Science.gov

Sample records for anomalous skin effect

  1. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    SciTech Connect

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-02-19

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency.

  2. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Sarfraz, M.; Shah, H. A.

    2014-09-01

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  3. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    SciTech Connect

    Abbas, G. Sarfraz, M.; Shah, H. A.

    2014-09-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  4. Surface impedance in the anomalous skin effect regime

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Janusz; Kirkiewicz, Józef

    2008-12-01

    An analytical solution of the surface impedance is obtained using the kinetic equation with the collision integral that takes into account the Fermi liquid effects. It is assumed that the reflection of electrons is purely diffusive. Particular attention is paid to the influence of external magnetic field and polarization of the incident wave on the real and imagine part of the surface impedance.

  5. Predicting molecular scale skin-effect in electrochemical impedance due to anomalous subdiffusion mediated adsorption phenomenon

    NASA Astrophysics Data System (ADS)

    Kushagra, Arindam

    2016-02-01

    Anomalous subdiffusion governs the processes which are not energetically driven, on a molecular scale. This paper proposes a model to predict the response of electrochemical impedance due to such diffusion process. Previous works considered the use of fractional calculus to predict the impedance behaviour in response to the anomalous diffusion. Here, we have developed an expression which predicts the skin-effect, marked by an increase in the impedance with increasing frequency, in this regime. Negative inductances have also been predicted as a consequence of the inertial response of adsorbed species upon application of frequency-mediated perturbations. It might help the researchers in the fields of impedimetric sensors to choose the working frequency and those working in the field of batteries to choose the parameters, likewise. This work would shed some light into the molecular mechanisms governing the impedance when exposed to frequency-based perturbations like electromagnetic waves (microwaves to ionizing radiations) and in charge storage devices like batteries etc.

  6. Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves

    SciTech Connect

    Abbas, Gohar; Bashir, M. F.; Murtaza, G.

    2011-10-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].

  7. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    SciTech Connect

    Echániz, T.

    2014-09-07

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well as emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.

  8. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    SciTech Connect

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-15

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  9. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  10. Anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  11. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  12. Magnetic effects in anomalous dispersion

    SciTech Connect

    Blume, M.

    1992-12-31

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ``forward scattering`` properties such as the Faraday effect and circular dichroism.

  13. Anomalous Hall effect in localization regime

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Zhu, Kai; Yue, Di; Tian, Yuan; Jin, Xiaofeng

    2016-06-01

    The anomalous Hall effect in the ultrathin film regime is investigated in Fe(001)(1-3 nm) films epitaxial on MgO(001). The logarithmic localization correction to longitudinal resistivity and anomalous Hall resistivity are observed at low temperature. We identify that the coefficient of skew scattering has a reduction from metallic to localized regime, while the contribution of side jump has inconspicuous change except for a small drop below 10 K. Furthermore, we discover that the intrinsic anomalous Hall conductivity decreases with the reduction of thickness below 2 nm. Our results provide unambiguous experimental evidence to clarify the problem of localization correction to the anomalous Hall effect.

  14. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems. PMID:26274432

  15. Experimental realization of quantized anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Xue, Qi-Kun

    2014-03-01

    Anomalous Hall effect was discovered by Edwin Hall in 1880. In this talk, we report the experimental observation of the quantized version of AHE, the quantum anomalous Hall effect (QAHE) in thin films of Cr-doped (Bi,Sb)2Te3 magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance exhibits a quantized value of h /e2 accompanied by a significant drop of the longitudinal resistance. The longitudinal resistance vanishes under a strong magnetic field whereas the Hall resistance remains at the quantized value. The realization of QAHE paves a way for developing low-power-consumption electronics. Implications on observing Majorana fermions and other exotic phenomena in magnetic topological insulators will also be discussed. The work was collaborated with Ke He, Yayu Wang, Xucun Ma, Xi Chen, Li Lv, Dai Xi, Zhong Fang and Shoucheng Zhang.

  16. Anomalous Hall effect in Weyl superconductors

    NASA Astrophysics Data System (ADS)

    Bednik, G.; Zyuzin, A. A.; Burkov, A. A.

    2016-08-01

    We present a theory of the anomalous Hall effect in a topological Weyl superconductor with broken time reversal symmetry. Specifically, we consider a ferromagnetic Weyl metal with two Weyl nodes of opposite chirality near the Fermi energy. In the presence of inversion symmetry, such a metal experiences a weak-coupling Bardeen–Cooper–Schrieffer instability, with pairing of parity-related eigenstates. Due to the nonzero topological charge, carried by the Weyl nodes, such a superconductor is necessarily topologically nontrivial, with Majorana surface states coexisting with the Fermi arcs of the normal Weyl metal. We demonstrate that, surprisingly, the anomalous Hall conductivity of such a superconducting Weyl metal coincides with that of a nonsuperconducting one, under certain conditions, in spite of the nonconservation of charge in a superconductor. We relate this to the existence of an extra (nearly) conserved quantity in a Weyl metal, the chiral charge.

  17. Anomalous Hall Effect in a Kagome Ferromagnet

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  18. The Quantum Anomalous Hall Effect: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xing; Zhang, Shou-Cheng; Qi, Xiao-Liang

    2016-03-01

    The quantum anomalous Hall effect is defined as a quantized Hall effect realized in a system without an external magnetic field. The quantum anomalous Hall effect is a novel manifestation of topological structure in many-electron systems and may have potential applications in future electronic devices. In recent years, the quantum anomalous Hall effect was proposed theoretically and realized experimentally. In this review article, we provide a systematic overview of the theoretical and experimental developments in this field.

  19. Anomalous piezoresistance effect in ultrastrained silicon nanowires.

    PubMed

    Lugstein, A; Steinmair, M; Steiger, A; Kosina, H; Bertagnolli, E

    2010-08-11

    In this paper we demonstrate that under ultrahigh strain conditions p-type single crystal silicon nanowires possess an anomalous piezoresistance effect. The measurements were performed on vapor-liquid-solid (VLS) grown Si nanowires, monolithically integrated in a microelectro-mechanical loading module. The special setup enables the application of pure uniaxial tensile strain along the <111> growth direction of individual, 100 nm thick Si nanowires while simultaneously measuring the resistance of the nanowires. For low strain levels (nanowire elongation less than 0.8%), our measurements revealed the expected positive piezoresistance effect, whereas for ultrahigh strain levels a transition to anomalous negative piezoresistance was observed. For the maximum tensile strain of 3.5%, the resistance of the Si nanowires decreased by a factor of 10. Even at these high strain amplitudes, no fatigue failures are observed for several hundred loading cycles. The ability to fabricate single-crystal nanowires that are widely free of structural defects will it make possible to apply high strain without fracturing to other materials as well, therefore in any application where crystallinity and strain are important, the idea of making nanowires should be of a high value. PMID:20698638

  20. Photoinduced Anomalous Hall Effects in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Lee, Patrick A.; Burch, Kenneth S.; Han, Jung Hoon; Ran, Ying

    We examine theoretically the interplay between chiral photons and chiral electrons in Weyl semimetals. Owing to its monopole nature, a three-dimensional Weyl node is topologically-robust against a circularly polarized light. A driven Weyl system exhibits node shifts in the momentum space, in sharp contrast to the gap opening in a driven two-dimensional Dirac system. We show that the node shift leads to a change of the Chern vector which gives arise to a net photoinduced anomalous Hall conductivity, in the plane perpendicular to the light propagation. We shall describe the basic idea behind this generic photoinduced Hall effect, illustrate it with a concrete microscope model, and estimate its feasibility based on current optical experimental techniques.

  1. Anomalous Wien Effects in Supercooled Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Burghaus, O.; Roling, B.

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180 kV /cm . Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P6 ,6 ,6 ,14][Cl ] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models.

  2. Anomalous Wien Effects in Supercooled Ionic Liquids.

    PubMed

    Patro, L N; Burghaus, O; Roling, B

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180  kV/cm. Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P_{6,6,6,14}][Cl] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models. PMID:27203333

  3. Anomalous Nernst Effect with Magnetocrystalline Anisotropy (110)

    NASA Astrophysics Data System (ADS)

    Chesman, Carlos; Costa Neto, Jose; Department of Physics-UFRN Team

    2014-03-01

    When a ferromagnetic material is submitted to a temperature gradient and the magnetic field generates voltage on the edges of the samples, this is called the Anomalous Nernst Effect (ANE). The Heusler alloys that currently exhibit this effect are the most promising for spintronics and spin caloritronics. In this study we perform a theoretical investigation of voltage curves associated to the ANE, when the material displays magnetocrystalline anisotropy for experimental results in two configurations, ANE versus applied magnetic field and planar angle variations of ANE. We analyzed three types of magnetocrystalline anisotropy: cubic anisotropy (100) with C4 symmetry, uniaxial anisotropy with C2 symmetry and cubic anisotropy (110). The aim was to prove that cubic anisotropy (110) is equivalent to anisotropy (100) combined with uniaxial anisotropy. Theoretical fitting of experimental ANE data demonstrates this total equivalence and that a new interpretation with the use of cubic anisotropy (110) may be due to the atomic arrangement of the so-called full-Heusler. Comparative analyses of Co2FeAl and Co2MnGe alloys will be presented. CNPq, CAPES, FAPERN.

  4. Anomalous cross field electron transport in a Hall effect thruster

    SciTech Connect

    Boniface, C.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Gawron, D.; Mazouffre, S.

    2006-10-16

    The origin of anomalous electron transport across the magnetic field in the channel of a Hall effect thruster has been the subject of controversy, and the relative importance of electron-wall collisions and plasma turbulence on anomalous transport is not clear. From comparisons between Fabry-Perot measurements and hybrid model calculations of the ion velocity profile in a 5 kW Hall effect thruster, we deduce that one and the same mechanism is responsible for anomalous electron transport inside and outside the Hall effect thruster channel. This suggests that the previous assumption that Bohm anomalous conductivity is dominant outside the thruster channel whereas electron-wall conductivity prevails inside the channel is not valid.

  5. Linear Magnetization Dependence of the Intrinsic Anomalous Hall Effect

    SciTech Connect

    Zeng, C.; Yao, Y.; Niu, Q.; Weitering, Harm H

    2006-01-01

    The anomalous Hall effect is investigated experimentally and theoretically for ferromagnetic thin films of Mn{sub 5}Ge{sub 3}. We have separated the intrinsic and extrinsic contributions to the experimental anomalous Hall effect and calculated the intrinsic anomalous Hall conductivity from the Berry curvature of the Bloch states using first-principles methods. The intrinsic anomalous Hall conductivity depends linearly on the magnetization, which can be understood from the long-wavelength fluctuations of the spin orientation at finite temperatures. The quantitative agreement between theory and experiment is remarkably good, not only near 0 K but also at finite temperatures, up to about -240 K (0.8T{sub c}).

  6. Large anomalous Nernst effect in a skyrmion crystal.

    PubMed

    Mizuta, Yo Pierre; Ishii, Fumiyuki

    2016-01-01

    Thermoelectric properties of a model skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed in this study. PMID:27306142

  7. Large anomalous Nernst effect in a skyrmion crystal

    PubMed Central

    Mizuta, Yo Pierre; Ishii, Fumiyuki

    2016-01-01

    Thermoelectric properties of a model skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed in this study. PMID:27306142

  8. Large anomalous Nernst effect in a skyrmion crystal

    NASA Astrophysics Data System (ADS)

    Mizuta, Yo Pierre; Ishii, Fumiyuki

    2016-06-01

    Thermoelectric properties of a model skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed in this study.

  9. Phenomenological Spin Transport Theory Driven by Anomalous Nernst Effect

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2016-07-01

    Several experimental efforts such as material investigation and structure improvement have been made recently to find a large anomalous Nernst effect in ferromagnetic metals. Here, we develop a theory of spin transport driven by the anomalous Nernst effect in a diffusive ferromagnetic/nonmagnetic multilayer. Starting from a phenomenological formula of a spin-dependent electric current, the theoretical formulas of electric voltage and spin torque generated by the anomalous Nernst effect are derived. The magnitude of the electric voltage generated from the spin current via the inverse spin Hall effect is on the order of 0.1 µV for currently available experimental parameter values. The temperature gradient necessary to switch the magnetization is quite larger than the typical experimental value. The separation of the contributions of the Seebeck and transverse spin Seebeck effects is also discussed.

  10. Anomalous Hall effect in YIG|Pt bilayers

    SciTech Connect

    Meyer, Sibylle Schlitz, Richard; Geprägs, Stephan; Opel, Matthias; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2015-03-30

    We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance G{sub i} plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in G{sub i} between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures.

  11. Anomalous Hall Effect in a 2D Rashba Ferromagnet.

    PubMed

    Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M

    2016-07-22

    Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487

  12. Effective field theory: A modern approach to anomalous couplings

    SciTech Connect

    Degrande, Céline; Centre for Particle Physics and Phenomenology , Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve ; Greiner, Nicolas; Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München ; Kilian, Wolfgang; University of Siegen, Fachbereich Physik, D-57068 Siegen ; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen; Centre for Particle Physics and Phenomenology , Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve

    2013-08-15

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics.

  13. Anomalous thermomagnetic effects in an epitaxial and irradiated graphene monolayer

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfei; Xu, Yafang; Jin, Guojun

    2015-12-01

    We study valley-dependent anomalous thermomagnetic effects, including the Nernst and Ettingshausen effects, in a graphene monolayer that is subjected to a staggered sublattice potential and off-resonant circularly polarized light. It is found that a topological phase transition in this system can significantly affect the signs of the Nernst conductivity as well as the Ettingshausen thermal conductivity, which provides an alternative method to characterize the phase transition between band and topological insulators. At the topological phase-transition point, pure valley-polarized electric and heat currents are generated. In contrast to traditional thermomagnetism, an anomalous thermomagnetic figure of merit is formulated and used to characterize conversion efficiency. The theoretical approach, including numerical calculations and analytical treatment, can also be used to study the same properties of other graphenelike materials.

  14. Anomalous transport induced by sheath instability in Hall effect thrusters

    SciTech Connect

    Taccogna, Francesco; Schneider, Ralf

    2009-06-22

    It is well recognized to ascribe the anomalous cross-field conductivity inside Hall-effect thrusters to fluctuation-induced transport due to gradient-driven instabilities (Rayleigh or electron drift) and to electron-wall interaction (near-wall conductivity). In this letter, we have performed numerical experiments showing the possibility of another mechanism inducing azimuthal fluctuations: the lateral sheath instability. It is created by a negative differential resistance of the current-voltage I-V characteristic of the floating wall as a consequence of high secondary electron emission. The contribution from this effect to the anomalous axial current is calculated and it accounts of more than 80% of the experimental value.

  15. Anomalous magnetization reversal due to proximity effect of antiphase boundaries

    NASA Astrophysics Data System (ADS)

    Sofin, R. G. S.; Wu, Han-Chun; Shvets, I. V.

    2011-12-01

    Here we report anomalous double switching hysteresis loop and high coercivity (˜0.1 T) in Fe3O4(110) thin films. Our analytical model based on spin chains confined within small antiphase boundary domains (APBDs) suggests a significant proximity effect of antiferromagnetic antiphase boundaries (APBs). Furthermore, the calculated domain size (D) follows the well-known scaling relation D=Ct. The results suggest that the interface exchange coupling between neighboring magnetic domains through antiferromagnetic APBs is responsible for the double switching hysteresis. Our findings could help advance the studies of anomalous properties of magnetic materials originating from growth defects. This effect can be utilized for the tunability of exchange bias in devices.

  16. Normal and anomalous Doppler effects in periodic waveguide cyclotron maser

    SciTech Connect

    Korol, M.; Jerby, E.

    1995-12-31

    A linear analysis of the periodic-waveguide cyclotron (PWC) maser shows that the PWC interaction with fast-waves possesses properties of the known anomalous Doppler resonance interaction if the wave impedance of the resonant spatial harmonic, Z{sub n}, is much smaller than the free space impedance, i.e. if Z{sub n} {much_lt} Z{sub 0}. The feasibility of a fast-wave PWC interaction in a low impedance waveguide is examined theoretically in this paper. A practical scheme of a slotted-waveguide PWC operating in the fundamental harmonic near cutoff is proposed for a future experiment. The possible advantages of the quasi-anomalous Doppler effect in the fast-wave-PWC operating regime are the alleviation of the initial electron rotation and a high-efficiency operation.

  17. Scaling of the anomalous Hall effect in lower conductivity regimes

    NASA Astrophysics Data System (ADS)

    Karel, J.; Bordel, C.; Bouma, D. S.; de Lorimier-Farmer, A.; Lee, H. J.; Hellman, F.

    2016-06-01

    The scaling of the anomalous Hall effect (AHE) was investigated using amorphous and epitaxial Fe x Si1‑x (0.43 < x < 0.71) magnetic thin films by varying the longitudinal conductivity (σxx) using two different approaches: modifying the carrier mean free path (l) with chemical or structural disorder while holding the carrier concentration (nh) constant or varying n h and keeping l constant. The anomalous Hall conductivity (σxy) , when suitably normalized by magnetization and n h , is shown to be independent of σxx for all samples. This observation suggests a primary dependence on an intrinsic mechanism, unsurprising for the epitaxial high conductivity films where the Berry phase curvature mechanism is expected, but remarkable for the amorphous samples. That the amorphous samples show this scaling indicates a local atomic level description of a Berry phase, resulting in an intrinsic AHE in a system that lacks lattice periodicity.

  18. Quantum anomalous Hall effect in stable dumbbell stanene

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-02-01

    Topological property of the dumbbell (DB) stanene, more stable than the stanene with a honeycomb lattice, is investigated by using ab initio methods. The magnetic DB stanene demonstrates an exotic quantum anomalous Hall (QAH) effect due to inversion of the Sn spin-up px,y and spin-down pz states. The QAH gap is found to be opened at Γ point rather than the usual K and K' points, beneficial to observe the effect in experiments. When a 3% tensile strain is applied, a large nontrivial gap (˜50 meV) is achieved. Our results provide another lighthouse for realizing QAH effects in two-dimensional systems.

  19. Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite

    NASA Technical Reports Server (NTRS)

    Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.

    1996-01-01

    Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.

  20. Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Gan, Zhongxue; Zhang, Shou-Cheng

    2014-06-01

    Improving the thermoelectric figure of merit zT is one of the greatest challenges in material science. The recent discovery of topological insulators (TIs) offers new promise in this prospect. In this work, we demonstrate theoretically that zT is strongly size dependent in TIs, and the size parameter can be tuned to enhance zT to be significantly greater than 1. Furthermore, we show that the lifetime of the edge states in TIs is strongly energy dependent, leading to large and anomalous Seebeck effects with an opposite sign to the Hall effect. These striking properties make TIs a promising material for thermoelectric science and technology.

  1. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  2. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  3. Anomalous effects in lattice QCD with staggered fermions

    NASA Astrophysics Data System (ADS)

    Kaehler, Adrian Leslie

    1999-12-01

    In this thesis we investigate the role of the anomaly in lattice QCD, paying particular attention to the role of topology, and the effects of suppressing the fermion determinant in numerical simulations. QCD with staggered fermions is studied just above the deconfining phase transition, where anomalous effects are expected to contribute a residual breaking of chiral symmetry, and where that residual breaking is expected to manifest itself as a source of unphysical divergences in the quenched approximation. These divergences are expected to arise from exact zero eigenvalues in the spectrum of the Dirac operator, which would be suppressed by the fermion determinant in an un-quenched simulation. The signal for this anomalous divergence is investigated first in a semi-classical environment in which smooth backgrounds allow us to better understand the manner in which these effects appear in the staggered fermion formulation. An older study on a 163 x 4 lattice is revisited and a new study is conducted on a 323 x 8 lattice. No signal is found in either study. An exploratory study on a 323 x 12 lattice is presented. In this case however, the spatial volume is insufficient to avoid tunneling into the confined phase, and other Z 3 phases in which there are known to be small eigenvalues resulting from chiral symmetry breaking, unrelated to the anomaly.

  4. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    NASA Astrophysics Data System (ADS)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  5. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  6. Anomalous photoelectric effect of a polycrystalline topological insulator film.

    PubMed

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-01-01

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators. PMID:25069391

  7. Effects of scale-free avalanche walks on anomalous diffusions

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    2016-07-01

    Effects of scale-free avalanche walks on anomalous diffusions have been studied by introducing simple non-Markovian walk models. The scale-free avalanche walk is realized as a walker goes to one direction consistently in a time interval, the distribution of which follows a power-law. And it is applied to the memory models, in which the entire history of a walk process is memorized or the memory for the latest step is enhanced with time. The power-law avalanche walk with memory effects strengthens the persistence between steps and thus makes the Hurst exponent be larger than the cases without avalanche walks, while does not affect the anti-persistent nature.

  8. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  9. Investigating dissipation in the quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Fox, Eli; Bestwick, Andrew; Goldhaber-Gordon, David; Feng, Yang; Ou, Yunbo; He, Ke; Wang, Yayu; Xue, Qi-Kun; Kou, Xufeng; Pan, Lei; Wang, Kang

    In the quantum anomalous Hall effect, a magnetic exchange gap in a 3D topological insulator gives rise to dissipationless chiral edge states. Though the effect has recently been realized in a family of ferromagnetically-doped (Bi,Sb)2Te3 topological insulator thin films, experiments to date have found non-vanishing longitudinal resistance, contrary to initial theoretical expectations. Proposed sources of this dissipation include extra gapless or activated quasi-helical edge states, thermally activated 2D conduction, and variable-range hopping. Here, we discuss transport measurements of Corbino disk and non-local geometries to identify the mechanism of non-ideal behavior. This work supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. 19-7503.

  10. Eczema's Effects More Than Skin Deep

    MedlinePlus

    ... of eczema and its effect on the skin's appearance may contribute to a greater risk of mental health disorders, such as anxiety and depression, Silverberg said. Controlling flare-ups of eczema symptoms ...

  11. Anomalous Hall effect in magnetic disordered alloys: Effects of spin orbital coupling

    SciTech Connect

    Ma, L.; Gao, W. B.; Zhou, S. M.; Shi, Z.; He, P.; Miao, J.; Jiang, Y.

    2013-12-28

    For disordered ternary Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films, the anomalous Hall effect obeys the conventional scaling law ρ{sub AH}=aρ{sub xx}+bρ{sub xx}{sup 2} with the longitudinal resistivity ρ{sub xx} and anomalous Hall resistivity ρ{sub AH}. Contributed by the intrinsic term and the extrinsic side-jump one, the scattering-independent anomalous Hall conductivity b increases with increasing Pt/Pd concentration. In contrast, the skew scattering parameter a is mainly influenced by the residual resistivity. The present results will facilitate the theoretical studies of the anomalous Hall effect in magnetic disordered alloys.

  12. Managing Chemotherapy Side Effects: Skin and Nail Changes

    MedlinePlus

    N ational C ancer I nstitute Managing Chemotherapy Side Effects Skin and Nail Changes “I was glad to ... human services national institutes of health Managing Chemotherapy Side Effects: Skin and Nail Changes Protect your skin from ...

  13. Anomalous Nernst Effect of Perpendicularly Magnetic Anisotropy TbFeCo Thin Films

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Komine, Takashi; Hasegawa, Yasuhiro

    2016-07-01

    In this study, we investigated anomalous Nernst effect (ANE) of perpendicularly magnetized TbFeCo thin films with various Tb content, and especially studied the relation between ANE and anomalous Hall effect. As a result, the hysteresis of anomalous Nernst coefficient showed the same behavior as that of anomalous Hall resistivity, and the sign of anomalous Nernst coefficient was consistent with that of anomalous Hall voltage in any Tb content, whereas the Seebeck coefficient and the resistivity were almost constant even if the applied magnetic field was varied. Taking into account of thermoelectric coefficient tensor, it was revealed that the off-diagonal thermopower corresponding to the ANE in TbFeCo thin films is the product of Hall angle and Seebeck coefficient.

  14. Anomalous supercurrent switching in graphene under proximity effect

    NASA Astrophysics Data System (ADS)

    Levchenko, Alex; Coskun, U. C.; Brenner, M.; Hymel, T.; Vakaryuk, V.; Bezryadin, A.

    2012-02-01

    We report a study of hysteretic current-voltage characteristics in superconductor-graphene-superconductor (SGS) junctions. The stochastic nature of the phase slips is characterized by measuring the distribution of the switching currents. We find that in SGS junctions the dispersion of the switching current scales with temperature as σIT^αG with αG 1/3. This observation is in sharp contrast with the known Josephson junction behavior where σIT^αJ with αJ=2/3. We propose an explanation using a modified version of Kurkijarvi's theory for the flux stability in rf-SQUID and attribute this anomalous effect to the temperature dependence of the critical current which persists down to low temperatures.

  15. Skin thickness effects on in vivo LXRF

    SciTech Connect

    Preiss, I.L.; Washington, W. II

    1995-12-31

    The analysis of lead concentration in bone utilizing LXRF can be adversely effected by overlying issue. A quantitative measure of the attenuation of the 10.5 keV Pb L a x-ray signal by skin and skin equivalent plastic has been conducted. Concentration ranges in plaster of Paris and goat bone from 7 to 90 ppm with attenuators of Lucite{reg_sign} and pig skin were examined. It is concluded that no quantitative or semi quantitative analysis can be achieved if overlying sue thickness exceeds 3 mm for Ph concentrations of less than 30 porn Ph in bone.

  16. Psychosocial effect of common skin diseases.

    PubMed Central

    Barankin, Benjamin; DeKoven, Joel

    2002-01-01

    OBJECTIVE: To increase awareness of the psychosocial effect of acne, atopic dermatitis, and psoriasis. QUALITY OF EVIDENCE: A literature review was based on a MEDLINE search (1966 to 2000). Selected articles from the dermatologic and psychiatric literature, as well as other relevant medical journals, were reviewed and used as the basis for discussion of how skin disease affects patients' lives and of appropriate management. Studies in the medical literature provide mainly level III evidence predominantly based on descriptive studies and expert opinion. MAIN MESSAGE: Dermatologic problems can result in psychosocial effects that seriously affect patients' lives. More than a cosmetic nuisance, skin disease can produce anxiety, depression, and other psychological problems that affect patients' lives in ways comparable to arthritis or other disabling illnesses. An appreciation for the effects of sex, age, and location of lesions is important, as well as the bidirectional relationship between skin disease and psychological distress. This review focuses on the effects of three common skin diseases seen by family physicians: acne, atopic dermatitis, and psoriasis. CONCLUSION: How skin disease affects psychosocial well-being is underappreciated. Increased understanding of the psychiatric comorbidity associated with skin disease and a biopsychosocial approach to management will ultimately improve patients' lives. PMID:12046366

  17. Quantum anomalous Hall effect in magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-12-01

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. We discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.

  18. Quantum anomalous Hall effect in magnetic topological insulators

    DOE PAGESBeta

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We presentmore » the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.« less

  19. Quantum anomalous Hall effect in magnetic topological insulators

    SciTech Connect

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.

  20. Origin of anomalous piezoresistive effects in VLS grown Si nanowires.

    PubMed

    Winkler, Karl; Bertagnolli, Emmerich; Lugstein, Alois

    2015-03-11

    Although the various effects of strain on silicon are subject of intensive research since the 1950s the physical background of anomalous piezoresistive effects in Si nanowires (NWs) is still under debate. Recent investigations concur in that due to the high surface-to-volume ratio extrinsic surface related effects superimpose the intrinsic piezoresistive properties of nanostructures. To clarify this interplay of piezoresistive effects and stress related surface potential modifications, we explored a particular tensile straining device (TSD) with a monolithic embedded vapor-liquid-solid (VLS) grown Si NW. Integrating the suspended NW in a gate all around (GAA) field effect transistor (FET) configuration with a transparent gate stack enables optical and field modulated electrical characterization under high uniaxial tensile strain applied along the ⟨111⟩ Si NW growth direction. A model based on stress-induced carrier mobility change and surface charge modulation is proposed to interpret the actual piezoresistive behavior of Si NWs. By controlling the nature and density of surface states via passivation the "true" piezoresistance of the NWs is found to be comparable with that of bulk Si. This demonstrates the indispensability of application-specific NW surface conditioning and the modulation capability of Si NWs properties for sensor applications. PMID:25651106

  1. Origin of Anomalous Piezoresistive Effects in VLS Grown Si Nanowires

    PubMed Central

    2015-01-01

    Although the various effects of strain on silicon are subject of intensive research since the 1950s the physical background of anomalous piezoresistive effects in Si nanowires (NWs) is still under debate. Recent investigations concur in that due to the high surface-to-volume ratio extrinsic surface related effects superimpose the intrinsic piezoresistive properties of nanostructures. To clarify this interplay of piezoresistive effects and stress related surface potential modifications, we explored a particular tensile straining device (TSD) with a monolithic embedded vapor–liquid–solid (VLS) grown Si NW. Integrating the suspended NW in a gate all around (GAA) field effect transistor (FET) configuration with a transparent gate stack enables optical and field modulated electrical characterization under high uniaxial tensile strain applied along the ⟨111⟩ Si NW growth direction. A model based on stress-induced carrier mobility change and surface charge modulation is proposed to interpret the actual piezoresistive behavior of Si NWs. By controlling the nature and density of surface states via passivation the “true” piezoresistance of the NWs is found to be comparable with that of bulk Si. This demonstrates the indispensability of application-specific NW surface conditioning and the modulation capability of Si NWs properties for sensor applications. PMID:25651106

  2. The effect of heat on skin permeability

    PubMed Central

    Park, Jung-Hwan; Lee, Jeong-Woo; Kim, Yeu-Chun; Prausnitz, Mark R.

    2008-01-01

    Although the effects of long exposure (≫ 1 s) to moderate temperatures (≤ 100 °C) have been well characterized, recent studies suggest that shorter exposure (< 1 s) to higher temperatures (> 100 °C) can dramatically increase skin permeability. Previous studies suggest that by keeping exposures short, thermal damage can be localized to the stratum corneum without damaging deeper tissue. Initial clinical trials have progressed to Phase II (see http://clinicaltrials.gov), which indicates the procedure can be safe. Because the effect of heating under these conditions has received little systematic or mechanistic study, we heated full-thickness skin, epidermis and stratum corneum samples from human and porcine cadavers to temperatures ranging from 100°C to 315°C for times ranging from 100 ms to 5 s. Tissue samples were analyzed using skin permeability measurements, differential scanning calorimetry, thermomechanical analysis, thermal gravimetric analysis, brightfield and confocal microscopy, and histology. Skin permeability was shown to be a very strong function of temperature and a less strong function of the duration of heating. At optimal conditions used in this study, transdermal delivery of calcein was increased up to 760-fold by rapidly heating the skin at high temperature. More specifically, skin permeability was increased (I) by a few fold after heating to approximately 100°C – 150°C, (II) by one to two orders of magnitude after heating to approximately 150°C – 250°C and (III) by three orders of magnitude after heating above 300°C. These permeability changes were attributed to (I) disordering of stratum corneum lipid structure, (II) disruption of stratum corneum keratin network structure and (III) decomposition and vaporization of keratin to create micron-scale holes in the stratum corneum, respectively. We conclude that heating the skin with short, high temperature pulses can increase skin permeability by orders of magnitude due to structural

  3. Origin of anomalous inverse notch effect in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Pan, J.; Zhou, H. F.; Wang, Z. T.; Li, Y.; Gao, H. J.

    2015-11-01

    Understanding notch-related failure is crucial for the design of reliable engineering structures. However, substantial controversies exist in the literature on the notch effect in bulk metallic glasses (BMGs), and the underlying physical mechanism responsible for the apparent confusion is still poorly understood. Here we investigate the physical origin of an inverse notch effect in a Zr-based metallic glass, where the tensile strength of the material is dramatically enhanced, rather than decreased (as expected from the stress concentration point of view), by introduction of a notch. Our experiments and molecular dynamics simulations show that the seemingly anomalous inverse notch effect is in fact caused by a transition in failure mechanism from shear banding at the notch tip to cavitation and void coalescence. Based on our theoretical analysis, the transition occurs as the stress triaxiality in the notched sample exceeds a material-dependent threshold value. Our results fill the gap in the current understanding of BMG strength and failure mechanism by resolving the conflicts on notch effects and may inspire re-interpretation of previous reports on BMG fracture toughness where pre-existing notches were routinely adopted.

  4. Skin effect and interaction of short laser pulses with dense plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Tikhonchuk, V. T.

    1990-12-01

    Interaction of intense, subpicosecond laser pulses with plasmas is discussed. A self-consistent analytical model of the anomalous and normal skin effects in plasmas with steplike density profile is proposed. The heat transport is described by classical Spitzer conductivity with new boundary conditions accounting for laser absorption in the thin skin layer. Self-similar solutions for the heat-conduction problem are obtained, and the scaling laws for important plasma parameters are also discussed. Predictions are found to be consistent with recent experimental results.

  5. Anomalous conductivity and secondary electron emission in Hall effect thrusters

    SciTech Connect

    Garrigues, L.; Hagelaar, G. J. M.; Boniface, C.; Boeuf, J. P.

    2006-12-15

    This paper is devoted to the study of the effects of electron-wall interactions on cross magnetic field electron momentum and energy losses in Hall effect thrusters. By coupling a semianalytical model of the wall sheath similar to models used by several authors in this context, with a two-dimensional hybrid simulation of a Hall effect thruster, we find that the cross magnetic field conductivity enhanced by electron-wall collisions and secondary electron emission is not sufficient to explain the conductivity deduced from experiments. Calculated current-voltage curves including electron-wall collisions from a standard sheath model as the sole 'anomalous' conductivity mechanism do not reproduce the measurements, especially at high discharge voltages, and for various wall ceramics. Results also show that a one-dimensional description of electron-wall collisions with a constant radial plasma density profile as used by many authors leads to an overestimation of the contribution of electron-wall interactions to cross magnetic field conductivity.

  6. Proximity-Induced Anomalous Hall Effect in Graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Tang, Chi; Sachs, Raymond; Barlas, Yafis; Shi, Jing

    2014-03-01

    Pre-patterned graphene devices are transferred from SiO2/Si to atomically flat magnetic insulator thin films, yttrium iron garnet (YIG) deposited by a laser molecular beam epitaxial system on gadolinium gallium garnet (GGG) substrate. Room temperature Raman spectroscopy reveals both single-layer graphene and YIG characteristic peaks. In addition to the ordinary Hall effect, there is a clear non-linear Hall component correlated with the magnetization of the YIG films, which we attribute to the anomalous Hall effect (AHE). The magnitude of AHE in graphene/YIG devices decreases as temperature increases. With device-to-device variations, in some devices, AHE persists to room temperature, indicating a strong proximity-induced exchange interaction. By sweeping top gate voltages, one can tune the carrier density across the Dirac point. We also find that the carrier mobility is not significantly different in graphene/YIG. As the graphene is tuned from the electron- to hole-type, the ordinary Hall changes the sign as expected, but the sign of the AHE contribution remains the same. It suggests that AHE does not simply originate from the carrier density change which is responsible for the ordinary Hall effect, but is related to the spin-orbit interaction in the system. This work was supported in part by DOE and NSF.

  7. Enhancement of the anomalous Hall effect in ternary alloys

    NASA Astrophysics Data System (ADS)

    Tauber, Katarina; Hönemann, Albert; Fedorov, Dmitry V.; Gradhand, Martin; Mertig, Ingrid

    2015-06-01

    We consider ternary alloys of the composition Cu(Mn 1 -wTw) , where T corresponds to different nonmagnetic impurities. As was discovered by Fert et al. [J. Magn. Magn. Mater. 24, 231 (1981)], 10.1016/0304-8853(81)90079-2, the anomalous Hall effect (AHE) in the binary Cu(Mn) alloy can be significantly enhanced by means of codoping using 5 d impurities. Moreover, they attempted to quantify the spin Hall effect (SHE) in Cu (T ) binary alloys via the AHE measured in the related ternary alloys. Here, we present a theoretical study serving as a detailed background of the experimental findings by clarifying the conditions required for a maximal enhancement of the AHE as well as the relations between both Hall effects. Based on the proposed approach, we perform first-principles calculations for several Cu(Mn 1 -wTw)[T = Au, Bi, Ir, Lu, Sb, or Ta] alloys, which are underpinned by theoretical investigations via Matthiessen's rule.

  8. Gamma Radiation Effects on Peanut Skin Antioxidants

    PubMed Central

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

  9. Gamma radiation effects on peanut skin antioxidants.

    PubMed

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil. PMID:22489142

  10. Biological effects of rutin on skin aging.

    PubMed

    Choi, Seong Jin; Lee, Sung-Nae; Kim, Karam; Joo, Da Hye; Shin, Shanghun; Lee, Jeongju; Lee, Hyun Kyung; Kim, Jihyun; Kwon, Seung Bin; Kim, Min Jung; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Cha, Hwa Jun

    2016-07-01

    Rutin, a quercetin glycoside is a member of the bioflavonoid family which is known to possess antioxidant properties. In the present study, we aimed to confirm the anti‑aging effects of rutin on human dermal fibroblasts (HDFs) and human skin. We examined the effects of rutin using a cell viability assay, senescence-associated-β-galactosidase assay, reverse transcription-quantitative polymerase chain reaction, and by measuring reactive oxygen species (ROS) scavenging activity in vitro. To examine the effects of rutin in vivo, rutin‑containing cream was applied to human skin. A double-blind clinical study was conducted in 40 subjects aged between 30-50 years and divided into control and experimental groups. The test material was applied for 4 weeks. After 2 and 4 weeks, dermal density, skin elasticity, the length and area of crow's feet, and number of under-eye wrinkles following the application of either the control or the rutin-containing cream were analyzed. Rutin increased the mRNA expression of collagen, type I, alpha 1 (COL1A1) and decreased the mRNA expression of matrix metallopeptidase 1 (MMP1) in HDFs. We verified that ROS scavenging activity was stimulated by rutin in a dose‑dependent manner and we identified that rutin exerted protective effects under conditions of oxidative stress. Furthermore, rutin increased skin elasticity and decreased the length, area and number of wrinkles. The consequences of human aging are primarily visible on the skin, such as increased wrinkling, sagging and decreased elasticity. Overall, this study demonstrated the biological effects of rutin on ROS-induced skin aging. PMID:27220601

  11. Anomalous Hall effect in Cr doped FeSi

    NASA Astrophysics Data System (ADS)

    Yadam, Sankararao; Lakhani, Archana; Singh, Durgesh; Prasad, Rudra; Ganesan, V.

    2016-05-01

    Investigations of economically affordable bulk materials for the spin based electronics are in huge demand. In this direction, electrical and Hall transport properties of the polycrystalline Cr doped Kondo insulator FeSi, i.e Fe0.975Cr0.025Si is reported. Well agreement between temperature dependence of the Hall and linear resistivity are observed. The observed minimum at ~19K in the resistivity is attributed to the ferromagnetic transition temperature (TC). Anomalous Hall resistivity is seen in the itinerant ferromagnet, Fe0.975Cr0.025Si well below the TC. The obtained Hall resistivity is comparable with that of the spintronic material Fe0.9Co0.1Si. The present study proves that the electrical transport properties of bulk materials made by low cost elements such as Fe, Cr and Si exhibits large magnetic field effects and are useful for the spintronics applications, unlike spintronics material (Ga, Mn)As that demand higher costs.

  12. Field-effect modulation of anomalous Hall effect in diluted ferromagnetic topological insulator epitaxial films

    NASA Astrophysics Data System (ADS)

    Chang, CuiZu; Liu, MinHao; Zhang, ZuoCheng; Wang, YaYu; He, Ke; Xue, QiKun

    2016-03-01

    High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2- x Cr x Te3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing carrier density. Carrier-independent ferromagnetism heralds Sb2- x Cr x Te3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.

  13. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3

    NASA Astrophysics Data System (ADS)

    Sürgers, Christoph; Kittler, Wolfram; Wolf, Thomas; Löhneysen, Hilbert v.

    2016-05-01

    Metallic antiferromagnets with noncollinear orientation of magnetic moments provide a playground for investigating spin-dependent transport properties by analysis of the anomalous Hall effect. The intermetallic compound Mn5Si3 is an intinerant antiferromagnet with collinear and noncollinear magnetic structures due to Mn atoms on two inequivalent lattice sites. Here, magnetotransport measurements on polycrstalline thin films and a single crystal are reported. In all samples, an additional contribution to the anomalous Hall effect attributed to the noncollinear arrangment of magnetic moments is observed. Furthermore, an additional magnetic phase between the noncollinear and collinear regimes above a metamagnetic transition is resolved in the single crystal by the anomalous Hall effect.

  14. Effects of climate changes on skin diseases.

    PubMed

    Balato, Nicola; Megna, Matteo; Ayala, Fabio; Balato, Anna; Napolitano, Maddalena; Patruno, Cataldo

    2014-02-01

    Global climate is changing at an extraordinary rate. Climate change (CC) can be caused by several factors including variations in solar radiation, oceanic processes, and also human activities. The degree of this change and its impact on ecological, social, and economical systems have become important matters of debate worldwide, representing CC as one of the greatest challenges of the modern age. Moreover, studies based on observations and predictive models show how CC could affect human health. On the other hand, only a few studies focus on how this change may affect human skin. However, the skin is the most exposed organ to environment; therefore, it is not surprising that cutaneous diseases are inclined to have a high sensitivity to climate. The current review focuses on the effects of CC on skin diseases showing the numerous factors that are contributing to modify the incidence, clinical pattern and natural course of some dermatoses. PMID:24404995

  15. Anomalous Josephson effect in semiconducting nanowires as a signature of the topologically nontrivial phase

    NASA Astrophysics Data System (ADS)

    Nesterov, Konstantin N.; Houzet, Manuel; Meyer, Julia S.

    2016-05-01

    We study Josephson junctions made of semiconducting nanowires with Rashba spin-orbit coupling, where superconducting correlations are induced by the proximity effect. In the presence of a suitably directed magnetic field, the system displays the anomalous Josephson effect: a nonzero supercurrent in the absence of a phase bias between two superconductors. We show that this anomalous current can be increased significantly by tuning the nanowire into the helical regime. In particular, in a short junction, a large anomalous current is a signature for topologically nontrivial superconductivity in the nanowire.

  16. Magnetic Topological Insulators and Quantum Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng

    The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current

  17. Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.

    PubMed

    Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun

    2016-08-01

    The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material. PMID:27166762

  18. Effect of interstitial low level laser stimulation in skin density

    NASA Astrophysics Data System (ADS)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  19. Anomalous Hall effect on the surface of topological Kondo insulators

    NASA Astrophysics Data System (ADS)

    König, E. J.; Ostrovsky, P. M.; Dzero, M.; Levchenko, A.

    2016-07-01

    We calculate the anomalous Hall conductivity σx y of the surface states in cubic topological Kondo insulators. We consider a generic model for the surface states with three Dirac cones on the (001) surface. The Fermi velocity, the Fermi momentum, and the Zeeman energy in different Dirac pockets may be unequal. The microscopic impurity potential mediates mixed intra- and interband extrinsic scattering processes. Our calculation of σx y is based on the Kubo-Streda diagrammatic approach. It includes diffractive skew scattering contributions originating from the rare two-impurity complexes. Remarkably, these contributions yield anomalous Hall conductivity that is independent of impurity concentration, and thus is of the same order as other known extrinsic side jump and skew scattering terms. We discuss various special cases of our results and the experimental relevance of our study in the context of the recent hysteretic magnetotransport data in SmB6 samples.

  20. A new approach to plasmasphere refilling: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1991-01-01

    During the last 10 months of the grant, both laminar and anomalous plasma processes occurring during the refilling of the outer plasmasphere after magnetic storms are investigated. Theoretical investigations were based on two types of models: (1) two-stream hydrodynamic model in which plasma flows from the conjugate ionospheres are treated as separate fluids and the ion temperature anisotropies are treated self-consistently; and (2) large-scale particle-in-cell code.

  1. Higgs mechanism, phase transitions, and anomalous Hall effect in three-dimensional topological superconductors

    NASA Astrophysics Data System (ADS)

    Nogueira, Flavio S.; Sudbø, Asle; Eremin, Ilya

    2015-12-01

    We demonstrate that the Higgs mechanism in three-dimensional topological superconductors exhibits unique features with experimentally observable consequences. The Higgs model we discuss has two superconducting components and an axionlike magnetoelectric term with the phase difference of the superconducting order parameters playing the role of the axion field. Due to this additional term, quantum electromagnetic and phase fluctuations lead to a robust topologically nontrivial state that holds also in the presence of interactions. In this sense, we show that the renormalization flow of the topologically nontrivial phase cannot be continuously deformed into a topologically nontrivial one. One consequence of our analysis of quantum critical fluctuations is the possibility of having a first-order phase transition in the bulk and a second-order phase transition on the surface. We also explore another consequence of the axionic Higgs electrodynamics, namely, the anomalous Hall effect. In the low-frequency London regime an anomalous Hall effect is induced in the presence of an applied electric field parallel to the surface. This anomalous Hall current is induced by a Lorentz-like force arising from the axion term, and it involves the relative superfluid velocity of the superconducting components. The anomalous Hall current has a negative sign, a situation reminiscent of but quite distinct in physical origin from the anomalous Hall effect observed in high-Tc superconductors. In contrast to the latter, the anomalous Hall effect in topological superconductors is nondissipative and occurs in the absence of vortices.

  2. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG

    SciTech Connect

    Tian, Dai; Li, Yufan; Qu, D.; Chien, C. L.; Jin, Xiaofeng

    2015-05-25

    The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.

  3. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.

    PubMed

    Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya

    2015-11-12

    In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields. PMID:26524519

  4. Novel effects of diosgenin on skin aging.

    PubMed

    Tada, Yayoi; Kanda, Naoko; Haratake, Akinori; Tobiishi, Megumi; Uchiwa, Hideyo; Watanabe, Shinichi

    2009-06-01

    Extracts of Dioscorea coomposita or Dioscorea villosa are consumed as supplemental health foods at the time of climacteric. The extracts contain large amounts of the plant steroid, diosgenin. Here, we studied the safety and efficacy of diosgenin against skin aging at the time of climacteric. In vitro, diosgenin enhanced DNA synthesis in a human 3D skin equivalent model, and increased bromodeoxyuridine uptake and intracellular cAMP level in adult human keratinocytes. The increase of bromodeoxyuridine uptake by diosgenin was blocked by an adenylate cyclase inhibitor, but not by antisense oligonucleotides against estrogen receptor alpha, estrogen receptor beta or an orphan G-protein-coupled receptor, GPR30, indicating the involvement of cAMP but not estrogen receptor alpha, estrogen receptor beta or GPR30. In vivo, administration of diosgenin improved the epidermal thickness in the ovariectomized mice, a climacteric model, without altering the degree of fat accumulation. In order to examine the safety of diosgenin, diosgenin and 17beta-estradiol were administered to breast cancer-burdened mice. The results revealed that while 17beta-estradiol accelerated the tumor growth, diosgenin did not show this effect. Our finding, a restoration of keratinocyte proliferation in aged skin, suggests that diosgenin may have potential as a safe health food for climacteric. PMID:19428439

  5. Flutter effect and emission in the region of anomalous and normal doppler effects

    SciTech Connect

    Nemtsov, B.E.

    1986-06-01

    This paper investigates the excitation (flutter) of a membrane in the flow of a liquid of finite depth due to the emission of long gravity waves. It is shown that loss of stability occurs due to predominance of emission of gravity waves of negative energy (anomalous Doppler effect) over waves of positive energy. Estimates of typical increments are presented; the instability develops during a period that approximately equals 1/7 sec.

  6. Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect

    NASA Astrophysics Data System (ADS)

    Wilson, R. Chris; Hook, Simon J.; Schneider, Philipp; Schladow, S. Geoffrey

    2013-09-01

    water, infrared radiometers on satellites measure radiation leaving from the surface skin layer and therefore the retrieved temperature is representative of the skin layer. This is slightly different from the bulk layer deeper in the water where various floating thermometers take temperature measurements to validate satellite measurements. The difference between the bulk and skin temperature (skin effect) must be understood to properly validate schemes that use surface skin temperature to infer bulk temperatures. Further skin temperatures retrieved over inland waters may show different patterns to those retrieved over oceans due to differences in conditions such as wind speed, aerosols, and elevation. We have analyzed the differences between the skin and bulk temperatures at four permanent monitoring stations (buoys) located on Lake Tahoe since 1999 and compared the results with similar studies over the ocean typically obtained from boat cruises. Skin effect distributions were found to be consistent across the buoys; however, the diurnal behavior of the skin effect was slightly different and shown to be related to wind speed measured at an individual buoy. When wind speed was less than 2 m s-1, the skin temperature osclillated and greatly increased the uncertainty in the skin effect reported over Lake Tahoe. When downwelling sky radiation was increased from clouds or high humidity, this led to nighttime skin temperatures that were warmer than bulk temperatures by as much as 0.5 K. The size of the warm skin effect is larger than other ocean studies that observed warm nighttime skin values around 0.1 K. The nighttime skin effect was seen to be more consistent with a smaller standard deviation compared to the daytime skin effect. The nighttime skin behavior had a mean and standard deviation that ranged between 0.3 and 0.5 K and between 0.3 and 0.4 K, respectively. In contrast, daytime skin effect was strongly influenced by direct solar illumination and typically had a

  7. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    NASA Astrophysics Data System (ADS)

    Miao, B. F.; Huang, S. Y.; Qu, D.; Chien, C. L.

    2016-01-01

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  8. Sun’s effect on skin

    MedlinePlus Videos and Cool Tools

    The skin uses sunlight to help manufacture vitamin D, which is important for normal bone formation. But sometimes its ultraviolet light can be ... to age prematurely. Suntanning occurs because exposure to sunlight causes the skin to produce more melanin and ...

  9. Sun’s effect on skin

    MedlinePlus Videos and Cool Tools

    The skin uses sunlight to help manufacture vitamin D, which is important for normal bone formation. But sometimes its ultraviolet light can be very detrimental. Within the skin's epidermal (outer) layer ...

  10. Anomalous Hall Effect on the surface of topological Kondo insulators

    NASA Astrophysics Data System (ADS)

    König, Elio; Ostrovsky, Pavel; Dzero, Maxim; Levchenko, Alex

    We calculate the anomalous Hall conductivity σxy of surface states on three dimensional topological Kondo insulators with cubic symmetry and multiple Dirac cones. We treat a generic model in which the Fermi velocity, the Fermi momentum and the Zeeman energy in different pockets may be unequal and in which the microscopic impurity potential is short ranged on the scale of the smallest Fermi wavelength. Our calculation of σxy to the zeroth (i.e. leading) order in impurity concentration is based on the Kubo-Smrcka-Streda diagrammatic approach. It also includes certain extrinsic contributions with a single cross of impurity lines, which are of the same order in impurity concentration and were, to the best of our knowledge, scrutinized in a single band model, only. We discuss various special cases of our result and the experimental relevance of our study in the context of recent hysteretic magnetotransport data in SmB6 samples.

  11. Understanding Engineered Nanomaterial Skin Interactions and the Modulatory Effects of UVR Skin Exposure

    PubMed Central

    Jatana, Samreen; DeLouise, Lisa A.

    2013-01-01

    The study of engineered nanomaterials for the development of technological applications, nanomedicine, and nano-enabled consumer products is an ever expanding discipline as is the concern over the impact of nanotechnology on human environmental health and safety. In this review we discuss the current state of understanding of nanomaterial skin interactions with a specific emphasis on the effects of ultra-violet radiation (UVR) skin exposure. Skin is the largest organ of the body and is typically exposed to UVR on a daily basis. This necessitates the need to understand how UVR skin exposure can influence nanomaterial skin penetration, alter nanomaterial systemic trafficking, toxicity, and skin immune function. We explore the unique dichotomy that UVR has in inducing both deleterious and therapeutic effects on skin. The subject matter covered in this review is broadly informative and will raise awareness of potential increased risks from nanomaterial skin exposure associated with specific occupational and life style choices. The UVR induced immunosuppressive response in skin raises intriguing questions that motivate future research directions in the nanotoxicology and nanomedicine fields. PMID:24123977

  12. Adverse and beneficial effects of plant extracts on skin and skin disorders.

    PubMed

    Mantle, D; Gok, M A; Lennard, T W

    2001-06-01

    Plants are of relevance to dermatology for both their adverse and beneficial effects on skin and skin disorders respectively. Virtually all cultures worldwide have relied historically, or continue to rely on medicinal plants for primary health care. Approximately one-third of all traditional medicines are for treatment of wounds or skin disorders, compared to only 1-3% of modern drugs. The use of such medicinal plant extracts for the treatment of skin disorders arguably has been based largely on historical/anecdotal evidence, since there has been relatively little data available in the scientific literature, particularly with regard to the efficacy of plant extracts in controlled clinical trials. In this article therefore, adverse and beneficial aspects of medicinal plants relating to skin and skin disorders have been reviewed, based on recently available information from the peer-reviewed scientific literature. Beneficial aspects of medicinal plants on skin include: healing of wounds and burn injuries (especially Aloe vera); antifungal, antiviral, antibacterial and acaricidal activity against skin infections such as acne, herpes and scabies (especially tea tree (Melaleuca alternifolia) oil); activity against inflammatory/immune disorders affecting skin (e.g. psoriasis); and anti-tumour promoting activity against skin cancer (identified using chemically-induced two-stage carcinogenesis in mice). Adverse effects of plants on skin reviewed include: irritant contact dermatitis caused mechanically (spines, irritant hairs) or by irritant chemicals in plant sap (especially members of the Ranunculaceae, Euphorbiaceae and Compositae plant families); phytophotodermatitis resulting from skin contamination by plants containing furocoumarins, and subsequent exposure to UV light (notably members of the Umbelliferae and Rutaceae plant families); and immediate (type I) or delayed hypersensitivity contact reactions mediated by the immune system in individuals sensitized to plants

  13. Effects of surface charge on the anomalous light extinction from metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sijercic, Edin; Leung, P. T.

    2016-07-01

    The effects of extraneous surface charges on the anomalous extinction from metallic nanoparticles are studied via an application of the extended Mie theory by Bohren and Hunt. Due to the sensitivity of the higher multipolar resonance on the surface charges, it is found that quenching of the anomalous resonance can be observed with presence of only a modest amount of charges on these particles. The observed effects thus provide a rather sensitive mechanism for the monitoring of the neutrality of these nanoparticles using far field scattering approaches.

  14. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Fontheim, E. G.; Ong, R. S. B.; Roble, R. G.; Mayr, H. G.; Hoegy, W. H.; Ionson, J. A.; Baron, M. J.; Wickwar, V. B.; Vondrak, R. R.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A = 1) disagrees considerably with the measured profile over most of the altitude range up to 450 km. It is shown that an anomaly coefficient with a sharp peak of the order of 10,000 centered around the F2 peak is consistent with observations.

  15. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice.

    PubMed

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  16. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    NASA Astrophysics Data System (ADS)

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-06-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets.

  17. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    PubMed Central

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  18. Skin-lightening cosmetics: frequent, potentially severe adverse effects.

    PubMed

    2011-09-01

    Skin-lightening cosmetics are used by many women and men around the world. The products contain a variety of substances, which are often unknown to the users. Most of these products include topical corticosteroids, hydroquinone and mercury salts. Many other substances may be added. Several surveys and cohort studies, including several thousand individuals, have shown that regular application of skin-lightening cosmetics to large surface areas can have irreversible cutaneous adverse effects, such as patchy hyper- or hypopigmentation, skin atrophy, stretch marks and delayed wound healing, and can also mask or, on the contrary, promote or reactivate skin infections. Cases of skin cancer have been attributed to skin-lightening cosmetics. A Senegalese cohort study of 147 women showed a statistically significant increase in the risk of hypertension and diabetes linked to the use of skin-lightening agents. Other systemic adverse effects attributed to skin-lightening cosmetics include Cushing's syndrome, adrenal insufficiency, nephrotic syndrome, neurological disorders, and ocular disorders. Hypersensitivity reactions, including anaphylaxis, have also been attributed to these products. Many skin-lightening cosmetics contain substances that can harm the unborn child. For example, tretinoin is teratogenic while salicylic acid is feto-toxic. In practice, users are often unaware of the risk of severe adverse effects associated with skin-lightening cosmetics. Users should be informed of these adverse effects and encouraged to stop using these products, especially when skin disorders appear. PMID:21954516

  19. Effects of anomalous transport on lower hybrid electron heating

    SciTech Connect

    McCoy, M.G.; Harvey, R.W.

    1981-02-01

    The transport of electron energy out of tokamaks is known to be far greater than that calculated using classical and neoclassical theory. However, low levels of non-axisymmetric magnetic field turbulence can couple the fast transport of electrons parallel to the magnetic field lines to radial transport, thus providing a plausible explanation for observed energy confinement. These models further predict that the electron loss rate is proportional to v/sub parallel bars/. This has subsequently been found to be consistent with data for runaway electrons in PLT, at energies up to 1 MeV. Recently it has been pointed out by Chan, Chiu and Ohkawa that anomalous transport processes should be taken into account in attempting to determine steady state electron distribution functions for cases involving RF electron tail heating, particularly in view of the v/sub parallel bars/ dependence of the loss rate. In this work these physical processes are modeled through a 2-D nonlinear program which describes the evolution of the electron distribution function in velocity magnitude; (v) and plasma radius (r), and which studies the efficiency of tail electron heating.

  20. Effects of anomalous salt features on caverns in Gulf Coast domes

    SciTech Connect

    Not Available

    1992-01-01

    Early solution miners encountered occasional difficulties with nonsymmetric caverns (including wings'' and chimneys''), gas releases, insoluble stringers, and excessive anhydrite sands.'' Apparently there was no early recognition of trends for these encounters, although certain areas were avoided after problems appeared consistently within them. Solution mining has now matured, and an accumulation of experience indicates that anomalous salt features occur on a number of Gulf Coast domes. Trends incorporating concentrations of anomalous features will be referred to as anomalous zones,'' or AZs (after Kupfer). The main objective of this Project is to determine the effects of AZ encounters on solution-mined caverns and related storage operations in domes. Geological features of salt domes related directly to cavern operations and AZs will be described briefly, but discussions of topics related generally to the evolution of Gulf Coast salt structures are beyond the scope of this Project.

  1. Effects of anomalous salt features on caverns in Gulf Coast domes

    SciTech Connect

    Not Available

    1992-10-01

    Early solution miners encountered occasional difficulties with nonsymmetric caverns (including ``wings`` and ``chimneys``), gas releases, insoluble stringers, and excessive anhydrite ``sands.`` Apparently there was no early recognition of trends for these encounters, although certain areas were avoided after problems appeared consistently within them. Solution mining has now matured, and an accumulation of experience indicates that anomalous salt features occur on a number of Gulf Coast domes. Trends incorporating concentrations of anomalous features will be referred to as ``anomalous zones,`` or AZs (after Kupfer). The main objective of this Project is to determine the effects of AZ encounters on solution-mined caverns and related storage operations in domes. Geological features of salt domes related directly to cavern operations and AZs will be described briefly, but discussions of topics related generally to the evolution of Gulf Coast salt structures are beyond the scope of this Project.

  2. Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators.

    PubMed

    Fang, Chen; Gilbert, Matthew J; Bernevig, B Andrei

    2014-01-31

    We theoretically predict that thin-film topological crystalline insulators can host various quantum anomalous Hall phases when doped by ferromagnetically ordered dopants. Any Chern number between ±4 can, in principle, be reached as a result of the interplay between (a) the induced Zeeman field, depending on the magnetic doping concentration, (b) the structural distortion, either intrinsic or induced by a piezoelectric material through the proximity effect, and (c) the thickness of the thin film. We propose a heterostructure to realize quantum anomalous Hall phases with Chern numbers that can be tuned by electric fields. PMID:24580476

  3. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Tang, Chi; Sachs, Raymond; Barlas, Yafis; Shi, Jing

    2015-01-01

    We demonstrate the anomalous Hall effect (AHE) in single-layer graphene exchange coupled to an atomically flat yttrium iron garnet (YIG) ferromagnetic thin film. The anomalous Hall conductance has magnitude of ˜0.09 (2 e2/h ) at low temperatures and is measurable up to ˜300 K . Our observations indicate not only proximity-induced ferromagnetism in graphene/YIG with a large exchange interaction, but also enhanced spin-orbit coupling that is believed to be inherently weak in ideal graphene. The proximity-induced ferromagnetic order in graphene can lead to novel transport phenomena such as the quantized AHE which are potentially useful for spintronics.

  4. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    NASA Technical Reports Server (NTRS)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  5. Anomalous Hall effects in pseudo-single-crystal γ'-Fe4N thin films

    NASA Astrophysics Data System (ADS)

    Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi

    2016-05-01

    The anomalous Hall effects (AHE) were investigated at various temperatures for the pseudo-single-crystal Fe4N films, deposited on MgO substrates with changing the degree of order (S) of the nitrogen site. Both the anomalous Hall resistivity and the longitudinal resistivity simply decrease with lowering temperature for all the specimens. The AHE of the Fe4N films is presumed to arise from an intrinsic mechanism because of the relationship between the anomalous Hall resistivity and longitudinal resistivity. The anomalous Hall conductivity, σAH, exhibits a specific behavior at low temperature. In the case of the film with S = 0.93, the σAH drastically drops below 50 K, while it simply increases with lowering temperature in the range of 50-300 K. This low-temperature anomaly decays with decreasing S of the film and nearly vanishes in the films with low S. The threshold temperature and the dependence on S of the low-temperature anomaly of the σAH well correspond to those of the anisotropic magnetoresistance effects in the Fe4N films, reported in the literatures. From these results, it is suggested that the low-temperature anomaly of the σAH originates from the crystal field effect which reflects the structural transformation from a cubic to a tetragonal symmetry below 50 K and provides a modulation of the orbital angular momentum of the 3d orbitals at the Fermi level.

  6. Anomalous scaling in two models of passive scalar advection: effects of anisotropy and compressibility.

    PubMed

    Antonov, N V; Honkonen, J

    2001-03-01

    The problem of the effects of compressibility and large-scale anisotropy on anomalous scaling behavior is considered for two models describing passive advection of scalar density and tracer fields. The advecting velocity field is Gaussian, delta correlated in time, and scales with a positive exponent epsilon. Explicit inertial-range expressions for the scalar correlation functions are obtained; they are represented by superpositions of power laws with nonuniversal amplitudes and universal anomalous exponents (dependent only on epsilon and alpha, the compressibility parameter). The complete set of anomalous exponents for the pair correlation functions is found nonperturbatively, in any space dimension d, using the zero-mode technique. For higher-order correlation functions, the anomalous exponents are calculated to O(epsilon(2)) using the renormalization group. As in the incompressible case, the exponents exhibit a hierarchy related to the degree of anisotropy: the leading contributions to the even correlation functions are given by the exponents from the isotropic shell, in agreement with the idea of restored small-scale isotropy. As the degree of compressibility increases, the corrections become closer to the leading terms. The small-scale anisotropy reveals itself in the odd ratios of correlation functions: the skewness factor slowly decreases going down to small scales for the incompressible case, but starts to increase if alpha is large enough. The higher odd dimensionless ratios (hyperskewness, etc.) increase, thus signaling persistent small-scale anisotropy; this effect becomes more pronounced for larger values of alpha. PMID:11308763

  7. Anomalous DRELL-YAN Asymmetry from Hadronic or QCD Vacuum Effects

    NASA Astrophysics Data System (ADS)

    Boer, Daniël

    The anomalously large cos (2π) asymmetry measured in the Drell-Yan process is discussed. Possible origins of this large deviation from the Lam-Tung relation are considered with emphasis on the comparison of two particular proposals: one that suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic effect. Experimental signatures distinguishing these effects are discussed.

  8. Skin moisturizing effects of panthenol-based formulations.

    PubMed

    Camargo, Flávio B; Gaspar, Lorena R; Maia Campos, Patrícia M B G

    2011-01-01

    This study aims to evaluate the skin moisturizing efficacy of formulations containing different concentrations of panthenol. Formulations supplemented with or without 0.5%, 1.0%, or 5.0% panthenol were applied daily to the forearms of healthy subjects. Skin conditions in terms of moisture and transepidermal water loss (TEWL) were analyzed before and after 15- and 30-day periods of application. The formulations were also applied after skin washing with sodium laureth sulphate (SLES) to evaluate the immediate effects on TEWL and skin moisture. Panthenol-containing formulations (1.0% and 5.0%) produced significant decreases in TEWL after 30-day applications. In skin washed with SLES, significant reduction of TEWL was evident two hours after application of formulations loaded with panthenol when compared with control and vehicle. It is concluded that skin integrity is maintained by the improved protective effect of 1.0% panthenol added to the formulation. PMID:21982351

  9. Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates

    USGS Publications Warehouse

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2003-01-01

    We previously reported on a thermal regime where pure, polycrystalline methane hydrate is preserved metastably in bulk at up to 75 K above its nominal temperature stability limit of 193 K at 0.1 MPa, following rapid release of the sample pore pressure. Large fractions (>50 vol.%) of methane hydrate can be preserved for 2-3 weeks by this method, reflecting the greatly suppressed rates of dissociation that characterize this "anomalous preservation" regime. This behavior contrasts that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) isothermal test conditions, where dissociation rates increase monotonically with increasing temperature. Here, we report on recent experiments that further investigate the effects of temperature, pressure, and composition on anomalous preservation behavior. All tests conducted on sI methane hydrate yielded self-consistent results that confirm the highly temperature-sensitive but reproducible nature of anomalous preservation behavior. Temperature-stepping experiments conducted between 250 and 268 K corroborate the relative rates measured previously in isothermal preservation tests, and elevated pore-pressure tests showed that, as expected, dissociation rates are further reduced with increasing pressure. Surprisingly, sII methane-ethane hydrate was found to exhibit no comparable preservation effect when rapidly depressurized at 268 K, even though it is thermodynamically stable at higher temperatures and lower pressures than sI methane hydrate. These results, coupled with SEM imaging of quenched sample material from a variety of dissociation tests, strongly support our earlier arguments that ice-"shielding" effects provided by partial dissociation along hydrate grain surfaces do not serve as the primary mechanism for anomalous preservation. The underlying physical-chemistry mechanism(s) of anomalous preservation remains elusive, but appears to be based more on textural or morphological changes within the hydrate

  10. Effect of Seasonal Variation of Anomalous Condition on Radio Propagation in Nigeria

    NASA Astrophysics Data System (ADS)

    Emmanuel, Israel; Adeyemi, Babatunde; Ogolo, Emmanuel; Adediji, Adekunle

    Daily variation of effective earth radius factor and seasonal variation of refractivity gradients from surface to around 1000 m above ground level in the tropospheric layer are presented based on observation from the meteorological data obtain from ECMWF database. Thirty four years (1979 -2014) of data from surface and profile of Era Interim of the temperature and relative humidity are used to determine the surface anomalous propagation over some selected location I Nigeria. Estimation of anomalous propagation are observed for onset and peak of rainy and dry seasons. The occurrence of anomalous strongly depends on the local time and synoptic weather conditions which have an appreciable on the refractivity vertical profile, especially the seasonal north - south movement of inter tropical Convergence Zone (ITCD) which provide wet and dry seasonal variations of anomalous were also determined. Spatial distribution of refractivity gradient for both wet and dry seasons are also obtained. The highest occurrence of duct were noticed in the night and morning (00:00 UTC and 06:00UTC) across the country though it was low in the northern part of the country, while low or no occurrence of duct were observed in the afternoon and evening (12:00 UTC and 18:00 UTC). Also percentage occurrence of duct were also high and low during the wet and dry seasons respectively.

  11. Reaction of glycation and human skin: the effects on the skin and its components, reconstructed skin as a model.

    PubMed

    Pageon, H

    2010-06-01

    Skin is affected by the aging process and numerous modifications are observed. In human, with time the skin becomes drier, thinner, spots appear, elasticity decreases and stiffening increases, together with the appearance of wrinkles. These observations result from the overlapping of an intrinsic chronological aging (individual, genetic) and of an extrinsic aging (dependent on external factors like UV, pollution and lifestyle). One of the causes of aging is the appearance of the Advanced Glycosylation End Products (AGEs) during life. The glycation reaction results from a non-enzymatic reaction between a sugar and a free amine group of Lys, Arg amino acids in proteins. This reaction does not occur only in the skin, indeed, AGEs are also found in the kidney, lens, vessels, etc. These products are also responsible, because of their localization, of some pathologies related to diabetes. AGEs provoke biological modifications implying an activation of molecules synthesis (extracellular matrix, cytokines) and enzyme activation of matrix degradation (metalloproteinases). The UV effect on AGEs (like pentosidine) generates reactive oxygen species (ROS) in the extracellular matrix which could lead to additional deleterious effects. Molecules are described in the literature as inhibitors to this irreversible reaction i.e. aminoguanidine. To understand the consequences of the glycation in the skin, a system of reconstructed skin was developed with a collagen modified by glycation for the dermal component. In this system we observed that dermis and epidermis are both modified due to glycation (macromolecules synthesis, cytokines, metalloproteinases) and it is possible to test inhibitors of this reaction. In conclusion, in skin, glycation is involved in a very complex aging process and simultaneously affect, directly and indirectly, certain cells, their synthesis and the organization of the matrix. PMID:19896301

  12. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    PubMed Central

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  13. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-05-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  14. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  15. The framing effect and skin conductance responses

    PubMed Central

    Ring, Patrick

    2015-01-01

    Individuals often rely on simple heuristics when they face complex choice situations under uncertainty. Traditionally, it has been proposed that cognitive processes are the main driver to evaluate different choice options and to finally reach a decision. Growing evidence, however, highlights a strong interrelation between judgment and decision-making (JDM) on the one hand, and emotional processes on the other hand. This also seems to apply to judgmental heuristics, i.e., decision processes that are typically considered to be fast and intuitive. In this study, participants are exposed to different probabilities of receiving an unpleasant electric shock. Information about electric shock probabilities is either positively or negatively framed. Integrated skin conductance responses (ISCRs) while waiting for electric shock realization are used as an indicator for participants' emotional arousal. This measure is compared to objective probabilities. I find evidence for a relation between emotional body reactions measured by ISCRs and the framing effect. Under negative frames, participants show significantly higher ISCRs while waiting for an electric shock to be delivered than under positive frames. This result might contribute to a better understanding of the psychological processes underlying JDM. Further studies are necessary to reveal the causality underlying this finding, i.e., whether emotional processes influence JDM or vice versa. PMID:26300747

  16. Effective Action for Fermions with Anomalous Magnetic Moment from Foldy-Wouthuysen Transformation

    NASA Astrophysics Data System (ADS)

    Barducci, A.; Giachetti, R.

    2013-03-01

    In this paper, we calculate the effective action for neutral particles with anomalous magnetic moment in an external magnetic and electric field. We show that we can take advantage from the Foldy-Wouthuysen transformation (FWT) for such systems, determined in our previous works: indeed, by this transformation we have explicitly evaluated the diagonalized Hamiltonian, allowing to present a closed form for the corresponding effective action and for the partition function at finite temperature from which the thermodynamical potentials can be calculated.

  17. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Il; Kim, Dong-Jun; Seo, Min-Su; Park, Byong-Guk; Park, Seung-Young

    2015-05-01

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE011 resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage VISHE for the stacking order of the bilayer can separate the pure VISHE and the anomalous Hall effect (AHE) voltage VAHE utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θISH, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θISH values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable VISHE value in bilayer systems are large θISH and low resistivity.

  18. Finite-volume effects in the muon anomalous magnetic moment on the lattice

    NASA Astrophysics Data System (ADS)

    Aubin, Christopher; Blum, Thomas; Chau, Peter; Golterman, Maarten; Peris, Santiago; Tu, Cheng

    2016-03-01

    We investigate finite-volume effects in the hadronic vacuum polarization, with an eye toward the corresponding systematic error in the muon anomalous magnetic moment. We consider both recent lattice data as well as lowest-order, finite-volume chiral perturbation theory, in order to get a quantitative understanding. Even though leading-order chiral perturbation theory does not provide a good description of the hadronic vacuum polarization, it turns out that it gives a good representation of finite-volume effects. We find that finite-volume effects cannot be ignored when the aim is a few percent level accuracy for the leading-order hadronic contribution to the muon anomalous magnetic moment, even when using ensembles with mπL ≳4 and mπ˜200 MeV .

  19. Anomalously large isotope effect in the glass transition of water

    DOE PAGESBeta

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Nelson, Helge; Köster, Karsten W.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Böhmer, Roland; et al

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal Tg differences of 10±2K between H2O and D2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases Tg by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperaturemore » dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.« less

  20. Anomalously large isotope effect in the glass transition of water

    SciTech Connect

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Nelson, Helge; Köster, Karsten W.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Böhmer, Roland; Loerting, Thomas; Sokolov, Alexei P.

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal Tg differences of 10±2K between H2O and D2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases Tg by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.

  1. Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo.

    PubMed

    Kim, Hyeon Ho; Cho, Soyun; Lee, Serah; Kim, Kyu Han; Cho, Kwang Hyun; Eun, Hee Chul; Chung, Jin Ho

    2006-05-01

    Skin aging can be attributed to photoaging (extrinsic) and chronological (intrinsic) aging. Photoaging and intrinsic aging are induced by damage to human skin attributable to repeated exposure to ultraviolet (UV) irradiation and to the passage of time, respectively. In our previous report, eicosapentaenoic acid (EPA) was found to inhibit UV-induced matrix metalloproteinase-1 (MMP-1) expression in human dermal fibroblasts. Therefore, we investigated the effects of EPA on UV-induced skin damage and intrinsic aging by applying EPA topically to young and aged human skin, respectively. By immunohistochemical analysis and Western blotting, we found that topical application of EPA reduced UV-induced epidermal thickening and inhibited collagen decrease induced by UV light. It was also found that EPA attenuated UV-induced MMP-1 and MMP-9 expression by inhibiting UV-induced c-Jun phosphorylation, which is closely related to UV-induced activator protein-1 activation, and by inhibiting JNK and p38 activation. EPA also inhibited UV-induced cyclooxygenase-2 (COX-2) expression without altering COX-1 expression. Moreover, it was found that EPA increased collagen and elastic fibers (tropoelastin and fibrillin-1) expression by increasing transformin growth factor-beta expression in aged human skin. Together, these results demonstrate that topical EPA has potential as an anti-skin-aging agent. PMID:16467281

  2. Revisiting the Anomalous rf Field Penetration into a Warm Plasma

    SciTech Connect

    Igor D. Kaganovich; Oleg V. Polomarov; Constantine E. Theodosiou

    2005-06-24

    Radio-frequency [rf] waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, non-local theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma.

  3. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

    SciTech Connect

    Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.

    2001-02-05

    It is shown that a ''nanofluid'' consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol% Cu nanoparticles of mean diameter <10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity.

  4. Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge

    NASA Astrophysics Data System (ADS)

    Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru

    2016-06-01

    The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.

  5. Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru

    Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.

  6. Evidence for Anomalous Effects on the Current Evolution in Tokamak Operating Scenarios

    SciTech Connect

    Casper, T; Jayakumar, R; Allen, S; Holcomb, C; Makowski, M; Pearlstein, L; Berk, H; Greenfield, C; Luce, T; Petty, C; Politzer, P; Wade, M; Murakami, M; Kessel, C

    2006-10-03

    Alternatives to the usual picture of advanced tokamak (AT) discharges are those that form when anomalous effects alter the plasma current and pressure profiles and those that achieve stationary characteristics through mechanisms so that a measure of desired AT features is maintained without external current-profile control. Regimes exhibiting these characteristics are those where the safety factor (q) evolves to a stationary profile with the on-axis and minimum q {approx} 1 and those with a deeply hollow current channel and high values of q. Operating scenarios with high fusion performance at low current and where the inductively driven current density achieves a stationary configuration with either small or non-existing sawteeth may enhance the neutron fluence per pulse on ITER and future burning plasmas. Hollow current profile discharges exhibit high confinement and a strong ''box-like'' internal transport barrier (ITB). We present results providing evidence for current profile formation and evolution exhibiting features consistent with anomalous effects or with self-organizing mechanisms. Determination of the underlying physical processes leading to these anomalous effects is important for scaling of current experiments for application in future burning plasmas.

  7. Anomalous Hall effect in NiPt thin films

    NASA Astrophysics Data System (ADS)

    Golod, T.; Rydh, A.; Krasnov, V. M.

    2011-08-01

    We have studied the Hall effect in sputtered NixPt1-x thin films with different Ni concentrations. Temperature, magnetic field, and angular dependencies are analyzed and the phase diagram of NiPt thin films is obtained. It is found that films with sub-critical Ni concentration exhibit cluster-glass behavior at low temperatures with a perpendicular magnetic anisotropy below the freezing temperature. Films with super-critical Ni concentration are ferromagnetic with parallel anisotropy. At the critical concentration the state of the film is strongly frustrated. Such films demonstrate canted magnetization with the easy axis rotating as a function of temperature. The magnetism appears via consecutive paramagnetic-cluster glass-ferromagnetic transitions, rather than a single second-order phase transition. But most remarkably, the extraordinary Hall effect changes sign at the critical concentration. We suggest that this is associated with a reconstruction of the electronic structure of the alloy at the normal metal-ferromagnet quantum phase transition.

  8. Chemical reaction at ferromagnet/oxide interface and its influence on anomalous Hall effect

    SciTech Connect

    Liu, Yi-Wei; Teng, Jiao E-mail: ghyu@mater.ustb.edu.cn; Zhang, Jing-Yan; Liu, Yang; Chen, Xi; Li, Xu-Jing; Feng, Chun; Wang, Hai-Cheng; Li, Ming-Hua; Yu, Guang-Hua E-mail: ghyu@mater.ustb.edu.cn; Wu, Zheng-Long

    2014-09-08

    Chemical reactions at the ferromagnet/oxide interface in [Pt/Fe]{sub 3}/MgO and [Pt/Fe]{sub 3}/SiO{sub 2} multilayers before and after annealing were investigated by X-ray photoelectron spectroscopy. The results show that Fe atoms at the Fe/MgO interface were completely oxidized in the as-grown state and significantly deoxidized after vacuum annealing. However, only some of the Fe atoms at the Fe/SiO{sub 2} interface were oxidized and rarely deoxidized after annealing. The anomalous Hall effect was modified by this interfacial chemical reaction. The saturation anomalous Hall resistance (R{sub xy}) was greatly increased in the [Pt/Fe]{sub 3}/MgO multilayers after annealing and was 350% higher than that in the as-deposited film, while R{sub xy} of the [Pt/Fe]{sub 3}/SiO{sub 2} multilayer only increased 10% after annealing.

  9. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    SciTech Connect

    Diniz, G. S. Guassi, M. R.; Qu, F.

    2013-12-28

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.

  10. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  11. Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials

    NASA Astrophysics Data System (ADS)

    Yan, Binghai; Wu, Shu-Chun; Shan, Guangcun

    2015-03-01

    Recently, this long-sought quantum anomalous Hall effect was realized in the magnetic topological insulator. However, the requirement of an extremely low temperature (~ 30 mK) hinders realistic applications. Based on honeycomb lattices comprised of Sn and Ge, which are found to be 2D topological insulators, we propose a quantum anomalous Hall platform with large energy gap of 0.34 and 0.06 eV, respectively. The ferromagnetic order forms in one sublattice of the honeycomb structure by controlling the surface functionalization rather than dilute magnetic doping, which is expected to be visualized by spin polarized STM in experiment. Strong coupling between the inherent quantum spin Hall state and ferromagnetism results in considerable exchange splitting and consequently an ferromagnetic insulator with large energy gap. The estimated mean-field Curie temperature is 243 and 509 K for Sn and Ge lattices, respectively. The large energy gap and high Curie temperature indicate the feasibility of the quantum anomalous Hall effect in the near-room-temperature and even room-temperature regions. We thank the helpful discussions with C. Felser, S. Kanugo, C.-X. Liu, Z. Wang, Y. Xu, K. Wu, and Y. Zhou.

  12. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.

    PubMed

    Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P

    2016-04-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices. PMID:27152355

  13. Solid-armature railguns without the velocity-skin effect

    SciTech Connect

    Cowan, M.

    1991-01-01

    If the velocity-skin effect could be eliminated, solid-armature railguns might reach high velocity ({ge} 6 km/s) without forcing most of the armature current to pass through an arc. Even then, magnetic diffusion (the normal'' skin effect) will limit acceleration. In this paper, the performance limits for railguns which are free from the velocity-skin effect are investigated by deriving the upper limits for a specific kind of power supply. Previous performance estimates made for solid-armature railguns are examined in the light of these results and are found to be relatively very optimistic. A railgun design which limits the velocity-skin effect and which may allow improved performance for solid armatures is described. 6 refs.

  14. Solid-armature railguns without the velocity-skin effect

    SciTech Connect

    Cowan, M.

    1991-12-31

    If the velocity-skin effect could be eliminated, solid-armature railguns might reach high velocity ({ge} 6 km/s) without forcing most of the armature current to pass through an arc. Even then, magnetic diffusion (the ``normal`` skin effect) will limit acceleration. In this paper, the performance limits for railguns which are free from the velocity-skin effect are investigated by deriving the upper limits for a specific kind of power supply. Previous performance estimates made for solid-armature railguns are examined in the light of these results and are found to be relatively very optimistic. A railgun design which limits the velocity-skin effect and which may allow improved performance for solid armatures is described. 6 refs.

  15. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge

    PubMed Central

    Nayak, Ajaya K.; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C.; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)−1 at 2 K and ~50 (ohm·cm)−1 at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)−1, comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect–based data storage devices. PMID:27152355

  16. Evaluating the Effectiveness of Infrared Signature Suppression of Aircraft Skin

    NASA Astrophysics Data System (ADS)

    Lu, Jian Wei; Wang, Qiang; Kwon, Oh Joon

    During typical supersonic cruising, the temperature of the aircraft skin rises above 300 K due to aerodynamic heating. In this situation, aircraft-skin infrared (IR) suppression, used to minimize the radiation contrast from the background is a crucial survival technology. In the present study, a technique to evaluate the effectiveness of IR suppression of aircraft skin is proposed. For this purpose, a synthetic procedure based on numerical simulations has been developed. In this procedure, the thermal status of aircraft skin is obtained using a computational fluid dynamics (CFD) method for complex aircraft geometries. An IR signature model is proposed using a reverse Monte Carlo (RMC) technique. The detection range and the IR contrast are adopted as the performance indicators for the evaluation of the aircraft IR suppression. The influence of these factors related to the aircraft-skin radiation, such as aircraft-skin emissivity, surface temperature distribution and flight speed, on the IR contrast and the detection range is also studied. As a test case, the effectiveness of various IR suppression schemes was analyzed for a typical air combat situation. Then, the method is applied to clarify the contribution of each aircraft component to the IR suppression of the overall IR radiation. The results show that aircraft-skin temperature control and emissivity control are effective means to reduce the IR radiation and to achieve lower detection. The results can be used as a practical guide for designing future stealth aircraft.

  17. Radiation effects control: Eyes, skin. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Hightower, D.; Smathers, J. B.

    1974-01-01

    Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited.

  18. Effect of contraceptives on the skin.

    PubMed

    1988-10-01

    Combined oral contraceptives (COCs) affect the skin 3 different ways. They decrease the amount of androgenic hormones produced in the ovaries and adrenal gland. They also limit the quantity of biologically active circulating testosterone. Finally, estrogen markedly decreases oil production in the sebaceous glands. Physicians should prescribe to women with acne a COC that is low in progestogen and high in estrogen. A biphasic pill with no more than 500 mcg norethisterone/day meets these requirements. If a woman is taking systemic antibiotics to treat acne, however, the physician should prescribe a biphasic pill containing 50 mcg ethinyl estradiol. Even though many believe that using COCs causes hair loss, there is little evidence to support it. Nevertheless, if a woman has indeed experienced hair loss, she should take a COC with a high estrogen to progestogen ratio. As in some pregnant women, cholasma may occur in women taking COCs when not protected from sunlight. Physicians need to prescribe the lowest possible dose of hormones in these women and counsel them to shield their face from sunlight. To err on the side of safety, women who have had a malignant melanoma should not use a hormonal contraceptive. In addition, women who have experienced many bouts of skin candidiasis should use an alternative contraceptive. Other skin disorders that they have been found to be more prevalent in women taking COCs include erythema nodosum, accelerated systemic lupus erythematosus, porphyria cutanea tarda, herpes gestationis, spider naevus, and telangiectasia. There also exists an association between dermatitis and barrier methods and spermicides. Some articles have suggested that copper containing IUDs have also cause a variety of skin disorders. PMID:3240155

  19. Anomalous coupling, top-mass and parton-shower effects in W + W - production

    NASA Astrophysics Data System (ADS)

    Bellm, J.; Gieseke, S.; Greiner, N.; Heinrich, G.; Plätzer, S.; Reuschle, C.; von Soden-Fraunhofen, J. F.

    2016-05-01

    We calculate the process ppto {W}+{W}-to {e}+{ν}_e{μ}-{overline{ν}}_{μ } at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W - interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by G oS am with the H erwig7/M atchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.

  20. Thermal conduction effects in human skin.

    PubMed

    Stoll, A M; Chianta, M A; Piergallini, J R

    1979-08-01

    To determine the maximum permissible temperature any material may attain without causing pain or burn on contact with bare skin, over 2000 observations were made of pain threshold during contact with materials at elevated temperatures. Six materials were used representing the full range of thermal properties from good conductors to good insulators. Time to pain threshold was converted to time to threshold blister on the basis of the relationship between pain and burn established earlier for radiant and for convective heating. Calculated times to blister were used to predict the material temperatures causative of "touch-burn". Experimentally produced threshold blisters at the predicted temperature-times verified the predictions. Graphs and equations were generated for determining safe temperatures for any material in contact with bare skin for 1-5 s solely from a knowledge of its thermal properties. Conversely, the thermal inertia (k rho c) of the optimal material for a specific use and skin contact can be predicted from a knowledge of the maximum material temperature and length of contact time anticipated. PMID:496745

  1. Anisotropic intrinsic anomalous Hall effect in ordered 3dPt alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbin; Blügel, Stefan; Mokrousov, Yuriy

    2011-07-01

    By performing first-principles calculations, we investigate the intrinsic anomalous Hall conductivity (AHC) and its anisotropy in ordered L10 FePt, CoPt, and NiPt ferromagnets and their intermediate alloys. We demonstrate that the AHC in this family of compounds depends strongly on the direction of the magnetization M in the crystal. We predict that such pronounced orientational dependence in combination with the general decreasing trend of the AHC when going from FePt to NiPt leads to a sign change of the AHC upon rotating the magnetization direction in the crystal of CoPt alloy. We also suggest that, for a range of concentration x in CoxNi1-xPt and FexCo1-xPt alloys, it is possible to achieve a complete quenching of the anomalous Hall current for a certain direction of the magnetization in the crystal. By analyzing the spin-resolved AHC in 3dPt alloys, we endeavor to relate the overall trend of the AHC in these compounds to the changes in their densities of d states around the Fermi energy upon varying the atomic number. Moreover, we show the generality of the phenomenon of anisotropic anomalous Hall effect by demonstrating its occurrence within the three-band tight-binding model.

  2. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization.

    PubMed

    Salim, Michael A; Willow, Soohaeng Yoo; Hirata, So

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  3. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    NASA Astrophysics Data System (ADS)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  4. Spin Seebeck Effect vs. Anomalous Nernst Effect in Ta/CoFeB /Ta Structures

    NASA Astrophysics Data System (ADS)

    Yang, Bowen; Xu, Yadong; Schneider, Mike; Shi, Jing; Univ of California-Riverside Team; Everspin Technologies Inc. Team

    2014-03-01

    We have studied the spin Seebeck effect (SSE) and anomalous Nernst effect (ANE) in a vertical trilayer structure under a vertical temperature gradient. The structure consists of a 3nm CoFeB layer sandwiched by β-phase tantalum (Ta) layers. The samples are deposited by magnetron sputtering. The existence of Ta β-phase is verified by the resistivity and its negative temperature coefficient of resistance(TCR). Under a fixed vertical temperature gradient, the measured transverse thermoelectric voltage is linearly proportional to the total sample resistance when the Ta thickness exceeds 2 nm, which can be explained by a shunting resistor model. When the Ta thickness is below 2 nm, the voltage deviates from the linear resistance dependence and merges to the ANE voltage of the CoFeB single layer, due to a weakened inverse spin Hall effect (ISHE) in Ta thinner than the spin diffusion length. In the linear regime, the slope contains both a varying SSE and a fixed ANE responses, thus the SSE contribution could be quantitatively separated out from the ANE of CoFeB. Our results indicate a large SSE from the β-phase Ta due to its large Spin Hall Angle. This work was supported by CNN/DMEA and DOE.

  5. Anomalous Josephson Effect in Junctions with Rashba Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Nesterov, Konstantin; Houzet, Manuel; Meyer, Julia

    2015-03-01

    We study two-dimensional double-barrier SINIS Josephson junctions in which the inversion symmetry in the normal part is broken by Rashba spin-orbit coupling. In the presence of a suitably oriented Zeeman field in the normal part, the system displays the anomalous Josephson effect: the current is nonzero even at zero phase difference between two superconductors. We investigate this effect by means of the Ginzburg-Landau formalism and microscopic Green's functions approach in the clean limit. This work was supported in part by the Grants No. ANR-12-BS04-0016-03 and an EU-FP7 Marie Curie IRG.

  6. UV doses and skin effects during psoriasis climate therapy

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Hernandez-Palacios, Julio; Lilleeng, Mila; Nilsen, Lill Tove; Krogstad, Anne-Lene

    2011-03-01

    Psoriasis is a common autoimmune disease with inflammatory symptoms affecting skin and joints. One way of dealing with psoriasis is by controlled solar UV exposure treatment. However, this treatment should be optimized to get the best possible treatment effect and to limit negative side effects such as erythema and an increased risk of skin cancer. In this study 24 patients at Valle Marina Treatment Center in Gran Canaria were monitored throughout a treatment period of three weeks starting at the beginning of November. The total UV dose to the location was monitored by UV-meters placed on the roof of the treatment centere, and the patients wore individual film dosimeters throughout the treatment period. Skin parameters were accessed by reflection spectroscopy (400-850nm). This paper presents preliminary findings from the skin measurements in the visible part of the spectrum, such as blood oxygenation, erythema and melanin indexes. Reflection spectroscopy was found to be a good tool for such treatment monitoring.

  7. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk

    2015-05-07

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.

  8. Extremely large magnetoresistance and magnetic logic by coupling semiconductor nonlinear transport effect and anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhong; Luo, Zhaochu

    Size limitation of silicon FET hinders the further scaling down of silicon based CPU. To solve this problem, spin based magnetic logic devices were proposed but almost all of them could not be realized experimentally except for NOT logic operation. A magnetic field controlled reconfigurable semiconductor logic using InSb was reported. However, InSb is very expensive and not compatible with the silicon technology. Based on our Si based magnetoresistance (MR) device, we developed a Si based reconfigurable magnetic logic device, which could do all four Boolean logic operations including AND, OR, NOR and NAND. By coupling nonlinear transport effect of semiconductor and anomalous Hall effect of magnetic material, we propose a PMA material based MR device with a remarkable non local MR of >20000 % at ~1 mT. Based on this MR device, we further developed a PMA material based magnetic logic device which could do all four Boolean logic operations. This makes it possible that magnetic material does both memory and logic. This may result in a memory-logic integrated system leading to a non von Neumann computer

  9. Effect of passive and iontophoretic skin pretreatments with terpenes on the in vitro skin transport of piroxicam.

    PubMed

    Doliwa, A; Santoyo, S; Ygartua, P

    2001-10-23

    The enhancing effect of several terpenes (thymol, menthone and 1,8-cineole) in the percutaneous permeation of piroxicam (Px), either passive or iontophoretically, was investigated. These terpenes were applied, on the skin membrane, as a passive and iontophoretic skin pretreatment. Px was delivered from carbopol gels containing hydroxypropyl-beta-cyclodextrin (2% w/w Px). An increase in Px flux values, both passive and iontophoretic after skin pretreatment with 5% terpenes/50% EtOH, was found to be in the following order: thymol>menthone>1,8-cineole. Iontophoretic skin pretreatment with terpenes produced a slight increase in the passive flux of Px, in comparison with the passive skin pretreatment. This result indicated that iontophoresis could modify the skin morphology and consequently, increase the passive transport of Px. However, when Px was transported iontophoretically, passive skin pretreatment with terpenes, produced higher flux values than iontophoretic skin pretreatment. These results could be explained by the fact that with the iontophoretic pretreatment, terpenes could penetrate into the skin and limitate the movement of the ionized species, across the skin, during the iontophoretic experiments. The amount of Px retained in the skin after all experiments was related to flux values across skin. PMID:11604256

  10. Effect of reactive skin decontamination lotion on skin wound healing in laboratory rats.

    PubMed

    Walters, Thomas J; Kauvar, David S; Reeder, Joanna; Baer, David G

    2007-03-01

    Reactive skin decontamination lotion (RSDL) is a proposed replacement for the existing skin and equipment decontamination kit. Because RSDL may need to be used to decontaminate wounded personnel, we conducted an assessment of the effect of this agent on wound healing. A skin incision model using male Sprague Dawley rats (n = 19 rats/group) was used. A 7.0-cm incision was made through the skin, and RSDL was (experimental group) or was not (control group) applied to the open wound; the wound edges were then approximated with sutures. Seven days later, animals were euthanized and wound samples were taken. Healing was assessed by measuring mechanical strength, collagen content, and histological appearance. RSDL-treated wounds had 23% lower tensile strength (p < 0.05) and 11% lower collagen content (p < 0.05) than did the untreated control wounds. Histological assessments did not differ significantly between groups. The results of this investigation demonstrate that the application of RSDL directly to an open wound impairs wound strength and decreases collagen content in the early phases of wound healing. This may have clinical implications for the treatment and outcomes of chemical casualty combat trauma. PMID:17436779

  11. Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach.

    PubMed

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David

    2016-01-01

    We present a combined analysis of LHC Higgs data (signal strengths) together with LEP-2 WW production measurements. To characterize possible deviations from the standard model (SM) predictions, we employ the framework of an effective field theory (EFT) where the SM is extended by higher-dimensional operators suppressed by the mass scale of new physics Λ. The analysis is performed consistently at the order Λ(-2) in the EFT expansion keeping all the relevant operators. While the two data sets suffer from flat directions, together they impose stringent model-independent constraints on the anomalous triple gauge couplings. PMID:26799011

  12. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4

    NASA Astrophysics Data System (ADS)

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos

    2016-05-01

    We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. We propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.

  13. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4

    NASA Astrophysics Data System (ADS)

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos

    We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low-temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. We suggest that both hysteretic MR and AHE arise from the formation of complex non-coplanar structures at magnetic domain walls. Current address: Department of Applied Physics and Applied Mathematics, Columbia University.

  14. Anisotropic intrinsic anomalous Hall effect in epitaxial Fe films on GaAs(111)

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Li, Yufan; Xu, Jianli; Hou, Dazhi; Jin, Xiaofeng

    2013-04-01

    The anomalous Hall effect (AHE) in epitaxial Fe films on GaAs(111) has been investigated as a function of film thickness and temperature. The intrinsic contribution from the Berry curvature is singled out from the extrinsic ones and determined to be 821 Ω-1 cm-1, which agrees to the theoretical prediction of 842 Ω-1 cm-1 and is considerably smaller than 1100 Ω-1 cm-1 for Fe(001). This result provides a direct experimental evidence for the anisotropy of the intrinsic AHE in single crystal Fe, reflecting its electronic band structure.

  15. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model. PMID:24483652

  16. Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach

    NASA Astrophysics Data System (ADS)

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David

    2016-01-01

    We present a combined analysis of LHC Higgs data (signal strengths) together with LEP-2 W W production measurements. To characterize possible deviations from the standard model (SM) predictions, we employ the framework of an effective field theory (EFT) where the SM is extended by higher-dimensional operators suppressed by the mass scale of new physics Λ . The analysis is performed consistently at the order Λ-2 in the EFT expansion keeping all the relevant operators. While the two data sets suffer from flat directions, together they impose stringent model-independent constraints on the anomalous triple gauge couplings.

  17. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Sun, L. Z.

    2016-06-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices.

  18. Comparison of anomalous Doppler resonance effects with molybdenum and graphite limiters on HT-7

    PubMed Central

    Wang, Y. M.; Gao, X.; Ling, B. L.; Liu, Y.; Zhang, S. B.; Han, X.; Ti, A.; Li, E. Z.

    2012-01-01

    The material of limiter in HT-7 tokamak was changed from graphite to molybdenum in the last experimental campaign. The pitch angle scattering of runaway electrons due to anomalous Doppler resonance effects was observed. The experimental results agree very well with the stable boundary condition expected from the linear resistive theory but only agree with that from the nonlinear evolutionary of runaway-electron distribution theory in low electric field region. The current carried by runaway electrons is the same under different limiter conditions. PMID:22509090

  19. Nonadiabatic Effects in Ultracold Molecules via Anomalous Linear and Quadratic Zeeman Shifts

    NASA Astrophysics Data System (ADS)

    McGuyer, B. H.; Osborn, C. B.; McDonald, M.; Reinaudi, G.; Skomorowski, W.; Moszynski, R.; Zelevinsky, T.

    2013-12-01

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold $^{88}$Sr$_2$ molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite $f$-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art \\textit{ab initio} model.

  20. Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4

    DOE PAGESBeta

    Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos

    2016-05-11

    We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.

  1. Pretreatment effects of moxibustion on the skin permeation and skin and muscle concentrations of salicylate in rats.

    PubMed

    Cao, Dianxiu; Tazawa, Yuko; Ishii, Hiroshi; Todo, Hiroaki; Sugibayashi, Kenji

    2011-04-01

    The effect of moxibustion on the in vitro and in vivo skin permeation of salicylate was evaluated in rats. First, the effect of moxibustion pretreatment on the elimination pharmacokinetics of salicylate after i.v. injection in rats was determined: no clear difference was observed in the plasma profiles of salicylate (SA) with or without moxibustion pretreatment. However, much higher skin and muscle concentrations of salicylate were observed after its i.v. injection. Next, an in vitro skin permeation study of SA was performed after moxibustion pretreatment. Moxibustion pretreatment increased the skin permeation of SA, and the extent of the increase in SA skin permeation was related to the strength of moxibustion ignition. More intense treatments produced higher skin permeation. A similar enhancement effect on the skin permeation of SA was observed in in vivo studies. Interestingly, the skin/plasma and muscle/plasma ratios of SA were markedly increased by moxibustion pretreatment. These results were due to the induction of enhanced skin permeation and lower clearance into the cutaneous vessels by moxibustion ignition. Combination treatment involving moxibustion and the topical application of drugs such as NSAID may be useful for increasing local pharmaceutical effects by enhancing the drug concentration in the skin and muscle underneath the topical application site. PMID:21256938

  2. Effect of skin wettedness on sweat gland response

    NASA Technical Reports Server (NTRS)

    Nadel, E. R.; Stolwijk, J. A. J.

    1973-01-01

    Investigation of the effect of skin wettedness upon sweating rate. Several techniques were used to gain a better understanding of the quantitative nature of this effect. The results include the finding that the evaporative power of the environment has a profound effect on the relationship between body temperature and sweating rate.

  3. Quantum phase transitions and anomalous Hall effect in a pyrochlore Kondo lattice

    NASA Astrophysics Data System (ADS)

    Grefe, Sarah; Ding, Wenxin; Si, Qimiao

    The metallic variant of the pyrochlore iridates Pr2Ir2O7 has shown characteristics of a possible chiral spin liquid state [PRL 96 087204 (2006), PRL 98, 057203 (2007), Nature 463, 210 (2010)] and quantum criticality [Nat. Mater. 13, 356 (2014)]. An important question surrounding the significant anomalous Hall response observed in Pr2Ir2O7 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on the pyrochlore lattice. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations and determine the zero-temperature phase diagram. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr2Ir2O7 and related frustrated Kondo-lattice systems.

  4. Extremely Large Magnetoresistance at Low Magnetic Field by Coupling the Nonlinear Transport Effect and the Anomalous Hall Effect.

    PubMed

    Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong

    2016-04-01

    The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. PMID:26857904

  5. Effects of a Skin Neuropeptide (Substance P) on Cutaneous Microflora

    PubMed Central

    Mijouin, Lily; Hillion, Mélanie; Ramdani, Yasmina; Jaouen, Thomas; Duclairoir-Poc, Cécile; Follet-Gueye, Marie-Laure; Lati, Elian; Yvergnaux, Florent; Driouich, Azzedine; Lefeuvre, Luc; Farmer, Christine; Misery, Laurent; Feuilloley, Marc G. J.

    2013-01-01

    Background Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP), a peptide released by nerve endings in the skin on bacterial virulence. Methodology/Principal Findings Bacillus cereus, a member of the skin transient microflora, was used as a model. Exposure to SP strongly stimulated the cytotoxicity of B. cereus (+553±3% with SP 10−6 M) and this effect was rapid (<5 min). Infection of keratinocytes with SP treated B. cereus led to a rise in caspase1 and morphological alterations of the actin cytoskeleton. Secretome analysis revealed that SP stimulated the release of collagenase and superoxide dismutase. Moreover, we also noted a shift in the surface polarity of the bacteria linked to a peel-off of the S-layer and the release of S-layer proteins. Meanwhile, the biofilm formation activity of B. cereus was increased. The Thermo unstable ribosomal Elongation factor (Ef-Tu) was identified as the SP binding site in B. cereus. Other Gram positive skin bacteria, namely Staphylococcus aureus and Staphylococcus epidermidis also reacted to SP by an increase of virulence. Thermal water from Uriage-les-Bains and an artificial polysaccharide (Teflose®) were capable to antagonize the effect of SP on bacterial virulence. Conclusions/Significance SP is released in sweat during stress and is known to be involved in the pathogenesis of numerous skin diseases through neurogenic inflammation. Our study suggests that a direct effect of SP on the skin microbiote should be another mechanism. PMID:24250813

  6. Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.

    PubMed

    Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür

    2014-09-01

    The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin. PMID:24760629

  7. Effects of a new topical combination on sensitive skin.

    PubMed

    Fauger, A; Lhoste, A; Chavagnac-Bonneville, M; Sayag, M; Jourdan, E; Ardiet, N; Perichaud, C; Trompezinski, S; Misery, L

    2015-01-01

    Using well-tolerated cosmetics or those with soothing effects is recommended to treat sensitive skin. However, we lack clinical studies. Two clinical trials were performed on sensitive skin in France and Thailand. The primary objective was to evaluate the preventive soothing effect. The secondary objectives were to evaluate the immediate soothing effect, product tolerance, and impact on quality of life. Evaluation methods included a stinging test and scoring erythema and stinging intensity. We also assessed tolerance, quality of life using the Dermatology Life Quality Index, and cosmetic qualities. The clinical trials were performed in France and Thailand to test efficacy in two different environments and on different ethnic skin. Interesting effects were observed in patients with sensitive skin in France and Thailand: a preventive soothing effect, a soothing effect on erythema, and an immediate soothing effect. In vivo biometrological, sodium lauryl sulfate, and capsaicin tests confirmed these data. A favorable effect on quality of life was also noted. The product was appreciated by volunteers for its efficacy, tolerance, and cosmetic qualities. A preliminary study on the effects on interleukin 8 was also included in the paper. PMID:26454972

  8. Quantum Anomalous Hall Effect in Low-buckled Honeycomb Lattice with In-plane Magnetization

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Pan, Hui; Yang, Fei; Li, Xin; Qiao, Zhenhua; Zhenhua Qiao's group Team; Hui Pan's group Team

    With out-of-plane magnetization, the quantum anomalous Hall effect has been extensively studied in quantum wells and two-dimensional atomic crystal layers. Here, we investigate the possibility of realizing quantum anomalous Hall effect (QAHE) in honeycomb lattices with in-plane magnetization. We show that the QAHE can only occur in low-buckled honeycomb lattice where both intrinsic and intrinsic Rashba spin-orbit coupling appear spontaneously. The extrinsic Rashba spin-orbit coupling is detrimental to this phase. In contrast to the out-of-plane magnetization induced QAHE, the QAHE from in-plane magnetization is achieved in the vicinity of the time reversal symmetric momenta at M points rather than Dirac points. In monolayer case, the QAHE can be characterized by Chern number  = +/- 1 whereas additional phases with Chern number  = +/- 2 appear in chiral stacked bilayer system. The Chern number strongly depends on the orientation of the magnetization. The bilayer system also provides additional tunability via out-of-plane electric field, which can reduce the critical magnetization strength required to induce QAHE. It can also lead to topological phase transitions from  = +/- 2 to +/- 1 and finally to 0 Equal contribution from Yafei Ren and Hui Pan.

  9. Semiclassical wave packet study of anomalous isotope effect in ozone formation.

    PubMed

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-10-21

    We applied the semiclassical initial value representation method to calculate energies, lifetimes, and wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such scattering states represent the metastable O3* species and play a central role in the process of ozone formation. Autocorrelation functions for scattering states were computed and then analyzed using the Prony method, which permits one to extract accurate energies and widths of the resonances. We found that the results of the semiclassical wave packet propagation agree well with fully quantum results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated with formation of this molecule, either through the 16O16O+18O or the 16O+16O18O channels. An interesting correlation between the local vibration mode character of the metastable states and their lifetimes was observed and explained. New insight is obtained into the mechanism by which the long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large isotope effect. PMID:17949154

  10. Large anomalous Hall effect in Pt interfaced with perpendicular anisotropy ferrimagnetic insulator

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Garay, Javier; Shi, Jing; Shines Team

    We demonstrate the strain induced perpendicular magnetic anisotropy (PMA) in a ferrimagnetic insulator (FMI), Tm3Fe5O12 (TIG) and the first observation of large anomalous Hall effect (AHE) in TIG/Pt bilayers. Atomically flat TIG films were deposited by a laser molecular beam epitaxy system on (111)-orientated substituted gadolinium gallium garnet substrates. The strength of PMA could be effectively tuned by controlling the oxygen pressure during deposition. Sharp squared anomalous Hall hysteresis loops were observed in bilayers of TIG/Pt over a range of thicknesses of Pt, with the maximum AHE conductivity reaching 1 S/cm at room temperature. The AHE vanishes when a 5 nm Cu layer was inserted between Pt and TIG, strongly indicating the proximity-induced ferromagnetism in Pt. The large AHE in the bilayer structures demonstrates a potential use of PMA-FMI related heterostructures in spintronics. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  11. Effect of glove occlusion on the skin barrier.

    PubMed

    Tiedemann, Daniel; Clausen, Maja Lisa; John, Swen Malthe; Angelova-Fischer, Irena; Kezic, Sanja; Agner, Tove

    2016-01-01

    Wet work tasks are the most common exposures leading to occupational irritant contact dermatitis. Use of liquid-proof gloves is recommended when performing wet work, however, gloves may also contribute to impairment of the skin barrier and development of irritant contact dermatitis. The aim of this study is to review the literature on the effects of glove occlusion on skin barrier function. The PubMed database was searched up to 1 February 2015 for articles on the association between glove occlusion and skin barrier function, including human studies only and in English. Only experimental studies including assessment of the skin barrier function were included in the data analysis. Thirteen articles were identified, 8 with focus on occlusion alone, 7 with focus on occlusion in combination with irritant exposure (some overlapping), and 2 field studies. In conclusion, data from the literature showed that the negative effect of occlusion in itself is limited, and that only extensive and long-term occlusion will cause barrier impairment. However, studies investigating combined effect of occlusion and exposure to soaps/detergents indicate that occlusion significantly enhances the skin barrier damage caused by detergents/soaps in a dose-response fashion. PMID:26364588

  12. Anomalous Hall effect in the prospective spintronic material Eu1‑x Gd x O integrated with Si

    NASA Astrophysics Data System (ADS)

    Parfenov, Oleg E.; Averyanov, Dmitry V.; Tokmachev, Andrey M.; Taldenkov, Alexander N.; Storchak, Vyacheslav G.

    2016-06-01

    Remarkable properties of EuO make it a versatile spintronic material. Despite numerous experimental and theoretical studies of EuO, little is known about the anomalous Hall effect in this ferromagnet. So far, the effect has not been observed in bulk EuO, though has been detected in EuO films with uncontrolled distribution of defects. In the present work doping is taken under control: epitaxial films of Gd-doped EuO are synthesized integrated with Si using molecular beam epitaxy and characterized with x-ray diffraction and magnetization measurements. Nanoscale transport studies reveal the anomalous Hall effect in the ferromagnetic region for samples with different Gd concentration. The saturated anomalous Hall effect conductivity value of 5.0 S·cm‑1 in Gd-doped EuO is more than an order of magnitude larger than those reported so far for Eu chalcogenides doped with anion vacancies.

  13. Anomalous Hall effect in the prospective spintronic material Eu1-x Gd x O integrated with Si.

    PubMed

    Parfenov, Oleg E; Averyanov, Dmitry V; Tokmachev, Andrey M; Taldenkov, Alexander N; Storchak, Vyacheslav G

    2016-06-01

    Remarkable properties of EuO make it a versatile spintronic material. Despite numerous experimental and theoretical studies of EuO, little is known about the anomalous Hall effect in this ferromagnet. So far, the effect has not been observed in bulk EuO, though has been detected in EuO films with uncontrolled distribution of defects. In the present work doping is taken under control: epitaxial films of Gd-doped EuO are synthesized integrated with Si using molecular beam epitaxy and characterized with x-ray diffraction and magnetization measurements. Nanoscale transport studies reveal the anomalous Hall effect in the ferromagnetic region for samples with different Gd concentration. The saturated anomalous Hall effect conductivity value of 5.0 S·cm(-1) in Gd-doped EuO is more than an order of magnitude larger than those reported so far for Eu chalcogenides doped with anion vacancies. PMID:27165844

  14. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  15. Pumping conductance, the intrinsic anomalous Hall effect, and statistics of topological invariants

    NASA Astrophysics Data System (ADS)

    Dahlhaus, Jan; Ilan, Roni; Freed, Daniel; Freedman, Michael; Moore, Joel E.

    2015-06-01

    The pumping conductance of a disordered two-dimensional Chern insulator scales with increasing size and fixed disorder strength to sharp plateau transitions at well-defined energies between ordinary and quantum Hall insulators. When the disorder strength is scaled to zero as system size increases, the "metallic" regime of fluctuating Chern numbers can extend over the whole band. A simple argument leads to a sort of weighted equipartition of Chern number over minibands in a finite system with periodic boundary conditions: even though there must be strong fluctuations between disorder realizations, the mean Chern number at a given energy is determined by the clean Berry curvature distribution, as in the intrinsic anomalous Hall effect formula for metals. This estimate is compared to numerical results using recently developed operator algebra methods, and indeed the dominant variation of average Chern number is explained by the intrinsic anomalous Hall formula. A mathematical appendix provides more precise definitions and a model for the full distribution of Chern numbers.

  16. Electric field induced quantum anomalous Hall effect in two-dimensional antiferromagnetic triphenyl-lead lattice

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Li, Chaokai; Feng, Ji; Zhang, Zhenyu; Cho, Jun-Hyung

    The tuning of topological states is of significant fundamental and practical importance in contemporary condensed matter physics, for which the extension to two-dimensional (2D) organometallic systems is particularly attractive. Using first-principles calculations, we find that a 2D hexagonal triphenyl-lead lattice composed of only main group elements is susceptible to a magnetic instability, characterized by a antiferromagnetic (AFM) insulating state with a renormalized valley gaps with gap difference of 24 meV due to the spin and valley coupling. This AFM state will be subject to a anomalous valley Hall effect under the action of Berry curvature-induced spin and valley currents via, for example, injection of circularly polarized light. Furthermore, such a AFM band insulator can be tuned into a topologically nontrivial quantum anomalous Hall state with a Chern number of one by the application of an out-of-plane electric field. These findings further enrich our understanding of 2D hexagonal organometallic lattices for potential applications in spintronics and valleytronics.

  17. Anomalous Hall effect in monodisperse CoO-coated Co nanocluster-assembled films

    NASA Astrophysics Data System (ADS)

    Wang, J. B.; Mi, W. B.; Wang, L. S.; Zeng, D. Q.; Chen, Y. Z.; Peng, D. L.

    2016-03-01

    We have fabricated the uniform CoO-coated Co nanocluster-assembled films at various oxygen gas flow rates (fO) by using a plasma-gas-condensation method and studied their anomalous Hall effect (AHE). The longitudinal resistivity (ρxx) of all the films exhibits a minimum at a temperature of Tmin. With the increase of fO, Tmin shifts from 150 to 300 K and has no longer change when fO is up to 0.10 sccm. The saturated AHE resistivity (ρxyA) presents a near linear increase as fO rises. The anomalous Hall coefficient (Rs) at fO=0.20 sccm is 4.9×10-9 Ω cm G-1 at 300 K, which is almost three orders of magnitude larger than bulk Co. Moreover, at fO=0 and 0.05 sccm, the scaling exponents γ=1.2 and 1.24 in ρ,SUB>xyA ∝ ρxxγ are obtained in the region of 325-375 K; At fO=0.10, 0.15 and 0.20 sccm, ρxyA decreases with the increase of ρxx on a double-logarithmic scale, following a new scaling relation of log (ρxyA/ρxx) = a0 + b0 log ρxx in two temperature ranges of 5-300 K and 325-375 K.

  18. Anomalous scaling in magnetohydrodynamic turbulence: Effects of anisotropy and compressibility in the kinematic approximation.

    PubMed

    Antonov, N V; Kostenko, M M

    2015-11-01

    The field-theoretic renormalization group and the operator product expansion are applied to the model of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝ δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. From physics viewpoints, the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated as a multiplicatively renormalizable field-theoretic model; the corresponding renormalization group equations possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. PMID:26651785

  19. Anomalous scaling in magnetohydrodynamic turbulence: Effects of anisotropy and compressibility in the kinematic approximation

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Kostenko, M. M.

    2015-11-01

    The field-theoretic renormalization group and the operator product expansion are applied to the model of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ (t -t') k4 -d -y , where d is the dimension of space and y is an arbitrary exponent. From physics viewpoints, the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated as a multiplicatively renormalizable field-theoretic model; the corresponding renormalization group equations possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y . The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y . The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant.

  20. Anomalous Hall effects in amorphous Ni74 Mn24 Pt2 film

    NASA Astrophysics Data System (ADS)

    Öner, Yildirhan

    2005-04-01

    Hall resistivity and magnetic measurements for the amorphous Ni74Mn24Pt2 film have been carried out as a function of magnetic field up to 120 kOe in a wide temperature range. The anomalous Hall coefficient, Rs , the ordinary Hall coefficient R0 , the total hysteresis width of the Hall resistivity ΔH are deduced for several temperatures in the temperature range of 1.5-150 K. The Hall voltage was observed in the zero external fields at the temperature below T=10K for both zero field cooling (ZFC) and field cooling (FC) cases. The Hall resistivity hysteresis curves become completely symmetric with respect to the field axis at the temperatures above 15 K where the unidirectional fields lost its rigidity All these anomalous effects have been explained in terms of asymmetric spin-orbit scattering of the conduction electron, which are polarized to the direction of the unidirectional exchange field. It is concluded that the surface becomes dominant at low temperatures. This assertion has been supported by the susceptibility measurements.

  1. Anomalous memory effect in the breakdown of low-pressure argon in a long discharge tube

    SciTech Connect

    Meshchanov, A. V.; Korshunov, A. N.; Ionikh, Yu. Z.; Dyatko, N. A.

    2015-08-15

    The characteristics of breakdown of argon in a long tube (with a gap length of 75 cm and diameter of 2.8 cm) at pressures of 1 and 5 Torr and stationary discharge currents of 5–40 mA were studied experimentally. The breakdown was initiated by paired positive voltage pulses with a rise rate of ∼10{sup 8}–10{sup 9} V/s and duration of ∼1–10 ms. The time interval between pairs was varied in the range of Τ ∼ 0.1–1 s, and that between pulses in a pair was varied from τ = 0.4 ms to ≈Τ/2. The aim of this work was to detect and study the so-called “anomalous memory effect” earlier observed in breakdown in nitrogen. The effect consists in the dynamic breakdown voltage in the second pulse in a pair being higher than in the first pulse (in contrast to the “normal” memory effect, in which the relation between the breakdown voltages is opposite). It is found that this effect is observed when the time interval between pairs of pulses is such that the first pulse in a pair is in the range of the normal memory effect of the preceding pair (under the given conditions, Τ ≈ 0.1–0.4 s). In this case, at τ ∼ 10 ms, the breakdown voltage of the second pulse is higher than the reduced breakdown voltage of the first pulse. Optical observations of the ionization wave preceding breakdown in a long tube show that, in the range of the anomalous memory effect and at smaller values of τ, no ionization wave is detected before breakdown in the second pulse. A qualitative interpretation of the experimental results is given.

  2. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field.

    PubMed

    Bestwick, A J; Fox, E J; Kou, Xufeng; Pan, Lei; Wang, Kang L; Goldhaber-Gordon, D

    2015-05-01

    We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10 000 and a longitudinal resistivity under 1  Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration. PMID:26001016

  3. Anomalous electron heating effects on the E region ionosphere in TIEGCM

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Wenbin; Oppenheim, Meers; Dimant, Yakov; Wiltberger, Michael; Merkin, Slava

    2016-03-01

    We have recently implemented a new module that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.

  4. Analog of the spin-orbit-induced anomalous Hall effect with quantized radiation

    SciTech Connect

    Larson, Jonas

    2010-05-15

    We demonstrate how the term describing the interaction between a single two-level atom and two cavity field modes may attain a Rashba form. As an outcome, cavity QED provides a testbed for studies of phenomena reminiscent of the spin-orbit induced anomalous Hall effect. The effective magnetic field, deriving from the non-Abelian gauge potentials rendered by the Rashba coupling, induces a transverse force acting on the phase space distributions. Thereby, the phase space distributions build up a transverse motion manifesting itself in spiral trajectories, rather than circular ones obtained for a zero magnetic field as one would acquire for the corresponding Abelian gauge potentials. Utilizing realistic experimental parameters, the phenomenon is numerically verified, ascertain that it should be realizable with current techniques.

  5. Sunscreen effects in skin analyzed by photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dos Anjos, F. H.; Rompe, P. C. B.; Mansanares, A. M.; da Silva, E. C.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, photoacoustic spectroscopy (PAS) was employed to characterize samples of commercially available sunscreen (SPF15) and the system formed by sunscreen plus skin (topically applied sunscreen). Measurements were performed at 70Hz, in the wavelength range that corresponds to most of the ultraviolet (UV) radiation that reaches Earth. The absorption spectrum of sunscreen was obtained in vitro and in situ., showing that the sunscreen analyzed presents an effective absorption of the UV radiation After that, the PAS technique was used to monitor the absorption kinetics of sunscreen applied to human skin (abdomen) samples, characterizing alterations in the human skin after application of sunscreen. This was done by applying the sunscreen in a skin sample and recording the absorption spectra in regular time intervals, up to 90 minutes after application. Measurements show that light absorption by the system sunscreen plus skin stabilizes between 25 and 45 minutes after sunscreen application. This agrees with the instructions given by the producers about the need of applying the sunscreen at least 30 minutes before sun exposition. The requirement to periodically reapply the sunscreen is confirmed by the progressive decrease in the level of UV absorption as a function of time.

  6. Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: a systematic review.

    PubMed

    Gordon, Louisa G; Rowell, David

    2015-03-01

    The objective of this study was to review the literature for malignant melanoma, basal and squamous cell carcinomas to understand: (a) national estimates of the direct health system costs of skin cancer and (b) the cost-effectiveness of interventions for skin cancer prevention or early detection. A systematic review was performed using Medline, Cochrane Library and the National Health Service Economic Evaluation Databases as well as a manual search of reference lists to identify relevant studies up to 31 August 2013. A narrative synthesis approach was used to summarize the data. National cost estimates were adjusted for country-specific inflation and presented in 2013 euros. The CHEERS statement was used to assess the quality of the economic evaluation studies. Sixteen studies reporting national estimates of skin cancer costs and 11 cost-effectiveness studies on skin cancer prevention or early detection were identified. Relative to the size of their respective populations, the annual direct health system costs for skin cancer were highest for Australia, New Zealand, Sweden and Denmark (2013 euros). Skin cancer prevention initiatives are highly cost-effective and may also be cost-saving. Melanoma early detection programmes aimed at high-risk individuals may also be cost-effective; however, updated analyses are needed. There is a significant cost burden of skin cancer for many countries and health expenditure for this disease will grow as incidence increases. Public investment in skin cancer prevention and early detection programmes show strong potential for health and economic benefits. PMID:25089375

  7. In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells.

    PubMed

    Maduray, K; Odhav, B; Nyokong, T

    2012-03-01

    Photodynamic therapy is a medical treatment that uses an inactive dye/drug and lasers as a light source to activate the dye/drug to produce a toxic form of oxygen that destroys the cancer cells. This study aimed at investigating the cytotoxic effects of different concentrations of aluminum tetrasulfophthalocyanines in its inactive and active state (laser induced) on melanoma skin cancer cells, healthy normal skin fibroblast and keratinocyte cells. Experimentally, 3 × 10⁴ cells/ml were seeded in 24-well plates before treatment with different concentrations of aluminum tetrasulfophthalocyanines. After 2h, cells were irradiated with a light dose of 4.5 J/cm². Post-irradiated cells were incubated for 24h before cell viability was measured using the CellTiter-Blue Viability Assay. Results showed that aluminum tetrasulfophthalocyanines at high concentrations were cytotoxic to melanoma cells in the absence of laser activation. In the presence of laser activation of aluminum tetrasulfophthalocyanines at a concentration of 40 μg/ml decreased cell viability of melanoma cells to 45%, fibroblasts to 78% and keratinocytes to 73%. At this photosensitizing concentration of aluminum tetrasulfophthalocyanines the efficacy of the treatment light dose 4.5 J/cm² and the cell death mechanism induced by photoactivated aluminum tetrasulfophthalocyanines was evaluated. A light dose of 4.5 J/cm² was more efficient in killing a higher number of melanoma cells and a lower number of fibroblast and keratinocyte cells than the other light doses of 2.5 J/cm², 7.5 J/cm² and 10.5 J/cm². Apoptosis features such as blebbing, nucleus condensation, nucleus fragmentation and the formation of apoptotic bodies were seen in the photodynamic therapy treated melanoma skin cancer cells. This in vitro photodynamic therapy study concludes that using aluminum tetrasulfophthalocyanines at a photosensitizing concentration of 40 μg/ml in combination with a laser dose of 4.5 J/cm² was potentially lethal

  8. Inhibitory effect of corn silk on skin pigmentation.

    PubMed

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-01-01

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation. PMID:24595276

  9. Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films

    SciTech Connect

    Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2015-01-19

    Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  10. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films

    PubMed Central

    Hwang, Kyusung; Kim, Yong Baek

    2016-01-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293

  11. Evidence of local effects in anomalous refraction and focusing properties of dodecagonal photonic quasicrystals

    NASA Astrophysics Data System (ADS)

    di Gennaro, Emiliano; Miletto, Carlo; Savo, Salvatore; Andreone, Antonello; Morello, Davide; Galdi, Vincenzo; Castaldi, Giuseppe; Pierro, Vincenzo

    2008-05-01

    We present the key results from a comprehensive study of the refraction and focusing properties of a two-dimensional dodecagonal photonic “quasicrystal” (PQC), which was carried out via both full-wave numerical simulations and microwave measurements on a slab made of alumina rods inserted in a parallel-plate waveguide. We observe an anomalous refraction and focusing in several frequency regions, which confirm some recently published results. However, our interpretation, which is based on numerical and experimental evidence, substantially differs from the one in terms of “effective negative refractive index” that was originally proposed. Instead, our study highlights the critical role played by short-range interactions associated with local order and symmetry.

  12. Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Zeng, Junjie; Deng, Xinzhou; Yang, Fei; Pan, Hui; Qiao, Zhenhua

    2016-08-01

    We theoretically demonstrate that with in-plane magnetization, the quantum anomalous Hall effect (QAHE) can be realized in two-dimensional atomic crystal layers with preserved inversion symmetry but broken out-of-plane mirror reflection symmetry. By taking the honeycomb lattice system as an example, we find that the low-buckled structure satisfying the symmetry criteria is crucial to induce QAHE. The topologically nontrivial bulk gap carrying a Chern number of C =±1 opens in the vicinity of the saddle points M , where the band dispersion exhibits strong anisotropy. We further show that the QAHE with electrically tunable Chern number can be achieved in Bernal-stacked multilayer systems, and the applied interlayer potential differences can dramatically decrease the critical magnetization to make the QAHE experimentally feasible.

  13. The temperature dependent anomalous Hall effect in La-Ca-Mn-O films

    SciTech Connect

    Lin, Y.; Miller, D. J.; Jiang, J. S.; Pearson, J.; Bader, S. D.

    1999-10-27

    The colossal magnetoresistance of La{sub 1{minus}x}Ca{sub x}MnO{sub 3} has been reported in many experiments. The authors present their study of the anomalous Hall effect in epitaxial La{sub 0.67}Ca{sub 0.33}MnO{sub 3} thin films. They have measured the temperature dependence of resistivity, magnetization and AHE coefficients between 300K and 5K for the samples grown on different substrates. From these studies, the relation between the resistivity and AHE coefficient as well as the temperature dependence of AHE coefficient are explored. The results show that the direction of AHE is reversed below approximately 100K. This sign reversal is discussed in term of the change of band structure and the co-existence of hole-like and electron-like conduction.

  14. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films.

    PubMed

    Hwang, Kyusung; Kim, Yong Baek

    2016-01-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293

  15. Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic model

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Baalrud, S. D.; Chabert, P.

    2016-05-01

    In Paper I [T. Lafleur et al., Phys. Plasmas 23, 053502 (2016)], we demonstrated (using particle-in-cell simulations) the definite correlation between an anomalously high cross-field electron transport in Hall effect thrusters (HETs), and the presence of azimuthal electrostatic instabilities leading to enhanced electron scattering. Here, we present a kinetic theory that predicts the enhanced scattering rate and provides an electron cross-field mobility that is in good agreement with experiment. The large azimuthal electron drift velocity in HETs drives a strong instability that quickly saturates due to a combination of ion-wave trapping and wave-convection, leading to an enhanced mobility many orders of magnitude larger than that expected from classical diffusion theory. In addition to the magnetic field strength, B0, this enhanced mobility is a strong function of the plasma properties (such as the plasma density) and therefore does not, in general, follow simple 1 /B02 or 1 /B0 scaling laws.

  16. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    PubMed Central

    Zhou, P.; Sun, L. Z.

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  17. Anomalous TWTA output power spikes and their effect on a digital satellite communications system

    NASA Technical Reports Server (NTRS)

    May, Brian D.; Kerczewski, Robert J.; Svoboda, James S.

    1992-01-01

    Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed.

  18. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene.

    PubMed

    Zhou, P; Sun, L Z

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  19. Magnetization, anomalous Barkhausen effect, and core loss of Supermendur under high temperature cycling.

    NASA Technical Reports Server (NTRS)

    Niedra, J. M.; Schwarze, G. E.

    1971-01-01

    The magnetization and core loss of Supermendur were measured up to 900 C under conditions of slow temperature cycling in vacuum. As a consequence of this heating, the coercivity at 25 C increased from 21 A/m to about 110 A/m. This increase is less than previously reported. A prominent anomalous Barkhausen effect, pinched-in hysteresis loops, and a magnetic viscosity field in excess of 20 A/m were observed in the range of 600 to 700 C. At 850 C, Supermendur had a coercivity of 23 A/m, a saturation induction exceeding 1.5 T, a core loss of 26 W/kg at 400 Hz, and a maximum induction of 1.5 T. Supermendur may be useful for high temperature soft magnetic material applications where some history dependence of properties and instability of minor loops at lower temperatures is acceptable.

  20. Theory of Multifarious Quantum Phases and Large Anomalous Hall Effect in Pyrochlore Iridate Thin Films

    NASA Astrophysics Data System (ADS)

    Hwang, Kyusung; Kim, Yong Baek

    2016-07-01

    We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect.

  1. Beer and beer compounds: physiological effects on skin health.

    PubMed

    Chen, W; Becker, T; Qian, F; Ring, J

    2014-02-01

    Beer is one of the earliest human inventions and globally the most consumed alcoholic beverage in terms of volume. In addition to water, the 'German Beer Purity Law', based on the Bavarian Beer Purity Law from 1516, allows only barley, hops, yeasts and water for beer brewing. The extracts of these ingredients, especially the hops, contain an abundance of polyphenols such as kaempferol, quercetin, tyrosol, ferulic acid, xanthohumol/isoxanthohumol/8-prenylnaringenin, α-bitter acids like humulone and β-bitter acids like lupulone. 8-prenylnaringenin is the most potent phytoestrogen known to date. These compounds have been shown to possess various anti-bacterial, anti-inflammatory, anti-oxidative, anti-angiogenic, anti-melanogenic, anti-osteoporotic and anti-carcinogenic effects. Epidemiological studies on the association between beer drinking and skin disease are limited while direct evidence of beer compounds in clinical application is lacking. Potential uses of these substances in dermatology may include treatment of atopic eczema, contact dermatitis, pigmentary disorders, skin infections, skin ageing, skin cancers and photoprotections, which require an optimization of the biostability and topical delivery of these compounds. Further studies are needed to determine the bioavailability of these compounds and their possible beneficial health effects when taken by moderate beer consumption. PMID:23802910

  2. Effect of Age on Tooth Shade, Skin Color and Skin-Tooth Color Interrelationship in Saudi Arabian Subpopulation

    PubMed Central

    Haralur, Satheesh B

    2015-01-01

    Background: Dental restoration or prosthesis in harmony with adjacent natural teeth color is indispensable part for the successful esthetic outcome. The studies indicate is existence of correlation between teeth and skin color. Teeth and skin color are changed over the aging process. The aim of the study was to explore the role of age on the tooth and skin color parameters, and to investigate the effect of ageing on teeth-skin color correlation. Materials and Methods: Total of 225 Saudi Arabian ethnic subjects was divided into three groups of 75 each. The groups were divided according to participant’s age. The participant’s age for Group I, Group II, and Group III was 18-29 years, 30-50 years, and above 50 years, respectively. The tooth color was identified by spectrophotometer in CIE Lab parameters. The skin color was registered with skin surface photography. The data were statistically analyzed with one-way ANOVA and correlation tests with SPSS 18 software. Results: The Group I had the highest ‘L’ value of 80.26, Group III recorded the least value of 76.66. The Group III had highest yellow value ‘b’ at 22.72, while Group I had 19.19. The skin ‘L’ value was highest in the young population; the elder population had the increased red value ‘a’ in comparison to younger subjects. The ‘L’ tooth color parameter had a strong positive linear correlation with skin color in young and adult subjects. While Group III teeth showed the strong positive correlation with ‘b’ parameter at malar region. Conclusion: The elder subjects had darker and yellow teeth in comparison with younger subjects. The reddening of the skin was observed as age-related skin color change. The age had a strong influence on the teeth-skin color correlation. PMID:26464536

  3. Vacuum effects in magnetic field with with account for fermion anomalous magnetic moment and axial-vector interaction

    NASA Astrophysics Data System (ADS)

    Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir

    2016-05-01

    We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.

  4. Effects of Essential Oils and Polyunsaturated Fatty Acids on Canine Skin Equivalents: Skin Lipid Assessment and Morphological Evaluation

    PubMed Central

    Cerrato, S.; Ramió-Lluch, L.; Fondevila, D.; Rodes, D.; Brazis, P.; Puigdemont, A.

    2013-01-01

    A canine skin equivalent model has been validated for the assessment of a topical formulation effects. Skin equivalents were developed from freshly isolated cutaneous canine fibroblasts and keratinocytes, after enzymatic digestion of skin samples (n = 8) from different breeds. Fibroblasts were embedded into a collagen type I matrix, and keratinocytes were seeded onto its surface at air-liquid interface. Skin equivalents were supplemented with essential oils and polyunsaturated fatty acid formulation or with vehicle. Skin equivalents were histopathologically and ultrastructurally studied, and the three main lipid groups (free fatty acids, cholesterol, and ceramides) were analyzed. Results showed that the culture method developed resulted in significant improvements in cell retrieval and confluence. Treated samples presented a thicker epidermis with increased number of viable cell layers, a denser and compact stratum corneum, and a more continuous basal membrane. Regarding lipid profile, treated skin equivalents showed a significant increase in ceramide content (51.7 ± 1.3) when compared to untreated (41.6  ±  1.4) samples. Ultrastructural study evidenced a compact and well-organized stratum corneum in both treated and control skin equivalents. In conclusion, cell viability and ceramides increase, after lipid supplementation, are especially relevant for the treatment of skin barrier disruptions occurring in canine atopic dermatitis. PMID:26464904

  5. Evaluation of skin viability effect on ethosome and liposome-mediated psoralen delivery via cell uptake.

    PubMed

    Zhang, Yong-Tai; Shen, Li-Na; Wu, Zhong-Hua; Zhao, Ji-Hui; Feng, Nian-Ping

    2014-10-01

    This study investigated the effect of skin viability on its permeability to psoralen delivered by ethosomes, as compared with liposomes. With decreasing skin viability, the amount of liposome-delivered psoralen that penetrated through the skin increased, whereas skin deposition of psoralen from both ethosomes and liposomes reduced. Psoralen delivery to human-immortalized epidermal cells was more effective using liposomes, whereas delivery to human embryonic skin fibroblast cells was more effective when ethosomes were used. These findings agreed with those of in vivo studies showing that skin psoralen deposition from ethosomes and liposomes first increased and then plateaued overtime, which may indicate gradual saturation of intracellular drug delivery. It also suggested that the reduced deposition of ethosome- or liposome-delivered psoralen in skin with reduced viability may relate to reduced cellular uptake. This work indicated that the effects of skin viability should be taken into account when evaluating nanocarrier-mediated drug skin permeation. PMID:25070929

  6. Anomalous is ubiquitous

    SciTech Connect

    Eliazar, Iddo; Klafter, Joseph

    2011-09-15

    Brownian motion is widely considered the quintessential model of diffusion processes-the most elemental random transport processes in Science and Engineering. Yet so, examples of diffusion processes displaying highly non-Brownian statistics-commonly termed 'Anomalous Diffusion' processes-are omnipresent both in the natural sciences and in engineered systems. The scientific interest in Anomalous Diffusion and its applications is growing exponentially in the recent years. In this Paper we review the key statistics of Anomalous Diffusion processes: sub-diffusion and super-diffusion, long-range dependence and the Joseph effect, Levy statistics and the Noah effect, and 1/f noise. We further present a theoretical model-generalizing the Einstein-Smoluchowski diffusion model-which provides a unified explanation for the prevalence of Anomalous Diffusion statistics. Our model shows that what is commonly perceived as 'anomalous' is in effect ubiquitous. - Highlights: > The article provides an overview of Anomalous Diffusion (AD) statistics. > The Einstein-Smoluchowski diffusion model is extended and generalized. > The generalized model universally generates AD statistics. > A unified 'universal macroscopic explanation' for AD statistics is established. > AD statistics are shown to be fundamentally connected to robustness.

  7. Assessing vehicle effects on skin absorption using artificial membrane assays.

    PubMed

    Karadzovska, Daniela; Riviere, Jim E

    2013-12-18

    A vast number of variations in drug/vehicle combinations may come into contact with skin. Evaluating the effect of potential drug, vehicle and skin interactions for all possible combinations is a daunting task. A practical solution is a rapid screening technique amenable to high throughput approaches (e.g. 96-well plates). In this study, three artificial membranes (isopropyl myristate (IPM), certramides and Strat-M™) were evaluated for their ability to predict the skin permeability of caffeine, cortisone, diclofenac sodium, mannitol, salicylic acid and testosterone applied in propylene glycol, water and ethanol as unsaturated and saturated concentrations. Resultant absorption data was compared to porcine skin diffusion cell data. The correlations (r(2)) between membrane and diffusion cell data from saturated and unsaturated concentrations were 0.38, 0.47 and 0.56 for the Strat-M™, certramide and IPM membranes, respectively. This relationship improved when only saturated concentrations were evaluated (r(2) = 0.60, 0.63 and 0.66 for the Strat-M™, certramide and IPM membranes, respectively). A correlation between membrane retention and the amount remaining in skin had r(2) values of 0.73 (Strat-M™), 0.67 (certramides), and 0.67 (IPM). Quantitative structure-permeability relationship models for each membrane identified different physicochemical factors influencing the absorption process. Although further investigations exploring complex topical formulations are required, these results suggest potential use as an initial screening approach to assist in narrowing the selection of formulations to be evaluated with a more biologically intact model, thereby assisting in the development of new topical formulations. PMID:23474357

  8. Effects of permafrost microorganisms on skin wound reparation.

    PubMed

    Kalenova, L F; Novikova, M A; Subbotin, A M

    2015-02-01

    Local application of ointment with Bacillus spp. strain MG8 (15,000-20,000 living bacterial cells), isolated from permafrost specimens, on the skin wound of about 60 mm(2) stimulated the reparation processes in experimental mice. A possible mechanism stimulating the regeneration of the damaged tissues under the effect of MG8 could be modulation of the immune system reactivity with more rapid switchover to humoral immunity anti-inflammatory mechanisms aimed at de novo synthesis of protein. PMID:25708330

  9. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  10. Anomalous Hall effect in Pt thin films induced by ionic gating

    NASA Astrophysics Data System (ADS)

    Shimizu, Sunao; Takahashi, Kei S.; Hatano, Takafumi; Kawasaki, Masashi; Tokura, Yoshinori; Iwasa, Yoshihiro

    2014-03-01

    Pt is an exchange-enhanced paramagnetic material, in which the Stoner criterion for ferromagnetism is nearly satisfied and thus external stimuli may induce unconventional magnetic characteristics. For example, nano-structure formation such as particles[2] or wires[3] provides Pt with ferromagnetic-like properties even at room temperature. In this presentation, we report that a nonmagnetic perturbation in the form of a gate voltage applied through an ionic liquid induces a nonlinear Hall effect in Pt thin films,[4] which resembles the anomalous Hall effect induced by the contact to yttrium iron garnet.[5] Analysis of detailed temperature and magnetic field experiments indicates that the evolution of the nonlinear Hall effect can be explained in terms of large local moments. The applied electric field triggers an electrochemical reaction at the solid/liquid interface and induces magnetic moments as large as ~10 μB that follow the Langevin function. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its `Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)'.

  11. Anomalous Hall effect sensors based on magnetic element doped topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Ni, Yan; Zhang, Zhen; Nlebedim, Ikenna; Jiles, David

    Anomalous Hall effect (AHE) is recently discovered in magnetic element doped topological insulators (TIs), which promises low power consumption highly efficient spintronics and electronics. This discovery broaden the family of Hall effect (HE) sensors. In this work, both HE and AHE sensor based on Mn and Cr doped Bi2Te3 TI thin films will be systematically studied. The influence of Mn concentration on sensitivity of MnxBi2-xTe3 HE sensors will be discussed. The Hall sensitivity increase 8 times caused by quantum AHE will be reported. AHE senor based on Cr-doped Bi2Te3 TI thin films will also be studied and compared with Mn doped Bi2Te3 AHE sensor. The influence of thickness on sensitivity of CrxBi2-xTe3 AHE sensors will be discussed. Ultrahigh Hall sensitivity is obtained in Cr doped Bi2Te3. The largest Hall sensitivity can reach 2620 Ω/T in sensor which is almost twice higher than that of the normal semiconductor HE sensor. Our work indicates that magnetic element doped topological insulator with AHE are good candidates for ultra-sensitive Hall effect sensors.

  12. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators.

    PubMed

    Chang, Cui-Zu; Li, Mingda

    2016-03-31

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity σ(yx) = e2/h without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies. PMID:26934535

  13. Roughness effects on fine-scale anisotropy and anomalous scaling in atmospheric flows

    NASA Astrophysics Data System (ADS)

    Katul, G. G.; Porporato, A.; Poggi, D.

    2009-03-01

    The effects of surface roughness on various measures of fine-scale intermittency within the inertial subrange were analyzed using two data sets that span the roughness "extremes" encountered in atmospheric flows, an ice sheet and a tall rough forest, and supplemented by a large number of existing literature data. Three inter-related problems pertaining to surface roughness effects on (i) anomalous scaling in higher-order structure functions, (ii) generalized dimensions and singularity spectra of the componentwise turbulent kinetic energy, and (iii) scalewise measures such local flatness factors and stretching exponents were addressed. It was demonstrated that surface roughness effects do not impact the fine-scale intermittency in u (the longitudinal velocity component), consistent with previous laboratory experiments. However, fine-scale intermittency in w (the vertical velocity component) increased with decreasing roughness. The consequence of this external intermittency (i.e., surface roughness induced) is that the singularity spectra of the scaling exponents are much broader for w when compared u in the context of the multifractal formalism for the local kinetic energy (instead of the usual conservative cascade studied for the dissipation rate). The scalewise evolution of the flatness factors and stretching exponents collapse when normalized using a global Reynolds number Rt=σLI/ν, where σ is the velocity standard deviation, LI is the integral length scale, and ν is the fluid viscosity.

  14. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  15. Effects of skin and hydraulic fractures on SVE wells.

    PubMed

    Bradner, Graham C; Murdoch, Lawrence C

    2005-05-01

    Soil vapor extraction (SVE) systems are intended to cause substantial volumes of air to flow through the subsurface with the purpose of removing volatile contaminants. The effectiveness of SVE can be influenced by any effect that changes the specific gas capacity (discharge as a function of vacuum) of a well. Skins of low permeability material enveloping a well bore are widely recognized to affect the performance of wells used to recover water, natural gas, or petroleum, and skin can also significantly diminish the performance of an SVE well. Skins a few mm thick consisting of material whose gas phase permeability is 0.01 of the formation can reduce the specific gas capacity of an SVE well by factors of 2 to 10 or more. Hydraulic fractures created in the vicinities of shallow wells commonly resemble sand-filled layers shaped like flat-lying disks or gently dipping saucers. The contrast between the gas-phase permeability of the sand in the fracture and that of the formation is particularly important, with significant effects requiring the ratio to be greater than approximately 50. Shallow hydraulic fractures filled with several tenths of m3 of sand in formations that are several orders of magnitude less permeable than that of the enveloping formation should increase specific gas capacity by factors of 10 or more. Field tests of the effects of hydraulic fractures on the performance of SVE were conducted by creating four wells intersecting fractures and a suite of control wells created using conventional methods in silty saprolite. Specific gas capacities ranged over more than an order of magnitude for 10 wells completed within a small area (2 m2) and at the same depth. Specific capacities correlate to the drilling method that was used to create the bore for the well: lowest values occurred in wells drilled with a machine auger, slightly better results were obtained using a Shelby tube, and the best results were obtained from conventional wells bored with a hand auger

  16. Anomalous spectral response in heterojunction PbTe/PbSnTe infrared detectors - A new effect: Two Peak Effect

    SciTech Connect

    Gong Shuxing; Chen Boliang; Yuan Shixin )

    1991-03-01

    In the measurements of the spectral responses of PbTe/PbSnTe p-n heterojunction infrared detectors, the authors have discovered that there is an anomalous phenomenon in a few detectors when reverse bias is applied: there is not only a response peak in the 8-14 {mu}m long-wavelength range, but also another response peak in the 3-6 {mu}m short-wavelength range. They have also discovered that when reverse bias is increased, the heights of both spectral peaks can be adjusted, and the height of short-wavelength peak may be quickly increased, even if its long-wavelength peak is exceeded. This is an unreported new phenomenon up to now. It is shortly called anomalous phenomenon,' or Two Peak Effect' (TPE). This paper describes the new effect TPE' firstly, and makes a theoretical explanation. On the basis of this effect, it would be possible to make a new type of IR detector, which is quite different from the available detectors.

  17. Thermal effects of X-band microwaves on skin tissues

    NASA Astrophysics Data System (ADS)

    Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik; Kim, Jaehwan; Choi, Sang H.

    2012-04-01

    Microwave can be used as a power carrier to implanted medical devices wirelessly, which is regarded as one of the attractive features for medical applications. The loss mechanism of microwave transmission through lossy media often appears as a thermal effect due to the absorption of microwave. Such a thermal effect on human tissue has not rigorously studied yet. The thermal effect on living tissues was experimentally tested with animal skins to understand the absorption characteristics of microwave. In this paper, the frequency range of microwave used for the tests was from 6 GHz to 13 GHz.

  18. The foreign exchange market: return distributions, multifractality, anomalous multifractality and the Epps effect

    NASA Astrophysics Data System (ADS)

    Drożdż, Stanisław; Kwapień, Jarosław; Oświȩcimka, Paweł; Rak, Rafał

    2010-10-01

    We present a systematic study of various statistical characteristics of high-frequency returns from the foreign exchange market. This study is based on six exchange rates forming two triangles: EUR-GBP-USD and GBP-CHF-JPY. It is shown that the exchange rate return fluctuations for all of the pairs considered are well described by the non-extensive statistics in terms of q-Gaussians. There exist some small quantitative variations in the non-extensivity q-parameter values for different exchange rates (which depend also on the time scales studied), and this can be related to the importance of a given exchange rate in the world's currency trade. Temporal correlations organize the series of returns such that they develop the multifractal characteristics for all of the exchange rates, with a varying degree of symmetry of the singularity spectrum f(α), however. The most symmetric spectrum is identified for the GBP/USD. We also form time series of triangular residual returns and find that the distributions of their fluctuations develop disproportionately heavier tails as compared to small fluctuations, which excludes description in terms of q-Gaussians. The multifractal characteristics of these residual returns reveal such anomalous properties as negative singularity exponents and even negative singularity spectra. Such anomalous multifractal measures have so far been considered in the literature in connection with diffusion-limited aggregation and with turbulence. Studying the cross-correlations among different exchange rates, we found that market inefficiency on short time scales leads to the occurrence of the Epps effect on much longer time scales, but comparable to the ones for the stock market. Although the currency market is much more liquid than the stock markets and has a much greater transaction frequency, the building up of correlations takes up to several hours—a duration that does not differ much from what is observed in the stock markets. This may suggest

  19. Resonant cavity mode dependence of anomalous and inverse spin Hall effect

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-young

    2014-05-07

    The direct current electric voltage induced by the Inverse Spin Hall Effect (ISHE) and Anomalous Hall Effect (AHE) was investigated in the TE{sub 011} and TE{sub 102} cavities. The ISHE and AHE components were distinguishable through the fitting of the voltage spectrum. The unwanted AHE was minimized by placing the DUT (Device Under Test) at the center of both the TE{sub 011} and TE{sub 102} cavities. The voltage of ISHE in the TE{sub 011} cavity was larger than that in the TE{sub 102} cavity due to the higher quality factor of the former. Despite optimized centering, AHE voltage from TE{sub 011} cavity was also higher. The reason was attributed to the E-field distribution inside the cavity. In the case of the TE{sub 011} cavity, the DUT was easily exposed to the E-field in all directions. Therefore, the parasitic AHE voltage in the TE{sub 102} cavity was less sensitive than that in the TE{sub 011} cavity to decentering problem.

  20. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Panda, Manas K.; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-07-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10‑6 K‑1, αb = 238.8 × 10‑6 K‑1 and αc = ‑290.0 × 10‑6 K‑1, the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously.

  1. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals

    PubMed Central

    Panda, Manas K.; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-01-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10−6 K−1, αb = 238.8 × 10−6 K−1 and αc = −290.0 × 10−6 K−1, the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously. PMID:27403616

  2. Strong and Anomalous Thermal Expansion Precedes the Thermosalient Effect in Dynamic Molecular Crystals.

    PubMed

    Panda, Manas K; Centore, Roberto; Causà, Mauro; Tuzi, Angela; Borbone, Fabio; Naumov, Panče

    2016-01-01

    The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.9 × 10(-6) K(-1), αb = 238.8 × 10(-6) K(-1) and αc = -290.0 × 10(-6) K(-1), the latter being the largest negative thermal expansivity observed for an organic compound thus far. The results point out to the occurence of the thermosalient effect in phase transitions as means to identify new molecular materials with strong positive and/or negative thermal expansion which prior to this work could only be discovered serendipitously. PMID:27403616

  3. Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids

    SciTech Connect

    A Wolcott; V Doyeux; C Nelson; R Gearba; K Lei; K Yager; A dolocan; K Williams; D Nguyen; X Zhu

    2011-12-31

    The formation of solid thin films from colloidal semiconductor quantum dots (QDs) is often accompanied by red shifts in excitonic transitions, but the mechanisms responsible for the red shifts are under debate. We quantitatively address this issue using optical absorption spectroscopy of two-dimensional (2D) and three-dimensional (3D) arrays of PbSe QDs with controlled inter-QD distance, which was determined by the length of alkanedithiol linking molecules. With decreasing inter-QD distance, the first and second exciton absorption peaks show increasing red shifts. Using thin films consisting of large and isolated QDs embedded in a matrix of small QDs, we determine that a dominant contribution to the observed red shift is due to changes in polarization of the dielectric environment surrounding each QD ({approx}88%), while electronic or transition dipole coupling plays a lesser role. However, the observed red shifts are more than 1 order of magnitude larger than theoretical predictions based on the dielectric polarization effect for spherical QDs. We attribute this anomalously large polarization effect to deviations of the exciton wave functions from eigenfunctions of the idealized spherical quantum well model.

  4. Anomalous Hall effect in L 10-MnAl films with controllable orbital two-channel Kondo effect

    NASA Astrophysics Data System (ADS)

    Zhu, L. J.; Nie, S. H.; Zhao, J. H.

    2016-05-01

    The anomalous Hall effect (AHE) in strongly disordered magnetic systems has been buried in persistent confusion despite its long history. We report the AHE in perpendicularly magnetized L 10-MnAl epitaxial films with a variable orbital two-channel Kondo (2CK) effect arising from the strong coupling of conduction electrons and the structural disorders of two-level systems. The AHE is observed to excellently scale with ρAH/f =a0ρx x 0+b ρxx 2 at high temperatures where phonon scattering prevails. In contrast, significant deviation occurs at low temperatures where the orbital 2CK effect becomes important, suggesting a negative AHE contribution. The deviation of the scaling agrees with the orbital 2CK effect in the breakdown temperatures and deviation magnitudes.

  5. Effect of microplasma irradiation on skin barrier function

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Tran, Nhat An; Blajan, Marius

    2015-09-01

    This study investigates the feasibility of atmospheric-pressure argon microplasma irradiation (AAMI) to promote drug delivery through skin. Yucatan micropig skin was used as a biological object for evaluation of in vitro percutaneous absorption. The changes in lipids, proteins and water content of the pig stratum corneum (SC) after AAMI were compared to those of a tape stripping test (TST) and plasma jet irradiation (PJI) using attenuated total reflection-Fourier transform infrared spectroscopy analysis. The significant reduction in the methylene stretching modes absorbance resulted in the disturbance in the SC lipids caused by AAMI was observed at 2850 and 2920 cm-1. Moreover, as the result of TST, trans-epidermal water loss (TEWL) after both AAMI and PJI were also increased, that could lead to a decrease of barrier function of SC, and could enhance the transdermal absorption of drugs. Under the conditions of this study, TEWL value of 5 minutes AAMI (35.92 +/- 3.48 g/m2h) was approximately the same as that value of 10 times TST (34.30 +/- 3.54 g/m2h), that makes the effect of these manipulations on the surfaces is considered to be at the same levels. Furthermore, unlike the obtained microscopic observation from PJI, there was no thermal damage observed on the skins after AAMI.

  6. A histologic evaluation of the effects of skin refrigerants in an animal model.

    PubMed

    Hanke, C W; O'Brian, J J

    1987-06-01

    The effects of a number of commonly used skin refrigerants were studied in controlled freezing experiments on guinea pig skin. Frigiderm and Fluro Ethyl produced very little effect on the skin compared to colder preparations such as Cryosthesia -30 degrees C and Cryosthesia -60 degrees C. PMID:3584631

  7. Effect of UVB 311 nm irradiation on normal human skin.

    PubMed

    Viac, J; Goujon, C; Misery, L; Staniek, V; Faure, M; Schmitt, D; Claudy, A

    1997-06-01

    Ultraviolet radiation B (UVB) on the skin induces erythema, inflammation and modifications of the immune system. These changes have been reported after excessive short-term or long-term exposure to broad spectrum UVB. In this study, we examined the effects of local repetitive UVB irradiation of 311 nm wavelength on the skin of seven young volunteers. Skin biopsies were taken before and after UVB irradiation, and we immunohistochemically analyzed the expression of CD1a and HLA-DR antigens of Langerhans cells (LC), the possible infiltration of dermis/epidermis by CD11b macrophages, the modifications or the induction of intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) involved in the binding of leukocytes to the endothelial surface and the development of perivascular infiltrates of LFA-1+ mononuclear cells. We also determined the expression of substance P receptors (SPR) using biotinylated substance P (SPB). Exposure of UVB 311 nm induced a drastic reduction of CD1a+ cells and a moderate increase of HLA-DR+ dendritic cells in the epidermis without infiltration by CD11b macrophages. An increase of the binding of SPB to upper layer epidermal cells was noted in five of seven biopsies. In the dermis, vessel-associated ICAM-1 expression increased and an induction of E-selectin occurred on nearly 20 to 40% of endothelial cells, but VCAM-1 expression remained undetectable. The percentage of LFA-1+ cells did not change significantly after irradiation. These observations may be compatible with a selective role of UVB 311 nm on the skin immune response. PMID:9372527

  8. Chern half metals: a new class of topological materials to realize the quantum anomalous Hall effect.

    PubMed

    Hu, Jun; Zhu, Zhenyue; Wu, Ruqian

    2015-03-11

    New topological insulators that demonstrate the quantum anomalous Hall effect (QAHE) are a cutting-edge research topic in condensed matter physics and materials science. So far, the QAHE has been observed only in Cr-doped (Bi,Sb)2Te3 at extremely low temperature. Therefore, it is important to find new materials with large topological band gap and high thermal stability for the realization of the QAHE. On the basis of first-principles and tight-binding model calculations, we discovered a new class of topological phase, Chern half metal, which manifests the QAHE in one spin channel while is metallic in the other spin channel, in Co or Rh deposited graphene. The QAHE is robust in these sytems for the adatom coverage ranging from 2% to 6%. Meanwhile, these systems have large perpendicular magnetic anisotropy energies of 5.3 and 11.5 meV, necessary for the observation of the QAHE at reasonably high temperature. PMID:25689149

  9. High-Temperature Quantum Anomalous Hall Effect in n -p Codoped Topological Insulators

    NASA Astrophysics Data System (ADS)

    Qi, Shifei; Qiao, Zhenhua; Deng, Xinzhou; Cubuk, Ekin D.; Chen, Hua; Zhu, Wenguang; Kaxiras, Efthimios; Zhang, S. B.; Xu, Xiaohong; Zhang, Zhenyu

    2016-07-01

    The quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon that manifests as a quantized transverse conductance in response to a longitudinally applied electric field in the absence of an external magnetic field, and it promises to have immense application potential in future dissipationless quantum electronics. Here, we present a novel kinetic pathway to realize the QAHE at high temperatures by n -p codoping of three-dimensional topological insulators. We provide a proof-of-principle numerical demonstration of this approach using vanadium-iodine (V-I) codoped Sb2 Te3 and demonstrate that, strikingly, even at low concentrations of ˜2 % V and ˜1 % I, the system exhibits a quantized Hall conductance, the telltale hallmark of QAHE, at temperatures of at least ˜50 K , which is 3 orders of magnitude higher than the typical temperatures at which it has been realized to date. The underlying physical factor enabling this dramatic improvement is tied to the largely preserved intrinsic band gap of the host system upon compensated n -p codoping. The proposed approach is conceptually general and may shed new light in experimental realization of high-temperature QAHE.

  10. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Mogi, M.; Yoshimi, R.; Tsukazaki, A.; Yasuda, K.; Kozuka, Y.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y.

    2015-11-01

    Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb)2Te3. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb)2Te3 films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb)2Te3 films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.

  11. Neutral cloud theory of the Jovian nebula: Anomalous ionization effect of superthermal electrons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    The standard model of the Jovian nebula postulates that its particle source is the extended cloud of neutral sulfur and oxygen atoms that escape from the satellite Io and become ionized through electron impact from the corotating plasma. Its energy source is the gyroenergy acquired by newly formed pickup ions as they are swept up to corotation velocity by the planetary magnetic field. Elastic collisions between plasma ions and electrons cool the ions and heat the electrons, while inelastic collisions cool the electrons and excite the ions to radiate intense line emission, which is the primary energy-loss mechanism for the plasma. This neutral cloud theory of the Io plasma torus, as it has come to be known, has been the subject of recent critcism which asserts that the theory cannot account for the observed charge state of the plasma which features O(+) and S(2+) as the dominant ions. It is shown in this work that the inclusion of a small population of super-thermal electrons is required to achieve the correct ion partitioning among various charge states. It is also argued that the anomalous ionization effect of the superthermal electrons is responsible for the overall spatial bifurcation of the nebula into a hot multiply charged plasma region outside of 5.7 Jovian radii and a cool singly ionized plasma inside this distance.

  12. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect

    Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.

    2014-08-04

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  13. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect

    SciTech Connect

    Mogi, M. Yoshimi, R.; Yasuda, K.; Kozuka, Y.; Tsukazaki, A.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y.

    2015-11-02

    Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb){sub 2}Te{sub 3}. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb){sub 2}Te{sub 3} films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb){sub 2}Te{sub 3} films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.

  14. High-Temperature Quantum Anomalous Hall Effect in n-p Codoped Topological Insulators.

    PubMed

    Qi, Shifei; Qiao, Zhenhua; Deng, Xinzhou; Cubuk, Ekin D; Chen, Hua; Zhu, Wenguang; Kaxiras, Efthimios; Zhang, S B; Xu, Xiaohong; Zhang, Zhenyu

    2016-07-29

    The quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon that manifests as a quantized transverse conductance in response to a longitudinally applied electric field in the absence of an external magnetic field, and it promises to have immense application potential in future dissipationless quantum electronics. Here, we present a novel kinetic pathway to realize the QAHE at high temperatures by n-p codoping of three-dimensional topological insulators. We provide a proof-of-principle numerical demonstration of this approach using vanadium-iodine (V-I) codoped Sb_{2}Te_{3} and demonstrate that, strikingly, even at low concentrations of ∼2%  V and ∼1% I, the system exhibits a quantized Hall conductance, the telltale hallmark of QAHE, at temperatures of at least ∼50  K, which is 3 orders of magnitude higher than the typical temperatures at which it has been realized to date. The underlying physical factor enabling this dramatic improvement is tied to the largely preserved intrinsic band gap of the host system upon compensated n-p codoping. The proposed approach is conceptually general and may shed new light in experimental realization of high-temperature QAHE. PMID:27517787

  15. The Anomalous Hall effect in MnSi and FexTaS2

    NASA Astrophysics Data System (ADS)

    Lee, Minhyea

    2007-03-01

    In a high-purity ferromagnet with long carrier lifetime τ, e.g. MnSi, the ordinary Hall conductivity σH^N can dominate the intrinsic Anomalous Hall effect (AHE) conductivity σH^A. We show that the large magnetoresistance provides a way to separate accurately the two Hall currents. Below TC, we find that the AHE conductivity is strictly proportional to the magnetization M, viz. σH^A = SHM with a parameter SH that is independent of both temperature T and field H. This implies that σH^A is strictly independent of τ. In the layered, hard ferromagnet FexTaS2, the large coercivity leads to abrupt reversals of M when it switches. We show that this provides an accurate way to separate σH^A from σH^N. Again, σH^A is independent of T from 5 to 50 K. We compare the observed constancy at low T with theories for the AHE. We also describe a Hall anomaly recently observed in MnSi under pressure. This anomaly appears to arise from strong sensitivity of the Hall current to the spin texture, possibly reflecting its finite chirality. The dependence of the anomaly to T and H will be reported. **This work is done in collaboration with Y. Onose, J. G. Checkelsky, E. Morosan, R. J. Cava, Y. Tokura and N. P. Ong.

  16. Evaluation of analgesic effect of skin-to-skin contact compared to oral glucose in preterm neonates.

    PubMed

    Freire, Nájala Borges de Sousa; Garcia, João Batista Santos; Lamy, Zeni Carvalho

    2008-09-30

    Nonpharmacological interventions are important alternatives for pain relief during minor procedures in preterm neonates. Skin-to-skin contact or kangaroo mother care is a human and efficient way of caring for low-weight preterm neonates. The aim of the present study was to assess the analgesic effect of kangaroo care compared to oral glucose on the response of healthy preterm neonates to a low-intensity acute painful stimulus. Ninety-five preterm neonates with a postmenstrual age of 28-36 weeks were randomly assigned to three groups in a single-blind manner. In group 1 (isolette, n=33), the neonate was in the prone position in the isolette during heel lancing and did not receive analgesia. In group 2 (kangaroo method, n=31), the neonate was held in skin-to-skin contact for 10 min before and during the heel-lancing procedure. In group 3 (glucose, n=31), the neonate was in the prone position in the isolette and received oral glucose (1 ml, 25%) 2 min before heel lancing. A smaller variation in heart rate (p=0.0001) and oxygen saturation (p=0.0012), a shorter duration of facial activity (brow bulge, eye squeeze and nasolabial furrowing) (p=0.0001), and a lower PIPP (Premature Infant Pain Profile) score (p=0.0001) were observed in group 2. In conclusion, skin-to-skin contact produced an analgesic effect in preterm newborns during heel lancing. PMID:18434021

  17. Laminar separation control effects of shortfin mako shark skin

    NASA Astrophysics Data System (ADS)

    Bradshaw, Michael Thomas

    Shark skin is investigated as a means of laminar flow separation control due to its preferential flow direction as well as the potential for scales to erect and obstruct low-momentum backflow resulting from an adverse pressure gradient acting on the boundary layer. In this study, the effect of the scales on flow reversal is observed in laminar flow conditions. This is achieved by comparing the flow over a pectoral fin from a shortfin mako shark to that over the same fin that is painted to neutralize the effect of the scales on the flow. The effect of the scales on flow reversal is also observed by comparing the flow over a smooth PVC cylinder to that over the same cylinder with samples of mako shark skin affixed to the entire circumference of the cylinder. These samples were taken from the flank region of the shark because the scales at this location have been shown to have the greatest angle of erection compared to the scales on the rest of the shark's body. Scales at this location have an average crown length of 220 microm with a maximum bristling angle of proximately 50 degrees. Because these scales have the highest bristling angle, they have the best potential for separation control. All data was taken using time-resolved Digital Particle Image Velocimetry. The flow over the pectoral fin was analyzed at multiple angles of attack. It was found that the shark skin had the effect of decreasing the size of the separated region over both the pectoral fin and the cylinder as well as decreasing the magnitudes of the reversing flow found in these regions. For all Reynolds numbers tested, drag reduction over 28% was found when applying the sharkskin to the cylinder.

  18. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases.

    PubMed

    Kim, Kyung Eun; Cho, Daeho; Park, Hyun Jeong

    2016-05-01

    Environmental air pollution encompasses various particulate matters (PMs). The increased ambient PM from industrialization and urbanization is highly associated with morbidity and mortality worldwide, presenting one of the most severe environmental pollution problems. This article focuses on the correlation between PM and skin diseases, along with related immunological mechanisms. Recent epidemiological studies on the cutaneous impacts of PM showed that PM affects the development and exacerbation of skin diseases. PM induces oxidative stress via production of reactive oxygen species and secretion of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-8. In addition, the increased production of ROS such as superoxide and hydroxyl radical by PM exposure increases MMPs including MMP-1, MMP-2, and MMP-9, resulting in the degradation of collagen. These processes lead to the increased inflammatory skin diseases and skin aging. In addition, environmental cigarette smoke, which is well known as an oxidizing agent, is closely related with androgenetic alopecia (AGA). Also, ultrafine particles (UFPs) including black carbon and polycyclic aromatic hydrocarbons (PAHs) enhance the incidence of skin cancer. Overall, increased PM levels are highly associated with the development of various skin diseases via the regulation of oxidative stress and inflammatory cytokines. Therefore, anti-oxidant and anti-inflammatory drugs may be useful for treating PM-induced skin diseases. PMID:27018067

  19. Release and skin permeation studies of Naproxen from hydrophillic gels and effect of terpenes as enhancers on its skin permeation.

    PubMed

    Ray, S; Ghosal, S K

    2003-04-01

    The skin permeation parameters of Naproxen through albino mouse abdominal skin was investigated. Out of 5 formulations those prepared from carbomer gels showed promising results and were chosen for investigating enhancing effect of various terpene alcohol viz. Geraniol and Nerolidol and cyclic terpenes viz menthol and thymol on skin permeation of Naproxen. Out of the four terpenes studied Geraniol exhibited the highest enhancing effect with enhancement ratio 4.6, while Nerolidol had an enhancement ratio 4.2. The cyclic terpenes had less prompt enhancing effect compared to the alcohol terpenes, out of the two, methol showed the largest effect with an enhancement ratio of about 3.7 and thymol had an enhancement ratio of 3.5. PMID:12806832

  20. Effects of Anomalous Electron Cross-Field Transport in a Low Temperature Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny

    2014-10-01

    The application of the magnetic field in a low pressure plasma can cause a spatial separation of low and high energy electrons. This so-called magnetic filter effect is used for many plasma applications, including ion and neutral beam sources, plasma processing of semiconductors and nanomaterials, and plasma thrusters. In spite of successful practical applications, the magnetic filter effect is not well understood. In this work, we explore this effect by characterizing the electron and ion energy distribution functions in a plasma column with crossed electric and magnetic fields. Experimental results revealed a strong dependence of spatial variations of plasma properties on the gas pressure. For xenon and argon gases, below ~ 1 mtorr, the increase of the magnetic field leads to a more uniform profile of the electron temperature. This surprising result is due to anomalously high electron cross-field transport that causes mixing of hot and cold electrons. High-speed imaging and probe measurements revealed a coherent structure rotating in E cross B direction with frequency of a few kHz. Theory and simulations describing this rotating structure has been developed and points to ionization and electrostatic instabilities as their possible cause. Similar to spoke oscillations reported for Hall thrusters, this rotating structure conducts the large fraction of the cross-field current. The use of segmented electrodes with an electrical feedback control is shown to mitigate these oscillations. Finally, a new feature of the spoke phenomenon that has been discovered, namely a sensitive dependence of the rotating oscillations on the gas pressure, can be important for many applications. This work was supported by DOE Contract DE-AC02-09CH11466.

  1. Note on anomalous Higgs-boson couplings in effective field theory

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Catà, O.; Celis, A.; Krause, C.

    2015-11-01

    We propose a parametrization of anomalous Higgs-boson couplings that is both systematic and practical. It is based on the electroweak chiral Lagrangian, including a light Higgs boson, as the effective field theory (EFT) at the electroweak scale v. This is the appropriate framework for the case of sizeable deviations in the Higgs couplings of order 10% from the Standard Model, considered to be parametrically larger than new-physics effects in the sector of electroweak gauge interactions. The role of power counting in identifying the relevant parameters is emphasized. The three relevant scales, v, the scale of new Higgs dynamics f, and the cut-off Λ = 4 πf, admit expansions in ξ =v2 /f2 and f2 /Λ2. The former corresponds to an organization of operators by their canonical dimension, the latter by their loop order or chiral dimension. In full generality the EFT is thus organized as a double expansion. However, as long as ξ ≫ 1 / 16π2 the EFT systematics is closer to the chiral counting. The leading effects in the consistent approximation provided by the EFT, relevant for the presently most important processes of Higgs production and decay, are given by a few (typically six) couplings. These parameters allow us to describe the properties of the Higgs boson in a general and systematic way, and with a precision adequate for the measurements to be performed at the LHC. The framework can be systematically extended to include loop corrections and higher-order terms in the EFT.

  2. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12

    DOE PAGESBeta

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibondingmore » states is constructed to understand the topological band structures of the system.« less

  3. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2 LiMn3 F12

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Lian, Biao; Zhang, Shou-Cheng; Zhang's Group Team

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from the ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Moreover, a simplified tight binding model based on the inplane dd σ antibonding states is constructed to understand the topological band structures of the system.

  4. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2 LiMn3 F12

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Lian, Biao; Zhang, Shou-Cheng

    2015-10-01

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Moreover, a simplified tight binding model based on the in-plane d d σ antibonding states is constructed to understand the topological band structures of the system.

  5. Studies of xenon ECR plasma: search for a better understanding of the gas-mixing and anomalous effects

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Mal, Kedar; Kanjilal, D.

    2014-12-01

    Pure and oxygen-mixed xenon plasmas were produced using 10 GHz all-permanent-magnet electron cyclotron resonance (ECR) ion source. The charge state distributions (CSDs) of highly abundant isotopes (129Xe, 131 Xe and 132 Xe) were studied by extracting the ions from the plasma and analyzed them in mass and energy using a large acceptance analyzer-switching dipole magnet. In earlier studies (Drentje 1992 Rev. Sci. Instrum. 63 2875, Kawai et al 2001 Plasma Sources Sci. Technol. 10 451), the CSD of oxygen and nitrogen ECR plasmas showed that isotopic intensity ratio of ions varies with the charge state (anomalous effect). The anomalous effect in the pure and oxygen-mixed xenon ECR plasma was absent up to +13 charge state. With oxygen, a very small positive gas-mixing effect on the charge state beyond +8 was observed. In this paper, we present CSDs of xenon isotopes with and without oxygen mixing (at optimized ion source parameters) and compare the intensity of isotopes for various charge states to shed light on the previously noticed anomalous effect in the ECR plasma.

  6. Subdiffusion in an external potential: Anomalous effects hiding behind normal behavior

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Korabel, Nickolay

    2015-04-01

    We propose a model of subdiffusion in which an external force is acting on a particle at all times not only at the moment of jump. The implication of this assumption is the dependence of the random trapping time on the force with the dramatic change of particles behavior compared to the standard continuous time random walk model in the long time limit. Constant force leads to the transition from non-ergodic subdiffusion to ergodic diffusive behavior. However, we show this behavior remains anomalous in a sense that the diffusion coefficient depends on the external force and on the anomalous exponent. For quadratic potential we find that the system remains non-ergodic. The anomalous exponent in this case defines not only the speed of convergence but also the stationary distribution which is different from standard Boltzmann equilibrium.

  7. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  8. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin

    NASA Astrophysics Data System (ADS)

    Chen, Tiejun; Hou, Hu; Lu, Jiaohan; Zhang, Kai; Li, Bafang

    2016-05-01

    The objective of this study was to investigate the effect of gelatin (SG) isolated from salmon skin and its hydrolysate (SGH) on photoaging skin, and the mechanism responsible for anti-photoaging. The average molecular weights of SG and SGH were 65 kDa and 873 Da, respectively. The amino acid compositions of SG and SGH were similar. Both of them were abundant in hydrophobic amino acids. Twenty-five peptides were identified from SGH. SG and SGH could improve UV irradiation-induced pathological changes of macroscopical tissue texture and skin morphology. Hydroxyproline content is an indicator of matrix collagen content, SG and SGH could inhibit the decrease of hydroxyproline content in photoaging skin in a dose dependent manner. In addition, SG and SGH could alleviate UV irradiation-induced oxidative damages to skin by increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), increasing the content of glutathione (GSH) and decreasing the content of malonaldehyde (MDA). Moreover, SG and SGH could enhance immune regulation system by increasing the thymus index. Thus, the anti-photoaging mechanisms of SG and SGH were by inhibiting the depletion of antioxidant defense components, involving in the synthesis of collagen and enhancing the function of immune system. Besides, SGH showed a better result in protecting skin from photoaging than SG.

  9. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin

    NASA Astrophysics Data System (ADS)

    Chen, Tiejun; Hou, Hu; Lu, Jiaohan; Zhang, Kai; Li, Bafang

    2016-08-01

    The objective of this study was to investigate the effect of gelatin (SG) isolated from salmon skin and its hydrolysate (SGH) on photoaging skin, and the mechanism responsible for anti-photoaging. The average molecular weights of SG and SGH were 65 kDa and 873 Da, respectively. The amino acid compositions of SG and SGH were similar. Both of them were abundant in hydrophobic amino acids. Twenty-five peptides were identified from SGH. SG and SGH could improve UV irradiation-induced pathological changes of macroscopical tissue texture and skin morphology. Hydroxyproline content is an indicator of matrix collagen content, SG and SGH could inhibit the decrease of hydroxyproline content in photoaging skin in a dose dependent manner. In addition, SG and SGH could alleviate UV irradiation-induced oxidative damages to skin by increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), increasing the content of glutathione (GSH) and decreasing the content of malonaldehyde (MDA). Moreover, SG and SGH could enhance immune regulation system by increasing the thymus index. Thus, the anti-photoaging mechanisms of SG and SGH were by inhibiting the depletion of antioxidant defense components, involving in the synthesis of collagen and enhancing the function of immune system. Besides, SGH showed a better result in protecting skin from photoaging than SG.

  10. [Effect of UV index in the skin exposure].

    PubMed

    Gerbaudo, Mabel; Dionisio de Cabalier, María E

    2010-01-01

    This research was conducted from October 2003 to March 2005, collecting data through the measuring authorized volunteers measuring their photoexposition . It worked with the equipment (Safesun from Optix Tech, Inc.), available for measuring. The radiation impact of solar on the city of Cordoba, was chosen measurements for a clear spot on the terrace of the Observatory Environmental Laprida located at 854, in a position that excedes level approximately 30 meters from Piazza San Martin (centerhistoric city). It had two fixed radiation sensors total solar and ultraviolet A radiation sensor manual ultraviolet calibrated according to the erythemal response of skin measuring human ultraviolet index and the maximum exposure timer ecommended for different skin types (Safesun from Optix Tech, Inc.).The aim of this study was to measure the rate and exposure ultraviolet (UV) to evaluate the erythemal effect on most sensitive areas of the face and neck to noon fotoexposición solar in the four annual seasons, and thus promote extending protection regulations to prevent the effects harmful UV non-ionizing radiation. The analysis of the data, UV index values indicate that from the Winter season is observed to undergo the risk of exposure excessive radiation at noon solar day is measured with high Fall UV index is high in spring and high-very high and with days end in the Summer season daily with UV index very high and extreme. This risk remains in the four annual seasons and according to the criteria of the World Health Organization is need to perform significant work to develop measures, education campaigns and outreach, which tend to diminish the sun exposure, hours with the highest incidence of lightning ultraviolet in the four annual seasons. The global environmental degradation and thus destruction of the ozone layer, has been a direct cause of the increase in ultraviolet radiation on earth, which resulted increased rates of cancer incidence and prevalence skin, within the