were successfully grouped based on proximity to the localiser, which characterised location, latency and functional sensitivity. Unconventional anatomically constrained signed minimum norm estimates of MEG data were most sensitive to the primary experimental manipulation, suggesting that the conventional unsigned unconstrained method is sub-optimal for studying written word processing. PMID:26926792

  18. Performance of a Dual Anode Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    Nickel-hydrogen batteries are presently being used for energy storage on satellites in low Earth orbit and in geosynchronous orbit, and have also been selected for use on the proposed Space Station Freedom. Development continues on the cell technology in order to improve the specific energy and lengthen the cycle life. An experimental study was conducted to compare the voltage performance of a nickel-hydrogen cell containing a dual anode with the standard cell design which uses a single hydrogen electrode. Since the principle voltage loss in a nickel-hydrogen cell is attributed to the mass transport and resistive polarization parameters of the nickel electrode, addition of a hydrogen electrode on the other side of the nickel electrode should reduce the electrochemical polarizations by a factor of two. A 3.5 in. diameter boilerplate cell with a single 30 mils thick nickel electrode was cycled under various current conditions to evaluate its performance with a single anode and then with a double anode. A layered separator consisting of one Zircar cloth separator and one radiation-grafted polyethylene separator were used between the electrodes. The electrolyte was 26% KOH, and the tests were done at room temperature. The discharge voltage characteristics were determined as a function of current and depth-of-discharge. At the 4C discharge rate and 50% DOD, the voltage of the dual anode cell was 100 mV higher than the single anode cell. At 75% DOD the dual anode cell voltage was about 130 mV higher than the standard cell design. Resistances of the two c ell designs obtained from the slope of the mid-discharge voltages plotted against various currents indicated that the dual anode cell resistance was one-half of the state-of-the-art cell.

  19. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    PubMed

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life. PMID:19739146

  20. Ground-based observations of the fair weather vertical current response to solar disturbances

    NASA Astrophysics Data System (ADS)

    Elhalal, G.; Yair, Y.; Harrison, R.; Nicoll, K.; Price, C. G.; Yaniv, R.

    2013-12-01

    The Global atmospheric Electric Circuit (GEC) is a conceptual model that represents the observed variable and quasi-static electrical properties of the atmosphere in the Earth-ionosphere cavity. The DC component of the GEC is typified by an average potential difference of 250 kV between the upper and lower conducting layers of the surface and ionosphere, leading to a near-surface electric field (Ez) of potential gradient ~130 V m-1, and a steady downward-flowing fair-weather current density (Jz) of ~2 pA m-2. By separation the steady global circuit current from short-term fluctuations, Jz provides information on local and global conductivity changes due to aerosols, air-pollution and solar activity. This talk will present evidence for the effects of geomagnetic storms and sub-storms on the fair weather vertical current, based on results from continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35'N, 34°45'E) with the GDACCS instrument (Bennett and Harrison, 2008). We studied 3 coronal mass ejections (CMEs), which included solar proton events (SPE) on 26.09.11, 24.10.11 and 08.03.12. In all three events, fluctuations in Jz increased by an order of magnitude compared to normal fair weather conditions. The dynamic spectrum of the increased fluctuations exhibit peaks in the Pc5 frequency range. Similar low frequency characteristics occur during periods of enhanced solar wind proton density. During the 24.10.11 event, the periods of increased fluctuations in Jz lasted for 7 hours and coincided with fluctuations of the inter-planetary magnetic field (IMF) that were detected by the ACE satellite. The observed current density fluctuations occurred at a period when Bz<0 and when it was highly variable, suggesting the possibility for magnetic reconnection with ensuing changes in ionospheric properties. These low-latitude observations probably represent a response of the GEC to the solar induced geomagnetic sub-storms, perhaps arising

  1. Effect of electrolysis conditions on photocatalytic activities of the anodized TiO{sub 2} films

    SciTech Connect

    Onoda, Kinji; Yoshikawa, Susumu

    2007-12-15

    Photocatalytic activities of anodized TiO{sub 2} films for decomposition of gaseous acetaldehyde were investigated. The anodized TiO{sub 2} films were fabricated by galvanostatic anodization in a mixed electrolyte composed of H{sub 2}SO{sub 4}, H{sub 3}PO{sub 4}, and H{sub 2}O{sub 2}. Pre-nitridation treatment effectively enhanced the photocatalytic activity of the anodized TiO{sub 2} films. The electrolysis parameters such as anodization time, current density, electrolyte temperature, and electrolyte composition significantly affected the photocatalytic activity of the anodized TiO{sub 2} films. The improvement of photocatalytic activity of the anodized films is attributed to increase in surface areas of the anodized specimens. - Graphical abstract: The effect of concentration of H{sub 3}PO{sub 4} on the photocatalytic activity of the anodized TiO{sub 2} films was investigated. The pre-nitrided titanium plates were anodized in electrolyte of 1.5 M H{sub 3}PO{sub 4} and 0.3 M H{sub 2}O{sub 2} with varying H{sub 3}PO{sub 4} concentration in the range from 0 to 0.5 M. The highest photocatalytic activity was obtained at H{sub 3}PO{sub 4} concentration of 0.1 M.

  2. Position-sensitive proportional counter with low-resistance metal-wire anode

    DOEpatents

    Kopp, Manfred K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

  3. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  4. High-grade glioma management and response assessment—recent advances and current challenges

    PubMed Central

    Khan, M.N.; Sharma, A.M.; Pitz, M.; Loewen, S.K.; Quon, H.; Poulin, A.; Essig, M.

    2016-01-01

    The management of high-grade gliomas (hggs) is complex and ever-evolving. The standard of care for the treatment of hggs consists of surgery, chemotherapy, and radiotherapy. However, treatment options are influenced by multiple factors such as patient age and performance status, extent of tumour resection, biomarker profile, and tumour histology and grade. Follow-up cranial magnetic resonance imaging (mri) to differentiate treatment response from treatment effect can be challenging and affects clinical decision-making. An assortment of advanced radiologic techniques—including perfusion imaging with dynamic susceptibility contrast mri, dynamic contrast-enhanced mri, diffusion-weighted imaging, proton spectroscopy, mri subtraction imaging, and amino acid radiotracer imaging—can now incorporate novel physiologic data, providing new methods to help characterize tumour progression, pseudoprogression, and pseudoresponse. In the present review, we provide an overview of current treatment options for hgg and summarize recent advances and challenges in imaging technology. PMID:27536188

  5. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  6. Anodized Steel Electrodes for Supercapacitors.

    PubMed

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime. PMID:26891093

  7. Highly Ordered Porous Anodic Alumina with Large Diameter Pores Fabricated by an Improved Two-Step Anodization Approach.

    PubMed

    Li, Xiaohong; Ni, Siyu; Zhou, Xingping

    2015-02-01

    The aim of this study is to prepare highly ordered porous anodic alumina (PAA) with large pore sizes (> 200 nm) by an improved two-step anodization approach which combines the first hard anodization in oxalic acid-water-ethanol system and second mild anodization in phosphoric acid-water-ethanol system. The surface morphology and elemental composition of PAA are characterized by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectrometer (EDS). The effects of matching of two-step anodizing voltages on the regularity of pore arrangement is evaluated and discussed. Moreover, the pore formation mechanism is also discussed. The results show that the nanopore arrays on all the PAA samples are in a highly regular arrangement and the pore size is adjustable in the range of 200-300 nm. EDS analysis suggests that the main elements of the as-prepared PAA are oxygen, aluminum and a small amount of phosphorus. Furthermore, the voltage in the first anodization must match well with that in the second anodization, which has significant influence on the PAA regularity. The addition of ethanol to the electrolytes effectively accelerates the diffusion of the heat that evolves from the sample, and decreases the steady current to keep the steady growth of PAA film. The improved two-step anodization approach in this study breaks through the restriction of small pore size in oxalic acid and overcomes the drawbacks of irregular pore morphology in phosphoric acid, and is an efficient way to fabricate large diameter ordered PAA. PMID:26353721

  8. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  9. SnO2-Based Gas (Methane) Anodes for Electrowinning of Aluminum

    NASA Astrophysics Data System (ADS)

    Xiao, S.; Mokkelbost, T.; Paulsen, O.; Ratvik, A. P.; Haarberg, Geir Martin

    2013-10-01

    SnO2-based and carbon-based gas anodes were studied in molten Na3AlF6-AlF3-Al2O3 at 1123 K (850 °C) for aluminum electrolysis. Methane was introduced to the porous anodes to take part in a three-phase (anode/electrolyte/methane) boundary reaction. Carbon was used as the cathode. It was observed that the anode potential was reduced by 0.6 V and that the current was increased up to three times in galvanostatic and potentiostatic tests after the introduction of methane on SnO2-based anodes. A measurable depolarization effect and lower consumption of carbon after the introduction of methane on carbon anodes were also demonstrated.

  10. Current radar-responsive tag development activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ormesher, Richard C.; Plummer, Kenneth W.; Wells, Lars M.

    2004-08-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking

  11. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition.

    PubMed Central

    Clark, Deborah A

    2004-01-01

    How tropical rainforests are responding to the ongoing global changes in atmospheric composition and climate is little studied and poorly understood. Although rising atmospheric carbon dioxide (CO2) could enhance forest productivity, increased temperatures and drought are likely to diminish it. The limited field data have produced conflicting views of the net impacts of these changes so far. One set of studies has seemed to point to enhanced carbon uptake; however, questions have arisen about these findings, and recent experiments with tropical forest trees indicate carbon saturation of canopy leaves and no biomass increase under enhanced CO2. Other field observations indicate decreased forest productivity and increased tree mortality in recent years of peak temperatures and drought (strong El Niño episodes). To determine current climatic responses of forests around the world tropics will require careful annual monitoring of ecosystem performance in representative forests. To develop the necessary process-level understanding of these responses will require intensified experimentation at the whole-tree and stand levels. Finally, a more complete understanding of tropical rainforest carbon cycling is needed for determining whether these ecosystems are carbon sinks or sources now, and how this status might change during the next century. PMID:15212097

  12. Reducing aggressive responses to social exclusion using transcranial direct current stimulation.

    PubMed

    Riva, Paolo; Romero Lauro, Leonor J; DeWall, C Nathan; Chester, David S; Bushman, Brad J

    2015-03-01

    A vast body of research showed that social exclusion can trigger aggression. However, the neural mechanisms involved in regulating aggressive responses to social exclusion are still largely unknown. Transcranial direct current stimulation (tDCS) modulates the excitability of a target region. Building on studies suggesting that activity in the right ventrolateral pre-frontal cortex (rVLPFC) might aid the regulation or inhibition of social exclusion-related distress, we hypothesized that non-invasive brain polarization through tDCS over the rVLPFC would reduce behavioral aggression following social exclusion. Participants were socially excluded or included while they received tDCS or sham stimulation to the rVLPFC. Next, they received an opportunity to aggress. Excluded participants demonstrated cognitive awareness of their inclusionary status, yet tDCS (but not sham stimulation) reduced their behavioral aggression. Excluded participants who received tDCS stimulation were no more aggressive than included participants. tDCS stimulation did not influence socially included participants' aggression. Our findings provide the first causal test for the role of rVLPFC in modulating aggressive responses to social exclusion. Our findings suggest that modulating activity in a brain area (i.e. the rVLPFC) implicated in self-control and emotion regulation can break the link between social exclusion and aggression. PMID:24748546

  13. Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1973-01-01

    Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.

  14. Reducing aggressive responses to social exclusion using transcranial direct current stimulation

    PubMed Central

    Romero Lauro, Leonor J.; DeWall, C. Nathan; Chester, David S.; Bushman, Brad J.

    2015-01-01

    A vast body of research showed that social exclusion can trigger aggression. However, the neural mechanisms involved in regulating aggressive responses to social exclusion are still largely unknown. Transcranial direct current stimulation (tDCS) modulates the excitability of a target region. Building on studies suggesting that activity in the right ventrolateral pre-frontal cortex (rVLPFC) might aid the regulation or inhibition of social exclusion-related distress, we hypothesized that non-invasive brain polarization through tDCS over the rVLPFC would reduce behavioral aggression following social exclusion. Participants were socially excluded or included while they received tDCS or sham stimulation to the rVLPFC. Next, they received an opportunity to aggress. Excluded participants demonstrated cognitive awareness of their inclusionary status, yet tDCS (but not sham stimulation) reduced their behavioral aggression. Excluded participants who received tDCS stimulation were no more aggressive than included participants. tDCS stimulation did not influence socially included participants’ aggression. Our findings provide the first causal test for the role of rVLPFC in modulating aggressive responses to social exclusion. Our findings suggest that modulating activity in a brain area (i.e. the rVLPFC) implicated in self-control and emotion regulation can break the link between social exclusion and aggression. PMID:24748546

  15. Effect of anode morphology on charging rate in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Gersappe, Dilip

    2014-03-01

    Carbon materials such as graphite are widely used in Lithium Ion Batteries as an active component for the anode. We set up a 3-D Lattice Boltzmann model to simulate the intercalation reaction of graphite anode during charging process. Our model considered the mass transfer both inside and outside of anode, and the equilibrium potential drop of the anode material as a function of local charge amount. By using a simple spherical anode morphology, we tested the shrinking core model. Our simulation showed the influence of current density and diffusion speed of Li ion in the graphite phase on phase boundary movement and determined when the outer layer of anode is fully charged. We further developed our anode morphology to a random particle model, and studied the influence of current density and porosity of anode on the total charge of the system. Our results show that it is possible to obtain both high charging capacity and charging rate by adjusting the morphology of anode.

  16. Numerical study of the anode boundary layer in atmospheric pressure arc discharges

    NASA Astrophysics Data System (ADS)

    Semenov, I. L.; Krivtsun, I. V.; Reisgen, U.

    2016-03-01

    The anode boundary layer in atmospheric pressure arc discharges is studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations are formulated in a unified manner without the assumptions of thermal equilibrium, ionization equilibrium or quasi-neutrality. For comparison, a quasi-neutral model of the anode layer is also considered. The numerical computations are performed for an argon arc at typical values of the current density in anode layers (500-2000 A cm-2). The results of numerical modelling show that the common collisionless model of the sheath fails to describe the sheath region for the problem under consideration. For this reason, a detailed analysis of the anode sheath is performed using the results of unified modelling. In addition, the distributions of plasma parameters in the anode layer are analysed and the basic characteristics of the layer (anode voltage drop, sheath voltage drop, anode layer thickness, sheath thickness, heat flux to the anode) are calculated. Our results are found to be in good agreement with the existing theoretical predictions and experimental data. The dependence of the anode layer characteristics on the current density is also discussed.

  17. Heterogeneous Inhibition in Macroscopic Current Responses of Four Nicotinic Acetylcholine Receptor Subtypes by Cholesterol Enrichment.

    PubMed

    Báez-Pagán, Carlos A; Del Hoyo-Rivera, Natalie; Quesada, Orestes; Otero-Cruz, José David; Lasalde-Dominicci, José A

    2016-08-01

    The nicotinic acetylcholine receptor (nAChR), located in the cell membranes of neurons and muscle cells, mediates the transmission of nerve impulses across cholinergic synapses. In addition, the nAChR is also found in the electric organs of electric rays (e.g., the genus Torpedo). Cholesterol, which is a key lipid for maintaining the correct functionality of membrane proteins, has been found to alter the nAChR function. We were thus interested to probe the changes in the functionality of different nAChRs expressed in a model membrane with modified cholesterol to phospholipid ratios (C/P). In this study, we examined the effect of increasing the C/P ratio in Xenopus laevis oocytes expressing the neuronal α7, α4β2, muscle-type, and Torpedo californica nAChRs in their macroscopic current responses. Using the two-electrode voltage clamp technique, it was found that the neuronal α7 and Torpedo nAChRs are significantly more sensitive to small increases in C/P than the muscle-type nAChR. The peak current versus C/P profiles during enrichment display different behaviors; α7 and Torpedo nAChRs display a hyperbolic decay with two clear components, whereas muscle-type and α4β2 nAChRs display simple monophasic decays with different slopes. This study clearly illustrates that a physiologically relevant increase in membrane cholesterol concentration produces a remarkable reduction in the macroscopic current responses of the neuronal α7 and Torpedo nAChRs functionality, whereas the muscle nAChR appears to be the most resistant to cholesterol inhibition among all four nAChR subtypes. Overall, the present study demonstrates differential profiles for cholesterol inhibition among the different types of nAChR to physiological cholesterol increments in the plasmatic membrane. This is the first study to report a cross-correlation analysis of cholesterol sensitivity among different nAChR subtypes in a model membrane. PMID:27116687

  18. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch

    2003-09-08

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements.

  19. A Thermally Conductive Separator for Stable Li Metal Anodes.

    PubMed

    Luo, Wei; Zhou, Lihui; Fu, Kun; Yang, Zhi; Wan, Jiayu; Manno, Michael; Yao, Yonggang; Zhu, Hongli; Yang, Bao; Hu, Liangbing

    2015-09-01

    Li metal anodes have attracted considerable research interest due to their low redox potential (-3.04 V vs standard hydrogen electrode) and high theoretical gravimetric capacity of 3861 mAh/g. Battery technologies using Li metal anodes have shown much higher energy density than current Li-ion batteries (LIBs) such as Li-O2 and Li-S systems. However, issues related to dendritic Li formation and low Coulombic efficiency have prevented the use of Li metal anode technology in many practical applications. In this paper, a thermally conductive separator coated with boron-nitride (BN) nanosheets has been developed to improve the stability of the Li metal anodes. It is found that using the BN-coated separator in a conventional organic carbonate-based electrolyte results in the Coulombic efficiency stabilizing at 92% over 100 cycles at a current rate of 0.5 mA/cm(2) and 88% at 1.0 mA/cm(2). The improved Coulombic efficiency and reliability of the Li metal anodes is due to the more homogeneous thermal distribution resulting from the thermally conductive BN coating and to the smaller surface area of initial Li deposition. PMID:26237519

  20. Boric/sulfuric acid anodizing of aluminum alloys 2024 and 7075: Film growth and corrosion resistance

    SciTech Connect

    Thompson, G.E.; Zhang, L.; Smith, C.J.E.; Skeldon, P.

    1999-11-01

    The influence of boric acid (H{sub 3}BO{sub 3}) additions to sulfuric acid (H{sub 2}SO{sub 4}) were examined for the anodizing of Al 2024-T3 (UNS A92024) and Al 7075-T6 (UNS A97075) alloys at constant voltage. Alloys were pretreated by electropolishing, by sodium dichromate (Na{sub 2}Cr{sub 2}O{sub 7})/H{sub 2}SO{sub 4} (CSA) etching, or by alkaline etching. Current-time responses revealed insignificant dependence on the concentration of H{sub 3}BO{sub 3} to 50 g/L. Pretreatments affected the initial film development prior to the establishment of the steady-state morphology of the porous film, which was related to the different compositions and morphologies of pretreated surfaces. More detailed studies of the Al 7075-T6 alloy indicated negligible effects of H{sub 3}BO{sub 3} on the coating weight, morphology of the anodic film, and thickening rate of the film, or corrosion resistance provided by the film. In salt spray tests, unsealed films formed in H{sub 2}SO{sub 4} or mixed acid yielded similar poor corrosion resistances, which were inferior to that provided by anodizing in chromic acid (H{sub 2}CrO{sub 4}). Sealing of films in deionized water, or preferably in chromate solution, improved corrosion resistance, although not matching the far superior performance provided by H{sub 2}CrO{sub 4} anodizing and sealing.

  1. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats

    PubMed Central

    Dimov, Luiz Fabio; Franciosi, Adriano Cardozo; Campos, Ana Carolina Pinheiro; Brunoni, André Russowsky

    2016-01-01

    Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment. PMID:27071073

  2. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections

    NASA Astrophysics Data System (ADS)

    Cashmore, Matt. T.; Koutsourakis, George; Gottschalg, Ralph; Hall, Simon. R. G.

    2016-04-01

    Compressive sensing has been widely used in image compression and signal recovery techniques in recent years; however, it has received limited attention in the field of optical measurement. This paper describes the use of compressive sensing for measurements of photovoltaic (PV) solar cells, using fully random sensing matrices, rather than mapping an orthogonal basis set directly. Existing compressive sensing systems optically image the surface of the object under test, this contrasts with the method described, where illumination patterns defined by precalculated sensing matrices, probe PV devices. We discuss the use of spatially modulated light fields to probe a PV sample to produce a photocurrent map of the optical response. This allows for faster measurements than would be possible using traditional translational laser beam induced current techniques. Results produced to a 90% correlation to raster scanned measurements, which can be achieved with under 25% of the conventionally required number of data points. In addition, both crack and spot type defects are detected at resolutions comparable to electroluminescence techniques, with 50% of the number of measurements required for a conventional scan.

  3. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies

    PubMed Central

    Li, Lucia M.; Uehara, Kazumasa; Hanakawa, Takashi

    2015-01-01

    There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting “promising results” for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor-evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies. PMID:26029052

  4. Immune responses towards intestinal bacteria--current concepts and future perspectives.

    PubMed

    Duchmann, R; Neurath, M; Märker-Hermann, E; Meyer Zum Büschenfelde, K H

    1997-05-01

    The intestinal mucosa constitutes an important barrier as it separates each individual from a large array of antigens within the bowel lumen. These luminal antigens may either be derived from pathogens or may be derived from harmless constituents such as ingested food or the normal intestinal flora. The dichotomy of potentially harmful and potentially harmless antigens encountered by the mucosal immune system poses the important task that, with regard to bacteria-derived antigens, the gut associated immune system is required to mount an efficient host defense against pathogenic bacteria but to maintain at the same time the regulatory control mechanisms which protect the human organism from hyperresponsiveness, and thus chronic inflammation, towards antigens from the normal intestinal flora. In the present review, we discuss variable host and bacterial factors which are likely to determine whether the immune response to pathogenic or normal intestinal bacteria will have beneficial or detrimental consequences for the human organism. Using infections with the prototype enteropathogens V. cholerae and enteropathogenic E. coli (ETEC), Y. enterocolitica induced reactive arthritis (ReA) and in more detail, inflammatory bowel diseases (IBD) as exemplary clinical situations, we review current hypotheses of how bacteria or their products are encountered by cellular components of the specific immune system and how this may relate to disease pathogenesis and the development of new treatment strategies. PMID:9188147

  5. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    SciTech Connect

    Maximenko, S. I. Scheiman, D. A.; Jenkins, P. P.; Walters, R. J.; Lumb, M. P.; Hoheisel, R.; Gonzalez, M.; Messenger, S. R.; Tibbits, T. N. D.; Imaizumi, M.; Ohshima, T.; Sato, S. I.

    2015-12-28

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  6. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation.

    PubMed

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  7. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation

    PubMed Central

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  8. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  9. Development of an inert ceramic anode to reduce energy consumption in magnesium production. Final Report

    SciTech Connect

    1997-06-01

    The objective of this work is to develop a dimensionally stable ceramic anode for production of magnesium metal in electrolytic cells, replacing the graphite anodes currently used by The Dow Chemical Company magnesium business. The work is based on compositional and design technology for a ceramic anode developed in the former Central Research Inorganic Laboratory. The approach selected is to use a ceramic semiconductor tube as the material to interface with the bath and gaseous atmosphere in the cell. The testing goal was to demonstrate six anodes surviving a 30 day test lifetime with acceptable wear rates and electrical performance in a laboratory scale magnesium cell test. State of the art slip casting techniques were used and advanced in the pursuit of a virtually flaw free ceramic anode shell. Novel core materials were also invented to allow for the complete, crack free fabrication of the laboratory scale anode. Two successive anodes were tested and exceeded the 30 day cell lifetime goal with excellent wear characteristics. More aggressive testing of the ceramic anode revealed that the anode had a rather narrow operating region.

  10. Internal passivation of Al-based microchannel devices by electrochemical anodization

    NASA Astrophysics Data System (ADS)

    Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.

    2015-02-01

    Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.

  11. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2011-10-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2)), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine-triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m(2)) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol-ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. PMID:21557205

  12. Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus

    Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy

  13. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect

    Piel, A.; Pilch, I.; Trottenberg, T.; Koepke, M. E.

    2008-09-07

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  14. Pd/Ni-WO3 anodic double layer gasochromic device

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  15. Anode-plasma expansion in pinch-reflex diodes

    SciTech Connect

    Colombant, D.G.; Goldstein, S.A.

    1983-10-24

    Anode-plasma expansion in pinch-reflex diodes is investigated with use of a one-dimensional magnetohydrodynamic model. Early in time, the plasma undergoes thermal expansion and its front is slowed down as a result of j x B. After the current has reached its maximum and for small radius where j and B are larger, j x B may accelerate the bulk of the anode plasma to large velocities. Good qualitative agreement is obtained with observations of the time dependence of the plasma velocity as well as its radial profile. The maximum expansion velocities reach tens of centimeters per microsecond.

  16. Alternative Anode Reaction for Copper Electrowinning

    SciTech Connect

    Not Available

    2005-07-01

    This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

  17. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67 μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60 min at 50 mA. Direct electron transfer was mainly responsible at the current below 30 mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30 mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20 mM), while was dramatically increased with increasing the concentration of chloride (0-10 mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.

  18. Studies on white anodizing on aluminum alloy for space applications

    NASA Astrophysics Data System (ADS)

    Siva Kumar, C.; Mayanna, S. M.; Mahendra, K. N.; Sharma, A. K.; Uma Rani, R.

    1999-10-01

    A process of white anodizing in an electrolyte system consisting of sulfuric acid, lactic acid, glycerol and sodium molybdate was studied for space applications. The influence of anodic film thickness and various operating parameters, viz., electrolyte formulation, operating temperature, applied current density, on the optical properties of the coating has been investigated to optimize the process. The coatings were characterized by atomic absorption spectroscopic analysis, thickness and microhardness evaluation. The space worthiness of the coating has been evaluated by humidity, thermal cycling, thermo-vacuum performance tests and measurement of optical properties. The anodic film developed herein provides solar absorptance value as low as 0.16, and infrared (IR) emittance of the order of 0.80. These results indicate that the process developed is suitable for thermal control applications in space environment.

  19. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  20. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  1. Photoluminescence structure, and composition of laterally anodized porous Si

    NASA Technical Reports Server (NTRS)

    Jung, K. H.; Shih, S.; Kwong, D. L.; George, T.; Lin, T. L.; Liu, H. Y.; Zavada, J.

    1992-01-01

    We have studied the photoluminescence (PL), structure, and composition of laterally anodized porous Si. Broad PL peaks were observed centered between about 620-720 nm with strong intensities measured from 500 to 860 nm. Macroscopic variations in PL intensities and peak positions are explained in terms of the structure and anodization process. Structural studies suggest that the PL appears to originate from a multilayered porous Si structure in which the top two layers are amorphous. X-ray diffraction spectra also suggest the presence of a significant amorphous phase. In addition to high concentrations of B and N, we have measured extremely high concentrations much greater than 10 exp 20 cu cm of H, C, O, and F. Our results indicate that laterally anodized porous Si does not fit the crystalline Si quantum wire model prevalent in the literature suggesting that some other structure is responsible for the observed luminescence.

  2. The effects of microstructure on the corrosion of glycine/nitrate processed cermet inert anodes: A preliminary study

    SciTech Connect

    Windisch, Jr, C F; Chick, L A; Maupin, G D; Stice, N D

    1991-07-01

    The Inert Electrodes Program at the Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under the study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anodes surface, and (c) to develop sensors for monitoring various anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The anode mechanism studies were focused in four areas in FY 1990 and FY 1991: (a) the determination of whether a film formed on cermet inert anodes and (if it existed) the characterization of this film, (b) the determination of the sources of the anode impedance, (c) the evaluation of the effects of silica and a precorroded state on anode corrosion, and (d) a preliminary study on the effect of microstructure on the corrosion properties of the anodes. This report discusses the results of the microstructure studies. 6 refs., 32 figs., 3 tabs.

  3. Tested Demonstrations: Dyeing of Anodized Aluminum.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides a list of needed materials, required preparations, and instructions for demonstrating the dyeing of anodized aluminum. Discusses the chemistry involved and gives equations for reactions occurring at the anode and cathode. (JM)

  4. Imaging for assessment of treatment response in hepatocellular carcinoma: Current update

    PubMed Central

    Hayano, Koichi; Lee, Sang Ho; Sahani, Dushyant V

    2015-01-01

    Morphologic methods such as the Response Evaluation Criteria in Solid Tumors (RECIST) are considered as the gold standard for response assessment in the management of cancer. However, with the increasing clinical use of antineoplastic cytostatic agents and locoregional interventional therapies in hepatocellular carcinoma (HCC), conventional morphologic methods are confronting limitations in response assessment. Thus, there is an increasing interest in new imaging methods for response assessment, which can evaluate tumor biology such as vascular physiology, fibrosis, necrosis, and metabolism. In this review, we discuss various novel imaging methods for response assessment and compare them with the conventional ones in HCC. PMID:25969635

  5. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  6. Anode Fall Formation in a Hall Thruster

    SciTech Connect

    Leonid A. Dorf; Yevgeny F. Raitses; Artem N. Smirnov; Nathaniel J. Fisch

    2004-06-29

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed.

  7. Method of making electrolytic capacitor anodes

    SciTech Connect

    Melody, B.; Eickelberg, E.W.

    1987-05-12

    A method is described of making an anode for an electrolytic capacitor. The method comprises providing a powder consisting of a film-forming metal, polyethylene oxide, and ammonium carbonate; pressing the powder to form an anode body; and heating the anode body to remove the polyethylene oxide and ammonium carbonate.

  8. Anodization As A Repair Technique

    NASA Technical Reports Server (NTRS)

    Groff, Roy E.; Maloney, Robert D.; Reeser, Robert W.

    1988-01-01

    Thin, hard oxide layer added to aluminum part. Surfaces on aluminum part worn out of tolerance by no more than 0.004 in. often repaired by anodizing to build up aluminum oxide layers. Oxide layers very hard and grounded to desired final dimensions.

  9. Electrochemical cell with calcium anode

    DOEpatents

    Cooper, John F.; Hosmer, Pamela K.; Kelly, Benjamin E.

    1979-01-01

    An electrochemical cell comprising a calcium anode and a suitable cathode in an alkaline electrolyte consisting essentially of an aqueous solution of an hydroxide and a chloride. Specifically disclosed is a mechanically rechargeable calcium/air fuel cell with an aqueous NaOH/NaCl electrolyte.

  10. Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.

    1993-01-01

    1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.

  11. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1994-11-08

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  12. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  13. Anodic behavior of platinized titanium electrodes during the production of sodium hypochlorite solutions from natural waters

    SciTech Connect

    Mikhailova, L.A.; Khodkevich, S.D.; Yakimenko, L.M.

    1987-01-01

    Data obtained radiometrically are presented which relate to the influence of current density, temperature, and salinity of the electrolyte on the anodic dissolution rate of platinum sheet and of the platinum coating of platinized titanium electrodes in natural waters of different composition. The influence of current interruptions on the wear of the platinum coatings is estimated. The anodic dissolution rates of two forms of platinum coatings are compared, viz., freshly deposited and after prolonged prior polarization.

  14. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  15. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the

  16. Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

    SciTech Connect

    Lei Yang; Meilin Liu

    2008-12-31

    One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode

  17. High-temperature anodized WO3 nanoplatelet films for photosensitive devices.

    PubMed

    Sadek, Abu Z; Zheng, Haidong; Breedon, Michael; Bansal, Vipul; Bhargava, Suresh K; Latham, Kay; Zhu, Jianmin; Yu, Leshu; Hu, Zheng; Spizzirri, Paul G; Wlodarski, Wojtek; Kalantar-zadeh, Kourosh

    2009-08-18

    Anodization at elevated temperatures in nitric acid has been used for the production of highly porous and thick tungsten trioxide nanostructured films for photosensitive device applications. The anodization process resulted in platelet crystals with thicknesses of 20-60 nm and lengths of 100-1000 nm. Maximum thicknesses of approximately 2.4 microm were obtained after 4 h of anodization at 20 V. X-ray diffraction analysis revealed that the as-prepared anodized samples contain predominantly hydrated tungstite phases depending on voltage, while films annealed at 400 degrees C for 4 h are predominantly orthorhombic WO3 phase. Photocurrent measurements revealed that the current density of the 2.4 microm nanostructured anodized film was 6 times larger than the nonanodized films. Dye-sensitized solar cells developed using these films produced 0.33 V and 0.65 mA/cm2 in open- and short-circuit conditions. PMID:19627158

  18. -Based Cermet Inert Anodes for Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Tian, ZhongLiang; Lai, YanQing; Li, ZhiYou; Chai, DengPeng; Li, Jie; Liu, YeXiang

    2014-11-01

    The new aluminum electrolysis technology based on inert electrodes has received much interest for several decades because of the environment and energy advantages. The key to realize this technique is the inert anode. This article presents China's recent developments of NiFe2O4-based cermet inert anodes, which include the optimization of material performance, the joint between the cermet inert anode and metallic bar, as well as the results of 20 kA pilot testing for a large-size inert anode group. The problems NiFe2O4-based cermet inert anodes face are also discussed.

  19. Current and Future Trends in Magnetic Resonance Imaging Assessments of the Response of Breast Tumors to Neoadjuvant Chemotherapy

    PubMed Central

    Arlinghaus, Lori R.; Li, Xia; Levy, Mia; Smith, David; Welch, E. Brian; Gore, John C.; Yankeelov, Thomas E.

    2010-01-01

    The current state-of-the-art assessment of treatment response in breast cancer is based on the response evaluation criteria in solid tumors (RECIST). RECIST reports on changes in gross morphology and divides response into one of four categories. In this paper we highlight how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) may be able to offer earlier, and more precise, information on treatment response in the neoadjuvant setting than RECIST. We then describe how longitudinal registration of breast images and the incorporation of intelligent bioinformatics approaches with imaging data have the potential to increase the sensitivity of assessing treatment response. We conclude with a discussion of the potential benefits of breast MRI at the higher field strength of 3T. For each of these areas, we provide a review, illustrative examples from clinical trials, and offer insights into future research directions. PMID:20953332

  20. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    circumstances, no more Li+ ions can be intercalated but should be reduced to metallic form on the anode particle surface. This is validated by calculating the distribution of Li concentration inside the anode particle with electrochemical modeling. In part three, a novel pulse charge protocol is developed, which consists of two steps. First high current charge/discharge pulses increase the cell temperature from a subzero temperature up to above room temperature in a short time, and next, high current charge provides the net charge capacity. Sluggish Li diffusion at low temperature becomes fast thanks to cell temperature elevation by high current pulses (1st step), which plays a role of preventing surface saturation during high current charge (2nd step). Thus, this charge protocol is not only Li deposition-free but also leads to rapid charge at subzero temperatures.

  1. [Vernier Anode Design and Image Simulation].

    PubMed

    Zhao, Ai-rong; Ni, Qi-liang; Song, Ke-fei

    2015-12-01

    Based-MCP position-sensitive anode photon-counting imaging detector is good at detecting extremely faint light, which includes micro-channel plate (MCP), position-sensitive anode and readout, and the performances of these detectors are mainly decided by the position-sensitive anode. As a charge division anode, Vernier anode using cyclically varying electrode areas which replaces the linearly varying electrodes of wedge-strip anode can get better resolution and greater electrode dynamic range. Simulation and design of the Vernier anode based on Vernier's decode principle are given here. Firstly, we introduce the decode and design principle of Vernier anode with nine electrodes in vector way, and get the design parameters which are the pitch, amplitude and the coarse wavelength of electrode. Secondly, we analyze the effect of every design parameters to the imaging of the detector. We simulate the electron cloud, the Vernier anode and the detector imaging using Labview software and get the relationship between the pitch and the coarse wavelength of the anode. Simultaneously, we get the corresponding electron cloud for the designing parameters. Based on the result of the simulation and the practical machining demand, a nine electrodes Vernier anode was designed and fabricated which has a pitch of 891 µm, insulation width of 25 µm, amplitude of 50 µm, coarse pixel numbers of 5. PMID:26964205

  2. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    NASA Technical Reports Server (NTRS)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  3. Synthesis and characterization of anodized titanium-oxide nanotube arrays

    SciTech Connect

    Hu, Michael Z.; Lai, Peng; Bhuiyan, Md S; Tsouris, Costas; Gu, Baohua; Paranthaman, Mariappan Parans; Gabitto, Jorge; Harrison, L. D.

    2009-01-01

    Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

  4. Fabrication of advanced design (grooved) cermet anodes

    NASA Astrophysics Data System (ADS)

    Windisch, C. F., Jr.; Huettig, F. R.

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. The reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  5. Fabrication of advanced design (grooved) cermet anodes

    SciTech Connect

    Windisch, C.F. Jr.; Huettig, F.R.

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  6. A Comparative Study of Anodized Titania Nanotube Architectures in Aqueous and Nonaqueous Solutions

    SciTech Connect

    Sturgeon, Matthew R; Lai, Peng; Hu, Michael Z.

    2011-01-01

    The unique and highly utilized properties of TiO2 nanotubes are a direct result of nanotube architecture. In order to create different engineered architectures, the effects of electrolyte solution, time, and temperature on the anodization of titanium foil were studied along with the resultant anodized titanium oxide (ATO) nanotube architectures encompassing nanotube length, pore diameter, wall thickness, smoothness, and ordered array structure. Titanium foil was anodized in three different electrolyte solutions: one aqueous (consisting of NH4F and (NH4)2SO4)) and two nonaqueous (glycerin or ethylene glycol, both containing NH4F) at varying temperatures and anodization times. Variation in anodization applied voltage, initial current, and effect of F- ion concentration on ATO nanotube architecture were also studied. Anodization in the aqueous electrolyte produced short, rough nanotube arrays, whereas anodization in organic electrolytes produced long, smooth nanotube arrays greater than 10 m in length. Anodization in glycerin at elevated temperatures for several hours presents the possibility of producing freely dispersed individual nanotubes.

  7. Dynamic response for Dzyaloshinskii–Moriya interaction on bubble-like magnetic solitons driven by spin-polarized current

    NASA Astrophysics Data System (ADS)

    Chen, Shujun; Zhu, Qiyuan; Zhang, Senfu; Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-05-01

    By using micromagnetic simulations, we studied the dynamic response for different bubble-like magnetic solitons in the [CoPt-CoNi]/Cu/CoNi magnetic multilayer with perpendicular magnetic anisotropy. It is found that a localized spin-polarized current can not only nucleate a dissipative magnetic droplet but also excite the in-plane domain wall (DW) oscillation at the edge of bubble-like magnetic solitons. The dependence of oscillation frequency on current for the dissipative magnetic droplet is hysteretic in the absence of the Dzyaloshinskii–Moriya interactions (DMI). In the presence of DMI, three different bubble-like magnetic solitons are excited: (1) singular magnetic droplet, (2) pseudonormal magnetic droplet, (3) dynamical skyrmion. Meanwhile, the oscillation frequencies of these magnetic solitons have different response as current density varies. These results open up new possibilities for the applications of magnetic soliton-based spin transfer nano-oscillators.

  8. Statistical investigation on the role of supporting electrolytes during NTA degradation on BDD anodes.

    PubMed

    Wu, Jingyu; Du, Xiaoming; He, Zhenzhu; Zhang, Chunyong; Fu, Degang

    2016-03-01

    This work reported a comparative study on the electrochemical incineration of nitrilotriacetic acid (NTA) in the presence of different supporting electrolytes (Na2SO4 and NaCl). Galvanostatic electrolyses were conducted in an undivided electrochemical cell containing boron-doped diamond (BDD) anode and platinum cathode. Initial solution pH, flow rate, applied current density, and supporting electrolyte concentration were selected as variables, besides the mineralization efficiency of NTA that was selected as response. Central composite rotatable design and response surface methodology were employed here to examine the statistical significance of the selected variables, as well as to determine the optimal conditions of the degradation process. Under the same operating conditions, two regression models were thus constructed to illustrate the differing impact of supporting electrolytes in BDD anode cells. The kinetics for NTA degradation followed different reaction orders for the two scenarios (in the absence and presence of NaCl), indicating the complex interaction between hydroxyl radicals and active chlorine. Despite this, the experimental results demonstrated that effective mineralization of NTA might also be achieved in the presence of chlorides (of lower concentrations). Besides, in the case of chlorides, the average mass transfer coefficient of the system was found to be strongly dependent on the initial solution pH. Lastly, a plausible reaction sequence concerning the electrolytic oxidation of NTA in chloride media was also proposed. PMID:26578372

  9. Pilot demonstration of cerium oxide coated anodes. Final report, April 1990--October 1992

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ({approximately}1.5) and low current density (0.5 A/cm{sup 2}), a {ge}1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  10. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications

    NASA Astrophysics Data System (ADS)

    Biserni, Erika; Scarpellini, Alice; Li Bassi, Andrea; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-01

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ∼1000 μAh cm‑2 at a current density of 54 μA cm‑2, while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm‑2 is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  11. Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal

    NASA Astrophysics Data System (ADS)

    Siwy, Z.; Dobrev, D.; Neumann, R.; Trautmann, C.; Voss, K.

    For the preparation of a single asymmetrically shaped nanopore in a polyimide membrane, Kapton foils were irradiated with single heavy ions and subsequently etched from one side in sodium hypochlorite (NaOCl). The other side of the membrane was protected from etching by a stopping medium containing a reducing agent for hypochlorite ions (OCl-). The resulting conical nanopore rectified ion current and exhibited a stable ion-current flow.

  12. On the response to ocean surface currents in synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Phillips, O. M.

    1984-01-01

    The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.

  13. Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl(-) from anodic oxidation.

    PubMed

    Tian, Shichao; Li, Yibing; Zeng, Huabin; Guan, Wei; Wang, Yan; Zhao, Xu

    2016-11-15

    Cyanide is widely present in electroplating wastewater or metallurgical effluents. In the present study, the electrochemical destruction of cyanide with various anode and cathode compositions under alkaline conditions was investigated. The results indicated that the electrochemical system using RuO2/Ti as anode and activated carbon fiber (ACF) as cathode in the presence of sodium chloride was efficient for the cyanide removal. In this system, in situ generation of HClO by anodic oxidation of Cl(-) at RuO2/Ti anode occurred with the H2O2 generation by O2 reduction at ACF cathode. As confirmed by the electron spin resonance technique, the reaction between HClO and H2O2 led to the generation of singlet oxygen, which was responsible for the cyanide removal. Further experiment indicated that the cyanide removal efficiency increased with the increase of the current density or the sodium chloride concentration. Cyanate was identified as main product in the system. Besides, the system exhibited good stability for the cyanide removal, which was beneficial to its practical application. PMID:27505273

  14. Ultra-high density single nanometer-scale anodic alumina nanofibers fabricated by pyrophosphoric acid anodizing.

    PubMed

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (10(10) nanofibers/cm(2)) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  15. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  16. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  17. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  18. Variable anodic thermal control coating

    NASA Technical Reports Server (NTRS)

    Gilliland, C. S.; Duckett, J. (Inventor)

    1983-01-01

    A process for providing a thermal control solar stable surface coating for aluminum surfaces adapted to be exposed to solar radiation wherein selected values within the range of 0.10 to 0.72 thermal emittance (epsilon sub tau) and 0.2 to 0.4 solar absorptance (alpha subs) are reproducibly obtained by anodizing the surface area in a chromic acid solution for a selected period of time. The rate voltage and time, along with the parameters of initial epsilon sub tau and alpha subs, temperature of the chromic acid solution, acid concentration of the solution and the material anodized determines the final values of epsilon/tau sub and alpha sub S. 9 Claims, 5 Drawing Figures.

  19. Struvite precipitation and phosphorus removal using magnesium sacrificial anode.

    PubMed

    Kruk, Damian J; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-04-01

    Struvite precipitation using magnesium sacrificial anode as the only source of magnesium is presented. High-purity magnesium alloy cast anode was found to be very effective in recovery of high-quality struvite from water solutions and from supernatant of fermented waste activated sludge from a wastewater treatment plant that does not practice enhanced biological phosphorus removal. Struvite purity was strongly dependent on the pH and the electric current density. Optimum pH of the 24 mM phosphorus and 46 mM ammonia solution (1:1.9 P:N ratio) was in the broad range between 7.5 and 9.3, with struvite purity exceeding 90%. Increasing the current density resulted in elevated struvite purity. No upper limits were observed in the studied current range of 0.05-0.2 A. Phosphorus removal rate was proportional to the current density and comparable for tests with water solutions and with the supernatant from fermented sludge. The highest P-removal rate achieved was 4.0 mg PO4-P cm(-2) h(-1) at electric current density of 45 A m(-2). Initial substrate concentrations affected the rate of phosphorus removal. The precipitated struvite accumulated in bulk liquid with significant portions attached to the anode surface from which regular detachment occurred. PMID:24387911

  20. Response of IKr and hERG Currents to the Antipsychotics Tiapride and Sulpiride

    PubMed Central

    Lee, So-Young

    2010-01-01

    The human ether-a-go-go-related gene (hERG) channel is important for repolarization in human myocardium and is a common target for drugs that prolong the QT interval. We studied the effects of two antipsychotics, tiapride and sulpiride, on hERG channels expressed in Xenopus oocytes and also on delayed rectifier K+ currents in guinea pig cardiomyocytes. Neither the amplitude of the hERG outward currents measured at the end of the voltage pulse, nor the amplitude of hERG tail currents, showed any concentration-dependent changes with either tiapride or sulpiride (3~300 µM). However, our findings did show that tiapride increased the potential for half-maximal activation (V1/2) of HERG at 10~300 µM, whereas sulpiride increased the maximum conductance (Gmax) at 3, 10 and 100 µM. In guinea pig ventricular myocytes, bath applications of 100 and 500 µM tiapride at 36℃ blocked rapidly activating delayed rectifier K+ current (IKr) by 40.3% and 70.0%, respectively. Also, sulpiride at 100 and 500 µM blocked IKr by 38.9% and 76.5%, respectively. However, neither tiapride nor sulpiride significantly affected the slowly activating delayed rectifier K+ current (IKs) at the same concentrations. Our findings suggest that the concentrations of the antipsychotics required to evoke a 50% inhibition of IKr are well above the reported therapeutic plasma concentrations of free and total compound. PMID:21165329

  1. The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Choy, Wallace C. H.; Cho Chew, Weng

    2012-11-01

    A multiphysics study carries out on organic solar cells (OSCs) by solving Maxwell's and semiconductor equations simultaneously. By introducing a metallic rectangular-grating as the anode, surface plasmons are excited resulting in nonuniform exciton generation. Meanwhile, the internal E-field of plasmonic OSCs is modified with the modulated anode boundary. The plasmonic OSC improves 13% of short-circuit current but reduces 7% of fill factor (FF) compared to the standard one with a planar anode. The uneven photocarrier generation and transport by the grating anode are physical origins of the dropped FF. This work provides fundamental multiphysics modeling and understanding for plasmonic OSCs.

  2. Nonlinear response of magnetic islands to localized electron cyclotron current injection

    SciTech Connect

    Borgogno, D.; Comisso, L.; Grasso, D.; Lazzaro, E.

    2014-06-15

    The magnetic island evolution under the action of a current generated externally by electron cyclotron wave beams is studied using a reduced resistive magnetohydrodynamics plasma model. The use of a two-dimensional reconnection model shows novel features of the actual nonlinear evolution as compared to the zero-dimensional model of the generalized Rutherford equation. When the radio frequency control is applied to a small magnetic island, the complete annihilation of the island width is followed by a spatial phase shift of the island, referred as “flip” instability. On the other hand, a current-drive injection in a large nonlinear island can be accompanied by the occurrence of a Kelvin-Helmholtz instability. These effects need to be taken into account in designing tearing mode control systems based on radio frequency current-drive.

  3. Fe-30Ni-5NiO alloy as inert anode for low-temperature aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Zhu, Yuping; He, Yedong; Wang, Deren

    2011-05-01

    Fe-30Ni-5NiO alloy anodes were prepared by a spark plasma sintering process for aluminum electrolysis. NiO nano-particles with the size of ˜20 nm were dispersed in the anodes. The oxidation behaviors of the anodes were investigated at 800°C and 850°C, respectively. The electrolysis corrosion behaviors were tested in a cryolite-alumina electrolyte at a low temperature of 800°C with anodic current densities of ˜0.5 A/cm2. The results indicated that the oxidation kinetic of the anodes followed a parabolic law. A continuous Fe2O3 film selectively formed on the surface of the anode during the electrolysis process. A semi-continuous Al2O3 layer was observed at oxide film/alloy interface, probably caused by an in-situ chemical dissolution process.

  4. Disposable Copper-Based Electrochemical Sensor for Anodic Stripping Voltammetry

    PubMed Central

    2015-01-01

    In this work, we report the first copper-based point-of-care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 μA/μM in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time, and high accuracy at low concentrations of analyte. PMID:24773513

  5. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features

    PubMed Central

    Rajyalakshmi, Amancherla; Ercan, Batur; Balasubramanian, K; Webster, Thomas J

    2011-01-01

    One of the important prerequisites for a successful orthopedic implant apart from being osteoconductive is the elicitation of a favorable immune response that does not lead to the rejection of the implant by the host tissue. Anodization is one of the simplest surface modification processes used to create nanotextured and nanotubular features on metal oxides which has been shown to improve bone formation. Anodization of titanium (Ti) leads to the formation of TiO2 nanotubes on the surface, and the presence of these nanotubes mimics the natural nanoscale features of bone, which in turn contributes to improved bone cell attachment, migration, and proliferation. However, inflammatory cell responses on anodized Ti remains to be tested. It is hypothesized that surface roughness and surface feature size on anodized Ti can be carefully manipulated to control immune cell (specifically, macrophages) responses. Here, when Ti samples were anodized at 10 V in the presence of 1% hydrofluoric acid (HF) for 1 minute, nanotextured (nonnanotube) surfaces were created. When anodization of Ti samples was carried out with 1% HF for 10 minutes at 15 V, nanotubes with 40–50 nm diameters were formed, whereas at 20 V with 1% HF for 10 minutes, nanotubes with 60–70 nm diameters were formed. In this study, a reduced density of macrophages was observed after 24 hours of culture on nanotextured and nanotubular Ti samples which were anodized at 10, 15, and 20 V, compared with conventional unmodified Ti samples. This in vitro study thus demonstrated a reduced density of macrophages on anodized Ti, thereby providing further evidence of the greater efficacy of anodized Ti for orthopedic applications. PMID:21980239

  6. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.

    PubMed

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-28

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g(-1) and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states. PMID:25587843

  7. Carrier transport in multilayer organic photodetectors: II. Effects of anode preparation

    NASA Astrophysics Data System (ADS)

    Xue, Jiangeng; Forrest, Stephen R.

    2004-02-01

    We address the effects of anode preparation on the performance of multilayer organic photodetectors introduced in the accompanying article (Part I) [J. Xue and S. R. Forrest, J. Appl. Phys. 95, 1859 (2004)]. Using atomic force microscopy and ultraviolet photoemission spectroscopy, we find that the surface morphology and electronic properties of indium-tin-oxide (ITO) anodes depend strongly on the anode preparation. ITO films deposited by rf magnetron sputtering at room temperature have smoother surfaces and 0.1-0.3 eV lower work functions than commercially obtained ITO films. Oxygen plasma and ultraviolet (UV)-ozone treatment can both increase the ITO work function, although the mechanisms leading to the increase have different origins. The dark current in a multilayer organic photodetector is reduced when the anode has a high work function, which agrees with our conclusion in Part I that electron tunneling injection from the anode into the organic active region dominates the dark current. The quantum efficiency of multilayer organic photodetectors is reduced by ˜10% for ITO anodes exposed to oxygen plasma or UV ozone, possibly due to an increased density of defect states at the anode/organic interface.

  8. Membrane current responses of NG108-15 mouse neuroblastoma x rat glioma hybrid cells to bradykinin.

    PubMed Central

    Brown, D A; Higashida, H

    1988-01-01

    1. Membrane current responses to focal application of bradykinin (BK) were recorded in voltage-clamped NG108-15 neuroblastoma x glioma hybrid cells. 2. BK produced sequential outward and inward currents at clamp potentials between -60 and -30 mV, designated IBK(out) and IBK(in), respectively. 3. The outward current IBK(out) was accompanied by an increased membrane conductance. Ramp current-voltage (I-V) curves yielded a reversal potential (VBK) of -80 +/- 5.6 mV (mean +/- S.D., n = 9) in 5.4 mM [K+]o. VBK showed a positive shift on raising [K+]o, compatible with a primary increase in K+ conductance. Subtracted I-V curves indicated that the underlying conductance was not strongly voltage dependent between -120 and -40 mV. 4. IBK(out) was inhibited by d-tubocurarine (dTC, 0.1-0.5 mM) but was insensitive to tetraethylammonium (TEA) below 5 mM. 5. The inward current IBK(in) was accompanied by a fall in membrane conductance. This was associated with the inhibition of a time- and voltage-dependent K+ current, IM. In consequence, IBK(in) was strongly voltage dependent and dissipated, usually without reversal, on hyperpolarizing the cell beyond -70 mV in 5.4 mM [K+]o. Reversal to an outward current negative to -40 mV could be obtained on raising [K+]o to 54 mM. 5. Both IBK(in) and IBK(out) persisted when ICa was blocked with Co2+ or Cd2+. IBK(out) slowly diminished in Ca2+-free, Mg2+-substituted solution. 6. The Ca2+ spike current ICa and the Ca2+-activated K+ current IAHP were inhibited during IBK(out) or after Ca2+ injections. BK did not affect the voltage-activated K+ current IK(V) recorded in Co2+ solution. 7. It is concluded that the dual response to BK results from opposing effects on two different species of K+ current. IBK(out) results from activation of a Ca2+-dependent, voltage-insensitive K+ conductance, probably mediated by a transient rise in intracellular Ca2+. It is suggested that the Ca2+ is released from an intracellular store. IBK(in) results primarily

  9. Attachment insecurity, responses to critical incident distress, and current emotional symptoms in ambulance workers.

    PubMed

    Halpern, Janice; Maunder, Robert G; Schwartz, Brian; Gurevich, Maria

    2012-02-01

    Ambulance workers are exposed to critical incidents that may evoke intense distress and can result in long-term impairment. Individuals who can regulate distress may experience briefer post-incident distress and fewer long-term emotional difficulties. Attachment research has contributed to our understanding of individual differences in stress regulation, suggesting that secure attachment is associated with effective support-seeking and coping strategies, and fewer long-term difficulties. We tested the effect of attachment insecurity on emotional distress in ambulance workers, hypothesizing that (1) insecure attachment is associated with symptoms of current distress and (2) prolonged recovery from acute post-critical incident distress, coping strategies and supportive contact mediate this relationship. We measured (1) attachment insecurity, (2) acute distress, coping and social contact following an index critical incident and (3) current symptoms of post-traumatic stress, depression, somatization and burnout and tested the hypothesized associations. Fearful-avoidant insecure attachment was associated with all current symptoms, most strongly with depression (R=0.38, p<0.001). Fearful-avoidant attachment insecurity was also associated with maladaptive coping, reduced social support and slower recovery from social withdrawal and physical arousal following the critical incident, but these processes did not mediate the relationship between attachment insecurity and current symptoms. These findings are relevant for optimizing post-incident support for ambulance workers. PMID:22259158

  10. A Comprehensive Response to the Coalition: How Should We Approach Current Government Policies on Education?

    ERIC Educational Resources Information Center

    Benn, Melissa

    2010-01-01

    In this article the author offers a few interim thoughts on how those of us campaigning for a comprehensive future should think about, and publicly respond to, the education policies of the current Coalition government and the new direction of the Labour Party. (Contains 1 note.)

  11. Theoretical prediction of remote-field eddy current response for the nondestructive evaluation of metallic tubes

    NASA Astrophysics Data System (ADS)

    Palanisamy, R.

    1987-04-01

    The remote-field eddy current effect refers to low-frequency eddy current nondestructive testing (NDT) phenomenon in tubular conductors in which the behavior of both amplitude and phase of induced magnetic field are in apparent contradiction to the well-known ``skin-effect'' theory. Near-equal detection sensitivity across the wall thickness, the ability to measure wall thickness, and the absence of lift-off problems are some of the attractive features of this technique. Despite its early recognition and useful application in down-hole inspection of oil-well casing, no development of adequate scientific basis that could explain this phenomenon has been reported in the open literature. Modeling of the remote-field eddy current phenomenon using the axisymmetric finite element computer code is described in this paper. The results presented show that the finite element numerical technique originally developed for the computation of fields in electrical and magnetic devices can be used as well for the modeling of remote-field eddy current NDT problems.

  12. Higher Education in Kenya: An Assessment of Current Responses to the Imperative of Widening Access

    ERIC Educational Resources Information Center

    Odhiambo, George

    2016-01-01

    Higher education is a key factor in a nation's effort to develop a highly skilled workforce for competing in the global economy. In this paper, current trends in accessibility, equity, participation and financing of higher education in Kenya are examined. The paper explores the challenges which need to be confronted and discusses the way forward…

  13. The Promise of Response to Intervention: Evaluating Current Science and Practice

    ERIC Educational Resources Information Center

    Glover, Todd A., Ed.; Vaughn, Sharon, Ed.

    2010-01-01

    As response to intervention (RTI) is adopted by increasing numbers of schools and districts, knowledge about "what works" continues to grow. This much-needed book analyzes the key components of RTI service delivery and identifies the characteristics of successful implementation. Critically reviewing the available research, leading authorities…

  14. "Old Habits Die Hard:" Past and Current Issues Pertaining to Response-to-Intervention

    ERIC Educational Resources Information Center

    Restori, Alberto F.; Gresham, Frank M.; Cook, Clayton R.

    2008-01-01

    When Congress passed the Individuals with Disabilities Education Improvement Act in 2004 (IDEIA 2004), local educational agencies (LEA) were permitted to use a Response-to-Intervention (RtI) approach for identifying children with possible learning disabilities for special education. Furthermore, IDEIA 2004 no longer required LEAs to establish an…

  15. Current Developments in School Education in Turkey: Education "Reforms" and Teacher Trade Union Responses

    ERIC Educational Resources Information Center

    Buyruk, Halil

    2015-01-01

    Education "reforms"' have been accelerated in the last decade in Turkey. Teachers, as the main actors of the education system, have developed a variety of responses to the reforms implemented in the field of education, both individually and collectively. They give directions to the change process in education by means of their trade…

  16. Current Challenges in Social Work Distance Education: Responses from the Elluminati

    ERIC Educational Resources Information Center

    Pelech, William; Wulff, Dan; Perrault, Ellen; Ayala, Jessica; Baynton, Myra; Williams, Margaret; Crowder, Rachael; Shankar, Janki

    2013-01-01

    One of the first tasks of the Social Work Distance Education Network at the Faculty of Social Work at the University of Calgary was to review the literature and address three research questions to inform policy making and planning relating to distance social work education programming. This paper is intended to disseminate responses to these…

  17. Acid blue 29 decolorization and mineralization by anodic oxidation with a cold gas spray synthesized Sn-Cu-Sb alloy anode.

    PubMed

    do Vale-Júnior, Edilson; Dosta, Sergi; Cano, Irene Garcia; Guilemany, Josep Maria; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2016-04-01

    The elevated cost of anodic materials used in the anodic oxidation for water treatment of effluents undermines the real application of these technologies. The study of novel alternative materials more affordable is required. In this work, we report the application of Sn-Cu-Sb alloys as cheap anodic material to decolorize azo dye Acid Blue 29 solutions. These anodes have been synthesized by cold gas spray technologies. Almost complete decolorization and COD abatement were attained after 300 and 600 min of electrochemical treatment, respectively. The influence of several variables such as supporting electrolyte, pH, current density and initial pollutant concentration has been investigated. Furthermore, the release and evolution of by-products was followed by HPLC to better understand the oxidative power of Sn-Cu-Sb electrodes. PMID:26802262

  18. Proton pump inhibitor-responsive oesophageal eosinophilia: an entity challenging current diagnostic criteria for eosinophilic oesophagitis.

    PubMed

    Molina-Infante, Javier; Bredenoord, Albert J; Cheng, Edaire; Dellon, Evan S; Furuta, Glenn T; Gupta, Sandeep K; Hirano, Ikuo; Katzka, David A; Moawad, Fouad J; Rothenberg, Marc E; Schoepfer, Alain; Spechler, Stuart J; Wen, Ting; Straumann, Alex; Lucendo, Alfredo J

    2016-03-01

    Consensus diagnostic recommendations to distinguish GORD from eosinophilic oesophagitis (EoE) by response to a trial of proton pump inhibitors (PPIs) unexpectedly uncovered an entity called 'PPI-responsive oesophageal eosinophilia' (PPI-REE). PPI-REE refers to patients with clinical and histological features of EoE that remit with PPI treatment. Recent and evolving evidence, mostly from adults, shows that patients with PPI-REE and patients with EoE at baseline are clinically, endoscopically and histologically indistinguishable and have a significant overlap in terms of features of Th2 immune-mediated inflammation and gene expression. Furthermore, PPI therapy restores oesophageal mucosal integrity, reduces Th2 inflammation and reverses the abnormal gene expression signature in patients with PPI-REE, similar to the effects of topical steroids in patients with EoE. Additionally, recent series have reported that patients with EoE responsive to diet/topical steroids may also achieve remission on PPI therapy. This mounting evidence supports the concept that PPI-REE represents a continuum of the same immunological mechanisms that underlie EoE. Accordingly, it seems counterintuitive to differentiate PPI-REE from EoE based on a differential response to PPI therapy when their phenotypic, molecular, mechanistic and therapeutic features cannot be reliably distinguished. For patients with symptoms and histological features of EoE, it is reasonable to consider PPI therapy not as a diagnostic test, but as a therapeutic agent. Due to its safety profile, ease of administration and high response rates (up to 50%), PPI can be considered a first-line treatment before diet and topical steroids. The reasons why some patients with EoE respond to PPI, while others do not, remain to be elucidated. PMID:26685124

  19. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    SciTech Connect

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-02-28

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  20. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-02-01

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  1. Effects of constant or dynamic low anode potentials on microbial community development in bioelectrochemical systems.

    PubMed

    Yan, Hengjing; Yates, Matthew D; Regan, John M

    2015-11-01

    In bioelectrochemical systems, exoelectrogenic bacteria respire with anode electrodes as their extracellular electron acceptor; therefore, lower anode potentials can reduce the energy gain to each microbe and select against ones that are not able to respire at a lower potential range. Often fully developed anode communities are compared across bioelectrochemical systems with set anode potentials or fixed external resistances as different operational conditions. However, the comparative effect of the resulting constantly low versus dynamically low anode potentials on the development of anode microbial communities as well as the final cathode microbial communities has not been directly demonstrated. In this study, we used a low fixed anode potential of -250 mV and a higher-current control potential of -119 mV vs. Standard Hydrogen Electrode to approximately correspond with the negative peak anode potential values obtained from microbial fuel cells operated with fixed external resistances of 1 kΩ and 47 Ω, respectively. Pyrosequencing data from a 2-month time series show that a lower set anode potential resulted in a more diverse community than the higher- and variable-potential systems, likely due to the hindered enrichment of a Geobacter-dominated community with limited energy gain at this set potential. In this case, it appears that the selective pressure caused by the low set potential was counteracted by the low energy gain over a 2-month time scale. The air cathode microbial community with constant low anode potentials showed delayed enrichment of denitrifiers or perchlorate-reducing bacteria compared to the fixed external resistance condition. PMID:26286510

  2. Modelling the growth process of porous aluminum oxide film during anodization

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  3. Efficient organic light-emitting diode using semitransparent silver as anode

    SciTech Connect

    Peng Huajun; Zhu Xiuling; Sun Jiaxin; Xie Zhiliang; Xie Shuang; Wong Man; Kwok, H.-S.

    2005-10-24

    A semitransparent silver layer is investigated as the anode for organic light-emitting devices (OLEDs). By pretreating the silver layer in a CF{sub 4} plasma, hole injection into the hole-transport layer is greatly enhanced. A bottom-emitting OLED using the modified, semitransparent silver anode, demonstrates improved current density-voltage characteristics and a 20% higher external quantum efficiency, compared to a conventional OLED using indium tin oxide as an anode. The superior optical characteristics are attributed to a higher outcoupling efficiency in the microcavity structure.

  4. High Rate and Stable Cycling of Lithium Metal Anode

    SciTech Connect

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  5. Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    NASA Astrophysics Data System (ADS)

    Ding, Gu Qiao; Yang, Rong; Ding, Jian Ning; Yuan, Ning Yi; Zhu, Yuan Yuan

    2010-08-01

    Anodization of Al foil under low voltages of 1-10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6-10 nm were realized in four different electrolytes under 0-30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2-60 s. It is discovered for the first time that the regular nanoparticles come into being under 1-10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs.

  6. Controlling the Electron Energy Distribution Function Using an Anode

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.; Barnat, Edward V.; Hopkins, Mathew M.

    2014-10-01

    Positively biased electrodes inserted into plasmas influence the electron energy distribution function (EEDF) by providing a sink for low energy electrons that would otherwise be trapped by ion sheaths at the chamber walls. We develop a model for the EEDF in a hot filament generated discharge in the presence of positively biased electrodes of various surface areas, and compare the model results with experimental Langmuir probe measurements and particle-in-cell simulations. In the absence of an anode, the EEDF is characterized by a cool trapped population at energies below the sheath energy, and a comparatively warm tail population associated with the filament primaries. Anodes that are small enough to collect a negligible fraction of the electrons exiting the plasma have little affect on the EEDF, but as the anode area approaches √{me /mi }Aw , where Aw is the chamber wall area, the anode collects most of the electrons leaving the plasma. This drastically reduces the density of the otherwise trapped population, causing an effective heating of the electrons and a corresponding density decrease. A global model is developed based on the EEDF model and current balance, which shows the interconnected nature of the electron temperature, density and the plasma potential. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under Contract DE-AC04-94SL85000, and by the University of Iowa Old Gold Program.

  7. High rate and stable cycling of lithium metal anode

    SciTech Connect

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  8. Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    PubMed Central

    2010-01-01

    Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs. PMID:20676199

  9. Vanishing of the negative anode sheath in a Hall thruster

    SciTech Connect

    Ahedo, E.; Rus, J.

    2005-08-15

    The transition on a Hall thruster discharge from negative to zero anode sheaths is studied with a macroscopic, stationary model. Since electron drift velocities become of the order of the thermal velocity, inertial effects on electrons must be included in the model. For thrusters with the Hall parameter still large at the anode, these effects appear only in a thin region and bound the electron azimuthal velocity at the anode to values of the order of the thermal velocity. The no-sheath regime is reached when the discharge voltage is decreased and corresponds to a small and nonmonotonic portion of the voltage-current curve. Possible connections of this behavior with experimental results are suggested. Modifications on the discharge characteristics at the regime transition are analyzed. Energy losses at the lateral walls decrease with the discharge voltage, due to the changes on the temperature profile, whereas energy losses at the anode increase only moderately. The thrust efficiency presents a maximum within the negative-sheath regime.

  10. High rate and stable cycling of lithium metal anode

    DOE PAGESBeta

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less

  11. Relating MEC population dynamics to anode performance from DGGE and electrical data.

    PubMed

    Croese, Elsemiek; Keesman, Karel J; Widjaja-Greefkes, Aura H C A; Geelhoed, Jeanine S; Plugge, Caroline M; Sleutels, Tom H J A; Stams, Alfons J M; Euverink, Gert-Jan W

    2013-09-01

    The microbial electrolysis cell (MEC) is a promising system for H2 production, but little is known about the active microbial population in MEC systems. Therefore, the microbial community of five different MEC graphite felt anodes was analyzed using denaturing gradient gel electrophoresis (DGGE) profiling. The results showed that the bacterial population was very diverse and there were substantial differences between microorganisms in anolyte and anode samples. The archaeal population in the anolyte and at the anodes, and between the different MEC anodes, was very similar. SEM and FISH imaging showed that Archaea were mainly present in the spaces between the electrode fibers and Bacteria were present at the fiber surface, which suggested that Bacteria were the main microorganisms involved in MEC electrochemical activity. Redundancy analysis (RDA) and QR factorization-based estimation (QRE) were used to link the composition of the bacterial community to electrochemical performance of the MEC. The operational mode of the MECs and their consequent effects on current density and anode resistance on the populations were significant. The results showed that the community composition was most strongly correlated with current density. The DGGE band mostly correlated with current represented a Clostridium sticklandii strain, suggesting that this species had a major role in current from acetate generation at the MEC anodes. The combination of RDA and QRE seemed especially promising for obtaining an insight into the part of the microbial population actively involved in electrode interaction in the MEC. PMID:23830069

  12. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  13. Microbial fuel cell with improved anode

    DOEpatents

    Borole, Abhijeet P.

    2010-04-13

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  14. Ion flow through a membrane: concentration and current responses to a step potential change.

    PubMed Central

    Hays, T R; Buckwalter, C Q; Lin, S H; Eyring, H

    1978-01-01

    Solutions of the simplified time-dependent Nernst-Planck electrodiffusion equations for various membrane models under the influence of a step voltage change are presented. Comparison of the results for a membrane with continuous sites to those for membranes with two, three or five intermediate sites shows little difference either qualitatively or quantitatively in the concentration of the diffusible ion inside the membrane, although some quantitative differences are evident in the calculated currents. PMID:273894

  15. A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response

    PubMed Central

    Onuki, Yoshinori; Bhardwaj, Upkar; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2008-01-01

    In recent years, a variety of devices (drug-eluting stents, artificial organs, biosensors, catheters, scaffolds for tissue engineering, heart valves, etc.) have been developed for implantation into patients. However, when such devices are implanted into the body, the body can react to these in a number of different ways. These reactions can result in an unexpected risk for patients. Therefore, it is important to assess and optimize the biocompatibility of implantable devices. To date, numerous strategies have been investigated to overcome body reactions induced by the implantation of devices. This review focuses on the foreign body response and the approaches that have been taken to overcome this. The biological response following device implantation and the methods for biocompatibility evaluation are summarized. Then the risks of implantable devices and the challenges to overcome these problems are introduced. Specifically, the challenges used to overcome the functional loss of glucose sensors, restenosis after stent implantation, and calcification induced by implantable devices are discussed. PMID:19885290

  16. Sexual assault and current mental health: the role of help-seeking and police response.

    PubMed

    Kaukinen, Catherine; Demaris, Alfred

    2009-11-01

    We examine the extent to which seeking help from social service agencies, family and friends, reporting to the police, or responses by the police might buffer or exacerbate the impact of sexual assault on mental health outcomes among sexual assault victims.The trend in many cases was for help-seeking and police response to exacerbate the impact of sexual assault victimization. With respect to depression, we found that the association of rape penetration was greater among those seeking help from social services and those reporting their victimization to the police. Although arresting the offender appears to be associated with higher levels of depression, it actually results in a lower probability of heavy episodic drinking. PMID:19809097

  17. Cognitive remediation for schizophrenia: current status, biological correlates and predictors of response.

    PubMed

    Kurtz, Matthew M

    2012-07-01

    Cognitive remediation (CR) is an increasingly studied behavioral intervention for improving illness-linked cognitive deficits in schizophrenia, with considerable promise for improving the disease outcome when offered in concert with other therapies. We present findings from a comprehensive, critical review of the extant literature on CR for schizophrenia. Conclusions from six meta-analyses presented to date are summarized, and existing CR interventions are categorized into three major classes: restorative, strategy-based and hybrid approaches. The crucial elements and empirical support for each class are presented. Studies of predictors of treatment response suggest that attention, motivation and clinician expertise, along with the measures of 'brain reserve', are key features of a positive treatment response. Lastly, findings from studies of neuroimaging indicate that CR is accompanied by structural and functional neural changes in key frontal and temporal brain regions. PMID:22853789

  18. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    NASA Astrophysics Data System (ADS)

    Vicca, S.; Bahn, M.; Estiarte, M.; van Loon, E. E.; Vargas, R.; Alberti, G.; Ambus, P.; Arain, M. A.; Beier, C.; Bentley, L. P.; Borken, W.; Buchmann, N.; Collins, S. L.; de Dato, G.; Dukes, J. S.; Escolar, C.; Fay, P.; Guidolotti, G.; Hanson, P. J.; Kahmen, A.; Kröel-Dulay, G.; Ladreiter-Knauss, T.; Larsen, K. S.; Lellei-Kovacs, E.; Lebrija-Trejos, E.; Maestre, F. T.; Marhan, S.; Marshall, M.; Meir, P.; Miao, Y.; Muhr, J.; Niklaus, P. A.; Ogaya, R.; Peñuelas, J.; Poll, C.; Rustad, L. E.; Savage, K.; Schindlbacher, A.; Schmidt, I. K.; Smith, A. R.; Sotta, E. D.; Suseela, V.; Tietema, A.; van Gestel, N.; van Straaten, O.; Wan, S.; Weber, U.; Janssens, I. A.

    2014-06-01

    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation

  19. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    PubMed

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms. PMID:27587166

  20. Novel trench gate field stop IGBT with trench shorted anode

    NASA Astrophysics Data System (ADS)

    Xudong, Chen; Jianbing, Cheng; Guobing, Teng; Houdong, Guo

    2016-05-01

    A novel trench field stop (FS) insulated gate bipolar transistor (IGBT) with a trench shorted anode (TSA) is proposed. By introducing a trench shorted anode, the TSA-FS-IGBT can obviously improve the breakdown voltage. As the simulation results show, the breakdown voltage is improved by a factor of 19.5% with a lower leakage current compared with the conventional FS-IGBT. The turn off time of the proposed structure is 50% lower than the conventional one with less than 9% voltage drop increased at a current density of 150 A/cm2. Additionally, there is no snapback observed. As a result, the TSA-FS-IGBT has a better trade-off relationship between the turn off loss and forward drop. Project supported by the National Natural Science Foundation of China (No. 61274080) and the Postdoctoral Science Foundation of China (No. 2013M541585).

  1. Determining Prebaked Anode Properties for Aluminum Production

    NASA Astrophysics Data System (ADS)

    Fischer, W. K.; Perruchoud, R.

    1987-11-01

    Critical to the performance of an aluminum reduction cell is anode quality and durability. In recognition of this consideration, the aluminum industry uses a number of standardized tests to evaluate baked anode samples. In addition to these routine evaluation procedures, recent innovations have led to newer methods which are helpful in diagnosing anode problems and improving net carbon usage. Recent work in particular has enlightened operators in such areas as carboxy reactivity, air reactivity, and thermal shock.

  2. Anodizing And Sealing Aluminum In Nonchromated Solutions

    NASA Technical Reports Server (NTRS)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  3. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-07-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  4. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-03-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  5. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-12-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2'-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified.

  6. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    SciTech Connect

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-12-07

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2{sup ′}-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified.

  7. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase.

    PubMed

    Mineo, H; Lin, S H; Fujimura, Y; Xu, J; Xu, R X; Yan, Y J

    2013-12-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2'-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified. PMID:24320379

  8. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    SciTech Connect

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  9. Frequency-dependent reduction of voltage-gated sodium current modulates retinal ganglion cell response rate to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2011-10-01

    The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.

  10. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment.

    PubMed

    Garcia-Segura, Sergi; Keller, Jürg; Brillas, Enric; Radjenovic, Jelena

    2015-01-01

    Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl(-) ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl2/HClO/ClO(-)), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO(-) species led to the production of ClO3(-) and ClO4(-) ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment. PMID:25464295

  11. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  12. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-06-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  13. Effective probe response calculation using impedance boundary condition in eddy current NDE problems with massive conducting regions present

    SciTech Connect

    Badics, Z.; Matsumoto, Y.; Aoki, K.; Nakayasu, F.

    1996-05-01

    A 3-D finite element scheme is described for calculating probe responses in eddy current NDE problems if massive conducting regions with small penetration depth are in the vicinity of the host specimen. These problems are related to the eddy current inspection of the tube support plate or tube sheet zones in PWR steam generator tubing. Recently, an efficient finite element scheme has been introduced to calculate the probe responses outside these zones. As a sequel to that work, the authors extend here the technique for the tube support plate and the tube sheet zones. They use impedance boundary conditions (IBC) on the surface of the massive conductors and evaluate the probe responses due to these components by performing an integral over these IBC surfaces, thereby ensuring the same accuracy as in the previous work for the flaw signals. Benchmark problems--models of tube support plate zones with defects--have been measured and analyzed. The calculated probe responses show good agreement with the experimental data.

  14. Coke calcination levels and aluminum anode quality

    SciTech Connect

    Dreyer, C.; Samanos, B.; Vogt, F.

    1996-10-01

    The calcination temperature of petroleum coke for aluminum anode applications has been generally increased during the past 10 years. This change by coke suppliers has often been done at the request of anode manufacturers (smelters) who seek special quality requirements for the calcined coke. Such an increase in calcining temperatures not only affects coke properties, but also has an effect on calciner operations and may have some unexpected effects on anode quality. One high and one low sulfur coke were calcined industrially at two different levels. The four individual calcined cokes were characterized. Then laboratory scale anodes were produced with each individual calcined coke. These all-coke anodes were first evaluated for optimum pitch content. Then the anodes were baked over a range of temperatures (920 to 1,260 C) in order to evaluate the influence of this heat treatment on anode properties. The results show the influence of calcining temperature on coke properties and anode properties, including the most important influence of the anode baking level.

  15. Surface modifications for carbon lithium intercalation anodes

    DOEpatents

    Tran, Tri D.; Kinoshita, Kimio

    2000-01-01

    A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

  16. Current response to wind in the Chukchi Sea: A regional coastal upwelling event

    NASA Astrophysics Data System (ADS)

    Johnson, Walter R.

    1989-02-01

    A cruise was conducted on the NOAA ship Oceanographer in August and September 1986 in the Chukchi Sea. Four short-term moorings were instrumented with sediment traps and Aanderaa RCM4 current meters. The currents at the three moorings near the Alaskan coast indicate a reversal of the normal northeastward flow to southwestward. This reversal was produced by wind, which had begun to blow from the east-northeast at up to 4.2 m s-1. The temperature time series indicated that upwelling colder water was moving upward near the coast. The nearshore mooring had the largest amplitude variation of currents and the largest temperature variation. The amplitude of the reversal decreased offshore. The station farthest from the coast was near the ice edge and on the other side of Barrow Canyon and a subsea bank. The flow there was consistently toward the east and is only poorly related to the wind. Water mass analysis was conducted using two techniques; the first was a traditional TS diagram method, and the second was a cluster analysis on TS pairs for the surface and near-bottom waters. Based on the shapes of the TS curves and their positions on the TS diagrams, a map of the water masses was constructed. A cluster analysis was performed on the surface TS pairs from each station and separately for the bottom TS pairs. For both of these techniques, the line separating the groupings follows the temperature contours (5° at the surface and 4° at the bottom) and the bottom salinity contours (32.5 PSU).

  17. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation

    PubMed Central

    Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R.; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula

    2014-01-01

    Aim Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Methods and results Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca2+ channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP–cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. Conclusion NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost. PMID:24336332

  18. Pulpal and periradicular response to caries: current management and regenerative options.

    PubMed

    Chogle, Sami M A; Goodis, Harold E; Kinaia, Bassam Michael

    2012-07-01

    The pulp-dentin complex is a strategic and dynamic barrier to various insults that plague the dentition. Researchers have yet to understand the complete potential of this shifting junction and its components. The most common cause of injury to the pulp-dentin complex is carious breakdown of enamel and dentin. In recent years, there has been a change in restorative management of caries. The emphasis is on strategies to preserve dentin and protect the pulp. This article provides a brief review of the effect of caries on the pulp, of subsequent events on the periradicular tissues, and of current understanding of treatment modalities. PMID:22835535

  19. Anodic etching of p-type cubic silicon carbide

    NASA Technical Reports Server (NTRS)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  20. Regional distribution of ionic currents and membrane voltage responses of type II hair cells in the vestibular neuroepithelium.

    PubMed

    Weng, T; Correia, M J

    1999-11-01

    Basolateral ionic currents and membrane voltage responses were studied in pigeon vestibular type II hair cells using a thin slice through either the semicircular canal (SCC) crista or utricular macular epithelium. Whole cell tight-seal patch-clamp recording techniques were used. Current-clamp and voltage-clamp studies were carried out on the same cell. One hundred ten cells were studied in the peripheral (Zone I) and central (Zone III) zones of the SCC crista, and 162 cells were studied in the striolar (S Zone) and extrastriolar (ES Zone) zones of the utricular macula. One of the major findings of this paper is that hair cells with fast activation kinetics of their outward currents are found primarily in one region of the SCC crista and utricular macula, whereas hair cells with slow activation kinetics are found in a different region. In Zone I of the crista, 95% of the cells have fast activation kinetics ("fast" cells) and in Zone III of the crista, 86% of the cells have slow activation kinetics ("slow" cells). In the utricular macula slice, 100% of the cells from the S Zone are slow cells, whereas 86% of the cells from the ES Zones are fast cells. Oscillation frequency (f) and quality factor (Q) of the damped oscillations of the membrane potential during extrinsic current injections were studied in hair cells in the different regions. The slow cells in Zone III and in the S Zone have a statistically significantly lower f, as a function of the amplitude of injected current, when compared with the fast cells in Zone I and the ES Zone. Although Q varied over a small range and was <2.6 for all cells tested, there was a statistically significant difference between Q for the membrane oscillations of the slow cells and fast cells in response to a range of current injections. PMID:10561418

  1. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    PubMed Central

    2011-01-01

    Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs) undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF) and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR) were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP) and collagen type 1 (col1), and stress response markers, such as heat shock protein 27 (hsp27) and heat shock protein 70 (hsp70). Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG) imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p < 0.05) in samples exposed to the electric field. A delayed but two fold increase in ALP and col1 transcript was detected by week 2 (p < 0.05) in differentiating hMSCs exposed to an electric field in comparison to the nonstimulated controls. Upregulation in stress marker, hsp27, and type 1 collagen deposition were correlated with this response. Increases in NADH, FAD, and lipofuscin were traced in the stimulation group during the first week of field exposure with differences statistically significant on day 10 (p < 0.05). Changes in hsp27 expression correlate well with changes in lipofuscin

  2. A Primer on Audience Response Systems: Current Applications and Future Considerations

    PubMed Central

    Robinson, Evan

    2008-01-01

    Audience response systems (ARSs) are an increasingly popular tool in higher education for promoting interactivity, gathering feedback, preassessing knowledge, and assessing students' understanding of lecture concepts. Instructors in numerous disciplines are realizing the pedagogical value of these systems. Actual research on ARS usage within pharmacy education is sparse. In this paper, the health professions literature on uses of ARSs is reviewed and a primer on the issues, benefits, and potential uses within pharmacy education is presented. Future areas of educational research on ARS instructional strategies are also suggested. PMID:19002277

  3. Anomalous satellite inductive peaks in alternating current response of defective carbon nanotubes

    SciTech Connect

    Hirai, Daisuke; Watanabe, Satoshi; Yamamoto, Takahiro

    2014-05-07

    AC response of defective metallic carbon nanotubes is investigated from first principles. We found that capacitive peaks appear at electron scattering states. Moreover, we show that satellite inductive peaks are seen adjacent to a main capacitive peak, which is in contrast to the conductance spectra having no satellite features. The appearance of satellite inductive peaks seems to depend on the scattering states. Our analysis with a simple resonant scattering model reveals that the origin of the satellite inductive peaks can be understood by just one parameter, i.e., the lifetime of electrons at a defect state.

  4. Ultraviolet imaging of the anode attachment in transferred-arc plasma cutting

    SciTech Connect

    Bemis, B.L.; Settles, G.S.

    1999-02-01

    The anode phenomena occurring at the location of current transfer from the plasma jet to the plate affects cut quality in plasma cutting of mild steel plate. To understand these phenomena, an ultraviolet imaging technique was used to visualize the anode attachment spot under various cutting conditions. This technique has provided a unique view and fostered a better understanding of the plasma-arc cutting process.

  5. Study of the Effects of Edm Notch Width on Eddy Current Signal Response

    NASA Astrophysics Data System (ADS)

    Nakagawa, N.; Yang, M.; Larson, B. F.; Madison, E. M.; Raulerson, D.

    2009-03-01

    A sometimes stated rule of thumb is that the eddy current signal from a fatigue crack can be 60% of the strength produced by a similarly sized, rectangular EDM notch. A study was conducted to explore the effect that the width of a discontinuity has on signal strength when inspecting low conductivity materials for small cracks with eddy current surface probes. EDM notches of different sizes and shapes were planted in Ti-6246 and IN-100 specimens. Each of the two materials received six 0.020 inch long by 0.010 inch deep notches and six 0.030 inch and 0.015 inch deep notches. Three of the notches of each size were rectangular shaped and three were semicircular shaped. One of the notches in each material size group was 0.005 inch wide, one was 0.003 inch wide and one was 0.001 inch wide. Each of the notches was scanned using absolute and differential pencil probes driven at several different frequencies. The experimental results were compared with numerically generated results, which allowed for a zero width notch to be considered. The results indicated that the signal reduction factor from a 0.005 inch wide, rectangular notch to a theoretical zero-width notch of the same size ranged from 25 to 42%.

  6. Stomatal response to abscisic Acid is a function of current plant water status.

    PubMed

    Tardieu, F; Davies, W J

    1992-02-01

    We investigated, under laboratory and field conditions, the possibility that increasing abscisic acid (ABA) concentrations and decreasing water potentials can interact in their effects on stomata. One experiment was carried out with epidermal pieces of Commelina communis incubated in media with a variety of ABA and polyethylene glycol concentrations. In the media without ABA, incubation in solutions with water potentials between -0.3 and -1.5 megapascals had no significant effect on stomatal aperture. Conversely, the sensitivity of stomatal aperture to ABA was trebled in solutions at -1.5 megapascals compared with sensitivity at -0.3 megapascals. The effect of the change in sensitivity was more important than the absolute effect of ABA at the highest water potential. In a field experiment, sensitivity of maize stomatal conductance to the concentration of ABA in the xylem sap varied strongly with the time of the day. We consider that the most likely explanation for this is the influence of a change in leaf or epidermal water potential that accompanies an increase in irradiance and saturation deficit as the day progresses. These observations suggest that epidermal water relations may act as a modulator of the responses of stomata to ABA. We argue that such changes must be taken into account in studies or modeling of plant responses to drought stress. PMID:16668674

  7. The effect of current reversal on coated titanium electrodes

    NASA Astrophysics Data System (ADS)

    Elnathan, Francis

    three anions (NO3-, HPO42-, ClO4-) electrolytes. While there were numerous effects and interactions between Mg2+ or Ca2+ and anions on lifetime, these effects were found to mainly affect the amount of time the electrodes spent in the charging and discharging reactions. The times related to gas evolution (which is the plateau time, tau p) were found to be strikingly similar. The charging times (tau C) which are related to adsorption and desorption of species were not also any significantly different. Coating dissolution, substrate and/or coating passivation mechanisms were identified as being responsible for coated titanium anode failure in current reverse and hard water electrolysis. IrTa is believed to have failed predominantly by the dissolution mechanism in nitrate, hydrogen phosphate and perchlorate. RuTi failed predominantly by substrate and/or coating passivation in hydrogen phosphate, nitrate and carbonate. Anode failure is believed to be the result of plateau (taup) and charging (tauC)reactions occurring at the coating/electrolyte and/or substrate/coating interface. The tau p and tauC are useful determinants for the process of anode failure.

  8. Theoretical analysis of hydrogen oxidation reaction in solid oxide fuel cell anode based on species territory adsorption model

    NASA Astrophysics Data System (ADS)

    Nagasawa, Tsuyoshi; Hanamura, Katsunori

    2015-09-01

    A modified reaction model of hydrogen oxidation around a triple phase boundary (TPB) is proposed for solid oxide fuel cells (SOFCs) with a Ni/oxide ion conductor cermet anode containing proton conductor particles in order to describe the mechanism of anode overpotential reduction. In this model, three kinds of TPBs consisting of nickel metal, oxide ion conductors, proton conductors, and gas phases were considered. It was assumed that the chemical species could be adsorbed within a finite narrow area on each material around the TPB. The reaction rate in the anode was controlled by the surface reaction between the adsorbed hydrogen and adsorbed oxygen; all other reactions took place under chemical equilibrium. Based on the reaction model, analytical expressions of current density with oxygen activity and anode overpotential with current density could be obtained. The latter could combine the anode overpotential at low- and high-current-density regions, which were conventionally expressed independently. The analytical results were in good agreement with the experimental results for both the conventional anode and the new anode incorporating a proton conductor. Especially, the anode overpotential reduction could be explained by the additional supply of adsorbed hydrogen from the proton conductor to the TPB.

  9. Development of hollow anode penning ion source for laboratory application

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  10. Characterization of two resistive anode encoder position sensitive detectors for use in ion microscopy

    NASA Astrophysics Data System (ADS)

    Brigham, Robert H.; Bleiler, Roger J.; McNitt, Paul J.; Reed, David A.; Fleming, Ronald H.

    1993-02-01

    Both the standard resistive anode encoder (RAE) position sensitive ion detector and a new faster version have been adapted for use with CAMECA IMS-3f/4f imaging secondary-ion mass spectroscopy instruments. Each detector includes a dual microchannel plate image intensifier mounted in front of a resistive anode. The conversion efficiencies of the standard and fast detectors are 60% and 55%, respectively. The high count rates attainable with the fast detector require high strip-current microchannel plates for optimum performance. The mass bias of these detectors is proportional to (mass)1/2 and can be compensated by adjustment of detector supply voltage. The response across the active area of these detectors is uniform to within 3% with the greatest deviations occurring at the periphery. Distortion and pixel-to-pixel bias are negligible with the standard RAE, but noticeable in the prototype of the fast RAE. Software has been developed that corrects pixel-to-pixel bias. The dead times of the standard and fast RAE systems are 4.3±0.1 μs and 330±2 ns which limit practical count rates to about 40 000 and 600 000 Hz, respectively. For many applications, the higher ion arrival rates and dynamic range of the fast RAE imaging system more than compensate for the increased pixel-to-pixel bias and distortion and the small decrease in conversion efficiency.

  11. Anodized 20 nm diameter nanotubular titanium for improved bladder stent applications

    PubMed Central

    Alpaslan, Ece; Ercan, Batur; Webster, Thomas J

    2011-01-01

    Materials currently used for bladder applications often suffer from incomplete coverage by urothelial cells (cells that line the interior of the bladder and ureter) which leads to the continuous exposure of the underlying materials aggravating an immune response. In particular, a ureteral (or sometimes called an ureteric or bladder) stent is a thin tube inserted into the ureter to prevent or treat obstruction of urine flow from the kidney. The main complications with ureteral stents are infection and blockage by encrustation, which can be avoided by promoting the formation of a monolayer of urothelial cells on the surface of the stent. Nanotechnology (or the use of nanomaterials) may aid in urothelialization of bladder stents since nanomaterials have been shown to have unique surface energetics to promote the adsorption of proteins important for urothelial cell adhesion and proliferation. Since many bladder stents are composed of titanium, this study investigated the attachment and spreading of human urothelial cells on different nanotextured titanium surfaces. An inexpensive and effective scaled up anodization process was used to create equally distributed nanotubular surfaces of different diameter sizes from 20–80 nm on titanium with lengths approximately 500 nm. Results showed that compared to untreated titanium stents and 80 nm diameter nanotubular titanium, 20 nm diameter nanotubular titanium stents enhanced human urothelial cell adhesion and growth up to 3 days in culture. In this manner, this study suggests that titanium anodized to possess nanotubular surface features should be further explored for bladder stent applications. PMID:21499419

  12. Evaluation of Formation and Evolution of Microporosity in Anodic Copper Solidification Processes: Simulation and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Romero, Jorge Sebastian; Cruchaga, Marcela Andrea; Celentano, Diego Javier

    2013-06-01

    The current study analyzes the formation and evolution of microporosity during the solidification of anodic cooper. The aim of this study is to develop a thermofluid-formulation including microstructural evolution and to perform experiments to validate some measured variables with the respective numerical predictions. To this end, a set of experiments is carried out in copper testing primary and eutectic phase formation together with porosity evolution. To evaluate the formation of different microstructural phases and porosity, anodic copper (99.80 pct purity, approximately) is poured into different types of molds. The effect of heat extraction on the thermofluid-microstructural response is evaluated using graphite and steel molds to promote different cooling rates. The microporosity depends on the microstructural formation; hence the microstructure needs to be firstly described. The proposed microstructural model takes into account nucleation and grain growth laws based on thermal undercooling together with microstructural evolution. The primary phase evolution model is based on both solute diffusion at the grain scale and the dendrite tip growth kinetics, while the eutectic evolution is assumed proportional to the copper initial composition and eutectic undercooling. The microporosity model accounts for the partial pressures of gases and the solute distribution in the liquid and solid phases. The corresponding numerical formulation is solved in the framework of the finite element method. Finally, the computed temperature, solid, and liquid volumetric fractions, and pressure histories together with the final values for the radius, density, and pore volumetric fraction, are all compared and validated with the experimental measurements.

  13. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.

  14. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    SciTech Connect

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, Yoon-Jae; Park, Man-Jin; Moon, Dae Won

    2012-02-15

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  15. Improved microstructure and performance of Ni-based anode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hua, Bin; Zhang, Wenying; Li, Meng; Wang, Xin; Chi, Bo; Pu, Jian; Li, Jian

    2014-02-01

    Three kinds of anodes prepared by NiO impregnation, (Ni, Mg)O impregnation and conventional sintering methods are investigated under the conditions of anodic current polarization and redox cycling. The optimized NiO loading in the NiO-impregnated anode is 40 wt%; and the minimum polarization resistance is 1.40, 0.71 and 0.60 Ω cm2 at 700, 750 and 800 °C, respectively, due to the increased triple phase boundary and conductivity that promote the charge-transfer process of H2 oxidation reaction. The conventional Ni-YSZ cermet anode is less sensitive to the current polarization at 200 mA cm-2; however, its polarization resistance is much higher than those of the impregnated anodes. (Ni, Mg)O impregnation improves the performance durability and redox-ability at 800 °C, with a low polarization resistance of 0.93 Ω cm2 after 48 h of current polarization and of 0.71 Ω cm2 after 10 redox cycles. The addition of Mg lowers the reducibility of (Ni, Mg)O particles; and its improved electrochemical performance and redox cycling resistance are attributed to its stabilized microstructure consisting of nano-scale Ni particles distributed on the surface of the pre-sintered YSZ scaffold. The agglomeration of fine Ni particles is suppressed by the unreduced (Ni, Mg)O in the anode.

  16. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    PubMed Central

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  17. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    PubMed

    Coronado, Lorena M; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A; Gittens, Rolando A; Spadafora, Carmenza

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  18. The Effect of Opening on Eddy Current Probe Response for an Idealized through Crack

    SciTech Connect

    Fu Fangwei; Bowler, J. R.; Theodoulidis, T. P.

    2006-03-06

    A structure representing an idealized through crack was formed by placing two coplanar aluminum rectangular plates next to one another with their edges separated by a small distance. The coil impedance variation with position was measured as a coil was moved over the adjacent plate edges. An analytical theory is used to evaluate the coil impedance change due to the gap between the plates. This theory is based on the truncated region eigenfunction expansion method. The difference between the eddy current probe signal due to a notch compared with that of a crack can be partly accounted for by the difference in the opening. We have investigated the effect of varying the opening of the simulated crack and shown theoretically and experimentally how the coil impedance changes with position, opening and frequency.

  19. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the

  20. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    PubMed

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. PMID:21158405

  1. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application.

    PubMed

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 mW/ cm² in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm², respectively. PMID:26580661

  2. An investigation of anode and cathode materials in photomicrobial fuel cells.

    PubMed

    Schneider, Kenneth; Thorne, Rebecca J; Cameron, Petra J

    2016-02-28

    Photomicrobial fuel cells (p-MFCs) are devices that use photosynthetic organisms (such as cyanobacteria or algae) to turn light energy into electrical energy. In a p-MFC, the anode accepts electrons from microorganisms that are either growing directly on the anode surface (biofilm) or are free floating in solution (planktonic). The nature of both the anode and cathode material is critical for device efficiency. An ideal anode is biocompatible and facilitates direct electron transfer from the microorganisms, with no need for an electron mediator. For a p-MFC, there is the additional requirement that the anode should not prevent light from perfusing through the photosynthetic cells. The cathode should facilitate the rapid reaction of protons and oxygen to form water so as not to rate limit the device. In this paper, we first review the range of anode and cathode materials currently used in p-MFCs. We then present our own data comparing cathode materials in a p-MFC and our first results using porous ceramic anodes in a mediator-free p-MFC. PMID:26755764

  3. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  4. Biogeochemical Response to Mesoscale Physical Forcing in the California Current System

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.; Letelier, Ricardo; Moisan, John R.; Marra, John A. (Technical Monitor)

    2001-01-01

    In the first part of the project, we investigated the local response of the coastal ocean ecosystems (changes in chlorophyll, concentration and chlorophyll, fluorescence quantum yield) to physical forcing by developing and deploying Autonomous Drifting Ocean Stations (ADOS) within several mesoscale features along the U.S. west coast. Also, we compared the temporal and spatial variability registered by sensors mounted in the drifters to that registered by the sensors mounted in the satellites in order to assess the scales of variability that are not resolved by the ocean color satellite. The second part of the project used the existing WOCE SVP Surface Lagrangian drifters to track individual water parcels through time. The individual drifter tracks were used to generate multivariate time series by interpolating/extracting the biological and physical data fields retrieved by remote sensors (ocean color, SST, wind speed and direction, wind stress curl, and sea level topography). The individual time series of the physical data (AVHRR, TOPEX, NCEP) were analyzed against the ocean color (SeaWiFS) time-series to determine the time scale of biological response to the physical forcing. The results from this part of the research is being used to compare the decorrelation scales of chlorophyll from a Lagrangian and Eulerian framework. The results from both parts of this research augmented the necessary time series data needed to investigate the interactions between the ocean mesoscale features, wind, and the biogeochemical processes. Using the historical Lagrangian data sets, we have completed a comparison of the decorrelation scales in both the Eulerian and Lagrangian reference frame for the SeaWiFS data set. We are continuing to investigate how these results might be used in objective mapping efforts.

  5. A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes.

    PubMed

    Lee, Chan Mi; Il Kwon, Sun; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Hong, Seong Jong; Lee, Jae Sung

    2012-01-01

    The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain nonuniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MAPMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner. PMID:22156011

  6. Enhanced Brain Responses to Pain-Related Words in Chronic Back Pain Patients and Their Modulation by Current Pain.

    PubMed

    Ritter, Alexander; Franz, Marcel; Puta, Christian; Dietrich, Caroline; Miltner, Wolfgang H R; Weiss, Thomas

    2016-01-01

    Previous functional magnetic resonance imaging (fMRI) studies in healthy controls (HC) and pain-free migraine patients found activations to pain-related words in brain regions known to be activated while subjects experience pain. The aim of the present study was to identify neural activations induced by pain-related words in a sample of chronic back pain (CBP) patients experiencing current chronic pain compared to HC. In particular, we were interested in how current pain influences brain activations induced by pain-related adjectives. Subjects viewed pain-related, negative, positive, and neutral words; subjects were asked to generate mental images related to these words during fMRI scanning. Brain activation was compared between CBP patients and HC in response to the different word categories and examined in relation to current pain in CBP patients. Pain-related words vs. neutral words activated a network of brain regions including cingulate cortex and insula in subjects and patients. There was stronger activation in medial and dorsolateral prefrontal cortex (DLPFC) and anterior midcingulate cortex in CPB patients than in HC. The magnitude of activation for pain-related vs. negative words showed a negative linear relationship to CBP patients' current pain. Our findings confirm earlier observations showing that pain-related words activate brain networks similar to noxious stimulation. Importantly, CBP patients show even stronger activation of these structures while merely processing pain-related words. Current pain directly influences on this activation. PMID:27517967

  7. Observing Dynamics in Large-Scale Birkeland Currents with the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Waters, C. L.; Barnes, R. J.; Olson, C.

    2015-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global observations of the magnetic perturbations that predominantly reflect Birkeland currents. The data are acquired by avionics magnetometers of the Iridium satellites and allow measurements from 66 satellites in near-polar circular, low altitude orbits. The configuration of the Iridium satellite constellation determines the longitude sampling spacing of ~ 2 hours and the re-sampling cadence of the system which is 9 minutes. From 2008 to 2013 the AMPERE system was developed which included new flight software on the Iridium satellites to allow telemetry of higher rate data to the ground and the Science Data Center to derive Birkeland current perturbations from the data and invert these signals to derive the global distributions of the currents using data windows of ten minutes. There were many challenges in developing AMPERE including automating inter-calibration between satellites and the baseline determination and removals. The results of AMPERE provide stunning confirmation of many of the statistical estimates for the distribution of currents but more significantly open a new window to understand their instantaneous distribution and dynamics. Examples of new features of the currents and their dynamics revealed by AMPERE are presented. In addition, prospects for new data products and increased data quality anticipated from AMPERE-NEXT to be implemented on the Iridium-NEXT generation of satellites are discussed.

  8. Surface modifications for enhanced enzyme immobilization and improved electron transfer of PQQ-dependent glucose dehydrogenase anodes.

    PubMed

    Lopez, Ryan J; Babanova, Sofia; Artyushkova, Kateryna; Atanassov, Plamen

    2015-10-01

    Pyrroloquinoline quinone dependent soluble glucose dehydrogenase (PQQ-sGDH) enzymatic MWCNT electrodes were p roduced using 1-pyrenecarboxylic acid (PCA) activated through carbodiimide functionalization and 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) as tethering agents. At 600 mV potential, the current density generated by the activated-PCA tethered PQQ-sGDH anode was significantly greater than the current density generated by the untethered PQQ-sGDH and PBSE tethered anodes, and performance was nearly identical to the performance of a covalently bound PQQ-sGDH anode. A technique for covalently bonding heme-b (hemin), a natural quinohemoprotein porphyrin redox cofactor, to carbon nanotubes modified with arylamine groups is reported. The resulting performance of the covalently bound hemin PQQ-sGDH anode is considerably higher than that of any other PQQ-sGDH anodes tested. PMID:26011132

  9. Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Maryam, W.; Ahmad, M. A.; Bououdina, M.

    2015-12-01

    Highly-ordered and hexagonal-shaped nanoporous anodic aluminum oxide (AAO) of 1 μm thickness of Al pre-deposited onto Si substrate using two-step anodization was successfully fabricated. The growth mechanism of the porous AAO film was investigated by anodization current-time behavior for different anodizing voltages and by visualizing the microstructural procedure of the fabrication of AAO film by two-step anodization using cross-sectional and top view of FESEM imaging. Optimum conditions of the process variables such as annealing time of the as-deposited Al thin film and pore widening time of porous AAO film were experimentally determined to obtain AAO films with uniformly distributed and vertically aligned porous microstructure. Pores with diameter ranging from 50 nm to 110 nm and thicknesses between 250 nm and 1400 nm, were obtained by controlling two main influential anodization parameters: the anodizing voltage and time of the second-step anodization. X-ray diffraction analysis reveals amorphous-to-crystalline phase transformation after annealing at temperatures above 800 °C. AFM images show optimum ordering of the porous AAO film anodized under low voltage condition. AAO films may be exploited as templates with desired size distribution for the fabrication of CuO nanorod arrays. Such nanostructured materials exhibit unique properties and hold high potential for nanotechnology devices.

  10. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy.

    PubMed

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Mohri, Tomoyoshi; Hanawa, Takao

    2014-03-01

    Anodic oxide nanostructures (nanopores and nanotubes) were fabricated on a biomedical β-type titanium alloy, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ), by anodization in order to improve the adhesive strength of a medical polymer, segmented polyurethane (SPU), to TNTZ. TNTZ was anodized in 1.0M H3PO4 solution with 0.5 mass% NaF using a direct-current power supply at a voltage of 20V. A nanoporous structure is formed on TNTZ in the first stage of anodization, and the formation of a nanotube structure occurs subsequently beneath the nanoporous structure. The nanostructures formed on TNTZ by anodization for less than 3,600s exhibit higher adhesive strengths than those formed at longer anodization times. The adhesive strength of the SPU coating on the nanoporous structure formed on top of TNTZ by anodization for 1,200s improves by 144% compared to that of the SPU coating on as-polished TNTZ with a mirror surface. The adhesive strength of the SPU coating on the nanotube structure formed on TNTZ by anodization for 3,600s increases by 50%. These improvements in the adhesive strength of SPU are the result of an anchor effect introduced by the nanostructures formed by anodization. Fracture occurs at the interface of the nanoporous structure and the SPU coating layer. In contrast, in the case that SPU coating has been performed on the nanotube structure, fracture occurs inside the nanotubes. PMID:24433910

  11. Timing and extent of response in colorectal cancer: critical review of current data and implication for future trials.

    PubMed

    Aprile, Giuseppe; Fontanella, Caterina; Bonotto, Marta; Rihawi, Karim; Lutrino, Stefania Eufemia; Ferrari, Laura; Casagrande, Mariaelena; Ongaro, Elena; Berretta, Massimiliano; Avallone, Antonio; Rosati, Gerardo; Giuliani, Francesco; Fasola, Gianpiero

    2015-10-01

    The identification of new surrogate endpoints for advanced colorectal cancer is becoming crucial and, along with drug development, it represents a research field increasingly studied. Although overall survival (OS) remains the strongest trial endpoint available, it requires larger sample size and longer periods of time for an event to happen. Surrogate endpoints such as progression free survival (PFS) or response rate (RR) may overcome these issues but, as such, they need to be prospectively validated before replacing the real endpoints; moreover, they often bear many other limitations. In this narrative review we initially discuss the role of time-to-event endpoints, objective response and response rate as surrogates of OS in the advanced colorectal cancer setting, discussing also how such measures are influenced by the tumor assessment criteria currently employed. We then report recent data published about early tumor shrinkage and deepness of response, which have recently emerged as novel potential endpoint surrogates, discussing their strengths and weaknesses and providing a critical comment. Despite being very compelling, the role of such novel response measures is yet to be confirmed and their surrogacy with OS still needs to be further investigated within larger and well-designed trials. PMID:26308250

  12. Timing and extent of response in colorectal cancer: critical review of current data and implication for future trials

    PubMed Central

    Aprile, Giuseppe; Fontanella, Caterina; Bonotto, Marta; Rihawi, Karim; Lutrino, Stefania Eufemia; Ferrari, Laura; Casagrande, Mariaelena; Ongaro, Elena; Berretta, Massimiliano; Avallone, Antonio; Rosati, Gerardo; Giuliani, Francesco; Fasola, Gianpiero

    2015-01-01

    The identification of new surrogate endpoints for advanced colorectal cancer is becoming crucial and, along with drug development, it represents a research field increasingly studied. Although overall survival (OS) remains the strongest trial endpoint available, it requires larger sample size and longer periods of time for an event to happen. Surrogate endpoints such as progression free survival (PFS) or response rate (RR) may overcome these issues but, as such, they need to be prospectively validated before replacing the real endpoints; moreover, they often bear many other limitations. In this narrative review we initially discuss the role of time-to-event endpoints, objective response and response rate as surrogates of OS in the advanced colorectal cancer setting, discussing also how such measures are influenced by the tumor assessment criteria currently employed. We then report recent data published about early tumor shrinkage and deepness of response, which have recently emerged as novel potential endpoint surrogates, discussing their strengths and weaknesses and providing a critical comment. Despite being very compelling, the role of such novel response measures is yet to be confirmed and their surrogacy with OS still needs to be further investigated within larger and well-designed trials. PMID:26308250

  13. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  14. Corrosion and Protection of Lead Anodes in Acidic Copper Sulphate Solutions

    NASA Astrophysics Data System (ADS)

    Cifuentes, L.; Astete, E.; Crisotomo, G.; Simpson, J.; Cifuentes, G.; Pilleux, M.

    It is known that lead anodes used in the industrial extraction of copper by electrolysis (electrowinning) suffer corrosion as a result of accidental or intended current interruptions. In order to improve understanding of the corrosion and protection of such anodes, the effects of the concentrations of copper, sulphuric acid, cobalt, iron, manganese, chloride and an organic additive (guar) on the corrosion of lead have been studied by means of weight loss tests and surface analysis techniques (X-ray photoelectron spectroscopy, X-ray diffraction, and wavelength dispersive spectroscopy). The rate of corrosion of lead during current interruptions increases with increasing concentration of sulphuric acid and copper, whereas it decreases markedly in the presence of cobalt and iron and, to a lesser extent, in the presence of chloride and the organic additive. Manganese is the only impurity whose presence does not reduce the rate of corrosion; it is also the only element which precipitates in significant amounts on the lead anode surface under the conditions studied. A method is proposed to establish the optimum anodic protection current density during current interruptions in electrowinning cells. Three current density ranges have been found, of which the 'high' protection range could be caused by the degree of compactness acquired by the PbO2 layer at applied anodic current densities in excess of 60 A m-2.

  15. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  16. Vegetation response to early holocene warming as an analog for current and future changes.

    PubMed

    Cole, Kenneth L

    2010-02-01

    Temperatures in southwestern North America are projected to increase 3.5-4 degrees C over the next 60-90 years. This will precipitate ecological shifts as the ranges of species change in response to new climates. During this shift, rapid-colonizing species should increase, whereas slow-colonizing species will at first decrease, but eventually become reestablished in their new range. This successional process has been estimated to require from 100 to over 300 years in small areas, under a stable climate, with a nearby seed source. How much longer will it require on a continental scale, under a changing climate, without a nearby seed source? I considered this question through an examination of the response of fossil plant assemblages from the Grand Canyon, Arizona, to the most recent rapid warming of similar magnitude that occurred at the start of the Holocene, 11,700 years ago. At that time, temperatures in southwestern North America increased about 4 degrees C over less than a century. Grand Canyon plant species responded at different rates to this warming climate. Early-successional species rapidly increased, whereas late-successional species decreased. This shift persisted throughout the next 2700 years. I found two earlier, less-extreme species shifts following rapid warming events around 14,700 and 16,800 years ago. Late-successional species predominated only after 4000 years or more of relatively stable temperature. These results suggest the potential magnitude, duration, and nature of future ecological changes and have implications for conservation plans, especially those incorporating equilibrium assumptions or reconstituting past conditions. When these concepts are extended to include the most rapid early-successional colonizers, they imply that the recent increases in invasive exotics may be only the most noticeable part of a new resurgence of early-successional vegetation. Additionally, my results challenge the reliability of models of future vegetation

  17. Electrocatalysis of anodic and cathodic oxygen-transfer reactions

    SciTech Connect

    Wels, B.R.

    1990-09-21

    The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

  18. Comparative response of lead-acid and nickel/iron batteries to pulsed and constant-current loads

    SciTech Connect

    DeLuca, W.H.; Tummillo, A.F.; Biwer, T.L.; Christianson, C.C.; Hornstra, F.; Yao, N.P.

    1983-01-01

    Improved lead-acid and nickel/iron batteries are currently being developed for use in electric vehicles. The response of these batteries to given discharge conditions differs due to the inherent characteristics of each system. The discharge capacity of the lead-acid system is reduced (>25%) at increased discharge rates and its internal resistance is a function of both depth-of-discharge (DOD) and discharge rate. However, open-circuit stand times (0.5 to 2.0 h) at DOD levels >50% reduce the internal resistance of the lead-acid system and provide a corresponding increase in its availability capacity. In comparison, the discharge capacity and internal resistance of the nickel/iron system are virtually independent of both discharge rate and open-circuit stand times during discharge. With pulsed-current loads, the available energy and power output of both battery systems are always less than those obtained with equivalent constant-current loads due to increased internal power losses. The nickel/iron system exhibits an internal inductance that is significantly greater than that for the lead-acid system thereby causing potentially damaging voltage transients. This paper describes the test procedures and system employed, presents the test data, and methods for predicting battery response, and discusses the results obtained.

  19. The upper-ocean response to typhoons as measured at a moored acoustic Doppler current profiler

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Hou, Yijun; Xie, Qiang; Hu, Po; Liu, Yahao

    2015-09-01

    A moored acoustic Doppler current profiler (ADCP) data, satellite-derived sea surface wind data, and the chlorophyll- a concentration were used to examine the influence of typhoon events on the upper ocean in the central Luzon Strait. The data were collected between August 27 and October 6, 2011. Large changes in ocean dynamics and marine life were recorded in the upper layers over the short term during the transit of each of the three violent typhoons that passed over the region during the study period. The geostrophic flow during the period of ADCP monitoring was comparable to the Ekman flow, recently shown to be prominent in the upper layer. Based on the influence of the three typhoon events that swept the Luzon Strait or traversed Luzon Island on their way to the South China Sea, we postulated a typhoon-induced upwelling around the ADCP and found that upward isothermal displacements reached 11.8-39.0 m, which was confirmed by the sea-level anomaly data recorded at the same time. This variability in the upper ocean may play an important role in biological activity, especially in offshore deep-sea regions.

  20. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability.

    PubMed

    Medvigy, David; Wofsy, Steven C; Munger, J William; Moorcroft, Paul R

    2010-05-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190