Science.gov

Sample records for anopheles kerteszia em

  1. Kerteszia subgenus of Anopheles associated with the Brazilian Atlantic rainforest:current knowledge and future challenges

    PubMed Central

    Marrelli, Mauro Toledo; Malafronte, Rosely S; Sallum, Maria AM; Natal, Delsio

    2007-01-01

    Background The Atlantic rainforest ecosystem, where bromeliads are abundant, provides an excellent environment for Kerteszia species, because these anophelines use the axils of those plants as larval habitat. Anopheles (K.) cruzii and Anopheles (K.) bellator are considered the primary vectors of malaria in the Atlantic forest. Although the incidence of malaria has declined in some areas of the Atlantic forest, autochthonous cases are still registered every year, with Anopheles cruzii being considered to be a primary vector of both human and simian Plasmodium. Methods Recent publications that addressed ecological aspects that are important for understanding the involvement of Kerteszia species in the epidemiology of malaria in the Atlantic rainforest in the Neotropical Region were analysed. Conclusion The current state of knowledge about Kerteszia species in relation to the Atlantic rainforest ecosystem was discussed. Emphasis was placed on ecological characteristics related to epidemiological aspects of this group of mosquitoes. The main objective was to investigate biological aspects of the species that should be given priority in future studies. PMID:17880709

  2. Man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai (Diptera: Culicidae) in the Pacific lowlands of Colombia.

    PubMed

    Solarte, Y; Hurtado, C; Gonzalez, R; Alexander, B

    1996-01-01

    The daily man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai was determined in four ecologically distinct settlements of the Naya River, Department of Valle, Colombia. Differences were found among the settlements with respect to the mosquito species present, intradomiciliary and extradomiciliary biting activity and population densities. PMID:8736081

  3. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia) pholidotus (Diptera: Culicidae) from Colombia.

    PubMed

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha L; Wilkerson, Richard C; Ruiz, Fredy; Harrison, Bruce A

    2014-07-01

    Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy. PMID:25075785

  4. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia) pholidotus (Diptera: Culicidae) from Colombia

    PubMed Central

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha L; Wilkerson, Richard C; Ruiz, Fredy; Harrison, Bruce A

    2014-01-01

    Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy. PMID:25075785

  5. Anopheles (Kerteszia) lepidotus (Diptera: Culicidae), not the malaria vector we thought it was: Revised male and female morphology; larva, pupa, and male genitalia characters; and molecular verification

    PubMed Central

    HARRISON, BRUCE A.; RUIZ-LOPEZ, FREDDY; FALERO, GUILLERMO CALDERON; SAVAGE, HARRY M.; PECOR, JAMES E.; WILKERSON, RICHARD C.

    2015-01-01

    The name Anopheles (Kerteszia) lepidotus Zavortink, commonly used for an important malaria vector in the eastern cordillera of the Andes, is here corrected to An. pholidotus Zavortink. We discovered that An. (Ker.) specimens from Peru, and reared-associated specimens from Ecuador, had unambiguous habitus characters that matched those on the male holotype of An. lepidotus. However, the specimens do not exhibit characters of the female allotype and female paratypes of An. lepidotus, which are actually An. pholidotus. Our specimens are the first correctly associated females of An. lepidotus, which allow us to provide a new morphological interpretation for the adult habitus of this species. This finding is also corroborated by molecular data from a portion of the Cytochrome Oxidase I (COI) gene and ribosomal DNA Internal Transcribed Spacer 2 (rDNA ITS2). The pupal stage of An. lepidotus is described for the first time, and additional larval characters are also noted. Diagnostic morphological characters for the adult, pupal, and larval stages of An. pholidotus are provided to separate the two species. All stages of An. lepidotus are easily separated from other currently known species in subgenus Kerteszia and a new key to the females of An. (Kerteszia) is given. Previously published distribution, bionomics, and medical significance data are corrected and enhanced. PMID:26726290

  6. Anthropophilic biting behaviour of Anopheles (Kerteszia) neivai Howard, Dyar & Knab associated with Fishermen’s activities in a malaria-endemic area in the Colombian Pacific

    PubMed Central

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha Lucía

    2013-01-01

    On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia) neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%), while Anopheles albimanus was found indoors (82%) and outdoors (73%). One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria. PMID:24402159

  7. Anthropophilic biting behaviour of Anopheles (Kerteszia) neivai Howard, Dyar & Knab associated with Fishermen's activities in a malaria-endemic area in the Colombian Pacific.

    PubMed

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha Lucía

    2013-12-01

    On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia) neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%), while Anopheles albimanus was found indoors (82%) and outdoors (73%). One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria. PMID:24402159

  8. Anopheles (Kerteszia) cruzii (DIPTERA: CULICIDAE) IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    PubMed Central

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen. PMID:25229220

  9. Evidence for the occurrence of two sympatric sibling species within the Anopheles (Kerteszia) cruzii complex in southeast Brazil and the detection of asymmetric introgression between them using a multilocus analysis

    PubMed Central

    2013-01-01

    Background Anopheles (Kerteszia) cruzii (Diptera: Culicidae) is a primary vector of human and simian malaria parasites in southern and southeastern Brazil. Earlier studies using chromosome inversions, isoenzymes and a number of molecular markers have suggested that An. cruzii is a species complex. Results In this study, a multilocus approach using six loci, three circadian clock genes and three encoding ribosomal proteins, was carried out to investigate in more detail the genetic differentiation between the An. cruzii populations from Florianópolis–Santa Catarina (southern Brazil) and Itatiaia–Rio de Janeiro States (southeastern Brazil). The analyses were performed first comparing Florianópolis and Itatiaia, and then comparing the two putative sympatric incipient species from Itatiaia (Itatiaia A and Itatiaia B). The analysis revealed high FST values between Florianópolis and Itatiaia (considering Itatiaia A and B together) and also between the sympatric Itatiaia A and Itatiaia B, irrespective of their function. Also, using the IM program, no strong indication of migration was found between Florianópolis and Itatiaia (considering Itatiaia A and B together) using all loci together, but between Itatiaia A and Itatiaia B, the results show evidence of migration only in the direction of Itatiaia B. Conclusions The results of the multilocus analysis indicate that Florianópolis and Itatiaia represent different species of the An. cruzii complex that diverged around 0.6 Mya, and also that the Itatiaia sample is composed of two sympatric incipient species A and B, which diverged around 0.2 Mya. Asymmetric introgression was found between the latter two species despite strong divergence in some loci. PMID:24063651

  10. The complete mitochondrial genome of Anopheles minimus (Diptera: Culicidae) and the phylogenetics of known Anopheles mitogenomes.

    PubMed

    Hua, Ya-Qiong; Ding, Yi-Ran; Yan, Zhen-Tian; Si, Feng-Ling; Luo, Qian-Chun; Chen, Bin

    2016-06-01

    Anopheles minimus is an important vector of human malaria in southern China and Southeast Asia. The phylogenetics of mosquitoes has not been well resolved, and the mitochondrial genome (mtgenome) has proven to be an important marker in the study of evolutionary biology. In this study, the complete mtgenome of An. minimus was sequenced for the first time. It is 15 395 bp long and encodes 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and a non-coding region. The gene organization is consistent with those of known Anopheles mtgenomes. The mtgenome performs a clear bias in nucleotide composition with a positive AT-skew and a negative GC-skew. All 13 PCGs prefer to use the codon UUA (Leu), ATN as initiation codon but cytochrome-oxidase subunit 1 (COI) and ND5, with TCG and GTG, and TAA as termination codon, but COI, COII, COIII and ND4, all with the incomplete T. tRNAs have the typical clover-leaf structure, but tRNA(Ser(AGN)) is consistent with known Anopheles mtgenomes. The control region includes a conserved T-stretch and a (TA)n stretch, and has the highest A+T content at 93.1%. The phylogenetics of An. minimus with 18 other Anopheles species was constructed by maximum likelihood and Bayesian inference, based on concatenated PCG sequences. The subgenera, Cellia and Anopheles, and Nyssorhynchus and Kerteszia have mutually close relationships, respectively. The Punctulatus group and Leucosphyrus group of Neomyzomyia Series, and the Albitarsis group of Albitarsis Series were suggested to be monophyletic. The monophyletic status of the subgenera, Cellia, Anopheles, Nyssorhynchus and Kerteszia need to be further elucidated. PMID:26852698

  11. Morphogenetic characterisation, date of divergence, and evolutionary relationships of malaria vectors Anopheles cruzii and Anopheles homunculus.

    PubMed

    Lorenz, Camila; Patané, José S L; Suesdek, Lincoln

    2015-10-01

    The mosquito species Anopheles cruzii and Anopheles homunculus are co-occurring vectors for etiological agents of malaria in southeastern Brazil, a region known to be a major epidemic spot for malaria outside Amazon region. We sought to better understand the biology of these species in order to contribute to future control efforts by (1) improving species identification, which is complicated by the fact that the females are very similar, (2) investigating genetic composition and morphological differences between the species, (3) inferring their phylogenetic histories in comparison with those of other Anophelinae, and (4) dating the evolutionary divergence of the two species. To characterise the species we used wing geometry and mitochondrial cytochrome oxidase subunit I (COI) gene as morphological and genetic markers, respectively. We also used the genes white, 28S, ITS2, Cytb, and COI in our phylogenetic and dating analyses. A comparative analysis of wing thin-plate splines revealed species-specific wing venation patterns, and the species An. cruzii showed greater morphological diversity (8.74) than An. homunculus (5.58). Concerning the COI gene, An. cruzii was more polymorphic and also showed higher haplotype diversity than An. homunculus, with many rare haplotypes that were displayed by only a few specimens. Phylogenetic analyses revealed that all tree topologies converged and showed [Anopheles bellator+An. homunculus] and [Anopheles laneanus+An. cruzii] as sister clades. Diversification within the subgenus Kerteszia occurred 2-14.2millionyears ago. The landmark data associated with wing shape were consistent with the molecular phylogeny, indicating that this character can distinguish higher level phylogenetic relationships within the Anopheles group. Despite their morphological similarities and co-occurrence, An. cruzii and An. homunculus show consistent differences. Phylogenetic analysis revealed that the species are not sister-groups but species that recently

  12. Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama

    PubMed Central

    LOAIZA, J. R.; BERMINGHAM, E.; SCOTT, M. E.; ROVIRA, J. R.; CONN, J. E.

    2010-01-01

    Anopheles (Diptera: Culicidae) species composition and distribution were studied using human landing catch data over a 35-yr period in Panama. Mosquitoes were collected from 77 sites during 228 field trips carried out by members of the National Malaria Eradication Service. Fourteen Anopheles species were identified. The highest average human biting rates were recorded from Anopheles (Nyssorhynchus) albimanus (Wiedemann) (9.8 bites/person/night) and Anopheles (Anopheles) punctimacula (Dyar and Knab) (6.2 bites/person/night). These two species were also the most common, present in 99.1 and 74.9%, respectively, of the sites. Anopheles (Nyssorhynchus) aquasalis (Curry) was encountered mostly in the indigenous Kuna Yala Comarca along the eastern Atlantic coast, where malaria case history and average human biting rate (9.3 bites/person/night) suggest a local role in malaria transmission. An. albimanus, An. punctimacula, and Anopheles (Anopheles) vestitipennis (Dyar and Knab) were more abundant during the rainy season (May–December), whereas An. aquasalis was more abundant in the dry season (January–April). Other vector species collected in this study were Anopheles (Kerteszia) neivai (Howard, Dyar, and Knab) and Anopheles (Anopheles) pseudopunctipennis s.l. (Theobald). High diversity of Anopheles species and six confirmed malaria vectors in endemic areas of Panama emphasize the need for more detailed studies to better understand malaria transmission dynamics. PMID:18826025

  13. Diversification of the Genus Anopheles and a Neotropical Clade from the Late Cretaceous

    PubMed Central

    Freitas, Lucas A.; Russo, Claudia A. M.; Voloch, Carolina M.; Mutaquiha, Olívio C. F.; Marques, Lucas P.; Schrago, Carlos G.

    2015-01-01

    The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma). Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur. PMID:26244561

  14. [Egg morphology as an indirect method to identify Anopheles benarrochi, Anopheles oswaldoi and Anopheles rangeli (Diptera: Culicidae)].

    PubMed

    Estrada, Dora Amparo; Quiñoes, Martha L; Sierra, Diana Maria; Calle, David A; Ruiz, Fredy; Erazo, Holmes F; Linton, Yvonne-Marie

    2003-12-01

    In the Department of Putumayo in southern Colombia, malaria transmission has continued in the absence of the 4 traditional Latin American vector species--Anopheles darlingi, Anopheles nuneztovari, Anopheles albimanus or Anopheles trinkae. Human bait collections yielded Anopheles mosquitoes and a morphological variant of Anopheles benarrochi, the adult females of which can easily be misidentified as Anopheles oswaldoi. Species identification of females of Anopheles in the subgenus Nyssorhynchus is generally difficult due to overlapping morphological characters; therefore, progeny of field collected females were link-reared to assess species identity. Herein a robust method is presented to identify the species Anopheles benarrochi, Anopheles oswaldoi and Anopheles rangeli from southern Colombia, using the morphology of the eggs induced from wild-caught females. Eggs of A. rangeli and A. benarrochi were differentiated on the basis of the anterior crown. In A. rangeli, this feature is positioned apically with high walls. In A. benarrochi, anterior crown is positioned more ventrally with comparatively shorter walls. No crown is present in A. oswaldoi. These differences are clear with the aid of a dissecting microscope and make accurate species determination possible even in field conditions. Egg morphology is shown to be an accurate, albeit indirect, method for the taxonomic determination for the three southern Colombian species and may also be useful in other regions of Latin America where the morphological variant of A. benarrochi is sympatric with A. oswaldoi. PMID:14968916

  15. Male motion coordination in swarming Anopheles gambiae and Anopheles coluzzii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa; most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, parallel flight patterns in such swarms have been observed, but a detailed description o...

  16. Malaria and the Anopheles mosquitoes of Tajikistan.

    PubMed

    Habirov, Zamonidin; Kadamov, Dilshod; Iskandarov, Firuz; Komilova, Saodat; Cook, Shelley; McAlister, Erica; Harbach, Ralph E

    2012-12-01

    Surveys of Anopheles mosquitoes were conducted in urban, rural, and natural areas of Tajikistan to obtain updated information on their distributions, especially in southern districts of the country where malaria is a prevalent disease. Nine species of Anopheles are found in Tajikistan. Anopheles superpictus, An. claviger, An. hyrcanus, and An. pulcherrimus are the most widespread and abundant species. Investigations in northern Tajikistan confirmed the presence of An. artemievi and the absence of An. martinius, both members of the An. maculipennis complex of malaria vectors. Anopheles barianensis, An. lindesayi, and An. marteri sogdianus, species previously recorded in the country, were not encountered during our surveys. The history of Anopheles and malaria research in Tajikistan is reviewed and bionomical and distributional information is provided for each of the nine species. PMID:23181867

  17. Brain Proteomics of Anopheles gambiae

    PubMed Central

    Dwivedi, Sutopa B.; Muthusamy, Babylakshmi; Kumar, Praveen; Kim, Min-Sik; Nirujogi, Raja Sekhar; Getnet, Derese; Ahiakonu, Priscilla; De, Gourav; Nair, Bipin; Gowda, Harsha; Prasad, T.S. Keshava; Kumar, Nirbhay

    2014-01-01

    Abstract Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future. PMID:24937107

  18. Tools for Anopheles gambiae Transgenesis

    PubMed Central

    Volohonsky, Gloria; Terenzi, Olivier; Soichot, Julien; Naujoks, Daniel A.; Nolan, Tony; Windbichler, Nikolai; Kapps, Delphine; Smidler, Andrea L.; Vittu, Anaïs; Costa, Giulia; Steinert, Stefanie; Levashina, Elena A.; Blandin, Stéphanie A.; Marois, Eric

    2015-01-01

    Transgenesis is an essential tool to investigate gene function and to introduce desired characters in laboratory organisms. Setting-up transgenesis in non-model organisms is challenging due to the diversity of biological life traits and due to knowledge gaps in genomic information. Some procedures will be broadly applicable to many organisms, and others have to be specifically developed for the target species. Transgenesis in disease vector mosquitoes has existed since the 2000s but has remained limited by the delicate biology of these insects. Here, we report a compilation of the transgenesis tools that we have designed for the malaria vector Anopheles gambiae, including new docking strains, convenient transgenesis plasmids, a puromycin resistance selection marker, mosquitoes expressing cre recombinase, and various reporter lines defining the activity of cloned promoters. This toolbox contributed to rendering transgenesis routine in this species and is now enabling the development of increasingly refined genetic manipulations such as targeted mutagenesis. Some of the reagents and procedures reported here are easily transferable to other nonmodel species, including other disease vector or agricultural pest insects. PMID:25869647

  19. Adaptation through chromosomal inversions in Anopheles.

    PubMed

    Ayala, Diego; Ullastres, Anna; González, Josefa

    2014-01-01

    Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species-human malaria vectors-is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed. PMID:24904633

  20. Fine structure of the eggs of Anopheles (Anopheles) apicimacula (Diptera:Culicidae).

    PubMed

    Rodriguez, M H; Chávez, B; Orozco, A; Martínez-Palomo, A

    1996-09-01

    The eggs of Anopheles (Anopheles) apicimacula Dyar and Knab are described from scanning electron micrographs. The eggs are boat-shaped, with frills that extend ventrally along the length of the egg and surround the deck region. The ornamentation on the dorsal and lateral surfaces is formed by groups of smooth, round tubercles. The ventral surface is covered by irregularly jagged tubercles. Prominent lobed tubercles are present at the anterior and posterior ends of the deck. PMID:8887225

  1. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    PubMed

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes. PMID:27263828

  2. The acetylcholinesterase gene of Anopheles stephensi.

    PubMed

    Hall, L M; Malcolm, C A

    1991-02-01

    1. The acetylcholinesterase (AChE) gene from the important malaria vector Anopheles stephensi has been isolated by homology to the Drosophila acetylcholinesterase gene. 2. The complete sequence and intron-exon organization has been determined. The encoded protein has 69% identity to Drosophila AChE and 38 and 36% identity to Torpedo AChE and human butyrylcholinesterase, respectively. PMID:1901515

  3. Engineered Anopheles Immunity to Plasmodium Infection

    PubMed Central

    Cirimotich, Chris; Souza-Neto, Jayme A.; McLean, Kyle J.; Dimopoulos, George

    2011-01-01

    A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control. PMID:22216006

  4. Anopheles (Anopheles) petragnani Del Vecchio 1939-a new mosquito species for Germany.

    PubMed

    Becker, Norbert; Pfitzner, Wolf Peter; Czajka, Christina; Kaiser, Achim; Weitzel, Thomas

    2016-07-01

    The so far known species of the Anopheles Claviger Complex, Anopheles claviger s.s. and Anopheles petragnani, can only be distinguished by partial overlapping characteristics of immature stages and by nucleotide sequence variation of the genomic ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region. The known distribution of An. petragnani is so far restricted to the western Mediterranean region, whereas An. claviger s.s. occurs across most of Europe, up to the Middle East and North Africa. In our study, we investigated the larval mosquito fauna in rock pools of the Murg valley (Black Forest, Germany) once a month from April to December 2015.Among other species, larvae belonging to the Anopheles Claviger Complex were found. The fourth instar larvae were morphologically identified by chaetotaxy of the head and abdomen. The results were confirmed by a multiplex PCR and additional sequencing of the amplificates.Of the 1289 collected larvae from the rock pools, seven belonged to the Anopheles Claviger Complex. Five individuals were determined morphologically as An. petragnani and two as An. claviger s.s. The associated mosquito fauna comprised of Aedes japonicus japonicus (548 individuals), Culex pipiens s.l. and Culex torrentium (493 individuals) and Culex hortensis (241 individuals).This is the first record of An. petragnani north of the Alps. Further studies will reveal whether this is an isolated population of An. petragnani and if the investigated rock pool breeding sites represent typical habitats of this species in temperate regions in Central Europe. PMID:27003404

  5. Neuropeptides and Peptide Hormones in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Riehle, Michael A.; Garczynski, Stephen F.; Crim, Joe W.; Hill, Catherine A.; Brown, Mark R.

    2002-10-01

    The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.

  6. Analysis of the cuticular hydrocarbons among species of the Anopheles quadrimaculatus complex (Diptera: Culicidae).

    PubMed

    Carlson, D A; Reinert, J F; Bernier, U R; Sutton, B D; Seawright, J A

    1997-12-01

    Cuticular hydrocarbons were extracted from females of 5 species of the Anopheles quadrimaculatus complex and studied by gas chromatography and mass spectrometry. The data were analyzed by multivariate techniques to determine the degree of divergence in hydrocarbon patterns and to develop models that allow the discrimination of these species. Anopheles quadrimaculatus Say, Anopheles smaragdinus Reinert, and Anopheles maverlius Reinert could be separated at 100% from each other and from Anopheles diluvialis Reinert and Anopheles inundatus Reinert; however, separation of An. diluvialis from An. inundatus was 80% using a 2-way model. PMID:9474551

  7. Odourant reception in the malaria mosquito Anopheles gambiae

    PubMed Central

    Carey, Allison; Wang, Guirong; Su, Chih-Ying; Zwiebel, Laurence J.; Carlson, John R.

    2010-01-01

    Summary The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It locates its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae Odourant Receptor (AgOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odourants elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behavior. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odourant receptor repertoire. We find that odourants are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria. PMID:20130575

  8. Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest Nigeria.

    PubMed

    Okorie, P N; Ademowo, O G; Irving, H; Kelly-Hope, L A; Wondji, C S

    2015-03-01

    The emergence of insecticide resistance in Anopheles (Diptera: Culicidae) mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and the frequency of knock-down resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and Anopheles gambiae Giles from the Ojoo and Bodija areas of Ibadan, in southwest Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using World Health Organization (WHO) bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification; kdr genotyping was determined using the TaqMan real-time polymerase chain reaction assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodija samples (n = 186) consisted of An. gambiae (91.4%) and An. coluzzii (8.1%) and included one An. coluzzii/An. gambiae hybrid specimen. All mosquitoes screened in Ojoo (n = 26) were An. gambiae. The 1014F kdr mutation was detected at frequencies of 24.5 and 5.8% in Bodija and Ojoo, respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the development of resistance and highlight the need to implement insecticide resistance management strategies. PMID:25417803

  9. DDT-resistance in Anopheles stephensi.

    PubMed

    DAVIDSON, G; JACKSON, C E

    1961-01-01

    In view of the increasing number of reports from different parts of the world indicating resistance to DDT in both adults and larvae of Anopheles stephensi, an important malaria vector, a series of laboratory studies has been carried out on the degree, the pattern and the mode of inheritance of resistance in this species. A DDT-resistant strain from Iraq and a susceptible strain from India were used.In four sets of observations made in the course of tests on both adults and larvae a monofactorial type of inheritance was indicated, and the factor involved was shown to be dependent for its expression on the genetic background.DDT-resistance in A. stephensi appears to be similar in most respects to that in A. sundaicus. PMID:13883789

  10. Colonization of Anopheles pseudopunctipennis from Mexico.

    PubMed

    Villarreal, C; Arredondo-Jiménez, J I; Rodriguez, M H; Ulloa, A

    1998-12-01

    Two colonies of Anopheles pseudopunctipennis, Tapachula and Abasolo strains, were established under laboratory conditions with a thermoperiod (29 degrees C during the day; 24 degrees C during the night) and artificial dusk. To stimulate mating, a light beam from a flashlight was shone on the cage shortly after lights off. This procedure was repeated for the first 6 mosquito generations (parental to F6) and thereafter light stimulation was unnecessary for mating. The Tapachula colony has been maintained for 24 generations in 24 months, with insemination rates in females > 80% since the F3, and a monthly production of 30,000 pupae since the F7. Using the same procedure, the Abasolo colony from northeastern Mexico has been maintained for 13 generations in 14 months, with insemination rates of 26-52%. PMID:10084128

  11. Chromosomal differences in populations of Anopheles nuneztovari

    PubMed Central

    Kitzmiller, J. B.; Kreutzer, R. D.; Tallaferro, E.

    1973-01-01

    Anopheles nuneztovari from 3 localities in Brazil, 2 in Venezuela, and 1 in Colombia were subjected to chromosome analysis. The Venezuelan and Colombian populations, responsible for malaria transmission in certain areas of these countries, differ in an X-chromosome arrangement from the Brazilian specimens, the difference apparently being due to the fixation of an inversion in the homozygous state in one population. It was possible to identify 216 specimens from Venezuela and Colombia and 190 from Brazil by the X-chromosome. A. nuneztovari and its close relatives may be easily distinguished in this way. Diagnostic descriptions of the chromosomes and a standard map, based on the Brazilian population, are provided. ImagesFig. 2Fig. 4Fig. 5Fig. 7Fig. 8 PMID:4543549

  12. Comparison of transmission parameters between Anopheles argyritarsis and Anopheles pseudopunctipennis in two ecologically different localities of Bolivia

    PubMed Central

    2013-01-01

    Background Anopheles (Anopheles) pseudopunctipennis is a recognized malaria vector in the slopes of the Andes of Bolivia. There, other species might be involved in malaria transmission and one candidate could be Anopheles argyritarsis. Although it is generally admitted that this species is not a malaria vector in the neotropical region, its potential role in transmission is still controversial and this situation has to be cleared, at least for Bolivia. Comparing the vectorial efficiency of An. pseudopunctipennis with that of An. argyritarsis could solve the question. Methods The two species were sampled throughout Bolivia to estimate their degree of co-existence in their distribution range. Vectorial efficiencies of the two species were compared in two ecologically different localities where the species were sympatric by analysing their vectorial capacities and components (i e, human biting rates, human biting index, survival, durations of the gonotrophic cycle and extrinsic cycle), and the entomological inoculation rates (EIR). Mosquitoes were sampled monthly during more than one year in the two localities. A monthly sample consisted in hourly captures in four houses (inside and outside) in each locality, during four consecutive nights. Climatic variables (temperature, humidity, potential evapo-transpiration and precipitations) were recorded to better understand variability in the entomological parameters. Relationships were analysed using multivariate methods. Results Anopheles pseudopunctipennis and An. argyritarsis are “altitude” species, sharing the same geographical distribution range in the Andes of Bolivia. No Plasmodium parasite was identified in An. argyritarsis and estimates of the vectorial capacity indicated that it is not a malaria vector in the two studied localities, unlike An. pseudopunctipennis which showed positive EIRs. This latter species, although not a very good malaria vector, exhibited better life traits values and better behavioural

  13. Mark-recapture studies of host selection by Anopheles (Anopheles) vestitipennis.

    PubMed

    Ulloa, Armando; Arredondo-Jiménez, Juan I; Rodriguez, Mario H; Fernández-Salas, Ildefonso

    2002-03-01

    We present herein the results of a series of mark-recapture experiments with female Anopheles vestitipennis. Theses experiments used human and animal hosts to assess the degree of anthropophily of field-caught specimens, originally collected on either host, and of their offspring. Fidelity of mosquitoes to particular hosts was estimated by recapturing marked host-seeking mosquitoes returning for a 2nd blood meal. Results indicated that mosquitoes seeking animal hosts were more faithful (80.48%; 33 of 41) in returning to their original host than were those seeking human hosts (63%; 49 of 78). PMID:11998927

  14. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages.

    PubMed

    Gimonneau, Geoffrey; Tchioffo, Majoline T; Abate, Luc; Boissière, Anne; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Christen, Richard; Morlais, Isabelle

    2014-12-01

    During their immature life stages, malaria mosquitoes are exposed to a wide array of microbes and contaminants from the aquatic habitats. Although prior studies have suggested that environmental exposure shapes the microbial community structure in the adult mosquito, most reports have focused on laboratory-based experiments and on a single mosquito epithelium, the gut. In this study, we investigated the influence of the breeding site on the development of the Anopheles coluzzii and Anopheles gambiae microbiota in natural conditions. We characterized bacterial communities from aquatic habitats, at surface microlayer and subsurface water levels, to freshly emerge adult mosquitoes using multiplexed 16S rRNA gene pyrosequencing and we separately analyzed the microbiota associated with the different epithelia of adult individual, midguts, ovaries and salivary glands. We found that the distribution of bacterial communities in the aquatic habitats differed according to the depth of water collections. Inter-individual variation of bacterial composition was large in larvae guts but adult mosquitoes from a same breeding site shared quite similar microbiota. Although some differences in bacterial abundances were highlighted between the different epithelia of freshly emerged An. coluzzii and An. gambiae, an intriguing feature from our study is the particular similarity of the overall bacterial communities. Our results call for further investigations on the bacterial population dynamics in the different tissues to determine the distinctive characteristics of each microbiota during the mosquito lifespan and to identify specific interactions between certain key phyla or species and the insect life history traits. PMID:25283802

  15. [Anopheles of Senegal. An annotated and illustrated list].

    PubMed

    Diagne, N; Fontenille, D; Konate, L; Faye, O; Lamizana, M T; Legros, F; Molez, J F; Trape, J F

    1994-01-01

    Twenty species of Anopheles are presently known from Senegal. An. gambiae, An. arabiensis, An. pharoensis, An. rufipes and An. ziemanni have an extensive distribution. Probably because of climatic change, An. funestus is no more found in some areas and An. paludis tend to disappear. An. melas is located in coastal areas. The other species, namely An. coustani, An. brohieri, An. brunnipes, An. domicola, An. flavicosta, An. freetownensis, An. hancocki, An. maculipalpis, An. nili, An. pretoriensis, An. squamosus and An. wellcomei, are mainly found in southern Senegal. Only An. gambiae, An. arabiensis and An. funestus are of epidemiological significance as vectors of malaria and bancroftian filariasis. Twelve arboviruses have been isolated from eight Anopheles species. Each Anopheles species is illustrated and an identification key is given. PMID:7866049

  16. A description and morphometric comparison of eggs of species of the Anopheles gambiae complex.

    PubMed

    Lounibos, L P; Coetzee, M; Duzak, D; Nishimura, N; Linley, J R; Service, M W; Cornel, A J; Fontenille, D; Mukwaya, L G

    1999-06-01

    Eggs of the 6 named species of the Anopheles gambiae complex are described from scanning electron micrographs of specimens obtained from laboratory colonies or wild-caught females. Morphometric measurements of eggs from 5 sources of Anopheles arabiensis, 2 of Anopheles gambiae, one of Anopheles quadriannulatus, 2 of Anopheles bwambae, 2 of Anopheles merus, and one of Anopheles melas are compared, and relationships are analyzed by multivariate statistics. No morphologic characters were species-diagnostic, although tendencies of the saltwater species An. merus and An. melas to have wider decks and shorter floats were confirmed. Species and populations overlapped considerably in principal components and discriminant function analyses based on 10 attributes of eggs. Nevertheless, discriminant functions revealed similarities in eggs of species believed to be most closely related, namely, An. gambiae and An. arabiensis, An. merus and An. melas, and An. quadriannulatus and An. bwambae. PMID:10412112

  17. Laser induced mortality of Anopheles stephensi mosquitoes

    PubMed Central

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  18. Anopheles gambiae, a complex of species

    PubMed Central

    Davidson, G.

    1964-01-01

    The author reports on some 200 laboratory crossings of 36 strains of Anopheles gambiae from many different parts of Africa which show the existence of five mating-types in what was until recently considered a single species. Three of these mating-types are freshwater forms and have been provisionally called A, B and C. Two are saltwater forms: A. melas, confined to West Africa, and the East African A. merus. Hybrid male sterility is universal when any two of these five forms are crossed, and from some of the crosses grossly abnormal sex-ratios result. From an evolutionary standpoint these five mating-types are probably species or semi-species in view of the fact that they can be found to co-exist sympatrically and still retain their identities. From a practical point of view it may be necessary for the field worker to be able to identify the exact species with which he is dealing before the most efficient means of controlling it can be found. ImagesFIG. 1FIG. 2FIG. 3 PMID:14278001

  19. Laser induced mortality of Anopheles stephensi mosquitoes

    NASA Astrophysics Data System (ADS)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  20. “Saltwater Anopheles gambiae” on Mauritius*

    PubMed Central

    Paterson, H. E.

    1964-01-01

    In this paper the author reports the results of three months' study of the saltwater-breeding member of the Anopheles gambiae complex of sibling species on Mauritius. There is evidence for the views that this form's distribution on the island is limited by the availability of suitable breeding areas, that it does not usually disperse far from the breeding grounds or coast, and that it is probably not an important vector except, perhaps, in the near vicinity of its breeding places. Some new evidence is presented in support of the view that this form (and forms A and B) are distinct species. This turns on the observed close coexistence of these three forms on Mauritius, supported by a theoretical consideration of what would be expected to happen in such circumstances if a system of random mating prevailed. Evidence is given that the Mauritian saltwater-breeding form of the A. gambiae complex is conspecific with the form occurring on the east coast of Africa. The practical importance of reaching general agreement on the evolutionary status of the members of the A. gambiae complex is emphasized. PMID:14278002

  1. RNAi Trigger Delivery into Anopheles gambiae Pupae

    PubMed Central

    Regna, Kimberly; Harrison, Rachel M.; Heyse, Shannon A.; Chiles, Thomas C.; Michel, Kristin; Muskavitch, Marc A. T.

    2016-01-01

    RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel. PMID:27023367

  2. Behavioral cost & overdominance in Anopheles gambiae.

    PubMed

    Diop, Malal M; Moiroux, Nicolas; Chandre, Fabrice; Martin-Herrou, Hadrien; Milesi, Pascal; Boussari, Olayidé; Porciani, Angélique; Duchon, Stéphane; Labbé, Pierrick; Pennetier, Cédric

    2015-01-01

    In response to the widespread use of control strategies such as Insecticide Treated Nets (ITN), Anopheles mosquitoes have evolved various resistance mechanisms. Kdr is a mutation that provides physiological resistance to the pyrethroid insecticides family (PYR). In the present study, we investigated the effect of the Kdr mutation on the ability of female An. gambiae to locate and penetrate a 1cm-diameter hole in a piece of netting, either treated with insecticide or untreated, to reach a bait in a wind tunnel. Kdr homozygous, PYR-resistant mosquitoes were the least efficient at penetrating an untreated damaged net, with about 51% [39-63] success rate compared to 80% [70-90] and 78% [65-91] for homozygous susceptible and heterozygous respectively. This reduced efficiency, likely due to reduced host-seeking activity, as revealed by mosquito video-tracking, is evidence of a recessive behavioral cost of the mutation. Kdr heterozygous mosquitoes were the most efficient at penetrating nets treated with PYR insecticide, thus providing evidence for overdominance, the rarely-described case of heterozygote advantage conveyed by a single locus. The study also highlights the remarkable capacity of female mosquitoes, whether PYR-resistant or not, to locate holes in bed-nets. PMID:25831058

  3. Anopheles punctulatus group: evolution, distribution, and control.

    PubMed

    Beebe, Nigel W; Russell, Tanya; Burkot, Thomas R; Cooper, Robert D

    2015-01-01

    The major malaria vectors of the Southwest Pacific belong to a group of closely related mosquitoes known as the Anopheles punctulatus group. The group comprises 13 co-occurring species that either are isomorphic or carry overlapping morphological features, and today several species remain informally named. The advent of species-diagnostic molecular tools in the 1990s permitted a new raft of studies into the newly differentiated mosquitoes of this group, and these have revealed five species as the region's primary malaria vectors: An. farauti, An. hinesorum, An. farauti 4, An. koliensis, and An. punctulatus. Species' distributions are now well established across Papua New Guinea, northern Australia, and the Solomon Archipelago, but little has been documented thus far in eastern Indonesia. As each species reveals significant differences in distribution and biology, the relative paucity of knowledge of their biology or ecology in relation to malaria transmission is brought into clearer focus. Only three of the species have undergone some form of spatial or population genetics analyses, and this has revealed striking differences in their genetic signatures throughout the region. This review compiles and dissects the key findings for this important mosquito group and points to where future research should focus to maximize the output of field studies in developing relevant knowledge on these malaria vectors. PMID:25341094

  4. Laser induced mortality of Anopheles stephensi mosquitoes.

    PubMed

    Keller, Matthew D; Leahy, David J; Norton, Bryan J; Johanson, Threeric; Mullen, Emma R; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  5. Behavioral Cost & Overdominance in Anopheles gambiae

    PubMed Central

    Diop, Malal M.; Moiroux, Nicolas; Chandre, Fabrice; Martin-Herrou, Hadrien; Milesi, Pascal; Boussari, Olayidé; Porciani, Angélique; Duchon, Stéphane; Labbé, Pierrick; Pennetier, Cédric

    2015-01-01

    In response to the widespread use of control strategies such as Insecticide Treated Nets (ITN), Anopheles mosquitoes have evolved various resistance mechanisms. Kdr is a mutation that provides physiological resistance to the pyrethroid insecticides family (PYR). In the present study, we investigated the effect of the Kdr mutation on the ability of female An. gambiae to locate and penetrate a 1cm-diameter hole in a piece of netting, either treated with insecticide or untreated, to reach a bait in a wind tunnel. Kdr homozygous, PYR-resistant mosquitoes were the least efficient at penetrating an untreated damaged net, with about 51% [39-63] success rate compared to 80% [70-90] and 78% [65-91] for homozygous susceptible and heterozygous respectively. This reduced efficiency, likely due to reduced host-seeking activity, as revealed by mosquito video-tracking, is evidence of a recessive behavioral cost of the mutation. Kdr heterozygous mosquitoes were the most efficient at penetrating nets treated with PYR insecticide, thus providing evidence for overdominance, the rarely-described case of heterozygote advantage conveyed by a single locus. The study also highlights the remarkable capacity of female mosquitoes, whether PYR-resistant or not, to locate holes in bed-nets. PMID:25831058

  6. Biology & control of Anopheles culicifacies Giles 1901

    PubMed Central

    Sharma, V.P.; Dev, V.

    2015-01-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  7. Microsporidium Infecting Anopheles supepictus (Diptera: Culicidae) Larvae

    PubMed Central

    Omrani, Seyed-Mohammad; Moosavi, Seyedeh-Fatemeh; Manouchehri, Kourosh

    2016-01-01

    Background: Microsporidia are known to infect a wide variety of animals including mosquitoes (Diptera: Culicidae). In a recent study on the mosquito fauna of Chahar Mahal and Bakhtiari Province, at the central western part of Iran, a few larvae of Anopheles superpictus were infected with a microsporidium-resembled microorganism. Current investigation deals with the identification of the responsible microorganism at the genus level. Methods: Fresh infected larvae were collected from the field. After determining the species identity they were dissected to extract their infective contents. Wet preparations were checked for general appearance and the size of the pathogenic microorganism. Fixed preparations were stained with Geimsa and Ryan-Blue modified Trichrome techniques to visualize further morphological characters. The obtained light microscopy data were used in the identification process. Results: The infected larvae were bulged by a whitish material filling the involved segments corresponding to a microsporidium infection. Bottle-shaped semioval spores ranged 4.33±0.19×2.67±0.12 and 4.18±0.43×2.45±0.33 micron in wet and fixed preparations, respectively. They were mostly arranged in globular structures comprised of 8 spores. These data was in favor of a species from the genus Parathelohania in the family Ambliosporidae. Conclusion: This is the first report of a microsporidium infection in An. superpictus. The causative agent is diagnosed as a member of the genus Parathelohania. Further identification down to the species level needs to determine its ultrastructural characteristics and the comparative analysis of ss rRNA sequence data. It is also necessary to understand the detail of the components of the transmission cycle. PMID:27308299

  8. Biology & control of Anopheles culicifacies Giles 1901.

    PubMed

    Sharma, V P; Dev, V

    2015-05-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  9. Anthropophilic Anopheles species composition and malaria in Tierradentro, Córdoba, Colombia

    PubMed Central

    Schiemann, David Joachim; Pinzón, Martha Lucía Quiñones; Hankeln, Thomas

    2014-01-01

    Malaria is still a primary health problem in Colombia. The locality of Tierradentro is situated in the municipality of Montelíbano, Córdoba, in the northwest of Colombia, and has one of the highest annual parasite index of malaria nationwide. However, the vectors involved in malaria transmission in this locality have not yet been identified. In this study, the local anthropophilic Anopheles composition and natural infectivity with Plasmodium were investigated. In August 2009, 927 female Anopheles mosquitoes were collected in eight localities using the human landing catch method and identified based on their morphology. Cryptic species were determined by restriction fragment length polymorphism-internal transcribed spacer (ITS)2 molecular analysis. Eight species [Anopheles nuneztovari s.l. (92.8%), Anopheles darlingi (5.1%), Anopheles triannulatus s.l. (1.8%), Anopheles pseudopunctipennis s.l. (0.2%), Anopheles punctimacula s.l. (0.2%), Anopheles apicimacula (0.1%), Anopheles albimanus (0.1%) and Anopheles rangeli (0.1%)] were identified and species identity was confirmed by ITS2 sequencing. This is the first report of An. albimanus, An. rangeli and An. apicimacula in Tierradentro. Natural infectivity with Plasmodium was determined by ELISA. None of the mosquitoes was infectious for Plasmodium. An. nuneztovari s.l. was the predominant species and is considered the primary malaria vector; An. darlingi and An. triannulatus s.l. could serve as secondary vectors.

  10. The dance of male Anopheles gambiae in mating swarms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mating behavior of the malaria vector Anopheles gambiae is of great interest from a fundamental and applied perspective. One of the most important elements of mating in this species is the crepuscular mating aggregation (swarm) composed almost entirely of males, where most coupling and inseminat...

  11. Workbook on the Identification of Anopheles Adults. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional workbook is designed to enable malaria control workers to identify adults of "Anopheles" species that are important malaria vectors. The morphological features of the adults are illustrated in a programed booklet, which also contains an illustrated taxonomic key to adult females of 29 anopheline species. A glossary and a…

  12. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  13. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  14. Nigeria Anopheles Vector Database: An Overview of 100 Years' Research

    PubMed Central

    Okorie, Patricia Nkem; McKenzie, F. Ellis; Ademowo, Olusegun George; Bockarie, Moses; Kelly-Hope, Louise

    2011-01-01

    Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF), which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%), An. funestus complex (17.3%), An. gambiae s.s. (6.5%). An. arabiensis (5.0%) and An. funestus s.s. (2.5%), with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on Anopheles

  15. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    PubMed

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats. PMID:19440962

  16. Distribution and larval habitat characterization of Anopheles moucheti, Anopheles nili, and other malaria vectors in river networks of southern Cameroon.

    PubMed

    Antonio-Nkondjio, Christophe; Ndo, Cyrille; Costantini, Carlo; Awono-Ambene, Parfait; Fontenille, Didier; Simard, Frédéric

    2009-12-01

    Despite their importance as malaria vectors, little is known of the bionomic of Anopheles nili and Anopheles moucheti. Larval collections from 24 sites situated along the dense hydrographic network of south Cameroon were examined to assess key ecological factors associated with these mosquitoes distribution in river networks. Morphological identification of the III and IV instar larvae by the use of microscopy revealed that 47.6% of the larvae belong to An. nili and 22.6% to An. moucheti. Five variables were significantly involved with species distribution, the pace of flow of the river (lotic, or lentic), the light exposure (sunny or shady), vegetation (presence or absence of vegetation) the temperature and the presence or absence of debris. Using canonical correspondence analysis, it appeared that lotic rivers, exposed to light, with vegetation or debris were the best predictors of An. nili larval abundance. Whereas, An. moucheti and An. ovengensis were highly associated with lentic rivers, low temperature, having Pistia. An. nili and An. moucheti distribution along river systems across south Cameroon was highly correlated with environmental variables. The distribution of An. nili conforms to that of a generalist species which is adapted to exploiting a variety of environmental conditions, Whereas, An. moucheti, Anopheles ovengensis and Anopheles carnevalei appeared as specialist forest mosquitoes. PMID:19682965

  17. Comparative egg morphology of six species of the Albimanus section of Anopheles (Nyssorhynchus) (Diptera:Culicidae).

    PubMed

    Lounibos, L P; Duzak, D; Linley, J R

    1997-03-01

    Scanning electron micrographs were used to describe and compare structures of eggs obtained from wild-caught females of 6 species of the Albimanus section of Anopheles (Nyssorhynchus) from South America, which includes important regional vectors of human malaria. Among species from the Oswaldoi Complex, eggs of Anopheles oswaldoi (Peryassu) were not differentiated from those of its sibling Anopheles konderi Galvão & Damasceno, and eggs of the former species from Brazil, Ecuador, and Suriname showed no regionally distinguishing characteristics. Eggs of Anopheles dunhami Causey were recognized by the reticulate beadwork of outer chorion on the dorsal plastron, 1 of several egg characters separating this species from the related Anopheles trinkae Faran and Anophels nuneztovari Gabaldón. In both species examined from the Strodei Complex, Anopheles strodei Root and Anopheles benarrochi Gabaldón, Cova Garcia & Lopez, the anterior frill forms a distinctive ventral crown separated from the floats. Anopheles triannulatus (Neiva & Pinto), collected from 4 geographic sites, differed in the occurrence of perforated mounds on the dorsal plastron, but these chorionic structures and the extent of overlap of floats varied among eggs from single females. Changes among related species in the structure of the anterior frill and dorsal plastron are described for phylogenetic and developmental inferences. PMID:9103756

  18. The salivary gland chromosomes of Anopheles pseudopunctipennis pseudopunctipennis*

    PubMed Central

    Baker, Richard H.; Kitzmiller, J. B.; Chowdaiah, B. N.

    1965-01-01

    The authors present a salivary chromosome map of Anopheles p. pseudopunctipennis, an important malaria vector in the Americas. The salivary chromosomes appear as a short metacentric X and two metacentric autosomes. The arms of chromosome 2 are of almost equal length, but the right arm of chromosome 3 is almost twice as long as the left. The metacentric X is the first to be described in the subgenus Anopheles. The banding patterns of the autosomes show many similarities to those of the North American maculipennis complex and to those of the Central American A. vestitipennis and A. neomaculipalpus. Three chromosomal aberrations, one in the X and two in the right arm of chromosome 3, occur commonly in several different populations. ImagesFIG. 3FIG. 5FIG. 6FIG. 7 PMID:5295407

  19. A maleness gene in the malaria mosquito Anopheles gambiae.

    PubMed

    Krzywinska, Elzbieta; Dennison, Nathan J; Lycett, Gareth J; Krzywinski, Jaroslaw

    2016-07-01

    The molecular pathways controlling gender are highly variable and have been identified in only a few nonmammalian model species. In many insects, maleness is conferred by a Y chromosome-linked M factor of unknown nature. We have isolated and characterized a gene, Yob, for the M factor in the malaria mosquito Anopheles gambiae Yob, activated at the beginning of zygotic transcription and expressed throughout a male's life, controls male-specific splicing of the doublesex gene. Silencing embryonic Yob expression is male-lethal, whereas ectopic embryonic delivery of Yob transcripts yields male-only broods. This female-killing property may be an invaluable tool for creation of conditional male-only transgenic Anopheles strains for malaria control programs. PMID:27365445

  20. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  1. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana.

    PubMed

    Akorli, Jewelna; Gendrin, Mathilde; Pels, Nana Adjoa P; Yeboah-Manu, Dorothy; Christophides, George K; Wilson, Michael D

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  2. Separation of Anopheles merus from freshwater Anopheles gambiae by salinity tolerance test and morphological characters.

    PubMed

    Mosha, F W; Mutero, C M

    1982-12-01

    The separation methods for Anopheles merus from freshwater A. gambiae s.l. involving the use of salinity tolerance test, sensilla coeloconica, palpal ratio and palpal bands were evaluated for a period of one year on a total of about 340 mosquitoes. The salinity tolerance test method was found to be quite simple and reliable but unsuitable in disease transmission studies due to an interval of 2-3 days between the collection and dissection periods and also due to the fact that only a fraction of the mosquito sample is generally identified by this method. Although significantly higher proportions of sensilla coeloconica and palpal ratio were observed in A. merus as compared to freshwater A. gambiae s.l. these characters were found quite unreliable due to their overlapping between two mosquito groups. Sensilla coeloconica and palpal ratio used separately could separate respective percentages of 11.4 and 11.8 A. merus from freshwater A. gambiae s.l., while in combination they separated up to 40.9%. Percentages 4-banded palp mosquitoes accounted for about 32% in A. merus and 19% in freshwater A. gambiae s.l. All these characters also displayed some seasonal variations in the two mosquito groups. PMID:6926942

  3. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes

    PubMed Central

    Hughes, Grant L.; Dodson, Brittany L.; Johnson, Rebecca M.; Murdock, Courtney C.; Tsujimoto, Hitoshi; Suzuki, Yasutsugu; Patt, Alyssa A.; Cui, Long; Nossa, Carlos W.; Barry, Rhiannon M.; Sakamoto, Joyce M.; Hornett, Emily A.; Rasgon, Jason L.

    2014-01-01

    Over evolutionary time, Wolbachia has been repeatedly transferred between host species contributing to the widespread distribution of the symbiont in arthropods. For novel infections to be maintained, Wolbachia must infect the female germ line after being acquired by horizontal transfer. Although mechanistic examples of horizontal transfer exist, there is a poor understanding of factors that lead to successful vertical maintenance of the acquired infection. Using Anopheles mosquitoes (which are naturally uninfected by Wolbachia) we demonstrate that the native mosquito microbiota is a major barrier to vertical transmission of a horizontally acquired Wolbachia infection. After injection into adult Anopheles gambiae, some strains of Wolbachia invade the germ line, but are poorly transmitted to the next generation. In Anopheles stephensi, Wolbachia infection elicited massive blood meal-induced mortality, preventing development of progeny. Manipulation of the mosquito microbiota by antibiotic treatment resulted in perfect maternal transmission at significantly elevated titers of the wAlbB Wolbachia strain in A. gambiae, and alleviated blood meal-induced mortality in A. stephensi enabling production of Wolbachia-infected offspring. Microbiome analysis using high-throughput sequencing identified that the bacterium Asaia was significantly reduced by antibiotic treatment in both mosquito species. Supplementation of an antibiotic-resistant mutant of Asaia to antibiotic-treated mosquitoes completely inhibited Wolbachia transmission and partly contributed to blood meal-induced mortality. These data suggest that the components of the native mosquito microbiota can impede Wolbachia transmission in Anopheles. Incompatibility between the microbiota and Wolbachia may in part explain why some hosts are uninfected by this endosymbiont in nature. PMID:25114252

  4. Multimodal Pyrethroid Resistance in Malaria Vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in Western Kenya

    PubMed Central

    Kawada, Hitoshi; Dida, Gabriel O.; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M.; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  5. Multimodal pyrethroid resistance in malaria vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in western Kenya.

    PubMed

    Kawada, Hitoshi; Dida, Gabriel O; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  6. PCR assay for identification of Anopheles quadriannulatus species B from Ethiopia and other sibling species of the Anopheles gambiae complex.

    PubMed

    Fettene, M; Koekemoer, L L; Hunt, R H; Coetzee, M

    2002-06-01

    Sibling species A and B of Anopheles quadriannulatus (Theobald) are recognized as allopatric members of the Anopheles gambiae Giles complex of Afrotropical mosquitoes (Diptera: Culicidae). Species A represents An. quadriannulatus sensu stricto, widespread in southern Africa, whereas An. quadriannulatus species B occurs in Ethiopia. Because of difficulty of identification, distribution of An. quadriannulatus sensu lato remains poorly known. Cytotaxonomy and the standard DNA polymerase chain reaction (PCR) assay do not distinguish between species A and B of An. quadriannulatus. By optimizing the standard PCR assay (Scott et al., 1993) for identification of members of the An. gambiae complex, we identified two discriminant fragments of 153 bp and 900 bp from DNA of An. quadriannulatus species B, whereas only the 153 bp fragment was amplified for species A from South Africa. This modified PCR assay can therefore be used to distinguish between species A and B of An. quadriannulatus s.l. as well as other members of the An. gambiae complex. PMID:12109717

  7. Insecticidal susceptibility status of Anopheles stephensi (Liston) in selected areas of Calcutta (West Bengal).

    PubMed

    Mukhopadhyay, A K; Chakraborty, S; Karmakar, P K; Banerjee, P

    1996-01-01

    Susceptibility tests were carried out with insecticides like Organochlorine Organophosphorus and Synthetic pyrethroids using the WHO test kits against Anopheles stephensi larvae and adults, collected from malaria endemic wards of Calcutta in December, 1995 and January, 1996 Anopheles stephensi adults were found resistant to DDT, Propoxure, Malathion but susceptible to Fenthion and Deltamethrin. PMID:9119432

  8. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Nettel, J C; Villarreal, C; Kain, K C; Hernandez, J E

    1999-01-01

    The susceptibilities to coindigenous Plasmodium vivax of colonized Anopheles albimanus and Anopheles pseudopunctipennis from southern Mexico were investigated by simultaneous feeding with infected blood obtained from patients. The genes encoding circumsporozoite protein variant types (VK210 and VK247) in blood samples were determined by PCR and oligonucleotide probe hybridization. A. albimanus was more susceptible to VK210, and A. pseudopunctipennis was more susceptible to VK247. PMID:9864243

  9. Population Genetics of Anopheles coluzzii Immune Pathways and Genes

    PubMed Central

    Rottschaefer, Susan M.; Crawford, Jacob E.; Riehle, Michelle M.; Guelbeogo, Wamdaogo M.; Gneme, Awa; Sagnon, N’Fale; Vernick, Kenneth D.; Lazzaro, Brian P.

    2014-01-01

    Natural selection is expected to drive adaptive evolution in genes involved in host–pathogen interactions. In this study, we use molecular population genetic analyses to understand how natural selection operates on the immune system of Anopheles coluzzii (formerly A. gambiae “M form”). We analyzed patterns of intraspecific and interspecific genetic variation in 20 immune-related genes and 17 nonimmune genes from a wild population of A. coluzzii and asked if patterns of genetic variation in the immune genes are consistent with pathogen-driven selection shaping the evolution of defense. We found evidence of a balanced polymorphism in CTLMA2, which encodes a C-type lectin involved in regulation of the melanization response. The two CTLMA2 haplotypes, which are distinguished by fixed amino acid differences near the predicted peptide cleavage site, are also segregating in the sister species A. gambiae (“S form”) and A. arabiensis. Comparison of the two haplotypes between species indicates that they were not shared among the species through introgression, but rather that they arose before the species divergence and have been adaptively maintained as a balanced polymorphism in all three species. We additionally found that STAT-B, a retroduplicate of STAT-A, shows strong evidence of adaptive evolution that is consistent with neofunctionalization after duplication. In contrast to the striking patterns of adaptive evolution observed in these Anopheles-specific immune genes, we found no evidence of adaptive evolution in the Toll and Imd innate immune pathways that are orthologously conserved throughout insects. Genes encoding the Imd pathway exhibit high rates of amino acid divergence between Anopheles species but also display elevated amino acid diversity that is consistent with relaxed purifying selection. These results indicate that adaptive coevolution between A. coluzzii and its pathogens is more likely to involve novel or lineage-specific molecular mechanisms

  10. Low rates of multiple fertilization in parous Anopheles albimanus.

    PubMed

    Villarreal, C; Fuentes-Maldonado, G; Rodriguez, M H; Yuval, B

    1994-03-01

    We determined how frequently parous female Anopheles albimanus fertilize their eggs with sperm from more than one male. To establish paternity we relied on 2 phenotypically distinct laboratory strains. Nulliparous females were allowed to mate freely with males from one strain, and after oviposition they were offered a 2nd mating with males of the other strain. Fertilization patterns were determined by the phenotypes of offspring. Only 0.6% of females ovipositing for a 2nd time (n = 312) used sperm from the 2nd male, as did 4% of females completing a 3rd gonotrophic cycle (n = 25). In this species receptivity is not routinely renewed following oviposition. PMID:8014629

  11. Ecology of Anopheles stephensi Liston in southern Iran.

    PubMed

    Manouchehri, A V; Javadian, E; Eshighy, N; Motabar, M

    1976-09-01

    Anopheles stephensi mysorensis is an important malaria vector in southern Iran. It is known to be the vector of malaria in Abadan, Bandar Abbas, Kazeroun and Dezful. It readily attacks man. Precipitan tests on specimens from different parts of southern Iran showed that 15.7% were positive for human blood. This species usually rests indoors, but a small proportion of its population has been caught outdoors. Larval habitats vary. This species is resistant to DDT and Dieldrin in most of the areas of the Persian Gulf and Oman sea. PMID:1006792

  12. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  13. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  14. CLIP proteases and Plasmodium melanization in Anopheles gambiae.

    PubMed

    Barillas-Mury, Carolina

    2007-07-01

    Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium. PMID:17512801

  15. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    PubMed Central

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  16. Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso

    PubMed Central

    2013-01-01

    Background The Anopheles gambiae sensu lato (s.l.) species complex in Burkina Faso consists of Anopheles arabiensis, and molecular forms M and S of Anopheles gambiae sensu stricto (s.s.). Previous studies comparing the M and S forms for level of infection with Plasmodium falciparum have yielded conflicting results. Methods Mosquito larvae were sampled from natural pools, reared to adulthood under controlled conditions, and challenged with natural P. falciparum by experimental feeding with blood from gametocyte carriers. Oocyst infection prevalence and intensity was determined one week after infection. DNA from carcasses was genotyped to identify species and molecular form. Results In total, 7,400 adult mosquitoes grown from wild-caught larvae were challenged with gametocytes in 29 experimental infections spanning four transmission seasons. The overall infection prevalence averaged 40.7% for A. gambiae M form, 41.4% for A. gambiae S form, and 40.1% for A. arabiensis. There was no significant difference in infection prevalence or intensity between the three population groups. Notably, infection experiments in which the population groups were challenged in parallel on the same infective blood displayed less infection difference between population groups, while infections with less balanced composition of population groups had lower statistical power and displayed apparent differences that fluctuated more often from the null average. Conclusion The study clearly establishes that, at the study site in Burkina Faso, there is no difference in genetic susceptibility to P. falciparum infection between three sympatric population groups of the A. gambiae s.l. complex. Feeding the mosquito groups on the same infective blood meal greatly increases statistical power. Conversely, comparison of the different mosquito groups between, rather than within, infections yields larger apparent difference between mosquito groups, resulting from lower statistical power and greater noise

  17. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  18. Cuticular-hydrocarbon discrimination between Anopheles gambiae s.s. and An. arabiensis larval karyotypes.

    PubMed

    Anyanwu, G I; Davies, D H; Molyneux, D H; Priestman, A

    2001-12-01

    Examination of chromatograms of karyotyped larvae of Anopheles gambiae s.s. and Anopheles arabiensis has revealed that there are differences in the profile of their epicuticular hydrocarbons. A discriminant analysis of the quantitative hydrocarbon data has shown that the An. gambiae Mopti 2Rbc/bc karyotype from Mali could be separated from the Forest 2La/a karyotype from Liberia in > 80% of cases. Similar analysis permitted > 80% separation of individuals of two karyotypes of Anopheles arabiensis: 2Rab/ + from Burkina Faso, and 2Rb/b from Madagascar. PMID:11784439

  19. [Angkor. The mystery of the dead city and Anopheles dirus].

    PubMed

    Verdrager, J

    1992-01-01

    The desertion of Angkor, which during more than five centuries was the center of a glorious civilization, has long been a matter of mystery and conjecture. The discovery of the vectorial capacity of the jungle mosquito Anopheles dirus, its epidemiological importance in the emergence and spread of multidrug resistance in Plasmodium falciparum malaria, the wiping out of large populations after transfer or deportation of non-immune Khmers into forest areas can now easily explain the desertion of Angkor. In 1431, Angkor Thom, the capital of the Khmer kingdom surrendered to the Thai conquerors. Soon afterwards, the young king left the city in search of a new capital. As a result of the population decrease large surfaces of rice fields were abandoned and reinvaded by the jungle, the typical biotope of Anopheles dirus. Severe epidemics of Plasmodium falciparum then occurred in the non-immune population with very high mortality decreasing again the number of workers and, thus, creating a vicious circle resulting in the progressive but complete desertion of Angkor. PMID:1494307

  20. Anophelism in a Former Malaria Area of Northeastern Spain

    PubMed Central

    Bueno-Marí, Rubén; Jiménez-Peydró, Ricardo

    2013-01-01

    Background: A field study on diversity and distribution of anophelines currently present in a past endemic malaria area of Spain was carried out in order to identify possible risk areas of local disease transmission. Methods: Multiple larval sites were sampled from June to October of 2011 in the Region of Somontano de Barbastro (Northeastern Spain). The sampling effort was fixed at 10 minutes which included the active search for larvae in each biotope visited. Results: A total of 237 larval specimens belonging to four Anopheles species (Anopheles atroparvus, An. claviger, An. maculipennis and An. petragnani) were collected and identified. Conclusions: Malaria receptivity in the study area is high, especially in the area of Cinca river valley, due to the abundance of breeding sites of An. atroparvus very close to human settlements. Although current socio-economic conditions in Spain reduce possibilities of re-emergence of malaria transmission, it is evident that certain entomological and epidemiological vigilance must be maintained and even increased in the context of current processes of climate change and globalization. PMID:24409440

  1. Gene expression-based biomarkers for Anopheles gambiae age grading.

    PubMed

    Wang, Mei-Hui; Marinotti, Osvaldo; Zhong, Daibin; James, Anthony A; Walker, Edward; Guda, Tom; Kweka, Eliningaya J; Githure, John; Yan, Guiyun

    2013-01-01

    Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors. PMID:23936017

  2. Dosage Compensation in the African Malaria Mosquito Anopheles gambiae

    PubMed Central

    Rose, Graham; Krzywinska, Elzbieta; Kim, Jan; Revuelta, Loic; Ferretti, Luca; Krzywinski, Jaroslaw

    2016-01-01

    Dosage compensation is the fundamental process by which gene expression from the male monosomic X chromosome and from the diploid set of autosomes is equalized. Various molecular mechanisms have evolved in different organisms to achieve this task. In Drosophila, genes on the male X chromosome are upregulated to the levels of expression from the two X chromosomes in females. To test whether a similar mechanism is operating in immature stages of Anopheles mosquitoes, we analyzed global gene expression in the Anopheles gambiae fourth instar larvae and pupae using high-coverage RNA-seq data. In pupae of both sexes, the median expression ratios of X-linked to autosomal genes (X:A) were close to 1.0, and within the ranges of expression ratios between the autosomal pairs, consistent with complete compensation. Gene-by-gene comparisons of expression in males and females revealed mild female bias, likely attributable to a deficit of male-biased X-linked genes. In larvae, male to female ratios of the X chromosome expression levels were more female biased than in pupae, suggesting that compensation may not be complete. No compensation mechanism appears to operate in male germline of early pupae. Confirmation of the existence of dosage compensation in A. gambiae lays the foundation for research into the components of dosage compensation machinery in this important vector species. PMID:26782933

  3. Larval Habitats Characterization and Species Composition of Anopheles Mosquitoes in Tunisia, with Particular Attention to Anopheles maculipennis Complex

    PubMed Central

    Tabbabi, Ahmed; Boussès, Philippe; Rhim, Adel; Brengues, Cécile; Daaboub, Jabeur; Ben-Alaya-Bouafif, Nissaf; Fontenille, Didier; Bouratbine, Aïda; Simard, Frédéric; Aoun, Karim

    2015-01-01

    In Tunisia, malaria transmission has been interrupted since 1980. However, the growing number of imported cases and the persistence of putative vectors stress the need for additional studies to assess the risk of malaria resurgence in the country. In this context, our aim was to update entomological data concerning Anopheles mosquitoes in Tunisia. From May to October of 2012, mosquito larval specimens were captured in 60 breeding sites throughout the country and identified at the species level using morphological keys. Environmental parameters of the larval habitats were recorded. Specimens belonging to the An. maculipennis complex were further identified to sibling species by the ribosomal deoxyribonucleic acid (rDNA)–internal transcribed spacer 2 (ITS2) polymerase chain reaction (PCR) technique. In total, 647 Anopheles larvae were collected from 25 habitats. Four species, including An. labranchiae, An. multicolor, An. sergentii, and An. algeriensis, were morphologically identified. rDNA-ITS2 PCR confirmed that An. labranchiae is the sole member of the An. maculipennis complex in Tunisia. An. labranchiae was collected throughout northern and central Tunisia, and it was highly associated with rural habitat, clear water, and sunlight areas. Larvae of An. multicolor and An. sergentii existed separately or together and were collected in southern Tunisia in similar types of breeding places. PMID:25561567

  4. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.

    PubMed

    Deitz, Kevin C; Reddy, Vamsi P; Reddy, Michael R; Satyanarayanah, Neha; Lindsey, Michael W; Overgaard, Hans J; Jawara, Musa; Caccone, Adalgisa; Slotman, Michel A

    2012-07-01

    Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. PMID:22593601

  5. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae

    PubMed Central

    Baldini, Francesco; Segata, Nicola; Pompon, Julien; Marcenac, Perrine; Robert Shaw, W.; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2014-01-01

    Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by manipulating their reproduction and immunity and thus limiting the spread of numerous human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field anophelines have never been reported. Here we show evidence of Wolbachia infections in Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified Wolbachia sequences in both female and male germlines across two seasons, and determined that these sequences are vertically transmitted from mother to offspring. Whole-genome sequencing of positive samples suggests that the genetic material identified in An. gambiae belongs to a novel Wolbachia strain, related to but distinct from strains infecting other arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes further investigations on the possible use of natural Wolbachia–Anopheles associations to limit malaria transmission. PMID:24905191

  6. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus) dunhami Causey (Diptera: Culicidae) in the Colombian Amazon.

    PubMed

    Ruiz, Freddy; Linton, Yvonne-Marie; Ponsonby, David J; Conn, Jan E; Herrera, Manuela; Quiñones, Martha L; Vélez, Iván D; Wilkerson, Richard C

    2010-11-01

    The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America. PMID:21120360

  7. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) Group: Species Diagnostic and Phylogenetic Relationships

    PubMed Central

    Khrabrova, Natalia V.; Andreeva, Yulia V.; Sibataev, Anuarbek K.; Alekseeva, Svetlana S.; Esenbekova, Perizat A.

    2015-01-01

    Herein, we report the results of study of Anopheles species in Primorsk and Khabarovsk regions of Russia. Three species of the Anopheles hyrcanus group: An. kleini, An. pullus, and An. lesteri were identified by molecular taxonomic diagnostics for the first time in Russia. Surprisingly, An. sinensis, which earlier was considered the only species of Anopheles in Russian Far East, was not observed. We analyzed nucleotide variation in the 610-bp fragment of the 5′ end of the cytochrome c oxidase subunit I (COI) region. All species possessed a distinctive set of COI sequences. A maximum likelihood phylogenetic tree was constructed for members of the hyrcanus group. The examined Anopheles hyrcanus group members could be divided into two major subgroups: subgroup 1 (An. hyrcanus and An. pullus) and subgroup 2 (An. sinensis, An. kleini, and An. lesteri), which were found to be monophyletic. PMID:26149867

  8. The Anopheles maculipennis complex (Diptera: Culicidae) in Germany: an update following recent monitoring activities.

    PubMed

    Kampen, Helge; Schäfer, Mandy; Zielke, Dorothee E; Walther, Doreen

    2016-09-01

    The Anopheles maculipennis complex comprises several sibling species including major vectors of malaria parasites of historic Europe. In present-day Europe, these species are probably more relevant with regard to transmission of pathogens other than plasmodia, such as viruses and dirofilariae. Distribution data facilitating risk assessments and modelling of An. maculipennis complex-borne diseases, however, are generally outdated. In Germany, the occurrence and geographic distribution of the complex species have recently been updated within the framework of a national monitoring programme. In addition to the known indigenous species An. maculipennis, Anopheles messeae and Anopheles atroparvus, the newly described sibling species Anopheles daciae was demonstrated. Distribution maps of these species based on the data collected from 2011 to 2014 are presented, whilst ecological characteristics and vector roles are presented and discussed. PMID:27444437

  9. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus) dunhami Causey (Diptera: Culicidae) in the Colombian Amazon

    PubMed Central

    Ruiz, Freddy; Linton, Yvonne-Marie; Ponsonby, David J; Conn, Jan E; Herrera, Manuela; Quiñones, Martha L; Vélez, Iván D; Wilkerson, Richard C

    2015-01-01

    The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America. PMID:21120360

  10. ANOSPEX: a stochastic, spatially explicit model for studying Anopheles metapopulation dynamics.

    PubMed

    Oluwagbemi, Olugbenga O; Fornadel, Christen M; Adebiyi, Ezekiel F; Norris, Douglas E; Rasgon, Jason L

    2013-01-01

    Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; Ano pheles Spatially-Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics. PMID:23861847

  11. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  12. Salivary Polytene Chromosome Map of Anopheles darlingi, the Main Vector of Neotropical Malaria

    PubMed Central

    Rafael, Míriam S.; Rohde, Cláudia; Bridi, Letícia C.; da Silva Valente Gaiesky, Vera Lúcia; Tadei, Wanderli P.

    2010-01-01

    New photomap of Anopheles (Nyssorhynchus) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus, Anopheles stephensi, and Anopheles gambiae, we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species. PMID:20682862

  13. Assessment of Anopheles salivary antigens as individual exposure biomarkers to species-specific malaria vector bites

    PubMed Central

    2012-01-01

    Background Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis). Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. Methods For this purpose, salivary gland proteins 6 (SG6) and 5′nucleotidases (5′nuc) from An. gambiae (gSG6 and g-5′nuc) and An. funestus (fSG6 and f-5′nuc) were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46) that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n = 45). Results The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5′nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5′nucleotidase protein. Conclusion This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed. PMID:23276246

  14. Mathematical Modeling of Sterile Insect Technology for Control of Anopheles Mosquito

    NASA Astrophysics Data System (ADS)

    Anguelov, R.; Dumont, Y.; Lubuma, J.

    2011-11-01

    Sterile Insect Technology (SIT) is a nonpolluting method of insect control that relies on the release of sterile males. We study the effectiveness of the application of SIT for control of Anopheles mosquito via mathematical modeling. The theoretical analysis of the mathematical model as a dynamical system leads to the formulation of possible strategies for control of the Anopheles mosquito, also illustrated by numerical simulations.

  15. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus

    PubMed Central

    2012-01-01

    Background Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. Results We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. Conclusions We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in

  16. Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes

    PubMed Central

    Carissimo, Guillaume; Eiglmeier, Karin; Reveillaud, Julie; Holm, Inge; Diallo, Mawlouth; Diallo, Diawo; Vantaux, Amélie; Kim, Saorin; Ménard, Didier; Siv, Sovannaroth; Belda, Eugeni; Bischoff, Emmanuel; Antoniewski, Christophe; Vernick, Kenneth D.

    2016-01-01

    Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O’nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity. PMID:27138938

  17. Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes.

    PubMed

    Carissimo, Guillaume; Eiglmeier, Karin; Reveillaud, Julie; Holm, Inge; Diallo, Mawlouth; Diallo, Diawo; Vantaux, Amélie; Kim, Saorin; Ménard, Didier; Siv, Sovannaroth; Belda, Eugeni; Bischoff, Emmanuel; Antoniewski, Christophe; Vernick, Kenneth D

    2016-01-01

    Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O'nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity. PMID:27138938

  18. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    PubMed

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. PMID:26364718

  19. Selection of permethrin resistance in the malaria vector Anopheles stephensi.

    PubMed

    Chakravorthy, B C; Kalyanasundaram, M

    1992-09-01

    The laboratory strain of Anopheles stephensi, a well-known urban malaria vector, was selected with permethrin, a synthetic pyrethroid at LD90 level up to five generations. The selection resulted in the development of resistance in F5 generation to the tune of 13-fold to permethrin and cross-resistance to the tune of 7-fold to cypermethrin, 9-fold to alphamethrin, and 10-fold to deltamethrin. The development of cross-resistance to 4% DDT was also noticed. The susceptibility status against 5% malathion was maintained throughout the five generations. The synergistic effect of piperonyl butoxide with permethrin did not overcome the development of resistance. The development of resistance showed a significant relationship between hatchability and different generations. PMID:1286731

  20. Inhibition of Anopheles gambiae Odorant Receptor Function by Mosquito Repellents*

    PubMed Central

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-01-01

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca2+-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  1. Phormidium animalis (Cyanobacteria: Oscillatoriaceae) supports larval development of Anopheles albimanus.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D

    2003-06-01

    The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region. PMID:12825668

  2. Scanning electron microscopic observations of Anopheles albimanus (Diptera: Culicidae) eggs.

    PubMed

    Rodriguez, M H; Chavez, B; Orozco, A; Loyola, E G; Martinez-Palomo, A

    1992-05-01

    To investigate the existence of subspecies of Anopheles albimanus Wiedeman in southern Mexico, the egg morphology of specimens obtained from several field populations and from insectary-adapted colonies of uniform pupal phenotype was examined. Scanning electron microscopic observations have shown that the eggs of An. albimanus are polymorphic in respect to the size and shape of their floats, but not in their ornamentation. Four types of eggs were found. Differences in the proportion of the various morphological types were statistically significant, although proportions of egg types were variable among individuals within the same population. These observations are suggestive of distinctive populations and warrant further studies using more sensitive methods to investigate sibling species in An. albimanus sensu lato. PMID:1625289

  3. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents.

    PubMed

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-03-20

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca(2+)-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  4. Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.

    PubMed Central

    Rosero, Doris A.; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V.; Luckhart, Shirley

    2013-01-01

    The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia. PMID:27335865

  5. Salinity tolerance of Anopheles farauti Laveran sensu stricto.

    PubMed

    Bell, D; Bryan, J; Cameron, A; Foley, D; Pholsyna, K

    1999-01-01

    To assess the salt tolerance of the malaria vector Anopheles farauti sensu stricto, larvae were collected from a freshwater environment on the outskirts of Honiara, Solomon Islands and placed in trays containing water with salinity varying from freshwater to seawater. Dead larvae and pupae and emerged adults were recorded and preserved. Most adults and nearly half of the larvae and pupae were then subjected to DNA analysis for species identification. No adult An. farauti emerged after prolonged immersion of larvae in undiluted seawater (3.5% salinity), although temporary immersion before pupation was compatible with survival. Salinities of up to 2.2% to 2.5% were compatible with good survival and adult emergence, at least from fourth instars. The results suggest that higher salinities may slow larval development and show that mortality at a given salinity is not uniform. PMID:11061001

  6. Larval salinity tolerances of the sibling species of Anopheles farauti.

    PubMed

    Sweeney, A W

    1987-12-01

    Experiments conducted with laboratory colonies of the sibling species of Anopheles farauti showed larvae of An. farauti No. 1 had a higher salinity tolerance than larvae of An. farauti No. 2 and An. farauti No. 3. The salinity response of field-collected larvae of An. farauti No. 1 from Cowley Beach, Queensland, Australia was similar to that of larvae from two colonies of this species which originated from Papua New Guinea. These results indicate that An. farauti No. 1 is the species which is likely to be found breeding in brackish water whereas the other species may be restricted to freshwater habitats. Laboratory experiments conducted with the colonies and with specimens collected from three localities in northern Queensland indicated that a simple test, based on exposure of first-instar larvae to sea water for 1 hr, should enable identification of An. farauti No. 1 in the field. PMID:3504945

  7. Dose and developmental responses of Anopheles merus larvae to salinity

    PubMed Central

    White, Bradley J.; Kundert, Peter N.; Turissini, David A.; Van Ekeris, Leslie; Linser, Paul J.; Besansky, Nora J.

    2013-01-01

    SUMMARY Saltwater tolerance is a trait that carries both ecological and epidemiological significance for Anopheles mosquitoes that transmit human malaria, as it plays a key role in determining their habitat use and ecological distribution, and thus their local contribution to malaria transmission. Here, we lay the groundwork for genetic dissection of this trait by quantifying saltwater tolerance in three closely related cryptic species and malaria vectors from the Afrotropical Anopheles gambiae complex that are known to differ starkly in their tolerance to salinity: the obligate freshwater species A. gambiae and A. coluzzii, and the saltwater-tolerant species A. merus. We performed detailed comparisons of survivorship under varying salinities, using multiple strains of A. gambiae, A. coluzzii and A. merus, as well as F1 progeny from reciprocal crosses of A. merus and A. coluzzii. Additionally, using immunohistochemistry, we compared the location of three ion regulatory proteins (Na+/K+-ATPase, carbonic anhydrase and Na+/H+-antiporter) in the recta of A. coluzzii and A. merus reared in freshwater or saline water. As expected, we found that A. merus survives exposure to high salinities better than A. gambiae and A. coluzzii. Further, we found that exposure to a salinity level of 15.85 g NaCl l−1 is a discriminating dose that kills all A. gambiae, A. coluzzii and A. coluzzii–A. merus F1 larvae, but does not negatively impact the survival of A. merus. Importantly, phenotypic expression of saltwater tolerance by A. merus is highly dependent upon the developmental time of exposure, and based on immunohistochemistry, salt tolerance appears to involve a major shift in Na+/K+-ATPase localization in the rectum, as observed previously for the distantly related saline-tolerant species A. albimanus. PMID:23966587

  8. Identification of Cryptic Anopheles Mosquito Species by Molecular Protein Profiling

    PubMed Central

    Müller, Pie; Pflüger, Valentin; Wittwer, Matthias; Ziegler, Dominik; Chandre, Fabrice; Simard, Frédéric; Lengeler, Christian

    2013-01-01

    Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information

  9. Dose and developmental responses of Anopheles merus larvae to salinity.

    PubMed

    White, Bradley J; Kundert, Peter N; Turissini, David A; Van Ekeris, Leslie; Linser, Paul J; Besansky, Nora J

    2013-09-15

    Saltwater tolerance is a trait that carries both ecological and epidemiological significance for Anopheles mosquitoes that transmit human malaria, as it plays a key role in determining their habitat use and ecological distribution, and thus their local contribution to malaria transmission. Here, we lay the groundwork for genetic dissection of this trait by quantifying saltwater tolerance in three closely related cryptic species and malaria vectors from the Afrotropical Anopheles gambiae complex that are known to differ starkly in their tolerance to salinity: the obligate freshwater species A. gambiae and A. coluzzii, and the saltwater-tolerant species A. merus. We performed detailed comparisons of survivorship under varying salinities, using multiple strains of A. gambiae, A. coluzzii and A. merus, as well as F1 progeny from reciprocal crosses of A. merus and A. coluzzii. Additionally, using immunohistochemistry, we compared the location of three ion regulatory proteins (Na(+)/K(+)-ATPase, carbonic anhydrase and Na(+)/H(+)-antiporter) in the recta of A. coluzzii and A. merus reared in freshwater or saline water. As expected, we found that A. merus survives exposure to high salinities better than A. gambiae and A. coluzzii. Further, we found that exposure to a salinity level of 15.85 g NaCl l(-1) is a discriminating dose that kills all A. gambiae, A. coluzzii and A. coluzzii-A. merus F1 larvae, but does not negatively impact the survival of A. merus. Importantly, phenotypic expression of saltwater tolerance by A. merus is highly dependent upon the developmental time of exposure, and based on immunohistochemistry, salt tolerance appears to involve a major shift in Na(+)/K+-ATPase localization in the rectum, as observed previously for the distantly related saline-tolerant species A. albimanus. PMID:23966587

  10. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  11. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus

    PubMed Central

    2012-01-01

    Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal

  12. Rapid Discrimination between Anopheles gambiae s.s. and Anopheles arabiensis by High-Resolution Melt (HRM) Analysis

    PubMed Central

    Zianni, Michael R.; Nikbakhtzadeh, Mahmood R.; Jackson, Bryan T.; Panescu, Jenny; Foster, Woodbridge A.

    2013-01-01

    There is a need for more cost-effective options to more accurately discriminate among members of the Anopheles gambiae complex, particularly An. gambiae and Anopheles arabiensis. These species are morphologically indistinguishable in the adult stage, have overlapping distributions, but are behaviorally and ecologically different, yet both are efficient vectors of malaria in equatorial Africa. The method described here, High-Resolution Melt (HRM) analysis, takes advantage of minute differences in DNA melting characteristics, depending on the number of incongruent single nucleotide polymorphisms in an intragenic spacer region of the X-chromosome-based ribosomal DNA. The two species in question differ by an average of 13 single-nucleotide polymorphisms giving widely divergent melting curves. A real-time PCR system, Bio-Rad CFX96, was used in combination with a dsDNA-specific dye, EvaGreen, to detect and measure the melting properties of the amplicon generated from leg-extracted DNA of selected mosquitoes. Results with seven individuals from pure colonies of known species, as well as 10 field-captured individuals unambiguously identified by DNA sequencing, demonstrated that the method provided a high level of accuracy. The method was used to identify 86 field mosquitoes through the assignment of each to the two common clusters with a high degree of certainty. Each cluster was defined by individuals from pure colonies. HRM analysis is simpler to use than most other methods and provides comparable or more accurate discrimination between the two sibling species but requires a specialized melt-analysis instrument and software. PMID:23543777

  13. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon

    PubMed Central

    Chouaibou, Mouhamadou; Simard, Frédéric; Chandre, Fabrice; Etang, Josiane; Darriet, Frédéric; Hougard, Jean-Marc

    2006-01-01

    Background Recent field studies indicated that insecticide-treated bednets (ITNs) maintain their efficacy despite a high frequency of the knock-down resistance (kdr) gene in Anopheles gambiae populations. It was essential to evaluate ITNs efficacy in areas with metabolic-based resistance. Methods Bifenthrin was used in this experiment because it is considered a promising candidate for bednets impregnation. Nets were treated at 50 mg/m2, a dose that has high insecticidal activity on kdr mosquitoes and at 5 mg/m2, a dose that kills 95% of susceptible mosquitoes under laboratory conditions with 3 minutes exposure. Bednets were holed to mimic physical damage. The trial was conducted in three experimental huts from Pitoa, North-Cameroon where Anopheles gambiae displays metabolic resistance and cohabits with An. funestus. Results Bifenthrin at 50 mg/m2 significantly reduced anophelines' entry rate (>80%). This was not observed at 5 mg/m2. Both treatments increased exophily in An. gambiae, and to a lesser extent in An. funestus. With bifenthrin at high dosage, over 60% reduction in blood feeding and 75–90% mortality rates were observed in both vectors. Despite presence of holes, only a single An. gambiae and two An. funestus females were collected inside the treated net, and all were found dead. The same trends were observed with low dosage bifenthrin though in most cases, no significant difference was found with the untreated control net. Conclusion Bifenthrin-impregnated bednets at 50 mg/m2 were efficient in the reduction of human-vector contact in Pitoa. Considerable personal protection was gained against An. funestus and metabolic pyrethroid resistant An. gambiae populations. PMID:16961938

  14. New highland distribution records of multiple Anopheles species in the Ecuadorian Andes

    PubMed Central

    2011-01-01

    Background Several recent climate change reviews have stressed the possibility of some malaria vectors occupying regions of higher altitudes than previously recorded. Indeed, highland malaria has been observed in several African nations, possibly attributable to changes in land use, vector control and local climate. This study attempts to expand the current knowledge of the distribution of common Anopheles species in Ecuador, with particular attention to highland regions (> 500 m) of the Andes. Methods Extensive field collections of larvae were undertaken in 2008, 2009 and 2010 throughout all regions of Ecuador (except the lower-altitude Amazonian plain) and compared to historical distribution maps reproduced from the 1940s. Larvae were identified using both a morphological key and sequencing of the 800 bp region of the CO1 mitochondrial gene. In addition, spatial statistics (Getis-Ord Hotspot Analysis: Gi*) were used to determine high and low-density clusters of each species in Ecuador. Results Distributions have been updated for five species of Anopheles in Ecuador: Anopheles albimanus, Anopheles pseudopunctipennis, Anopheles punctimacula, Anopheles eiseni and Anopheles oswaldoi s.l.. Historical maps indicate that An. pseudopunctipennis used to be widespread in highland Andean valleys, while other species were completely restricted to lowland areas. By comparison, updated maps for the other four collected species show higher maximum elevations and/or more widespread distributions in highland regions than previously recorded. Gi* analysis determined some highland hot spots for An. albimanus, but only cold spots for all other species. Conclusions This study documents the establishment of multiple anopheline species in high altitude regions of Ecuador, often in areas where malaria eradication programs are not focused. PMID:21835004

  15. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  16. Comparative Studies on the Stenogamous and Eurygamous Behavior of Eight Anopheles Species of the Hyrcanus Group (Diptera: Culicidae) in Thailand

    PubMed Central

    Wijit, Adulsak; Taai, Kritsana; Dedkhad, Watcharatip; Hempolchom, Chayanit; Thongsahuan, Sorawat; Srisuka, Wichai; Otsuka, Yasushi; Fukuda, Masako; Saeung, Atiporn

    2016-01-01

    Establishment of laboratory colony is essential for mosquito-borne-disease research. Mating behavior of stenogamous Anopheles peditaeniatus and seven eurygamous species (Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae (=An. lesteri), Anopheles pursati and Anopheles sinensis), were investigated and compared in this study. The self-mating success of adult mosquitoes in different size cages at two density resting surface (DRS) values, 3.6 and 7.2, was statistically significant between stenogamous and eurygamous species. The results obtained from comparative measurements of specific characters in adult females (maxillary palpomere and antennal sensilla characters) and males (wing and genitalia) indicate those characters might influence the mating success of An. peditaeniatus in a small cage. The gonostylus of An. peditaeniatus was shorter than the eurygamous species. Additionally, the lower frequency of clasper movement and shorter mating time could be important mechanisms that control the stenogamous behavior of An. peditaeniatus. Interestingly, for the first time, a cluster of large sensilla coeloconica was recorded on the antenna of An. argyropus and An. peditaeniatus females. There was no statistically significant difference in the mean number per female of those large antennal sensilla coeloconica among six of the eurygamous species. PMID:27023618

  17. Comparative Studies on the Stenogamous and Eurygamous Behavior of Eight Anopheles Species of the Hyrcanus Group (Diptera: Culicidae) in Thailand.

    PubMed

    Wijit, Adulsak; Taai, Kritsana; Dedkhad, Watcharatip; Hempolchom, Chayanit; Thongsahuan, Sorawat; Srisuka, Wichai; Otsuka, Yasushi; Fukuda, Masako; Saeung, Atiporn

    2016-01-01

    Establishment of laboratory colony is essential for mosquito-borne-disease research. Mating behavior of stenogamous Anopheles peditaeniatus and seven eurygamous species (Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae (=An. lesteri), Anopheles pursati and Anopheles sinensis), were investigated and compared in this study. The self-mating success of adult mosquitoes in different size cages at two density resting surface (DRS) values, 3.6 and 7.2, was statistically significant between stenogamous and eurygamous species. The results obtained from comparative measurements of specific characters in adult females (maxillary palpomere and antennal sensilla characters) and males (wing and genitalia) indicate those characters might influence the mating success of An. peditaeniatus in a small cage. The gonostylus of An. peditaeniatus was shorter than the eurygamous species. Additionally, the lower frequency of clasper movement and shorter mating time could be important mechanisms that control the stenogamous behavior of An. peditaeniatus. Interestingly, for the first time, a cluster of large sensilla coeloconica was recorded on the antenna of An. argyropus and An. peditaeniatus females. There was no statistically significant difference in the mean number per female of those large antennal sensilla coeloconica among six of the eurygamous species. PMID:27023618

  18. Role of species composition in malaria transmission by the Anopheles funestus group (Diptera: Culicidae) in Ghana.

    PubMed

    Dadzie, Samuel K; Brenyah, Ruth; Appawu, Maxwell A

    2013-06-01

    Malaria remains a public health problem in Ghana, with Anopheles gambiae and Anopheles funestus as the predominant vectors. While much information exists on the species composition of An. gambiae, very little exists for An. funestus. This study was carried out to determine the species composition of An. funestus Giles populations from three ecological areas in Ghana and investigate their role in malaria transmission. Mosquitoes were collected using human landing and pyrethrum spray methods. A total of 10,254 Anopheles individuals were collected, out of which An. funestus constituted 53.6% (5,496). An. funestus sensu stricto (s.s.) and Anopheles lessoni were identified as the only members of the An. funestus group in all three ecological areas. All 62 sporozoite positive specimens that were identified as An. funestus s.s. were highly anthropophilic with a human blood index in the range of 80-96%, whereas more than 83% of the An. leesoni had fed on either bovine, goat, or sheep. Malaria transmission was higher in the Sahel savannah area than the rest of the ecological zones, with An. funestus s.s. being implicated as a vector of malaria in all ecological zones. Anopheles leesoni occurred in all the ecological areas but played no role in malaria transmission. The study established the importance of An. funestus s.s. in malaria transmission in Ghana. PMID:23701614

  19. A simple Chelex protocol for DNA extraction from Anopheles spp.

    PubMed

    Musapa, Mulenga; Kumwenda, Taida; Mkulama, Mtawa; Chishimba, Sandra; Norris, Douglas E; Thuma, Philip E; Mharakurwa, Sungano

    2013-01-01

    Endemic countries are increasingly adopting molecular tools for efficient typing, identification and surveillance against malaria parasites and vector mosquitoes, as an integral part of their control programs. For sustainable establishment of these accurate approaches in operations research to strengthen malaria control and elimination efforts, simple and affordable methods, with parsimonious reagent and equipment requirements are essential. Here we present a simple Chelex-based technique for extracting malaria parasite and vector DNA from field collected mosquito specimens. We morphologically identified 72 Anopheles gambiae sl. from 156 mosquitoes captured by pyrethrum spray catches in sleeping rooms of households within a 2,000 km(2) vicinity of the Malaria Institute at Macha. After dissection to separate the head and thorax from the abdomen for all 72 Anopheles gambiae sl. mosquitoes, the two sections were individually placed in 1.5 ml microcentrifuge tubes and submerged in 20 μl of deionized water. Using a sterile pipette tip, each mosquito section was separately homogenized to a uniform suspension in the deionized water. Of the ensuing homogenate from each mosquito section, 10 μl was retained while the other 10 μl was transferred to a separate autoclaved 1.5 ml tube. The separate aliquots were subjected to DNA extraction by either the simplified Chelex or the standard salting out extraction protocol(9,10). The salting out protocol is so-called and widely used because it employs high salt concentrations in lieu of hazardous organic solvents (such as phenol and chloroform) for the protein precipitation step during DNA extraction(9). Extracts were used as templates for PCR amplification using primers targeting arthropod mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) subunit 4 gene (ND4) to check DNA quality, a PCR for identification of Anopheles gambiae sibling species(10) and a nested PCR for typing of Plasmodium falciparum infection

  20. Systematics of the Oswaldoi Complex (Anopheles, Nyssorhynchus) in South America

    PubMed Central

    2013-01-01

    Background Effective malaria control relies on accurate identification of those Anopheles mosquitoes responsible for the transmission of Plasmodium parasites. Anopheles oswaldoi s.l. has been incriminated as a malaria vector in Colombia and some localities in Brazil, but not ubiquitously throughout its Neotropical range. This evidence together with variable morphological characters and genetic differences supports that An. oswaldoi s.l. compromises a species complex. The recent fully integrated redescription of An. oswaldoi s.s. provides a solid taxonomic foundation from which to molecularly determine other members of the complex. Methods DNA sequences of the Second Internal Transcribed Spacer (ITS2 - rDNA) (n = 192) and the barcoding region of the Cytochrome Oxidase I gene (COI - mtDNA) (n = 110) were generated from 255 specimens of An. oswaldoi s.l. from 33 localities: Brazil (8 localities, including the lectotype series of An. oswaldoi), Ecuador (4), Colombia (17), Trinidad and Tobago (1), and Peru (3). COI sequences were analyzed employing the Kimura-two-parameter model (K2P), Bayesian analysis (MrBayes), Mixed Yule-Coalescent model (MYC, for delimitation of clusters) and TCS genealogies. Results Separate and combined analysis of the COI and ITS2 data sets unequivocally supported four separate species: two previously determined (An. oswaldoi s.s. and An. oswaldoi B) and two newly designated species in the Oswaldoi Complex (An. oswaldoi A and An. sp. nr. konderi). The COI intra- and inter-specific genetic distances for the four taxa were non-overlapping, averaging 0.012 (0.007 to 0.020) and 0.052 (0.038 to 0.064), respectively. The concurring four clusters delineated by MrBayes and MYC, and four independent TCS networks, strongly confirmed their separate species status. In addition, An. konderi of Sallum should be regarded as unique with respect to the above. Despite initially being included as an outgroup taxon, this species falls well within the

  1. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  2. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    PubMed Central

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  3. Biology of Anopheles saperoi, an Endemic Species in Okinawajima, the Ryukyu Archipelago, Japan.

    PubMed

    Mannen, Kosuke; Toma, Takako; Minakawa, Noboru; Higa, Yukiko; Miyagi, Ichiro

    2016-03-01

    Biological studies of Anopheles saperoi were conducted using larval and adult mosquito collections in the northern part of Okinawajima of the Ryukyu Archipelago from June 2009 to July 2010. Anopheles saperoi was the most collected species in the northern Okinawajima, except Motobu Peninsula, where it was not collected. The southern distribution of An. saperoi was Sugita Stream, Nago City. Anopheles saperoi was collected throughout the year with reproduction (gonotrophic cycle) observed year-round. Immature densities varied for Hinna and Yona streams, and were negatively affected by precipitation patterns. Human attraction activity of females varied for by study area and collection time and was positively affected by temperature, but negatively by heavy rainfall. The greatest female human attraction activity was observed during 3:00-5:00 p.m., with peak at twilight. Parity rates varied from 23.1% to 83.3% throughout the year. PMID:27105212

  4. Distribution of the sibling species of Anopheles farauti in the Cape York Peninsula, northern Queensland, Australia.

    PubMed

    Sweeney, A W; Cooper, R D; Frances, S P

    1990-09-01

    The sibling species of Anopheles farauti s.l. were collected in larval and adult surveys from 34 localities on Cape York Peninsula and were identified by isoenzyme electrophoresis. The most common species near the coast was An. farauti 1 which was often found breeding within 100 m of the sea in either brackish or freshwater habitats. Larvae of the other 2 species were not found in brackish water which accords with previous laboratory observations of their lower salinity tolerance. Anopheles farauti 2 appears to have the widest distribution of the 3 sibling species on Cape York Peninsula as it was common in both coastal and inland localities. Anopheles farauti 3 was rarely found near the coast. In one locality at Lockhart River near the east coast of the peninsula larvae of the 3 species were found together in a small muddy creek. PMID:2230771

  5. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    PubMed Central

    2014-01-01

    Background Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods The attraction of laboratory-reared and wild Anopheles gambiae complex mosquitoes to CO2 generated from yeast-fermentation of molasses was assessed under semi-field and field conditions in western Kenya. In the field, responses of wild Anopheles funestus were also assessed. Attraction of the mosquitoes to a synthetic mosquito attractant, Mbita blend (comprising ammonia, L-lactic acid, tetradecanoic acid and 3-methyl-1-butanol) when augmented with CO2 generated from yeast fermentation of either molasses or sucrose was also investigated. Results In semi-field, the release rate of CO2 and proportion of An. gambiae mosquitoes attracted increased in tandem with an increase in the quantity of yeast-fermented molasses up to an optimal ratio of molasses and dry yeast. More An. gambiae mosquitoes were attracted to a combination of the Mbita blend plus CO2 produced from fermenting molasses than the Mbita blend plus CO2 from yeast-fermented sucrose. In the field, significantly more female An. gambiae sensu lato mosquitoes were attracted to the Mbita blend augmented with CO2 produced by fermenting 500 g of molasses compared to 250 g of sucrose or 250 g of molasses. Similarly, significantly more An. funestus, Culex and other anopheline mosquito species were attracted to the Mbita blend augmented with CO2 produced from fermenting molasses than the Mbita blend with CO2 produced from sucrose. Augmenting the Mbita blend with CO2 produced from molasses was associated with high catches of blood-fed An. gambiae s.l. and An. funestus

  6. DDT and pyrethroid resistance in Anopheles arabiensis from South Africa

    PubMed Central

    2013-01-01

    Background Pyrethroid resistance has been well documented in Anopheles arabiensis, one of the major African malaria vectors, and the predominant malaria vector in South Africa. Methods In this study, the genetic basis of pyrethroid resistance in a selected laboratory strain of An. arabiensis from South Africa was investigated using a custom-made microarray, known as the An. gambiae detoxification chip. Results A large number of P450 genes were over-transcribed, as well as a suite of redox genes and glutathione S-transferases. The five genes that showed the highest level of gene transcription when compared with an insecticide susceptible strain were: CYP6AG2, CYPZ1, TPX2, CYPZ2 and CYP6P1. Conclusions Permethrin resistance in South African An. arabiensis is associated with increased transcription of multiple genes, and a large proportion of these genes were also previously recorded as over-transcribed in another An. arabiensis strain selected for resistance to DDT with cross-resistance to deltamethrin. The deltamethrin resistance developed de novo in the DDT-selected strain and is most likely due to increased transcription of those genes associated with DDT resistance. However, of particular interest was the fact that the strain selected for resistance to pyrethroids did not develop de novo resistance to DDT. These differences are compared and discussed. PMID:23924547

  7. Entomologic inoculation rates of Anopheles arabiensis in southwestern Ethiopia.

    PubMed

    Massebo, Fekadu; Balkew, Meshesha; Gebre-Michael, Teshome; Lindtjørn, Bernt

    2013-09-01

    We collected anophelines every second week for one year from randomly selected houses in southwestern Ethiopia by using Centers for Disease Control (CDC) light traps, pyrethrum spray catches, and artificial pit shelter constructions to detect circumsporozoite proteins and estimate entomologic inoculation rates (EIRs). Of 3,678 Anopheles arabiensis tested for circumsporozoite proteins, 11 were positive for Plasmodium falciparum and three for P. vivax. The estimated annual P. falciparum EIR of An. arabiensis was 17.1 infectious bites per person per year (95% confidence interval = 7.03-34.6) based on CDC light traps and 0.1 infectious bites per person per year based on pyrethrum spray catches. The P. falciparum EIRs from CDC light traps varied from 0 infectious bites per person per year (in 60% of houses) to 73.2 infectious bites per person per year in the house nearest the breeding sites. Risk of exposure to infectious bites was higher in wet months than dry months, with a peak in April (9.6 infectious bites per person per month), the period of highest mosquito density. PMID:23878184

  8. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  9. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

    PubMed Central

    2014-01-01

    Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region. PMID:24885508

  10. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes

    PubMed Central

    Dieme, Constentin; Bechah, Yassina; Socolovschi, Cristina; Audoly, Gilles; Berenger, Jean-Michel; Faye, Ousmane; Raoult, Didier; Parola, Philippe

    2015-01-01

    A growing number of recent reports have implicated Rickettsia felis as a human pathogen, paralleling the increasing detection of R. felis in arthropod hosts across the globe, primarily in fleas. Here Anopheles gambiae mosquitoes, the primary malarial vectors in sub-Saharan Africa, were fed with either blood meal infected with R. felis or infected cellular media administered in membrane feeding systems. In addition, a group of mosquitoes was fed on R. felis-infected BALB/c mice. The acquisition and persistence of R. felis in mosquitoes was demonstrated by quantitative PCR detection of the bacteria up to day 15 postinfection. R. felis was detected in mosquito feces up to day 14. Furthermore, R. felis was visualized by immunofluorescence in salivary glands, in and around the gut, and in the ovaries, although no vertical transmission was observed. R. felis was also found in the cotton used for sucrose feeding after the mosquitoes were fed infected blood. Natural bites from R. felis-infected An. gambiae were able to cause transient rickettsemias in mice, indicating that this mosquito species has the potential to be a vector of R. felis infection. This is particularly important given the recent report of high prevalence of R. felis infection in patients with “fever of unknown origin” in malaria-endemic areas. PMID:26056256

  11. Landing responses of Anopheles gambiae elicited by oxocarboxylic acids.

    PubMed

    Healy, T P; Copland, M J W; Cork, A; Przyborowska, A; Halket, J M

    2002-06-01

    A wind tunnel bioassay and video system were used to observe Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) landing on glass cylinders, heated to human skin temperature (34 degrees C) and treated with aqueous solutions of oxocarboxylic acids. Six of nine compounds tested: 2-oxobutanoic, 2-oxo-3-methylbutanoic, 2-oxopentanoic, 2-oxo-3-methylpentanoic, 2-oxo-4-methylpentanoic and 2-oxohexanoic elicited significant landing responses in comparison to a water control. Landing responses appeared to be restricted to C4-C6, 2-oxocarboxylic acids. A solution of 1 microg/microL of 2-oxopentanoic acid elicited the highest level of response that was temperature dependent: significant numbers of landings occurred only within +/-2 degrees C of human skin temperature. Chemical analysis by linked gas-liquid chromatography/mass spectrometry of methyl-oxime, trimethylsilyl derivatized samples of human sweat extracts revealed the presence of 2-oxopropanoic (pyruvic) acid and three behaviourally active, branched chain acids: 2-oxo-3-methylbutanoic, 2-oxo-3-methylpentanoic and 2-oxo-4-methylpentanoic. PMID:12109705

  12. The role of hemocytes in Anopheles gambiae antiplasmodial immunity.

    PubMed

    Ramirez, Jose Luis; Garver, Lindsey S; Brayner, Fábio André; Alves, Luiz Carlos; Rodrigues, Janneth; Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses. PMID:23886925

  13. The Anopheles innate immune system in the defense against malaria infection

    PubMed Central

    Clayton, April M.; Dong, Yuemei; Dimopoulos, George

    2014-01-01

    The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite’s successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito’s innate immune system. This review will discuss our current understanding of the Anopheles mosquito’s innate immune responses against the malaria parasite Plasmodium and the influence of the insect’s intestinal microbiota on parasite infection. PMID:23988482

  14. Field evaluation of deet against Anopheles farauti at Ndendo (Santa Cruz) Island, Solomon Islands.

    PubMed

    Frances, S P; Bugoro, H; Butafa, C; Cooper, R D

    2010-09-01

    Field efficacy studies comparing two formulations of deet (N,N-diethyl-3-methylbenzamide) against mosquitoes were conducted on Ndendo Island, Solomon Islands. The repellent study was conducted at Pala village in November 2008, and the only mosquito species collected was Anopheles farauti Laveran. A formulation containing 35% deet in a gel provided >95% protection for 2 h, whereas a formulation containing 40% deet in ethanol in a spray applicator provided >95% for only 1 h. This field study demonstrated again that repellents containing deet provide a relatively short period of complete protection against Anopheles spp. PMID:20939380

  15. The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea.

    PubMed

    Vannini, Laura; Bowen, John Hunter; Reed, Tyler W; Willis, Judith H

    2015-10-01

    Arthropod cuticles have, in addition to chitin, many structural proteins belonging to diverse families. Information is sparse about how these different cuticular proteins contribute to the cuticle. Most cuticular proteins lack cysteine with the exception of two families (CPAP1 and CPAP3), recently described, and the one other that we now report on that has a motif of 16 amino acids first identified in a protein, Bc-NCP1, from the cuticle of nymphs of the cockroach, Blaberus craniifer (Jensen et al., 1997). This motif turns out to be present as two or three copies in one or two proteins in species from many orders of Hexapoda. We have named the family of cuticular proteins with this motif CPCFC, based on its unique feature of having two cysteines interrupted by five amino acids (C-X(5)-C). Analysis of the single member of the family in Anopheles gambiae (AgamCPCFC1) revealed that its mRNA is most abundant immediately following ecdysis in larvae, pupae and adults. The mRNA is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization revealed the presence of the protein, generally in endocuticle of legs and antennae. A phylogenetic analysis found proteins bearing this motif in 14 orders of Hexapoda, but not in some species for which there are complete genomic data. Proteins were much longer in Coleoptera and Diptera than in other orders. In contrast to the 1 and occasionally 2 copies in other species, a dragonfly, Ladona fulva, has at least 14 genes coding for family members. CPCFC proteins were present in four classes of Crustacea with 5 repeats in one species, and motifs that ended C-X(7)-C in Malacostraca. They were not detected, except as obvious contaminants, in any other arthropod subphyla or in any other phylum. The conservation of CPCFC proteins throughout the Pancrustacea and the small number of copies in individual species indicate that, when present, these proteins are

  16. Filling the Gap 115 Years after Ronald Ross: The Distribution of the Anopheles coluzzii and Anopheles gambiae s.s from Freetown and Monrovia, West Africa

    PubMed Central

    de Souza, Dziedzom K.; Koudou, Benjamin G.; Bolay, Fatorma K.; Boakye, Daniel A.; Bockarie, Moses J.

    2013-01-01

    It was in Freetown, Sierra Leone, that the malaria mosquito Anopheles coastalis, now known as Anopheles gambiae, was first discovered as the vector of malaria, in 1899. That discovery led to a pioneering vector research in Sierra Leone and neighbouring Liberia, where mosquito species were extensively characterized. Unfortunately, the decade long civil conflicts of the 1990s, in both countries, resulted in a stagnation of the once vibrant research on disease vectors. This paper attempts to fill in some of the gaps on what is now known of the distribution of the sibling species of the An. gambiae complex, and especially the An. coluzzii and An. gambiae s.s, formerly known as the An. gambiae molecular M and S forms respectively, in the cities of Freetown and Monrovia. PMID:23741429

  17. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  18. Innate host selection in Anopheles vestitipennis from southern Mexico.

    PubMed

    Ullo, Armando; Arredondo-Jiménez, Juan I; Rodríguez, Mario H; Fernández-Salas, Ildefonso; González-Cerón, Lilia

    2004-12-01

    We assessed the degree of host specificity of the purported anthropophilic and zoophilic populations of Anopheles vestitipennis. A series of experiments were conducted in an experimental hut with 3 compartments lined with nylon netting. A central release compartment and 2 side compartments were each baited with equivalent surface area of human and animal baits. Wild An. vestitipennis collected on each host, as well as corresponding F1 mosquitoes, were released in the central compartment. Overall, 22% (166/748) of all mosquitoes collected on humans were recaptured in the human compartment, whereas 23% of mosquitoes originally collected on animals were recaptured in this compartment. Experiments with F1 females resulted in 59% human selection rates, a 2.6 times increase compared with wild anthropophilic females, while a 1.2 times decrease in human selection rates (from 24% to 20%) was observed in F1 of wild zoophilic females. Host selection experiments in the Lacandón Forest revealed the same trend. These findings suggested that the complex mode of inheritance that resulted in female mosquitoes showing a stronger tendency to return to their preferred host was obscured by the nature of the method of collection, i.e., wild parental females selecting a host either innately or opportunistically, the majority of which were likely innately attracted. This was revealed by F1 females, of which, when given the choice to select a host, a higher proportion opted for the preferred one. The results presented here are in accordance with other studies that identified a subpopulation of An. vestitipennis in southern Mexico with higher anthropophily. PMID:15669372

  19. Spatial distribution and male mating success of Anopheles gambiae swarms

    PubMed Central

    2011-01-01

    Background Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble

  20. GENETIC ISOLATION WITHIN THE MALARIA MOSQUITO ANOPHELES MELAS

    PubMed Central

    Deitz, Kevin C; Athrey, Giri; Reddy, Michael R; Overgaard, Hans J; Matias, Abrahan; Jawara, Musa; della Torre, Alessandra; Petrarca, Vincenzo; Pinto, Joao; Kiszewski, Anthony; Kengne, Pierre; Costantini, Carlo; Caccone, Adalgisa; Slotman, Michel A

    2014-01-01

    Anopheles melas is a brackish water-breeding member of the An. gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analyzed 15 microsatellite markers and 1,161 bp of mtDNA in 11 An. melas populations collected throughout its range. Compared to its sibling species An. gambiae, An. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat which is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa, and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three An. melas clusters is on par with levels of divergence between other species of the An. gambiae complex, and no support for monophyly was observed in a maximum likelihood phylogenetic analysis. Finally, an Approximate Bayesian Analysis of microsatellite data indicates that Bioko Island An. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10,000-11,000 years ago). This study has exposed species level genetic divergence within An. melas, and also has implications for control of this malaria vector. PMID:22882458

  1. Breakdown in the Process of Incipient Speciation in Anopheles gambiae

    PubMed Central

    Nwakanma, Davis C.; Neafsey, Daniel E.; Jawara, Musa; Adiamoh, Majidah; Lund, Emily; Rodrigues, Amabelia; Loua, Kovana M.; Konate, Lassana; Sy, Ngayo; Dia, Ibrahima; Awolola, T. Samson; Muskavitch, Marc A. T.; Conway, David J.

    2013-01-01

    Understanding genetic causes and effects of speciation in sympatric populations of sexually reproducing eukaryotes is challenging, controversial, and of practical importance for controlling rapidly evolving pests and pathogens. The major African malaria vector mosquito Anopheles gambiae sensu stricto (s.s.) is considered to contain two incipient species with strong reproductive isolation, hybrids between the M and S molecular forms being very rare. Following recent observations of higher proportions of hybrid forms at a few sites in West Africa, we conducted new surveys of 12 sites in four contiguous countries (The Gambia, Senegal, Guinea-Bissau, and Republic of Guinea). Identification and genotyping of 3499 A. gambiae s.s. revealed high frequencies of M/S hybrid forms at each site, ranging from 5 to 42%, and a large spectrum of inbreeding coefficient values from 0.11 to 0.76, spanning most of the range expected between the alternative extremes of panmixia and assortative mating. Year-round sampling over 2 years at one of the sites in The Gambia showed that M/S hybrid forms had similar relative frequencies throughout periods of marked seasonal variation in mosquito breeding and abundance. Genome-wide scans with an Affymetrix high-density single-nucleotide polymorphism (SNP) microarray enabled replicate comparisons of pools of different molecular forms, in three separate populations. These showed strong differentiation between M and S forms only in the pericentromeric region of the X chromosome that contains the molecular form-specific marker locus, with only a few other loci showing minor differences. In the X chromosome, the M/S hybrid forms were more differentiated from M than from S forms, supporting a hypothesis of asymmetric introgression and backcrossing. PMID:23335339

  2. Pteridine fluorescence for age determination of Anopheles mosquitoes.

    PubMed

    Wu, D; Lehane, M J

    1999-02-01

    The age structure of mosquito populations is of great relevance to understanding the dynamics of disease transmission and in monitoring the success of control operations. Unfortunately, the ovarian dissection methods currently available for determining the age of adult mosquitoes are technically difficult, slow and may be of limited value, because the proportion of diagnostic ovarioles in the ovary declines with age. By means of reversed-phase HPLC this study investigated the malaria vectors Anopheles gambiae and An. stephensi to see if changes in fluorescent pteridine pigments, which have been used in other insects to determine the age of field-caught individuals, may be useful for age determination in mosquitoes. Whole body fluorescence was inversely proportional to age (P < 0.001, r2 > 91%) up to 30 days postemergence, with the regression values: y = 40580-706x for An. gambiae, and y = 52896-681x for An. stephensi. In both species the main pteridines were 6-biopterin, pterin-6-carboxylic acid and an unidentified fluorescent compound. An. gambiae had only 50-70% as much fluorescence as An. stephensi, and fluorescent compounds were relatively more concentrated in the head than in the thorax (ratios 1:0.8 An. gambiae; 1:0.5 An. stephensi). The results of this laboratory study are encouraging. It seems feasible that this simpler and faster technique of fluorescence quantification could yield results of equivalent accuracy to the interpretation of ovarian dissection. A double-blind field trial comparing the accuracy of this technique to marked, released and recaptured mosquitoes is required to test the usefulness of the pteridine method in the field. PMID:10194749

  3. The Anopheles dirus complex: spatial distribution and environmental drivers

    PubMed Central

    Obsomer, Valérie; Defourny, Pierre; Coosemans, Marc

    2007-01-01

    Background The Anopheles dirus complex includes efficient malaria vectors of the Asian forested zone. Studies suggest ecological and biological differences between the species of the complex but variations within species suggest possible environmental influences. Behavioural variation might determine vector capacity and adaptation to changing environment. It is thus necessary to clarify the species distributions and the influences of environment on behavioural heterogeneity. Methods A literature review highlights variation between species, influences of environmental drivers, and consequences on vector status and control. The localisation of collection sites from the literature and from a recent project (MALVECASIA) produces detailed species distributions maps. These facilitate species identification and analysis of environmental influences. Results The maps give a good overview of species distributions. If species status partly explains behavioural heterogeneity, occurrence and vectorial status, some environmental drivers have at least the same importance. Those include rainfall, temperature, humidity, shade, soil type, water chemistry and moon phase. Most factors are probably constantly favourable in forest. Biological specificities, behaviour and high human-vector contact in the forest can explain the association of this complex with high malaria prevalence, multi-drug resistant Plasmodium falciparum and partial control failure of forest malaria in Southeast Asia. Conclusion Environmental and human factors seem better than species specificities at explaining behavioural heterogeneity. Although forest seems essential for mosquito survival, adaptations to orchards and wells have been recorded. Understanding the relationship between landscape components and mosquito population is a priority in foreseeing the influence of land-cover changes on malaria occurrence and in shaping control strategies for the future. PMID:17341297

  4. Larval habitat of Anopheles philippinensis: a vector of malaria in Bangladesh.

    PubMed Central

    Elias, M.

    1996-01-01

    This article reviews the various types of larval habitat of the malaria vector Anopheles philippinensis Ludlow in Bangladesh and characterizes its breeding ecology. Discussed also are the possible implications of the environmental changes on its breeding habitats resulting from intensified land use brought about by population increase and developments in irrigation and water resources. PMID:8823969

  5. Anopheles of Bolivia: new records with an updated and annotated checklist.

    PubMed

    Lardeux, Frédéric; Chávez, Tamara; Rodríguez, Roberto; Torrez, Libia

    2009-05-01

    Anopheles squamifemur has been identified from CDC light trap collections carried out at Arca de Israel, a small community located in the extreme north-east of Bolivia (Pando Department) on the banks of the river Madera, on the border with Brazil. Anopheles costai and An. forattinii have been identified in place of An. mediopunctatus which has been removed from the Bolivian list of Anopheles species. The first identification of An. trinkae in Bolivia by Dr. J.C. Lien in 1984 is cleared. The presence of An. deaneorum in Bolivia has been confirmed by our mosquito captures carried out in Guayaramerín (Pando Department, north-east of Bolivia), a border city separated from the type locality of An. deaneorum, the Brasilian city of Guajara-Mirin, by the large Mamoré River. These new findings increase to 43 the total number of known Anopheles species for Bolivia for which an updated and partially annotated checklist is given. PMID:19393981

  6. Using a Near-Infrared Spectrometer to Estimate the Age of Anopheles Mosquitoes Exposed to Pyrethroids

    PubMed Central

    Sikulu, Maggy T.; Majambere, Silas; Khatib, Bakar O.; Ali, Abdullah S.; Hugo, Leon E.; Dowell, Floyd E.

    2014-01-01

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210). Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed. PMID:24594705

  7. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis

    PubMed Central

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  8. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis.

    PubMed

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  9. Using a near-infrared spectrometer to estimate the age of Anopheles mosquitoes exposed to pyrethroids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as ,7 or $7 d ol...

  10. Batkoa apiculata (Thaxter) Humber affecting Anopheles (Diptera: Culicidae) in the municipality of Una, Southern Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveys for fungal pathogens affecting adult mosquitoes from the genus Anopheles were conducted in flooded and swamp-like natural breeding sites near residences in the center and suburbs of the city of Una as well as the nearby village of Outeiro in southern Bahia. Surveys of 54 mosquito breeding si...

  11. A study of the blood-feeding patterns of Anopheles mosquitos through precipitin tests*

    PubMed Central

    1960-01-01

    The success of malaria eradication campaigns depends on the use of all methods which make for a better understanding of the biology and behaviour of mosquito vectors. One such method is precipitin testing, by which it is possible to identify the human or animal origin of blood meals of mosquitos and thereby to determine their host preferences and vectorial importance, both generally and locally. In 1955, the World Health Organization in agreement with the Lister Institute of Preventive Medicine, Elstree, England, set up a precipitin test service related to entomological surveys in malaria eradication programmes and available to national research and WHO field personnel. The purpose was to stimulate interest in the study of bionomics of Anopheles species, to facilitate the identification of blood meals of Anopheles, to eliminate experimental errors by the use of a standardized technique and highly sensitive antisera, and finally to apply the results in the strategy of malaria eradication. The results obtained over the past five years are summarized in tabular form. The study—the largest ever undertaken—included 51 species of Anopheles and 56 377 tests, of which 93.9% yielded positive results, are reviewed. The available knowledge of the vectorial importance of 39 species of Anopheles is compared with their human blood ratio, this term being used to express the percentage of human blood in relation to all precipitin tests found positive. PMID:20604062

  12. Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae

    PubMed Central

    Baker, Dean A.; Russell, Steven

    2011-01-01

    Gene expression in Anopheles gambiae shows a deficiency of testis-expressed genes on the X chromosome associated with an excessive movement of retrogene duplication. We suggest that the degeneration of sex chromosomes in this monandrous species is likely the result of pressures from X inactivation, dosage compensation, and sexual antagonism. PMID:21890740

  13. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  14. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya

    PubMed Central

    Wanjala, Christine L.; Mbugi, Jernard P.; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A.; Atieli, Harrysone E.; Zhou, Guofa; Githeko, Andrew K.

    2015-01-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non–pyrethroid-based vector control tools may be preferable for malaria prevention in this region. PMID:26583525

  15. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya.

    PubMed

    Wanjala, Christine L; Mbugi, Jernard P; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A; Atieli, Harrysone E; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-12-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non-pyrethroid-based vector control tools may be preferable for malaria prevention in this region. PMID:26583525

  16. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia

    PubMed Central

    Herrera-Varela, Manuela; Orjuela, Lorena I; Peñalver, Cilia; Conn, Jan E; Quiñones, Martha L

    2014-01-01

    Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.

  17. Seasonal climate effects anemotaxis in newly emerged adult anopheles gambiae giles in Mali, West Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direction and magnitude of movement of the malaria vector Anopheles gambiae Giles has been of great interest to medical entomologists for over 70 years. This direction of movement is likely to be affected by many factors, from environmental conditions and stage of life history of the mosquito to...

  18. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes

    PubMed Central

    Jiang, Xiaofang; Biedler, James K.; Qi, Yumin; Hall, Andrew Brantley; Tu, Zhijian

    2015-01-01

    Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution. PMID:26078263

  19. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time

    PubMed Central

    2010-01-01

    Background The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. Methods The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. Results The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. Conclusion Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents. PMID:20470395

  20. Distribution and larval habitats of Anopheles species in northern Gyeonggi Province, Republic of Korea.

    PubMed

    Kim, Heung-Chul; Rueda, Leopoldo M; Wilkerson, Richard C; Foley, Desmond H; Sames, William J; Chong, Sung-Tae; Nunn, Peter V; Klein, Terry A

    2011-06-01

    A total of 180 larval collection sites (e.g., rice paddies, marshes, ground pools, ponds, stream margins, and irrigation and drainage ditches) was surveyed within a 2 km radius from Warrior Base training area, 5 km south of Panmunjeom (Joint Security Area, demilitarized zone), Gyeonggi Province, Republic of Korea (ROK), from May through October, 2007 to characterize larval habitat distributions of members of the Anopheles Hyrcanus Group (An. sinensis, An. lesteri, An. pullus, An. belenrae, An. kleini, and An. sineroides). A total of 5,859 anopheline larvae was collected from 84.4% of the sites surveyed, of which 4,071 were identified to species by polymerase chain reaction (PCR) using the ribosomal DNA internal transcribed spacer 2 (rDNA ITS2). Anopheles sinensis (52.6%) was the most frequently collected, followed by An. kleini (29.4%), An. sineroides (9.8%), An. pullus (6.7%), An. belenrae (1.1%), and An. lesteri (0.5%). Anopheles pullus and An. kleini were collected in greater proportions in May and from May - July, respectively. Few An. sinensis were collected from May - June, but it was the predominant species collected by August, and accounted for >80% of all larvae from September - October. Anopheles kleini was found in all habitats sampled; however, it was collected most frequently in young growth rice paddies, while An. sinensis was collected more frequently in mature and post-harvest paddies. Anopheles pullus was associated with pre-cultivated rice paddies, including water-filled tire ruts left from the previous fall's harvest. PMID:21635650

  1. Morphological analysis of three populations of Anopheles (Nyssorhynchus) nuneztovari Gabaldón (Diptera: Culicidae) from Colombia.

    PubMed

    Fajardo Ramos, Mayury; González Obando, Ranulfo; Fidel Suárez, Marco; López, David; Wilkerson, Richard; Sallum, Maria Anice Mureb

    2008-02-01

    Based on the results of comparative analyses of 1,039 specimens of several progenies of Anopheles nuneztovarifrom three localities in Colombia, eight costal wing spot patterns were observed. Patterns I and III were the most frequent: 77.96% and 11.36%, respectively. Using the diagnostic characters ratio of the length of the basal dark area of hind tarsomere II/length of hind tarsomere II, ratio of the length of the humeral pale spot/length of the pre-humeral dark spot, and the ratio of the length of the subcostal pale spot/length of the distal sector dark spot (DS-III2/Ta-III2, HP/PHD, SCP/DSD) approximately 5% of the adult females were misidentified as a species of Nyssorhynchus, different from An. nuneztovari. Approximately 5% of the specimens showed DS-III2/Ta-III2 ratio less than 0.25 (range 0.21 - 0.24), and among them 3.34% shared a HP/PHD ratio less than 1.50. Consequently, 1.52% of An. nuneztovari individuals can be misidentified as Anopheles oswaldoi. In those specimens with the DS-III2/Ta-III2 ratios higher than 0.25, 34.45% displayed SCP/DSD values greater than 0.50 and of these, 3.65% displayed HP/PHD values greater than 1.8. This combination of characters could lead one to misidentify samples of An. nuneztovari as Anopheles rangeli. Similarly, 2.43% of the females could be identified erroneously as either Anopheles aquasalis or Anopheles benarrochi. Individuals with a HP/PHD ratio greater than 2.0, could be misidentified as Anopheles trinkae, Anopheles strodei or Anopheles evansae. A distinct combination of diagnostic characters for An. nuneztovari from Colombia is proposed. PMID:18368239

  2. Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali.

    PubMed

    Main, Bradley J; Lee, Yoosook; Collier, Travis C; Norris, Laura C; Brisco, Katherine; Fofana, Abdrahamane; Cornel, Anthony J; Lanzaro, Gregory C

    2015-10-01

    In certain cases, a species may have access to important genetic variation present in a related species via adaptive introgression. These novel alleles may interact with their new genetic background, resulting in unexpected phenotypes. In this study, we describe a selective sweep on standing variation on the X chromosome in the mosquito Anopheles coluzzii, a principal malaria vector in West Africa. This event may have been influenced by the recent adaptive introgression of the insecticide resistance gene known as kdr from the sister species Anopheles gambiae. Individuals carrying both kdr and a nearly fixed X-linked haplotype, encompassing at least four genes including the P450 gene CYP9K1 and the cuticular protein CPR125, have rapidly increased in relative frequency. In parallel, a reproductively isolated insecticide-susceptible A. gambiae population (Bamako form) has been driven to local extinction, likely due to strong selection from increased insecticide-treated bed net usage. PMID:26359110

  3. [Identification of breeding sites of Anopheles sp. during part of the dry season in Jigawa, Nigeria].

    PubMed

    Marquetti, María del Carmen; Rojas, Lázara; Mohd Birniwa, Muktar; Sulaiman, Haruna U; Adamu, Hassana H

    2007-01-01

    A study was conducted in the state of Jigawa, Republic of Nigeria, from November to December in the dry season, where malaria is one of the main morbidity and mortality causes particularly in under 5 years-old children and pregnant women. This state had two climate seasons: dry from October to May and rainy from June to September. A total of 112 water bodies were sampled and just 18 in nine local governments were positive to mosquitoes. Breeding sites for Anopheles were rice fields, small holes in land, animal footsteps, small ponds, flooded pasture fields and water treatment dam, among others, to amount to 10 sites. Contrary to what has always been reported about the presence of Anopheles in clean waters, they were also breeding in highly polluted waters containing human faeces and garbage and located in open sewers. PMID:23427452

  4. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.

    PubMed

    Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H

    2006-12-01

    The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35. PMID:17304932

  5. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks.

    PubMed

    Dimopoulos, G; Zheng, L; Kumar, V; della Torre, A; Kafatos, F C; Louis, C

    1996-06-01

    Randomly amplified polymorphic DNA (RAPD) markers have been integrated in the genetic and cytogenetic maps of the malaria vector mosquito, Anopheles gambiae. Fifteen of these markers were mapped by recombination, relative to microsatellite markers that had been mapped previously. Thirty-four gel-purified RAPD bands were cloned and sequenced, generating sequence tagged sites (STSs) that can be used as entry points to the A. gambiae genome. Thirty one of these STSs were localized on nurse cell polytene chromosomes through their unique hybridization signal in in situ hybridization experiments. Five STSs map close to the breakpoints of polymorphic inversions, which are notable features of the Anopheles genome. The usefulness and limitations of this integrated mosquito map are discussed. PMID:8725241

  6. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae

    PubMed Central

    Kumar, Sanjeev; Christophides, George K.; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2003-01-01

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  7. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Christophides, George K; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C; Barillas-Mury, Carolina

    2003-11-25

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  8. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae.

    PubMed

    Vizioli, J; Bulet, P; Charlet, M; Lowenberger, C; Blass, C; Müller, H M; Dimopoulos, G; Hoffmann, J; Kafatos, F C; Richman, A

    2000-02-01

    Parasites of the genus Plasmodium are transmitted to mammalian hosts by anopheline mosquitoes. Within the insect vector, parasite growth and development are potentially limited by antimicrobial defence molecules. Here, we describe the isolation of cDNA and genomic clones encoding a cecropin antibacterial peptide from the malaria vector mosquito Anopheles gambiae. The locus was mapped to polytene division 1C of the X chromosome. Cecropin RNA was induced by infection with bacteria and Plasmodium. RNA levels varied in different body parts of the adult mosquito. During development, cecropin expression was limited to the early pupal stage. The peptide was purified from both adult mosquitoes and cell culture supernatants. Anopheles gambiae synthetic cecropins displayed activity against Gram-negative and Gram-positive bacteria, filamentous fungi and yeasts. PMID:10672074

  9. Anopheles gambiae exploits the treehole ecosystem in western Kenya: a new urban malaria risk?

    PubMed

    Omlin, Francois X; Carlson, John C; Ogbunugafor, C Brandon; Hassanali, Ahmed

    2007-12-01

    At six sites in western Kenya, we explored the presence of Anopheles immature stages in treeholes. An. gambiae larvae were found in 19 species, 13 of which are exotic. The most common exotic species were Delonix regia, Jacaranda mimosipholia, and Eucalyptus citrodora. In Kisumu city, longitudinal assessments of 10 Flamboyant trees showed repeated presence of An. gambiae s.s. in treeholes with water. Production of Anopheles larvae did not correlate with habitat volume but with habitat height, showing a strong but statistically insignificant negative correlation. During a dry season, eggs recovered by rinsing dry treeholes hatched into 2.5 +/- 3.06 An. gambiae and 7.9 +/- 8.2 Aedes larvae. In cage experiments, An. gambiae s.s. laid more eggs in water originating from treeholes than in distilled or lake water, implying preference for ovipositing in this habitat. Our findings indicate that treeholes represent a hitherto unrecognized habitat for malaria vectors, which needs further studies. PMID:18165501

  10. Scanning electron microscopy of egg hatching of Anopheles albimanus (Diptera: Culicidae).

    PubMed

    Rodriguez, M H; Orozco, A; Chavez, B; Martinez-Palomo, A

    1992-09-01

    Scanning electron and light microscopic observations showed that egg hatching in Anopheles albimanus Wiedemann is aided by a chisel-shaped spine. This hatching tooth is surrounded by a thin flexible membrane fixed to a groove in the head of the larvae. Increased intracranial pressure may force the spine against the egg shell until a fissure is produced. Further opening of the egg is achieved by movements of the head and the entire body of the larva. PMID:1404271

  11. Sequence of a DNA probe specific for Anopheles quadrimaculatus species A (Diptera: Culicidae).

    PubMed

    Johnson, D W; Cockburn, A F; Seawright, J A

    1993-09-01

    The nucleotide sequence was determined for a portion of a 12-kb genomic DNA clone specific for Anopheles quadrimaculatus species A. Four short, internally repeated sequences were identified. Synthetic oligonucleotide probes were prepared based on these four repeats. The oligonucleotides are highly specific and can be reliably used to separate individuals of An. quadrimaculatus species A from members of other species of the complex. PMID:8254645

  12. Beta-integrin of Anopheles gambiae: mRNA cloning and analysis of structure and expression.

    PubMed

    Mahairaki, V; Lycett, G; Blass, C; Louis, C

    2001-06-01

    We have isolated an mRNA encoding a beta integrin subunit of the malaria mosquito Anopheles gambiae. Our analysis predicts a protein that is very similar to betaPS, the fruitfly orthologue. The gene is expressed during all developmental stages and it is found in all body parts, including the midgut. Finally, the expression of the gene does not seem to be modulated during blood meals, except for a substantial increase 48 h posthaematophagy, when digestion is nearly complete. PMID:11437913

  13. The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia

    NASA Astrophysics Data System (ADS)

    Teklu, B. M.; Tekie, H.; McCartney, M.; Kibret, S.

    2010-12-01

    Entomological studies to determine the effect of the physical characteristics of mosquito larval breeding water bodies and reservoir water level changes on the occurrence of Anopheles mosquito larvae were conducted in two villages at Koka reservoir in central Ethiopia between August and December 2007. Of the two study villages, Ejersa is located close to the reservoir, and Kuma is 5 km away from it. Data on the type, number and physical characteristics of Anopheles larval breeding habitat, species composition and densities of anopheles mosquitoes in and around the study villages were investigated and recorded. Meteorological and reservoir water level data were compared with availability of Anopheles larval breeding sites and densities. Entomological data, derived from weekly larval collections, showed that Anopheles pharoensis Theobald, Anopheles gambiae s.l. Giles, Anopheles coustani Laveran and Anopheles squamosus Theobald were breeding in the study area. The mean larval density of An. gambiae s.l. in this study was higher in slightly turbid and shallow aquatic habitat than in turbid and relatively deep aquatic habitat. The density of An. pharoensis in habitat with floating vegetation and with relatively shady conditions was significantly higher than that of less shaded aquatic habitat and greater emergent vegetation. There was also a positive correlation between the occurrence of Anopheles larvae with the water and daily minimum atmospheric temperature. Similarly at Ejersa, over the sampling period, there was a positive correlation between falling reservoir water levels and the number of positive breeding habitats. These results confirm that physical characteristics of the water bodies play an important role in the species composition, total Anopheles larval count, and the density of Anopheles mosquitoes. Suitable breeding habitat in the vicinity of the reservoir village was strongly associated with the reservoir. This is particularly important for An

  14. Inference of the Oxidative Stress Network in Anopheles stephensi upon Plasmodium Infection

    PubMed Central

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K.; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway. PMID:25474020

  15. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    PubMed Central

    Blanford, Simon; Read, Andrew F; Thomas, Matthew B

    2009-01-01

    Background Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of Anopheles. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, Anopheles stephensi were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, Plasmodium yoelii. Methods Over two experiments, groups of An. stephensi were infected with one of three entomopathogenic fungi, and/or P. yoelii. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C) for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed. Results and conclusion Both infected and uninfected An. stephensi showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult Anopheles. PMID:19379519

  16. Regulation of Anopheles gambiae male accessory gland genes influences postmating response in female.

    PubMed

    Dottorini, Tania; Persampieri, Tania; Palladino, Pietro; Baker, Dean A; Spaccapelo, Roberta; Senin, Nicola; Crisanti, Andrea

    2013-01-01

    In Drosophila, the accessory gland proteins (Acps) secreted from the male accessory glands (MAGs) and transferred along with sperm into the female reproductive tract have been implicated in triggering postmating behavioral changes, including refractoriness to subsequent mating and propensity to egg laying. Recently, Acps have been found also in Anopheles, suggesting similar functions. Understanding the mechanisms underlying transcriptional regulation of Acps and their functional role in modulating Anopheles postmating behavior may lead to the identification of novel vector control strategies to reduce mosquito populations. We identified heat-shock factor (HSF) binding sites within the Acp promoters of male Anopheles gambiae and discovered three distinct Hsf isoforms; one being significantly up-regulated in the MAGs after mating. Through genome-wide transcription analysis of Hsf-silenced males, we observed significant down-regulation in 50% of the Acp genes if compared to control males treated with a construct directed against an unrelated bacterial sequence. Treated males retained normal life span and reproductive behavior compared to control males. However, mated wild-type females showed a ∼46% reduction of egg deposition rate and a ∼23% reduction of hatching rate (∼58% combined reduction of progeny). Our results highlight an unsuspected role of HSF in regulating Acp transcription in A. gambiae and provide evidence that Acp down-regulation in males leads a significant reduction of progeny, thus opening new avenues toward the development of novel vector control strategies. PMID:22997226

  17. Morphological, molecular, and chromosomal discrimination of cryptic Anopheles (Nyssorhynchus) (Diptera: Culicidae) from South America.

    PubMed

    Lounibos, L P; Wilkerson, R C; Conn, J E; Hribar, L J; Fritz, G N; Danoff-Burg, J A

    1998-09-01

    Based on similarity of male genitalia, the malaria vector Anopheles trinkae Faran from the eastern Andean piedmont of Colombia, Ecuador, Peru, and Bolivia was determined by Peyton (1993) to be a junior synonym of An. dunhami Causey, then known from a single locality in Amazonian Brazil. Following an appraisal of molecular, chromosomal, and morphological characters, we conclude herein that the 2 taxa are specifically distinct and remove An. trinkae from synonymy with An. dunhami. Eggs of the 2 species are distinguished easily by the anterior crown, long floats, and closed deck that occur only in An. trinkae. The X chromosome of larval polytenes is divisible into R and L arms in An. dunhami, but not in An. trinkae. A phenogram based on banding pattern scores from 18 random amplified polymorphic DNA primers separated with 100% resolution An. dunhami, An. trinkae, Anopheles nuneztovari Gabaldón and Anopheles darlingi Root. In the ITS2 region of rDNA, 25% of base sites distinguished An. trinkae from An. dunhami and 21% from the related An. nuneztovari; males of these 3 species had accessory glands of significantly different sizes. Preliminary isoenzyme screening indicated that 3 of 11 loci were diagnostic for separating An. trinkae from An. dunhami. The results indicate that An. dunhami is related more closely to An. nuneztovari than to An. trinkae and illustrate the merits of a multidisciplinary approach to mosquito systematics. PMID:9775617

  18. An overview of malaria transmission from the perspective of Amazon Anopheles vectors.

    PubMed

    Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G

    2015-02-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  19. Chemical Composition and Repellent Activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi

    PubMed Central

    Pirmohammadi, Masoumeh; Shayeghi, Mansoureh; Vatandoost, Hassan; Abaei, Mohammad Reza; Mohammadi, Ali; Bagheri, Akbar; Khoobdel, Mehdi; Bakhshi, Hasan; Pirmohammadi, Maryam; Tavassoli, Maryam

    2016-01-01

    Background: One of the best ways to control the malaria disease and to be protected human against Anopheles mosquito biting is the use of repellents. Throughout repellents, herbal ones may be an appropriate and safe source for protection. Methods: Chemical constituents of Achillea vermiculata and Satoreja hortensis were determined by using gas chromatography-mass spectrometry. Efficacy and the protection time of these plants were assessed on Anopheles stephensi under the laboratory condition. Results: The mean assessed protection time and efficacy for A. vermiculata was 2.16 and 3.16 hours respectively and the obtained ED50 and ED90 for this plant was 5.67 and 63 μl/cm2 respectively. The figured for S. hortensis was 4.16 and 5 hours respectively. ED50 and ED90 for this plant were 5.63 and 45.75μl/cm2 respectively. Conclusion: Results of investigation showed that S. hortensis plant has an acceptable protection time, therefore, this plant could be considered as a good herbal repellent against anopheles mosquitoes. PMID:27308278

  20. A viral over-expression system for the major malaria mosquito Anopheles gambiae

    PubMed Central

    Suzuki, Yasutsugu; Niu, Guodong; Hughes, Grant L.; Rasgon, Jason L.

    2014-01-01

    Understanding pathogen/mosquito interactions is essential for developing novel strategies to control mosquito-borne diseases. Technical advances in reverse-genetics, such as RNA interference (RNAi), have facilitated elucidation of components of the mosquito immune system that are antagonistic to pathogen development, and host proteins essential for parasite development. Forward genetic approaches, however, are limited to generation of transgenic insects, and while powerful, mosquito transgenesis is a resource- and time-intensive technique that is not broadly available to most laboratories. The ability to easily “over-express” genes would enhance molecular studies in vector biology and expedite elucidation of pathogen-refractory genes without the need to make transgenic insects. We developed and characterized an efficient Anopheles gambiae densovirus (AgDNV) over-expression system for the major malaria vector Anopheles gambiae. High-levels of gene expression were detected at 3 days post-infection and increased over time, suggesting this is an effective system for gene induction. Strong expression was observed in the fat body and ovaries. We validated multiple short promoters for gene induction studies. Finally, we developed a polycistronic system to simultaneously express multiple genes of interest. This AgDNV-based toolset allows for consistent transduction of genes of interest and will be a powerful molecular tool for research in Anopheles gambiae mosquitoes. PMID:24875042

  1. Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns

    PubMed Central

    2013-01-01

    Background The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated. Methods The mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches. Results Each data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis. Conclusion Combination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were

  2. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA

    PubMed Central

    2014-01-01

    Background Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Methods Mosquitoes were collected, identified, dissected to check infection status, and DNA extraction was performed for PCR with primers targeting the ITS2 rDNA region. Sequencing was done and phylogenetic tree was constructed to study the evolutionary relationship among Anopheles mosquitoes within Peninsular Malaysia, as well as across the Asian region. Results A total of 133 Anopheles mosquitoes consisting of six different species were collected from eight different locations across Peninsular Malaysia. Of these, 65 ITS2 rDNA sequences were obtained. The ITS2 rDNA amplicons of the studied species were of different sizes. One collected species, Anopheles sinensis, shows two distinct pools of population in Peninsular Malaysia, suggesting evolvement of geographic race or allopatric speciation. Conclusion Anopheles mosquitoes from Peninsular Malaysia show close evolutionary relationship with the Asian anophelines. Nevertheless, genetic differences due to geographical segregation can be seen. Meanwhile, some Anopheles mosquitoes in Peninsular Malaysia show vicariance, exemplified by the emergence of distinct cluster of An. sinensis population. PMID:24993022

  3. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  4. Retrospective study of malaria prevalence and Anopheles genus in the area of influence of the Binational Itaipu Reservoir.

    PubMed

    Falavigna-Guilherme, Ana Lucia; Silva, Allan Martins da; Guilherme, Edson Valdemar; Morais, Dina Lúcia

    2005-01-01

    The importance of hydroelectric dams beside the human interchange in the maintenance of malarious foci and the occurrence of the Anopheles genus on the Binational Itaipu Reservoir were the main points of this retrospective study. Data were collected from existing registrations at National, State and Municipal Health Departments and literature systematic overview, from January 1984 to December 2003. The occurrence of some outbreak of malaria, mainly by Plasmodium vivax, and the prevalence of species of the Anopheles genus different from Anopheles darlingi in the region are discussed. The malaria in the left bank of Paraná River is a focal problem, which must be approached locally through health, educational and social actions to prevent the continuity of outbreaks in the area. Concomitantly, it is necessary to plan and apply effective surveillance measures in the influence area of the Itaipu Reservoir. PMID:15880218

  5. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus

    PubMed Central

    Abdullah, Mohd Amir F; Valaitis, Algimantas P; Dean, Donald H

    2006-01-01

    Background Aminopeptidase N (APN) type proteins isolated from several species of lepidopteran insects have been implicated as Bacillus thuringiensis (Bt) toxin-binding proteins (receptors) for Cry toxins. We examined brush border membrane vesicle (BBMV) proteins from the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind mosquitocidal Cry toxins that are active to it. Results A 100-kDa protein with APN activity (APNAnq 100) was isolated from the brush border membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance shows that APNAnq 100 forms tight binding to a mosquitocidal Bt toxin, Cry11Ba, but not to Cry2Aa, Cry4Ba or Cry11Aa. Conclusion An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding protein for Bacillus thuringiensis Cry11Ba. PMID:16716213

  6. Genetic evidence for malaria vectors of the Anopheles sundaicus complex in Sri Lanka with morphological characteristics attributed to Anopheles subpictus species B

    PubMed Central

    2010-01-01

    Background Anopheles subpictus sensu lato, a widespread malaria vector in Asia, is reportedly composed of four sibling species A - D. Mosquitoes morphologically identified as belonging to the Subpictus complex were collected from different locations near the east coast of Sri Lanka, and specific ribosomal DNA sequences determined to validate their taxonomic status. Methods Anopheles subpictus s.l. larvae and blood-fed adults were collected from different locations in the Eastern province and their sibling species status was determined based on published morphological characteristics. DNA sequences of the D3 domain of 28 S ribosomal DNA (rDNA) and the internal transcribed spacer -2 (ITS-2) of mosquitoes morphologically identified as An. subpictus sibling species A, B, C and D were determined. Results Phylogenetic analysis based on D3 domain of rDNA resulted in two clades: one clade with mosquitoes identified as An. subpictus species A, C, D and some mosquitoes identified as species B, and another clade with a majority of mosquitoes identified as species B with D3 sequences that were identical to Anopheles sundaicus cytotype D. Analysis of ITS-2 sequences confirmed a close relationship between a majority of mosquitoes identified as An. subpictus B with members of the An. sundaicus complex and others identified as An. subpictus B with An. subpictus s.l. Conclusions The study suggests that published morphological characteristics are not specific enough to identify some members of the Subpictus complex, particularly species B. The sequences of the ITS-2 and D3 domain of rDNA suggest that a majority that were identified morphologically as An. subpictus species B in the east coast of Sri Lanka, and some identified elsewhere in SE Asia as An. subpictus s.l., are in fact members of the Sundaicus complex based on genetic similarity to An. sundaicus s.l. In view of the well-known ability of An. sundaicus s.l. to breed in brackish and fresh water and its proven ability to

  7. Characterization and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery

    NASA Technical Reports Server (NTRS)

    Rejmankova, E.; Pope, K. O.; Roberts, D. R.; Lege, M. G.; Andre, R.; Greico, J.; Alonzo, Y.

    1998-01-01

    Surveys of larval habitats of Anopheles vestitipennis and Anopheles punctimacula were conducted in Belize, Central America. Habitat analysis and classification resulted in delineation of eight habitat types defined by dominant life forms and hydrology. Percent cover of tall dense macrophytes, shrubs, open water, and pH were significantly different between sites with and without An. vestitipennis. For An. punctimacula, percent cover of tall dense macrophytes, trees, detritus, open water, and water depth were significantly different between larvae positive and negative sites. The discriminant function for An. vestitipennis correctly predicted the presence of larvae in 65% of sites and correctly predicted the absence of larvae in 88% of sites. The discriminant function for An. punctimacula correctly predicted 81% of sites for the presence of larvae and 45% for the absence of larvae. Canonical discriminant analysis of the three groups of habitats (An. vestitipennis positive; An. punctimacula positive; all negative) confirmed that while larval habitats of An. punctimacula are clustered in the tree dominated area, larval habitats of An. vestitipennis were found in both tree dominated and tall dense macrophyte dominated environments. The forest larval habitats of An. vestitipennis and An. punctimacula seem to be randomly distributed among different forest types. Both species tend to occur in denser forests with more detritus, shallower water, and slightly higher pH. Classification of dry season (February) SPOT multispectral satellite imagery produced 10 land cover types with the swamp forest and tall dense marsh classes being of particular interest. The accuracy assessment showed that commission errors for the tall, dense marsh and swamp forest appeared to be minor; but omission errors were significant, especially for the swamp forest (perhaps because no swamp forests are flooded in February). This means that where the classification indicates there are An. vestitipennis

  8. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females

    PubMed Central

    2013-01-01

    Background Y chromosomes are responsible for the initiation of male development, male fertility, and other male-related functions in diverse species. However, Y genes are rarely characterized outside a few model species due to the arduous nature of studying the repeat-rich Y. Results The chromosome quotient (CQ) is a novel approach to systematically discover Y chromosome genes. In the CQ method, genomic DNA from males and females is sequenced independently and aligned to candidate reference sequences. The female to male ratio of the number of alignments to a reference sequence, a parameter called the chromosome quotient (CQ), is used to determine whether the sequence is Y-linked. Using the CQ method, we successfully identified known Y sequences from Homo sapiens and Drosophila melanogaster. The CQ method facilitated the discovery of Y chromosome sequences from the malaria mosquitoes Anopheles stephensi and An. gambiae. Comparisons to transcriptome sequence data with blastn led to the discovery of six Anopheles Y genes, three from each species. All six genes are expressed in the early embryo. Two of the three An. stephensi Y genes were recently acquired from the autosomes or the X. Although An. stephensi and An. gambiae belong to the same subgenus, we found no evidence of Y genes shared between the species. Conclusions The CQ method can reliably identify Y chromosome sequences using the ratio of alignments from male and female sequence data. The CQ method is widely applicable to species with fragmented genome assemblies produced from next-generation sequencing data. Analysis of the six Y genes characterized in this study indicates rapid Y chromosome evolution between An. stephensi and An. gambiae. The Anopheles Y genes discovered by the CQ method provide unique markers for population and phylogenetic analysis, and opportunities for novel mosquito control measures through the manipulation of sexual dimorphism and fertility. PMID:23617698

  9. Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex.

    PubMed

    Crawford, Jacob E; Riehle, Michelle M; Guelbeogo, Wamdaogo M; Gneme, Awa; Sagnon, N'Fale; Vernick, Kenneth D; Nielsen, Rasmus; Lazzaro, Brian P

    2015-11-01

    Speciation as a process remains a central focus of evolutionary biology, but our understanding of the genomic architecture and prevalence of speciation in the face of gene flow remains incomplete. The Anopheles gambiae species complex of malaria mosquitoes is a radiation of ecologically diverse taxa. This complex is well-suited for testing for evidence of a speciation continuum and genomic barriers to introgression because its members exhibit partially overlapping geographic distributions as well as varying levels of divergence and reproductive isolation. We sequenced 20 genomes from wild A. gambiae s.s., Anopheles coluzzii, Anopheles arabiensis, and compared these with 12 genomes from the "GOUNDRY" subgroup of A. gambiae s.l. Amidst a backdrop of strong reproductive isolation, we find strong evidence for a speciation continuum with introgression of autosomal chromosomal regions among species and subgroups. The X chromosome, however, is strongly differentiated among all taxa, pointing to a disproportionately large effect of X chromosome genes in driving speciation among anophelines. Strikingly, we find that autosomal introgression has occurred from contemporary hybridization between A. gambiae and A. arabiensis despite strong divergence (∼5× higher than autosomal divergence) and isolation on the X chromosome. In addition to the X, we find strong evidence that lowly recombining autosomal regions, especially pericentromeric regions, serve as barriers to introgression secondarily to the X. We show that speciation with gene flow results in genomic mosaicism of divergence and introgression. Such a reticulate gene pool connecting vector taxa across the speciation continuum has important implications for malaria control efforts. PMID:26615027

  10. Following in Soper's footsteps: northeast Brazil 63 years after eradication of Anopheles gambiae.

    PubMed

    Killeen, Gerry F

    2003-10-01

    Sub-Saharan Africa has long suffered under the yoke of the Anopheles gambiae mosquito, but for northeast Brazil (figure 1) its arrival over 60 years ago was a new and horrifying experience. This African mosquito is an exceptionally effective malaria vector because it is well adapted to feeding upon people and to exploiting aquatic habitats associated with our daily activities. Anopheles gambiae sensu lato probably accounts for most of the world's malaria deaths and socioeconomic burden. Fortunately, the Brazilian experience had a happy ending. The prospect of A gambiae spreading across much of the Americas motivated a ruthlessly effective response that deserves a special and heroic place in the annals of public health. Building on the successes and infrastructure of the Yellow Fever Service for Aedes aegypti elimination, the Rockefeller Foundation and Brazilian government collaborated to form a new Malaria Service of the Northeast. This new entity rolled the invader back into oblivion with an aggressive eradication campaign, focusing primarily upon larviciding of all potential habitats. The driving force of this endeavour was an enigmatic man called Fred Soper whose sheer will and determination was a key element in this success, and a source of inspiration today (see Killeen GF, et al. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis 2002; 2: 618-27). I recently took an opportunity to fulfil a long-held dream and follow in some of Soper's footsteps. Tired of gazing at yellowing maps like figure 1, I went to see the northeast of Brazil for myself. PMID:14522266

  11. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.

    PubMed

    O'Brochta, David A; Pilitt, Kristina L; Harrell, Robert A; Aluvihare, Channa; Alford, Robert T

    2012-11-01

    Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts. PMID:23173082

  12. Anopheles gambiae resistance to pyrethroid-treated nets in cotton versus rice areas in Mali.

    PubMed

    Fane, Moussa; Cissé, Ousmane; Traore, Cheick Sékou F; Sabatier, Philippe

    2012-04-01

    The rise and spread of Anopheles gambiae s.l. (the major malaria vector sub-Saharan Africa) resistance to pyrethroids is of great concern owing to the predominant role of pyrethroid-treated nets in the WHO global strategy for malaria control. Use of pyrethroids for agricultural purposes may exert a strong selection pressure, favouring the emergence of insecticide resistance. The objective of this study was to evaluate the efficacy of alpha-cypermethrin treated nets in settings where insecticides are used against pests. This was assessed in two ways, i.e. under laboratory conditions using the WHO standard cones test technique and in experimental huts, on Anopheles gambiae s.l. collected in two Malian rural sites, Koumantou characterised by cotton crops and high insecticide use and Sélingué, a rice field area with low insecticide use. According to the WHO standard cones test technique, there was no difference between mosquitoes collected in the two sites; KD50 time was less than 3 min and the KD95 time below 30 min. Nevertheless, in the experimental huts with alpha-cypermethrin treated bed nets, the mosquito mortality rate was significantly lower in Koumantou (102/361, 28.2%) than in Sélingué (122/233, 52.3%) (RR: 0.65, 95%CI: 0.56-0.76) (p<0.001). In addition, in Koumantou the percentage of unfed mosquitoes found in the veranda was much lower in the huts with untreated (26.0%, 33/127) than in those with treated nets (92.2%, 118/128) (p<0.01) while in Sélingué there was no difference between huts with treated and untreated bed nets. Alpha-cypermethrin treated bed nets had a significant effect on mortality and repelling behaviour of Anopheles gambiae s.l. though in Koumantou treated bed nets were less efficacious, possibly due to the intense use of pesticide for agriculture. PMID:22154879

  13. Ecology and behavior of Anopheles arabiensis in relation to agricultural practices in central Kenya.

    PubMed

    Muturi, Ephantus J; Mwangangi, Joseph M; Beier, John C; Blackshear, Millon; Wauna, James; Sang, Rosemary; Mukabana, Wolfgang R

    2013-09-01

    Ecological changes associated with anthropogenic ecosystem disturbances can influence human risk of exposure to malaria and other vector-borne infectious diseases. This study in Mwea, Kenya, investigated the pattern of insecticide use in irrigated and nonirrigated agroecosystems and association with the density, survival, and blood-feeding behavior of the malaria vector Anopheles arabiensis. The parity rates of adult An. arabiensis from randomly selected houses were determined by examining their ovaries for tracheal distension, and polymerase chain reaction was used to identify the host blood meals. In addition, structured questionnaires were used to generate data on insecticide use. Anopheles arabiensis densities were highest in irrigated rice agroecosystems, intermediate in irrigated French beans agroecosystems, and lowest in the nonirrigated agroecosystem. Anopheles arabiensis adult survivorship was significantly lower in irrigated rice agroecosystems than in irrigated French beans agroecosystems. The human blood index (HBI) was significantly higher in the nonirrigated agroecosystem compared to irrigated agroecosystems. Moreover, there was marked variation in HBI among villages in irrigated agroecosystems with significantly lower HBI in Kangichiri and Mathangauta compared to Kiuria, Karima, and Kangai. The proportion of mosquitoes with mixed blood meals varied among villages ranging from 0.25 in Kangichiri to 0.83 in Kiuria. Sumithion, dimethoate, and alpha cypermethrin were the most commonly used insecticides. The 1st was used mostly in irrigated rice agroecosystems, and the last 2 were used mostly in irrigated French beans agroecosystems. These findings indicate that agricultural practices may influence the ecology and behavior of malaria vectors and ultimately the risk of malaria transmission. PMID:24199496

  14. Immunogenic and antioxidant effects of a pathogen-associated prenyl pyrophosphate in Anopheles gambiae.

    PubMed

    Lindberg, Bo G; Merritt, Eleanor A; Rayl, Melanie; Liu, Chenxiao; Parmryd, Ingela; Olofsson, Berit; Faye, Ingrid

    2013-01-01

    Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this

  15. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  16. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  17. Immunogenic and Antioxidant Effects of a Pathogen-Associated Prenyl Pyrophosphate in Anopheles gambiae

    PubMed Central

    Lindberg, Bo G.; Merritt, Eleanor A.; Rayl, Melanie; Liu, Chenxiao; Parmryd, Ingela; Olofsson, Berit; Faye, Ingrid

    2013-01-01

    Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this

  18. Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex

    PubMed Central

    Crawford, Jacob E.; Riehle, Michelle M.; Guelbeogo, Wamdaogo M.; Gneme, Awa; Sagnon, N'Fale; Vernick, Kenneth D.; Nielsen, Rasmus; Lazzaro, Brian P.

    2015-01-01

    Speciation as a process remains a central focus of evolutionary biology, but our understanding of the genomic architecture and prevalence of speciation in the face of gene flow remains incomplete. The Anopheles gambiae species complex of malaria mosquitoes is a radiation of ecologically diverse taxa. This complex is well-suited for testing for evidence of a speciation continuum and genomic barriers to introgression because its members exhibit partially overlapping geographic distributions as well as varying levels of divergence and reproductive isolation. We sequenced 20 genomes from wild A. gambiae s.s., Anopheles coluzzii, Anopheles arabiensis, and compared these with 12 genomes from the “GOUNDRY” subgroup of A. gambiae s.l. Amidst a backdrop of strong reproductive isolation, we find strong evidence for a speciation continuum with introgression of autosomal chromosomal regions among species and subgroups. The X chromosome, however, is strongly differentiated among all taxa, pointing to a disproportionately large effect of X chromosome genes in driving speciation among anophelines. Strikingly, we find that autosomal introgression has occurred from contemporary hybridization between A. gambiae and A. arabiensis despite strong divergence (∼5× higher than autosomal divergence) and isolation on the X chromosome. In addition to the X, we find strong evidence that lowly recombining autosomal regions, especially pericentromeric regions, serve as barriers to introgression secondarily to the X. We show that speciation with gene flow results in genomic mosaicism of divergence and introgression. Such a reticulate gene pool connecting vector taxa across the speciation continuum has important implications for malaria control efforts. PMID:26615027

  19. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

    PubMed Central

    2011-01-01

    Background In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. Methods In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. Results Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention), this species occurred in moderate to high densities (19.5-78.5 bites/person/night) and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm). Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. Conclusion In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands. Consequently, the

  20. Plasmodium vivax sporozoite rates from Anopheles albimanus in southern Chiapas, Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Bown, D N; Rodriguez, M H

    1994-06-01

    Anopheles albimanus mosquitoes were collected from August 1984 to November 1987 on intra- and peridomicile human bait in Rancheria El Gancho, Chiapas, Mexico. The mosquitoes were desiccated and stored in silicon chambers from 3 mo to 3 yr post-collection prior to being assayed using a direct enzyme-linked immunosorbent assay to detect Plasmodium vivax predominant-type sporozoite protein. Peridomicile-collected mosquitoes had a 10-fold higher sporozoite rate than those collected indoors, but only the latter correlate significantly with the seasonal human parasite index. Mosquito sporozoite burden was also significantly higher in the peridomicile-collected population. PMID:8195955

  1. Laboratory oviposition, fecundity and egg hatching ability of colonized Anopheles albimanus from southwestern Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Lopez, J R; del Angel-Cabañas, G; Martinez, L; Bown, D N

    1988-12-01

    Fecundity, oviposition patterns and egg hatching characteristics were studied in two colonies of Anopheles albimanus isolated from the Pacific coast of southern Mexico. Fecundity was inversely proportional to the cage space available to the female and was influenced by the bloodmeal source, feeding method and previous feeding history. The length of the gonotrophic cycle decreased with succeeding experience from a mean 6.6 in the first to 2.6 days for the fifth cycle. Oviposition timing was also dependent on availability of oviposition substrate. Hatching success of eggs increased significantly when the oviposition site was witheld until 48 hr post-bloodmeal. PMID:3225569

  2. Habitat discrimination by gravid Anopheles gambiae sensu lato – a push-pull system

    PubMed Central

    2014-01-01

    Background The non-random distribution of anopheline larvae in natural habitats suggests that gravid females discriminate between habitats of different quality. Whilst physical and chemical cues used by Culex and Aedes vector mosquitoes for selecting an oviposition site have been extensively studied, those for Anopheles remain poorly explored. Here the habitat selection by Anopheles gambiae sensu lato (s.l.), the principal African malaria vector, was investigated when presented with a choice of two infusions made from rabbit food pellets, or soil. Methods Natural colonization and larval survival was evaluated in artificial ponds filled randomly with either infusion. Dual-choice, egg-count bioassays evaluated the responses of caged gravid females to (1) two- to six-day old infusions versus lake water; (2) autoclaved versus non-autoclaved soil infusions; and assessed (3) the olfactory memory of gravid females conditioned in pellet infusion as larvae. Results Wild Anopheles exclusively colonized ponds with soil infusion and avoided those with pellet infusion. When the individual infusions were tested in comparison with lake water, caged An. gambiae sensu stricto (s.s.) showed a dose response: females increasingly avoided the pellet infusion with increasing infusion age (six-day versus lake water: odds ratio (OR) 0.22; 95% confidence interval (CI) 0.1-0.5) and showed increasing preference to lay eggs as soil infusion age increased (six-day versus lake water: OR 2.1; 95% CI 1.4-3.3). Larvae survived in soil infusions equally well as in lake water but died in pellet infusions. Anopheles gambiae s.s. preferred to lay eggs in the non-autoclaved soil (OR 2.6; 95% CI 1.8-3.7) compared with autoclaved soil. There was no change in the avoidance of pellet infusion by individuals reared in the infusion compared with those reared in lake water. Conclusion Wild and caged An. gambiae s.l. females discriminate between potential aquatic habitats for oviposition. These choices benefit

  3. [Molecular genetic analysis of malaria mosquitoes of the Anopheles maculipennis (Diptera, Culicidae) complex in Azerbaijan].

    PubMed

    Gordeev, M I; Bezzhonova, O V; Goriacheva, I I; Shaĭkevich, E V; Zvantsov, A B; Mamedov, S; Mutdalibov, N; Gasymov, E; Ezhov, M N

    2010-01-01

    Molecular genetic analysis of malaria vectors in the Republic of Azerbaijan has identified three species of malaria mosquitoes of the Anopheles maculipennis complex: An. maculipennis, An. sacharovi, and An. persiensis. An. melanoon has not been found. An. sacharovi has been ascertained to predominate in the low-lying areas of the country. An. maculipennis prevails in the north, on the foothills of the Great Caucasus and it is also observed in the south, on the Talysh foothills and mountains. An. persiensis has been first recorded for the malaria mosquito fauna in the CNS. This species has been detected only in the south of the republic (Lenkoran and Astar districts). PMID:21395043

  4. Identification of species D, a new member of the Anopheles quadrimaculatus species complex: a biochemical key.

    PubMed

    Narang, S K; Kaiser, P E; Seawright, J A

    1989-09-01

    Sibling species D, a new member of the Anopheles quadrimaculatus species complex was identified in collections from Pickwick Lake, Tishomingo County, Mississippi and Choctawhatchee, Bay County, in West Florida. This species occurred sympatrically with the previously described species, A, B and C. Evidence for identification of species D includes diagnostic allozymes, a lack of polytene chromosomes in the ovarian nurse cells, and inviability of F1 progeny and lack of sperm transfer in hybridization crosses. An electrophoretic taxonomic key for distinguishing species D from A, B and C is presented. PMID:2584966

  5. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    PubMed Central

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  6. Influence of moonlight on light trap catches of the malaria vector Anopheles nuneztovari in Venezuela.

    PubMed

    Rubio-Palis, Y

    1992-06-01

    A significant effect (P = 0.002) of moonlight on light trap catches of Anopheles nuneztovari females was observed during a longitudinal study in western Venezuela. The catch with no moon was 1.86 times larger than with full moon. Nevertheless, moonlight does not seem to have any effect on the composition of adult mosquito population since the difference in the parous rate of females collected during full moon and during no moon was not significant (P greater than 0.05). PMID:1431859

  7. The physical gene Hsp70 map on polytene chromosomes of Anopheles darlingi from the Brazilian Amazon.

    PubMed

    Rafael, Míriam Silva; Tadei, Wanderli Pedro; Hunter, Fiona F

    2004-05-01

    In situ hybridization was used to determine the physical location of the Hsp70 genes in salivary polytene chromosomes of Anopheles darlingi from Manaus and Macapá, Brazil, and to assess the usefulness of the Hsp70 locus as a genetic marker in A. darlingi populations. In both populations, the double markings corresponding to the Hsp70-12A and Hsp70-14A genes were located on the right arm of chromosome 2. The Hsp70 locus was considered to be an excellent marker for studying chromosomal evolution and relationships among A. darlingi populations. PMID:15098741

  8. Multiple-technique identification of sibling species of the Anopheles quadrimaculatus complex.

    PubMed

    Narang, S K; Seawright, J A; Mitchell, S E; Kaiser, P E; Carlson, D A

    1993-12-01

    In the past, most researchers used a single technique for identification of cryptic taxa, population structures, biosystematics, and phylogenetic studies. Our experience with the Anopheles quadrimaculatus complex shows the importance of using several methods on individual mosquitoes. This approach consists of analysis of the polytene chromosomes in ovarian nurse cells, gas chromatographic profiles of cuticular hydrocarbons, isozyme electrophoresis, and restriction site analysis of mitochondrial or genomic DNA. We recommend use of this multiple-technique approach when analyzing feral populations for the first time, or for correlating information obtained by investigators using different techniques. PMID:8126484

  9. Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae.

    PubMed Central

    Favia, G; Dimopoulos, G; della Torre, A; Touré, Y T; Coluzzi, M; Louis, C

    1994-01-01

    We have applied PCR amplification using random primers to distinguish between incipient species of the malaria vector Anopheles gambiae. Individuals belonging to three chromosomally characterized West African forms of this mosquito, which are important epidemiologically as they differ in vectorial capacity, were sampled both from laboratory stocks and from wild populations collected in three localities. The techniques used allowed for the unambiguous classification of the mosquitoes, providing a tool for rapid and efficient diagnosis, which previously relied on cytological examination of polytene chromosomes. Images PMID:7937947

  10. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    PubMed Central

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2012-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  11. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  12. First report of the kdr mutation in Anopheles gambiae M form from Burkina Faso, west Africa.

    PubMed

    Diabaté, A; Baldet, T; Chandre, F; Guiguemdé, R T; Brengues, C; Guillet, P; Hemingway, J; Hougard, J M

    2002-12-01

    The kdr mutation, conferring resistance to pyrethroid insecticides, has been reported in several West-African populations of Anopheles gambiae S form and in the M form populations from tropical forest of Benin. We report the finding of a single M specimen collected in the rice-field area of Vallée du Kou (Burkina Faso) showing the mutation at the heterozygous state. The monitoring of kdr mutation in An. gambiae forms/species is of paramount importance to implement effective malaria control tools and may greatly improve the knowledge of the relationship between and within An. gambiae populations. PMID:12701378

  13. Evaluation of a eucalyptus-based repellent against Anopheles spp. in Tanzania.

    PubMed

    Trigg, J K

    1996-06-01

    A eucalyptus-based insect repellent (PMD) with the principal active ingredient p-menthane-3,8-diol was evaluated in the field in comparison with deet. In human landing catches in Tanzania, 3 formulations of PMD were tested against Anopheles gambiae and An. funestus. Repellents, applied to the legs and feet at doses chosen as used in practice, gave complete protection from biting for between 6 and 7.75 h, depending upon the formulation type, with no significant difference between PMD and deet in terms of efficacy and duration of protection. PMID:8827599

  14. Genome Sequence of Elizabethkingia anophelis Strain EaAs1, Isolated from the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Raygoza Garay, Juan Antonio; Hughes, Grant L.; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    We sequenced the genome of a strain of the Gram-negative bacterial species Elizabethkingia anophelis, which is an important component of the Anopheles mosquito microbiome. This genome sequence will add to the list of resources used to examine host-microbe interactions in mosquitoes. PMID:26966196

  15. The Ecology of Anopheles Mosquitoes under Climate Change: Case Studies from the Effects of Environmental Changes in East Africa Highlands

    PubMed Central

    Afrane, Yaw A.; Githeko, Andrew K.; Yan, Guiyun

    2013-01-01

    Climate change is expected to lead to latitudinal and altitudinal temperature increases. High elevation regions such as the highlands of Africa, and those that have temperate climate are most likely to be affected. The highlands of Africa generally exhibit low ambient temperatures. This restricts the distribution of Anopheles mosquitoes, the vectors of malaria, filariasis and O’nyong’nyong fever. The development and survival of larval and adult mosquitoes are temperature dependent, as are mosquito biting frequency and pathogen development rate. Given that various Anopheles species are adapted to different climatic conditions, changes in the climate could lead to changes in species composition in an area which may change the dynamics of mosquito-borne disease transmission. It is important to consider the effect of climate change on rainfall which is critical to the formation and persistence of mosquito breeding sites. In addition, environmental changes such as deforestation could increase local temperatures in the highlands; this could enhance the vectorial capacity of the Anopheles. This experimental data will be invaluable in facilitating the understanding of the impact of climate change on Anopheles. PMID:22320421

  16. Additional Selection for Insecticide Resistance in Urban Malaria Vectors: DDT Resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso

    PubMed Central

    Jones, Christopher M.; Toé, Hyacinthe K.; Sanou, Antoine; Namountougou, Moussa; Hughes, Angela; Diabaté, Abdoulaye; Dabiré, Roch; Simard, Frederic; Ranson, Hilary

    2012-01-01

    In the city of Bobo-Dioulasso in Burkina Faso, Anopheles arabiensis has superseded Anopheles gambiae s.s. as the major malaria vector and the larvae are found in highly polluted habitats normally considered unsuitable for Anopheles mosquitoes. Here we show that An. gambiae s.l. adults emerging from a highly polluted site in the city centre (Dioulassoba) have a high prevalence of DDT resistance (percentage mortality after exposure to diagnostic dose = 65.8% in the dry season and 70.4% in the rainy season, respectively). An investigation into the mechanisms responsible found an unexpectedly high frequency of the 1014S kdr mutation (allele frequency = 0.4), which is found at very low frequencies in An. arabiensis in the surrounding rural areas, and an increase in transcript levels of several detoxification genes, notably from the glutathione transferase and cytochrome P450 gene families. A number of ABC transporter genes were also expressed at elevated levels in the DDT resistant An. arabiensis. Unplanned urbanisation provides numerous breeding grounds for mosquitoes. The finding that Anopheles mosquitoes adapted to these urban breeding sites have a high prevalence of insecticide resistance has important implications for our understanding of the selective forces responsible for the rapid spread of insecticide resistant populations of malaria vectors in Africa. PMID:23049917

  17. Larvicidal and repellent activity of Vetiveria zizaniodes (Poaceae) essential oil against the malaria vector Anopheles stephensi (Liston) (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oil extracted by steam distillation of Vetiveria zizanioides (L.) Nash (Poaceae) was evaluated for larvicidal and adult repellent activity against the malaria vector Anopheles stephensi (Liston). Median lethal concentrations (LC50) at 24 h post treatment for instars 1-4 were, respectively,...

  18. Non-destructive Determination of Age and Species of Anopheles gambiae s.l. Using Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of the species and age of malaria vectors is crucial for the measurement of malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are morphologically similar and can be differentiated on...

  19. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal.

    PubMed

    Sougoufara, S; Harry, M; Doucouré, S; Sembène, P M; Sokhna, C

    2016-09-01

    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub-Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors. PMID:27058993

  20. Use of Near-Infrared Spectroscopy to Age-Grade and Identify Siblings of Anopheles Gambiae Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used near-infrared spectroscopy (NIRS) to rapidly and non-destructively determine species and age of Anopheles gambiae ss (G3, Mali-NIH, Kisumu, ZANU, and Ifakara strains) and An. arabiensis (Dongola, KGB, and Ifakara strains). We developed NIR calibrations using mosquitoes reared and scanned at ...

  1. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  2. Genome Sequence of Stenotrophomonas maltophilia Strain SmAs1, Isolated From the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Hughes, Grant L.; Raygoza Garay, Juan Antonio; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    An isolate of Stenotrophomonas maltophilia was cultured from the Asian malaria vector Anopheles stephensi. Here, we present the annotated draft genome sequence of this S. maltophilia strain. This genomic resource will facilitate further characterization of bacteria associated with mosquitoes. PMID:26966198

  3. Spatial Patterns of Plasmodium falciparum Clinical Incidence, Asymptomatic Parasite Carriage and Anopheles Density in Two Villages in Mali.

    PubMed

    Sissoko, Mahamadou S; van den Hoogen, Lotus L; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K

    2015-10-01

    Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km(2) in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited. PMID:26324728

  4. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families.

    PubMed

    Calvo, Eric; Dao, Adama; Pham, Van M; Ribeiro, José M C

    2007-02-01

    Anopheles funestus, together with Anopheles gambiae, is responsible for most malaria transmission in sub-Saharan Africa, but little is known about molecular aspects of its biology. To investigate the salivary repertoire of this mosquito, we randomly sequenced 916 clones from a salivary-gland cDNA library from adult female F1 offspring of field-caught An. funestus. Thirty-three protein sequences, mostly full-length transcripts, are predicted to be secreted salivary proteins. We additionally describe 25 full-length housekeeping-associated transcripts. In accumulating mosquito sialotranscriptome information--which includes An. gambiae, Anopheles stephensi, Anopheles darlingi, Aedes aegypti, Aedes albopictus, Culex pipiens quinquefasciatus, and now An. funestus--a pattern is emerging. First, ubiquitous protein families are recruited for a salivary role, such as members of the antigen-5 family and enzymes of nucleotide and carbohydrate catabolism. Second, a group of protein families exclusive to blood-feeding Nematocera includes the abundantly expressed D7 proteins also found in sand flies and Culicoides. A third group of proteins, only found in Culicidae, includes the 30 kDa allergen family and several mucins. Finally, 10 protein and peptide families, five of them multigenic, are exclusive to anophelines. Among these proteins may reside good epidemiological markers to measure human exposure to anopheline species such as An. funestus and An. gambiae. PMID:17244545

  5. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  6. Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection.

    PubMed

    Obbard, D J; Linton, Y-M; Jiggins, F M; Yan, G; Little, T J

    2007-08-01

    Anopheles mosquitoes are the primary vectors for malaria in Africa, transmitting the disease to more than 100 million people annually. Recent functional studies have revealed mosquito genes that are crucial for Plasmodium development, but there is presently little understanding of which genes mediate vector competence in the wild, or evolve in response to parasite-mediated selection. Here, we use population genetic approaches to study the strength and mode of natural selection on a suite of mosquito immune system genes, CTL4, CTLMA2, LRIM1, and APL2 (LRRD7), which have been shown to affect Plasmodium development in functional studies. We sampled these genes from two African populations of An. gambiae s.s., along with several closely related species, and conclude that there is no evidence for either strong directional or balancing selection on these genes. We highlight a number of challenges that need to be met in order to apply population genetic tests for selection in Anopheles mosquitoes; in particular the dearth of suitable outgroup species and the potential difficulties that arise when working within a closely-related species complex. PMID:17688548

  7. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis

    PubMed Central

    Zhou, Dan; Liu, Xianmiao; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2015-01-01

    Anopheles sinensis is an important malaria vector in China and other Southeast Asian countries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and transcriptome provide an opportunity to understand the molecular mechanisms of insecticide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quinquefasciatus, respectively. The considerable contraction in gene number in Anopheles mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. The available An. sinensis transcriptome was also re-analyzed to further identify key resistance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR-strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class. These generated data provide a basis for identifying the resistance-associated genes of An. sinensis at the molecular level. PMID:26588704

  8. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

    2013-01-01

    Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055 6±0.010 3) µg/mL, (0.067 5±0.136 0) µg/mL and (0.066 1±0.007 6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  9. Morphological assessment and molecular phylogenetics of the Funestus and Minimus groups of Anopheles (Cellia).

    PubMed

    Garros, Claire; Harbach, Ralph E; Manguin, Sylvie

    2005-07-01

    A morphological comparison and molecular study of the Afrotropical Funestus and Afro-Oriental Minimus groups within the Myzomyia series of Anopheles (Cellia) was conducted to determine their phylogenetic affinities. Relationships were investigated using morphological characters and ribosomal (D3) and mitochondrial (COII) nucleotide sequences. Cross-identification of specimens from one group by using keys for the other group confirmed their morphological similarity, i.e., members of one group shared the key characters with members of the other group. Molecular analyses recognized five clades, not strictly related to geographical distribution: the Aconitus, Culicifacies, Funestus, Minimus, and Rivulorum subgroups. Morphological observations were congruent with the results of molecular analyses. Anopheles leesoni, an Afrotropical species, is closely related to the Oriental Minimus complex, and these taxa share a close relationship with the Fluviatilis complex that occurs from the Arabian Peninsula through India. The immature and adult stages of An. rivulorum in Africa bear morphological characters that distinguish this species from members of the Afrotropical Funestus subgroup. A composite scheme of classification based on the results and previously published information is proposed for the two groups. It is noted that An. fluviatilis species S is conspecific with An. minimus species C. PMID:16119539

  10. Characterization of Anopheles darlingi (Diptera: Culicidae) larval habitats in Belize, Central America

    NASA Technical Reports Server (NTRS)

    Manguin, S.; Roberts, D. R.; Andre, R. G.; Rejmankova, E.; Hakre, S.

    1996-01-01

    Surveys for larvae of Anopheles darlingi Root were conducted in April, May, and August 1994 in riverine habitats of central Belize (Cayo and Belize districts). An. darlingi was present during both the dry and wet seasons. Larvae were encountered most frequently in patches of floating debris along river margins. The floating mats were often formed by bamboo hanging over the banks and dense submersed bamboo roots. Larvae were found less frequently in lake margins, small lagoons, and ground pools with submersed roots and patches of floating leaves or vegetation. In addition to their association with floating debris, larvae of An. darlingi were associated positively with shade and submersed plants in riverine environments. Samples from river habitats showed the larvae of Anopheles albimanus Wiedemann to be strongly associated with sun-exposed sites containing green or blue-green algae. Unlike An. darlingi, An. albimanus was an ubiquitous mosquito, the immatures of which occurred in a wide variety of riverine and nonriverine aquatic habitats. Based on published reports and our experience, the association of An. darlingi with river systems was verified, and its distribution in Central America and Mexico was mapped.

  11. Ecology of Anopheles darlingi Root with respect to vector importance: a review

    PubMed Central

    2011-01-01

    Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902

  12. A reliable morphological method to assess the age of male Anopheles gambiae

    PubMed Central

    Huho, Bernadette J; Ng'habi, Kija R; Killeen, Gerry F; Nkwengulila, Gamba; Knols, Bart GJ; Ferguson, Heather M

    2006-01-01

    Background Release of genetically-modified (GM) or sterile male mosquitoes for malaria control is hampered by inability to assess the age and mating history of free-living male Anopheles. Methods Age and mating-related changes in the reproductive system of male Anopheles gambiae were quantified and used to fit predictive statistical models. These models, based on numbers of spermatocysts, relative size of sperm reservoir and presence/absence of a clear area around the accessory gland, were evaluated using an independent sample of mosquitoes whose status was blinded during the experiment. Results The number of spermatocysts in male testes decreased with age, and the relative size of their sperm reservoir increased. The presence of a clear area around accessory glands was also linked to age and mating status. A quantitative model was able to categorize males from the blind trial into age groups of young (≤ 4 days) and old (> 4 days) with an overall efficiency of 89%. Using the parameters of this model, a simple table was compiled that can be used to predict male age. In contrast, mating history could not be reliably assessed as virgins could not be distinguished from mated males. Conclusion Simple assessment of a few morphological traits which are easily collected in the field allows accurate age-grading of male An. gambiae. This simple, yet robust, model enables evaluation of demographic patterns and mortality in wild and released males in populations targeted by GM or sterile male-based control programmes. PMID:16872516

  13. Screening for adulticidal bioactivity of South African plants against Anopheles arabiensis

    PubMed Central

    2011-01-01

    Background This study was conducted to evaluate whether a selection of South African ethnomedicinal plants included in this study displayed insecticidal properties when screened against adult stages of the mosquito. Methods 381 crude extracts of 80 plant taxa in 42 families were sprayed onto ceramic tiles and screened using the cone bio-assay method for insecticide efficacy testing. Blood-fed, female Anopheles arabiensis mosquitoes were exposed to the treated tiles for a period of sixty minutes. Mosquito mortality was monitored for twenty-four hours. Results Of all the extracts analysed, the highest activity was observed in Ptaeroxylon obliquum (Ptaeroxylaceae) and Pittosporum viridiflorum (Pittosporaceae), a single extract from each, exhibiting more than 50% mortality. A large proportion (81.63%) of the extracts tested displayed low levels of mosquitocidal activity. The remainder of the extracts (17.85%) exhibited no bioactivity (0% mortality). Conclusions The screening results have shown that in accordance with WHO standards, none of the crude extracts tested had exhibited greater than 60% mortality against the adult stages of the malaria vector Anopheles arabiensis. PMID:21835000

  14. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  15. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  16. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    PubMed Central

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-01-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases. PMID:26839008

  17. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs. PMID:27232122

  18. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae)

    PubMed Central

    Linton, Yvonne-Marie; Ruiz-Lopez, J. Freddy; Conn, Jan E.; Sallum, Maria Anice M.; Póvoa, Marinete M.; Bergo, Eduardo S.; Oliveira, Tatiane M. P.; Sucupira, Izis; Wilkerson, Richard C.

    2015-01-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group. PMID:24820570

  19. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae).

    PubMed

    Foley, Desmond H; Linton, Yvonne-Marie; Ruiz-Lopez, J Freddy; Conn, Jan E; Sallum, Maria Anice M; Póvoa, Marinete M; Bergo, Eduardo S; Oliveira, Tatiane M P; Sucupira, Izis; Wilkerson, Richard C

    2014-06-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group. PMID:24820570

  20. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.

    PubMed

    Chen, Bin; Harbach, Ralph E; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K

    2012-12-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  1. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    PubMed

    Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B; Bjørnstad, Ottar N

    2013-01-01

    The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases. PMID:24244467

  2. The Cadherin Superfamily in Anopheles gambiae: a Comparative Study With Drosophila melanogaster

    PubMed Central

    Simões, Sérgio; Moita, Luís F.; Jacinto, António; Fernandes, Pedro

    2005-01-01

    The cadherin superfamily is a diverse and multifunctional group of proteins with extensive representation across genomes of phylogenetically distant species that is involved in cell–cell communication and adhesion. The mosquito Anopheles gambiae is an emerging model organism for the study of innate immunity and host–pathogen interactions, where the malaria parasite induces a profound rearrangement of the actin cytoskeleton at critical stages of infection. We have used bioinformatics tools to retrieve present sequence knowledge about the complete repertoire of cadherins in A. gambiae and compared it to that of the fruit fly, Drosophila melanogaster. In A. gambiae, we have identified 43 genes coding for cadherin extracellular domains that were re-annotated to 38 genes and represent an expansion of this gene family in comparison to other invertebrate organisms. The majority of Drosophila cadherins show a 1 : 1 Anopheles orthologue, but we have observed a remarkable expansion in some groups in A. gambiae, such as N-cadherins, that were recently shown to have a role in the olfactory system of the fruit fly. In vivo dsRNA silencing of overrepresented genes in A. gambiae and other genes showing expression at critical tissues for parasite infection will likely advance our understanding of the problems of host preference and host–pathogen interactions in this mosquito species. PMID:18629193

  3. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis.

    PubMed

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-01-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases. PMID:26839008

  4. High-throughput genotyping of Anopheles mosquitoes using intact legs by Agena Biosciences iPLEX.

    PubMed

    Fabrigar, Danica Joy; Hubbart, Christina; Miles, Alistair; Rockett, Kirk

    2016-03-01

    Recent developments in genotyping technologies coupled with the growing desire to characterize genome variation in Anopheles populations open the opportunity to develop more effective genotyping strategies for high-throughput screening. A major bottleneck of this goal is nucleic acid extraction. Here, we examined the feasibility of using intact portions of a mosquito's leg as sources of template DNA for whole-genome amplification (WGA) by primer-extension preamplification. We used the Agena Biosciences MassARRAY(®) platform (formerly Sequenom) to genotype 78 SNPs for 265 WGA leg samples. We performed nucleic acid extraction on 36 mosquito carcasses and compared the genotype call concordance with their corresponding legs and observed full concordance. Using three legs instead of one improved genotyping success rates (96% vs. 89%, respectively), although this difference was not significant. We provide a proof of concept that WGA reactions can be performed directly on mosquito legs, thereby eliminating the need to extract nucleic acid. This approach is straightforward and sensitive and allows both species determination and genotyping of Anopheles mosquitoes to be performed in a high-throughput manner. Our protocol also leaves the mosquito body intact facilitating other experimental analysis to be undertaken on the same sample. Based on our findings, this method would also be suitable for use with other insect species. PMID:26426152

  5. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae.

    PubMed

    Butters, Matthew P; Kobylinski, Kevin C; Deus, Kelsey M; da Silva, Ines Marques; Gray, Meg; Sylla, Massamba; Foy, Brian D

    2012-01-01

    Laboratory and field studies have shown that ivermectin, a drug that targets invertebrate ligand-gated ion channels (LGICs), is potently active against Anopheles spp. mosquitoes at concentrations present in human blood after standard drug administrations; thus ivermectin holds promise as a mass human-administered endectocide that could help suppress malaria parasite transmission. We evaluated other systemic LGIC-targeting drugs for their activities against the African malaria vector Anopheles gambiae using in vitro blood feeding assays. Eprinomectin, selamectin, moxidectin, and N-tert-butyl nodulisporamide were evaluated as potentially systemic drugs having similar modes of action to ivermectin; all primarily are agonists of invertebrate glutamate-gated chloride ion channels. Additionally, nitenpyram and spinosad were evaluated as systemic drugs that primarily work as agonists of nicotinic acetylcholine receptor channels. Only eprinomectin killed An. gambiae at concentrations that were comparable to ivermectin. At sub-lethal doses, nitenpyram and moxidectin marginally affected mosquito re-blood feeding ability. The macrocyclic lactones, particularly eprinomectin, caused significantly increased knockdown and significantly inhibited recovery in blood fed females. These data are a first step in evaluating drugs that might be eventually combined with, or substituted for ivermectin for future malaria parasite transmission control. PMID:22019935

  6. Diversity of Anopheles mosquitoes in Binh Phuoc and Dak Nong Provinces of Vietnam and their relation to disease

    PubMed Central

    2014-01-01

    Background Human malaria is still a burden in Dak Nong and Binh Phuoc Provinces in south-central Vietnam that border Cambodia. Several Anopheles species that transmit human malarial Plasmodium may also transmit Wuchereria bancrofti, the nematode that causes Bancroftian lymphatic filariasis. The objective of this study was to investigate the role of Anopheles species in the transmission of these two pathogens in the two highly malaria endemic provinces of Vietnam. Methods Anopheles mosquitoes were collected in Dak Nong and Binh Phuoc Provinces in November and December of 2010 and 2011. Human landing catches, paired collections on human and buffalo, and resting captures were made with mouth aspirators. Collections were also made with light traps. Morphological and PCR-based methods were used to identify the species. Real-time PCR was used to detect Plasmodium species and W. bancrofti in individual mosquitoes. Results Twenty-four Anopheles species were identified among 797 captured mosquitoes. Anopheles dirus was found in both provinces and was the predominant species in Binh Phuoc Province; An. maculatus was the most prevalent species in Dak Nong Province. Anopheles minimus was collected only in Binh Phuoc Province. Some specimens of An. minimus and An. pampanai were misidentified based on morphology. Four specimens of An. scanloni were identified, and this is the first report of this species of the Dirus Complex in Vietnam. Two females, one An. dirus and one An. pampanai, collected in Binh Phuoc Province were infected with P. vivax, for an overall infection rate of 0.41% (2/486): 0.28% for An. dirus (1/361) and 20% for An. pampanai (1/5). No mosquitoes were found to be infected with P. falciparum, P. knowlesi or W. bancrofti in either province. Conclusion A diversity of Anopheles species occurs in Dak Nong and Binh Phuoc Provinces of Vietnam, several of which are considered to be actual and potential vectors of malarial protozoa and microfilariae. It is highly

  7. Low and seasonal malaria transmission in the middle Senegal River basin: identification and characteristics of Anopheles vectors

    PubMed Central

    2012-01-01

    Background During the last decades two dams were constructed along the Senegal River. These intensified the practice of agriculture along the river valley basin. We conducted a study to assess malaria vector diversity, dynamics and malaria transmission in the area. Methods A cross-sectional entomological study was performed in September 2008 in 20 villages of the middle Senegal River valley to evaluate the variations of Anopheles density according to local environment. A longitudinal study was performed, from October 2008 to January 2010, in 5 selected villages, to study seasonal variations of malaria transmission. Results Among malaria vectors, 72.34% of specimens collected were An. arabiensis, 5.28% An. gambiae of the S molecular form, 3.26% M form, 12.90% An. pharoensis, 4.70% An. ziemanni, 1.48% An. funestus and 0.04% An. wellcomei. Anopheles density varied according to village location. It ranged from 0 to 21.4 Anopheles/room/day and was significantly correlated with the distance to the nearest ditch water but not to the river. Seasonal variations of Anopheles density and variety were observed with higher human biting rates during the rainy season (8.28 and 7.55 Anopheles bite/man/night in October 2008 and 2009 respectively). Transmission was low and limited to the rainy season (0.05 and 0.06 infected bite/man/night in October 2008 and 2009 respectively). During the rainy season, the endophagous rate was lower, the anthropophagic rate higher and L1014F kdr frequency higher. Conclusions Malaria vectors are present at low-moderate density in the middle Senegal River basin with An. arabiensis as the predominant species. Other potential vectors are An. gambiae M and S form and An. funestus. Nonetheless, malaria transmission was extremely low and seasonal. PMID:22269038

  8. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  9. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  10. Field evaluation of ultra-low volume applications with a mixture of d-allethrin and d-phenothrin for control of Anopheles albimanus in Haiti.

    PubMed

    Shono, Y; Jean-Francois, V; Saint Jean, Y; Itoh, T

    1991-09-01

    Ultra-low volume applications of d-allethrin and d-phenothrin could possibly reduce populations of Anopheles albimanus when used in conjunction with residual spraying of fenitrothion. The experiments were carried out in Les Cayes, Haiti. PMID:1791463