Science.gov

Sample records for anomalous vvh interactions

  1. Anomalous gauge boson interactions

    SciTech Connect

    Aihara, H.; Barklow, T.; Baur, U. |

    1995-03-01

    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approximately} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup {minus}2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.

  2. Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway.

    PubMed

    Song, Eun Ju; Lee, Sei-Jung; Lim, Hyeon Su; Kim, Jun Sung; Jang, Kyung Ku; Choi, Sang Ho; Han, Ho Jae

    2016-01-01

    VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation. PMID:27250250

  3. Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway

    PubMed Central

    Song, Eun Ju; Lee, Sei-Jung; Lim, Hyeon Su; Kim, Jun Sung; Jang, Kyung Ku; Choi, Sang Ho; Han, Ho Jae

    2016-01-01

    VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation. PMID:27250250

  4. Exactly solvable relativistic model with the anomalous interaction

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Messina, Antonino; Nikitin, A. G.

    2010-04-01

    A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.

  5. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Meyer, Hendrik

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found, also for alkanes with a force field optimized from neutron scattering. The physical mechanism considers that hydrodynamic interactions are not screened: they are time dependent because of increasing viscosity before the terminal relaxation time. The VHI are generally active in melts of any topology. They are most important at early times well before the terminal relaxation time and thus affect the nanosecond time range typically observable in dynamic neutron scattering experiments. We illustrate the effects with recent molecular dynamics simulations of linear, ring and star polymers. Work performed with A.N. Semenov and J. Farago.

  6. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Meyer, Hendrik; Farago, Jean; Semenov, A. N.

    2014-03-01

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found. The physical mechanism considers that hydrodynamic interactions are time dependent because of increasing viscosity before the terminal relaxation time; it is generally active in melts of any topology. Surprisingly, the effects are relevant for both, momentum-conserving and Langevin dynamics and this presentation will focus on the differences: The commonly employed Langevin thermostat significantly changes the CM motion on short and intermediate time scales, but approaching the Rouse time, the melt behavior is close to momentum-conserving simulations. On the other hand, if momentum-conserving simulations are run in too small a simulation box, the result looks as if a Langevin thermostat was used.

  7. Discontinuity interaction and anomalous source models in through transmission eddy current testing

    SciTech Connect

    Mergelas, B.J.; Atherton, D.L.

    1996-01-01

    Growing interest in the detection of external, axially aligned stress corrosion cracks in ferromagnetic oil and gas transmission pipelines, has prompted a detailed investigation of discontinuity interactions in remote field eddy current (RFEC) testing. Experimental measurements and numerical modeling were undertaken to study discontinuity interactions in a single through-wall transmission geometry for ferromagnetic and nonferromagnetic pipes. Anomalous source models have been introduced in order to explain the responses of axial discontinuities to circumferential eddy currents or circumferential AC magnetic fields. In nonferromagnetic material, discontinuity responses may be modeled by two types of anomalous eddy current sources. In ferromagnetic materials, an anomalous magnetization source is useful for explaining discontinuity response.

  8. Interaction of Alfvén front with the plasma anomalous resistance layer

    NASA Astrophysics Data System (ADS)

    Mazur, N.; Fedorov, E.; Pilipenko, V.; Leonovich, A.

    2007-04-01

    Abstract.The efficiency of the Alfvén impulse excitation in the auroral zone of the terrestrial magnetosphere upon the onset of the anomalous field-aligned resistance has been estimated. The impulsive disturbance excited during the onset of anomalous field-aligned resistance and electric field may signify the transition of a global magnetospheric instability into the explosive phase with positive feedback. We consider the self-consistent problem on excitation of anomalous resistance at the front of field-aligned current and reverse influence upon it from the induced currents. The analytical solution of the self-consistent problem has shown that during the entrance of field-aligned current front into the anomalous resistivity layer (ARL) an Alfvénic impulse is generated. The interaction of the external current with ARL results in the delay of the current growth. The impulse duration and delay time depend on the ratio between the Alfvén damping scale and external current width. The solution obtained indicates the possibility of using the Alfvénic impulse as an indicator of distant occurrence of anomalous resistance.

  9. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    NASA Astrophysics Data System (ADS)

    Kemp, B. A.; Nikolayev, I.; Sheppard, C. J.

    2016-04-01

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  10. Lossless anomalous dispersion and an inversionless gain doublet via dressed interacting ground states

    SciTech Connect

    Weatherall, James Owen; Search, Christopher P.

    2010-02-15

    Transparent media exhibiting anomalous dispersion have been of considerable interest since Wang, Kuzmich, and Dogariu [Nature 406, 277 (2000)] first observed light propagate with superluminal and negative group velocities without absorption. Here, we propose an atomic model exhibiting these properties, based on a generalization of amplification without inversion in a five-level dressed interacting ground-state system. The system consists of a {Lambda} atom prepared as in standard electromagnetically induced transparency (EIT), with two additional metastable ground states coupled to the {Lambda} atom ground states by two rf-microwave fields. We consider two configurations by which population is incoherently pumped into the ground states of the atom. Under appropriate circumstances, we predict a pair of new gain lines with tunable width, separation, and height. Between these lines, absorption vanishes but dispersion is large and anomalous. The system described here is a significant improvement over other proposals in the anomalous dispersion literature in that it permits additional coherent control over the spectral properties of the anomalous region, including a possible 10{sup 4}-fold increase over the group delay observed by Wang, Kuzmich, and Dogariu.

  11. Control on the anomalous interactions of Airy beams in nematic liquid crystals.

    PubMed

    Shen, Ming; Li, Wei; Lee, Ray-Kuang

    2016-04-18

    We reveal a controllable manipulation of anomalous interactions between Airy beams in nonlocal nematic liquid crystals numerically. With the help of an in-phase fundamental Gaussian beam, attraction between in-phase Airy beams can be suppressed or become a repulsive one to each other; whereas the attraction can be strengthened when the Gaussian beam is out-of-phase. In contrast to the repulsive interaction in local media, stationary bound states of breathing Airy soliton pairs are found in nematic liquid crystals. PMID:27137288

  12. Vacuum effects in magnetic field with with account for fermion anomalous magnetic moment and axial-vector interaction

    NASA Astrophysics Data System (ADS)

    Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir

    2016-05-01

    We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.

  13. Anomalous cosmic ray interaction events for investigations in the SSC and Space Station era - 'Long lived she-devil phenomena'

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.

    1985-01-01

    Observational data on anomalous cosmic-ray interaction events are compiled, classified, and briefly characterized. The events are divided into three groups: those confirmed by later observation or experiment, those shown to be the result of observational or analytical error, and those still unexplained. Among the phenomena in the latter group are magnetic-monopole candidates, fractionally charged particles, massive stable particles, anomalons, proton-decay and neutron-oscillation candidates, muon bundles, narrow showers, anomalous photons, fanlike phenomena, quark-gluon-plasma candidates, and anomalous long-range delta rays.

  14. Anomalous supersolidity in a weakly interacting dipolar Bose mixture on a square lattice

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan M.; Shirley, Wilbur E.; Natu, Stefan S.

    2016-01-01

    We calculate the mean-field phase diagram of a zero-temperature, binary Bose mixture on a square optical lattice, where one species possesses a non-negligible dipole moment. Remarkably, this system exhibits supersolidity for anomalously weak dipolar interaction strengths, which are readily accessible with current experimental capabilities. The supersolid phases are robust, in that they occupy large regions in the parameter space. Further, we identify a first-order quantum phase transition between supersolid and superfluid phases. Our results demonstrate the rich features of the dipolar Bose mixture, and suggest that this system is well suited for exploring supersolidity in the experimental setting.

  15. Anomalously slow relaxation of interacting liquid nanoclusters confined in a porous medium

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Belogorlov, A. A.; Tronin, V. N.

    2016-02-01

    Anomalously slow relaxation of clusters of a liquid confined in a disordered system of pores has been studied for the (water-L23 nanoporous medium) system. The evolution of the system of confined liquid clusters consists of a fast formation stage followed by slow relaxation of the system and its decay. The characteristic time for the formation of the initial state is τp˜10 s after the reduction of excess pressure after complete filling. Anomalously slow relaxation has been observed for times of 101- 105 s, and decay has been observed at times of >105 s. The time dependence of the volume fraction θ of pores filled with the confined liquid is described by a power law θ ˜t-α with the exponent α <0.15 . The exponent α and temperature dependence α (T ) are qualitatively described theoretically for the case of a slightly polydisperse medium in a mean-field approximation with the inclusion of the interaction of liquid clusters and averaging over various degenerate local configurations of clusters. In this approximation, slow relaxation is represented as a continuous transition through a sequence of metastable states of the system of clusters with a decreasing barrier.

  16. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    SciTech Connect

    Sydorenko, D.; Kaganovich, I. D.; Chen, L.; Ventzek, P. L. G.

    2015-12-15

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.

  17. Anomalous Drag Reduction and Hydrodynamic Interactions of Nanoparticles in Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael

    2015-03-01

    One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.

  18. Anomalous chain diffusion in polymer nanocomposites for varying polymer-filler interaction strengths

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby G.

    2010-04-01

    Anomalous diffusion of polymer chains in a polymer nanocomposite melt is investigated for different polymer-nanoparticle interaction strengths using stochastic molecular dynamics simulations. For spherical nanoparticles dispersed in a polymer matrix the results indicate that the chain motion exhibits three distinct regions of diffusion, the Rouse-like motion, an intermediate subdiffusive regime followed by a normal Fickian diffusion. The motion of the chain end monomers shows a scaling that can be attributed to the formation of strong “networklike” structures, which have been seen in a variety of polymer nanocomposite systems. Irrespective of the polymer-particle interaction strengths, these three regimes seem to be present with small deviations. Further investigation on dynamic structure factor shows that the deviations simply exist due to the presence of strong enthalpic interactions between the monomers with the nanoparticles, albeit preserving the anomaly in the chain diffusion. The time-temperature superposition principle is also tested for this system and shows a striking resemblance with systems near glass transition and biological systems with molecular crowding. The universality class of the problem can be enormously important in understanding materials with strong affinity to form either a glass, a gel or networklike structures.

  19. On the mechanism of anomalous nucleus-nucleus interactions at energies above 1 TeV/nucleon

    NASA Technical Reports Server (NTRS)

    Shmonin, V. L.; Ameev, S. S.

    1985-01-01

    Two anomalous interactions of cosmic ray nuclei with photoemulsion nuclei are considered within the framework of the nuclear pionization model. It is shown that the observed regularities of nuclear collisions at the given energy range are satisfactorily reproduced by the model.

  20. Demonstrating benthic control of anomalous solute transport: biofilm growth interacts with substrate size.

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Tank, J. L.; Bolster, D.; Hanrahan, B.

    2014-12-01

    In fluvial systems, biofilms are the main driver of biogeochemical transformations. Biofilms grow on most surfaces in the benthic and hyporheic regions, where they process waterborne solutes. These solutes are transported in the regional flow and their fluxes near the biofilms are controlled by local physical properties, such as head gradients and hydraulic conductivity. These properties are in turn influenced by the growth of the biofilm itself, which can clog porous media and/or develop its own network of porous space. Therefore, the residence time of a solute in proximity to biofilm surfaces, where it can be processed, should be influenced by the properties not only of the physical environment, but by that of the biofilm itself. We hypothesized that the presence of biofilms would increase residence times in the benthic and shallow subsurface regions of the stream bed. We performed controlled experiments in 4 experimental streams at Notre Dame's Linked Experimental Ecosystem Facility (ND-LEEF) to quantify the interaction between substrate and biofilm in controlling anomalous solute transport. Each stream at ND-LEEF had a different substrate configuration: 2 with homogeneous substrate but with different sizes (pea gravel vs. coarse gravel) and 2 with heterogeneous substrate (alternating sections vs. well-mixed reaches). We measured the evolution of the residence time distributions in the streams by injecting rhodamine tracer (RWT) multiple times over the course of a 5 month colonization gradient. Analysis of breakthrough curves demonstrated that in addition to the influence of substrate, biofilm colonization and growth significantly influenced the residence time in the system. Specifically, as biofilms grew, the power-law exponent of the RTD decreased, i.e. the tails of the distributions became heavier, suggesting prolonged retention due to the presence of the biofilms. Although the substrate signature persisted over time, with the coarser gravel bed washing out

  1. Magnetic interactions in FePt/soft magnetic underlayer double-layered structure observed by anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Das, Sarbanoo; Ito, Sukefumi; Kitagawa, Taku; Nakagawa, Shigeki

    2005-05-01

    The effect of magnetic interactions between an FePt recording layer with perpendicular magnetic anisotropy and a soft magnetic layer of FeCoB (or NiFe) was investigated using the anomalous Hall voltage measurement method. The nucleation field and the slope around the coercivity of the Hall hysteresis loop revealed by the recording layer were found to significantly decrease depending on the type of interface. The coercivity corresponding to the in-plane magnetization components of the soft magnetic layer was found to increase while coexisting with an FePt layer.

  2. Search for a particle with a long interaction length. [particle mandela to explain anomalous energy spectra at mountain altitude

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Jones, W. V.; Levit, L. B.; Porter, L. G.

    1975-01-01

    A search has been carried out for a long-lived particle having an interaction length lambda sub m equals 300 to 2000 gm/sq cm in air. Such a particle, called the mandela, has been proposed to explain an anomalous energy spectrum of particles observed near sea level with a shallow spectrometer. Data taken at mountain altitude with a deep spectrometer has been examined for compatibility with the existence of the mandela. Although data tend to favor the mandela hypothesis the results are not conclusive and appear to be explainable by conventional means.

  3. Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction

    SciTech Connect

    Lancia, L.; Antici, P.; Grech, M.; Weber, S.; Marques, J.-R.; Romagnani, L.; Bourgeois, N.; Audebert, P.; Fuchs, J.; Nakatsutsumi, M.; Bellue, A.; Feugeas, J.-L.; Nicolaie, Ph.; Tikhonchuk, V. T.; Grismayer, T.; Lin, T.; Nkonga, B.; Kodama, R.

    2011-03-15

    Electrostatic (E) fields associated with the interaction of a well-controlled, high-power, nanosecond laser pulse with an underdense plasma are diagnosed by proton radiography. Using a current three-dimensional wave propagation code equipped with nonlinear and nonlocal hydrodynamics, we can model the measured E-fields that are driven by the laser ponderomotive force in the region where the laser undergoes filamentation. However, strong fields of up to 110 MV/m measured in the first millimeter of propagation cannot be reproduced in the simulations. This could point to the presence of unexpected strong thermal electron pressure gradients possibly linked to ion acoustic turbulence, thus emphasizing the need for the development of full kinetic collisional simulations in order to properly model laser-plasma interaction in these strongly nonlinear conditions.

  4. Simulation of anomalous extensive air showers initiated by strong neutrino-quark interactions

    SciTech Connect

    Mrenna, S. )

    1992-04-01

    The observation of extensive air showers (EAS) in the atmosphere initiated by ultrahigh-energy cosmic rays offers a test of new physics. In particular, some showers, initiated by neutral particles from point sources, contain a larger number of muons than can be explained by the standard model. A strong interaction between quarks and neutrinos, induced by some new physics, is presented as an explanation. For definiteness, the new physics is assumed to be the manifestation of a composite structure of quarks and leptons, though the general features of the interaction are common to many new physics scenarios. The consequences of such an interaction on the generation and development of EAS are studied with a phenomenological model incorporated into the Monte Carlo program SHOWERSIM. Properties of the electromagnetic, muonic, and hadronic components of simulated EAS for neutrino-induced and ordinary proton-induced showers are presented for the observation level of the CYGNUS experiment at Los Alamos. Some features of these components display distinctive signals of new physics.

  5. Anomalous Interaction of the Acetylcholine Receptor Protein with the Nonionic Detergent Triton X-114

    NASA Astrophysics Data System (ADS)

    Maher, Pamela A.; Singer, S. J.

    1985-02-01

    Integral membrane proteins that form water-filled channels through membranes often exist as aggregates of similar or identical subunits spanning the membrane. It has been suggested that the insertion into the membrane of the channel-forming domains of the subunits may impart unusual structural features to the membrane-intercalated portions of the protein. To test this proposal, we have investigated the interaction of a multisubunit channel-forming integral membrane protein, the acetylcholine receptor protein, with the nonionic detergent Triton X-114. Whereas non-channel-forming integral membrane proteins that have heretofore been studied from mixed micelles with the detergent, the acetylcholine receptor was excluded from the Triton X-114 micelles. The structural implications of this result are discussed.

  6. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  7. Anomalous Arms

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this composite image of spiral galaxy M106 (NGC 4258), optical data from the Digitized Sky Survey is shown as yellow, radio data from the Very Large Array appears as purple, X-ray data from Chandra is coded blue, and infrared data from the Spitzer Space Telescope appears red. Two anomalous arms, which aren't visible at optical wavelengths, appear as purple and blue emission.

  8. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  9. Improved Quantification and Mapping of Anomalous Pulmonary Venous Flow With Four-Dimensional Phase-Contrast MRI and Interactive Streamline Rendering

    PubMed Central

    Hsiao, Albert; Yousaf, Ufra; Alley, Marcus T.; Lustig, Michael; Chan, Frandics Pak; Newman, Beverley; Vasanawala, Shreyas S.

    2016-01-01

    Background Cardiac MRI is routinely performed for quantification of shunt flow in patients with anomalous pulmonary veins, but can be technically-challenging to perform. Four-dimensional phase-contrast (4D-PC) MRI has potential to simplify this exam. We sought to determine whether 4D-PC may be a viable clinical alternative to conventional 2D phase-contrast MR imaging. Methods With institutional review board approval and HIPAA-compliance, we retrospectively identified all patients with anomalous pulmonary veins who underwent cardiac MRI at either 1.5 Tesla (T) or 3T with parallel-imaging compressed-sensing (PI-CS) 4D-PC between April, 2011 and October, 2013. A total of 15 exams were included (10 male, 5 female). Algorithms for interactive streamline visualization were developed and integrated into in-house software. Blood flow was measured at the valves, pulmonary arteries and veins, cavae, and any associated shunts. Pulmonary veins were mapped to their receiving atrial chamber with streamlines. The intraobserver, interobserver, internal consistency of flow measurements, and consistency with conventional MRI were then evaluated with Pearson correlation and Bland-Altman analysis. Results Triplicate measurements of blood flow from 4D-PC were highly consistent, particularly at the aortic and pulmonary valves (cv 2–3%). Flow measurements were reproducible by a second observer (ρ = 0.986–0.999). Direct measurements of shunt volume from anomalous veins and intracardiac shunts matched indirect estimates from the outflow valves (ρ = 0.966). Measurements of shunt fraction using 4D-PC using any approach were more consistent with ventricular volumetric displacements than conventional 2D-PC (ρ = 0.972–0.991 versus 0.929). Conclusion Shunt flow may be reliably quantified with 4D-PC MRI, either indirectly or with detailed delineation of flow from multiple shunts. The 4D-PC may be a more accurate alternative to conventional MRI. PMID:25914149

  10. Anomalous magnetic response of a quasi-periodic mesoscopic ring in presence of Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2016-04-01

    We investigate the properties of persistent charge current driven by magnetic flux in a quasi-periodic mesoscopic Fibonacci ring with Rashba and Dresselhaus spin-orbit interactions. Within a tight-binding framework we work out individual state currents together with net current based on second-quantized approach. A significant enhancement of current is observed in presence of spin-orbit coupling and sometimes it becomes orders of magnitude higher compared to the spin-orbit interaction free Fibonacci ring. We also establish a scaling relation of persistent current with ring size, associated with the Fibonacci generation, from which one can directly estimate current for any arbitrary flux, even in presence of spin-orbit interaction, without doing numerical simulation. The present analysis indeed gives a unique opportunity of determining persistent current and has not been discussed so far.

  11. Repulsive interactions induced by specific adsorption: Anomalous step diffusivity and inadequacy of nearest-neighbor Ising model. (part I experimental)

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo; Ibach, Harald; Beltramo, Guillermo L.; Giesen, Margret

    2016-09-01

    This is Part I of two closely related papers, where we show that the specific adsorption of anions leads to a failure of the nearest-neighbor Ising model to describe island perimeter curvatures on Au(100) electrodes in dilute KBr, HCl and H2SO4 electrolytes and the therewith derived step diffusivity vs. step orientation. This result has major consequences for theoretical studies aiming at the understanding of growth, diffusion and degradation phenomena. Part I focuses on the experimental data. As shown theoretically in detail in Part II (doi:10.1016/j.susc.2016.03.022), a set of nearest-neighbor and next-nearest-neighbor interaction energies (ɛNN, ɛNNN) can uniquely be derived from the diffusivity of steps along <100> and <110>. We find strong repulsive next-nearest neighbor (NNN) interaction in KBr and HCl, whereas NNN interaction is negligibly for H2SO4. The NNN repulsive interaction energy ɛNNN therefore correlates positively with the Gibbs adsorption energy of the anions. We find furthermore that ɛNNN increases with increasing Br- and Cl- coverage. The results for ɛNN and ɛNNN are quantitatively consistent with the coverage dependence of the step line tension. We thereby establish a sound experimental base for theoretical studies on the energetics of steps in the presence of specific adsorption.

  12. Flashing anomalous color contrast.

    PubMed

    Pinna, Baingio; Spillmann, Lothar; Werner, John S

    2004-01-01

    A new visual phenomenon that we call flashing anomalous color contrast is described. This phenomenon arises from the interaction between a gray central disk and a chromatic annulus surrounded by black radial lines. In an array of such figures, the central gray disk no longer appears gray, but assumes a color complementary to that of the surrounding annulus. The induced color appears: (1) vivid and saturated; (2) self-luminous, not a surface property; (3) flashing with eye or stimulus movement; (4) floating out of its confines; and (5) stronger in extrafoveal than in foveal vision. The strength of the effect depends on the number, length, width, and luminance contrast of the radial lines. The results suggest that the chromatic ring bounding the inner tips of the black radial lines induces simultaneous color contrast, whereas the radial lines elicit, in conjunction with the gray disk and the ring, the flashing, vividness, and high saturation of the effect. The stimulus properties inducing the illusion suggest that flashing anomalous color contrast may be based on asynchronous interactions among multiple visual pathways. PMID:15518215

  13. Anomalously slow relaxation of the system of strongly interacting liquid clusters in a disordered nanoporous medium: Self-organized criticality

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Tronin, V. N.

    2016-09-01

    It has been shown that changes in the energy of a system of nonwetting liquid clusters confined in a random nanoporous medium in the process of relaxation can be written in the quasiparticle approximation in the form of the sum of the energies of local (metastable) configurations of liquid clusters interacting with clusters in the connected nearest pores. The energy spectrum and density of states of the local configuration have been calculated. It has been shown that the relaxation of the state of the system occurs through the scenario of self-organized criticality (SOC). The process is characterized by the expectation of a fluctuation necessary for overcoming a local energy barrier of the metastable state with the subsequent rapid hydrodynamic extrusion of the liquid under the action of the surface buoyancy forces of the nonwetting framework. In this case, the dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume of the confined liquid θ ∼t-α(α ∼ 0.1) . The developed model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for disordered atomic systems.

  14. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Biehs, S.-A.; Menon, Vinod M.; Agarwal, G. S.

    2016-06-01

    We study radiative energy transfer between a donor-acceptor pair across a hyperbolic metamaterial slab. We show that similar to a perfect lens a hyperbolic lens allows for giant energy transfer rates. For a realistic realization of a hyperbolic multilayer metamaterial we find an enhancement of up to three orders of magnitude with respect to the transfer rates across a plasmonic silver film of the same size especially for frequencies which coincide with the epsilon-near zero and the epsilon-near pole frequencies. Furthermore, we compare exact results based on the S -matrix method with results obtained from effective medium theory. Our finding of very large dipole-dipole interaction at distances of the order of a wavelength has important consequences for producing radiative heat transfer, quantum entanglement, etc.

  15. LACK OF INTERACTION BETWEEN THE DUST GRAINS AND THE ANOMALOUS RADIO JET IN THE NEARBY SPIRAL GALAXY NGC 4258

    SciTech Connect

    Laine, Seppo; Krause, Marita; Tabatabaei, Fatemeh S.; Siopis, Christos E-mail: mkrause@mpifr-bonn.mpg.d E-mail: christos.siopis@ulb.ac.b

    2010-10-15

    We obtained Spitzer/IRAC 3.6-8 {mu}m images of the nearby spiral galaxy NGC 4258 to study possible interactions between dust and the radio jet. In our analysis, we also included high-resolution radio continuum, H{alpha}, CO, and X-ray data. Our data reveal that the 8 {mu}m emission, believed to originate largely from polycyclic aromatic hydrocarbon molecules and hot dust, is an excellent tracer of the normal spiral structure in NGC 4258, and hence it originates from the galactic plane. We investigated the possibility of dust destruction by the radio jet by calculating correlation coefficients between the 8 {mu}m and radio continuum emissions along the jet in two independent ways, namely, (1) from wavelet-transformed maps of the original images at different spatial scales and (2) from one-dimensional intensity cuts perpendicular to the projected path of the radio jet on the sky. No definitive sign of a correlation (or anticorrelation) was detected on relevant spatial scales with either approach, implying that any dust destruction must take place at spatial scales that are not resolved by our observations.

  16. Interactions of Cu(B) with Carbon Monoxide in Cytochrome c Oxidase: Origin of the Anomalous Correlation between the Fe-CO and C-O Stretching Frequencies.

    PubMed

    Egawa, Tsuyoshi; Haber, Jonah; Fee, James A; Yeh, Syun-Ru; Rousseau, Denis L

    2015-07-01

    In heme-copper oxidases, the correlation curve between the iron-CO and C-O stretching vibrational modes (ν(Fe-CO) and ν(C-O), respectively) is anomalous as compared to the correlation in other heme proteins. To extend the correlation curve, the resonance Raman (RR) and infrared (IR) spectra of the CO adducts of cytochrome ba3 (ba3) from Thermus thermophilus were measured. The RR spectrum has two strong ν(Fe-CO) lines (508 and 515 cm(-1)) and a very weak line at 526 cm(-1), and the IR spectrum has three ν(C-O) lines (1966, 1973, and 1981 cm(-1)), indicating the presence of multiple conformers. Employing photodissociation methods, the ν(Fe-CO) RR and ν(C-O) IR lines were assigned to each conformer, enabling the establishment of a reliable inverse correlation curve for the ν(Fe-CO) versus the ν(C-O) stretching frequencies. To determine the molecular basis of the correlation, a series of DFT calculations on 6-coordinate porphyrin-CO compounds and a model of the binuclear center of the heme-copper oxidases were carried out. The calculations demonstrated that the copper unit model caused significant mixing among porphyrin-CO molecular orbitals (MOs) that contribute to the Fe-C and C-O bonding interactions, and also indicated the presence of mixing between the d(z)(2) orbital of the copper and MOs that are responsible for the ν(Fe-CO) vs ν(C-O) inverse correlation. Together, the spectroscopic and DFT results clarify the origin of the anomaly of ν(Fe-CO) and ν(C-O) frequencies in the heme-copper oxidases, a long-standing issue. PMID:26056844

  17. Anomalous discrete symmetry

    SciTech Connect

    Huang, Z. )

    1992-12-01

    We examine an interesting scenario to solve the domain-wall problem recently suggested by Preskill, Trivedi, Wilczek, and Wise. The effective potential is calculated in the presence of the QCD axial anomaly. It is shown that some discrete symmetries such as {ital CP} and {ital Z}{sub 2} can be anomalous due to a so-called {ital K} term induced by instantons. We point out that the {ital Z}{sub 2} domain-wall problem in the two-doublet standard model can be resolved by two types of solutions: the {ital CP}-conserving one and the {ital CP}-breaking one. In the first case, there exist two {ital Z}{sub 2}-related local minima whose energy splitting is provided by the instanton effect. In the second case, there is only one unique vacuum so that the domain walls do not form at all. The consequences of this new source of {ital CP} violation are discussed and shown to be well within the experimental limits in weak interactions.

  18. On Anomalous Quark Triangles

    NASA Astrophysics Data System (ADS)

    Vainshtein, Arkady

    2011-04-01

    Anomalous quark triangles with one axial and two vector currents are studied in special kinematics when one of the vector currents carries a soft momentum. According to the Adler-Bardeen theorem the anomalous longitudinal part of the triangle is not renormalized in the chiral limit. We show that perturbative corrections the transversal part of the triangle is also absent. This nonrenormalization, in difference with the longitudinal part, holds on only perturbatively.

  19. Anomalous is ubiquitous

    SciTech Connect

    Eliazar, Iddo; Klafter, Joseph

    2011-09-15

    Brownian motion is widely considered the quintessential model of diffusion processes-the most elemental random transport processes in Science and Engineering. Yet so, examples of diffusion processes displaying highly non-Brownian statistics-commonly termed 'Anomalous Diffusion' processes-are omnipresent both in the natural sciences and in engineered systems. The scientific interest in Anomalous Diffusion and its applications is growing exponentially in the recent years. In this Paper we review the key statistics of Anomalous Diffusion processes: sub-diffusion and super-diffusion, long-range dependence and the Joseph effect, Levy statistics and the Noah effect, and 1/f noise. We further present a theoretical model-generalizing the Einstein-Smoluchowski diffusion model-which provides a unified explanation for the prevalence of Anomalous Diffusion statistics. Our model shows that what is commonly perceived as 'anomalous' is in effect ubiquitous. - Highlights: > The article provides an overview of Anomalous Diffusion (AD) statistics. > The Einstein-Smoluchowski diffusion model is extended and generalized. > The generalized model universally generates AD statistics. > A unified 'universal macroscopic explanation' for AD statistics is established. > AD statistics are shown to be fundamentally connected to robustness.

  20. Tests of anomalous quartic couplings at the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Éboli, O. J. P.; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.

    1998-08-01

    We analyze the potential of the Next Linear e+e- Collider to study anomalous quartic vector-boson interactions through the processes e+e--->W+W-Z and ZZZ. In the framework of SU(2)L⊗U(1)Y chiral Lagrangians, we examine all effective operators of order p4 that lead to four-gauge-boson interactions but do not induce anomalous trilinear vertices. In our analysis, we take into account the decay of the vector bosons to fermions and evaluate the efficiency in their reconstruction. We obtain the bounds that can be placed on the anomalous quartic interactions and we study the strategies to distinguish the possible couplings.

  1. Anomalous law of cooling

    SciTech Connect

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  2. Anomalous law of cooling

    NASA Astrophysics Data System (ADS)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  3. Anomalous law of cooling.

    PubMed

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics. PMID:25770525

  4. Drag suppression in anomalous chiral media

    NASA Astrophysics Data System (ADS)

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a nondissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon—the motion of the heavy impurity is frictionless, in analogy to the case of a superfluid. We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.

  5. Test of the Standard Model of electroweak interactions by measuring the anomalous W W gamma couplings at s**(1/2) = 1.8-TeV

    SciTech Connect

    Kelly, Michael Lawrence

    1996-04-01

    An analysis of W{gamma} events found in 73.0 pb{sup -1} collected with the D0 detector during Tevatron Run 1b is presented. Forty-six candidate events are observed with a predicted background of 13.2 events. The total cross section for p{bar p} {yields} W{gamma} + X (for p{sub T}{sup {gamma}} > 10 GeV/c and {Delta}R{sub e{gamma}} > 0.7) times the branching ratio of W bosons to electrons is measured to be: {sigma}(p{bar p} {yields} W{gamma} + X) x BR(W {yields} e{nu}) = 11.19{sub -2.32}{sup +2.66} {+-} 0.61 (syst) {+-} 0.56 (lum) pb. 95% confidence level limits on the CP-conserving anomalous coupling parameters are set using a fit to the photon transverse energy spectrum of the events with a three-body transverse cluster mass greater than 90 GeV/c{sup 2}. The results are: -1.4 < {Delta}{kappa} < 1.4 ({lambda} = 0) and -0.5 < {lambda} < 0.5 ({Delta}{kappa} = 0) with similar limits are set on the CP-violating coupling parameters {bar {kappa}} and {bar {lambda}}. These limits were set by assuming a dipole form factor with a scale factor of {Lambda} = 1.5 TeV.

  6. Colored models for anomalous nuclei

    SciTech Connect

    Watson, P.J.S.; Saly, R.; Romo, W.J.; Sundaresan, M.K.; Campbell, B.; Elias, V.

    1983-04-01

    There seems to be good experimental evidence that anomalous nuclei are produced in heavy-ion collisions; they are anomalous in that they have an abnormally short mean free path, for example, in nuclear emulsions. Here we consider the possibility that anomalous nuclei are combinations of a colored anomalous particle fragment (based on theories with spontaneous breakdown of color symmetry) with ordinary nucleons. Phenomenological implications of various possible models in which the anomalous particle fragment is considered to be a colored particle with the color symmetry SU(3)/sub c/ explicitly broken are given.

  7. Anomalous Hyperfine Structure of NSF3 in the Degenerate Vibrational State v5=1: Lifting of the Parity Degeneracy by the Fluorine Spin-Rotation Interaction

    NASA Astrophysics Data System (ADS)

    Harder, H.; Macholl, S.; Maeder, H.; Fusina, L.; Ozier, I.

    2010-06-01

    For the principal isotopomer 14N32S19F3 of thiazyl trifluoride in the degenerate fundamental state (v5=1), the hyperfine structure has been investigated in the Q-branch spectrum between 8 and 26.5 GHz using microwave Fourier transform waveguide spectrometers with a resolution limit of ≈ 30 kHz. In addition to l% -type doubling spectra and l-type resonance transitions with (Δ k =% Δ l=± 2), perturbation-allowed spectra were measured with Δ % (k-l) =± 3, ± 6. The range in J was from 13 to 61; for the lower states, kl=-3, -2, -1, 0, +1. For all the transitions, the hyperfine patterns observed are predicted to be doublets when only the nitrogen quadrupole Hamiltonian HQN is taken into account. Doublets were indeed measured for transitions with Γ RV=% A1rightarrow A2, where Γ RV is the rovibrational symmetry. However, when Γ RV=Erightarrow E, triplets and quartets were observed in addition to doublets. These anomalous hyperfine patterns are shown to be due to the (Δ k=± 1) and (Δ k=% ± 2) matrix elements of the fluorine spin-rotation Hamiltonian H% NF characterized by the fluorine spin-rotation constants % c(1)=(cxz+czxast ) and c(2)=(cxx-cyy), respectively. These terms in HNF lift the parity degeneracy for Γ RV=E. The rovibrational Hamiltonian HRV was adopted from an earlier partner study. A good fit to the hyperfine data was obtained with a standard deviation of 3.1 kHz. In the fitting process, 12 rovibrational parameters were varied, while the remaining constants in HRV were left at the values of Ref. (1). In addition, 6 hyperfine parameters were determined: four in HQN, and two in HNF. It was found that \\vert c(1)\\vert =7.48(24) kHz and \\vert c(2)\\vert =2.423(22) kHz. This determination of \\vert c(1)\\vert is the first to be reported based on frequency measurements. The key to the observation of the parity doubling lies in the severe mixing into the eigenvectors of basis vectors with several different values of kl as a result of the clustering1

  8. Electroweak baryogenesis with anomalous Higgs couplings

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Wu, Lei; Yue, Jason

    2016-04-01

    We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the `symmetric' phase and are suppressed in the `broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomalous couplings can be further constrained from the LHC Run 2 data and be probed at high luminosity LHC and beyond.

  9. Anomalous hyperfine structure of NSF3 in the degenerate vibrational state v5=1: Lifting of the parity degeneracy by the fluorine spin-rotation interaction

    NASA Astrophysics Data System (ADS)

    Harder, Hauke; Macholl, Sven; Mäder, Heinrich; Fusina, Luciano; Ozier, Irving

    2010-03-01

    For the principal isotopologue N14S32F193 of thiazyl trifluoride in the degenerate fundamental state (v5=1), the hyperfine structure has been investigated in the Q-branch spectrum between 8 and 26.5 GHz using microwave Fourier transform waveguide spectrometers with a resolution limit of ≈30 kHz. In addition to l-type doubling spectra and l-type resonance transitions with (Δk=Δl=±2), perturbation-allowed spectra were measured with Δ(k-l)=±3,±6. The range in J was from 13 to 61; for the lower states, kl=-3,-2,-1,0,+1. For all the transitions, the hyperfine patterns observed are predicted to be doublets when only the nitrogen quadrupole Hamiltonian HQN is taken into account. Doublets were indeed measured for transitions with ΓRV=A1↔A2, where ΓRV is the rovibrational symmetry. However, when ΓRV=E↔E, triplets and quartets were observed in addition to doublets. These anomalous hyperfine patterns are shown to be due to the (Δk=±1) and (Δk=±2) matrix elements of the fluorine spin-rotation Hamiltonian HSRF characterized by the fluorine spin-rotation constants c(1)=(1)/(2)(cxz+czx*) and c(2)=(1)/(2)(cxx-cyy), respectively. These terms in HSRF lift the parity degeneracy for ΓRV=E. The rovibrational Hamiltonian HRV was adopted from an earlier partner study [S. Macholl , J. Phys. Chem. A 113, 668 (2009)]. A good fit to the hyperfine data was obtained with a standard deviation of 3.1 kHz. In the fitting process, 12 rovibrational parameters were varied, while the remaining constants in HRV were left at the values of Macholl In addition, six hyperfine parameters were determined: four in HQN, and two in HSRF. It was found that |c(1)|=7.48(24) kHz and |c(2)|=2.423(22) kHz. This determination of c(1) is the first to be reported based on frequency measurements. In all the previous detections of parity doubling where the splittings were accounted for quantitatively, the levels involved had K=|k|=1 in studies of the ground vibrational state or G≡|k-l|=1 in

  10. Beta function and anomalous dimensions

    SciTech Connect

    Pica, Claudio; Sannino, Francesco

    2011-06-01

    We demonstrate that it is possible to determine the coefficients of an all-orders beta-function linear in the anomalous dimensions using as data the 2-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows us to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  11. Anomalous diffusion in quantum Brownian motion with colored noise

    SciTech Connect

    Ford, G. W.; O'Connell, R. F.

    2006-03-15

    Anomalous diffusion is discussed in the context of quantum Brownian motion with colored noise. It is shown that earlier results follow simply and directly from the fluctuation-dissipation theorem. The limits on the long-time dependence of anomalous diffusion are shown to be a consequence of the second law of thermodynamics. The special case of an electron interacting with the radiation field is discussed in detail. We apply our results to wave-packet spreading.

  12. Fickian dispersion is anomalous

    SciTech Connect

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  13. Fickian dispersion is anomalous

    DOE PAGESBeta

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  14. Anomalous reflections from the ionosphere

    NASA Astrophysics Data System (ADS)

    Givishvili, G. V.; Leshchenko, L. N.

    2013-09-01

    The existence of anomalous ionospheric reflections was shown on the basis of vertical soundings at the Moskow station. They are observed at heights of 100-200 km. These anomalous reflections are not related to the main Ne( h) ionospheric profile. Morphological characteristics of such reflections are presented: the daily, seasonal, and cyclic dependences of their appearance.

  15. Anomalous electrodynamic explosions in liquids

    SciTech Connect

    Aspden, H.

    1986-06-01

    The recently reported Graneau experiments on electrodynamic explosions in liquids, which reveal anomalous longitudinal electrodynamic forces of the order of 10/sup 4/ times greater than expected, verify the need for a term in the law of electrodynamics that corresponds to the ion/electron mass ratio. This confirms an earlier theoretical interpretation of the anomalous cathode reaction forces found in the vacuum arc.

  16. Anomalous Cherenkov spin-orbit sound

    SciTech Connect

    Smirnov, Sergey

    2011-02-15

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  17. Anomalous gauge boson couplings

    SciTech Connect

    Barklow, T.; Rizzo, T.; Baur, U.

    1997-01-13

    The measurement of anomalous gauge boson self couplings is reviewed for a variety of present and planned accelerators. Sensitivities are compared for these accelerators using models based on the effective Lagrangian approach. The sensitivities described here are for measurement of {open_quotes}generic{close_quotes} parameters {kappa}{sub V}, {lambda}{sub V}, etc., defined in the text. Pre-LHC measurements will not probe these coupling parameters to precision better than O(10{sup -1}). The LHC should be sensitive to better than O(10{sup -2}), while a future NLC should achieve sensitivity of O(10{sup -3}) to O(10{sup -4}) for center of mass energies ranging from 0.5 to 1.5 TeV.

  18. Detection of anomalous events

    DOEpatents

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  19. Spectrum of anomalous magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-05-01

    The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high frequencies the magnetic currents play the leading role, and the spectrum is dominated by two-fluid effects. The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.

  20. Anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  1. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  2. Petrology of Anomalous Eucrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  3. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  4. RESEARCH NOTE FROM COLLABORATION: Anomalous single top quark production at the CERN LHC

    NASA Astrophysics Data System (ADS)

    Çakir, O.; Çetin, S. A.

    2005-01-01

    Production of single top quarks via the anomalous interaction u(c)g → t, and its decay to W + b are studied for the CERN LHC ATLAS experiment. The sensitivity to anomalous coupling κ/Λ down to 0.024 TeV-1 can be achieved.

  5. a Constraint on the Anomalous GREEN’S Function

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jihn

    It is shown that the physical constraint of the Anomalous Green’s function gives a natural pairing condition. The resulting self-consistency equation is directly related to the BCS gap equation. Both inhomogeneous and homogeneous systems are considered to illustrate the importance of the constraint. Especially we find weak localization correction to the phonon-mediated interaction.

  6. Macromolecular structure phasing by neutron anomalous diffraction.

    PubMed

    Cuypers, Maxime G; Mason, Sax A; Mossou, Estelle; Haertlein, Michael; Forsyth, V Trevor; Mitchell, Edward P

    2016-01-01

    In this report we show for the first time that neutron anomalous dispersion can be used in a practical manner to determine experimental phases of a protein crystal structure, providing a new tool for structural biologists. The approach is demonstrated through the use of a state-of-the-art monochromatic neutron diffractometer at the Institut Laue-Langevin (ILL) in combination with crystals of perdeuterated protein that minimise the level of hydrogen incoherent scattering and enhance the visibility of the anomalous signal. The protein used was rubredoxin in which cadmium replaced the iron at the iron-sulphur site. While this study was carried out using a steady-state neutron beam source, the results will be of major interest for capabilities at existing and emerging spallation neutron sources where time-of-flight instruments provide inherent energy discrimination. In particular this capability may be expected to offer unique opportunities to a rapidly developing structural biology community where there is increasing interest in the identification of protonation states, protein/water interactions and protein-ligand interactions - all of which are of central importance to a wide range of fundamental and applied areas in the biosciences. PMID:27511806

  7. Macromolecular structure phasing by neutron anomalous diffraction

    PubMed Central

    Cuypers, Maxime G.; Mason, Sax A.; Mossou, Estelle; Haertlein, Michael; Forsyth, V. Trevor; Mitchell, Edward P.

    2016-01-01

    In this report we show for the first time that neutron anomalous dispersion can be used in a practical manner to determine experimental phases of a protein crystal structure, providing a new tool for structural biologists. The approach is demonstrated through the use of a state-of-the-art monochromatic neutron diffractometer at the Institut Laue-Langevin (ILL) in combination with crystals of perdeuterated protein that minimise the level of hydrogen incoherent scattering and enhance the visibility of the anomalous signal. The protein used was rubredoxin in which cadmium replaced the iron at the iron-sulphur site. While this study was carried out using a steady-state neutron beam source, the results will be of major interest for capabilities at existing and emerging spallation neutron sources where time-of-flight instruments provide inherent energy discrimination. In particular this capability may be expected to offer unique opportunities to a rapidly developing structural biology community where there is increasing interest in the identification of protonation states, protein/water interactions and protein-ligand interactions – all of which are of central importance to a wide range of fundamental and applied areas in the biosciences. PMID:27511806

  8. Estimation of Anomalous Single Scatter Events in XENON100 Data

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun; Xenon100 Collaboration

    2011-04-01

    Anomalous single scatter events in XENON100 are events that have only one scintillation pulse (S1) and one ionization pulse (S2), but are multiple scatters in nature. Only one scatter takes place inside the detector's charge and light sensitive volume, resulting in a S2/S1 ratio that is lower than that of true single scatter events and typical of that expected from a WIMP interaction. The identification and suppression of these anomalous events is therefore essential for a sensitive dark matter search. I present results from a Monte Carlo (MC) study that was carried out to estimate the expected number of anomalous single scatter events in the XENON100 WIMP search data. The MC was validated with a comparison with Co-60 gamma-calibration data. We gratefully acknowledge support from NSF, DOE, SNF, the Volkswagen Foundation, FCT, and STCSM. We are grateful to the LNGS for hosting and supporting the XENON program.

  9. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  10. 44th Annual Anomalous Absorption Conference

    SciTech Connect

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  11. Unparticles and anomalous dimensions in the cuprates

    NASA Astrophysics Data System (ADS)

    Karch, Andreas; Limtragool, Kridsanaphong; Phillips, Philip W.

    2016-03-01

    Motivated by the overwhelming evidence some type of quantum criticality underlies the power-law for the optical conductivity and T-linear resistivity in the cuprates, we demonstrate here how a scale-invariant or unparticle sector can lead to a unifying description of the observed scaling forms. We adopt the continuous mass formalism or multi band (flavor) formalism of the unparticle sector by letting various microscopic parameters be mass-dependent. In particular, we show that an effective mass that varies with the flavor index as well as a running band edge and lifetime capture the AC and DC transport phenomenology of the cuprates. A key consequence of the running mass is that the effective dynamical exponent can differ from the underlying bare critical exponent, thereby providing a mechanism for realizing the fractional values of the dynamical exponent required in a previous analysis [1]. We also predict that regardless of the bare dynamical exponent, z, a non-zero anomalous dimension for the current is required. Physically, the anomalous dimension arises because the charge depends on the flavor, mass or energy. The equivalent phenomenon in a d + 1 gravitational construction is the running of the charge along the radial direction. The nature of the superconducting instability in the presence of scale invariant stuff shows that the transition temperature is not necessarily a monotonic function of the pairing interaction.

  12. Anomalous atmospheric hydrologic processes associated with ENSO

    SciTech Connect

    Lau, K.M.; Ho, C.H.

    1997-11-01

    In this paper, we study the structure of anomalous atmospheric hydrologic processes associated with El Nino Southern Oscillation (ENSO) using re-analysis data obtained from the Goddard Earth Observing System (GEOS) Data Assimilation Office (DAO) and outputs from GEOS climate model simulations. Our results show a very pronounced tropospheric warming over the equatorial central Pacific, with a double maxima located in 15{degrees}N and 15{degrees}/S, symmetric about the equator. This anomaly is in agreement with those found in earlier studies based on satellite estimates and is consistent with the predictions of Rossby wave dynamics. Most interestingly, we find a strong stratospheric temperature signal, which is tightly coupled to, but of opposite sign to the tropospheric anomaly. This temperature anomaly pattern is validated by the GCM simulations with respect to anomalous ENSO sea surface temperature (SST) forcing. The role of interaction between radiation and hydrologic cycle in producing and maintaining the ENSO anomalies is also investigated. 8 refs., 4 figs.

  13. Normal and anomalous Doppler effects in periodic waveguide cyclotron maser

    SciTech Connect

    Korol, M.; Jerby, E.

    1995-12-31

    A linear analysis of the periodic-waveguide cyclotron (PWC) maser shows that the PWC interaction with fast-waves possesses properties of the known anomalous Doppler resonance interaction if the wave impedance of the resonant spatial harmonic, Z{sub n}, is much smaller than the free space impedance, i.e. if Z{sub n} {much_lt} Z{sub 0}. The feasibility of a fast-wave PWC interaction in a low impedance waveguide is examined theoretically in this paper. A practical scheme of a slotted-waveguide PWC operating in the fundamental harmonic near cutoff is proposed for a future experiment. The possible advantages of the quasi-anomalous Doppler effect in the fast-wave-PWC operating regime are the alleviation of the initial electron rotation and a high-efficiency operation.

  14. Magnetic effects in anomalous dispersion

    SciTech Connect

    Blume, M.

    1992-12-31

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ``forward scattering`` properties such as the Faraday effect and circular dichroism.

  15. Anomalous threshold laws in quantum sticking.

    PubMed

    Clougherty, Dennis P

    2003-11-28

    It has been stated that for a short-ranged surface interaction, the probability of a low-energy particle sticking to a surface always vanishes as s approximately k with k-->0 where k=sqrt[E]. Deviations from this so-called universal threshold law are derived using a linear model of particle-surface scattering. The Fredholm theory of integral equations is used to find the global conditions necessary for a convergent solution. The exceptional case of a zero-energy resonance is considered in detail. Anomalous threshold laws, where s approximately k(1+alpha),alpha>0 as k-->0, are shown to arise from a soft gap in the weighted density of states of excitations; alpha is determined by the behavior of the weighted density of states near the binding energy. PMID:14683254

  16. Anomalous Threshold Laws in Quantum Sticking

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2003-11-01

    It has been stated that for a short-ranged surface interaction, the probability of a low-energy particle sticking to a surface always vanishes as s˜k with k→0 where k=√(E). Deviations from this so-called universal threshold law are derived using a linear model of particle-surface scattering. The Fredholm theory of integral equations is used to find the global conditions necessary for a convergent solution. The exceptional case of a zero-energy resonance is considered in detail. Anomalous threshold laws, where s˜k1+α,α>0 as k→0, are shown to arise from a soft gap in the weighted density of states of excitations; α is determined by the behavior of the weighted density of states near the binding energy.

  17. Anomalous Threshold Laws in Quantum Sticking

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis

    2004-03-01

    It has been stated that for a short-ranged surface interaction, the probability of a low-energy particle sticking to a surface always vanishes as s ˜ k with k→ 0 where k=√E. Deviations from this so-called universal threshold law are derived using a linear model of particle-surface scattering. The Fredholm theory of integral equations is used to find the global conditions necessary for a convergent solution. The exceptional case of a zero-energy resonance is considered in detail. Anomalous threshold laws, where s ˜ k^1+α, α > 0 as k→ 0, are shown to arise from a soft gap in the weighted density of states of excitations; α is determined by the behavior of the weighted density of states near the binding energy.

  18. Can Anomalous Amplification be Attained without Postselection?

    NASA Astrophysics Data System (ADS)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  19. Anomalous magnetic properties of VOx multiwall nanotubes

    NASA Astrophysics Data System (ADS)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Goodilin, E. A.; Grigorieva, A. V.; Ishchenko, T. V.; Kuznetsov, A. V.; Sluchanko, N. E.; Tretyakov, Yu D.; Semeno, A. V.

    2010-01-01

    Basing on the high frequency (60 GHz) electron spin resonance (ESR) and magnetic susceptibility study of the VOx multiwall nanotubes (VOx-NTs) in the range 4.2-300 K we report the ESR evidence of the presence of the antiferromagnetic V4+ dimers in VOx-NTs and the observation of an anomalous low temperature (T<50 K) growth of the magnetic susceptibility for V4+ quasi-free spins, which obey power law χ(T)~1/Tα with the exponent αapprox0.6. The estimates of the concentrations for various spin species (clusters) indicate that the non-interacting dimers should be an essential element in the VOx-NTs structure. The possibility of the disorder driven quantum critical regime in VOx-NTs is discussed.

  20. Anomalous transport in ergodic lattice systems

    NASA Astrophysics Data System (ADS)

    Bar Lev, Yevgeny; Reichman, David R.

    Many-body localization transition is a peculiar dynamical transition between ergodic and non-ergodic phases, which may occur at any temperature and in any dimension. For temperatures below the transition the system is nonergodic and localized, such that conductivity strictly vanishes at the thermodynamic limit, while for temperatures above the transition the system is thermal and conductive. In this talk I will present a comprehensive study of the dynamical properties of the ergodic phase in one and two dimensional generic disordered and interacting systems, conducted using a combination of nonequilibrium diagrammatic techniques and numerically exact methods. I will show that the ergodic phase, which was expected to be diffusive, exhibits anomalous transport regime for nontrivial times and explain how our findings settle with phenomenological theoretical models. NSF-CHE-1644802.

  1. Anomalous Energy Transport in FPU- Chain

    NASA Astrophysics Data System (ADS)

    Mellet, Antoine; Merino-Aceituno, Sara

    2015-08-01

    This paper is devoted to the derivation of a macroscopic fractional diffusion equation describing heat transport in an anharmonic chain. More precisely, we study here the so-called FPU- chain, which is a very simple model for a one-dimensional crystal in which atoms are coupled to their nearest neighbors by a harmonic potential, weakly perturbed by a quartic potential. The starting point of our mathematical analysis is a kinetic equation: Lattice vibrations, responsible for heat transport, are modeled by an interacting gas of phonons whose evolution is described by the Boltzmann phonon equation. Our main result is the rigorous derivation of an anomalous diffusion equation starting from the linearized Boltzmann phonon equation.

  2. Can Anomalous Amplification be Attained without Postselection?

    PubMed

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C

    2016-03-11

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique. PMID:27015468

  3. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  4. Investigating perturbative unitarity in the presence of anomalous couplings

    NASA Astrophysics Data System (ADS)

    Dahiya, Mamta; Dutta, Sukanta; Islam, Rashidul

    2016-03-01

    We perform a model independent analysis of the helicity amplitudes at high energy for all the 2 →2 scattering processes involving gauge and Higgs bosons in the presence of anomalous W W V , W W V V , V V H , V V H H (V ≡Z , γ and W±), H H H H and H H H interactions. We obtain the perturbative unitarity constraints on anomalous couplings by demanding the vanishing of terms proportional to s2 and s3 /2 in the helicity amplitudes. Using these constraints, we also compute the upper bound on all the anomalous couplings from terms linear in s . Further, assuming all anomalous couplings to have arisen only from dimension six operators, we show that the perturbative unitarity violation can be evaded up to ˜9 TeV corresponding to the best fit values of fW W/Λ2 and fB B/Λ2 from the combined analysis of Tevatron and LHC data.

  5. Anomalous phosphenes in ocular protontherapy

    NASA Astrophysics Data System (ADS)

    Khan, E.; Maréchal, F.; Dendale, R.; Mabit, C.; Calugaru, V.; Desjardin, L.; Narici, L.

    2010-04-01

    We have undertaken a clinical ground study of proton-induced light flashes (phosphenes). Patients treated at the Institut Curie - Centre de Protonthérapie in Orsay, France, received radiation therapy to cure ocular and skull-base cancers. Sixty percent of the patients treated for choroidal melanomas using 73 MeV protons report anomalous phosphenes. Delivering a radiation dose on the retina only is not sufficient to trigger the light flash. The present study may be the first indication of phosphenes triggered by protons of few tens of MeV.

  6. Khinchin Theorem and Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Lapas, Luciano C.; Morgado, Rafael; Vainstein, Mendeli H.; Rubí, J. Miguel; Oliveira, Fernando A.

    2008-12-01

    A recent Letter [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.190601] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a generalized Langevin equation the Khinchin theorem holds.

  7. ANOMALOUSLY PRESSURED GAS DISTRIBUTION IN THE WIND RIVER BASIN, WYOMING

    SciTech Connect

    Dr. Ronald C. Surdam

    2003-03-31

    Anomalously pressured gas (APG) assets, typically called ''basin-center'' gas accumulations, represent either an underdeveloped or undeveloped energy resource in the Rocky Mountain Laramide Basins (RMLB). Historically, the exploitation of these gas resources has proven to be very difficult and costly. In this topical report, an improved exploration strategy is outlined in conjunction with a more detailed description of new diagnostic techniques that more efficiently detect anomalously pressured, gas-charged domains. The ability to delineate gas-charged domains occurring below a regional velocity inversion surface allows operators to significantly reduce risk in the search for APG resources. The Wind River Basin was chosen for this demonstration because of the convergence of public data availability (i.e., thousands of mud logs and DSTs and 2400 mi of 2-D seismic lines); the evolution of new diagnostic techniques; a 175 digital sonic log suite; a regional stratigraphic framework; and corporate interest. In the exploration scheme discussed in this topical report, the basinwide gas distribution is determined in the following steps: (1) A detailed velocity model is established from sonic logs, 2-D seismic lines, and, if available, 3-D seismic data. In constructing the seismic interval velocity field, automatic picking technology using continuous, statistically-derived interval velocity selection, as well as conventional graphical interactive methodologies are utilized. (2) Next, the ideal regional velocity/depth function is removed from the observed sonic or seismic velocity/depth profile. The constructed ideal regional velocity/depth function is the velocity/depth trend resulting from the progressive burial of a rock/fluid system of constant rock/fluid composition, with all other factors remaining constant. (3) The removal of the ideal regional velocity/depth function isolates the anomalously slow velocities and allows the evaluation of (a) the regional velocity

  8. Anomalous Hall effect in localization regime

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Zhu, Kai; Yue, Di; Tian, Yuan; Jin, Xiaofeng

    2016-06-01

    The anomalous Hall effect in the ultrathin film regime is investigated in Fe(001)(1-3 nm) films epitaxial on MgO(001). The logarithmic localization correction to longitudinal resistivity and anomalous Hall resistivity are observed at low temperature. We identify that the coefficient of skew scattering has a reduction from metallic to localized regime, while the contribution of side jump has inconspicuous change except for a small drop below 10 K. Furthermore, we discover that the intrinsic anomalous Hall conductivity decreases with the reduction of thickness below 2 nm. Our results provide unambiguous experimental evidence to clarify the problem of localization correction to the anomalous Hall effect.

  9. ERTS-1 anomalous dark patches

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Through combined use of imagery from ERTS-1 and NOAA-2 satellites was found that when the sun elevation exceeds 55 degrees, the ERTS-1 imagery is subject to considerable contamination by sunlight even though the actual specular point is nearly 300 nautical miles from nadir. Based on sea surface wave slope information, a wind speed of 10 knots will theoretically provide approximately 0.5 percent incident solar reflectance under observed ERTS multispectral scanner detectors. This reflectance nearly doubles under the influence of a 20 knot wind. The most pronounced effect occurs in areas of calm water where anomalous dark patches are observed. Calm water at distances from the specular point found in ERTS scenes will reflect no solar energy to the multispectral scanner, making these regions stand out as dark areas in all bands in an ocean scene otherwise comprosed by a general diffuse sunlight from rougher ocean surfaces. Anomalous dark patches in the outer parts of the glitter zones may explain the unusual appearance of some scenes.

  10. Wanted: A Positive Control for Anomalous Subdiffusion

    PubMed Central

    Saxton, Michael J.

    2012-01-01

    Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories. PMID:23260043

  11. Predicting clutter during anomalous propagation conditions

    NASA Astrophysics Data System (ADS)

    Lee, Susan C.; Maurer, Donald E.; Musser, Keith L.

    1988-06-01

    Excessive clutter caused by anomalous propagation conditions severely degrades radar performance in many regions of the world. This article describes methods that can be used to predict anomalous clutter amplitude for site-specific radar parameters, terrain features, and atmospheric conditions and to predict the effects of radar Doppler processing on evaporation-ducted sea clutter.

  12. Anomalous magnetic behavior at the graphene/Co interface

    SciTech Connect

    Mandal, Sumit; Saha, Shyamal K.

    2014-07-14

    An intensive theoretical study on the interaction between graphene and transition metal atom has been carried out; however, its experimental verification is still lacking. To explore the theoretical prediction of antiferromagnetic coupling due to charge transfer between graphene and cobalt, epitaxial layer of cobalt is grown on graphene surface. Predicted antiferromagnetic interaction with Neel temperature (T{sub N} ∼ 32 K) which anomalously shifts to higher temperature (34 K) and becomes more prominent under application of magnetic field of 1 T is reported. Lowering of magnetoresistance as a consequence of this antiferromagnetic coupling at the interface is also observed.

  13. Anomalous transport induced by sheath instability in Hall effect thrusters

    SciTech Connect

    Taccogna, Francesco; Schneider, Ralf

    2009-06-22

    It is well recognized to ascribe the anomalous cross-field conductivity inside Hall-effect thrusters to fluctuation-induced transport due to gradient-driven instabilities (Rayleigh or electron drift) and to electron-wall interaction (near-wall conductivity). In this letter, we have performed numerical experiments showing the possibility of another mechanism inducing azimuthal fluctuations: the lateral sheath instability. It is created by a negative differential resistance of the current-voltage I-V characteristic of the floating wall as a consequence of high secondary electron emission. The contribution from this effect to the anomalous axial current is calculated and it accounts of more than 80% of the experimental value.

  14. Theory of anomalous magnetotransport in triple quantum dots

    NASA Astrophysics Data System (ADS)

    D'Anjou, Benjamin; Coish, William A.

    2012-02-01

    Magneto-transport measurements on a triple quantum dot ring have recently shown anomalous quantum oscillations with dominant frequencies separated by a factor of three in magnetic flux [1]. Such oscillations, suggestive of a one-third periodicity in the flux quantum, are usually not observed in larger mesoscopic rings in which only larger periods are observed. We develop a microscopic transport model for the triple dot and show that the anomalous oscillations can dominate the transport behavior under certain conditions. Furthermore, we discuss the range of validity of our model by studying dephasing due to broadening and electric dipole interactions. [4pt] [1] L. Gaudreau et al., Phys. Rev. B 80, 075415 (2009)

  15. Emergent primary PCI of anomalous LAD.

    PubMed

    Hershey, Jeffrey; Isada, Loretta; Fenster, Michael S

    2006-05-01

    Approximately 0.3% to 2% of patients may have anomalous origins of the coronary arteries. Anomalous origin of the left coronary artery (LCA) or left anterior descending (LAD) artery from the right sinus has been well described. In persons in whom the course involves an interarterial track between the aorta (Ao) and pulmonary artery (PA), an increased incidence of sudden death has been reported, particularly during or shortly after exercise. This has been felt to be due to transient occlusion of the anomalous LAD from increased blood flow through the Ao and PA as the anomalous LAD courses between them, possibly causing myocardial ischemia. In an elective setting, further anatomic delineation with other methodologies such as cardiac magnetic resonance (MR) imaging is recommended. In this case report we present an emergent percutaneous coronary intervention (PCI) of an anomalous LAD arising from the right sinus of Valsalva and coursing between the Ao and PA in a nonsurgical candidate. PMID:16670456

  16. Anomalous Growth of Aging Populations

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2016-04-01

    We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.

  17. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  18. Anomalous perturbative transport in tokamaks due to drift-wave turbulence

    SciTech Connect

    Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )

    1994-03-01

    A new method for calculating the anomalous transport in tokamak plasmas is presented. The renormalized nonlinear plasma response function is derived using the direct-interaction approximation (DIA). A complete calculation for the case of electrostatic drift-wave turbulence is presented. Explicit expressions for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma are obtained. The anomalous transport matrix calculated using the DIA does not have the Onsager symmetry. As an example of application, the parameters of the Texas Experimental Tokamak (TEXT) [Nucl. Technol. Fusion [bold 1], 479 (1981)] are used to evaluate all transport coefficients numerically, as well as the spectrum modulation. The relation between the theoretical results and the experimental data is discussed. Although this paper focuses on electron transport for simplicity, the method can also be used to calculate anomalous transport due to ion instabilities, such as the ion-temperature-gradient instability.

  19. Anomalous neuronal responses to fluctuated inputs.

    PubMed

    Hosaka, Ryosuke; Sakai, Yutaka

    2015-10-01

    The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain. PMID:26565270

  20. Anomalous neuronal responses to fluctuated inputs

    NASA Astrophysics Data System (ADS)

    Hosaka, Ryosuke; Sakai, Yutaka

    2015-10-01

    The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain.

  1. Temporal variations of the anomalous oxygen component

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Webber, W. R.

    1983-01-01

    Data from the cosmic ray experiment on Voyagers 1 and 2 was used to examine anomalous oxygen in the time period from launch in 1977 to the end of 1981. Several time periods were found where large periodic (typically 26 day) temporal variations of the oxygen intensity between approximately 5 - 15 MeV/nuc are present. Variations in intensity by up to a factor of 10 are observed during these periods. Several characteristics of these variations indicate that they are not higher energy extensions of the low energy particle (approximately 1 MeV/nuc) increases found in many corotating interaction regions (CIR's). Many of these periodic temporal variations are correlated with similar, but much smaller, recurrent variations in the 75 MeV proton rate. Voyager 1 and Voyager 2 counting rates were compared to estimate the local radial gradient for both the protons and the oxygen. The proton gradients during periods of both maximum and minumum fluxes are consistent with the overall positive radial gradients reported by others from Pioneer and near-Earth observations, supporting the view that these variations are due to local modulation of a source outside the radial range of project measurements. In contrast, the oxygen gradients during periods of maximum proton flux differ in sign from those during minimum proton fluxes, suggesting that the origin of the oxygen variations is different from that of the protons.

  2. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  3. Anomalous nonlinear X-ray Compton scattering

    NASA Astrophysics Data System (ADS)

    Fuchs, Matthias; Trigo, Mariano; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, Philip H.; Feng, Yiping; Herrmann, Sven; Carini, Gabriella A.; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Moeller, Stefan; Hastings, Jerome B.; Reis, David A.

    2015-11-01

    X-ray scattering is typically used as a weak linear atomic-scale probe of matter. At high intensities, such as produced at free-electron lasers, nonlinearities can become important, and the probe may no longer be considered weak. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions: the concerted nonlinear Compton scattering of two identical hard X-ray photons producing a single higher-energy photon. The X-ray intensity reached 4 × 1020 W cm-2, corresponding to an electric field well above the atomic unit of strength and within almost four orders of magnitude of the quantum-electrodynamic critical field. We measure a signal from solid beryllium that scales quadratically in intensity, consistent with simultaneous non-resonant two-photon scattering from nearly-free electrons. The high-energy photons show an anomalously large redshift that is incompatible with a free-electron approximation for the ground-state electron distribution, suggesting an enhanced nonlinearity for scattering at large momentum transfer.

  4. Experimental phasing using zinc anomalous scattering

    SciTech Connect

    Cha, Sun-Shin; An, Young Jun; Jeong, Chang-Sook; Kim, Min-Kyu; Lee, Sung-Gyu; Lee, Kwang-Hoon; Oh, Byung-Ha

    2012-09-01

    The surface of proteins can be charged with zinc ions and the anomalous signals from these zinc ions can be used for structure determination of proteins. Zinc is a suitable metal for anomalous dispersion phasing methods in protein crystallography. Structure determination using zinc anomalous scattering has been almost exclusively limited to proteins with intrinsically bound zinc(s). Here, it is reported that multiple zinc ions can easily be charged onto the surface of proteins with no intrinsic zinc-binding site by using zinc-containing solutions. Zn derivatization of protein surfaces appears to be a largely unnoticed but promising method of protein structure determination.

  5. Modelling anomalous extinction using nanodiamonds

    NASA Astrophysics Data System (ADS)

    Rai, Rakesh K.; Rastogi, Shantanu

    2012-07-01

    The modelling of extinction along anomalous/non-Cardelli, Clayton & Mathis sightlines, which are characterized by a broad 217.5-nm bump and steep far-ultraviolet (FUV) rise, is reported. The extinction along these sightlines, namely HD 210121, HD 204827, HD 29647 and HD 62542, is difficult to reproduce using standard silicate and graphite grains. A very good match with the observed extinction is obtained by considering a nanodiamond component as part of the carbonaceous matter. Most of these sightlines are rich in carbon and are invariably backed by a young hot stellar object. Nanodiamond is taken as a core within amorphous carbon and graphite. These core-mantle particles, taken as additional components along with graphite and silicates, lead to a reduction in the silicate requirement. The abundance of carbonaceous matter is not affected, as a very small fraction of nanodiamond is required. Extinction along sightlines that show steep FUV is also reported, demonstrating the importance of the nanodiamond component in all such regions.

  6. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  7. Anomalous right upper lobe venous drainage.

    PubMed

    Tarazi, M; Mayooran, N; Philip, B; Anjum, M N; O'Regan, K; Doddakula, K

    2016-01-01

    Lung resections are usually not associated with significant bleeding, but can be fatal, especially in cases of video-assisted thoracoscopic surgery (VATS). Anomalous vascular structures could be a major reason for unexpected bleeding in such surgeries. We present a case of an aberrant upper lobe pulmonary vein that was encountered posterior to the right upper lobe bronchus during a right upper lobectomy via thoracotomy. The anomalous pulmonary vein was identified preoperatively on a computed tomography (CT) scan and hence was looked for before dividing the bronchus. Many centres are adopting the VATS approach for performing lung resections. If an anomalous vein is present posterior to the bronchus, it might be in a blind spot and could be damaged inadvertently, leading to profuse and potentially fatal bleeding. We conclude that the identification of anomalous vascular structures prior to surgery with the help of CT helps in avoiding adverse outcomes. PMID:27016516

  8. Anomalous right upper lobe venous drainage

    PubMed Central

    Tarazi, M.; Mayooran, N.; Philip, B.; Anjum, M.N.; O'Regan, K.; Doddakula, K.

    2016-01-01

    Lung resections are usually not associated with significant bleeding, but can be fatal, especially in cases of video-assisted thoracoscopic surgery (VATS). Anomalous vascular structures could be a major reason for unexpected bleeding in such surgeries. We present a case of an aberrant upper lobe pulmonary vein that was encountered posterior to the right upper lobe bronchus during a right upper lobectomy via thoracotomy. The anomalous pulmonary vein was identified preoperatively on a computed tomography (CT) scan and hence was looked for before dividing the bronchus. Many centres are adopting the VATS approach for performing lung resections. If an anomalous vein is present posterior to the bronchus, it might be in a blind spot and could be damaged inadvertently, leading to profuse and potentially fatal bleeding. We conclude that the identification of anomalous vascular structures prior to surgery with the help of CT helps in avoiding adverse outcomes. PMID:27016516

  9. The charmonium dissociation in an "anomalous wind"

    NASA Astrophysics Data System (ADS)

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-01

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and qualitative difference between anomalous effects on the charmonium color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.

  10. ACS SBC Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. Anomalous shutdowns can occur as a result of bright object violations which trigger the Bright Scene Detection or Software Global Monitor. Anomalous shutdowns can also occur as a result of SBC hardware problems. The recovery from anomalous shutdown procedure consists of four tests: 1} a signal processing electronics check, 2} a slow high voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the full operating voltage, and 4} a Fold Test. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 12738 from Cycle 19.

  11. ACS SBC Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    This proposal is designed to permit recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. Anomalous shutdowns can occur as a result of bright object violations which trigger the Bright Scene Detection or Software Global Monitor. Anomalous shutdowns can also occur as a result of SBC hardware problems. The recovery from anomalous shutdown procedure consists of four tests: a signal processing electronics check, a slow high voltage ramp-up to an intermediate voltage, a slow high-voltage ramp-up to the full operating voltage, and lastly, a Fold Test. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on proposal 11884, visits 1 to 4.

  12. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems. PMID:26274432

  13. The charmonium dissociation in an ''anomalous wind''

    DOE PAGESBeta

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-11

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmoniummore » color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.« less

  14. Higgs mechanism, phase transitions, and anomalous Hall effect in three-dimensional topological superconductors

    NASA Astrophysics Data System (ADS)

    Nogueira, Flavio S.; Sudbø, Asle; Eremin, Ilya

    2015-12-01

    We demonstrate that the Higgs mechanism in three-dimensional topological superconductors exhibits unique features with experimentally observable consequences. The Higgs model we discuss has two superconducting components and an axionlike magnetoelectric term with the phase difference of the superconducting order parameters playing the role of the axion field. Due to this additional term, quantum electromagnetic and phase fluctuations lead to a robust topologically nontrivial state that holds also in the presence of interactions. In this sense, we show that the renormalization flow of the topologically nontrivial phase cannot be continuously deformed into a topologically nontrivial one. One consequence of our analysis of quantum critical fluctuations is the possibility of having a first-order phase transition in the bulk and a second-order phase transition on the surface. We also explore another consequence of the axionic Higgs electrodynamics, namely, the anomalous Hall effect. In the low-frequency London regime an anomalous Hall effect is induced in the presence of an applied electric field parallel to the surface. This anomalous Hall current is induced by a Lorentz-like force arising from the axion term, and it involves the relative superfluid velocity of the superconducting components. The anomalous Hall current has a negative sign, a situation reminiscent of but quite distinct in physical origin from the anomalous Hall effect observed in high-Tc superconductors. In contrast to the latter, the anomalous Hall effect in topological superconductors is nondissipative and occurs in the absence of vortices.

  15. Anomalous diffusion of erythrocytes in the presence of polyvinylpyrrolidone.

    PubMed Central

    Fritz, O G

    1984-01-01

    The diffusion coefficient of erythrocytes was measured using quasi-elastic light-scattering (QELS) techniques. The cells were suspended in phosphate-buffered saline solutions with and without a macromolecule, polyvinylpyrrolidone (PVP[360]). In the presence of the PVP(360) an anomalously high diffusion coefficient was measured for metabolizing cells with a normal transmembrane potential. The results are in agreement with experiments on rouleau formation by red blood cells and are supportive of the hypothesis of a long-range coherent interaction between metabolically active biological cells. Images FIGURE 8 FIGURE 9 FIGURE 10 PMID:6478035

  16. Origin of the Anomalous Long Lifetime of 14C

    SciTech Connect

    Dean, David Jarvis; Nam, Hai Ah; Maris, Pieter; Vary, J. P.; Navratil, Petr; Ormand, W. Erich

    2011-01-01

    We report the microscopic origins of the anomalously suppressed beta decay of 14C to 14N using the ab initio no-core shell model with the Hamiltonian from the chiral effective field theory including three-nucleon force terms. The three-nucleon force induces unexpectedly large cancellations within the p shell between contributions to beta decay, which reduce the traditionally large contributions from the nucleon-nucleon interactions by an order of magnitude, leading to the long lifetime of 14C.

  17. Experimental observation of anomalous high harmonics at low intensities

    NASA Astrophysics Data System (ADS)

    Valentin, C.; Kazamias, S.; Douillet, D.; Grillon, G.; Lefrou, T.; Augé, F.; Sebban, S.; Balcou, P.

    A variety of complex phenomena occurs when an ultra-short laser pulse interacts with atoms in the 1013 W/cm2 range: non-sequential ionisation, electron recollision, and Freeman resonances. We show that high-harmonic spectra obtained experimentally in this parameter range also display anomalous features, which are difficult to understand in the framework of the three-step, semiclassical model. The results of a systematic study of these high harmonics generated in argon, xenon, and krypton are presented. From the experimental curves, complex high-order harmonic generation phenomena are discussed.

  18. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice.

    PubMed

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  19. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    NASA Astrophysics Data System (ADS)

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-06-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets.

  20. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    PubMed Central

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  1. A metallic (EDT-DSDTFVSDS)2.FeBr4 salt: antiferromagnetic ordering of d spins of FeBr4- ions and anomalous magnetoresistance due to preferential pi-d interaction.

    PubMed

    Hayashi, Toshiki; Xiao, Xunwen; Fujiwara, Hideki; Sugimoto, Toyonari; Nakazumi, Hiroyuki; Noguchi, Satoru; Fujimoto, Tsutomu; Yasuzuka, Syuma; Yoshino, Harukazu; Murata, Keizo; Mori, Takehiko; Aruga-Katori, Hiroko

    2006-09-13

    The 2:1 salt of a new donor molecule, EDT-DSDTFVSDS with FeBr4- ion, (EDT-DSDTFVSDS)2.FeBr4 showed an essentially metallic behavior despite a small upturn in the electrical resistance below ca. 30 K (electrical conductivities at 290 and 4.2 K are 200 and 170 S cm-1, respectively). The Fe(III) d spins of the FeBr4- ions in this salt were subject to antiferromagnetic ordering at 3.3 K by virtue of a strong pi-d interaction (Jpid) which is comparable to that in a molecular metallic conductor, lambda-(BETS)2.FeCl4, and of a very weak d-d interaction (Jdd). This strong pi-d interaction was evidenced by a large and negative magnetoresistance effect (ca. 20% at 5 T) as well as by the appearance of a large dip in the resistance at the magnetic field (ca. 2.0 T) parallel to the easy axis for the spin-flop transition of the Fe(III) d spins. PMID:16953600

  2. Anomalous columnar order of charged colloidal platelets.

    PubMed

    Morales-Anda, L; Wensink, H H; Galindo, A; Gil-Villegas, A

    2012-01-21

    Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory. PMID:22280777

  3. Anomalous baryogenesis at the weak scale

    SciTech Connect

    Singleton, R.L. Jr.

    1991-06-01

    One of the fundamental constants of nature is the baryon asymmetry of the universe -- the ratio of the number of baryons to the entropy. This constant is about 10{sup {minus}11}. In baryon- number conserving theories, this was just an initial condition. With the advent of the grand unified theories (GUTs), baryon number is no longer conserved, and this asymmetry can be generated dynamically. Unfortunately, however, there are reasons for preferring another mechanism. For example, GUTs predict proton decay which, after extensive searches, has not been found. An alternative place to look for baryogenesis is the electroweak phase transition, described by the standard model, which posses all the necessary ingredients for baryogenesis. Anomalous baryon-number violation in weak interactions becomes large at high temperatures, which offers the prospect of creating the asymmetry with the standard model or minimal extensions. This can just barely be done if certain conditions are fulfilled. CP violation must be large, which rules out the minimal standard model as the source of the asymmetry, but which is easily arranged with an extended Higgs sector. The baryon-number violating rates themselves are not exactly known, and they must be pushed to their theoretical limits. A more exact determination of these rates is needed before a definitive answer can be given. Finally, the phase transition must be at least weakly first order. Such phase transitions are accompanied by the formation and expansion of bubbles of true vacuum within the false vacuum, much like the boiling of water. As the bubbles expand, they provide a departure from thermal equilibrium, otherwise the dynamics will adjust the net baryon number to zero. The bubble expansion also provides a biasing that creates an asymmetry on the bubbles surface. Under optimal conditions, the observed asymmetry can just be produced. 31 refs., 10 figs.

  4. Parametric probability distributions for anomalous change detection

    SciTech Connect

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  5. On the sources of astrometric anomalous refraction

    NASA Astrophysics Data System (ADS)

    Taylor, M. Suzanne

    2009-06-01

    Over a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, now known as "anomalous refraction," is again being observed. Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order often minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but never confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters.

  6. Analytical solutions for anomalous dispersion transport

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Vesselinov, V. V.

    2014-06-01

    Groundwater flow and transport often occur in a highly heterogeneous environment (potentially heterogeneous at multiple spatial scales) and is impacted by geochemical reactions, advection, diffusion, and other pore scale processes. All these factors can give rise to large-scale anomalous dispersive behavior that can make complex model representation and prediction of plume concentrations challenging due to difficulties unraveling all the complexities associated with the governing processes, flow medium, and their parameters. An alternative is to use upscaled stochastic models of anomalous dispersion, and this is the approach used here. Within a probabilistic framework, we derive a number of analytical solutions for several anomalous dispersion models. The anomalous dispersion models are allowed to be either non-Gaussian (α-stable Lévy), correlated, or nonstationary from the Lagrangian perspective. A global sensitivity analysis is performed to gain a greater understanding of the extent to which uncertainty in the parameters associated with the anomalous behavior can be narrowed by examining concentration measurements from a network of monitoring wells and to demonstrate the computational speed of the solutions. The developed analytical solutions are encoded and available for use in the open source computational framework MADS (http://mads.lanl.gov).

  7. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    SciTech Connect

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  8. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  9. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa{sub 1−x}Nb{sub x}O{sub 3} crystal

    SciTech Connect

    Wang, Xuping Liu, Bing; Yang, Yuguo; Zhang, Yuanyuan; Lv, Xianshun; Hong, Guanglie; Shu, Rong; Yu, Haohai; Wang, Jiyang

    2014-08-04

    An abnormal laser deflection phenomenon in a copper-doped KTa{sub 1−x}Nb{sub x}O{sub 3} (Cu:KTN) crystal is demonstrated in this Letter. A near-50 mrad beam deflection angle was observed when a voltage of 1.2 kV was applied to a Cu:KTN block with size of 2.8 mm × 1.2 mm × 7.5 mm at room temperature. The special features of this deflection phenomenon are that the laser beam deflection direction is perpendicular to the electric field direction, and the beam deflection angle remains unchanged when the electric field direction is reversed. The operating principle of the phenomenon is investigated and the origin of the deflection phenomenon is attributed to an interaction between the graded refractivity effect and the quadratic electro-optic effect of the crystal.

  10. Anomalous biceps origin from the rotator cuff

    PubMed Central

    Banerjee, Samik; Patel, Vipul R

    2015-01-01

    Variations in the origin of the long head of biceps tendon (LHBT) have been described in literature; however, its clinical significance remains uncertain. We describe in this report, the history, physical examination and the arthroscopic findings in a patient who had an anomalous origin of the LHBT from the rotator cuff, resulting in restriction of range of motion. This anomalous origin of the long head of biceps tendon causing capsular contracture and restriction of movements leading to secondary internal impingement, has not been extensively reported in the literature. Shoulder arthroscopists should be aware that, although, an uncommon clinical condition, the aberrant congenital origin of the LHBT from the rotator cuff can rarely become pathologic in middle age and lead to shoulder dysfunction. In such cases, release of the anomalous band may be required, along with the treatment of other concomitant intraarticular pathologies in the glenohumeral joint. PMID:25593361

  11. Anomalous fluorescence line intensity in megavoltage bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Pereira, Nino; Litz, Marc; Merkel, George; Schumer, Joseph; Seely, John; Carroll, Jeff

    2009-11-01

    A Cauchois transmission crystal spectrometer intended for laser plasma diagnostics has measured an anomalous ratio between the fluorescence lines in megavoltage bremsstrahlung. When observed in reflection, Kα1 fluorescence is twice as strong as the Kβ line, as is usual. However, in forward-directed bremsstrahlung from a 2 MV end point linear accelerator with a tungsten converter, the Kα1 and Kβ fluorescence are approximately equal. The anomalous fluorescence line ratio, unity, reflects the large amount of fluorescence generated on the side of the converter where the electrons enter, and the differential attenuation of the fluorescence photons as they pass through the converter to opposite side. Understanding of fluorescence in megavoltage bremsstrahlung is relevant to the explanation of anomalous line ratios in spectra produced by high-energy electrons generated by intense femtosecond laser irradiation.

  12. Experimental realization of quantized anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Xue, Qi-Kun

    2014-03-01

    Anomalous Hall effect was discovered by Edwin Hall in 1880. In this talk, we report the experimental observation of the quantized version of AHE, the quantum anomalous Hall effect (QAHE) in thin films of Cr-doped (Bi,Sb)2Te3 magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance exhibits a quantized value of h /e2 accompanied by a significant drop of the longitudinal resistance. The longitudinal resistance vanishes under a strong magnetic field whereas the Hall resistance remains at the quantized value. The realization of QAHE paves a way for developing low-power-consumption electronics. Implications on observing Majorana fermions and other exotic phenomena in magnetic topological insulators will also be discussed. The work was collaborated with Ke He, Yayu Wang, Xucun Ma, Xi Chen, Li Lv, Dai Xi, Zhong Fang and Shoucheng Zhang.

  13. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Tang, Chi; Sachs, Raymond; Barlas, Yafis; Shi, Jing

    2015-01-01

    We demonstrate the anomalous Hall effect (AHE) in single-layer graphene exchange coupled to an atomically flat yttrium iron garnet (YIG) ferromagnetic thin film. The anomalous Hall conductance has magnitude of ˜0.09 (2 e2/h ) at low temperatures and is measurable up to ˜300 K . Our observations indicate not only proximity-induced ferromagnetism in graphene/YIG with a large exchange interaction, but also enhanced spin-orbit coupling that is believed to be inherently weak in ideal graphene. The proximity-induced ferromagnetic order in graphene can lead to novel transport phenomena such as the quantized AHE which are potentially useful for spintronics.

  14. Anomalous Diffraction in Cold Magnetized Plasma.

    PubMed

    Abelson, Z; Gad, R; Bar-Ad, S; Fisher, A

    2015-10-01

    Cold magnetized plasma possesses an anisotropic permittivity tensor with a unique dispersion relation that for adequate electron density and magnetic field results in anomalous diffraction of a right-hand circularly polarized beam. In this work, we demonstrate experimentally anomalous diffraction of a microwave beam in plasma. Additionally, decreasing the electron density enables observation of the transition of the material from a hyperbolic to a standard material. Manipulation of the control parameters will enable plasma to serve as a reconfigurable metamaterial-like medium. PMID:26551813

  15. Anomalous Diffraction in Cold Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Abelson, Z.; Gad, R.; Bar-Ad, S.; Fisher, A.

    2015-10-01

    Cold magnetized plasma possesses an anisotropic permittivity tensor with a unique dispersion relation that for adequate electron density and magnetic field results in anomalous diffraction of a right-hand circularly polarized beam. In this work, we demonstrate experimentally anomalous diffraction of a microwave beam in plasma. Additionally, decreasing the electron density enables observation of the transition of the material from a hyperbolic to a standard material. Manipulation of the control parameters will enable plasma to serve as a reconfigurable metamaterial-like medium.

  16. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  17. Anomalous but massive removal of two organic dye pollutants simultaneously.

    PubMed

    Meng, Zilin; Zhang, Yihe; Zhang, Zhilei; Zhang, Qian; Chu, Paul K; Komarneni, Sridhar; Lv, Fengzhu

    2016-11-15

    A one-pot method to remove two organic dye contaminants and alkali simultaneously from alkaline wastewater was developed by forming Zn-Al layered double hydroxide (ZnAl-LDH). Using this process, not only alkali but also methyl orange (MO), an anionic contaminant was totally removed from wastewater. In addition, cationic contaminant, methylene blue (MB) was also removed effectively while maintaining the high removal efficiency of MO. The removal efficiency of MO was almost 100% and the pH of the treated wastewater decreased from 12 to 7.38. The charge-limited removal process, molecular arrangement of the contaminants in LDHs, and the anomalous removal mechanism were analyzed experimentally and through simulation. After MO accumulated in the interlayers of LDH by electrostatic interaction, MB entered and trapped by hydrophobic interaction. PMID:27399147

  18. [Anomalous systemic arterial supply to left basal lung with anomalous return of V6].

    PubMed

    Yabuki, Hiroshi; Shibuya, Jotaro; Handa, Masashi; Yamada, Takehiro

    2014-11-01

    The patient was 52-year-old woman. Her chief compliant was bloody sputum. The computed tomography revealed an anomalous artery from descending aorta running into left lung basal segment and anomalous left V6 return to superior pulmonary vein. The bronchoscopic examination showed normal bronchial branches. Under the diagnosis of anomalous systemic arterial supply to left basal lung without sequestration, left lower lobectomy was performed. Microscopically, the pulmonary artery showed intimal thickening and alveolar collapse with interstitial fibrosis were seen. The postoperative course was uneventful and she discharged at 6th postoperative day. PMID:25391467

  19. Multiple populations in the Sagittarius nuclear cluster M 54 and in other anomalous globular clusters

    NASA Astrophysics Data System (ADS)

    Milone, A. P.

    2016-08-01

    M 54 is the central cluster of the Sagittarius dwarf galaxy. This stellar system is now in process of being disrupted by the tidal interaction with the Milky Way and represents one of the building blocks of the Galactic Halo. Recent discoveries, based on the synergy of photometry and spectroscopy have revealed that the color-magnitude diagram (CMD) of some massive, anomalous, Globular Clusters (GCs) host stellar populations with different content of heavy elements. In this paper, I use multi-wavelength Hubble Space Telescope (HST) photometry to detect and characterize multiple stellar populations in M 54. I provide empirical evidence that this GC shares photometric and spectroscopic similarities with the class of anomalous GCs. These findings make it tempting to speculate that, similarly to Sagittarius nuclear cluster M 54, other anomalous GCs were born in an extra-Galactic environment.

  20. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Palacios, Edgar; Bütün, Serkan; Aydin, Koray

    2015-09-01

    Metasurfaces offer new degrees of freedom in moulding the optical wavefronts by introducing abrupt and drastic changes in the amplitude, phase and/or polarization of electromagnetic radiation at the wavelength scale. By carefully arranging multiple subwavelength anisotropic or gradient optical resonators, metasurfaces have been shown to enable anomalous transmission, anomalous reflection, optical holograms and spin-orbit interaction. However, experimental realization of high-performance metasurfaces that can operate at visible frequency range has been a significant challenge due to high optical losses of plasmonic materials and difficulties in fabricating several subwavelength plasmonic resonators with high uniformity. Here, we propose a highly-efficient yet a simple metasurface design comprising of a single, anisotropic trapezoid-shape antenna in its unit cell. We demonstrate broadband (450 - 850 nm) anomalous reflection and spectrum splitting at visible and near-IR frequencies with 85% conversion efficiency. Average power ratio of anomalous reflection to the strongest diffraction mode was calculated to be on the order of 1000 and measured to be on the order of 10. The anomalous reflected photons have been visualized using a CCD camera, and broadband spectrum splitting performance has been confirmed experimentally using a free space, angle-resolved reflection measurement setup. Metasurface design proposed in this study is a clear departure from conventional metasurfaces utilizing multiple, anisotropic and/or gradient optical resonators, and could enable high-efficiency, broadband metasurfaces for achieving flat high SNR optical spectrometers, polarization beam splitters, directional emitters and spectrum splitting surfaces for photovoltaics.

  1. Total least squares for anomalous change detection

    SciTech Connect

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  2. Anomalous adaptive conditions associated with strabismus.

    PubMed

    Verma, Arun

    2007-01-01

    Anomalous adaptive conditions (AAC) associated with strabismus include: suppression, amblyopia, abnormal retinal correspondence, eccentric fixation, retinal rivalry, horror fusionis, and suspension. This article poses the hypothesis that AAC, in certain cases, may be the cause of strabismus rather than the result of strabismus. PMID:17984497

  3. RSRM Nozzle Anomalous Throat Erosion Investigation Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Wendel, Gary M.

    1998-01-01

    In September, 1996, anomalous pocketing erosion was observed in the aft end of the throat ring of the nozzle of one of the reusable solid rocket motors (RSRM 56B) used on NASA's space transportation system (STS) mission 79. The RSRM throat ring is constructed of bias tape-wrapped carbon cloth/ phenolic (CCP) ablative material. A comprehensive investigation revealed necessary and sufficient conditions for occurrence of the pocketing event and provided rationale that the solid rocket motors for the subsequent mission, STS-80, were safe to fly. The nozzles of both of these motors also exhibited anomalous erosion similar to, but less extensive than that observed on STS-79. Subsequent to this flight, the investigation to identify both the specific causes and the corrective actions for elimination of the necessary and sufficient conditions for the pocketing erosion was intensified. A detailed fault tree approach was utilized to examine potential material and process contributors to the anomalous performance. The investigation involved extensive constituent and component material property testing, pedigree assessments, supplier audits, process audits, full scale processing test article fabrication and evaluation, thermal and thermostructural analyses, nondestructive evaluation, and material performance tests conducted using hot fire simulation in laboratory test beds and subscale and full scale solid rocket motor static test firings. This presentation will provide an over-view of the observed anomalous nozzle erosion and the comprehensive, fault-tree based investigation conducted to resolve this issue.

  4. Tensor charge and anomalous magnetic moment correlation

    SciTech Connect

    Mekhfi, Mustapha

    2005-12-01

    We propose a generalization of the upgraded Karl-Sehgal formula which relates baryon magnetic moments to the spin structure of constituent quarks, by adding anomalous magnetic moments of quarks. We first argue that the relativistic nature of quarks inside baryons requires the introduction of two kinds of magnetisms, one axial and the other tensorial. The first one is associated with integrated quark helicity distributions {delta}{sub i}-{delta}{sub i} (standard) and the second with integrated transversity distributions {delta}{sub i}-{delta}{sub i}. The weight of each contribution is controlled by the combination of two parameters, x{sub i} the ratio of the quark mass to the average kinetic energy and a{sub i} the quark anomalous magnetic moment. The quark anomalous magnetic moment is correlated to transversity, and both are necessary ingredients in describing relativistic quarks. The proposed formula, when confronted with baryon magnetic moments data with reasonable inputs, yields, besides quark magnetic densities, anomalous magnetic moments large enough not to be ignored.

  5. Anomalous solutions to the strong CP problem.

    PubMed

    Hook, Anson

    2015-04-10

    We present a new mechanism for solving the strong CP problem using a Z_{2} discrete symmetry and an anomalous U(1) symmetry. A Z_{2} symmetry is used so that two gauge groups have the same theta angle. An anomalous U(1) symmetry makes the difference between the two theta angles physical and the sum unphysical. Two models are presented where the anomalous symmetry manifests itself in the IR in different ways. In the first model, there are massless bifundamental quarks, a solution reminiscent of the massless up quark solution. In the IR of this model, the η^{'} boson relaxes the QCD theta angle to the difference between the two theta angles-in this case zero. In the second model, the anomalous U(1) symmetry is realized in the IR as a dynamically generated mass term that has exactly the phase needed to cancel the theta angle. Both of these models make the extremely concrete prediction that there exist new colored particles at the TeV scale. PMID:25910109

  6. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 20 proposal 13150.

  7. COS NUV Detector Recovery after Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the NUV-MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage.The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high-voltage ramp-up, 3} ramp-up to full operating voltage, and 4} fold analysis test {See COS TIR 2010-01}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 20 proposal 13129. Adjustments were made the the Software Global Monitor {SGM} to account for an increase in the dark counts due to window glow and to align the SGM to previously obtained Fold Analysis event data.

  8. COS NUV Detector Recovery After Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    This proposal is designed to permit a safe and orderly recovery of the NUV-MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage.The recovery procedure consists of four separate tests {i.e. visits} to check the MAMAâ??s health after an anomalous shutdown: signal processing electronics check, slow, intermediate voltage high-voltage ramp-up, ramp-up to full operating voltage, and fold analysis test {See COS TIR 2010-01}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 18 proposal 12430.

  9. COS NUV Detector Recovery After Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit a safe and orderly recovery of the NUV-MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage.The recovery procedure consists of four separate tests {i.e. visits} to check the MAMAâ_Ts health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high-voltage ramp-up, 3} ramp-up to full operating voltage, and 4} fold analysis test {See COS TIR 2010-01}. Each must be successfully completed before proceeding onto the next. This proposal executes almost the same steps as Cycle 19 proposal 12723. Adjustments were made the the Software Global Monitor {SGM} to account for an increase in the dark counts due to window glow and to align the SGM to previously obtained Fold Analysis event data.

  10. ACS SBC Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage. The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, high-voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the nominal operating HV, and 4} fold analysis test. Each must be completed successfully before proceeding onto the next. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 13163 from Cycle 20. For additional MAMA recovery information, see STIS ISR 98-02R.

  11. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMAâ_Ts health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 19 proposal 12779.

  12. Anomalous transport phenomena in px+i py superconductors

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, A. V.; Spivak, B. Z.

    2015-09-01

    Spontaneous breaking of time-reversal symmetry in superconductors with the px+i py symmetry of the order parameter allows for a class of effects which are analogous to the anomalous Hall effect in ferromagnets. These effects exist below the critical temperature, T anomalous Hall thermal conductivity, the polar Kerr effect, the anomalous Hall effect, and the anomalous photo- and acousto-galvanic effects.

  13. Anomalous dispersions of `hedgehog' particles

    NASA Astrophysics Data System (ADS)

    Bahng, Joong Hwan; Yeom, Bongjun; Wang, Yichun; Tung, Siu On; Hoff, J. Damon; Kotov, Nicholas

    2015-01-01

    Hydrophobic particles in water and hydrophilic particles in oil aggregate, but can form colloidal dispersions if their surfaces are chemically camouflaged with surfactants, organic tethers, adsorbed polymers or other particles that impart affinity for the solvent and increase interparticle repulsion. A different strategy for modulating the interaction between a solid and a liquid uses surface corrugation, which gives rise to unique wetting behaviour. Here we show that this topographical effect can also be used to disperse particles in a wide range of solvents without recourse to chemicals to camouflage the particles' surfaces: we produce micrometre-sized particles that are coated with stiff, nanoscale spikes and exhibit long-term colloidal stability in both hydrophilic and hydrophobic media. We find that these `hedgehog' particles do not interpenetrate each other with their spikes, which markedly decreases the contact area between the particles and, therefore, the attractive forces between them. The trapping of air in aqueous dispersions, solvent autoionization at highly developed interfaces, and long-range electrostatic repulsion in organic media also contribute to the colloidal stability of our particles. The unusual dispersion behaviour of our hedgehog particles, overturning the notion that like dissolves like, might help to mitigate adverse environmental effects of the use of surfactants and volatile organic solvents, and deepens our understanding of interparticle interactions and nanoscale colloidal chemistry.

  14. Anomalous Symmetry Fractionalization and Surface Topological Order

    NASA Astrophysics Data System (ADS)

    Chen, Xie; Burnell, F. J.; Vishwanath, Ashvin; Fidkowski, Lukasz

    2015-10-01

    In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET) phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain "anomalous" SETs can only occur on the surface of a 3D symmetry-protected topological (SPT) phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H4(G ,U (1 )) , which also precisely labels the set of 3D SPT phases, with symmetry group G . An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U (1 )2 ] topological order with a reduced symmetry Z2×Z2⊂SO (3 ) , which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  15. NLO BFKL and Anomalous Dimensions of Light-Ray Operators

    SciTech Connect

    Balitsky, Ian

    2014-01-01

    The anomalous dimensions of light-ray operators of twist two are obtained by analytical continuation of the anomalous dimensions of corresponding local operators. I demonstrate that the asymptotics of these anomalous dimensions at the "BFKL point" j → 1 can be obtained by comparing the light-cone operator expansion with the high-energy expansion in Wilson lines.

  16. Probing anomalous quartic couplings in e{gamma} and {gamma}{gamma} colliders

    SciTech Connect

    Eboli, O. J. P.; Mizukoshi, J. K.

    2001-10-01

    We analyze the potential of the e{sup +}e{sup -} linear colliders, operating in the e{gamma} and {gamma}{gamma} modes, to probe anomalous quartic vector-boson interactions through the multiple production of W's and Z's. We examine all SU(2){sub L}(circle times)U(1){sub Y} chiral operators of order p{sup 4} that lead to new four-gauge-boson interactions but do not alter trilinear vertices. We show that the e{gamma} and {gamma}{gamma} modes are able not only to establish the existence of a strongly interacting symmetry breaking sector but also to probe for anomalous quartic couplings of the order of 10{sup -2} at 90% C.L. Moreover, the information gathered in the e{gamma} mode can be used to reduce the ambiguities of the e{sup +}e{sup -} mode.

  17. Light supersymmetric axion in an anomalous Abelian extension of the standard model

    SciTech Connect

    Coriano, Claudio; Guzzi, Marco; Mariano, Antonio; Morelli, Simone

    2009-08-01

    We present a supersymmetric extension of the standard model (USSM-A) with an anomalous U(1) and Stueckelberg axions for anomaly cancellation, generalizing similar nonsupersymmetric constructions. The model, built by a bottom-up approach, is expected to capture the low-energy supersymmetric description of axionic symmetries in theories with gauged anomalous Abelian interactions, previously explored in the nonsupersymmetric case for scenarios with intersecting branes. The choice of a USSM-like superpotential, with one extra singlet superfield and an extra Abelian symmetry, allows a physical axionlike particle in the spectrum. We describe some general features of this construction and, in particular, the modification of the dark-matter sector which involves both the axion and several neutralinos with an axino component. The axion is expected to be very light in the absence of phases in the superpotential but could acquire a mass which can also be in the few GeV range or larger. In particular, the gauging of the anomalous symmetry allows independent mass/coupling interaction to the gauge fields of this particle, a feature which is absent in traditional (invisible) axion models. We comment on the general implications of our study for the signature of moduli from string theory due to the presence of these anomalous symmetries.

  18. Apochromatic telescope without anomalous dispersion glasses.

    PubMed

    Duplov, Roman

    2006-07-20

    In order to correct secondary longitudinal chromatic aberration in conventional refracting optical systems, it is necessary to use at least one optical material having anomalous partial dispersion. A novel lens system with correction of the secondary spectrum by using only normal glasses is presented. The lens system comprises three widely separated lens components; both second and third components are subaperture. The presented example of an apochromatic telescope demonstrates secondary spectrum correction with the use of only crown BK7 and flint F2, which are among the most inexpensive optical glasses available at the market. Two more similar designs are presented, both with the use of low-cost slightly anomalous dispersion glasses. These telescopes have a higher relative aperture and a smaller tertiary spectrum. PMID:16826255

  19. Anomalous subdiffusion with multispecies linear reaction dynamics.

    PubMed

    Langlands, T A M; Henry, B I; Wearne, S L

    2008-02-01

    We have introduced a set of coupled fractional reaction-diffusion equations to model a multispecies system undergoing anomalous subdiffusion with linear reaction dynamics. The model equations are derived from a mesoscopic continuous time random walk formulation of anomalously diffusing species with linear mean field reaction kinetics. The effect of reactions is manifest in reaction modified spatiotemporal diffusion operators as well as in additive mean field reaction terms. One consequence of the nonseparability of reaction and subdiffusion terms is that the governing evolution equation for the concentration of one particular species may include both reactive and diffusive contributions from other species. The general solution is derived for the multispecies system and some particular special cases involving both irreversible and reversible reaction dynamics are analyzed in detail. We have carried out Monte Carlo simulations corresponding to these special cases and we find excellent agreement with theory. PMID:18351991

  20. Apochromatic telescope without anomalous dispersion glasses

    NASA Astrophysics Data System (ADS)

    Duplov, Roman

    2006-07-01

    In order to correct secondary longitudinal chromatic aberration in conventional refracting optical systems, it is necessary to use at least one optical material having anomalous partial dispersion. A novel lens system with correction of the secondary spectrum by using only normal glasses is presented. The lens system comprises three widely separated lens components; both second and third components are subaperture. The presented example of an apochromatic telescope demonstrates secondary spectrum correction with the use of only crown BK7 and flint F2, which are among the most inexpensive optical glasses available at the market. Two more similar designs are presented, both with the use of low-cost slightly anomalous dispersion glasses. These telescopes have a higher relative aperture and a smaller tertiary spectrum.

  1. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  2. Resurgence of the cusp anomalous dimension

    NASA Astrophysics Data System (ADS)

    Dorigoni, Daniele; Hatsuda, Yasuyuki

    2015-09-01

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling pertur- bative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  3. Equilibrium fluctuation theorems compatible with anomalous response

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2010-12-01

    Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations C = β2langδU2rang, which is able to describe the existence of macrostates with negative heat capacities C < 0. In this work, we extend our previous results for an equilibrium situation with several control parameters to account for the existence of states with anomalous values in other response functions. Our analysis leads to the derivation of three different equilibrium fluctuation theorems: the fundamental and the complementary fluctuation theorems, which represent the generalization of two fluctuation identities already obtained in previous works, and the associated fluctuation theorem, a result that has no counterpart in the framework of Boltzmann-Gibbs distributions. These results are applied to study the anomalous susceptibility of a ferromagnetic system, in particular, the case of the 2D Ising model.

  4. Anomalous Hall effect in Weyl superconductors

    NASA Astrophysics Data System (ADS)

    Bednik, G.; Zyuzin, A. A.; Burkov, A. A.

    2016-08-01

    We present a theory of the anomalous Hall effect in a topological Weyl superconductor with broken time reversal symmetry. Specifically, we consider a ferromagnetic Weyl metal with two Weyl nodes of opposite chirality near the Fermi energy. In the presence of inversion symmetry, such a metal experiences a weak-coupling Bardeen–Cooper–Schrieffer instability, with pairing of parity-related eigenstates. Due to the nonzero topological charge, carried by the Weyl nodes, such a superconductor is necessarily topologically nontrivial, with Majorana surface states coexisting with the Fermi arcs of the normal Weyl metal. We demonstrate that, surprisingly, the anomalous Hall conductivity of such a superconducting Weyl metal coincides with that of a nonsuperconducting one, under certain conditions, in spite of the nonconservation of charge in a superconductor. We relate this to the existence of an extra (nearly) conserved quantity in a Weyl metal, the chiral charge.

  5. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  6. Anomalous thermal expansion with infrared spectroscopy.

    PubMed

    Plendl, J N; Mansur, L C

    1972-05-01

    Anomalous thermal expansion is treated through an analytical approach, based on the anharmonic behavior of lattice vibrations of the solids CuCl and CuBr of which complete ir spectroscopic data were available for the low temperature region. In the two cases examined here, anomalous thermal expansion as well as change of anharmonic factor, as a function of temperature, show a mirrorlike proportionality. In addition, drastic changes of ir energy absorption take place within the temperature region of reexpansion, suggesting a substantial increase of the ionic fraction of binding, coupled with a corresponding decrease of the covalent fraction, within the re-expansion period. These striking events appear to be the basic reason for the re-expansion phenomenon, since the sum value of the ionic radii of the compounds in question is greater than the sum value of the covalent radii, thus enlarging the interatomic distance, instead of contracting it. PMID:20119115

  7. Petrology of Anomalous Eucrite QUE 94484

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.

    2015-01-01

    Most mafic achondrites are broadly "eucritic", being composed of ferroan low-Ca clinopyroxene, high-Ca plagioclase, a silica phase, ilmenite and accessory phases. Their characteristics indicate that eucrite-like basalts formed on asteroids of similar composition under similar petrologic conditions (T, P, fO2). Some eucrite-like basalts have isotopic compositions and petrologic characteristics consistent with formation on different parent asteroids (e.g., Ibitira, NWA 011). Others show small isotopic differences but no distinguishing petrological characteristics (e.g., Caldera, Pasamonte). We have begun a study of anomalous eucrite-like achondrites in an effort to seek resolution to the issues: Did the eucrite parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? How many parent asteroids are represented by these basalts? Here we present preliminary petrologic information on anomalous basaltic eucrite QUE 94484.

  8. Anomalous transport and possible phase transition in palladium nanojunctions.

    PubMed

    Scott, Gavin D; Palacios, Juan J; Natelson, Douglas

    2010-05-25

    Many phenomena in condensed matter are thought to result from competition between different ordered phases. Palladium is a paramagnetic metal close to both ferromagnetism and superconductivity and is, therefore, a potentially interesting material to consider. Nanoscale structuring of matter can modify relevant physical energy scales, leading to effects such as locally modified magnetic interactions. We present transport measurements in electromigrated palladium break junction devices showing the emergence at low temperatures of anomalous sharp features in the differential conductance. These features appear symmetrically in applied bias and exhibit a temperature dependence of their characteristic voltages reminiscent of a mean-field phase transition. The systematic variation of these voltages with zero bias conductance, together with density functional theory calculations illustrating the relationship between the magnetization of Pd and atomic coordination, suggests that the features may result from the onset of spontaneous magnetization in the nanojunction electrodes. We propose that the characteristic conductance features are related to inelastic tunneling involving magnetic excitations. PMID:20405906

  9. Anomalous magnetization of a carbon nanotube as an excitonic insulator

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo

    2014-11-01

    We show theoretically that an undoped carbon nanotube might be an excitonic insulator—the long-sought phase of matter proposed by Keldysh, Kohn, and others fifty years ago. We predict that the condensation of triplet excitons, driven by intervalley exchange interaction, spontaneously occurs at equilibrium if the tube radius is sufficiently small. The signatures of exciton condensation are its sizable contributions to both the energy gap and the magnetic moment per electron. The increase of the gap might have already been measured, albeit with a different explanation [V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, and M. Bockrath, Science 323, 106 (2009), 10.1126/science.1165799]. The enhancement of the quasiparticle magnetic moment is a pair-breaking effect that counteracts the weak paramagnetism of the ground-state condensate of excitons. This property could rationalize the anomalous magnitude of magnetic moments recently observed in different devices close to charge neutrality.

  10. Anomalous Energetics and Dynamics of Moving Vortices

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2015-12-01

    Motivated by the general problem of moving topological defects in an otherwise ordered state and specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening experiments in freely suspended smectic-C films, I study the deformation, energetics, and dynamics of moving vortices in an overdamped X Y model and show that their properties are significantly and qualitatively modified by the motion.

  11. Anomalous scaling laws in multifractal objects

    NASA Astrophysics Data System (ADS)

    Paladin, Giovanni; Vulpiani, Angelo

    1987-12-01

    Anomalous scaling laws appear in a wide class of phenomena where global dilation invariance fails. In this case, the description of scaling properties requires the introduction of an infinite set of exponents. Numerical and experimental evidence indicates that this description is relevant in the theory of dynamical systems, of fully developed turbulence, in the statistical mechanics of disordered systems, and in some condensed matter problems. We describe anomalous scaling in terms of multifractal objects. They are defined by a measure whose scaling properties are characterized by a family of singularities, which are identified by a scaling exponent. Singularities corresponding to the same exponent are distributed on fractal set. The multifractal object arises as the superposition of these sets, whose fractal dimensions are related to the anomalous scaling exponents via a Legendre transformation. It is thus possible to reconstruct the probability distribution of the singularity exponents. We review the application of this formalism to the description of chaotic attractors in dissipative systems, of the energy dissipating set in fully developed turbulence, of some probability distributions in condensed matter problems. Moreover, a simple extension of the method allows us to treat from the same point of view temporal intermittency in chaotic systems and sample to sample fluctuations in disordered systems. We stress the phenomenological nature of the approach and discuss the few cases in which it was possible to reach a more fundamental understanding of anomalous scaling. We point out the need of a theory which should explain its origin and pave the way to a microscopic calculation of the probability distribution of the singularities.

  12. Anomalous Energetics and Dynamics of Moving Vortices.

    PubMed

    Radzihovsky, Leo

    2015-12-11

    Motivated by the general problem of moving topological defects in an otherwise ordered state and specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening experiments in freely suspended smectic-C films, I study the deformation, energetics, and dynamics of moving vortices in an overdamped XY model and show that their properties are significantly and qualitatively modified by the motion. PMID:26705656

  13. Anomalous Diffusion in a Trading Model

    NASA Astrophysics Data System (ADS)

    Khidzir, Sidiq Mohamad; Wan Abdullah, Wan Ahmad Tajuddin

    2009-07-01

    The result of the trading model by Chakrabarti et al. [1] is the wealth distribution with a mixed exponential and power law distribution. Based on the motivation of studying the dynamics behind the flow of money similar to work done by Brockmann [2, 3] we track the flow of money in this trading model to observe anomalous diffusion in the form of long waiting times and Levy Flights.

  14. Anomalous energetics and dynamics of moving vortices

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    Motivated by the general problem of moving topological defects in an otherwise ordered state and specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening experiments in freely-suspended smectic-C films, I study the deformation, energetics and dynamics of moving vortices in an overdamped xy-model and show that their properties are significantly and qualitatively modified by the motion. Supported by NSF through DMR-1001240, MRSEC DMR-0820579, and by Simons Investigator award from Simons Foundation.

  15. Electroweak Baryogenesis with Anomalous Higgs Couplings

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Wu, Lei; Yue, Jason

    2016-07-01

    In non-linear realisation of the electroweak gauge symmetry, the LHC Higgs boson can be assumed to be a singlet under SU(2)L ⊗ U(1)Y. In such scenario, the Standard Model particle content can be kept but new sets of couplings are allowed. We identify a range of anomalous Higgs cubic and the 𝒞𝒫-violating Higgs-top quark couplings that leads to first order phase transition and successful baryogenesis at the electroweak scale.

  16. Anomalous Charge Transport in Disordered Organic Semiconductors

    SciTech Connect

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-03-30

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  17. Probing anomalous gauge boson couplings at LEP

    SciTech Connect

    Dawson, S.; Valencia, G.

    1994-12-31

    We bound anomalous gauge boson couplings using LEP data for the Z {yields} {bar {integral}}{integral} partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII.

  18. Anomalous free energy changes induced by topology

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Yuan, Ruoshi; Ao, Ping

    2015-12-01

    We report that nontrivial topology of a driven Brownian particle restricted on a ring leads to anomalous behaviors on free energy change. Starting from steady states with identical distribution and current on the ring, free energy changes are distinct and nonperiodic after the system is driven by the same periodic force protocol. We demonstrate our observation in examples through both exact solutions and numerical simulations. The free energy calculated here can be measured in recent experimental systems.

  19. Anomalous diffusion induced by enhancement of memory

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    2014-07-01

    We introduced simple microscopic non-Markovian walk models which describe the underlying mechanism of anomalous diffusions. In the models, we considered the competitions between randomness and memory effects of previous history by introducing the probability parameters. The memory effects were considered in two aspects: one is the perfect memory of whole history and the other is the latest memory enhanced with time. In the perfect memory model superdiffusion was induced with the relation of the Hurst exponent H to the controlling parameter p as H =p for p >1/2, while in the latest memory enhancement models, anomalous diffusions involving both superdiffusion and subdiffusion were induced with the relations H =(1+α)/2 and H =(1-α)/2 for 0≤α≤1, where α is the parameter controlling the degree of the latest memory enhancement. Also we found that, although the latest memory was only considered, the memory improved with time results in the long-range correlations between steps and the correlations increase as time goes on. Thus we suggest the memory enhancement as a key origin describing anomalous diffusions.

  20. Advances in multiple wavelength anomalous diffraction crystallography.

    PubMed

    Ealick, S E

    2000-10-01

    In only a few years, multiple wavelength anomalous diffraction (MAD) phasing has advanced from an esoteric technique used in only a few favorable cases to the method of choice for solving new macromolecular structures. Before 1994, MAD phasing had been used for fewer than a dozen new structure determinations. In 1999 alone, well over 100 new structures were determined by MAD phasing. The meteoric rise in MAD applications resulted from the availability of new synchrotron beamlines, equipped with low bandpass optics, fast readout detectors, cryogenic cooling and user-friendly interfaces. The power of MAD phasing has been amplified by the availability of new computer programs for locating the positions of the anomalous scattering atoms and for calculating phases from the experimental data. Phasing by anomalous scattering techniques has been applied to structures as large as 640 kDa and 120 selenium atoms in the asymmetric unit. The practical size limitation for application of MAD phasing techniques has not yet been encountered. PMID:11006535

  1. Anomalous Right Coronary Artery: A Case Report

    PubMed Central

    Keswani, Amit N.; Dann, Kristen; Ramee, Stephen

    2014-01-01

    Background Anomalous coronary arteries (ACAs) are rare but potentially life-threatening abnormalities of coronary circulation. Most variations are benign; however, some may lead to myocardial ischemia and/or sudden cardiac arrest. Case Report We present the case of a patient with a significant medical history of hypertension, hyperlipidemia, type 2 diabetes, obesity, and gastroesophageal reflux disease who presented to the emergency department with atypical chest pain. She underwent a cardiac catheterization that showed an anomalous right coronary artery originating near the anterior left coronary artery sinus and coursing between the pulmonary artery and aorta. The patient was deemed a poor surgical candidate, was discharged home on medical management with beta blocker therapy, and was instructed to restrict her physical activity. Conclusion Treatment of significant anomalies should be guided by the nature of the anomalous vessel. Symptomatic patients with ACAs have 3 treatment options: medical management, coronary angioplasty and stent deployment, or surgical correction. These treatment options remain controversial. Some clinicians advocate revascularization, but the long-term benefits of revascularization therapies have not yet been demonstrated. PMID:24940145

  2. Anomalous insertion of the medial menisci.

    PubMed

    Jung, Y B; Yum, J K; Bae, Y J; Song, K S

    1998-01-01

    Many types of meniscal anomalies have been reported. The authors encountered two cases of anomalous insertion of the anterior horn of the medial menisci to the lateral femoral condyle, which ran up along the course of the anterior cruciate ligament (ACL), but was independent of the ACL. These anomalies were noted during arthroscopic examination and surgery of the ipsilateral knee for a torn discoid meniscus and a patellar fracture. A 34-year-old woman had a horizontal tear of the lateral discoid meniscus. We performed arthroscopic partial meniscectomy of the inner torn portion of the lateral discoid meniscus and contoured it to resemble a normal meniscus. An anomalous insertion of the medial meniscus was found on examination of the joint during surgery. A 32-year-old man had a patellar fracture and we performed reduction under arthroscopy and internal fixation with cannulated screws. The same anomalous insertion of the medial meniscus was also found on examination of the joint during surgery. We report the cases with a review of the literature. PMID:9681544

  3. Anomalous and resonance small angle scattering: Revision

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same for the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small angle neutron scatterings are discussed. 54 refs., 8 figs., 1 tab.

  4. Anomalous and resonance small angle scattering

    SciTech Connect

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs.

  5. Anomalous Phonon Dispersion of an Ultracold - Mixture in a Square Optical Lattice

    NASA Astrophysics Data System (ADS)

    Koinov, Zlatko; Pahl, Shanna; Mendoza, Rafael

    2015-05-01

    A necessary condition for the damping of the long-wavelength excitations of the superfluid phase (referred to as superfluid phonons) due to the three-particle process is to have an anomalous phonon dispersion. The existence of anomalous phonon dispersion has been confirmed in superfluid . There are no experimental data suggesting that this phenomenon exists in superfluid Fermi gases. To the best of our knowledge, the existence of anomalous dispersion has been theoretically predicted only in atomic spin balanced Fermi gas close to the unitarity limit. The numerical results reported here suggest that the anomalous long-wavelength dispersion can be realized in mass and spin imbalanced atomic Fermi gases away from the unitary limit. In particular, the numerical solution of the Bethe-Salpeter equation in a weak-coupling regime shows that the long-wavelength part of the collective-mode dispersion of the superfluid Fulde-Ferrell phase of a mixture of population-imbalanced Lithium-6 and Potassium-40 atoms in a square lattice at some values of polarization, interacting strength and temperature initially bends upward before bending over.

  6. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators

    NASA Astrophysics Data System (ADS)

    Mross, David F.; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-01

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z4 parafermion zero modes.

  7. Coupled Brownian motors: Anomalous hysteresis and zero-bias negative conductance

    NASA Astrophysics Data System (ADS)

    Reimann, P.; Kawai, R.; Van den Broeck, C.; Hänggi, P.

    1999-03-01

    We introduce a model of interacting Brownian particles in a symmetric, periodic potential that undergoes a noise-induced non-equilibrium phase transition. The associated spontaneous symmetry breaking entails a ratchet-like transport mechanism. In response to an external force we identify several novel features; among the most prominent being a zero-bias negative conductance and a prima facie counterintuitive, anomalous hysteresis.

  8. Anomalous Subsidence at Rifted Continental Margins: Distinguishing Mantle Dynamic Topography from Anomalous Oceanic Crustal Thickness

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2012-12-01

    It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses

  9. Scaling theory for anomalous semiclassical quantum transport

    NASA Astrophysics Data System (ADS)

    Sena-Junior, M. I.; Macêdo, A. M. S.

    2016-01-01

    Quantum transport through devices coupled to electron reservoirs can be described in terms of the full counting statistics (FCS) of charge transfer. Transport observables, such as conductance and shot-noise power are just cumulants of FCS and can be obtained from the sample's average density of transmission eigenvalues, which in turn can be obtained from a finite element representation of the saddle-point equation of the Keldysh (or supersymmetric) nonlinear sigma model, known as quantum circuit theory. Normal universal metallic behavior in the semiclassical regime is controlled by the presence of a Fabry-Pérot singularity in the average density of transmission eigenvalues. We present general conditions for the suppression of Fabry-Pérot modes in the semiclassical regime in a sample of arbitrary shape, a disordered conductor or a network of ballistic quantum dots, which leads to an anomalous metallic phase. Through a double-scaling limit, we derive a scaling equation for anomalous metallic transport, in the form of a nonlinear differential equation, which generalizes the ballistic-diffusive scaling equation of a normal metal. The two-parameter stationary solution of our scaling equation generalizes Dorokhov's universal single-parameter distribution of transmission eigenvalues. We provide a simple interpretation of the stationary solution using a thermodynamic analogy with a spin-glass system. As an application, we consider a system formed by a diffusive wire coupled via a barrier to normal-superconductor reservoirs. We observe anomalous reflectionless tunneling, when all perfectly transmitting channels are suppressed, which cannot be explained by the usual mechanism of disorder-induced opening of tunneling channels.

  10. The Quantum Anomalous Hall Effect: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xing; Zhang, Shou-Cheng; Qi, Xiao-Liang

    2016-03-01

    The quantum anomalous Hall effect is defined as a quantized Hall effect realized in a system without an external magnetic field. The quantum anomalous Hall effect is a novel manifestation of topological structure in many-electron systems and may have potential applications in future electronic devices. In recent years, the quantum anomalous Hall effect was proposed theoretically and realized experimentally. In this review article, we provide a systematic overview of the theoretical and experimental developments in this field.

  11. Anomalous structure and dynamics of the Gaussian-core fluid.

    PubMed

    Krekelberg, William P; Kumar, Tanuj; Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M

    2009-03-01

    It is known that there are thermodynamic states for which the Gaussian-core fluid displays anomalous properties such as expansion upon isobaric cooling (density anomaly) and increased single-particle mobility upon isothermal compression (self-diffusivity anomaly). Here, we investigate how temperature and density affect its short-range translational structural order, as characterized by the two-body excess entropy. We find that there is a wide range of conditions for which the short-range translational order of the Gaussian-core fluid decreases upon isothermal compression (structural order anomaly). As we show, the origin of the structural anomaly is qualitatively similar to that of other anomalous fluids (e.g., water or colloids with short-range attractions) and is connected to how compression affects static correlations at different length scales. Interestingly, we find that the self-diffusivity of the Gaussian-core fluid obeys a scaling relationship with the two-body excess entropy that is very similar to the one observed for a variety of simple liquids. One consequence of this relationship is that the state points for which structural, self-diffusivity, and density anomalies of the Gaussian-core fluid occur appear as cascading regions on the temperature-density plane; a phenomenon observed earlier for models of waterlike fluids. There are, however, key differences between the anomalies of Gaussian-core and waterlike fluids, and we discuss how those can be qualitatively understood by considering the respective interparticle potentials of these models. Finally, we note that the self-diffusivity of the Gaussian-core fluid obeys different scaling laws depending on whether the two-body or total excess entropy is considered. This finding, which deserves more comprehensive future study, appears to underscore the significance of higher-body correlations for the behavior of fluids with bounded interactions. PMID:19391927

  12. HR 4453 - An anomalously bright UV source

    NASA Technical Reports Server (NTRS)

    Polidan, R. S.; Oegerle, W. R.; Margon, B.

    1980-01-01

    Crawford et al. (1979) reported that HR 4453 has an anomalously large UV flux in the 1350-1600 A band. This paper reports results of the UV spectrophotometry of HR 4453 obtained with the Copernicus satellite. Portions of the spectrum from 1120 to 2660 A were scanned, but no stellar signal was detected in any wavelength interval. This result is consistent with both components of the binary being normal A2A stars. UV variability or a source other than HR 4453 must be invoked to explain the observations of Crawford et al.

  13. Hypopigmentation, anomalous cerebral dominance and seasonality.

    PubMed

    London, W P

    1993-12-01

    This paper proposes a prenatal seasonal hypopigmentation influence associated with anomalous cerebral dominance that occurs during the winter or early spring. A possible mechanism would be seasonal changes in sex hormone levels that affect the activation and inactivation of DNA by reversible methylation. The proposed prenatal seasonal hypopigmentation effect might be relevant to dyslexia, Prader-Willi syndrome, breast cancer, Alzheimer's and Parkinson's disease. Putative chromosomal loci associated with the proposed seasonal mechanism would be 15q11-13 (dyslexia and Prader-Willi syndrome), 21q region (breast cancer and Alzheimer's disease) and 19p region (pigmentation gene). PMID:8183125

  14. GGADT: Generalized Geometry Anomalous Diffraction Theory

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Tarczon, Michael; Draine, Bruce T.

    2015-10-01

    GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.

  15. Anomalous optical forces on radially anisotropic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Gao, L.

    2015-11-01

    Full-wave electromagnetic scattering theory and Maxwell stress tensor integration techniques have been established to study the optical force on the radially anisotropic nanowires. The optical forces on the isotropic nanowires are dependent on the size of the nanowire and the wave vector in the media with the Rayleigh's law. However, the optical forces on the anisotropic nanowires have the anomalous behaviors under non-Rayleigh vanishing condition and non-Rayleigh diverging condition. Therefore, the optical forces on the anisotropic nanowires may be enhanced or reduced by tuning the anisotropic parameters. These results may promote the potential applications in the field of nanotechnology.

  16. Anomalous-scattering region on Triton

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Helfenstein, Paul; Veverka, Joseph; Mccarthy, Derek

    1992-01-01

    A photometric analysis of Voyager 2 images of a broad, 'anomalous scattering region' (ASR) on Triton shows its material to differ from the average Triton regolith in being only weakly backward scattering at all Voyager 2 camera wavelengths; the ASR also displays distinctive phase-dependent green/violet color ratios and clear-filter albedo. These characteristics are used to map the global distribution of the ASR areas for which photometric coverage is incomplete. The ASR may form an almost continuous band of material that runs parallel to the Triton equator, characterized by the presence of a transparent and optically thin, seasonally-controlled veneer of well-annealed solid N2.

  17. Anomalous Hall Effect in a Kagome Ferromagnet

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  18. Hic Sunt Leones: Anomalous Scaling In Rainfall

    NASA Astrophysics Data System (ADS)

    Ferraris, L.; Gabellani, S.; Provenzale, A.; Rebora, N.

    In recent years the spatio-temporal intermittency of precipitation fields has often been quantified in terms of scaling and/or multifractal behaviour. In this work we anal- yse the spatial scaling properties of precipitation intensity fields measured during the GATE radar experiment, and compare the results with those obtained from surrogate data generated by nonlinearly filtered, linear stochastic processes and from random shuffling of the original data. The results of the study suggest a spurious nature of the spatial multifractal behaviour of the GATE fields and indicate that claims of multifrac- tality and anomalous scaling in rainfall may have to be reconsidered.

  19. The origin of anomalous muonium in semiconductors

    NASA Astrophysics Data System (ADS)

    Eshchenko, D. G.; Storchak, V. G.; Brewer, J. H.; Morris, G. D.; Clarker-Gayther, M. A.; Cottrell, S. P.; Cox, S. F. J.; Lord, J. S.

    2000-08-01

    The origin of muonium defect centers in semi-insulating GaAs has been studied using newly developed μSR techniques employing alternating electric fields. This technique prevents the accumulation of near-surface charges which may screen the external field. The screening effect was tested at ISIS by the measurements of the current induced by muon beam. Suppression of anomalous muonium signal with electric field suggests that muonium formation proceeds via transport of excess electrons from the ionization track to the muons.

  20. Anomalous thermal confinement in ohmically heated tokamaks

    SciTech Connect

    Romanelli, F.; Tang, W.M.; White, R.B.

    1986-02-01

    A model is proposed to explain the behavior of the gross energy confinement time in ohmically heated tokamak plasmas. The analysis takes into account the effect of the anomalous thermal conductivity due to small scale turbulence and of the macroscopic MHD behavior, which provides some constraints on the temperature profile. Results indicate that the thermal conductivity associated with the dissipative trapped-electron mode and with the ion temperature gradient (eta/sub i/) mode can account, respectively, for the Neo-Alcator scaling and the saturation of the energy confinement time with density. Comparisons with experimental results show reasonable agreement. 32 refs., 12 figs.

  1. Anomalous transport modelling of tokamak plasmas

    SciTech Connect

    Kinsey, J.; Singer, C.; Malone, G.; Tiouririne, N.

    1992-12-31

    Theory based transport simulations of DIII-D, JET, ITER are compared to experimental data using a combination of anamolous transport models. The Multiple-mode Transport Model is calibrated to a give set of L-mode and H-mode discharges with an emphasis on testing the adequacy of anomalous flux contributions from drift/{eta}{sub i} and resistive ballooning mode theories. A survey of possible additions and/or alternatives to the model from recent theories on neoclassical MHD effects, hot ion modes, circulating electron modes, and high-m tearing modes is also included.

  2. Anomalous transport modelling of tokamak plasmas

    SciTech Connect

    Kinsey, J.; Singer, C.; Malone, G.; Tiouririne, N.

    1992-01-01

    Theory based transport simulations of DIII-D, JET, ITER are compared to experimental data using a combination of anamolous transport models. The Multiple-mode Transport Model is calibrated to a give set of L-mode and H-mode discharges with an emphasis on testing the adequacy of anomalous flux contributions from drift/[eta][sub i] and resistive ballooning mode theories. A survey of possible additions and/or alternatives to the model from recent theories on neoclassical MHD effects, hot ion modes, circulating electron modes, and high-m tearing modes is also included.

  3. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting.

    PubMed

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Aydin, Koray

    2015-03-11

    Ultrathin metasurfaces have recently emerged as promising materials that have huge potential to enable novel, flat optical components, and surface-confined, miniature photonic devices. Metasurfaces offer new degrees of freedom in molding the optical wavefronts by introducing abrupt and drastic changes in the amplitude, phase, and/or polarization of electromagnetic radiation at the wavelength scale. By carefully arranging multiple subwavelength anisotropic or gradient optical resonators, metasurfaces have been shown to enable anomalous transmission, anomalous reflection, optical holograms, and spin-orbit interaction. However, experimental realization of high-performance metasurfaces that can operate at visible frequency range has been a significant challenge due to high optical losses of plasmonic materials and difficulties in fabricating several plasmonic resonators of subwavelength size with high uniformity. Here, we propose a highly efficient yet a simple metasurface design comprising of a single, anisotropic silver antenna in its unit cell. We demonstrate broadband (450-850 nm) anomalous reflection and spectrum splitting at visible and near-IR frequencies with high conversion efficiency. Average power ratio of anomalous reflection to the strongest diffraction mode was calculated to be on the order of 10(3) and measured to be on the order of 10. The anomalous reflected photons have been visualized using a charge-coupled device camera, and broadband spectrum splitting performance has been confirmed experimentally using a free space, angle-resolved reflection measurement setup. Metasurface design proposed in this study is a clear departure from conventional metasurfaces utilizing multiple, anisotropic and/or gradient optical resonators and could enable high-efficiency, broadband metasurfaces for achieving flat high signal-to-noise ratio optical spectrometers, polarization beam splitters, directional emitters, and spectrum splitting surfaces for photovoltaics. PMID

  4. Anomalous Coronary Artery: Run of a Lifetime.

    PubMed

    Green, Michael Stuart; Sehgal, Sankalp; Smukler, Naomi; Suber, LaDouglas Jarod; Saththasivam, Pooven

    2016-09-01

    The anatomy of the coronary circulation is well described with incidence of congenital anomalies of approximately 0.3% to 1.0%. Although often incidental, 20% are life-threatening. A 25-year-old woman with syncopal episodes collapsed following a 10-km run. Coronary anatomy evaluation showed an anomalous left main coronary artery originating from the right sinus of valsalva and following a course between the aorta and the pulmonary outflow tract. Percutaneous coronary intervention was followed by eventual surgical revascularization. Abnormal course of coronary arteries plays a role in the pathogenesis of sudden death on exertion. Origin of the left main coronary from the right sinus of valsalva is a rare congenital anomaly. The expansion of the roots of the aorta and pulmonary trunk with exertion lead to compression of the coronary artery and syncope. Our patient raises awareness of a potentially fatal coronary artery path. Intraoperative identification of anomalous coronaries by utilizing intraoperative transesophageal echocardiography was critical. PMID:26359348

  5. More modular invariant anomalous U(1) breaking

    SciTech Connect

    Gaillard, Mary K.; Giedt, Joel

    2002-06-27

    We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds up on previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kahler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated out of the theory at the tree-level. We also address how our formalism may be extended to describe the generalized Green-Schwarz mechanism for multiple anomalous U(1)'s that occur in four-dimensional Type I and Type IIB string constructions.

  6. Corruption of genomic databases with anomalous sequence.

    PubMed Central

    Lamperti, E D; Kittelberger, J M; Smith, T F; Villa-Komaroff, L

    1992-01-01

    We describe evidence that DNA sequences from vectors used for cloning and sequencing have been incorporated accidentally into eukaryotic entries in the GenBank database. These incorporations were not restricted to one type of vector or to a single mechanism. Many minor instances may have been the result of simple editing errors, but some entries contained large blocks of vector sequence that had been incorporated by contamination or other accidents during cloning. Some cases involved unusual rearrangements and areas of vector distant from the normal insertion sites. Matches to vector were found in 0.23% of 20,000 sequences analyzed in GenBank Release 63. Although the possibility of anomalous sequence incorporation has been recognized since the inception of GenBank and should be easy to avoid, recent evidence suggests that this problem is increasing more quickly than the database itself. The presence of anomalous sequence may have serious consequences for the interpretation and use of database entries, and will have an impact on issues of database management. The incorporated vector fragments described here may also be useful for a crude estimate of the fidelity of sequence information in the database. In alignments with well-defined ends, the matching sequences showed 96.8% identity to vector; when poorer matches with arbitrary limits were included, the aggregate identity to vector sequence was 94.8%. PMID:1614861

  7. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  8. Limits on anomalous WWγ and WWZ couplings

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-08-01

    Limits on the anomalous WWγ and WWZ couplings are presented from a simultaneous fit to the data samples of three gauge boson pair final states in pp¯ collisions at s=1.8 TeV: Wγ production with the W boson decaying to eν or μν, W boson pair production with both of the W bosons decaying to eν or μν, and WW or WZ production with one W boson decaying to eν and the other W boson or the Z boson decaying to two jets. Assuming identical WWγ and WWZ couplings, 95% C.L. limits on the anomalous couplings of -0.30<Δκ<0.43 (λ=0) and -0.20<λ<0.20 (Δκ=0) are obtained using a form factor scale Λ=2.0 TeV. Limits found under other assumptions on the relationship between the WWγ and WWZ couplings are also presented.

  9. Anomalous event diagnosis for environmental satellite systems

    NASA Technical Reports Server (NTRS)

    Ramsay, Bruce H.

    1993-01-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) is responsible for the operation of the NOAA geostationary and polar orbiting satellites. NESDIS provides a wide array of operational meteorological and oceanographic products and services and operates various computer and communication systems on a 24-hour, seven days per week schedule. The Anomaly Reporting System contains a database of anomalous events regarding the operations of the Geostationary Operational Environmental Satellite (GOES), communication, or computer systems that have degraded or caused the loss of GOES imagery. Data is currently entered manually via an automated query user interface. There are 21 possible symptoms (e.g., No Data), and 73 possible causes (e.g., Sectorizer - World Weather Building) of an anomalous event. The determination of an event's cause(s) is made by the on-duty computer operator, who enters the event in a paper based daily log, and by the analyst entering the data into the reporting system. The determination of the event's cause(s) impacts both the operational status of these systems, and the performance evaluation of the on-site computer and communication operations contractor.

  10. Anomalous piezoresistance effect in ultrastrained silicon nanowires.

    PubMed

    Lugstein, A; Steinmair, M; Steiger, A; Kosina, H; Bertagnolli, E

    2010-08-11

    In this paper we demonstrate that under ultrahigh strain conditions p-type single crystal silicon nanowires possess an anomalous piezoresistance effect. The measurements were performed on vapor-liquid-solid (VLS) grown Si nanowires, monolithically integrated in a microelectro-mechanical loading module. The special setup enables the application of pure uniaxial tensile strain along the <111> growth direction of individual, 100 nm thick Si nanowires while simultaneously measuring the resistance of the nanowires. For low strain levels (nanowire elongation less than 0.8%), our measurements revealed the expected positive piezoresistance effect, whereas for ultrahigh strain levels a transition to anomalous negative piezoresistance was observed. For the maximum tensile strain of 3.5%, the resistance of the Si nanowires decreased by a factor of 10. Even at these high strain amplitudes, no fatigue failures are observed for several hundred loading cycles. The ability to fabricate single-crystal nanowires that are widely free of structural defects will it make possible to apply high strain without fracturing to other materials as well, therefore in any application where crystallinity and strain are important, the idea of making nanowires should be of a high value. PMID:20698638

  11. Anomalous conductivity and secondary electron emission in Hall effect thrusters

    SciTech Connect

    Garrigues, L.; Hagelaar, G. J. M.; Boniface, C.; Boeuf, J. P.

    2006-12-15

    This paper is devoted to the study of the effects of electron-wall interactions on cross magnetic field electron momentum and energy losses in Hall effect thrusters. By coupling a semianalytical model of the wall sheath similar to models used by several authors in this context, with a two-dimensional hybrid simulation of a Hall effect thruster, we find that the cross magnetic field conductivity enhanced by electron-wall collisions and secondary electron emission is not sufficient to explain the conductivity deduced from experiments. Calculated current-voltage curves including electron-wall collisions from a standard sheath model as the sole 'anomalous' conductivity mechanism do not reproduce the measurements, especially at high discharge voltages, and for various wall ceramics. Results also show that a one-dimensional description of electron-wall collisions with a constant radial plasma density profile as used by many authors leads to an overestimation of the contribution of electron-wall interactions to cross magnetic field conductivity.

  12. Proximity-Induced Anomalous Hall Effect in Graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Tang, Chi; Sachs, Raymond; Barlas, Yafis; Shi, Jing

    2014-03-01

    Pre-patterned graphene devices are transferred from SiO2/Si to atomically flat magnetic insulator thin films, yttrium iron garnet (YIG) deposited by a laser molecular beam epitaxial system on gadolinium gallium garnet (GGG) substrate. Room temperature Raman spectroscopy reveals both single-layer graphene and YIG characteristic peaks. In addition to the ordinary Hall effect, there is a clear non-linear Hall component correlated with the magnetization of the YIG films, which we attribute to the anomalous Hall effect (AHE). The magnitude of AHE in graphene/YIG devices decreases as temperature increases. With device-to-device variations, in some devices, AHE persists to room temperature, indicating a strong proximity-induced exchange interaction. By sweeping top gate voltages, one can tune the carrier density across the Dirac point. We also find that the carrier mobility is not significantly different in graphene/YIG. As the graphene is tuned from the electron- to hole-type, the ordinary Hall changes the sign as expected, but the sign of the AHE contribution remains the same. It suggests that AHE does not simply originate from the carrier density change which is responsible for the ordinary Hall effect, but is related to the spin-orbit interaction in the system. This work was supported in part by DOE and NSF.

  13. Anomalous segregation dynamics of self-propelled particles

    PubMed Central

    Mones, Enys; Czirók, András; Vicsek, Tamás

    2015-01-01

    A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider the adhesion difference-driven segregation of actively moving units, a fundamental but still poorly explored aspect of collective motility. In particular, we propose a model in which particles have a tendency to adhere through a mechanism which makes them both stay in touch and synchronize their direction of motion – but the interaction is limited to particles of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that in a very large system of particles, interacting without explicit alignment rule, three basic segregation regimes seem to exist as a function of time: i) at the beginning the time dependence of the correlation length is analogous to that predicted by the Cahn-Hillard theory, ii) next rapid segregation occurs characterized with a separation of the different kinds of units being faster than any previously suggested speed, finally, iii) the growth of the characteristic sizes in the system slows down due to a new regime in which self-confined, rotating, splitting and re-joining clusters appear. Our results can explain recent observations of segregating tissue cells in vitro. PMID:26478713

  14. Anomalous Fluctuations in the Orientation and Velocity of Swarming Bacteria.

    PubMed

    Ryan, Shawn D; Ariel, Gil; Be'er, Avraham

    2016-07-12

    Simultaneous acquisition of phase-contrast light microscopy and fluorescently labeled bacteria, moving within a dense swarm, reveals the intricate interactions between cells and the collective flow around them. By comparing wild-type and immotile cells embedded in a dense wild-type swarm, the effect of the active thrust generated by the flagella can be singled out. It is shown that while the distribution of angles among cell velocity, cell orientation, and the local flow around it is Gaussian-like for immotile bacteria, wild-type cells exhibit anomalous non-Gaussian deviations and are able to move in trajectories perpendicular to the collective flow. Thus, cells can maneuver or switch between local streams and jets. A minimal model describing bacteria as hydrodynamic force dipoles shows that steric effects, hydrodynamics interactions, and local alignments all have to be taken into account to explain the observed dynamics. These findings shed light on the physical mechanisms underlying bacterial swarming and the balance between individual and collective dynamics. PMID:27410751

  15. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    PubMed

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model. PMID:26356891

  16. On the quantum mechanics of consciousness, with application to anomalous phenomena

    SciTech Connect

    Jahn, R.G.; Dunne, B.J.

    1986-08-01

    Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts and formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrodinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition.

  17. Transient Anomalous Subdiffusion: Effects of Specific and Non-specific Probe Binding with Actin Gels

    PubMed Central

    Sanabria, Hugo; Waxham, M. Neal

    2010-01-01

    When signaling molecules diffuse through the cytosol they encounter a wide variety of obstacles that hinder their mobility in space and time. Some of those factors include, but are not limited to, interactions with mobile and immobile targets or obstacles. Besides finding a crowded environment inside the cell, macromolecules assemble into molecular complexes that drive specific biological functions adding additional complexity to their diffusion. Thus, simple models of diffusion often fail to explain mobility through the cell interior and new approaches are needed. Here we used fluorescent correlation spectroscopy to measure diffusion of three molecules of similar size with different surface properties diffusing in actin gels. The fluorescent probes were a) quantum dots, b) yellow-green fluorescent spheres and c) the β isoform of Ca2+ calmodulin-dependent protein kinase II tagged with green fluorescent protein. We compared various models for fitting the autocorrelation function (ACF) including single component, two-component, and anomalous diffusion. The two-component and anomalous diffusion models were superior and were largely indistinguishable based on a goodness of fit criteria. To better resolve differences between these two models, we modified the ACF to observe temporal variations in diffusion. We found in both simulated and experimental data, a transient anomalous subdiffusion between two freely diffusing regimes produced by binding interactions of the diffusive tracers with actin gels. PMID:20038146

  18. Time-series investigation of anomalous thermocouple responses in a liquid-metal-cooled reactor

    SciTech Connect

    Gross, K.C.; Planchon, H.P.; Poloncsik, J.

    1988-03-24

    A study was undertaken using SAS software to investigate the origin of anomalous temperature measurements recorded by thermocouples (TCs) in an instrumented fuel assembly in a liquid-metal-cooled nuclear reactor. SAS macros that implement univariate and bivariate spectral decomposition techniques were employed to analyze data recorded during a series of experiments conducted at full reactor power. For each experiment, data from physical sensors in the tests assembly were digitized at a sampling rate of 2/s and recorded on magnetic tapes for subsequent interactive processing with CMS SAS. Results from spectral and cross-correlation analyses led to the identification of a flow rate-dependent electromotive force (EMF) phenomenon as the origin of the anomalous TC readings. Knowledge of the physical mechanism responsible for the discrepant TC signals enabled us to device and justify a simple correction factor to be applied to future readings.

  19. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media

    NASA Astrophysics Data System (ADS)

    Toner, John; Löwen, Hartmut; Wensink, Henricus H.

    2016-06-01

    Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to t lnt of the mean-square displacement with time t . This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.

  20. Anomalous bond length behavior and a new solid phase of bromine under pressure

    PubMed Central

    Wu, Min; Tse, John S.; Pan, Yuanming

    2016-01-01

    The behavior of diatomic molecular solids under pressure have attracted great interest and been extensively studied. Under ambient pressure, the structure of bromine is known to be a molecular phase (phase I). With increasing pressure, it transforms into an incommensurate phase (phase V) before eventually to a monoatomic phase (phase II). However, between phases I and V, the interatomic distance was found to first increase with pressure and then decreased abruptly. This anomalous bond length behavior is accompanied by the splitting of the Raman bands. These phenomena have not been resolved. Here we suggest a new solid phase that explains the Raman spectra. Furthermore, the anomalous bond length behavior is found to be the result of subtle second neighbor intermolecular interactions and is an intrinsic property of bromine in molecular phases. PMID:27156710

  1. Anomalous bond length behavior and a new solid phase of bromine under pressure.

    PubMed

    Wu, Min; Tse, John S; Pan, Yuanming

    2016-01-01

    The behavior of diatomic molecular solids under pressure have attracted great interest and been extensively studied. Under ambient pressure, the structure of bromine is known to be a molecular phase (phase I). With increasing pressure, it transforms into an incommensurate phase (phase V) before eventually to a monoatomic phase (phase II). However, between phases I and V, the interatomic distance was found to first increase with pressure and then decreased abruptly. This anomalous bond length behavior is accompanied by the splitting of the Raman bands. These phenomena have not been resolved. Here we suggest a new solid phase that explains the Raman spectra. Furthermore, the anomalous bond length behavior is found to be the result of subtle second neighbor intermolecular interactions and is an intrinsic property of bromine in molecular phases. PMID:27156710

  2. Anomalous bond length behavior and a new solid phase of bromine under pressure

    NASA Astrophysics Data System (ADS)

    Wu, Min; Tse, John S.; Pan, Yuanming

    2016-05-01

    The behavior of diatomic molecular solids under pressure have attracted great interest and been extensively studied. Under ambient pressure, the structure of bromine is known to be a molecular phase (phase I). With increasing pressure, it transforms into an incommensurate phase (phase V) before eventually to a monoatomic phase (phase II). However, between phases I and V, the interatomic distance was found to first increase with pressure and then decreased abruptly. This anomalous bond length behavior is accompanied by the splitting of the Raman bands. These phenomena have not been resolved. Here we suggest a new solid phase that explains the Raman spectra. Furthermore, the anomalous bond length behavior is found to be the result of subtle second neighbor intermolecular interactions and is an intrinsic property of bromine in molecular phases.

  3. Addendum to ``Off-shell structure of the anomalous Z and γ self-couplings''

    NASA Astrophysics Data System (ADS)

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2002-01-01

    We point out that the lowest dimension operators that preserve SU(2)×U(1) gauge invariance and induce gauge boson self-interactions affecting only the neutral gauge bosons are just two dim=8 operators. If these operators constitute the only new physics source, there will then exist only two independent anomalous couplings affecting Z and γ: i.e., one CP conserving and one CP violating. On this basis, we give the corresponding relations among the ZZZ, ZZγ, and γγZ couplings used up to now in the analyses of experimental data. A reanalysis taking these relations into account should produce much more stringent constraints on the anomalous couplings.

  4. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media.

    PubMed

    Toner, John; Löwen, Hartmut; Wensink, Henricus H

    2016-06-01

    Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to tlnt of the mean-square displacement with time t. This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns. PMID:27415323

  5. Anomalous krypton in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Frick, U.

    1977-01-01

    The reported investigation provides important new data for the heavy noble gases, especially Kr, in the Allende meteorite. The data are used to criticize the original model of Lewis et al. (1975) based on the noble gas data of these researchers. The conclusions reached in the investigation support alternative models which have been mainly based on Xe data by Lewis et al. (1975, 1977). Because of the relatively high noble gas abundances in the separates studied, disturbance from nuclear effects occurring in situ such as spallation and neutron capture is insignificant, offering an opportunity to study primordial Ar, Kr, and Xe. The isotopic and abundance data obtained from the samples largely confirm the noble gas results of Lewis et al. (1975, 1977) where isotopic correlations agree with the correlations of the considered samples. It is found that both Kr and Xe data are consistent with a two component mixture of 'ordinary' as well as 'anomalous' planetary gases.

  6. Anomalous Abelian symmetry in the standard model

    SciTech Connect

    Ramond, P.

    1995-12-31

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.

  7. Photoinduced Anomalous Hall Effects in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Lee, Patrick A.; Burch, Kenneth S.; Han, Jung Hoon; Ran, Ying

    We examine theoretically the interplay between chiral photons and chiral electrons in Weyl semimetals. Owing to its monopole nature, a three-dimensional Weyl node is topologically-robust against a circularly polarized light. A driven Weyl system exhibits node shifts in the momentum space, in sharp contrast to the gap opening in a driven two-dimensional Dirac system. We show that the node shift leads to a change of the Chern vector which gives arise to a net photoinduced anomalous Hall conductivity, in the plane perpendicular to the light propagation. We shall describe the basic idea behind this generic photoinduced Hall effect, illustrate it with a concrete microscope model, and estimate its feasibility based on current optical experimental techniques.

  8. Anomalous electronic transport in boron carbides

    NASA Astrophysics Data System (ADS)

    Emin, D.; Samara, G. A.; Wood, C.

    The boron carbides are composed of icosahedral units, B12 and B11C1, linked together by strong intericosahedral bonds. With such distributions of icosahedral and intericosahedral compositions, boron carbides, B/sub 1-x/C/sub x/, are single phase over 0.1 less than or equal to x less than or equal to 0.2. The electronic transport properties of the boron carbides were examined within this single-phase region. Results are inconsistent with conventional analyses of both itinerant and hopping transport. Most striking are Seebeck coefficients which are both large and rapidly increasing functions of temperature despite thermally activated dc conductivities. These results manifest the hopping of small bipolaronic holes between carbon-containing icosahedral that are inequivalent in energy and electron-lattice coupling strength. Under hydrostatic pressures up to approx. 25 kbar, the dc conductivities increase with pressure. This anomalous behavior for hopping conduction reflects the distinctive structure and bonding of these materials.

  9. Communication: Probing anomalous diffusion in frequency space

    SciTech Connect

    Stachura, Sławomir; Kneller, Gerald R.

    2015-11-21

    Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.

  10. Anomalous dominance in Down syndrome young adults.

    PubMed

    Giencke, S; Lewandowski, L

    1989-03-01

    The ear advantages of groups of Down Syndrome and developmentally retarded (NonDown) young adults, and normal youngsters matched for mental age were compared on dichotic listening performance. The paradigm employed strings of single, double, and triple digits presented to each ear under both free and cued recall conditions. The developmentally retarded and normal groups demonstrated the typical right ear advantage (REA), whereas the Down Syndrome group produced a significant left ear advantage (LEA) in four of the six experimental conditions. In addition, for the cued as compared to free recall conditions, all three groups demonstrated relatively better right ear performance. These results indicate anomalous dominance in Down Syndrome young adults which is consistent across varying memory load and attentional demands. Furthermore, these results are not likely due to a maturational lag phenomenon, but more likely related to genetic, biologic, and neurologic, factors as suggested by Geschwind and Galaburda (1985). PMID:2523281

  11. Anomalous Flavor U(1)_X for Everything

    SciTech Connect

    Dreiner, Herbi K.; Murayama, Hitoshi; Thormeier, Marc

    2003-12-01

    We present an ambitious model of flavor, based on an anomalous U(1)_X gauge symmetry with one flavon, only two right-handed neutrinos and only two mass scales: M_{grav} and m_{3/2}. In particular, there are no new scales introduced for right-handed neutrino masses. The X-charges of the matter fields are such that R-parity is conserved exactly, higher-dimensional operators are sufficiently suppressed to guarantee a proton lifetime in agreement with experiment, and the phenomenology is viable for quarks, charged leptons, as well as neutrinos. In our model one of the three light neutrinos automatically is massless. The price we have to pay for this very successful model are highly fractional X-charges which can likely be improved with less restrictive phenomenological ansatze for mass matrices.

  12. Anomalously Weak Dynamical Friction in Halos

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.; Debattista, Victor P.

    A bar rotating in a pressure-supported halo generally loses angular momentum and slows down due to dynamical friction. Valenzuela & Klypin report a counter-example of a bar that rotates in a dense halo with little friction for several Gyr, and argue that their result invalidates the claim by Debattista & Sellwood that fast bars in real galaxies require a low halo density. We show that it is possible for friction to cease for a while should the pattern speed of the bar fluctuate upward. The reduced friction is due to an anomalous gradient in the phase-space density of particles at the principal resonance created by the earlier evolution. The result obtained by Valenzuela & Klypin is probably an artifact of their adaptive mesh refinement method, but anyway could not persist in a real galaxy. The conclusion by Debattista & Sellwood still stands.

  13. An 'Anomalous' Triggered Lightning Flash in Florida

    NASA Astrophysics Data System (ADS)

    Gamerota, W. R.; Uman, M. A.; Hill, J. D.; Pilkey, J. T.; Ngin, T.; Jordan, D. M.; Mata, C.; Mata, A.

    2012-12-01

    Classical (grounded wire) rocket-and-wire triggered lightning flashes whose leaders do not traverse the path of the wire remnants are sometimes referred to as 'anomalous'. We present high-speed video images captured at 10 kilo-frames per second (kfps), with supporting data, to characterize an 'anomalous' rocket-triggered lightning flash that occurred on 15 May 2012 at the International Center for Lightning Research and Testing (ICLRT) in north-central Florida. The event begins as a classical rocket-triggered lightning flash with an upward positive leader (UPL) initiating from the tip of the wire at a height of about 280 m above ground level. The top 259 m of the trailing wire explodes 2.7 s after the rocket exits the launch tube, while the bottom 17 m of the wire does not explode (does not become luminous). Approximately 1.4 ms after wire explosion, a stepped leader initiates a few meters above the top of the wire remnants and propagates downward, attaching to the top of a grounded utility pole 2.1 ms after initiation and 117 m southwest of the launching facility. Beginning 600 μs prior to this sustained stepped leader development, attempted stepped leaders (luminous steps emanating from the UPL channel above the wire remnants) are observed in three locations: 20 m and 5 m above the top of the wire remnants and at the top of the wire remnants. Correlated electric field derivative (dE/dt), channel-base current, and high-speed video captured at 300 kfps reveal an electrical discharge of peak current 365 A initiating from about 17 m above the launching facility, apparently the top of the unexploded triggering wire, when the stepped leader is no more than 60 m above ground level. There are significant differences between the 'anomalous' triggered lightning flash described here and those observed in New Mexico and in France in the late 1970s and early 1980s: First, the time duration between explosion of our wire and the sustained stepped leader development a few meters

  14. Anomalous magnetoresistance in magnetized topological insulator cylinders

    SciTech Connect

    Siu, Zhuo Bin; Jalil, Mansoor B. A.

    2015-05-07

    The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.

  15. Powder diffraction studies using anomalous dispersion

    SciTech Connect

    Cox, D.E.; Wilkinson, A.P.

    1993-05-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f` for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high {Tc} superconductors, ternary alloys, FeCo{sub 2}(PO{sub 4}){sub 3}, FeNi{sub 2}BO{sub 5}), oxidation-state contrast (e.g. YBa{sub 2}Cu{sub 3}O{sub 6+x}, Eu{sub 3}O{sub 4}, GaCl{sub 2}, Fe{sub 2}PO{sub 5}), and the effect of coordination geometry (e.g. Y{sub 3}Ga{sub 5}O{sub l2}).

  16. Powder diffraction studies using anomalous dispersion

    SciTech Connect

    Cox, D.E. ); Wilkinson, A.P. . Dept. of Materials)

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high [Tc] superconductors, ternary alloys, FeCo[sub 2](PO[sub 4])[sub 3], FeNi[sub 2]BO[sub 5]), oxidation-state contrast (e.g. YBa[sub 2]Cu[sub 3]O[sub 6+x], Eu[sub 3]O[sub 4], GaCl[sub 2], Fe[sub 2]PO[sub 5]), and the effect of coordination geometry (e.g. Y[sub 3]Ga[sub 5]O[sub l2]).

  17. Anomalous Cases of Astronaut Helmet Detection

    NASA Technical Reports Server (NTRS)

    Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn

    2015-01-01

    An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.

  18. No need to replace an "anomalous" primate (Primates) with an "anomalous" bear (Carnivora, Ursidae).

    PubMed

    Gutiérrez, Eliécer E; Pine, Ronald H

    2015-01-01

    By means of mitochondrial 12S rRNA sequencing of putative "yeti", "bigfoot", and other "anomalous primate" hair samples, a recent study concluded that two samples, presented as from the Himalayas, do not belong to an "anomalous primate", but to an unknown, anomalous type of ursid. That is, that they match 12S rRNA sequences of a fossil Polar Bear (Ursusmaritimus), but neither of modern Polar Bears, nor of Brown Bears (Ursusarctos), the closest relative of Polar Bears, and one that occurs today in the Himalayas. We have undertaken direct comparison of sequences; replication of the original comparative study; inference of phylogenetic relationships of the two samples with respect to those from all extant species of Ursidae (except for the Giant Panda, Ailuropodamelanoleuca) and two extinct Pleistocene species; and application of a non-tree-based population aggregation approach for species diagnosis and identification. Our results demonstrate that the very short fragment of the 12S rRNA gene sequenced by Sykes et al. is not sufficiently informative to support the hypotheses provided by these authors with respect to the taxonomic identity of the individuals from which these sequences were obtained. We have concluded that there is no reason to believe that the two samples came from anything other than Brown Bears. These analyses afforded an opportunity to test the monophyly of morphologically defined species and to comment on both their phylogenetic relationships and future efforts necessary to advance our understanding of ursid systematics. PMID:25829853

  19. Electrostatic waves and anomalous transport in the solar wind

    NASA Astrophysics Data System (ADS)

    Dum, C. T.

    1983-11-01

    In situ measurements of fluctuation spectra and particle distribution functions have now been carried out throughout interplanetary space. The link between these observations is established by theories of wave particle interaction. Linear instability analysis for the actual nonMaxwellian particle distribution functions and an examination of the velocity dependence of microscopic diffusion coefficients form the basis of such an investigation. It is described in more detail for the short wavelength, ion acoustic like turbulence which is found by linear instability analysis to correspond to the observed electrostatic fluctuations. Of the transport processes associated with these fluctuations, electron heat conduction and electron ion energy transfer are of particular importance for macroscopic solar wind expansion. These effects are studied with the aid of an anomalous transport theory. This theory (Dum, 1978 a,b) is based on the dominance of elastic scattering of electrons by fluctuations, similar to (enhanced) electron ion collisions. It has a much wider range of applicability than classical transport theory, which assumes dominance of Coulomb collisions for elastic and inelastic scattering.

  20. Electrostatic waves and anomalous transport in the solar wind

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1983-01-01

    In situ measurements of fluctuation spectra and particle distribution functions have now been carried out throughout interplanetary space. The link between these observations is established by theories of wave particle interaction. Linear instability analysis for the actual nonMaxwellian particle distribution functions and an examination of the velocity dependence of microscopic diffusion coefficients form the basis of such an investigation. It is described in more detail for the short wavelength, ion acoustic like turbulence which is found by linear instability analysis to correspond to the observed electrostatic fluctuations. Of the transport processes associated with these fluctuations, electron heat conduction and electron ion energy transfer are of particular importance for macroscopic solar wind expansion. These effects are studied with the aid of an anomalous transport theory. This theory (Dum, 1978 a,b) is based on the dominance of elastic scattering of electrons by fluctuations, similar to (enhanced) electron ion collisions. It has a much wider range of applicability than classical transport theory, which assumes dominance of Coulomb collisions for elastic and inelastic scattering.

  1. Broken Scale Invariance and Anomalous Dimensions

    DOE R&D Accomplishments Database

    Wilson, K. G.

    1970-05-01

    Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.

  2. Isotopically Anomalous Nitrogen in Unequilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Kiyota, K.; Sugiura, N.; Hashizume, K.

    1993-07-01

    Introduction: Presolar grains such as diamond, SiC, and graphite have been reported to have isotopically anomalous nitrogen [1-3]. Because of their stability to chemical treatment, they are relatively easily concentrated in laboratories. There are probably other, less-durable presolar materials in primitive meteorites. We have therefore been searching for such presolar grains in UOCs, using the nitrogen isotope ratio as an indicator. In fact, isotopically heavy nitrogen in Yamato 74191 (LL3.7) and light nitrogen in ALHA 77214 (L3.4), which are not those of diamond, SiC, or graphite, have been reported [4]. Here, we report some other nitrogen isotope anomalies, especially light nitrogen found in many UOCs. Results and Discussion: Nitrogen and argon extracted by the stepped combustion method from 200 degrees C to 1200 degrees C every 100 degrees C are measured with a static QMS. ALHA 77278 (LL3.7), LEW 86018 (L3.1), and ALHA 77216 (H3.7/3.9) have isotopically heavy nitrogen. There is a possibility that these chondrites have solar nitrogen, because ALHA 77216 has a large amount of solar neon and ALHA 77278 has a small amount of solar neon. ALHA 78119 (L3.5) shows a similar degassing profile to ALHA 77214 [4]. Therefore, it may have the same carriers of anomalous nitrogen as ALHA 77214. Since Chainpur also has a similar degassing profile to ALHA 77214, although its light nitrogen abundance is smaller, it has probably the same nitrogen carrier. ALHA 78084 (H4), Grady (H3.7), and Yamato 74024 (L3.8) have very small amounts of nitrogen, probably because of metamorphic loss, and their delta ^15N values are nearly 0 per mil. ALHA 81251 (H3.2/3.4) degasses isotopically light nitrogen and primordial ^36Ar around 1100 degrees C (see Fig. 1), and delta ^15N goes down to -60 per mil at this temperature. Nearly the same degassing profiles have been found in ALH 83007 (L3.2/3.5), ALH 83010 (L3.3), EET 83399 (L3.3), LEW 86022 (L3.2), Yamato 791500, Yamato 82038, and Mezo Madaras

  3. No-Drag Frame for Anomalous Chiral Fluid

    NASA Astrophysics Data System (ADS)

    Stephanov, Mikhail A.; Yee, Ho-Ung

    2016-03-01

    We show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. We show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the "no-drag frame" as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and in the quark-gluon plasma at high temperature.

  4. Anomalous Double-Mode RR Lyrae Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Smolec, R.; Dziembowski, W. A.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D.; Skowron, J.; Mróz, P.; Pawlak, M.

    2016-08-01

    We report the discovery of a new subclass of double-mode RR Lyrae stars in the Large and Small Magellanic Clouds. The sample of 22 pulsating stars have been extracted from the latest edition of the OGLE collection of RR Lyrae variables in the Magellanic System. The stars pulsating simultaneously in the fundamental (F) and first-overtone (1O) modes have distinctly different properties than regular double-mode RR Lyrae variables (RRd stars). The P1O/PF period ratios of our anomalous RRd stars are within a range 0.725-0.738, while "classical" double-mode RR Lyrae variables have period ratios in the range 0.742-0.748. In contrast to the typical RRd stars, in the majority of the anomalous pulsators the F-mode amplitudes are higher than the 1O-mode amplitudes. The light curves associated with the F-mode in the anomalous RRd stars show different morphology than the light curves of, both, regular RRd stars and single-mode RRab stars. Most of the anomalous double-mode stars show long-term modulations of the amplitudes (Blazhko-like effect). Translating the period ratios into the abundance parameter, Z, we find for our stars Z ∈ (0.002, 0.005) - an order of magnitude higher values than typical for RR Lyrae stars. The mass range of the RRd stars inferred from the WI vs. PF diagram is (0.55 - 0.75) M⊙. These parameters cannot be accounted for with single star evolution assuming a Reimers-like mass loss. Much greater mass loss caused by interaction with other stars is postulated. We blame the peculiar pulsation properties of our stars to the parametric resonance instability of the 1O-mode to excitation of the F- and 2O-modes as with the inferred parameters of the stars 2ω1O ≈ ωF + ω2O.

  5. Anomalous phenomenology in nickel substituted cuprates

    SciTech Connect

    Ko, D.; Oesterreicher, H. . Materials Science and Dept. of Chemistry)

    1994-10-01

    The authors present structural, magnetic, and superconducting behaviors for YBa[sub 2](Cu[sub 1[minus]x]Ni[sub x])[sub 3]O[sub y] with emphasis on x = 0.05 given various thermal redox sequencings. They demonstrate that materials quenched from various air annealing temperatures display an unusual extension of the orthorhombic regime compared to unsubstituted materials. In the range of annealing temperature near 970 K, this is accompanied by volume expansion anomalies and slow reoxygenation kinetics probably connected with partial 3+ charge localization on Cu. A second volume expansion anomaly occurs near 1,080 K, probably connected with partial 3+ charge localization on Ni. These materials can show diamagnetism up to 150K, possibly indicating a small amount of superconductivity. On reoxygenation at 673K materials undergo a slow transition, first to a paramagnetic-semiconducting state (designed K[sub o] compounds) and then after several days to a superconducting state similar to conventionally slow cooled oxygenating preparations (OP) which produce [Tc] [approximately] 74 K. These superconductors display anomalous Meissner effects, i.e. the observation of paramagnetism below [Tc] on small field cooling. This effect is connected with flux trapping in 2 types of regions, namely grain boundaries or local cluster inhomogeneities of the bulk.

  6. Modeling of Carbon Impurity Anomalous Transport

    NASA Astrophysics Data System (ADS)

    Stamm, Roland; Voitsekhovitch, Irina; Benkadda, Sadri; Beyer, Peter; Koubiti, Mohamed; Marandet, Yannick; Godbert-Mouret, Laurence; Bateman, Glenn; Kritz, Arnold; Pankin, Andre

    2001-10-01

    An improvement of plasma confinement by impurity seeding has been observed on different Tokamak. The understanding of the physics of the impurity transport is an important step towards the control of the plasma confinement in such regimes. Different physical mechanisms of the anomalous transport of carbon impurity and their impact on the evolution of the scenario of a tokamak discharge are analyzed in this work. This is done by using a self-consistent modeling of thermal electron and ion energy, and main ion and carbon impurity content with the multi-mode model taking into account the contributions from different types of plasma instabilities [1]. This study has been performed for the medium size tokamak with a central heating of the electron and ion species, and with both central (NBI) and wall particle source. The L-mode scenario and the scenario with an improved particle and energy confinement due to the reversed q-profile has been analyzed and the influence of the carbon impurity on the plasma evolution has been investigated by varying the starting time and the magnitude of the carbon influx. The effect of the main ion dilution on the growth rate as well as the effect of radiative cooling at the plasma edge on the power balance are analyzed under different conditions. 1. Bateman G., et al., Phys. Plasmas, 5 (1998) 1793

  7. Diagnosing Anomalous Network Performance with Confidence

    SciTech Connect

    Settlemyer, Bradley W; Hodson, Stephen W; Kuehn, Jeffery A; Poole, Stephen W

    2011-04-01

    Variability in network performance is a major obstacle in effectively analyzing the throughput of modern high performance computer systems. High performance interconnec- tion networks offer excellent best-case network latencies; how- ever, highly parallel applications running on parallel machines typically require consistently high levels of performance to adequately leverage the massive amounts of available computing power. Performance analysts have usually quantified network performance using traditional summary statistics that assume the observational data is sampled from a normal distribution. In our examinations of network performance, we have found this method of analysis often provides too little data to under- stand anomalous network performance. Our tool, Confidence, instead uses an empirically derived probability distribution to characterize network performance. In this paper we describe several instances where the Confidence toolkit allowed us to understand and diagnose network performance anomalies that we could not adequately explore with the simple summary statis- tics provided by traditional measurement tools. In particular, we examine a multi-modal performance scenario encountered with an Infiniband interconnection network and we explore the performance repeatability on the custom Cray SeaStar2 interconnection network after a set of software and driver updates.

  8. An Anomalous Force on the Map Spacecraft

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; ODonnell, James R., Jr.; Ward, David K.; Wollack, Edward J.; Bay, P. Michael; Fink, Dale R.; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) orbits the second Earth-Sun libration point (L2)-about 1.5 million kilometers outside Earth's orbit-mapping cosmic microwave background radiation. To achieve orbit near L2 on a small fuel budget, the MAP spacecraft needed to swing past the Moon for a gravity assist. Timing the lunar swing-by required MAP to travel in three high-eccentricity phasing loops with critical maneuvers at a minimum of two, but nominally all three, of the perigee passes. On the approach to the first perigee maneuver, MAP telemetry showed a considerable change in system angular momentum that threatened to cause on-board Failure Detection and Correction (FDC) to abort the critical maneuver. Fortunately, the system momentum did not reach the FDC limit; however, the MAP team did develop a contingency strategy should a stronger anomaly occur before or during subsequent perigee maneuvers, Simultaneously, members of the MAP team developed and tested various hypotheses for the cause of the anomalous force. The final hypothesis was that water was outgassing from the thermal blanketing and freezing to the cold side of the solar shield. As radiation from Earth warmed the cold side of the spacecraft, the uneven sublimation of frozen water created a torque on the spacecraft.

  9. Anomalous human behavior detection: an adaptive approach

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Coen; Halma, Arvid; Schutte, Klamer

    2013-05-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA's Mind's Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying assumption is that the local maximum distance between labeled examples is a good indicator of the variation in that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of the anomaly detection.

  10. Anomalous Wien Effects in Supercooled Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Burghaus, O.; Roling, B.

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180 kV /cm . Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P6 ,6 ,6 ,14][Cl ] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models.