Science.gov

Sample records for anopheles kerteszia em

  1. Kerteszia subgenus of Anopheles associated with the Brazilian Atlantic rainforest:current knowledge and future challenges

    PubMed Central

    Marrelli, Mauro Toledo; Malafronte, Rosely S; Sallum, Maria AM; Natal, Delsio

    2007-01-01

    Background The Atlantic rainforest ecosystem, where bromeliads are abundant, provides an excellent environment for Kerteszia species, because these anophelines use the axils of those plants as larval habitat. Anopheles (K.) cruzii and Anopheles (K.) bellator are considered the primary vectors of malaria in the Atlantic forest. Although the incidence of malaria has declined in some areas of the Atlantic forest, autochthonous cases are still registered every year, with Anopheles cruzii being considered to be a primary vector of both human and simian Plasmodium. Methods Recent publications that addressed ecological aspects that are important for understanding the involvement of Kerteszia species in the epidemiology of malaria in the Atlantic rainforest in the Neotropical Region were analysed. Conclusion The current state of knowledge about Kerteszia species in relation to the Atlantic rainforest ecosystem was discussed. Emphasis was placed on ecological characteristics related to epidemiological aspects of this group of mosquitoes. The main objective was to investigate biological aspects of the species that should be given priority in future studies. PMID:17880709

  2. Man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai (Diptera: Culicidae) in the Pacific lowlands of Colombia.

    PubMed

    Solarte, Y; Hurtado, C; Gonzalez, R; Alexander, B

    1996-01-01

    The daily man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai was determined in four ecologically distinct settlements of the Naya River, Department of Valle, Colombia. Differences were found among the settlements with respect to the mosquito species present, intradomiciliary and extradomiciliary biting activity and population densities. PMID:8736081

  3. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia) pholidotus (Diptera: Culicidae) from Colombia

    PubMed Central

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha L; Wilkerson, Richard C; Ruiz, Fredy; Harrison, Bruce A

    2014-01-01

    Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy. PMID:25075785

  4. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia) pholidotus (Diptera: Culicidae) from Colombia.

    PubMed

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha L; Wilkerson, Richard C; Ruiz, Fredy; Harrison, Bruce A

    2014-07-01

    Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy. PMID:25075785

  5. Anopheles (Kerteszia) lepidotus (Diptera: Culicidae), not the malaria vector we thought it was: Revised male and female morphology; larva, pupa, and male genitalia characters; and molecular verification

    PubMed Central

    HARRISON, BRUCE A.; RUIZ-LOPEZ, FREDDY; FALERO, GUILLERMO CALDERON; SAVAGE, HARRY M.; PECOR, JAMES E.; WILKERSON, RICHARD C.

    2015-01-01

    The name Anopheles (Kerteszia) lepidotus Zavortink, commonly used for an important malaria vector in the eastern cordillera of the Andes, is here corrected to An. pholidotus Zavortink. We discovered that An. (Ker.) specimens from Peru, and reared-associated specimens from Ecuador, had unambiguous habitus characters that matched those on the male holotype of An. lepidotus. However, the specimens do not exhibit characters of the female allotype and female paratypes of An. lepidotus, which are actually An. pholidotus. Our specimens are the first correctly associated females of An. lepidotus, which allow us to provide a new morphological interpretation for the adult habitus of this species. This finding is also corroborated by molecular data from a portion of the Cytochrome Oxidase I (COI) gene and ribosomal DNA Internal Transcribed Spacer 2 (rDNA ITS2). The pupal stage of An. lepidotus is described for the first time, and additional larval characters are also noted. Diagnostic morphological characters for the adult, pupal, and larval stages of An. pholidotus are provided to separate the two species. All stages of An. lepidotus are easily separated from other currently known species in subgenus Kerteszia and a new key to the females of An. (Kerteszia) is given. Previously published distribution, bionomics, and medical significance data are corrected and enhanced. PMID:26726290

  6. Anthropophilic biting behaviour of Anopheles (Kerteszia) neivai Howard, Dyar & Knab associated with Fishermen’s activities in a malaria-endemic area in the Colombian Pacific

    PubMed Central

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha Lucía

    2013-01-01

    On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia) neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%), while Anopheles albimanus was found indoors (82%) and outdoors (73%). One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria. PMID:24402159

  7. Anthropophilic biting behaviour of Anopheles (Kerteszia) neivai Howard, Dyar & Knab associated with Fishermen's activities in a malaria-endemic area in the Colombian Pacific.

    PubMed

    Escovar, Jesús Eduardo; González, Ranulfo; Quiñones, Martha Lucía

    2013-12-01

    On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia) neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%), while Anopheles albimanus was found indoors (82%) and outdoors (73%). One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria. PMID:24402159

  8. Anopheles (Kerteszia) cruzii (DIPTERA: CULICIDAE) IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    PubMed Central

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen. PMID:25229220

  9. Evidence for the occurrence of two sympatric sibling species within the Anopheles (Kerteszia) cruzii complex in southeast Brazil and the detection of asymmetric introgression between them using a multilocus analysis

    PubMed Central

    2013-01-01

    Background Anopheles (Kerteszia) cruzii (Diptera: Culicidae) is a primary vector of human and simian malaria parasites in southern and southeastern Brazil. Earlier studies using chromosome inversions, isoenzymes and a number of molecular markers have suggested that An. cruzii is a species complex. Results In this study, a multilocus approach using six loci, three circadian clock genes and three encoding ribosomal proteins, was carried out to investigate in more detail the genetic differentiation between the An. cruzii populations from Florianópolis–Santa Catarina (southern Brazil) and Itatiaia–Rio de Janeiro States (southeastern Brazil). The analyses were performed first comparing Florianópolis and Itatiaia, and then comparing the two putative sympatric incipient species from Itatiaia (Itatiaia A and Itatiaia B). The analysis revealed high FST values between Florianópolis and Itatiaia (considering Itatiaia A and B together) and also between the sympatric Itatiaia A and Itatiaia B, irrespective of their function. Also, using the IM program, no strong indication of migration was found between Florianópolis and Itatiaia (considering Itatiaia A and B together) using all loci together, but between Itatiaia A and Itatiaia B, the results show evidence of migration only in the direction of Itatiaia B. Conclusions The results of the multilocus analysis indicate that Florianópolis and Itatiaia represent different species of the An. cruzii complex that diverged around 0.6 Mya, and also that the Itatiaia sample is composed of two sympatric incipient species A and B, which diverged around 0.2 Mya. Asymmetric introgression was found between the latter two species despite strong divergence in some loci. PMID:24063651

  10. The complete mitochondrial genome of Anopheles minimus (Diptera: Culicidae) and the phylogenetics of known Anopheles mitogenomes.

    PubMed

    Hua, Ya-Qiong; Ding, Yi-Ran; Yan, Zhen-Tian; Si, Feng-Ling; Luo, Qian-Chun; Chen, Bin

    2016-06-01

    Anopheles minimus is an important vector of human malaria in southern China and Southeast Asia. The phylogenetics of mosquitoes has not been well resolved, and the mitochondrial genome (mtgenome) has proven to be an important marker in the study of evolutionary biology. In this study, the complete mtgenome of An. minimus was sequenced for the first time. It is 15 395 bp long and encodes 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and a non-coding region. The gene organization is consistent with those of known Anopheles mtgenomes. The mtgenome performs a clear bias in nucleotide composition with a positive AT-skew and a negative GC-skew. All 13 PCGs prefer to use the codon UUA (Leu), ATN as initiation codon but cytochrome-oxidase subunit 1 (COI) and ND5, with TCG and GTG, and TAA as termination codon, but COI, COII, COIII and ND4, all with the incomplete T. tRNAs have the typical clover-leaf structure, but tRNA(Ser(AGN)) is consistent with known Anopheles mtgenomes. The control region includes a conserved T-stretch and a (TA)n stretch, and has the highest A+T content at 93.1%. The phylogenetics of An. minimus with 18 other Anopheles species was constructed by maximum likelihood and Bayesian inference, based on concatenated PCG sequences. The subgenera, Cellia and Anopheles, and Nyssorhynchus and Kerteszia have mutually close relationships, respectively. The Punctulatus group and Leucosphyrus group of Neomyzomyia Series, and the Albitarsis group of Albitarsis Series were suggested to be monophyletic. The monophyletic status of the subgenera, Cellia, Anopheles, Nyssorhynchus and Kerteszia need to be further elucidated. PMID:26852698

  11. Morphogenetic characterisation, date of divergence, and evolutionary relationships of malaria vectors Anopheles cruzii and Anopheles homunculus.

    PubMed

    Lorenz, Camila; Patané, José S L; Suesdek, Lincoln

    2015-10-01

    The mosquito species Anopheles cruzii and Anopheles homunculus are co-occurring vectors for etiological agents of malaria in southeastern Brazil, a region known to be a major epidemic spot for malaria outside Amazon region. We sought to better understand the biology of these species in order to contribute to future control efforts by (1) improving species identification, which is complicated by the fact that the females are very similar, (2) investigating genetic composition and morphological differences between the species, (3) inferring their phylogenetic histories in comparison with those of other Anophelinae, and (4) dating the evolutionary divergence of the two species. To characterise the species we used wing geometry and mitochondrial cytochrome oxidase subunit I (COI) gene as morphological and genetic markers, respectively. We also used the genes white, 28S, ITS2, Cytb, and COI in our phylogenetic and dating analyses. A comparative analysis of wing thin-plate splines revealed species-specific wing venation patterns, and the species An. cruzii showed greater morphological diversity (8.74) than An. homunculus (5.58). Concerning the COI gene, An. cruzii was more polymorphic and also showed higher haplotype diversity than An. homunculus, with many rare haplotypes that were displayed by only a few specimens. Phylogenetic analyses revealed that all tree topologies converged and showed [Anopheles bellator+An. homunculus] and [Anopheles laneanus+An. cruzii] as sister clades. Diversification within the subgenus Kerteszia occurred 2-14.2millionyears ago. The landmark data associated with wing shape were consistent with the molecular phylogeny, indicating that this character can distinguish higher level phylogenetic relationships within the Anopheles group. Despite their morphological similarities and co-occurrence, An. cruzii and An. homunculus show consistent differences. Phylogenetic analysis revealed that the species are not sister-groups but species that recently

  12. Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama

    PubMed Central

    LOAIZA, J. R.; BERMINGHAM, E.; SCOTT, M. E.; ROVIRA, J. R.; CONN, J. E.

    2010-01-01

    Anopheles (Diptera: Culicidae) species composition and distribution were studied using human landing catch data over a 35-yr period in Panama. Mosquitoes were collected from 77 sites during 228 field trips carried out by members of the National Malaria Eradication Service. Fourteen Anopheles species were identified. The highest average human biting rates were recorded from Anopheles (Nyssorhynchus) albimanus (Wiedemann) (9.8 bites/person/night) and Anopheles (Anopheles) punctimacula (Dyar and Knab) (6.2 bites/person/night). These two species were also the most common, present in 99.1 and 74.9%, respectively, of the sites. Anopheles (Nyssorhynchus) aquasalis (Curry) was encountered mostly in the indigenous Kuna Yala Comarca along the eastern Atlantic coast, where malaria case history and average human biting rate (9.3 bites/person/night) suggest a local role in malaria transmission. An. albimanus, An. punctimacula, and Anopheles (Anopheles) vestitipennis (Dyar and Knab) were more abundant during the rainy season (May–December), whereas An. aquasalis was more abundant in the dry season (January–April). Other vector species collected in this study were Anopheles (Kerteszia) neivai (Howard, Dyar, and Knab) and Anopheles (Anopheles) pseudopunctipennis s.l. (Theobald). High diversity of Anopheles species and six confirmed malaria vectors in endemic areas of Panama emphasize the need for more detailed studies to better understand malaria transmission dynamics. PMID:18826025

  13. Diversification of the Genus Anopheles and a Neotropical Clade from the Late Cretaceous

    PubMed Central

    Freitas, Lucas A.; Russo, Claudia A. M.; Voloch, Carolina M.; Mutaquiha, Olívio C. F.; Marques, Lucas P.; Schrago, Carlos G.

    2015-01-01

    The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma). Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur. PMID:26244561

  14. [Egg morphology as an indirect method to identify Anopheles benarrochi, Anopheles oswaldoi and Anopheles rangeli (Diptera: Culicidae)].

    PubMed

    Estrada, Dora Amparo; Quiñoes, Martha L; Sierra, Diana Maria; Calle, David A; Ruiz, Fredy; Erazo, Holmes F; Linton, Yvonne-Marie

    2003-12-01

    In the Department of Putumayo in southern Colombia, malaria transmission has continued in the absence of the 4 traditional Latin American vector species--Anopheles darlingi, Anopheles nuneztovari, Anopheles albimanus or Anopheles trinkae. Human bait collections yielded Anopheles mosquitoes and a morphological variant of Anopheles benarrochi, the adult females of which can easily be misidentified as Anopheles oswaldoi. Species identification of females of Anopheles in the subgenus Nyssorhynchus is generally difficult due to overlapping morphological characters; therefore, progeny of field collected females were link-reared to assess species identity. Herein a robust method is presented to identify the species Anopheles benarrochi, Anopheles oswaldoi and Anopheles rangeli from southern Colombia, using the morphology of the eggs induced from wild-caught females. Eggs of A. rangeli and A. benarrochi were differentiated on the basis of the anterior crown. In A. rangeli, this feature is positioned apically with high walls. In A. benarrochi, anterior crown is positioned more ventrally with comparatively shorter walls. No crown is present in A. oswaldoi. These differences are clear with the aid of a dissecting microscope and make accurate species determination possible even in field conditions. Egg morphology is shown to be an accurate, albeit indirect, method for the taxonomic determination for the three southern Colombian species and may also be useful in other regions of Latin America where the morphological variant of A. benarrochi is sympatric with A. oswaldoi. PMID:14968916

  15. Male motion coordination in swarming Anopheles gambiae and Anopheles coluzzii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa; most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, parallel flight patterns in such swarms have been observed, but a detailed description o...

  16. Malaria and the Anopheles mosquitoes of Tajikistan.

    PubMed

    Habirov, Zamonidin; Kadamov, Dilshod; Iskandarov, Firuz; Komilova, Saodat; Cook, Shelley; McAlister, Erica; Harbach, Ralph E

    2012-12-01

    Surveys of Anopheles mosquitoes were conducted in urban, rural, and natural areas of Tajikistan to obtain updated information on their distributions, especially in southern districts of the country where malaria is a prevalent disease. Nine species of Anopheles are found in Tajikistan. Anopheles superpictus, An. claviger, An. hyrcanus, and An. pulcherrimus are the most widespread and abundant species. Investigations in northern Tajikistan confirmed the presence of An. artemievi and the absence of An. martinius, both members of the An. maculipennis complex of malaria vectors. Anopheles barianensis, An. lindesayi, and An. marteri sogdianus, species previously recorded in the country, were not encountered during our surveys. The history of Anopheles and malaria research in Tajikistan is reviewed and bionomical and distributional information is provided for each of the nine species. PMID:23181867

  17. Brain Proteomics of Anopheles gambiae

    PubMed Central

    Dwivedi, Sutopa B.; Muthusamy, Babylakshmi; Kumar, Praveen; Kim, Min-Sik; Nirujogi, Raja Sekhar; Getnet, Derese; Ahiakonu, Priscilla; De, Gourav; Nair, Bipin; Gowda, Harsha; Prasad, T.S. Keshava; Kumar, Nirbhay

    2014-01-01

    Abstract Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future. PMID:24937107

  18. Tools for Anopheles gambiae Transgenesis

    PubMed Central

    Volohonsky, Gloria; Terenzi, Olivier; Soichot, Julien; Naujoks, Daniel A.; Nolan, Tony; Windbichler, Nikolai; Kapps, Delphine; Smidler, Andrea L.; Vittu, Anaïs; Costa, Giulia; Steinert, Stefanie; Levashina, Elena A.; Blandin, Stéphanie A.; Marois, Eric

    2015-01-01

    Transgenesis is an essential tool to investigate gene function and to introduce desired characters in laboratory organisms. Setting-up transgenesis in non-model organisms is challenging due to the diversity of biological life traits and due to knowledge gaps in genomic information. Some procedures will be broadly applicable to many organisms, and others have to be specifically developed for the target species. Transgenesis in disease vector mosquitoes has existed since the 2000s but has remained limited by the delicate biology of these insects. Here, we report a compilation of the transgenesis tools that we have designed for the malaria vector Anopheles gambiae, including new docking strains, convenient transgenesis plasmids, a puromycin resistance selection marker, mosquitoes expressing cre recombinase, and various reporter lines defining the activity of cloned promoters. This toolbox contributed to rendering transgenesis routine in this species and is now enabling the development of increasingly refined genetic manipulations such as targeted mutagenesis. Some of the reagents and procedures reported here are easily transferable to other nonmodel species, including other disease vector or agricultural pest insects. PMID:25869647

  19. Adaptation through chromosomal inversions in Anopheles.

    PubMed

    Ayala, Diego; Ullastres, Anna; González, Josefa

    2014-01-01

    Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species-human malaria vectors-is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed. PMID:24904633

  20. Fine structure of the eggs of Anopheles (Anopheles) apicimacula (Diptera:Culicidae).

    PubMed

    Rodriguez, M H; Chávez, B; Orozco, A; Martínez-Palomo, A

    1996-09-01

    The eggs of Anopheles (Anopheles) apicimacula Dyar and Knab are described from scanning electron micrographs. The eggs are boat-shaped, with frills that extend ventrally along the length of the egg and surround the deck region. The ornamentation on the dorsal and lateral surfaces is formed by groups of smooth, round tubercles. The ventral surface is covered by irregularly jagged tubercles. Prominent lobed tubercles are present at the anterior and posterior ends of the deck. PMID:8887225

  1. The acetylcholinesterase gene of Anopheles stephensi.

    PubMed

    Hall, L M; Malcolm, C A

    1991-02-01

    1. The acetylcholinesterase (AChE) gene from the important malaria vector Anopheles stephensi has been isolated by homology to the Drosophila acetylcholinesterase gene. 2. The complete sequence and intron-exon organization has been determined. The encoded protein has 69% identity to Drosophila AChE and 38 and 36% identity to Torpedo AChE and human butyrylcholinesterase, respectively. PMID:1901515

  2. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    PubMed

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes. PMID:27263828

  3. Engineered Anopheles Immunity to Plasmodium Infection

    PubMed Central

    Cirimotich, Chris; Souza-Neto, Jayme A.; McLean, Kyle J.; Dimopoulos, George

    2011-01-01

    A causative agent of human malaria, Plasmodium falciparum, is transmitted by Anopheles mosquitoes. The malaria parasite is under intensive attack from the mosquito's innate immune system during its sporogonic development. We have used genetic engineering to create immune-enhanced Anopheles stephensi mosquitoes through blood meal-inducible expression of a transgene encoding the IMD pathway-controlled NF-kB Rel2 transcription factor in the midgut and fat-body tissue. Transgenic mosquitoes showed greater resistance to Plasmodium and microbial infection as a result of timely concerted tissue-specific immune attacks involving multiple effectors. The relatively weak impact of this genetic modification on mosquito fitness under laboratory conditions encourages further investigation of this approach for malaria control. PMID:22216006

  4. Anopheles (Anopheles) petragnani Del Vecchio 1939-a new mosquito species for Germany.

    PubMed

    Becker, Norbert; Pfitzner, Wolf Peter; Czajka, Christina; Kaiser, Achim; Weitzel, Thomas

    2016-07-01

    The so far known species of the Anopheles Claviger Complex, Anopheles claviger s.s. and Anopheles petragnani, can only be distinguished by partial overlapping characteristics of immature stages and by nucleotide sequence variation of the genomic ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region. The known distribution of An. petragnani is so far restricted to the western Mediterranean region, whereas An. claviger s.s. occurs across most of Europe, up to the Middle East and North Africa. In our study, we investigated the larval mosquito fauna in rock pools of the Murg valley (Black Forest, Germany) once a month from April to December 2015.Among other species, larvae belonging to the Anopheles Claviger Complex were found. The fourth instar larvae were morphologically identified by chaetotaxy of the head and abdomen. The results were confirmed by a multiplex PCR and additional sequencing of the amplificates.Of the 1289 collected larvae from the rock pools, seven belonged to the Anopheles Claviger Complex. Five individuals were determined morphologically as An. petragnani and two as An. claviger s.s. The associated mosquito fauna comprised of Aedes japonicus japonicus (548 individuals), Culex pipiens s.l. and Culex torrentium (493 individuals) and Culex hortensis (241 individuals).This is the first record of An. petragnani north of the Alps. Further studies will reveal whether this is an isolated population of An. petragnani and if the investigated rock pool breeding sites represent typical habitats of this species in temperate regions in Central Europe. PMID:27003404

  5. Neuropeptides and Peptide Hormones in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Riehle, Michael A.; Garczynski, Stephen F.; Crim, Joe W.; Hill, Catherine A.; Brown, Mark R.

    2002-10-01

    The African malaria mosquito, Anopheles gambiae, is specialized for rapid completion of development and reproduction. A vertebrate blood meal is required for egg production, and multiple feedings subsequently allow transmission of malaria parasites, Plasmodium spp. Regulatory peptides from 35 genes annotated from the A. gambiae genome likely coordinate these and other physiological processes. Plasmodium parasites may affect actions of newly identified insulin-like peptides, which coordinate growth and reproduction of its vector, A. gambiae, as in Drosophila melanogaster, Caenorhabditis elegans, and mammals. This genomic information provides a basis to expand understanding of hematophagy and pathogen transmission in this mosquito.

  6. Analysis of the cuticular hydrocarbons among species of the Anopheles quadrimaculatus complex (Diptera: Culicidae).

    PubMed

    Carlson, D A; Reinert, J F; Bernier, U R; Sutton, B D; Seawright, J A

    1997-12-01

    Cuticular hydrocarbons were extracted from females of 5 species of the Anopheles quadrimaculatus complex and studied by gas chromatography and mass spectrometry. The data were analyzed by multivariate techniques to determine the degree of divergence in hydrocarbon patterns and to develop models that allow the discrimination of these species. Anopheles quadrimaculatus Say, Anopheles smaragdinus Reinert, and Anopheles maverlius Reinert could be separated at 100% from each other and from Anopheles diluvialis Reinert and Anopheles inundatus Reinert; however, separation of An. diluvialis from An. inundatus was 80% using a 2-way model. PMID:9474551

  7. Odourant reception in the malaria mosquito Anopheles gambiae

    PubMed Central

    Carey, Allison; Wang, Guirong; Su, Chih-Ying; Zwiebel, Laurence J.; Carlson, John R.

    2010-01-01

    Summary The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It locates its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae Odourant Receptor (AgOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odourants elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behavior. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odourant receptor repertoire. We find that odourants are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria. PMID:20130575

  8. Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest Nigeria.

    PubMed

    Okorie, P N; Ademowo, O G; Irving, H; Kelly-Hope, L A; Wondji, C S

    2015-03-01

    The emergence of insecticide resistance in Anopheles (Diptera: Culicidae) mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and the frequency of knock-down resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and Anopheles gambiae Giles from the Ojoo and Bodija areas of Ibadan, in southwest Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using World Health Organization (WHO) bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification; kdr genotyping was determined using the TaqMan real-time polymerase chain reaction assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodija samples (n = 186) consisted of An. gambiae (91.4%) and An. coluzzii (8.1%) and included one An. coluzzii/An. gambiae hybrid specimen. All mosquitoes screened in Ojoo (n = 26) were An. gambiae. The 1014F kdr mutation was detected at frequencies of 24.5 and 5.8% in Bodija and Ojoo, respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the development of resistance and highlight the need to implement insecticide resistance management strategies. PMID:25417803

  9. DDT-resistance in Anopheles stephensi.

    PubMed

    DAVIDSON, G; JACKSON, C E

    1961-01-01

    In view of the increasing number of reports from different parts of the world indicating resistance to DDT in both adults and larvae of Anopheles stephensi, an important malaria vector, a series of laboratory studies has been carried out on the degree, the pattern and the mode of inheritance of resistance in this species. A DDT-resistant strain from Iraq and a susceptible strain from India were used.In four sets of observations made in the course of tests on both adults and larvae a monofactorial type of inheritance was indicated, and the factor involved was shown to be dependent for its expression on the genetic background.DDT-resistance in A. stephensi appears to be similar in most respects to that in A. sundaicus. PMID:13883789

  10. Colonization of Anopheles pseudopunctipennis from Mexico.

    PubMed

    Villarreal, C; Arredondo-Jiménez, J I; Rodriguez, M H; Ulloa, A

    1998-12-01

    Two colonies of Anopheles pseudopunctipennis, Tapachula and Abasolo strains, were established under laboratory conditions with a thermoperiod (29 degrees C during the day; 24 degrees C during the night) and artificial dusk. To stimulate mating, a light beam from a flashlight was shone on the cage shortly after lights off. This procedure was repeated for the first 6 mosquito generations (parental to F6) and thereafter light stimulation was unnecessary for mating. The Tapachula colony has been maintained for 24 generations in 24 months, with insemination rates in females > 80% since the F3, and a monthly production of 30,000 pupae since the F7. Using the same procedure, the Abasolo colony from northeastern Mexico has been maintained for 13 generations in 14 months, with insemination rates of 26-52%. PMID:10084128

  11. Chromosomal differences in populations of Anopheles nuneztovari

    PubMed Central

    Kitzmiller, J. B.; Kreutzer, R. D.; Tallaferro, E.

    1973-01-01

    Anopheles nuneztovari from 3 localities in Brazil, 2 in Venezuela, and 1 in Colombia were subjected to chromosome analysis. The Venezuelan and Colombian populations, responsible for malaria transmission in certain areas of these countries, differ in an X-chromosome arrangement from the Brazilian specimens, the difference apparently being due to the fixation of an inversion in the homozygous state in one population. It was possible to identify 216 specimens from Venezuela and Colombia and 190 from Brazil by the X-chromosome. A. nuneztovari and its close relatives may be easily distinguished in this way. Diagnostic descriptions of the chromosomes and a standard map, based on the Brazilian population, are provided. ImagesFig. 2Fig. 4Fig. 5Fig. 7Fig. 8 PMID:4543549

  12. Comparison of transmission parameters between Anopheles argyritarsis and Anopheles pseudopunctipennis in two ecologically different localities of Bolivia

    PubMed Central

    2013-01-01

    Background Anopheles (Anopheles) pseudopunctipennis is a recognized malaria vector in the slopes of the Andes of Bolivia. There, other species might be involved in malaria transmission and one candidate could be Anopheles argyritarsis. Although it is generally admitted that this species is not a malaria vector in the neotropical region, its potential role in transmission is still controversial and this situation has to be cleared, at least for Bolivia. Comparing the vectorial efficiency of An. pseudopunctipennis with that of An. argyritarsis could solve the question. Methods The two species were sampled throughout Bolivia to estimate their degree of co-existence in their distribution range. Vectorial efficiencies of the two species were compared in two ecologically different localities where the species were sympatric by analysing their vectorial capacities and components (i e, human biting rates, human biting index, survival, durations of the gonotrophic cycle and extrinsic cycle), and the entomological inoculation rates (EIR). Mosquitoes were sampled monthly during more than one year in the two localities. A monthly sample consisted in hourly captures in four houses (inside and outside) in each locality, during four consecutive nights. Climatic variables (temperature, humidity, potential evapo-transpiration and precipitations) were recorded to better understand variability in the entomological parameters. Relationships were analysed using multivariate methods. Results Anopheles pseudopunctipennis and An. argyritarsis are “altitude” species, sharing the same geographical distribution range in the Andes of Bolivia. No Plasmodium parasite was identified in An. argyritarsis and estimates of the vectorial capacity indicated that it is not a malaria vector in the two studied localities, unlike An. pseudopunctipennis which showed positive EIRs. This latter species, although not a very good malaria vector, exhibited better life traits values and better behavioural

  13. Mark-recapture studies of host selection by Anopheles (Anopheles) vestitipennis.

    PubMed

    Ulloa, Armando; Arredondo-Jiménez, Juan I; Rodriguez, Mario H; Fernández-Salas, Ildefonso

    2002-03-01

    We present herein the results of a series of mark-recapture experiments with female Anopheles vestitipennis. Theses experiments used human and animal hosts to assess the degree of anthropophily of field-caught specimens, originally collected on either host, and of their offspring. Fidelity of mosquitoes to particular hosts was estimated by recapturing marked host-seeking mosquitoes returning for a 2nd blood meal. Results indicated that mosquitoes seeking animal hosts were more faithful (80.48%; 33 of 41) in returning to their original host than were those seeking human hosts (63%; 49 of 78). PMID:11998927

  14. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages.

    PubMed

    Gimonneau, Geoffrey; Tchioffo, Majoline T; Abate, Luc; Boissière, Anne; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Christen, Richard; Morlais, Isabelle

    2014-12-01

    During their immature life stages, malaria mosquitoes are exposed to a wide array of microbes and contaminants from the aquatic habitats. Although prior studies have suggested that environmental exposure shapes the microbial community structure in the adult mosquito, most reports have focused on laboratory-based experiments and on a single mosquito epithelium, the gut. In this study, we investigated the influence of the breeding site on the development of the Anopheles coluzzii and Anopheles gambiae microbiota in natural conditions. We characterized bacterial communities from aquatic habitats, at surface microlayer and subsurface water levels, to freshly emerge adult mosquitoes using multiplexed 16S rRNA gene pyrosequencing and we separately analyzed the microbiota associated with the different epithelia of adult individual, midguts, ovaries and salivary glands. We found that the distribution of bacterial communities in the aquatic habitats differed according to the depth of water collections. Inter-individual variation of bacterial composition was large in larvae guts but adult mosquitoes from a same breeding site shared quite similar microbiota. Although some differences in bacterial abundances were highlighted between the different epithelia of freshly emerged An. coluzzii and An. gambiae, an intriguing feature from our study is the particular similarity of the overall bacterial communities. Our results call for further investigations on the bacterial population dynamics in the different tissues to determine the distinctive characteristics of each microbiota during the mosquito lifespan and to identify specific interactions between certain key phyla or species and the insect life history traits. PMID:25283802

  15. [Anopheles of Senegal. An annotated and illustrated list].

    PubMed

    Diagne, N; Fontenille, D; Konate, L; Faye, O; Lamizana, M T; Legros, F; Molez, J F; Trape, J F

    1994-01-01

    Twenty species of Anopheles are presently known from Senegal. An. gambiae, An. arabiensis, An. pharoensis, An. rufipes and An. ziemanni have an extensive distribution. Probably because of climatic change, An. funestus is no more found in some areas and An. paludis tend to disappear. An. melas is located in coastal areas. The other species, namely An. coustani, An. brohieri, An. brunnipes, An. domicola, An. flavicosta, An. freetownensis, An. hancocki, An. maculipalpis, An. nili, An. pretoriensis, An. squamosus and An. wellcomei, are mainly found in southern Senegal. Only An. gambiae, An. arabiensis and An. funestus are of epidemiological significance as vectors of malaria and bancroftian filariasis. Twelve arboviruses have been isolated from eight Anopheles species. Each Anopheles species is illustrated and an identification key is given. PMID:7866049

  16. A description and morphometric comparison of eggs of species of the Anopheles gambiae complex.

    PubMed

    Lounibos, L P; Coetzee, M; Duzak, D; Nishimura, N; Linley, J R; Service, M W; Cornel, A J; Fontenille, D; Mukwaya, L G

    1999-06-01

    Eggs of the 6 named species of the Anopheles gambiae complex are described from scanning electron micrographs of specimens obtained from laboratory colonies or wild-caught females. Morphometric measurements of eggs from 5 sources of Anopheles arabiensis, 2 of Anopheles gambiae, one of Anopheles quadriannulatus, 2 of Anopheles bwambae, 2 of Anopheles merus, and one of Anopheles melas are compared, and relationships are analyzed by multivariate statistics. No morphologic characters were species-diagnostic, although tendencies of the saltwater species An. merus and An. melas to have wider decks and shorter floats were confirmed. Species and populations overlapped considerably in principal components and discriminant function analyses based on 10 attributes of eggs. Nevertheless, discriminant functions revealed similarities in eggs of species believed to be most closely related, namely, An. gambiae and An. arabiensis, An. merus and An. melas, and An. quadriannulatus and An. bwambae. PMID:10412112

  17. RNAi Trigger Delivery into Anopheles gambiae Pupae

    PubMed Central

    Regna, Kimberly; Harrison, Rachel M.; Heyse, Shannon A.; Chiles, Thomas C.; Michel, Kristin; Muskavitch, Marc A. T.

    2016-01-01

    RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel. PMID:27023367

  18. Behavioral cost & overdominance in Anopheles gambiae.

    PubMed

    Diop, Malal M; Moiroux, Nicolas; Chandre, Fabrice; Martin-Herrou, Hadrien; Milesi, Pascal; Boussari, Olayidé; Porciani, Angélique; Duchon, Stéphane; Labbé, Pierrick; Pennetier, Cédric

    2015-01-01

    In response to the widespread use of control strategies such as Insecticide Treated Nets (ITN), Anopheles mosquitoes have evolved various resistance mechanisms. Kdr is a mutation that provides physiological resistance to the pyrethroid insecticides family (PYR). In the present study, we investigated the effect of the Kdr mutation on the ability of female An. gambiae to locate and penetrate a 1cm-diameter hole in a piece of netting, either treated with insecticide or untreated, to reach a bait in a wind tunnel. Kdr homozygous, PYR-resistant mosquitoes were the least efficient at penetrating an untreated damaged net, with about 51% [39-63] success rate compared to 80% [70-90] and 78% [65-91] for homozygous susceptible and heterozygous respectively. This reduced efficiency, likely due to reduced host-seeking activity, as revealed by mosquito video-tracking, is evidence of a recessive behavioral cost of the mutation. Kdr heterozygous mosquitoes were the most efficient at penetrating nets treated with PYR insecticide, thus providing evidence for overdominance, the rarely-described case of heterozygote advantage conveyed by a single locus. The study also highlights the remarkable capacity of female mosquitoes, whether PYR-resistant or not, to locate holes in bed-nets. PMID:25831058

  19. Anopheles punctulatus group: evolution, distribution, and control.

    PubMed

    Beebe, Nigel W; Russell, Tanya; Burkot, Thomas R; Cooper, Robert D

    2015-01-01

    The major malaria vectors of the Southwest Pacific belong to a group of closely related mosquitoes known as the Anopheles punctulatus group. The group comprises 13 co-occurring species that either are isomorphic or carry overlapping morphological features, and today several species remain informally named. The advent of species-diagnostic molecular tools in the 1990s permitted a new raft of studies into the newly differentiated mosquitoes of this group, and these have revealed five species as the region's primary malaria vectors: An. farauti, An. hinesorum, An. farauti 4, An. koliensis, and An. punctulatus. Species' distributions are now well established across Papua New Guinea, northern Australia, and the Solomon Archipelago, but little has been documented thus far in eastern Indonesia. As each species reveals significant differences in distribution and biology, the relative paucity of knowledge of their biology or ecology in relation to malaria transmission is brought into clearer focus. Only three of the species have undergone some form of spatial or population genetics analyses, and this has revealed striking differences in their genetic signatures throughout the region. This review compiles and dissects the key findings for this important mosquito group and points to where future research should focus to maximize the output of field studies in developing relevant knowledge on these malaria vectors. PMID:25341094

  20. Laser induced mortality of Anopheles stephensi mosquitoes

    PubMed Central

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  1. Anopheles gambiae, a complex of species

    PubMed Central

    Davidson, G.

    1964-01-01

    The author reports on some 200 laboratory crossings of 36 strains of Anopheles gambiae from many different parts of Africa which show the existence of five mating-types in what was until recently considered a single species. Three of these mating-types are freshwater forms and have been provisionally called A, B and C. Two are saltwater forms: A. melas, confined to West Africa, and the East African A. merus. Hybrid male sterility is universal when any two of these five forms are crossed, and from some of the crosses grossly abnormal sex-ratios result. From an evolutionary standpoint these five mating-types are probably species or semi-species in view of the fact that they can be found to co-exist sympatrically and still retain their identities. From a practical point of view it may be necessary for the field worker to be able to identify the exact species with which he is dealing before the most efficient means of controlling it can be found. ImagesFIG. 1FIG. 2FIG. 3 PMID:14278001

  2. Laser induced mortality of Anopheles stephensi mosquitoes

    NASA Astrophysics Data System (ADS)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  3. “Saltwater Anopheles gambiae” on Mauritius*

    PubMed Central

    Paterson, H. E.

    1964-01-01

    In this paper the author reports the results of three months' study of the saltwater-breeding member of the Anopheles gambiae complex of sibling species on Mauritius. There is evidence for the views that this form's distribution on the island is limited by the availability of suitable breeding areas, that it does not usually disperse far from the breeding grounds or coast, and that it is probably not an important vector except, perhaps, in the near vicinity of its breeding places. Some new evidence is presented in support of the view that this form (and forms A and B) are distinct species. This turns on the observed close coexistence of these three forms on Mauritius, supported by a theoretical consideration of what would be expected to happen in such circumstances if a system of random mating prevailed. Evidence is given that the Mauritian saltwater-breeding form of the A. gambiae complex is conspecific with the form occurring on the east coast of Africa. The practical importance of reaching general agreement on the evolutionary status of the members of the A. gambiae complex is emphasized. PMID:14278002

  4. Laser induced mortality of Anopheles stephensi mosquitoes.

    PubMed

    Keller, Matthew D; Leahy, David J; Norton, Bryan J; Johanson, Threeric; Mullen, Emma R; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  5. Behavioral Cost & Overdominance in Anopheles gambiae

    PubMed Central

    Diop, Malal M.; Moiroux, Nicolas; Chandre, Fabrice; Martin-Herrou, Hadrien; Milesi, Pascal; Boussari, Olayidé; Porciani, Angélique; Duchon, Stéphane; Labbé, Pierrick; Pennetier, Cédric

    2015-01-01

    In response to the widespread use of control strategies such as Insecticide Treated Nets (ITN), Anopheles mosquitoes have evolved various resistance mechanisms. Kdr is a mutation that provides physiological resistance to the pyrethroid insecticides family (PYR). In the present study, we investigated the effect of the Kdr mutation on the ability of female An. gambiae to locate and penetrate a 1cm-diameter hole in a piece of netting, either treated with insecticide or untreated, to reach a bait in a wind tunnel. Kdr homozygous, PYR-resistant mosquitoes were the least efficient at penetrating an untreated damaged net, with about 51% [39-63] success rate compared to 80% [70-90] and 78% [65-91] for homozygous susceptible and heterozygous respectively. This reduced efficiency, likely due to reduced host-seeking activity, as revealed by mosquito video-tracking, is evidence of a recessive behavioral cost of the mutation. Kdr heterozygous mosquitoes were the most efficient at penetrating nets treated with PYR insecticide, thus providing evidence for overdominance, the rarely-described case of heterozygote advantage conveyed by a single locus. The study also highlights the remarkable capacity of female mosquitoes, whether PYR-resistant or not, to locate holes in bed-nets. PMID:25831058

  6. Biology & control of Anopheles culicifacies Giles 1901

    PubMed Central

    Sharma, V.P.; Dev, V.

    2015-01-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  7. Microsporidium Infecting Anopheles supepictus (Diptera: Culicidae) Larvae

    PubMed Central

    Omrani, Seyed-Mohammad; Moosavi, Seyedeh-Fatemeh; Manouchehri, Kourosh

    2016-01-01

    Background: Microsporidia are known to infect a wide variety of animals including mosquitoes (Diptera: Culicidae). In a recent study on the mosquito fauna of Chahar Mahal and Bakhtiari Province, at the central western part of Iran, a few larvae of Anopheles superpictus were infected with a microsporidium-resembled microorganism. Current investigation deals with the identification of the responsible microorganism at the genus level. Methods: Fresh infected larvae were collected from the field. After determining the species identity they were dissected to extract their infective contents. Wet preparations were checked for general appearance and the size of the pathogenic microorganism. Fixed preparations were stained with Geimsa and Ryan-Blue modified Trichrome techniques to visualize further morphological characters. The obtained light microscopy data were used in the identification process. Results: The infected larvae were bulged by a whitish material filling the involved segments corresponding to a microsporidium infection. Bottle-shaped semioval spores ranged 4.33±0.19×2.67±0.12 and 4.18±0.43×2.45±0.33 micron in wet and fixed preparations, respectively. They were mostly arranged in globular structures comprised of 8 spores. These data was in favor of a species from the genus Parathelohania in the family Ambliosporidae. Conclusion: This is the first report of a microsporidium infection in An. superpictus. The causative agent is diagnosed as a member of the genus Parathelohania. Further identification down to the species level needs to determine its ultrastructural characteristics and the comparative analysis of ss rRNA sequence data. It is also necessary to understand the detail of the components of the transmission cycle. PMID:27308299

  8. Biology & control of Anopheles culicifacies Giles 1901.

    PubMed

    Sharma, V P; Dev, V

    2015-05-01

    Malaria epidemiology is complex due to multiplicity of disease vectors, sibling species complex and variations in bionomical characteristics, vast varied terrain, various ecological determinants. There are six major mosquito vector taxa in India, viz. Anopheles culicifacies, An. fluviatilis, An. stephensi, An. minimus, An. dirus and An. sundaicus. Among these, An. culicifacies is widely distributed and considered the most important vector throughout the plains and forests of India for generating bulk of malaria cases (>60% annually). Major malaria epidemics are caused by An. culicifaices. It is also the vector of tribal malaria except parts of Odisha and Northeastern States of India. An. culicifacies has been the cause of perennial malaria transmission in forests, and over the years penetrated the deforested areas of Northeast. An. culicifacies participates in malaria transmission either alone or along with An. stephensi or An. fluviatilis. The National Vector Borne Disease Control Programme (NVBDCP) spends about 80 per cent malaria control budget annually in the control of An. culicifacies, yet it remains one of the most formidable challenges in India. With recent advances in molecular biology there has been a significant added knowledge in understanding the biology, ecology, genetics and response to interventions, requiring stratification for cost-effective and sustainable malaria control. Research leading to newer interventions that are evidence-based, community oriented and sustainable would be useful in tackling the emerging challenges in malaria control. Current priority areas of research should include in-depth vector biology and control in problem pockets, preparation of malaria-risk maps for focused and selective interventions, monitoring insecticide resistance, cross-border initiative and data sharing, and coordinated control efforts for achieving transmission reduction, and control of drug-resistant malaria. The present review on An. culicifacies

  9. Anthropophilic Anopheles species composition and malaria in Tierradentro, Córdoba, Colombia

    PubMed Central

    Schiemann, David Joachim; Pinzón, Martha Lucía Quiñones; Hankeln, Thomas

    2014-01-01

    Malaria is still a primary health problem in Colombia. The locality of Tierradentro is situated in the municipality of Montelíbano, Córdoba, in the northwest of Colombia, and has one of the highest annual parasite index of malaria nationwide. However, the vectors involved in malaria transmission in this locality have not yet been identified. In this study, the local anthropophilic Anopheles composition and natural infectivity with Plasmodium were investigated. In August 2009, 927 female Anopheles mosquitoes were collected in eight localities using the human landing catch method and identified based on their morphology. Cryptic species were determined by restriction fragment length polymorphism-internal transcribed spacer (ITS)2 molecular analysis. Eight species [Anopheles nuneztovari s.l. (92.8%), Anopheles darlingi (5.1%), Anopheles triannulatus s.l. (1.8%), Anopheles pseudopunctipennis s.l. (0.2%), Anopheles punctimacula s.l. (0.2%), Anopheles apicimacula (0.1%), Anopheles albimanus (0.1%) and Anopheles rangeli (0.1%)] were identified and species identity was confirmed by ITS2 sequencing. This is the first report of An. albimanus, An. rangeli and An. apicimacula in Tierradentro. Natural infectivity with Plasmodium was determined by ELISA. None of the mosquitoes was infectious for Plasmodium. An. nuneztovari s.l. was the predominant species and is considered the primary malaria vector; An. darlingi and An. triannulatus s.l. could serve as secondary vectors.

  10. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  11. Workbook on the Identification of Anopheles Adults. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional workbook is designed to enable malaria control workers to identify adults of "Anopheles" species that are important malaria vectors. The morphological features of the adults are illustrated in a programed booklet, which also contains an illustrated taxonomic key to adult females of 29 anopheline species. A glossary and a…

  12. Workbook on the Identification of Anopheles Larvae. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional booklet is designed to enable malarial control workers to identify the larvae of "Anopheles" species that are important malaria vectors. The morphological features of the larvae are illustrated in a programed booklet, which also contains an illustrated taxonomic key to 25 species of anopheline larvae. A glossary and a short…

  13. The dance of male Anopheles gambiae in mating swarms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mating behavior of the malaria vector Anopheles gambiae is of great interest from a fundamental and applied perspective. One of the most important elements of mating in this species is the crepuscular mating aggregation (swarm) composed almost entirely of males, where most coupling and inseminat...

  14. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    PubMed

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats. PMID:19440962

  15. Nigeria Anopheles Vector Database: An Overview of 100 Years' Research

    PubMed Central

    Okorie, Patricia Nkem; McKenzie, F. Ellis; Ademowo, Olusegun George; Bockarie, Moses; Kelly-Hope, Louise

    2011-01-01

    Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF), which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%), An. funestus complex (17.3%), An. gambiae s.s. (6.5%). An. arabiensis (5.0%) and An. funestus s.s. (2.5%), with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on Anopheles

  16. Distribution and larval habitat characterization of Anopheles moucheti, Anopheles nili, and other malaria vectors in river networks of southern Cameroon.

    PubMed

    Antonio-Nkondjio, Christophe; Ndo, Cyrille; Costantini, Carlo; Awono-Ambene, Parfait; Fontenille, Didier; Simard, Frédéric

    2009-12-01

    Despite their importance as malaria vectors, little is known of the bionomic of Anopheles nili and Anopheles moucheti. Larval collections from 24 sites situated along the dense hydrographic network of south Cameroon were examined to assess key ecological factors associated with these mosquitoes distribution in river networks. Morphological identification of the III and IV instar larvae by the use of microscopy revealed that 47.6% of the larvae belong to An. nili and 22.6% to An. moucheti. Five variables were significantly involved with species distribution, the pace of flow of the river (lotic, or lentic), the light exposure (sunny or shady), vegetation (presence or absence of vegetation) the temperature and the presence or absence of debris. Using canonical correspondence analysis, it appeared that lotic rivers, exposed to light, with vegetation or debris were the best predictors of An. nili larval abundance. Whereas, An. moucheti and An. ovengensis were highly associated with lentic rivers, low temperature, having Pistia. An. nili and An. moucheti distribution along river systems across south Cameroon was highly correlated with environmental variables. The distribution of An. nili conforms to that of a generalist species which is adapted to exploiting a variety of environmental conditions, Whereas, An. moucheti, Anopheles ovengensis and Anopheles carnevalei appeared as specialist forest mosquitoes. PMID:19682965

  17. Comparative egg morphology of six species of the Albimanus section of Anopheles (Nyssorhynchus) (Diptera:Culicidae).

    PubMed

    Lounibos, L P; Duzak, D; Linley, J R

    1997-03-01

    Scanning electron micrographs were used to describe and compare structures of eggs obtained from wild-caught females of 6 species of the Albimanus section of Anopheles (Nyssorhynchus) from South America, which includes important regional vectors of human malaria. Among species from the Oswaldoi Complex, eggs of Anopheles oswaldoi (Peryassu) were not differentiated from those of its sibling Anopheles konderi Galvão & Damasceno, and eggs of the former species from Brazil, Ecuador, and Suriname showed no regionally distinguishing characteristics. Eggs of Anopheles dunhami Causey were recognized by the reticulate beadwork of outer chorion on the dorsal plastron, 1 of several egg characters separating this species from the related Anopheles trinkae Faran and Anophels nuneztovari Gabaldón. In both species examined from the Strodei Complex, Anopheles strodei Root and Anopheles benarrochi Gabaldón, Cova Garcia & Lopez, the anterior frill forms a distinctive ventral crown separated from the floats. Anopheles triannulatus (Neiva & Pinto), collected from 4 geographic sites, differed in the occurrence of perforated mounds on the dorsal plastron, but these chorionic structures and the extent of overlap of floats varied among eggs from single females. Changes among related species in the structure of the anterior frill and dorsal plastron are described for phylogenetic and developmental inferences. PMID:9103756

  18. The salivary gland chromosomes of Anopheles pseudopunctipennis pseudopunctipennis*

    PubMed Central

    Baker, Richard H.; Kitzmiller, J. B.; Chowdaiah, B. N.

    1965-01-01

    The authors present a salivary chromosome map of Anopheles p. pseudopunctipennis, an important malaria vector in the Americas. The salivary chromosomes appear as a short metacentric X and two metacentric autosomes. The arms of chromosome 2 are of almost equal length, but the right arm of chromosome 3 is almost twice as long as the left. The metacentric X is the first to be described in the subgenus Anopheles. The banding patterns of the autosomes show many similarities to those of the North American maculipennis complex and to those of the Central American A. vestitipennis and A. neomaculipalpus. Three chromosomal aberrations, one in the X and two in the right arm of chromosome 3, occur commonly in several different populations. ImagesFIG. 3FIG. 5FIG. 6FIG. 7 PMID:5295407

  19. A maleness gene in the malaria mosquito Anopheles gambiae.

    PubMed

    Krzywinska, Elzbieta; Dennison, Nathan J; Lycett, Gareth J; Krzywinski, Jaroslaw

    2016-07-01

    The molecular pathways controlling gender are highly variable and have been identified in only a few nonmammalian model species. In many insects, maleness is conferred by a Y chromosome-linked M factor of unknown nature. We have isolated and characterized a gene, Yob, for the M factor in the malaria mosquito Anopheles gambiae Yob, activated at the beginning of zygotic transcription and expressed throughout a male's life, controls male-specific splicing of the doublesex gene. Silencing embryonic Yob expression is male-lethal, whereas ectopic embryonic delivery of Yob transcripts yields male-only broods. This female-killing property may be an invaluable tool for creation of conditional male-only transgenic Anopheles strains for malaria control programs. PMID:27365445

  20. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  1. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana.

    PubMed

    Akorli, Jewelna; Gendrin, Mathilde; Pels, Nana Adjoa P; Yeboah-Manu, Dorothy; Christophides, George K; Wilson, Michael D

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  2. Separation of Anopheles merus from freshwater Anopheles gambiae by salinity tolerance test and morphological characters.

    PubMed

    Mosha, F W; Mutero, C M

    1982-12-01

    The separation methods for Anopheles merus from freshwater A. gambiae s.l. involving the use of salinity tolerance test, sensilla coeloconica, palpal ratio and palpal bands were evaluated for a period of one year on a total of about 340 mosquitoes. The salinity tolerance test method was found to be quite simple and reliable but unsuitable in disease transmission studies due to an interval of 2-3 days between the collection and dissection periods and also due to the fact that only a fraction of the mosquito sample is generally identified by this method. Although significantly higher proportions of sensilla coeloconica and palpal ratio were observed in A. merus as compared to freshwater A. gambiae s.l. these characters were found quite unreliable due to their overlapping between two mosquito groups. Sensilla coeloconica and palpal ratio used separately could separate respective percentages of 11.4 and 11.8 A. merus from freshwater A. gambiae s.l., while in combination they separated up to 40.9%. Percentages 4-banded palp mosquitoes accounted for about 32% in A. merus and 19% in freshwater A. gambiae s.l. All these characters also displayed some seasonal variations in the two mosquito groups. PMID:6926942

  3. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes

    PubMed Central

    Hughes, Grant L.; Dodson, Brittany L.; Johnson, Rebecca M.; Murdock, Courtney C.; Tsujimoto, Hitoshi; Suzuki, Yasutsugu; Patt, Alyssa A.; Cui, Long; Nossa, Carlos W.; Barry, Rhiannon M.; Sakamoto, Joyce M.; Hornett, Emily A.; Rasgon, Jason L.

    2014-01-01

    Over evolutionary time, Wolbachia has been repeatedly transferred between host species contributing to the widespread distribution of the symbiont in arthropods. For novel infections to be maintained, Wolbachia must infect the female germ line after being acquired by horizontal transfer. Although mechanistic examples of horizontal transfer exist, there is a poor understanding of factors that lead to successful vertical maintenance of the acquired infection. Using Anopheles mosquitoes (which are naturally uninfected by Wolbachia) we demonstrate that the native mosquito microbiota is a major barrier to vertical transmission of a horizontally acquired Wolbachia infection. After injection into adult Anopheles gambiae, some strains of Wolbachia invade the germ line, but are poorly transmitted to the next generation. In Anopheles stephensi, Wolbachia infection elicited massive blood meal-induced mortality, preventing development of progeny. Manipulation of the mosquito microbiota by antibiotic treatment resulted in perfect maternal transmission at significantly elevated titers of the wAlbB Wolbachia strain in A. gambiae, and alleviated blood meal-induced mortality in A. stephensi enabling production of Wolbachia-infected offspring. Microbiome analysis using high-throughput sequencing identified that the bacterium Asaia was significantly reduced by antibiotic treatment in both mosquito species. Supplementation of an antibiotic-resistant mutant of Asaia to antibiotic-treated mosquitoes completely inhibited Wolbachia transmission and partly contributed to blood meal-induced mortality. These data suggest that the components of the native mosquito microbiota can impede Wolbachia transmission in Anopheles. Incompatibility between the microbiota and Wolbachia may in part explain why some hosts are uninfected by this endosymbiont in nature. PMID:25114252

  4. Multimodal Pyrethroid Resistance in Malaria Vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in Western Kenya

    PubMed Central

    Kawada, Hitoshi; Dida, Gabriel O.; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M.; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  5. Multimodal pyrethroid resistance in malaria vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in western Kenya.

    PubMed

    Kawada, Hitoshi; Dida, Gabriel O; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  6. PCR assay for identification of Anopheles quadriannulatus species B from Ethiopia and other sibling species of the Anopheles gambiae complex.

    PubMed

    Fettene, M; Koekemoer, L L; Hunt, R H; Coetzee, M

    2002-06-01

    Sibling species A and B of Anopheles quadriannulatus (Theobald) are recognized as allopatric members of the Anopheles gambiae Giles complex of Afrotropical mosquitoes (Diptera: Culicidae). Species A represents An. quadriannulatus sensu stricto, widespread in southern Africa, whereas An. quadriannulatus species B occurs in Ethiopia. Because of difficulty of identification, distribution of An. quadriannulatus sensu lato remains poorly known. Cytotaxonomy and the standard DNA polymerase chain reaction (PCR) assay do not distinguish between species A and B of An. quadriannulatus. By optimizing the standard PCR assay (Scott et al., 1993) for identification of members of the An. gambiae complex, we identified two discriminant fragments of 153 bp and 900 bp from DNA of An. quadriannulatus species B, whereas only the 153 bp fragment was amplified for species A from South Africa. This modified PCR assay can therefore be used to distinguish between species A and B of An. quadriannulatus s.l. as well as other members of the An. gambiae complex. PMID:12109717

  7. Insecticidal susceptibility status of Anopheles stephensi (Liston) in selected areas of Calcutta (West Bengal).

    PubMed

    Mukhopadhyay, A K; Chakraborty, S; Karmakar, P K; Banerjee, P

    1996-01-01

    Susceptibility tests were carried out with insecticides like Organochlorine Organophosphorus and Synthetic pyrethroids using the WHO test kits against Anopheles stephensi larvae and adults, collected from malaria endemic wards of Calcutta in December, 1995 and January, 1996 Anopheles stephensi adults were found resistant to DDT, Propoxure, Malathion but susceptible to Fenthion and Deltamethrin. PMID:9119432

  8. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Nettel, J C; Villarreal, C; Kain, K C; Hernandez, J E

    1999-01-01

    The susceptibilities to coindigenous Plasmodium vivax of colonized Anopheles albimanus and Anopheles pseudopunctipennis from southern Mexico were investigated by simultaneous feeding with infected blood obtained from patients. The genes encoding circumsporozoite protein variant types (VK210 and VK247) in blood samples were determined by PCR and oligonucleotide probe hybridization. A. albimanus was more susceptible to VK210, and A. pseudopunctipennis was more susceptible to VK247. PMID:9864243

  9. Population Genetics of Anopheles coluzzii Immune Pathways and Genes

    PubMed Central

    Rottschaefer, Susan M.; Crawford, Jacob E.; Riehle, Michelle M.; Guelbeogo, Wamdaogo M.; Gneme, Awa; Sagnon, N’Fale; Vernick, Kenneth D.; Lazzaro, Brian P.

    2014-01-01

    Natural selection is expected to drive adaptive evolution in genes involved in host–pathogen interactions. In this study, we use molecular population genetic analyses to understand how natural selection operates on the immune system of Anopheles coluzzii (formerly A. gambiae “M form”). We analyzed patterns of intraspecific and interspecific genetic variation in 20 immune-related genes and 17 nonimmune genes from a wild population of A. coluzzii and asked if patterns of genetic variation in the immune genes are consistent with pathogen-driven selection shaping the evolution of defense. We found evidence of a balanced polymorphism in CTLMA2, which encodes a C-type lectin involved in regulation of the melanization response. The two CTLMA2 haplotypes, which are distinguished by fixed amino acid differences near the predicted peptide cleavage site, are also segregating in the sister species A. gambiae (“S form”) and A. arabiensis. Comparison of the two haplotypes between species indicates that they were not shared among the species through introgression, but rather that they arose before the species divergence and have been adaptively maintained as a balanced polymorphism in all three species. We additionally found that STAT-B, a retroduplicate of STAT-A, shows strong evidence of adaptive evolution that is consistent with neofunctionalization after duplication. In contrast to the striking patterns of adaptive evolution observed in these Anopheles-specific immune genes, we found no evidence of adaptive evolution in the Toll and Imd innate immune pathways that are orthologously conserved throughout insects. Genes encoding the Imd pathway exhibit high rates of amino acid divergence between Anopheles species but also display elevated amino acid diversity that is consistent with relaxed purifying selection. These results indicate that adaptive coevolution between A. coluzzii and its pathogens is more likely to involve novel or lineage-specific molecular mechanisms

  10. Ecology of Anopheles stephensi Liston in southern Iran.

    PubMed

    Manouchehri, A V; Javadian, E; Eshighy, N; Motabar, M

    1976-09-01

    Anopheles stephensi mysorensis is an important malaria vector in southern Iran. It is known to be the vector of malaria in Abadan, Bandar Abbas, Kazeroun and Dezful. It readily attacks man. Precipitan tests on specimens from different parts of southern Iran showed that 15.7% were positive for human blood. This species usually rests indoors, but a small proportion of its population has been caught outdoors. Larval habitats vary. This species is resistant to DDT and Dieldrin in most of the areas of the Persian Gulf and Oman sea. PMID:1006792

  11. Low rates of multiple fertilization in parous Anopheles albimanus.

    PubMed

    Villarreal, C; Fuentes-Maldonado, G; Rodriguez, M H; Yuval, B

    1994-03-01

    We determined how frequently parous female Anopheles albimanus fertilize their eggs with sperm from more than one male. To establish paternity we relied on 2 phenotypically distinct laboratory strains. Nulliparous females were allowed to mate freely with males from one strain, and after oviposition they were offered a 2nd mating with males of the other strain. Fertilization patterns were determined by the phenotypes of offspring. Only 0.6% of females ovipositing for a 2nd time (n = 312) used sperm from the 2nd male, as did 4% of females completing a 3rd gonotrophic cycle (n = 25). In this species receptivity is not routinely renewed following oviposition. PMID:8014629

  12. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  13. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  14. CLIP proteases and Plasmodium melanization in Anopheles gambiae.

    PubMed

    Barillas-Mury, Carolina

    2007-07-01

    Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium. PMID:17512801

  15. Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso

    PubMed Central

    2013-01-01

    Background The Anopheles gambiae sensu lato (s.l.) species complex in Burkina Faso consists of Anopheles arabiensis, and molecular forms M and S of Anopheles gambiae sensu stricto (s.s.). Previous studies comparing the M and S forms for level of infection with Plasmodium falciparum have yielded conflicting results. Methods Mosquito larvae were sampled from natural pools, reared to adulthood under controlled conditions, and challenged with natural P. falciparum by experimental feeding with blood from gametocyte carriers. Oocyst infection prevalence and intensity was determined one week after infection. DNA from carcasses was genotyped to identify species and molecular form. Results In total, 7,400 adult mosquitoes grown from wild-caught larvae were challenged with gametocytes in 29 experimental infections spanning four transmission seasons. The overall infection prevalence averaged 40.7% for A. gambiae M form, 41.4% for A. gambiae S form, and 40.1% for A. arabiensis. There was no significant difference in infection prevalence or intensity between the three population groups. Notably, infection experiments in which the population groups were challenged in parallel on the same infective blood displayed less infection difference between population groups, while infections with less balanced composition of population groups had lower statistical power and displayed apparent differences that fluctuated more often from the null average. Conclusion The study clearly establishes that, at the study site in Burkina Faso, there is no difference in genetic susceptibility to P. falciparum infection between three sympatric population groups of the A. gambiae s.l. complex. Feeding the mosquito groups on the same infective blood meal greatly increases statistical power. Conversely, comparison of the different mosquito groups between, rather than within, infections yields larger apparent difference between mosquito groups, resulting from lower statistical power and greater noise

  16. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  17. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    PubMed Central

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  18. Cuticular-hydrocarbon discrimination between Anopheles gambiae s.s. and An. arabiensis larval karyotypes.

    PubMed

    Anyanwu, G I; Davies, D H; Molyneux, D H; Priestman, A

    2001-12-01

    Examination of chromatograms of karyotyped larvae of Anopheles gambiae s.s. and Anopheles arabiensis has revealed that there are differences in the profile of their epicuticular hydrocarbons. A discriminant analysis of the quantitative hydrocarbon data has shown that the An. gambiae Mopti 2Rbc/bc karyotype from Mali could be separated from the Forest 2La/a karyotype from Liberia in > 80% of cases. Similar analysis permitted > 80% separation of individuals of two karyotypes of Anopheles arabiensis: 2Rab/ + from Burkina Faso, and 2Rb/b from Madagascar. PMID:11784439

  19. Anophelism in a Former Malaria Area of Northeastern Spain

    PubMed Central

    Bueno-Marí, Rubén; Jiménez-Peydró, Ricardo

    2013-01-01

    Background: A field study on diversity and distribution of anophelines currently present in a past endemic malaria area of Spain was carried out in order to identify possible risk areas of local disease transmission. Methods: Multiple larval sites were sampled from June to October of 2011 in the Region of Somontano de Barbastro (Northeastern Spain). The sampling effort was fixed at 10 minutes which included the active search for larvae in each biotope visited. Results: A total of 237 larval specimens belonging to four Anopheles species (Anopheles atroparvus, An. claviger, An. maculipennis and An. petragnani) were collected and identified. Conclusions: Malaria receptivity in the study area is high, especially in the area of Cinca river valley, due to the abundance of breeding sites of An. atroparvus very close to human settlements. Although current socio-economic conditions in Spain reduce possibilities of re-emergence of malaria transmission, it is evident that certain entomological and epidemiological vigilance must be maintained and even increased in the context of current processes of climate change and globalization. PMID:24409440

  20. Gene expression-based biomarkers for Anopheles gambiae age grading.

    PubMed

    Wang, Mei-Hui; Marinotti, Osvaldo; Zhong, Daibin; James, Anthony A; Walker, Edward; Guda, Tom; Kweka, Eliningaya J; Githure, John; Yan, Guiyun

    2013-01-01

    Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors. PMID:23936017

  1. Dosage Compensation in the African Malaria Mosquito Anopheles gambiae

    PubMed Central

    Rose, Graham; Krzywinska, Elzbieta; Kim, Jan; Revuelta, Loic; Ferretti, Luca; Krzywinski, Jaroslaw

    2016-01-01

    Dosage compensation is the fundamental process by which gene expression from the male monosomic X chromosome and from the diploid set of autosomes is equalized. Various molecular mechanisms have evolved in different organisms to achieve this task. In Drosophila, genes on the male X chromosome are upregulated to the levels of expression from the two X chromosomes in females. To test whether a similar mechanism is operating in immature stages of Anopheles mosquitoes, we analyzed global gene expression in the Anopheles gambiae fourth instar larvae and pupae using high-coverage RNA-seq data. In pupae of both sexes, the median expression ratios of X-linked to autosomal genes (X:A) were close to 1.0, and within the ranges of expression ratios between the autosomal pairs, consistent with complete compensation. Gene-by-gene comparisons of expression in males and females revealed mild female bias, likely attributable to a deficit of male-biased X-linked genes. In larvae, male to female ratios of the X chromosome expression levels were more female biased than in pupae, suggesting that compensation may not be complete. No compensation mechanism appears to operate in male germline of early pupae. Confirmation of the existence of dosage compensation in A. gambiae lays the foundation for research into the components of dosage compensation machinery in this important vector species. PMID:26782933

  2. [Angkor. The mystery of the dead city and Anopheles dirus].

    PubMed

    Verdrager, J

    1992-01-01

    The desertion of Angkor, which during more than five centuries was the center of a glorious civilization, has long been a matter of mystery and conjecture. The discovery of the vectorial capacity of the jungle mosquito Anopheles dirus, its epidemiological importance in the emergence and spread of multidrug resistance in Plasmodium falciparum malaria, the wiping out of large populations after transfer or deportation of non-immune Khmers into forest areas can now easily explain the desertion of Angkor. In 1431, Angkor Thom, the capital of the Khmer kingdom surrendered to the Thai conquerors. Soon afterwards, the young king left the city in search of a new capital. As a result of the population decrease large surfaces of rice fields were abandoned and reinvaded by the jungle, the typical biotope of Anopheles dirus. Severe epidemics of Plasmodium falciparum then occurred in the non-immune population with very high mortality decreasing again the number of workers and, thus, creating a vicious circle resulting in the progressive but complete desertion of Angkor. PMID:1494307

  3. Larval Habitats Characterization and Species Composition of Anopheles Mosquitoes in Tunisia, with Particular Attention to Anopheles maculipennis Complex

    PubMed Central

    Tabbabi, Ahmed; Boussès, Philippe; Rhim, Adel; Brengues, Cécile; Daaboub, Jabeur; Ben-Alaya-Bouafif, Nissaf; Fontenille, Didier; Bouratbine, Aïda; Simard, Frédéric; Aoun, Karim

    2015-01-01

    In Tunisia, malaria transmission has been interrupted since 1980. However, the growing number of imported cases and the persistence of putative vectors stress the need for additional studies to assess the risk of malaria resurgence in the country. In this context, our aim was to update entomological data concerning Anopheles mosquitoes in Tunisia. From May to October of 2012, mosquito larval specimens were captured in 60 breeding sites throughout the country and identified at the species level using morphological keys. Environmental parameters of the larval habitats were recorded. Specimens belonging to the An. maculipennis complex were further identified to sibling species by the ribosomal deoxyribonucleic acid (rDNA)–internal transcribed spacer 2 (ITS2) polymerase chain reaction (PCR) technique. In total, 647 Anopheles larvae were collected from 25 habitats. Four species, including An. labranchiae, An. multicolor, An. sergentii, and An. algeriensis, were morphologically identified. rDNA-ITS2 PCR confirmed that An. labranchiae is the sole member of the An. maculipennis complex in Tunisia. An. labranchiae was collected throughout northern and central Tunisia, and it was highly associated with rural habitat, clear water, and sunlight areas. Larvae of An. multicolor and An. sergentii existed separately or together and were collected in southern Tunisia in similar types of breeding places. PMID:25561567

  4. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.

    PubMed

    Deitz, Kevin C; Reddy, Vamsi P; Reddy, Michael R; Satyanarayanah, Neha; Lindsey, Michael W; Overgaard, Hans J; Jawara, Musa; Caccone, Adalgisa; Slotman, Michel A

    2012-07-01

    Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. PMID:22593601

  5. The Anopheles maculipennis complex (Diptera: Culicidae) in Germany: an update following recent monitoring activities.

    PubMed

    Kampen, Helge; Schäfer, Mandy; Zielke, Dorothee E; Walther, Doreen

    2016-09-01

    The Anopheles maculipennis complex comprises several sibling species including major vectors of malaria parasites of historic Europe. In present-day Europe, these species are probably more relevant with regard to transmission of pathogens other than plasmodia, such as viruses and dirofilariae. Distribution data facilitating risk assessments and modelling of An. maculipennis complex-borne diseases, however, are generally outdated. In Germany, the occurrence and geographic distribution of the complex species have recently been updated within the framework of a national monitoring programme. In addition to the known indigenous species An. maculipennis, Anopheles messeae and Anopheles atroparvus, the newly described sibling species Anopheles daciae was demonstrated. Distribution maps of these species based on the data collected from 2011 to 2014 are presented, whilst ecological characteristics and vector roles are presented and discussed. PMID:27444437

  6. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus) dunhami Causey (Diptera: Culicidae) in the Colombian Amazon

    PubMed Central

    Ruiz, Freddy; Linton, Yvonne-Marie; Ponsonby, David J; Conn, Jan E; Herrera, Manuela; Quiñones, Martha L; Vélez, Iván D; Wilkerson, Richard C

    2015-01-01

    The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America. PMID:21120360

  7. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae

    PubMed Central

    Baldini, Francesco; Segata, Nicola; Pompon, Julien; Marcenac, Perrine; Robert Shaw, W.; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2014-01-01

    Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by manipulating their reproduction and immunity and thus limiting the spread of numerous human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field anophelines have never been reported. Here we show evidence of Wolbachia infections in Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified Wolbachia sequences in both female and male germlines across two seasons, and determined that these sequences are vertically transmitted from mother to offspring. Whole-genome sequencing of positive samples suggests that the genetic material identified in An. gambiae belongs to a novel Wolbachia strain, related to but distinct from strains infecting other arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes further investigations on the possible use of natural Wolbachia–Anopheles associations to limit malaria transmission. PMID:24905191

  8. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus) dunhami Causey (Diptera: Culicidae) in the Colombian Amazon.

    PubMed

    Ruiz, Freddy; Linton, Yvonne-Marie; Ponsonby, David J; Conn, Jan E; Herrera, Manuela; Quiñones, Martha L; Vélez, Iván D; Wilkerson, Richard C

    2010-11-01

    The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America. PMID:21120360

  9. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) Group: Species Diagnostic and Phylogenetic Relationships

    PubMed Central

    Khrabrova, Natalia V.; Andreeva, Yulia V.; Sibataev, Anuarbek K.; Alekseeva, Svetlana S.; Esenbekova, Perizat A.

    2015-01-01

    Herein, we report the results of study of Anopheles species in Primorsk and Khabarovsk regions of Russia. Three species of the Anopheles hyrcanus group: An. kleini, An. pullus, and An. lesteri were identified by molecular taxonomic diagnostics for the first time in Russia. Surprisingly, An. sinensis, which earlier was considered the only species of Anopheles in Russian Far East, was not observed. We analyzed nucleotide variation in the 610-bp fragment of the 5′ end of the cytochrome c oxidase subunit I (COI) region. All species possessed a distinctive set of COI sequences. A maximum likelihood phylogenetic tree was constructed for members of the hyrcanus group. The examined Anopheles hyrcanus group members could be divided into two major subgroups: subgroup 1 (An. hyrcanus and An. pullus) and subgroup 2 (An. sinensis, An. kleini, and An. lesteri), which were found to be monophyletic. PMID:26149867

  10. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  11. Salivary Polytene Chromosome Map of Anopheles darlingi, the Main Vector of Neotropical Malaria

    PubMed Central

    Rafael, Míriam S.; Rohde, Cláudia; Bridi, Letícia C.; da Silva Valente Gaiesky, Vera Lúcia; Tadei, Wanderli P.

    2010-01-01

    New photomap of Anopheles (Nyssorhynchus) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus, Anopheles stephensi, and Anopheles gambiae, we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species. PMID:20682862

  12. ANOSPEX: a stochastic, spatially explicit model for studying Anopheles metapopulation dynamics.

    PubMed

    Oluwagbemi, Olugbenga O; Fornadel, Christen M; Adebiyi, Ezekiel F; Norris, Douglas E; Rasgon, Jason L

    2013-01-01

    Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; Ano pheles Spatially-Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics. PMID:23861847

  13. Assessment of Anopheles salivary antigens as individual exposure biomarkers to species-specific malaria vector bites

    PubMed Central

    2012-01-01

    Background Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis). Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. Methods For this purpose, salivary gland proteins 6 (SG6) and 5′nucleotidases (5′nuc) from An. gambiae (gSG6 and g-5′nuc) and An. funestus (fSG6 and f-5′nuc) were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46) that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n = 45). Results The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5′nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5′nucleotidase protein. Conclusion This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed. PMID:23276246

  14. Mathematical Modeling of Sterile Insect Technology for Control of Anopheles Mosquito

    NASA Astrophysics Data System (ADS)

    Anguelov, R.; Dumont, Y.; Lubuma, J.

    2011-11-01

    Sterile Insect Technology (SIT) is a nonpolluting method of insect control that relies on the release of sterile males. We study the effectiveness of the application of SIT for control of Anopheles mosquito via mathematical modeling. The theoretical analysis of the mathematical model as a dynamical system leads to the formulation of possible strategies for control of the Anopheles mosquito, also illustrated by numerical simulations.

  15. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus

    PubMed Central

    2012-01-01

    Background Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. Results We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. Conclusions We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in

  16. Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes

    PubMed Central

    Carissimo, Guillaume; Eiglmeier, Karin; Reveillaud, Julie; Holm, Inge; Diallo, Mawlouth; Diallo, Diawo; Vantaux, Amélie; Kim, Saorin; Ménard, Didier; Siv, Sovannaroth; Belda, Eugeni; Bischoff, Emmanuel; Antoniewski, Christophe; Vernick, Kenneth D.

    2016-01-01

    Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O’nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity. PMID:27138938

  17. Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes.

    PubMed

    Carissimo, Guillaume; Eiglmeier, Karin; Reveillaud, Julie; Holm, Inge; Diallo, Mawlouth; Diallo, Diawo; Vantaux, Amélie; Kim, Saorin; Ménard, Didier; Siv, Sovannaroth; Belda, Eugeni; Bischoff, Emmanuel; Antoniewski, Christophe; Vernick, Kenneth D

    2016-01-01

    Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O'nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity. PMID:27138938

  18. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    PubMed

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. PMID:26364718

  19. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents.

    PubMed

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-03-20

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca(2+)-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  20. Inhibition of Anopheles gambiae Odorant Receptor Function by Mosquito Repellents*

    PubMed Central

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-01-01

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca2+-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  1. Phormidium animalis (Cyanobacteria: Oscillatoriaceae) supports larval development of Anopheles albimanus.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D

    2003-06-01

    The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region. PMID:12825668

  2. Scanning electron microscopic observations of Anopheles albimanus (Diptera: Culicidae) eggs.

    PubMed

    Rodriguez, M H; Chavez, B; Orozco, A; Loyola, E G; Martinez-Palomo, A

    1992-05-01

    To investigate the existence of subspecies of Anopheles albimanus Wiedeman in southern Mexico, the egg morphology of specimens obtained from several field populations and from insectary-adapted colonies of uniform pupal phenotype was examined. Scanning electron microscopic observations have shown that the eggs of An. albimanus are polymorphic in respect to the size and shape of their floats, but not in their ornamentation. Four types of eggs were found. Differences in the proportion of the various morphological types were statistically significant, although proportions of egg types were variable among individuals within the same population. These observations are suggestive of distinctive populations and warrant further studies using more sensitive methods to investigate sibling species in An. albimanus sensu lato. PMID:1625289

  3. Colombian Anopheles triannulatus (Diptera: Culicidae) Naturally Infected with Plasmodium spp.

    PubMed Central

    Rosero, Doris A.; Naranjo-Diaz, Nelson; Alvarez, Natalí; Cienfuegos, Astrid V.; Luckhart, Shirley

    2013-01-01

    The role of Anopheles triannulatus as a local vector has not yet been defined for malaria-endemic regions of Colombia. Therefore, the aim of this work was to detect An. triannulatus naturally infected with Plasmodium spp., as an approximation to determining its importance as malaria vector in the country. A total of 510 An. triannulatus were collected in six malaria-endemic localities of NW and SE Colombia from January 2009 to March 2011. In the NW, two specimens were naturally infected; one with Plasmodium vivax VK247, collected biting on humans and the other with Plasmodium falciparum, collected resting on cattle. In the SE, two specimens were positive for P. falciparum. Although these results show An. triannulatus naturally infected with Plasmodium, further studies are recommended to demonstrate the epidemiological importance of this species in malaria-endemic regions of Colombia. PMID:27335865

  4. Selection of permethrin resistance in the malaria vector Anopheles stephensi.

    PubMed

    Chakravorthy, B C; Kalyanasundaram, M

    1992-09-01

    The laboratory strain of Anopheles stephensi, a well-known urban malaria vector, was selected with permethrin, a synthetic pyrethroid at LD90 level up to five generations. The selection resulted in the development of resistance in F5 generation to the tune of 13-fold to permethrin and cross-resistance to the tune of 7-fold to cypermethrin, 9-fold to alphamethrin, and 10-fold to deltamethrin. The development of cross-resistance to 4% DDT was also noticed. The susceptibility status against 5% malathion was maintained throughout the five generations. The synergistic effect of piperonyl butoxide with permethrin did not overcome the development of resistance. The development of resistance showed a significant relationship between hatchability and different generations. PMID:1286731

  5. Salinity tolerance of Anopheles farauti Laveran sensu stricto.

    PubMed

    Bell, D; Bryan, J; Cameron, A; Foley, D; Pholsyna, K

    1999-01-01

    To assess the salt tolerance of the malaria vector Anopheles farauti sensu stricto, larvae were collected from a freshwater environment on the outskirts of Honiara, Solomon Islands and placed in trays containing water with salinity varying from freshwater to seawater. Dead larvae and pupae and emerged adults were recorded and preserved. Most adults and nearly half of the larvae and pupae were then subjected to DNA analysis for species identification. No adult An. farauti emerged after prolonged immersion of larvae in undiluted seawater (3.5% salinity), although temporary immersion before pupation was compatible with survival. Salinities of up to 2.2% to 2.5% were compatible with good survival and adult emergence, at least from fourth instars. The results suggest that higher salinities may slow larval development and show that mortality at a given salinity is not uniform. PMID:11061001

  6. Larval salinity tolerances of the sibling species of Anopheles farauti.

    PubMed

    Sweeney, A W

    1987-12-01

    Experiments conducted with laboratory colonies of the sibling species of Anopheles farauti showed larvae of An. farauti No. 1 had a higher salinity tolerance than larvae of An. farauti No. 2 and An. farauti No. 3. The salinity response of field-collected larvae of An. farauti No. 1 from Cowley Beach, Queensland, Australia was similar to that of larvae from two colonies of this species which originated from Papua New Guinea. These results indicate that An. farauti No. 1 is the species which is likely to be found breeding in brackish water whereas the other species may be restricted to freshwater habitats. Laboratory experiments conducted with the colonies and with specimens collected from three localities in northern Queensland indicated that a simple test, based on exposure of first-instar larvae to sea water for 1 hr, should enable identification of An. farauti No. 1 in the field. PMID:3504945

  7. Dose and developmental responses of Anopheles merus larvae to salinity

    PubMed Central

    White, Bradley J.; Kundert, Peter N.; Turissini, David A.; Van Ekeris, Leslie; Linser, Paul J.; Besansky, Nora J.

    2013-01-01

    SUMMARY Saltwater tolerance is a trait that carries both ecological and epidemiological significance for Anopheles mosquitoes that transmit human malaria, as it plays a key role in determining their habitat use and ecological distribution, and thus their local contribution to malaria transmission. Here, we lay the groundwork for genetic dissection of this trait by quantifying saltwater tolerance in three closely related cryptic species and malaria vectors from the Afrotropical Anopheles gambiae complex that are known to differ starkly in their tolerance to salinity: the obligate freshwater species A. gambiae and A. coluzzii, and the saltwater-tolerant species A. merus. We performed detailed comparisons of survivorship under varying salinities, using multiple strains of A. gambiae, A. coluzzii and A. merus, as well as F1 progeny from reciprocal crosses of A. merus and A. coluzzii. Additionally, using immunohistochemistry, we compared the location of three ion regulatory proteins (Na+/K+-ATPase, carbonic anhydrase and Na+/H+-antiporter) in the recta of A. coluzzii and A. merus reared in freshwater or saline water. As expected, we found that A. merus survives exposure to high salinities better than A. gambiae and A. coluzzii. Further, we found that exposure to a salinity level of 15.85 g NaCl l−1 is a discriminating dose that kills all A. gambiae, A. coluzzii and A. coluzzii–A. merus F1 larvae, but does not negatively impact the survival of A. merus. Importantly, phenotypic expression of saltwater tolerance by A. merus is highly dependent upon the developmental time of exposure, and based on immunohistochemistry, salt tolerance appears to involve a major shift in Na+/K+-ATPase localization in the rectum, as observed previously for the distantly related saline-tolerant species A. albimanus. PMID:23966587

  8. Identification of Cryptic Anopheles Mosquito Species by Molecular Protein Profiling

    PubMed Central

    Müller, Pie; Pflüger, Valentin; Wittwer, Matthias; Ziegler, Dominik; Chandre, Fabrice; Simard, Frédéric; Lengeler, Christian

    2013-01-01

    Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information

  9. Dose and developmental responses of Anopheles merus larvae to salinity.

    PubMed

    White, Bradley J; Kundert, Peter N; Turissini, David A; Van Ekeris, Leslie; Linser, Paul J; Besansky, Nora J

    2013-09-15

    Saltwater tolerance is a trait that carries both ecological and epidemiological significance for Anopheles mosquitoes that transmit human malaria, as it plays a key role in determining their habitat use and ecological distribution, and thus their local contribution to malaria transmission. Here, we lay the groundwork for genetic dissection of this trait by quantifying saltwater tolerance in three closely related cryptic species and malaria vectors from the Afrotropical Anopheles gambiae complex that are known to differ starkly in their tolerance to salinity: the obligate freshwater species A. gambiae and A. coluzzii, and the saltwater-tolerant species A. merus. We performed detailed comparisons of survivorship under varying salinities, using multiple strains of A. gambiae, A. coluzzii and A. merus, as well as F1 progeny from reciprocal crosses of A. merus and A. coluzzii. Additionally, using immunohistochemistry, we compared the location of three ion regulatory proteins (Na(+)/K(+)-ATPase, carbonic anhydrase and Na(+)/H(+)-antiporter) in the recta of A. coluzzii and A. merus reared in freshwater or saline water. As expected, we found that A. merus survives exposure to high salinities better than A. gambiae and A. coluzzii. Further, we found that exposure to a salinity level of 15.85 g NaCl l(-1) is a discriminating dose that kills all A. gambiae, A. coluzzii and A. coluzzii-A. merus F1 larvae, but does not negatively impact the survival of A. merus. Importantly, phenotypic expression of saltwater tolerance by A. merus is highly dependent upon the developmental time of exposure, and based on immunohistochemistry, salt tolerance appears to involve a major shift in Na(+)/K+-ATPase localization in the rectum, as observed previously for the distantly related saline-tolerant species A. albimanus. PMID:23966587

  10. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  11. Rapid Discrimination between Anopheles gambiae s.s. and Anopheles arabiensis by High-Resolution Melt (HRM) Analysis

    PubMed Central

    Zianni, Michael R.; Nikbakhtzadeh, Mahmood R.; Jackson, Bryan T.; Panescu, Jenny; Foster, Woodbridge A.

    2013-01-01

    There is a need for more cost-effective options to more accurately discriminate among members of the Anopheles gambiae complex, particularly An. gambiae and Anopheles arabiensis. These species are morphologically indistinguishable in the adult stage, have overlapping distributions, but are behaviorally and ecologically different, yet both are efficient vectors of malaria in equatorial Africa. The method described here, High-Resolution Melt (HRM) analysis, takes advantage of minute differences in DNA melting characteristics, depending on the number of incongruent single nucleotide polymorphisms in an intragenic spacer region of the X-chromosome-based ribosomal DNA. The two species in question differ by an average of 13 single-nucleotide polymorphisms giving widely divergent melting curves. A real-time PCR system, Bio-Rad CFX96, was used in combination with a dsDNA-specific dye, EvaGreen, to detect and measure the melting properties of the amplicon generated from leg-extracted DNA of selected mosquitoes. Results with seven individuals from pure colonies of known species, as well as 10 field-captured individuals unambiguously identified by DNA sequencing, demonstrated that the method provided a high level of accuracy. The method was used to identify 86 field mosquitoes through the assignment of each to the two common clusters with a high degree of certainty. Each cluster was defined by individuals from pure colonies. HRM analysis is simpler to use than most other methods and provides comparable or more accurate discrimination between the two sibling species but requires a specialized melt-analysis instrument and software. PMID:23543777

  12. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus

    PubMed Central

    2012-01-01

    Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal

  13. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon

    PubMed Central

    Chouaibou, Mouhamadou; Simard, Frédéric; Chandre, Fabrice; Etang, Josiane; Darriet, Frédéric; Hougard, Jean-Marc

    2006-01-01

    Background Recent field studies indicated that insecticide-treated bednets (ITNs) maintain their efficacy despite a high frequency of the knock-down resistance (kdr) gene in Anopheles gambiae populations. It was essential to evaluate ITNs efficacy in areas with metabolic-based resistance. Methods Bifenthrin was used in this experiment because it is considered a promising candidate for bednets impregnation. Nets were treated at 50 mg/m2, a dose that has high insecticidal activity on kdr mosquitoes and at 5 mg/m2, a dose that kills 95% of susceptible mosquitoes under laboratory conditions with 3 minutes exposure. Bednets were holed to mimic physical damage. The trial was conducted in three experimental huts from Pitoa, North-Cameroon where Anopheles gambiae displays metabolic resistance and cohabits with An. funestus. Results Bifenthrin at 50 mg/m2 significantly reduced anophelines' entry rate (>80%). This was not observed at 5 mg/m2. Both treatments increased exophily in An. gambiae, and to a lesser extent in An. funestus. With bifenthrin at high dosage, over 60% reduction in blood feeding and 75–90% mortality rates were observed in both vectors. Despite presence of holes, only a single An. gambiae and two An. funestus females were collected inside the treated net, and all were found dead. The same trends were observed with low dosage bifenthrin though in most cases, no significant difference was found with the untreated control net. Conclusion Bifenthrin-impregnated bednets at 50 mg/m2 were efficient in the reduction of human-vector contact in Pitoa. Considerable personal protection was gained against An. funestus and metabolic pyrethroid resistant An. gambiae populations. PMID:16961938

  14. New highland distribution records of multiple Anopheles species in the Ecuadorian Andes

    PubMed Central

    2011-01-01

    Background Several recent climate change reviews have stressed the possibility of some malaria vectors occupying regions of higher altitudes than previously recorded. Indeed, highland malaria has been observed in several African nations, possibly attributable to changes in land use, vector control and local climate. This study attempts to expand the current knowledge of the distribution of common Anopheles species in Ecuador, with particular attention to highland regions (> 500 m) of the Andes. Methods Extensive field collections of larvae were undertaken in 2008, 2009 and 2010 throughout all regions of Ecuador (except the lower-altitude Amazonian plain) and compared to historical distribution maps reproduced from the 1940s. Larvae were identified using both a morphological key and sequencing of the 800 bp region of the CO1 mitochondrial gene. In addition, spatial statistics (Getis-Ord Hotspot Analysis: Gi*) were used to determine high and low-density clusters of each species in Ecuador. Results Distributions have been updated for five species of Anopheles in Ecuador: Anopheles albimanus, Anopheles pseudopunctipennis, Anopheles punctimacula, Anopheles eiseni and Anopheles oswaldoi s.l.. Historical maps indicate that An. pseudopunctipennis used to be widespread in highland Andean valleys, while other species were completely restricted to lowland areas. By comparison, updated maps for the other four collected species show higher maximum elevations and/or more widespread distributions in highland regions than previously recorded. Gi* analysis determined some highland hot spots for An. albimanus, but only cold spots for all other species. Conclusions This study documents the establishment of multiple anopheline species in high altitude regions of Ecuador, often in areas where malaria eradication programs are not focused. PMID:21835004

  15. Evaluating preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis complex mosquitoes species using near infra-red spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infra-red spectroscopy (NIRS) has been successfully used on fresh and RNAlater® preserved Anopheles gambiae complex to identify sibling species and age. No preservation methods other than RNAlater® have been tested to preserve mosquitoes for species identification using NIRS. However, RNAlater®...

  16. Comparative Studies on the Stenogamous and Eurygamous Behavior of Eight Anopheles Species of the Hyrcanus Group (Diptera: Culicidae) in Thailand

    PubMed Central

    Wijit, Adulsak; Taai, Kritsana; Dedkhad, Watcharatip; Hempolchom, Chayanit; Thongsahuan, Sorawat; Srisuka, Wichai; Otsuka, Yasushi; Fukuda, Masako; Saeung, Atiporn

    2016-01-01

    Establishment of laboratory colony is essential for mosquito-borne-disease research. Mating behavior of stenogamous Anopheles peditaeniatus and seven eurygamous species (Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae (=An. lesteri), Anopheles pursati and Anopheles sinensis), were investigated and compared in this study. The self-mating success of adult mosquitoes in different size cages at two density resting surface (DRS) values, 3.6 and 7.2, was statistically significant between stenogamous and eurygamous species. The results obtained from comparative measurements of specific characters in adult females (maxillary palpomere and antennal sensilla characters) and males (wing and genitalia) indicate those characters might influence the mating success of An. peditaeniatus in a small cage. The gonostylus of An. peditaeniatus was shorter than the eurygamous species. Additionally, the lower frequency of clasper movement and shorter mating time could be important mechanisms that control the stenogamous behavior of An. peditaeniatus. Interestingly, for the first time, a cluster of large sensilla coeloconica was recorded on the antenna of An. argyropus and An. peditaeniatus females. There was no statistically significant difference in the mean number per female of those large antennal sensilla coeloconica among six of the eurygamous species. PMID:27023618

  17. Comparative Studies on the Stenogamous and Eurygamous Behavior of Eight Anopheles Species of the Hyrcanus Group (Diptera: Culicidae) in Thailand.

    PubMed

    Wijit, Adulsak; Taai, Kritsana; Dedkhad, Watcharatip; Hempolchom, Chayanit; Thongsahuan, Sorawat; Srisuka, Wichai; Otsuka, Yasushi; Fukuda, Masako; Saeung, Atiporn

    2016-01-01

    Establishment of laboratory colony is essential for mosquito-borne-disease research. Mating behavior of stenogamous Anopheles peditaeniatus and seven eurygamous species (Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae (=An. lesteri), Anopheles pursati and Anopheles sinensis), were investigated and compared in this study. The self-mating success of adult mosquitoes in different size cages at two density resting surface (DRS) values, 3.6 and 7.2, was statistically significant between stenogamous and eurygamous species. The results obtained from comparative measurements of specific characters in adult females (maxillary palpomere and antennal sensilla characters) and males (wing and genitalia) indicate those characters might influence the mating success of An. peditaeniatus in a small cage. The gonostylus of An. peditaeniatus was shorter than the eurygamous species. Additionally, the lower frequency of clasper movement and shorter mating time could be important mechanisms that control the stenogamous behavior of An. peditaeniatus. Interestingly, for the first time, a cluster of large sensilla coeloconica was recorded on the antenna of An. argyropus and An. peditaeniatus females. There was no statistically significant difference in the mean number per female of those large antennal sensilla coeloconica among six of the eurygamous species. PMID:27023618

  18. Role of species composition in malaria transmission by the Anopheles funestus group (Diptera: Culicidae) in Ghana.

    PubMed

    Dadzie, Samuel K; Brenyah, Ruth; Appawu, Maxwell A

    2013-06-01

    Malaria remains a public health problem in Ghana, with Anopheles gambiae and Anopheles funestus as the predominant vectors. While much information exists on the species composition of An. gambiae, very little exists for An. funestus. This study was carried out to determine the species composition of An. funestus Giles populations from three ecological areas in Ghana and investigate their role in malaria transmission. Mosquitoes were collected using human landing and pyrethrum spray methods. A total of 10,254 Anopheles individuals were collected, out of which An. funestus constituted 53.6% (5,496). An. funestus sensu stricto (s.s.) and Anopheles lessoni were identified as the only members of the An. funestus group in all three ecological areas. All 62 sporozoite positive specimens that were identified as An. funestus s.s. were highly anthropophilic with a human blood index in the range of 80-96%, whereas more than 83% of the An. leesoni had fed on either bovine, goat, or sheep. Malaria transmission was higher in the Sahel savannah area than the rest of the ecological zones, with An. funestus s.s. being implicated as a vector of malaria in all ecological zones. Anopheles leesoni occurred in all the ecological areas but played no role in malaria transmission. The study established the importance of An. funestus s.s. in malaria transmission in Ghana. PMID:23701614

  19. A simple Chelex protocol for DNA extraction from Anopheles spp.

    PubMed

    Musapa, Mulenga; Kumwenda, Taida; Mkulama, Mtawa; Chishimba, Sandra; Norris, Douglas E; Thuma, Philip E; Mharakurwa, Sungano

    2013-01-01

    Endemic countries are increasingly adopting molecular tools for efficient typing, identification and surveillance against malaria parasites and vector mosquitoes, as an integral part of their control programs. For sustainable establishment of these accurate approaches in operations research to strengthen malaria control and elimination efforts, simple and affordable methods, with parsimonious reagent and equipment requirements are essential. Here we present a simple Chelex-based technique for extracting malaria parasite and vector DNA from field collected mosquito specimens. We morphologically identified 72 Anopheles gambiae sl. from 156 mosquitoes captured by pyrethrum spray catches in sleeping rooms of households within a 2,000 km(2) vicinity of the Malaria Institute at Macha. After dissection to separate the head and thorax from the abdomen for all 72 Anopheles gambiae sl. mosquitoes, the two sections were individually placed in 1.5 ml microcentrifuge tubes and submerged in 20 μl of deionized water. Using a sterile pipette tip, each mosquito section was separately homogenized to a uniform suspension in the deionized water. Of the ensuing homogenate from each mosquito section, 10 μl was retained while the other 10 μl was transferred to a separate autoclaved 1.5 ml tube. The separate aliquots were subjected to DNA extraction by either the simplified Chelex or the standard salting out extraction protocol(9,10). The salting out protocol is so-called and widely used because it employs high salt concentrations in lieu of hazardous organic solvents (such as phenol and chloroform) for the protein precipitation step during DNA extraction(9). Extracts were used as templates for PCR amplification using primers targeting arthropod mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) subunit 4 gene (ND4) to check DNA quality, a PCR for identification of Anopheles gambiae sibling species(10) and a nested PCR for typing of Plasmodium falciparum infection

  20. Systematics of the Oswaldoi Complex (Anopheles, Nyssorhynchus) in South America

    PubMed Central

    2013-01-01

    Background Effective malaria control relies on accurate identification of those Anopheles mosquitoes responsible for the transmission of Plasmodium parasites. Anopheles oswaldoi s.l. has been incriminated as a malaria vector in Colombia and some localities in Brazil, but not ubiquitously throughout its Neotropical range. This evidence together with variable morphological characters and genetic differences supports that An. oswaldoi s.l. compromises a species complex. The recent fully integrated redescription of An. oswaldoi s.s. provides a solid taxonomic foundation from which to molecularly determine other members of the complex. Methods DNA sequences of the Second Internal Transcribed Spacer (ITS2 - rDNA) (n = 192) and the barcoding region of the Cytochrome Oxidase I gene (COI - mtDNA) (n = 110) were generated from 255 specimens of An. oswaldoi s.l. from 33 localities: Brazil (8 localities, including the lectotype series of An. oswaldoi), Ecuador (4), Colombia (17), Trinidad and Tobago (1), and Peru (3). COI sequences were analyzed employing the Kimura-two-parameter model (K2P), Bayesian analysis (MrBayes), Mixed Yule-Coalescent model (MYC, for delimitation of clusters) and TCS genealogies. Results Separate and combined analysis of the COI and ITS2 data sets unequivocally supported four separate species: two previously determined (An. oswaldoi s.s. and An. oswaldoi B) and two newly designated species in the Oswaldoi Complex (An. oswaldoi A and An. sp. nr. konderi). The COI intra- and inter-specific genetic distances for the four taxa were non-overlapping, averaging 0.012 (0.007 to 0.020) and 0.052 (0.038 to 0.064), respectively. The concurring four clusters delineated by MrBayes and MYC, and four independent TCS networks, strongly confirmed their separate species status. In addition, An. konderi of Sallum should be regarded as unique with respect to the above. Despite initially being included as an outgroup taxon, this species falls well within the

  1. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  2. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    PubMed Central

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  3. Biology of Anopheles saperoi, an Endemic Species in Okinawajima, the Ryukyu Archipelago, Japan.

    PubMed

    Mannen, Kosuke; Toma, Takako; Minakawa, Noboru; Higa, Yukiko; Miyagi, Ichiro

    2016-03-01

    Biological studies of Anopheles saperoi were conducted using larval and adult mosquito collections in the northern part of Okinawajima of the Ryukyu Archipelago from June 2009 to July 2010. Anopheles saperoi was the most collected species in the northern Okinawajima, except Motobu Peninsula, where it was not collected. The southern distribution of An. saperoi was Sugita Stream, Nago City. Anopheles saperoi was collected throughout the year with reproduction (gonotrophic cycle) observed year-round. Immature densities varied for Hinna and Yona streams, and were negatively affected by precipitation patterns. Human attraction activity of females varied for by study area and collection time and was positively affected by temperature, but negatively by heavy rainfall. The greatest female human attraction activity was observed during 3:00-5:00 p.m., with peak at twilight. Parity rates varied from 23.1% to 83.3% throughout the year. PMID:27105212

  4. Distribution of the sibling species of Anopheles farauti in the Cape York Peninsula, northern Queensland, Australia.

    PubMed

    Sweeney, A W; Cooper, R D; Frances, S P

    1990-09-01

    The sibling species of Anopheles farauti s.l. were collected in larval and adult surveys from 34 localities on Cape York Peninsula and were identified by isoenzyme electrophoresis. The most common species near the coast was An. farauti 1 which was often found breeding within 100 m of the sea in either brackish or freshwater habitats. Larvae of the other 2 species were not found in brackish water which accords with previous laboratory observations of their lower salinity tolerance. Anopheles farauti 2 appears to have the widest distribution of the 3 sibling species on Cape York Peninsula as it was common in both coastal and inland localities. Anopheles farauti 3 was rarely found near the coast. In one locality at Lockhart River near the east coast of the peninsula larvae of the 3 species were found together in a small muddy creek. PMID:2230771

  5. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    PubMed Central

    2014-01-01

    Background Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods The attraction of laboratory-reared and wild Anopheles gambiae complex mosquitoes to CO2 generated from yeast-fermentation of molasses was assessed under semi-field and field conditions in western Kenya. In the field, responses of wild Anopheles funestus were also assessed. Attraction of the mosquitoes to a synthetic mosquito attractant, Mbita blend (comprising ammonia, L-lactic acid, tetradecanoic acid and 3-methyl-1-butanol) when augmented with CO2 generated from yeast fermentation of either molasses or sucrose was also investigated. Results In semi-field, the release rate of CO2 and proportion of An. gambiae mosquitoes attracted increased in tandem with an increase in the quantity of yeast-fermented molasses up to an optimal ratio of molasses and dry yeast. More An. gambiae mosquitoes were attracted to a combination of the Mbita blend plus CO2 produced from fermenting molasses than the Mbita blend plus CO2 from yeast-fermented sucrose. In the field, significantly more female An. gambiae sensu lato mosquitoes were attracted to the Mbita blend augmented with CO2 produced by fermenting 500 g of molasses compared to 250 g of sucrose or 250 g of molasses. Similarly, significantly more An. funestus, Culex and other anopheline mosquito species were attracted to the Mbita blend augmented with CO2 produced from fermenting molasses than the Mbita blend with CO2 produced from sucrose. Augmenting the Mbita blend with CO2 produced from molasses was associated with high catches of blood-fed An. gambiae s.l. and An. funestus

  6. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

    PubMed Central

    2014-01-01

    Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region. PMID:24885508

  7. Entomologic inoculation rates of Anopheles arabiensis in southwestern Ethiopia.

    PubMed

    Massebo, Fekadu; Balkew, Meshesha; Gebre-Michael, Teshome; Lindtjørn, Bernt

    2013-09-01

    We collected anophelines every second week for one year from randomly selected houses in southwestern Ethiopia by using Centers for Disease Control (CDC) light traps, pyrethrum spray catches, and artificial pit shelter constructions to detect circumsporozoite proteins and estimate entomologic inoculation rates (EIRs). Of 3,678 Anopheles arabiensis tested for circumsporozoite proteins, 11 were positive for Plasmodium falciparum and three for P. vivax. The estimated annual P. falciparum EIR of An. arabiensis was 17.1 infectious bites per person per year (95% confidence interval = 7.03-34.6) based on CDC light traps and 0.1 infectious bites per person per year based on pyrethrum spray catches. The P. falciparum EIRs from CDC light traps varied from 0 infectious bites per person per year (in 60% of houses) to 73.2 infectious bites per person per year in the house nearest the breeding sites. Risk of exposure to infectious bites was higher in wet months than dry months, with a peak in April (9.6 infectious bites per person per month), the period of highest mosquito density. PMID:23878184

  8. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  9. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes

    PubMed Central

    Dieme, Constentin; Bechah, Yassina; Socolovschi, Cristina; Audoly, Gilles; Berenger, Jean-Michel; Faye, Ousmane; Raoult, Didier; Parola, Philippe

    2015-01-01

    A growing number of recent reports have implicated Rickettsia felis as a human pathogen, paralleling the increasing detection of R. felis in arthropod hosts across the globe, primarily in fleas. Here Anopheles gambiae mosquitoes, the primary malarial vectors in sub-Saharan Africa, were fed with either blood meal infected with R. felis or infected cellular media administered in membrane feeding systems. In addition, a group of mosquitoes was fed on R. felis-infected BALB/c mice. The acquisition and persistence of R. felis in mosquitoes was demonstrated by quantitative PCR detection of the bacteria up to day 15 postinfection. R. felis was detected in mosquito feces up to day 14. Furthermore, R. felis was visualized by immunofluorescence in salivary glands, in and around the gut, and in the ovaries, although no vertical transmission was observed. R. felis was also found in the cotton used for sucrose feeding after the mosquitoes were fed infected blood. Natural bites from R. felis-infected An. gambiae were able to cause transient rickettsemias in mice, indicating that this mosquito species has the potential to be a vector of R. felis infection. This is particularly important given the recent report of high prevalence of R. felis infection in patients with “fever of unknown origin” in malaria-endemic areas. PMID:26056256

  10. The role of hemocytes in Anopheles gambiae antiplasmodial immunity.

    PubMed

    Ramirez, Jose Luis; Garver, Lindsey S; Brayner, Fábio André; Alves, Luiz Carlos; Rodrigues, Janneth; Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses. PMID:23886925

  11. DDT and pyrethroid resistance in Anopheles arabiensis from South Africa

    PubMed Central

    2013-01-01

    Background Pyrethroid resistance has been well documented in Anopheles arabiensis, one of the major African malaria vectors, and the predominant malaria vector in South Africa. Methods In this study, the genetic basis of pyrethroid resistance in a selected laboratory strain of An. arabiensis from South Africa was investigated using a custom-made microarray, known as the An. gambiae detoxification chip. Results A large number of P450 genes were over-transcribed, as well as a suite of redox genes and glutathione S-transferases. The five genes that showed the highest level of gene transcription when compared with an insecticide susceptible strain were: CYP6AG2, CYPZ1, TPX2, CYPZ2 and CYP6P1. Conclusions Permethrin resistance in South African An. arabiensis is associated with increased transcription of multiple genes, and a large proportion of these genes were also previously recorded as over-transcribed in another An. arabiensis strain selected for resistance to DDT with cross-resistance to deltamethrin. The deltamethrin resistance developed de novo in the DDT-selected strain and is most likely due to increased transcription of those genes associated with DDT resistance. However, of particular interest was the fact that the strain selected for resistance to pyrethroids did not develop de novo resistance to DDT. These differences are compared and discussed. PMID:23924547

  12. Landing responses of Anopheles gambiae elicited by oxocarboxylic acids.

    PubMed

    Healy, T P; Copland, M J W; Cork, A; Przyborowska, A; Halket, J M

    2002-06-01

    A wind tunnel bioassay and video system were used to observe Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) landing on glass cylinders, heated to human skin temperature (34 degrees C) and treated with aqueous solutions of oxocarboxylic acids. Six of nine compounds tested: 2-oxobutanoic, 2-oxo-3-methylbutanoic, 2-oxopentanoic, 2-oxo-3-methylpentanoic, 2-oxo-4-methylpentanoic and 2-oxohexanoic elicited significant landing responses in comparison to a water control. Landing responses appeared to be restricted to C4-C6, 2-oxocarboxylic acids. A solution of 1 microg/microL of 2-oxopentanoic acid elicited the highest level of response that was temperature dependent: significant numbers of landings occurred only within +/-2 degrees C of human skin temperature. Chemical analysis by linked gas-liquid chromatography/mass spectrometry of methyl-oxime, trimethylsilyl derivatized samples of human sweat extracts revealed the presence of 2-oxopropanoic (pyruvic) acid and three behaviourally active, branched chain acids: 2-oxo-3-methylbutanoic, 2-oxo-3-methylpentanoic and 2-oxo-4-methylpentanoic. PMID:12109705

  13. Field evaluation of deet against Anopheles farauti at Ndendo (Santa Cruz) Island, Solomon Islands.

    PubMed

    Frances, S P; Bugoro, H; Butafa, C; Cooper, R D

    2010-09-01

    Field efficacy studies comparing two formulations of deet (N,N-diethyl-3-methylbenzamide) against mosquitoes were conducted on Ndendo Island, Solomon Islands. The repellent study was conducted at Pala village in November 2008, and the only mosquito species collected was Anopheles farauti Laveran. A formulation containing 35% deet in a gel provided >95% protection for 2 h, whereas a formulation containing 40% deet in ethanol in a spray applicator provided >95% for only 1 h. This field study demonstrated again that repellents containing deet provide a relatively short period of complete protection against Anopheles spp. PMID:20939380

  14. The Anopheles innate immune system in the defense against malaria infection

    PubMed Central

    Clayton, April M.; Dong, Yuemei; Dimopoulos, George

    2014-01-01

    The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite’s successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito’s innate immune system. This review will discuss our current understanding of the Anopheles mosquito’s innate immune responses against the malaria parasite Plasmodium and the influence of the insect’s intestinal microbiota on parasite infection. PMID:23988482

  15. The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea.

    PubMed

    Vannini, Laura; Bowen, John Hunter; Reed, Tyler W; Willis, Judith H

    2015-10-01

    Arthropod cuticles have, in addition to chitin, many structural proteins belonging to diverse families. Information is sparse about how these different cuticular proteins contribute to the cuticle. Most cuticular proteins lack cysteine with the exception of two families (CPAP1 and CPAP3), recently described, and the one other that we now report on that has a motif of 16 amino acids first identified in a protein, Bc-NCP1, from the cuticle of nymphs of the cockroach, Blaberus craniifer (Jensen et al., 1997). This motif turns out to be present as two or three copies in one or two proteins in species from many orders of Hexapoda. We have named the family of cuticular proteins with this motif CPCFC, based on its unique feature of having two cysteines interrupted by five amino acids (C-X(5)-C). Analysis of the single member of the family in Anopheles gambiae (AgamCPCFC1) revealed that its mRNA is most abundant immediately following ecdysis in larvae, pupae and adults. The mRNA is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization revealed the presence of the protein, generally in endocuticle of legs and antennae. A phylogenetic analysis found proteins bearing this motif in 14 orders of Hexapoda, but not in some species for which there are complete genomic data. Proteins were much longer in Coleoptera and Diptera than in other orders. In contrast to the 1 and occasionally 2 copies in other species, a dragonfly, Ladona fulva, has at least 14 genes coding for family members. CPCFC proteins were present in four classes of Crustacea with 5 repeats in one species, and motifs that ended C-X(7)-C in Malacostraca. They were not detected, except as obvious contaminants, in any other arthropod subphyla or in any other phylum. The conservation of CPCFC proteins throughout the Pancrustacea and the small number of copies in individual species indicate that, when present, these proteins are

  16. Filling the Gap 115 Years after Ronald Ross: The Distribution of the Anopheles coluzzii and Anopheles gambiae s.s from Freetown and Monrovia, West Africa

    PubMed Central

    de Souza, Dziedzom K.; Koudou, Benjamin G.; Bolay, Fatorma K.; Boakye, Daniel A.; Bockarie, Moses J.

    2013-01-01

    It was in Freetown, Sierra Leone, that the malaria mosquito Anopheles coastalis, now known as Anopheles gambiae, was first discovered as the vector of malaria, in 1899. That discovery led to a pioneering vector research in Sierra Leone and neighbouring Liberia, where mosquito species were extensively characterized. Unfortunately, the decade long civil conflicts of the 1990s, in both countries, resulted in a stagnation of the once vibrant research on disease vectors. This paper attempts to fill in some of the gaps on what is now known of the distribution of the sibling species of the An. gambiae complex, and especially the An. coluzzii and An. gambiae s.s, formerly known as the An. gambiae molecular M and S forms respectively, in the cities of Freetown and Monrovia. PMID:23741429

  17. Breakdown in the Process of Incipient Speciation in Anopheles gambiae

    PubMed Central

    Nwakanma, Davis C.; Neafsey, Daniel E.; Jawara, Musa; Adiamoh, Majidah; Lund, Emily; Rodrigues, Amabelia; Loua, Kovana M.; Konate, Lassana; Sy, Ngayo; Dia, Ibrahima; Awolola, T. Samson; Muskavitch, Marc A. T.; Conway, David J.

    2013-01-01

    Understanding genetic causes and effects of speciation in sympatric populations of sexually reproducing eukaryotes is challenging, controversial, and of practical importance for controlling rapidly evolving pests and pathogens. The major African malaria vector mosquito Anopheles gambiae sensu stricto (s.s.) is considered to contain two incipient species with strong reproductive isolation, hybrids between the M and S molecular forms being very rare. Following recent observations of higher proportions of hybrid forms at a few sites in West Africa, we conducted new surveys of 12 sites in four contiguous countries (The Gambia, Senegal, Guinea-Bissau, and Republic of Guinea). Identification and genotyping of 3499 A. gambiae s.s. revealed high frequencies of M/S hybrid forms at each site, ranging from 5 to 42%, and a large spectrum of inbreeding coefficient values from 0.11 to 0.76, spanning most of the range expected between the alternative extremes of panmixia and assortative mating. Year-round sampling over 2 years at one of the sites in The Gambia showed that M/S hybrid forms had similar relative frequencies throughout periods of marked seasonal variation in mosquito breeding and abundance. Genome-wide scans with an Affymetrix high-density single-nucleotide polymorphism (SNP) microarray enabled replicate comparisons of pools of different molecular forms, in three separate populations. These showed strong differentiation between M and S forms only in the pericentromeric region of the X chromosome that contains the molecular form-specific marker locus, with only a few other loci showing minor differences. In the X chromosome, the M/S hybrid forms were more differentiated from M than from S forms, supporting a hypothesis of asymmetric introgression and backcrossing. PMID:23335339

  18. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  19. Innate host selection in Anopheles vestitipennis from southern Mexico.

    PubMed

    Ullo, Armando; Arredondo-Jiménez, Juan I; Rodríguez, Mario H; Fernández-Salas, Ildefonso; González-Cerón, Lilia

    2004-12-01

    We assessed the degree of host specificity of the purported anthropophilic and zoophilic populations of Anopheles vestitipennis. A series of experiments were conducted in an experimental hut with 3 compartments lined with nylon netting. A central release compartment and 2 side compartments were each baited with equivalent surface area of human and animal baits. Wild An. vestitipennis collected on each host, as well as corresponding F1 mosquitoes, were released in the central compartment. Overall, 22% (166/748) of all mosquitoes collected on humans were recaptured in the human compartment, whereas 23% of mosquitoes originally collected on animals were recaptured in this compartment. Experiments with F1 females resulted in 59% human selection rates, a 2.6 times increase compared with wild anthropophilic females, while a 1.2 times decrease in human selection rates (from 24% to 20%) was observed in F1 of wild zoophilic females. Host selection experiments in the Lacandón Forest revealed the same trend. These findings suggested that the complex mode of inheritance that resulted in female mosquitoes showing a stronger tendency to return to their preferred host was obscured by the nature of the method of collection, i.e., wild parental females selecting a host either innately or opportunistically, the majority of which were likely innately attracted. This was revealed by F1 females, of which, when given the choice to select a host, a higher proportion opted for the preferred one. The results presented here are in accordance with other studies that identified a subpopulation of An. vestitipennis in southern Mexico with higher anthropophily. PMID:15669372

  20. Spatial distribution and male mating success of Anopheles gambiae swarms

    PubMed Central

    2011-01-01

    Background Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble

  1. GENETIC ISOLATION WITHIN THE MALARIA MOSQUITO ANOPHELES MELAS

    PubMed Central

    Deitz, Kevin C; Athrey, Giri; Reddy, Michael R; Overgaard, Hans J; Matias, Abrahan; Jawara, Musa; della Torre, Alessandra; Petrarca, Vincenzo; Pinto, Joao; Kiszewski, Anthony; Kengne, Pierre; Costantini, Carlo; Caccone, Adalgisa; Slotman, Michel A

    2014-01-01

    Anopheles melas is a brackish water-breeding member of the An. gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analyzed 15 microsatellite markers and 1,161 bp of mtDNA in 11 An. melas populations collected throughout its range. Compared to its sibling species An. gambiae, An. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat which is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa, and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three An. melas clusters is on par with levels of divergence between other species of the An. gambiae complex, and no support for monophyly was observed in a maximum likelihood phylogenetic analysis. Finally, an Approximate Bayesian Analysis of microsatellite data indicates that Bioko Island An. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10,000-11,000 years ago). This study has exposed species level genetic divergence within An. melas, and also has implications for control of this malaria vector. PMID:22882458

  2. Pteridine fluorescence for age determination of Anopheles mosquitoes.

    PubMed

    Wu, D; Lehane, M J

    1999-02-01

    The age structure of mosquito populations is of great relevance to understanding the dynamics of disease transmission and in monitoring the success of control operations. Unfortunately, the ovarian dissection methods currently available for determining the age of adult mosquitoes are technically difficult, slow and may be of limited value, because the proportion of diagnostic ovarioles in the ovary declines with age. By means of reversed-phase HPLC this study investigated the malaria vectors Anopheles gambiae and An. stephensi to see if changes in fluorescent pteridine pigments, which have been used in other insects to determine the age of field-caught individuals, may be useful for age determination in mosquitoes. Whole body fluorescence was inversely proportional to age (P < 0.001, r2 > 91%) up to 30 days postemergence, with the regression values: y = 40580-706x for An. gambiae, and y = 52896-681x for An. stephensi. In both species the main pteridines were 6-biopterin, pterin-6-carboxylic acid and an unidentified fluorescent compound. An. gambiae had only 50-70% as much fluorescence as An. stephensi, and fluorescent compounds were relatively more concentrated in the head than in the thorax (ratios 1:0.8 An. gambiae; 1:0.5 An. stephensi). The results of this laboratory study are encouraging. It seems feasible that this simpler and faster technique of fluorescence quantification could yield results of equivalent accuracy to the interpretation of ovarian dissection. A double-blind field trial comparing the accuracy of this technique to marked, released and recaptured mosquitoes is required to test the usefulness of the pteridine method in the field. PMID:10194749

  3. The Anopheles dirus complex: spatial distribution and environmental drivers

    PubMed Central

    Obsomer, Valérie; Defourny, Pierre; Coosemans, Marc

    2007-01-01

    Background The Anopheles dirus complex includes efficient malaria vectors of the Asian forested zone. Studies suggest ecological and biological differences between the species of the complex but variations within species suggest possible environmental influences. Behavioural variation might determine vector capacity and adaptation to changing environment. It is thus necessary to clarify the species distributions and the influences of environment on behavioural heterogeneity. Methods A literature review highlights variation between species, influences of environmental drivers, and consequences on vector status and control. The localisation of collection sites from the literature and from a recent project (MALVECASIA) produces detailed species distributions maps. These facilitate species identification and analysis of environmental influences. Results The maps give a good overview of species distributions. If species status partly explains behavioural heterogeneity, occurrence and vectorial status, some environmental drivers have at least the same importance. Those include rainfall, temperature, humidity, shade, soil type, water chemistry and moon phase. Most factors are probably constantly favourable in forest. Biological specificities, behaviour and high human-vector contact in the forest can explain the association of this complex with high malaria prevalence, multi-drug resistant Plasmodium falciparum and partial control failure of forest malaria in Southeast Asia. Conclusion Environmental and human factors seem better than species specificities at explaining behavioural heterogeneity. Although forest seems essential for mosquito survival, adaptations to orchards and wells have been recorded. Understanding the relationship between landscape components and mosquito population is a priority in foreseeing the influence of land-cover changes on malaria occurrence and in shaping control strategies for the future. PMID:17341297

  4. A study of the blood-feeding patterns of Anopheles mosquitos through precipitin tests*

    PubMed Central

    1960-01-01

    The success of malaria eradication campaigns depends on the use of all methods which make for a better understanding of the biology and behaviour of mosquito vectors. One such method is precipitin testing, by which it is possible to identify the human or animal origin of blood meals of mosquitos and thereby to determine their host preferences and vectorial importance, both generally and locally. In 1955, the World Health Organization in agreement with the Lister Institute of Preventive Medicine, Elstree, England, set up a precipitin test service related to entomological surveys in malaria eradication programmes and available to national research and WHO field personnel. The purpose was to stimulate interest in the study of bionomics of Anopheles species, to facilitate the identification of blood meals of Anopheles, to eliminate experimental errors by the use of a standardized technique and highly sensitive antisera, and finally to apply the results in the strategy of malaria eradication. The results obtained over the past five years are summarized in tabular form. The study—the largest ever undertaken—included 51 species of Anopheles and 56 377 tests, of which 93.9% yielded positive results, are reviewed. The available knowledge of the vectorial importance of 39 species of Anopheles is compared with their human blood ratio, this term being used to express the percentage of human blood in relation to all precipitin tests found positive. PMID:20604062

  5. Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae

    PubMed Central

    Baker, Dean A.; Russell, Steven

    2011-01-01

    Gene expression in Anopheles gambiae shows a deficiency of testis-expressed genes on the X chromosome associated with an excessive movement of retrogene duplication. We suggest that the degeneration of sex chromosomes in this monandrous species is likely the result of pressures from X inactivation, dosage compensation, and sexual antagonism. PMID:21890740

  6. Anopheles of Bolivia: new records with an updated and annotated checklist.

    PubMed

    Lardeux, Frédéric; Chávez, Tamara; Rodríguez, Roberto; Torrez, Libia

    2009-05-01

    Anopheles squamifemur has been identified from CDC light trap collections carried out at Arca de Israel, a small community located in the extreme north-east of Bolivia (Pando Department) on the banks of the river Madera, on the border with Brazil. Anopheles costai and An. forattinii have been identified in place of An. mediopunctatus which has been removed from the Bolivian list of Anopheles species. The first identification of An. trinkae in Bolivia by Dr. J.C. Lien in 1984 is cleared. The presence of An. deaneorum in Bolivia has been confirmed by our mosquito captures carried out in Guayaramerín (Pando Department, north-east of Bolivia), a border city separated from the type locality of An. deaneorum, the Brasilian city of Guajara-Mirin, by the large Mamoré River. These new findings increase to 43 the total number of known Anopheles species for Bolivia for which an updated and partially annotated checklist is given. PMID:19393981

  7. Using a Near-Infrared Spectrometer to Estimate the Age of Anopheles Mosquitoes Exposed to Pyrethroids

    PubMed Central

    Sikulu, Maggy T.; Majambere, Silas; Khatib, Bakar O.; Ali, Abdullah S.; Hugo, Leon E.; Dowell, Floyd E.

    2014-01-01

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210). Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed. PMID:24594705

  8. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis

    PubMed Central

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  9. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis.

    PubMed

    Qiao, Liang; Du, Minghui; Liang, Xin; Hao, Youjin; He, Xiu; Si, Fengling; Mei, Ting; Chen, Bin

    2016-01-01

    Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development. PMID:27416870

  10. Using a near-infrared spectrometer to estimate the age of Anopheles mosquitoes exposed to pyrethroids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as ,7 or $7 d ol...

  11. Batkoa apiculata (Thaxter) Humber affecting Anopheles (Diptera: Culicidae) in the municipality of Una, Southern Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveys for fungal pathogens affecting adult mosquitoes from the genus Anopheles were conducted in flooded and swamp-like natural breeding sites near residences in the center and suburbs of the city of Una as well as the nearby village of Outeiro in southern Bahia. Surveys of 54 mosquito breeding si...

  12. Seasonal climate effects anemotaxis in newly emerged adult anopheles gambiae giles in Mali, West Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The direction and magnitude of movement of the malaria vector Anopheles gambiae Giles has been of great interest to medical entomologists for over 70 years. This direction of movement is likely to be affected by many factors, from environmental conditions and stage of life history of the mosquito to...

  13. Anopheles species composition explains differences in Plasmodium transmission in La Guajira, northern Colombia

    PubMed Central

    Herrera-Varela, Manuela; Orjuela, Lorena I; Peñalver, Cilia; Conn, Jan E; Quiñones, Martha L

    2014-01-01

    Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.

  14. Larval habitat of Anopheles philippinensis: a vector of malaria in Bangladesh.

    PubMed Central

    Elias, M.

    1996-01-01

    This article reviews the various types of larval habitat of the malaria vector Anopheles philippinensis Ludlow in Bangladesh and characterizes its breeding ecology. Discussed also are the possible implications of the environmental changes on its breeding habitats resulting from intensified land use brought about by population increase and developments in irrigation and water resources. PMID:8823969

  15. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  16. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya

    PubMed Central

    Wanjala, Christine L.; Mbugi, Jernard P.; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A.; Atieli, Harrysone E.; Zhou, Guofa; Githeko, Andrew K.

    2015-01-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non–pyrethroid-based vector control tools may be preferable for malaria prevention in this region. PMID:26583525

  17. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya.

    PubMed

    Wanjala, Christine L; Mbugi, Jernard P; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A; Atieli, Harrysone E; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-12-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non-pyrethroid-based vector control tools may be preferable for malaria prevention in this region. PMID:26583525

  18. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time

    PubMed Central

    2010-01-01

    Background The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. Methods The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. Results The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. Conclusion Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents. PMID:20470395

  19. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes

    PubMed Central

    Jiang, Xiaofang; Biedler, James K.; Qi, Yumin; Hall, Andrew Brantley; Tu, Zhijian

    2015-01-01

    Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution. PMID:26078263

  20. Distribution and larval habitats of Anopheles species in northern Gyeonggi Province, Republic of Korea.

    PubMed

    Kim, Heung-Chul; Rueda, Leopoldo M; Wilkerson, Richard C; Foley, Desmond H; Sames, William J; Chong, Sung-Tae; Nunn, Peter V; Klein, Terry A

    2011-06-01

    A total of 180 larval collection sites (e.g., rice paddies, marshes, ground pools, ponds, stream margins, and irrigation and drainage ditches) was surveyed within a 2 km radius from Warrior Base training area, 5 km south of Panmunjeom (Joint Security Area, demilitarized zone), Gyeonggi Province, Republic of Korea (ROK), from May through October, 2007 to characterize larval habitat distributions of members of the Anopheles Hyrcanus Group (An. sinensis, An. lesteri, An. pullus, An. belenrae, An. kleini, and An. sineroides). A total of 5,859 anopheline larvae was collected from 84.4% of the sites surveyed, of which 4,071 were identified to species by polymerase chain reaction (PCR) using the ribosomal DNA internal transcribed spacer 2 (rDNA ITS2). Anopheles sinensis (52.6%) was the most frequently collected, followed by An. kleini (29.4%), An. sineroides (9.8%), An. pullus (6.7%), An. belenrae (1.1%), and An. lesteri (0.5%). Anopheles pullus and An. kleini were collected in greater proportions in May and from May - July, respectively. Few An. sinensis were collected from May - June, but it was the predominant species collected by August, and accounted for >80% of all larvae from September - October. Anopheles kleini was found in all habitats sampled; however, it was collected most frequently in young growth rice paddies, while An. sinensis was collected more frequently in mature and post-harvest paddies. Anopheles pullus was associated with pre-cultivated rice paddies, including water-filled tire ruts left from the previous fall's harvest. PMID:21635650

  1. Morphological analysis of three populations of Anopheles (Nyssorhynchus) nuneztovari Gabaldón (Diptera: Culicidae) from Colombia.

    PubMed

    Fajardo Ramos, Mayury; González Obando, Ranulfo; Fidel Suárez, Marco; López, David; Wilkerson, Richard; Sallum, Maria Anice Mureb

    2008-02-01

    Based on the results of comparative analyses of 1,039 specimens of several progenies of Anopheles nuneztovarifrom three localities in Colombia, eight costal wing spot patterns were observed. Patterns I and III were the most frequent: 77.96% and 11.36%, respectively. Using the diagnostic characters ratio of the length of the basal dark area of hind tarsomere II/length of hind tarsomere II, ratio of the length of the humeral pale spot/length of the pre-humeral dark spot, and the ratio of the length of the subcostal pale spot/length of the distal sector dark spot (DS-III2/Ta-III2, HP/PHD, SCP/DSD) approximately 5% of the adult females were misidentified as a species of Nyssorhynchus, different from An. nuneztovari. Approximately 5% of the specimens showed DS-III2/Ta-III2 ratio less than 0.25 (range 0.21 - 0.24), and among them 3.34% shared a HP/PHD ratio less than 1.50. Consequently, 1.52% of An. nuneztovari individuals can be misidentified as Anopheles oswaldoi. In those specimens with the DS-III2/Ta-III2 ratios higher than 0.25, 34.45% displayed SCP/DSD values greater than 0.50 and of these, 3.65% displayed HP/PHD values greater than 1.8. This combination of characters could lead one to misidentify samples of An. nuneztovari as Anopheles rangeli. Similarly, 2.43% of the females could be identified erroneously as either Anopheles aquasalis or Anopheles benarrochi. Individuals with a HP/PHD ratio greater than 2.0, could be misidentified as Anopheles trinkae, Anopheles strodei or Anopheles evansae. A distinct combination of diagnostic characters for An. nuneztovari from Colombia is proposed. PMID:18368239

  2. Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali.

    PubMed

    Main, Bradley J; Lee, Yoosook; Collier, Travis C; Norris, Laura C; Brisco, Katherine; Fofana, Abdrahamane; Cornel, Anthony J; Lanzaro, Gregory C

    2015-10-01

    In certain cases, a species may have access to important genetic variation present in a related species via adaptive introgression. These novel alleles may interact with their new genetic background, resulting in unexpected phenotypes. In this study, we describe a selective sweep on standing variation on the X chromosome in the mosquito Anopheles coluzzii, a principal malaria vector in West Africa. This event may have been influenced by the recent adaptive introgression of the insecticide resistance gene known as kdr from the sister species Anopheles gambiae. Individuals carrying both kdr and a nearly fixed X-linked haplotype, encompassing at least four genes including the P450 gene CYP9K1 and the cuticular protein CPR125, have rapidly increased in relative frequency. In parallel, a reproductively isolated insecticide-susceptible A. gambiae population (Bamako form) has been driven to local extinction, likely due to strong selection from increased insecticide-treated bed net usage. PMID:26359110

  3. [Identification of breeding sites of Anopheles sp. during part of the dry season in Jigawa, Nigeria].

    PubMed

    Marquetti, María del Carmen; Rojas, Lázara; Mohd Birniwa, Muktar; Sulaiman, Haruna U; Adamu, Hassana H

    2007-01-01

    A study was conducted in the state of Jigawa, Republic of Nigeria, from November to December in the dry season, where malaria is one of the main morbidity and mortality causes particularly in under 5 years-old children and pregnant women. This state had two climate seasons: dry from October to May and rainy from June to September. A total of 112 water bodies were sampled and just 18 in nine local governments were positive to mosquitoes. Breeding sites for Anopheles were rice fields, small holes in land, animal footsteps, small ponds, flooded pasture fields and water treatment dam, among others, to amount to 10 sites. Contrary to what has always been reported about the presence of Anopheles in clean waters, they were also breeding in highly polluted waters containing human faeces and garbage and located in open sewers. PMID:23427452

  4. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.

    PubMed

    Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H

    2006-12-01

    The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35. PMID:17304932

  5. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae.

    PubMed

    Vizioli, J; Bulet, P; Charlet, M; Lowenberger, C; Blass, C; Müller, H M; Dimopoulos, G; Hoffmann, J; Kafatos, F C; Richman, A

    2000-02-01

    Parasites of the genus Plasmodium are transmitted to mammalian hosts by anopheline mosquitoes. Within the insect vector, parasite growth and development are potentially limited by antimicrobial defence molecules. Here, we describe the isolation of cDNA and genomic clones encoding a cecropin antibacterial peptide from the malaria vector mosquito Anopheles gambiae. The locus was mapped to polytene division 1C of the X chromosome. Cecropin RNA was induced by infection with bacteria and Plasmodium. RNA levels varied in different body parts of the adult mosquito. During development, cecropin expression was limited to the early pupal stage. The peptide was purified from both adult mosquitoes and cell culture supernatants. Anopheles gambiae synthetic cecropins displayed activity against Gram-negative and Gram-positive bacteria, filamentous fungi and yeasts. PMID:10672074

  6. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks.

    PubMed

    Dimopoulos, G; Zheng, L; Kumar, V; della Torre, A; Kafatos, F C; Louis, C

    1996-06-01

    Randomly amplified polymorphic DNA (RAPD) markers have been integrated in the genetic and cytogenetic maps of the malaria vector mosquito, Anopheles gambiae. Fifteen of these markers were mapped by recombination, relative to microsatellite markers that had been mapped previously. Thirty-four gel-purified RAPD bands were cloned and sequenced, generating sequence tagged sites (STSs) that can be used as entry points to the A. gambiae genome. Thirty one of these STSs were localized on nurse cell polytene chromosomes through their unique hybridization signal in in situ hybridization experiments. Five STSs map close to the breakpoints of polymorphic inversions, which are notable features of the Anopheles genome. The usefulness and limitations of this integrated mosquito map are discussed. PMID:8725241

  7. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae

    PubMed Central

    Kumar, Sanjeev; Christophides, George K.; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2003-01-01

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  8. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Christophides, George K; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C; Barillas-Mury, Carolina

    2003-11-25

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  9. Anopheles gambiae exploits the treehole ecosystem in western Kenya: a new urban malaria risk?

    PubMed

    Omlin, Francois X; Carlson, John C; Ogbunugafor, C Brandon; Hassanali, Ahmed

    2007-12-01

    At six sites in western Kenya, we explored the presence of Anopheles immature stages in treeholes. An. gambiae larvae were found in 19 species, 13 of which are exotic. The most common exotic species were Delonix regia, Jacaranda mimosipholia, and Eucalyptus citrodora. In Kisumu city, longitudinal assessments of 10 Flamboyant trees showed repeated presence of An. gambiae s.s. in treeholes with water. Production of Anopheles larvae did not correlate with habitat volume but with habitat height, showing a strong but statistically insignificant negative correlation. During a dry season, eggs recovered by rinsing dry treeholes hatched into 2.5 +/- 3.06 An. gambiae and 7.9 +/- 8.2 Aedes larvae. In cage experiments, An. gambiae s.s. laid more eggs in water originating from treeholes than in distilled or lake water, implying preference for ovipositing in this habitat. Our findings indicate that treeholes represent a hitherto unrecognized habitat for malaria vectors, which needs further studies. PMID:18165501

  10. Scanning electron microscopy of egg hatching of Anopheles albimanus (Diptera: Culicidae).

    PubMed

    Rodriguez, M H; Orozco, A; Chavez, B; Martinez-Palomo, A

    1992-09-01

    Scanning electron and light microscopic observations showed that egg hatching in Anopheles albimanus Wiedemann is aided by a chisel-shaped spine. This hatching tooth is surrounded by a thin flexible membrane fixed to a groove in the head of the larvae. Increased intracranial pressure may force the spine against the egg shell until a fissure is produced. Further opening of the egg is achieved by movements of the head and the entire body of the larva. PMID:1404271

  11. Beta-integrin of Anopheles gambiae: mRNA cloning and analysis of structure and expression.

    PubMed

    Mahairaki, V; Lycett, G; Blass, C; Louis, C

    2001-06-01

    We have isolated an mRNA encoding a beta integrin subunit of the malaria mosquito Anopheles gambiae. Our analysis predicts a protein that is very similar to betaPS, the fruitfly orthologue. The gene is expressed during all developmental stages and it is found in all body parts, including the midgut. Finally, the expression of the gene does not seem to be modulated during blood meals, except for a substantial increase 48 h posthaematophagy, when digestion is nearly complete. PMID:11437913

  12. Sequence of a DNA probe specific for Anopheles quadrimaculatus species A (Diptera: Culicidae).

    PubMed

    Johnson, D W; Cockburn, A F; Seawright, J A

    1993-09-01

    The nucleotide sequence was determined for a portion of a 12-kb genomic DNA clone specific for Anopheles quadrimaculatus species A. Four short, internally repeated sequences were identified. Synthetic oligonucleotide probes were prepared based on these four repeats. The oligonucleotides are highly specific and can be reliably used to separate individuals of An. quadrimaculatus species A from members of other species of the complex. PMID:8254645

  13. The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia

    NASA Astrophysics Data System (ADS)

    Teklu, B. M.; Tekie, H.; McCartney, M.; Kibret, S.

    2010-12-01

    Entomological studies to determine the effect of the physical characteristics of mosquito larval breeding water bodies and reservoir water level changes on the occurrence of Anopheles mosquito larvae were conducted in two villages at Koka reservoir in central Ethiopia between August and December 2007. Of the two study villages, Ejersa is located close to the reservoir, and Kuma is 5 km away from it. Data on the type, number and physical characteristics of Anopheles larval breeding habitat, species composition and densities of anopheles mosquitoes in and around the study villages were investigated and recorded. Meteorological and reservoir water level data were compared with availability of Anopheles larval breeding sites and densities. Entomological data, derived from weekly larval collections, showed that Anopheles pharoensis Theobald, Anopheles gambiae s.l. Giles, Anopheles coustani Laveran and Anopheles squamosus Theobald were breeding in the study area. The mean larval density of An. gambiae s.l. in this study was higher in slightly turbid and shallow aquatic habitat than in turbid and relatively deep aquatic habitat. The density of An. pharoensis in habitat with floating vegetation and with relatively shady conditions was significantly higher than that of less shaded aquatic habitat and greater emergent vegetation. There was also a positive correlation between the occurrence of Anopheles larvae with the water and daily minimum atmospheric temperature. Similarly at Ejersa, over the sampling period, there was a positive correlation between falling reservoir water levels and the number of positive breeding habitats. These results confirm that physical characteristics of the water bodies play an important role in the species composition, total Anopheles larval count, and the density of Anopheles mosquitoes. Suitable breeding habitat in the vicinity of the reservoir village was strongly associated with the reservoir. This is particularly important for An

  14. A viral over-expression system for the major malaria mosquito Anopheles gambiae

    PubMed Central

    Suzuki, Yasutsugu; Niu, Guodong; Hughes, Grant L.; Rasgon, Jason L.

    2014-01-01

    Understanding pathogen/mosquito interactions is essential for developing novel strategies to control mosquito-borne diseases. Technical advances in reverse-genetics, such as RNA interference (RNAi), have facilitated elucidation of components of the mosquito immune system that are antagonistic to pathogen development, and host proteins essential for parasite development. Forward genetic approaches, however, are limited to generation of transgenic insects, and while powerful, mosquito transgenesis is a resource- and time-intensive technique that is not broadly available to most laboratories. The ability to easily “over-express” genes would enhance molecular studies in vector biology and expedite elucidation of pathogen-refractory genes without the need to make transgenic insects. We developed and characterized an efficient Anopheles gambiae densovirus (AgDNV) over-expression system for the major malaria vector Anopheles gambiae. High-levels of gene expression were detected at 3 days post-infection and increased over time, suggesting this is an effective system for gene induction. Strong expression was observed in the fat body and ovaries. We validated multiple short promoters for gene induction studies. Finally, we developed a polycistronic system to simultaneously express multiple genes of interest. This AgDNV-based toolset allows for consistent transduction of genes of interest and will be a powerful molecular tool for research in Anopheles gambiae mosquitoes. PMID:24875042

  15. Inference of the Oxidative Stress Network in Anopheles stephensi upon Plasmodium Infection

    PubMed Central

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K.; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway. PMID:25474020

  16. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    PubMed Central

    Blanford, Simon; Read, Andrew F; Thomas, Matthew B

    2009-01-01

    Background Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of Anopheles. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, Anopheles stephensi were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, Plasmodium yoelii. Methods Over two experiments, groups of An. stephensi were infected with one of three entomopathogenic fungi, and/or P. yoelii. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C) for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed. Results and conclusion Both infected and uninfected An. stephensi showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult Anopheles. PMID:19379519

  17. Regulation of Anopheles gambiae male accessory gland genes influences postmating response in female.

    PubMed

    Dottorini, Tania; Persampieri, Tania; Palladino, Pietro; Baker, Dean A; Spaccapelo, Roberta; Senin, Nicola; Crisanti, Andrea

    2013-01-01

    In Drosophila, the accessory gland proteins (Acps) secreted from the male accessory glands (MAGs) and transferred along with sperm into the female reproductive tract have been implicated in triggering postmating behavioral changes, including refractoriness to subsequent mating and propensity to egg laying. Recently, Acps have been found also in Anopheles, suggesting similar functions. Understanding the mechanisms underlying transcriptional regulation of Acps and their functional role in modulating Anopheles postmating behavior may lead to the identification of novel vector control strategies to reduce mosquito populations. We identified heat-shock factor (HSF) binding sites within the Acp promoters of male Anopheles gambiae and discovered three distinct Hsf isoforms; one being significantly up-regulated in the MAGs after mating. Through genome-wide transcription analysis of Hsf-silenced males, we observed significant down-regulation in 50% of the Acp genes if compared to control males treated with a construct directed against an unrelated bacterial sequence. Treated males retained normal life span and reproductive behavior compared to control males. However, mated wild-type females showed a ∼46% reduction of egg deposition rate and a ∼23% reduction of hatching rate (∼58% combined reduction of progeny). Our results highlight an unsuspected role of HSF in regulating Acp transcription in A. gambiae and provide evidence that Acp down-regulation in males leads a significant reduction of progeny, thus opening new avenues toward the development of novel vector control strategies. PMID:22997226

  18. Morphological, molecular, and chromosomal discrimination of cryptic Anopheles (Nyssorhynchus) (Diptera: Culicidae) from South America.

    PubMed

    Lounibos, L P; Wilkerson, R C; Conn, J E; Hribar, L J; Fritz, G N; Danoff-Burg, J A

    1998-09-01

    Based on similarity of male genitalia, the malaria vector Anopheles trinkae Faran from the eastern Andean piedmont of Colombia, Ecuador, Peru, and Bolivia was determined by Peyton (1993) to be a junior synonym of An. dunhami Causey, then known from a single locality in Amazonian Brazil. Following an appraisal of molecular, chromosomal, and morphological characters, we conclude herein that the 2 taxa are specifically distinct and remove An. trinkae from synonymy with An. dunhami. Eggs of the 2 species are distinguished easily by the anterior crown, long floats, and closed deck that occur only in An. trinkae. The X chromosome of larval polytenes is divisible into R and L arms in An. dunhami, but not in An. trinkae. A phenogram based on banding pattern scores from 18 random amplified polymorphic DNA primers separated with 100% resolution An. dunhami, An. trinkae, Anopheles nuneztovari Gabaldón and Anopheles darlingi Root. In the ITS2 region of rDNA, 25% of base sites distinguished An. trinkae from An. dunhami and 21% from the related An. nuneztovari; males of these 3 species had accessory glands of significantly different sizes. Preliminary isoenzyme screening indicated that 3 of 11 loci were diagnostic for separating An. trinkae from An. dunhami. The results indicate that An. dunhami is related more closely to An. nuneztovari than to An. trinkae and illustrate the merits of a multidisciplinary approach to mosquito systematics. PMID:9775617

  19. An overview of malaria transmission from the perspective of Amazon Anopheles vectors.

    PubMed

    Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G

    2015-02-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  20. Chemical Composition and Repellent Activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi

    PubMed Central

    Pirmohammadi, Masoumeh; Shayeghi, Mansoureh; Vatandoost, Hassan; Abaei, Mohammad Reza; Mohammadi, Ali; Bagheri, Akbar; Khoobdel, Mehdi; Bakhshi, Hasan; Pirmohammadi, Maryam; Tavassoli, Maryam

    2016-01-01

    Background: One of the best ways to control the malaria disease and to be protected human against Anopheles mosquito biting is the use of repellents. Throughout repellents, herbal ones may be an appropriate and safe source for protection. Methods: Chemical constituents of Achillea vermiculata and Satoreja hortensis were determined by using gas chromatography-mass spectrometry. Efficacy and the protection time of these plants were assessed on Anopheles stephensi under the laboratory condition. Results: The mean assessed protection time and efficacy for A. vermiculata was 2.16 and 3.16 hours respectively and the obtained ED50 and ED90 for this plant was 5.67 and 63 μl/cm2 respectively. The figured for S. hortensis was 4.16 and 5 hours respectively. ED50 and ED90 for this plant were 5.63 and 45.75μl/cm2 respectively. Conclusion: Results of investigation showed that S. hortensis plant has an acceptable protection time, therefore, this plant could be considered as a good herbal repellent against anopheles mosquitoes. PMID:27308278

  1. Phylogeography of the neotropical Anopheles triannulatus complex (Diptera: Culicidae) supports deep structure and complex patterns

    PubMed Central

    2013-01-01

    Background The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated. Methods The mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches. Results Each data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis. Conclusion Combination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were

  2. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA

    PubMed Central

    2014-01-01

    Background Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Methods Mosquitoes were collected, identified, dissected to check infection status, and DNA extraction was performed for PCR with primers targeting the ITS2 rDNA region. Sequencing was done and phylogenetic tree was constructed to study the evolutionary relationship among Anopheles mosquitoes within Peninsular Malaysia, as well as across the Asian region. Results A total of 133 Anopheles mosquitoes consisting of six different species were collected from eight different locations across Peninsular Malaysia. Of these, 65 ITS2 rDNA sequences were obtained. The ITS2 rDNA amplicons of the studied species were of different sizes. One collected species, Anopheles sinensis, shows two distinct pools of population in Peninsular Malaysia, suggesting evolvement of geographic race or allopatric speciation. Conclusion Anopheles mosquitoes from Peninsular Malaysia show close evolutionary relationship with the Asian anophelines. Nevertheless, genetic differences due to geographical segregation can be seen. Meanwhile, some Anopheles mosquitoes in Peninsular Malaysia show vicariance, exemplified by the emergence of distinct cluster of An. sinensis population. PMID:24993022

  3. Retrospective study of malaria prevalence and Anopheles genus in the area of influence of the Binational Itaipu Reservoir.

    PubMed

    Falavigna-Guilherme, Ana Lucia; Silva, Allan Martins da; Guilherme, Edson Valdemar; Morais, Dina Lúcia

    2005-01-01

    The importance of hydroelectric dams beside the human interchange in the maintenance of malarious foci and the occurrence of the Anopheles genus on the Binational Itaipu Reservoir were the main points of this retrospective study. Data were collected from existing registrations at National, State and Municipal Health Departments and literature systematic overview, from January 1984 to December 2003. The occurrence of some outbreak of malaria, mainly by Plasmodium vivax, and the prevalence of species of the Anopheles genus different from Anopheles darlingi in the region are discussed. The malaria in the left bank of Paraná River is a focal problem, which must be approached locally through health, educational and social actions to prevent the continuity of outbreaks in the area. Concomitantly, it is necessary to plan and apply effective surveillance measures in the influence area of the Itaipu Reservoir. PMID:15880218

  4. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  5. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus

    PubMed Central

    Abdullah, Mohd Amir F; Valaitis, Algimantas P; Dean, Donald H

    2006-01-01

    Background Aminopeptidase N (APN) type proteins isolated from several species of lepidopteran insects have been implicated as Bacillus thuringiensis (Bt) toxin-binding proteins (receptors) for Cry toxins. We examined brush border membrane vesicle (BBMV) proteins from the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind mosquitocidal Cry toxins that are active to it. Results A 100-kDa protein with APN activity (APNAnq 100) was isolated from the brush border membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance shows that APNAnq 100 forms tight binding to a mosquitocidal Bt toxin, Cry11Ba, but not to Cry2Aa, Cry4Ba or Cry11Aa. Conclusion An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding protein for Bacillus thuringiensis Cry11Ba. PMID:16716213

  6. Genetic evidence for malaria vectors of the Anopheles sundaicus complex in Sri Lanka with morphological characteristics attributed to Anopheles subpictus species B

    PubMed Central

    2010-01-01

    Background Anopheles subpictus sensu lato, a widespread malaria vector in Asia, is reportedly composed of four sibling species A - D. Mosquitoes morphologically identified as belonging to the Subpictus complex were collected from different locations near the east coast of Sri Lanka, and specific ribosomal DNA sequences determined to validate their taxonomic status. Methods Anopheles subpictus s.l. larvae and blood-fed adults were collected from different locations in the Eastern province and their sibling species status was determined based on published morphological characteristics. DNA sequences of the D3 domain of 28 S ribosomal DNA (rDNA) and the internal transcribed spacer -2 (ITS-2) of mosquitoes morphologically identified as An. subpictus sibling species A, B, C and D were determined. Results Phylogenetic analysis based on D3 domain of rDNA resulted in two clades: one clade with mosquitoes identified as An. subpictus species A, C, D and some mosquitoes identified as species B, and another clade with a majority of mosquitoes identified as species B with D3 sequences that were identical to Anopheles sundaicus cytotype D. Analysis of ITS-2 sequences confirmed a close relationship between a majority of mosquitoes identified as An. subpictus B with members of the An. sundaicus complex and others identified as An. subpictus B with An. subpictus s.l. Conclusions The study suggests that published morphological characteristics are not specific enough to identify some members of the Subpictus complex, particularly species B. The sequences of the ITS-2 and D3 domain of rDNA suggest that a majority that were identified morphologically as An. subpictus species B in the east coast of Sri Lanka, and some identified elsewhere in SE Asia as An. subpictus s.l., are in fact members of the Sundaicus complex based on genetic similarity to An. sundaicus s.l. In view of the well-known ability of An. sundaicus s.l. to breed in brackish and fresh water and its proven ability to

  7. Characterization and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery

    NASA Technical Reports Server (NTRS)

    Rejmankova, E.; Pope, K. O.; Roberts, D. R.; Lege, M. G.; Andre, R.; Greico, J.; Alonzo, Y.

    1998-01-01

    Surveys of larval habitats of Anopheles vestitipennis and Anopheles punctimacula were conducted in Belize, Central America. Habitat analysis and classification resulted in delineation of eight habitat types defined by dominant life forms and hydrology. Percent cover of tall dense macrophytes, shrubs, open water, and pH were significantly different between sites with and without An. vestitipennis. For An. punctimacula, percent cover of tall dense macrophytes, trees, detritus, open water, and water depth were significantly different between larvae positive and negative sites. The discriminant function for An. vestitipennis correctly predicted the presence of larvae in 65% of sites and correctly predicted the absence of larvae in 88% of sites. The discriminant function for An. punctimacula correctly predicted 81% of sites for the presence of larvae and 45% for the absence of larvae. Canonical discriminant analysis of the three groups of habitats (An. vestitipennis positive; An. punctimacula positive; all negative) confirmed that while larval habitats of An. punctimacula are clustered in the tree dominated area, larval habitats of An. vestitipennis were found in both tree dominated and tall dense macrophyte dominated environments. The forest larval habitats of An. vestitipennis and An. punctimacula seem to be randomly distributed among different forest types. Both species tend to occur in denser forests with more detritus, shallower water, and slightly higher pH. Classification of dry season (February) SPOT multispectral satellite imagery produced 10 land cover types with the swamp forest and tall dense marsh classes being of particular interest. The accuracy assessment showed that commission errors for the tall, dense marsh and swamp forest appeared to be minor; but omission errors were significant, especially for the swamp forest (perhaps because no swamp forests are flooded in February). This means that where the classification indicates there are An. vestitipennis

  8. Ecology and behavior of Anopheles arabiensis in relation to agricultural practices in central Kenya.

    PubMed

    Muturi, Ephantus J; Mwangangi, Joseph M; Beier, John C; Blackshear, Millon; Wauna, James; Sang, Rosemary; Mukabana, Wolfgang R

    2013-09-01

    Ecological changes associated with anthropogenic ecosystem disturbances can influence human risk of exposure to malaria and other vector-borne infectious diseases. This study in Mwea, Kenya, investigated the pattern of insecticide use in irrigated and nonirrigated agroecosystems and association with the density, survival, and blood-feeding behavior of the malaria vector Anopheles arabiensis. The parity rates of adult An. arabiensis from randomly selected houses were determined by examining their ovaries for tracheal distension, and polymerase chain reaction was used to identify the host blood meals. In addition, structured questionnaires were used to generate data on insecticide use. Anopheles arabiensis densities were highest in irrigated rice agroecosystems, intermediate in irrigated French beans agroecosystems, and lowest in the nonirrigated agroecosystem. Anopheles arabiensis adult survivorship was significantly lower in irrigated rice agroecosystems than in irrigated French beans agroecosystems. The human blood index (HBI) was significantly higher in the nonirrigated agroecosystem compared to irrigated agroecosystems. Moreover, there was marked variation in HBI among villages in irrigated agroecosystems with significantly lower HBI in Kangichiri and Mathangauta compared to Kiuria, Karima, and Kangai. The proportion of mosquitoes with mixed blood meals varied among villages ranging from 0.25 in Kangichiri to 0.83 in Kiuria. Sumithion, dimethoate, and alpha cypermethrin were the most commonly used insecticides. The 1st was used mostly in irrigated rice agroecosystems, and the last 2 were used mostly in irrigated French beans agroecosystems. These findings indicate that agricultural practices may influence the ecology and behavior of malaria vectors and ultimately the risk of malaria transmission. PMID:24199496

  9. Immunogenic and antioxidant effects of a pathogen-associated prenyl pyrophosphate in Anopheles gambiae.

    PubMed

    Lindberg, Bo G; Merritt, Eleanor A; Rayl, Melanie; Liu, Chenxiao; Parmryd, Ingela; Olofsson, Berit; Faye, Ingrid

    2013-01-01

    Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this

  10. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  11. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females

    PubMed Central

    2013-01-01

    Background Y chromosomes are responsible for the initiation of male development, male fertility, and other male-related functions in diverse species. However, Y genes are rarely characterized outside a few model species due to the arduous nature of studying the repeat-rich Y. Results The chromosome quotient (CQ) is a novel approach to systematically discover Y chromosome genes. In the CQ method, genomic DNA from males and females is sequenced independently and aligned to candidate reference sequences. The female to male ratio of the number of alignments to a reference sequence, a parameter called the chromosome quotient (CQ), is used to determine whether the sequence is Y-linked. Using the CQ method, we successfully identified known Y sequences from Homo sapiens and Drosophila melanogaster. The CQ method facilitated the discovery of Y chromosome sequences from the malaria mosquitoes Anopheles stephensi and An. gambiae. Comparisons to transcriptome sequence data with blastn led to the discovery of six Anopheles Y genes, three from each species. All six genes are expressed in the early embryo. Two of the three An. stephensi Y genes were recently acquired from the autosomes or the X. Although An. stephensi and An. gambiae belong to the same subgenus, we found no evidence of Y genes shared between the species. Conclusions The CQ method can reliably identify Y chromosome sequences using the ratio of alignments from male and female sequence data. The CQ method is widely applicable to species with fragmented genome assemblies produced from next-generation sequencing data. Analysis of the six Y genes characterized in this study indicates rapid Y chromosome evolution between An. stephensi and An. gambiae. The Anopheles Y genes discovered by the CQ method provide unique markers for population and phylogenetic analysis, and opportunities for novel mosquito control measures through the manipulation of sexual dimorphism and fertility. PMID:23617698

  12. Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex.

    PubMed

    Crawford, Jacob E; Riehle, Michelle M; Guelbeogo, Wamdaogo M; Gneme, Awa; Sagnon, N'Fale; Vernick, Kenneth D; Nielsen, Rasmus; Lazzaro, Brian P

    2015-11-01

    Speciation as a process remains a central focus of evolutionary biology, but our understanding of the genomic architecture and prevalence of speciation in the face of gene flow remains incomplete. The Anopheles gambiae species complex of malaria mosquitoes is a radiation of ecologically diverse taxa. This complex is well-suited for testing for evidence of a speciation continuum and genomic barriers to introgression because its members exhibit partially overlapping geographic distributions as well as varying levels of divergence and reproductive isolation. We sequenced 20 genomes from wild A. gambiae s.s., Anopheles coluzzii, Anopheles arabiensis, and compared these with 12 genomes from the "GOUNDRY" subgroup of A. gambiae s.l. Amidst a backdrop of strong reproductive isolation, we find strong evidence for a speciation continuum with introgression of autosomal chromosomal regions among species and subgroups. The X chromosome, however, is strongly differentiated among all taxa, pointing to a disproportionately large effect of X chromosome genes in driving speciation among anophelines. Strikingly, we find that autosomal introgression has occurred from contemporary hybridization between A. gambiae and A. arabiensis despite strong divergence (∼5× higher than autosomal divergence) and isolation on the X chromosome. In addition to the X, we find strong evidence that lowly recombining autosomal regions, especially pericentromeric regions, serve as barriers to introgression secondarily to the X. We show that speciation with gene flow results in genomic mosaicism of divergence and introgression. Such a reticulate gene pool connecting vector taxa across the speciation continuum has important implications for malaria control efforts. PMID:26615027

  13. Following in Soper's footsteps: northeast Brazil 63 years after eradication of Anopheles gambiae.

    PubMed

    Killeen, Gerry F

    2003-10-01

    Sub-Saharan Africa has long suffered under the yoke of the Anopheles gambiae mosquito, but for northeast Brazil (figure 1) its arrival over 60 years ago was a new and horrifying experience. This African mosquito is an exceptionally effective malaria vector because it is well adapted to feeding upon people and to exploiting aquatic habitats associated with our daily activities. Anopheles gambiae sensu lato probably accounts for most of the world's malaria deaths and socioeconomic burden. Fortunately, the Brazilian experience had a happy ending. The prospect of A gambiae spreading across much of the Americas motivated a ruthlessly effective response that deserves a special and heroic place in the annals of public health. Building on the successes and infrastructure of the Yellow Fever Service for Aedes aegypti elimination, the Rockefeller Foundation and Brazilian government collaborated to form a new Malaria Service of the Northeast. This new entity rolled the invader back into oblivion with an aggressive eradication campaign, focusing primarily upon larviciding of all potential habitats. The driving force of this endeavour was an enigmatic man called Fred Soper whose sheer will and determination was a key element in this success, and a source of inspiration today (see Killeen GF, et al. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis 2002; 2: 618-27). I recently took an opportunity to fulfil a long-held dream and follow in some of Soper's footsteps. Tired of gazing at yellowing maps like figure 1, I went to see the northeast of Brazil for myself. PMID:14522266

  14. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.

    PubMed

    O'Brochta, David A; Pilitt, Kristina L; Harrell, Robert A; Aluvihare, Channa; Alford, Robert T

    2012-11-01

    Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts. PMID:23173082

  15. Anopheles gambiae resistance to pyrethroid-treated nets in cotton versus rice areas in Mali.

    PubMed

    Fane, Moussa; Cissé, Ousmane; Traore, Cheick Sékou F; Sabatier, Philippe

    2012-04-01

    The rise and spread of Anopheles gambiae s.l. (the major malaria vector sub-Saharan Africa) resistance to pyrethroids is of great concern owing to the predominant role of pyrethroid-treated nets in the WHO global strategy for malaria control. Use of pyrethroids for agricultural purposes may exert a strong selection pressure, favouring the emergence of insecticide resistance. The objective of this study was to evaluate the efficacy of alpha-cypermethrin treated nets in settings where insecticides are used against pests. This was assessed in two ways, i.e. under laboratory conditions using the WHO standard cones test technique and in experimental huts, on Anopheles gambiae s.l. collected in two Malian rural sites, Koumantou characterised by cotton crops and high insecticide use and Sélingué, a rice field area with low insecticide use. According to the WHO standard cones test technique, there was no difference between mosquitoes collected in the two sites; KD50 time was less than 3 min and the KD95 time below 30 min. Nevertheless, in the experimental huts with alpha-cypermethrin treated bed nets, the mosquito mortality rate was significantly lower in Koumantou (102/361, 28.2%) than in Sélingué (122/233, 52.3%) (RR: 0.65, 95%CI: 0.56-0.76) (p<0.001). In addition, in Koumantou the percentage of unfed mosquitoes found in the veranda was much lower in the huts with untreated (26.0%, 33/127) than in those with treated nets (92.2%, 118/128) (p<0.01) while in Sélingué there was no difference between huts with treated and untreated bed nets. Alpha-cypermethrin treated bed nets had a significant effect on mortality and repelling behaviour of Anopheles gambiae s.l. though in Koumantou treated bed nets were less efficacious, possibly due to the intense use of pesticide for agriculture. PMID:22154879

  16. Immunogenic and Antioxidant Effects of a Pathogen-Associated Prenyl Pyrophosphate in Anopheles gambiae

    PubMed Central

    Lindberg, Bo G.; Merritt, Eleanor A.; Rayl, Melanie; Liu, Chenxiao; Parmryd, Ingela; Olofsson, Berit; Faye, Ingrid

    2013-01-01

    Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this

  17. Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex

    PubMed Central

    Crawford, Jacob E.; Riehle, Michelle M.; Guelbeogo, Wamdaogo M.; Gneme, Awa; Sagnon, N'Fale; Vernick, Kenneth D.; Nielsen, Rasmus; Lazzaro, Brian P.

    2015-01-01

    Speciation as a process remains a central focus of evolutionary biology, but our understanding of the genomic architecture and prevalence of speciation in the face of gene flow remains incomplete. The Anopheles gambiae species complex of malaria mosquitoes is a radiation of ecologically diverse taxa. This complex is well-suited for testing for evidence of a speciation continuum and genomic barriers to introgression because its members exhibit partially overlapping geographic distributions as well as varying levels of divergence and reproductive isolation. We sequenced 20 genomes from wild A. gambiae s.s., Anopheles coluzzii, Anopheles arabiensis, and compared these with 12 genomes from the “GOUNDRY” subgroup of A. gambiae s.l. Amidst a backdrop of strong reproductive isolation, we find strong evidence for a speciation continuum with introgression of autosomal chromosomal regions among species and subgroups. The X chromosome, however, is strongly differentiated among all taxa, pointing to a disproportionately large effect of X chromosome genes in driving speciation among anophelines. Strikingly, we find that autosomal introgression has occurred from contemporary hybridization between A. gambiae and A. arabiensis despite strong divergence (∼5× higher than autosomal divergence) and isolation on the X chromosome. In addition to the X, we find strong evidence that lowly recombining autosomal regions, especially pericentromeric regions, serve as barriers to introgression secondarily to the X. We show that speciation with gene flow results in genomic mosaicism of divergence and introgression. Such a reticulate gene pool connecting vector taxa across the speciation continuum has important implications for malaria control efforts. PMID:26615027

  18. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  19. [Molecular genetic analysis of malaria mosquitoes of the Anopheles maculipennis (Diptera, Culicidae) complex in Azerbaijan].

    PubMed

    Gordeev, M I; Bezzhonova, O V; Goriacheva, I I; Shaĭkevich, E V; Zvantsov, A B; Mamedov, S; Mutdalibov, N; Gasymov, E; Ezhov, M N

    2010-01-01

    Molecular genetic analysis of malaria vectors in the Republic of Azerbaijan has identified three species of malaria mosquitoes of the Anopheles maculipennis complex: An. maculipennis, An. sacharovi, and An. persiensis. An. melanoon has not been found. An. sacharovi has been ascertained to predominate in the low-lying areas of the country. An. maculipennis prevails in the north, on the foothills of the Great Caucasus and it is also observed in the south, on the Talysh foothills and mountains. An. persiensis has been first recorded for the malaria mosquito fauna in the CNS. This species has been detected only in the south of the republic (Lenkoran and Astar districts). PMID:21395043

  20. Identification of species D, a new member of the Anopheles quadrimaculatus species complex: a biochemical key.

    PubMed

    Narang, S K; Kaiser, P E; Seawright, J A

    1989-09-01

    Sibling species D, a new member of the Anopheles quadrimaculatus species complex was identified in collections from Pickwick Lake, Tishomingo County, Mississippi and Choctawhatchee, Bay County, in West Florida. This species occurred sympatrically with the previously described species, A, B and C. Evidence for identification of species D includes diagnostic allozymes, a lack of polytene chromosomes in the ovarian nurse cells, and inviability of F1 progeny and lack of sperm transfer in hybridization crosses. An electrophoretic taxonomic key for distinguishing species D from A, B and C is presented. PMID:2584966

  1. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

    PubMed Central

    2011-01-01

    Background In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. Methods In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. Results Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention), this species occurred in moderate to high densities (19.5-78.5 bites/person/night) and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm). Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. Conclusion In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands. Consequently, the

  2. Plasmodium vivax sporozoite rates from Anopheles albimanus in southern Chiapas, Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Bown, D N; Rodriguez, M H

    1994-06-01

    Anopheles albimanus mosquitoes were collected from August 1984 to November 1987 on intra- and peridomicile human bait in Rancheria El Gancho, Chiapas, Mexico. The mosquitoes were desiccated and stored in silicon chambers from 3 mo to 3 yr post-collection prior to being assayed using a direct enzyme-linked immunosorbent assay to detect Plasmodium vivax predominant-type sporozoite protein. Peridomicile-collected mosquitoes had a 10-fold higher sporozoite rate than those collected indoors, but only the latter correlate significantly with the seasonal human parasite index. Mosquito sporozoite burden was also significantly higher in the peridomicile-collected population. PMID:8195955

  3. Laboratory oviposition, fecundity and egg hatching ability of colonized Anopheles albimanus from southwestern Mexico.

    PubMed

    Ramsey, J M; Salinas, E; Lopez, J R; del Angel-Cabañas, G; Martinez, L; Bown, D N

    1988-12-01

    Fecundity, oviposition patterns and egg hatching characteristics were studied in two colonies of Anopheles albimanus isolated from the Pacific coast of southern Mexico. Fecundity was inversely proportional to the cage space available to the female and was influenced by the bloodmeal source, feeding method and previous feeding history. The length of the gonotrophic cycle decreased with succeeding experience from a mean 6.6 in the first to 2.6 days for the fifth cycle. Oviposition timing was also dependent on availability of oviposition substrate. Hatching success of eggs increased significantly when the oviposition site was witheld until 48 hr post-bloodmeal. PMID:3225569

  4. Habitat discrimination by gravid Anopheles gambiae sensu lato – a push-pull system

    PubMed Central

    2014-01-01

    Background The non-random distribution of anopheline larvae in natural habitats suggests that gravid females discriminate between habitats of different quality. Whilst physical and chemical cues used by Culex and Aedes vector mosquitoes for selecting an oviposition site have been extensively studied, those for Anopheles remain poorly explored. Here the habitat selection by Anopheles gambiae sensu lato (s.l.), the principal African malaria vector, was investigated when presented with a choice of two infusions made from rabbit food pellets, or soil. Methods Natural colonization and larval survival was evaluated in artificial ponds filled randomly with either infusion. Dual-choice, egg-count bioassays evaluated the responses of caged gravid females to (1) two- to six-day old infusions versus lake water; (2) autoclaved versus non-autoclaved soil infusions; and assessed (3) the olfactory memory of gravid females conditioned in pellet infusion as larvae. Results Wild Anopheles exclusively colonized ponds with soil infusion and avoided those with pellet infusion. When the individual infusions were tested in comparison with lake water, caged An. gambiae sensu stricto (s.s.) showed a dose response: females increasingly avoided the pellet infusion with increasing infusion age (six-day versus lake water: odds ratio (OR) 0.22; 95% confidence interval (CI) 0.1-0.5) and showed increasing preference to lay eggs as soil infusion age increased (six-day versus lake water: OR 2.1; 95% CI 1.4-3.3). Larvae survived in soil infusions equally well as in lake water but died in pellet infusions. Anopheles gambiae s.s. preferred to lay eggs in the non-autoclaved soil (OR 2.6; 95% CI 1.8-3.7) compared with autoclaved soil. There was no change in the avoidance of pellet infusion by individuals reared in the infusion compared with those reared in lake water. Conclusion Wild and caged An. gambiae s.l. females discriminate between potential aquatic habitats for oviposition. These choices benefit

  5. Evaluation of a eucalyptus-based repellent against Anopheles spp. in Tanzania.

    PubMed

    Trigg, J K

    1996-06-01

    A eucalyptus-based insect repellent (PMD) with the principal active ingredient p-menthane-3,8-diol was evaluated in the field in comparison with deet. In human landing catches in Tanzania, 3 formulations of PMD were tested against Anopheles gambiae and An. funestus. Repellents, applied to the legs and feet at doses chosen as used in practice, gave complete protection from biting for between 6 and 7.75 h, depending upon the formulation type, with no significant difference between PMD and deet in terms of efficacy and duration of protection. PMID:8827599

  6. Influence of moonlight on light trap catches of the malaria vector Anopheles nuneztovari in Venezuela.

    PubMed

    Rubio-Palis, Y

    1992-06-01

    A significant effect (P = 0.002) of moonlight on light trap catches of Anopheles nuneztovari females was observed during a longitudinal study in western Venezuela. The catch with no moon was 1.86 times larger than with full moon. Nevertheless, moonlight does not seem to have any effect on the composition of adult mosquito population since the difference in the parous rate of females collected during full moon and during no moon was not significant (P greater than 0.05). PMID:1431859

  7. The physical gene Hsp70 map on polytene chromosomes of Anopheles darlingi from the Brazilian Amazon.

    PubMed

    Rafael, Míriam Silva; Tadei, Wanderli Pedro; Hunter, Fiona F

    2004-05-01

    In situ hybridization was used to determine the physical location of the Hsp70 genes in salivary polytene chromosomes of Anopheles darlingi from Manaus and Macapá, Brazil, and to assess the usefulness of the Hsp70 locus as a genetic marker in A. darlingi populations. In both populations, the double markings corresponding to the Hsp70-12A and Hsp70-14A genes were located on the right arm of chromosome 2. The Hsp70 locus was considered to be an excellent marker for studying chromosomal evolution and relationships among A. darlingi populations. PMID:15098741

  8. Multiple-technique identification of sibling species of the Anopheles quadrimaculatus complex.

    PubMed

    Narang, S K; Seawright, J A; Mitchell, S E; Kaiser, P E; Carlson, D A

    1993-12-01

    In the past, most researchers used a single technique for identification of cryptic taxa, population structures, biosystematics, and phylogenetic studies. Our experience with the Anopheles quadrimaculatus complex shows the importance of using several methods on individual mosquitoes. This approach consists of analysis of the polytene chromosomes in ovarian nurse cells, gas chromatographic profiles of cuticular hydrocarbons, isozyme electrophoresis, and restriction site analysis of mitochondrial or genomic DNA. We recommend use of this multiple-technique approach when analyzing feral populations for the first time, or for correlating information obtained by investigators using different techniques. PMID:8126484

  9. Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae.

    PubMed Central

    Favia, G; Dimopoulos, G; della Torre, A; Touré, Y T; Coluzzi, M; Louis, C

    1994-01-01

    We have applied PCR amplification using random primers to distinguish between incipient species of the malaria vector Anopheles gambiae. Individuals belonging to three chromosomally characterized West African forms of this mosquito, which are important epidemiologically as they differ in vectorial capacity, were sampled both from laboratory stocks and from wild populations collected in three localities. The techniques used allowed for the unambiguous classification of the mosquitoes, providing a tool for rapid and efficient diagnosis, which previously relied on cytological examination of polytene chromosomes. Images PMID:7937947

  10. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    PubMed Central

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2012-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  11. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  12. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    PubMed Central

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  13. First report of the kdr mutation in Anopheles gambiae M form from Burkina Faso, west Africa.

    PubMed

    Diabaté, A; Baldet, T; Chandre, F; Guiguemdé, R T; Brengues, C; Guillet, P; Hemingway, J; Hougard, J M

    2002-12-01

    The kdr mutation, conferring resistance to pyrethroid insecticides, has been reported in several West-African populations of Anopheles gambiae S form and in the M form populations from tropical forest of Benin. We report the finding of a single M specimen collected in the rice-field area of Vallée du Kou (Burkina Faso) showing the mutation at the heterozygous state. The monitoring of kdr mutation in An. gambiae forms/species is of paramount importance to implement effective malaria control tools and may greatly improve the knowledge of the relationship between and within An. gambiae populations. PMID:12701378

  14. Non-destructive Determination of Age and Species of Anopheles gambiae s.l. Using Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of the species and age of malaria vectors is crucial for the measurement of malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are morphologically similar and can be differentiated on...

  15. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal.

    PubMed

    Sougoufara, S; Harry, M; Doucouré, S; Sembène, P M; Sokhna, C

    2016-09-01

    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub-Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors. PMID:27058993

  16. Use of Near-Infrared Spectroscopy to Age-Grade and Identify Siblings of Anopheles Gambiae Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used near-infrared spectroscopy (NIRS) to rapidly and non-destructively determine species and age of Anopheles gambiae ss (G3, Mali-NIH, Kisumu, ZANU, and Ifakara strains) and An. arabiensis (Dongola, KGB, and Ifakara strains). We developed NIR calibrations using mosquitoes reared and scanned at ...

  17. The Ecology of Anopheles Mosquitoes under Climate Change: Case Studies from the Effects of Environmental Changes in East Africa Highlands

    PubMed Central

    Afrane, Yaw A.; Githeko, Andrew K.; Yan, Guiyun

    2013-01-01

    Climate change is expected to lead to latitudinal and altitudinal temperature increases. High elevation regions such as the highlands of Africa, and those that have temperate climate are most likely to be affected. The highlands of Africa generally exhibit low ambient temperatures. This restricts the distribution of Anopheles mosquitoes, the vectors of malaria, filariasis and O’nyong’nyong fever. The development and survival of larval and adult mosquitoes are temperature dependent, as are mosquito biting frequency and pathogen development rate. Given that various Anopheles species are adapted to different climatic conditions, changes in the climate could lead to changes in species composition in an area which may change the dynamics of mosquito-borne disease transmission. It is important to consider the effect of climate change on rainfall which is critical to the formation and persistence of mosquito breeding sites. In addition, environmental changes such as deforestation could increase local temperatures in the highlands; this could enhance the vectorial capacity of the Anopheles. This experimental data will be invaluable in facilitating the understanding of the impact of climate change on Anopheles. PMID:22320421

  18. Additional Selection for Insecticide Resistance in Urban Malaria Vectors: DDT Resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso

    PubMed Central

    Jones, Christopher M.; Toé, Hyacinthe K.; Sanou, Antoine; Namountougou, Moussa; Hughes, Angela; Diabaté, Abdoulaye; Dabiré, Roch; Simard, Frederic; Ranson, Hilary

    2012-01-01

    In the city of Bobo-Dioulasso in Burkina Faso, Anopheles arabiensis has superseded Anopheles gambiae s.s. as the major malaria vector and the larvae are found in highly polluted habitats normally considered unsuitable for Anopheles mosquitoes. Here we show that An. gambiae s.l. adults emerging from a highly polluted site in the city centre (Dioulassoba) have a high prevalence of DDT resistance (percentage mortality after exposure to diagnostic dose = 65.8% in the dry season and 70.4% in the rainy season, respectively). An investigation into the mechanisms responsible found an unexpectedly high frequency of the 1014S kdr mutation (allele frequency = 0.4), which is found at very low frequencies in An. arabiensis in the surrounding rural areas, and an increase in transcript levels of several detoxification genes, notably from the glutathione transferase and cytochrome P450 gene families. A number of ABC transporter genes were also expressed at elevated levels in the DDT resistant An. arabiensis. Unplanned urbanisation provides numerous breeding grounds for mosquitoes. The finding that Anopheles mosquitoes adapted to these urban breeding sites have a high prevalence of insecticide resistance has important implications for our understanding of the selective forces responsible for the rapid spread of insecticide resistant populations of malaria vectors in Africa. PMID:23049917

  19. Larvicidal and repellent activity of Vetiveria zizaniodes (Poaceae) essential oil against the malaria vector Anopheles stephensi (Liston) (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oil extracted by steam distillation of Vetiveria zizanioides (L.) Nash (Poaceae) was evaluated for larvicidal and adult repellent activity against the malaria vector Anopheles stephensi (Liston). Median lethal concentrations (LC50) at 24 h post treatment for instars 1-4 were, respectively,...

  20. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families.

    PubMed

    Calvo, Eric; Dao, Adama; Pham, Van M; Ribeiro, José M C

    2007-02-01

    Anopheles funestus, together with Anopheles gambiae, is responsible for most malaria transmission in sub-Saharan Africa, but little is known about molecular aspects of its biology. To investigate the salivary repertoire of this mosquito, we randomly sequenced 916 clones from a salivary-gland cDNA library from adult female F1 offspring of field-caught An. funestus. Thirty-three protein sequences, mostly full-length transcripts, are predicted to be secreted salivary proteins. We additionally describe 25 full-length housekeeping-associated transcripts. In accumulating mosquito sialotranscriptome information--which includes An. gambiae, Anopheles stephensi, Anopheles darlingi, Aedes aegypti, Aedes albopictus, Culex pipiens quinquefasciatus, and now An. funestus--a pattern is emerging. First, ubiquitous protein families are recruited for a salivary role, such as members of the antigen-5 family and enzymes of nucleotide and carbohydrate catabolism. Second, a group of protein families exclusive to blood-feeding Nematocera includes the abundantly expressed D7 proteins also found in sand flies and Culicoides. A third group of proteins, only found in Culicidae, includes the 30 kDa allergen family and several mucins. Finally, 10 protein and peptide families, five of them multigenic, are exclusive to anophelines. Among these proteins may reside good epidemiological markers to measure human exposure to anopheline species such as An. funestus and An. gambiae. PMID:17244545

  1. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  2. Genome Sequence of Stenotrophomonas maltophilia Strain SmAs1, Isolated From the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Hughes, Grant L.; Raygoza Garay, Juan Antonio; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    An isolate of Stenotrophomonas maltophilia was cultured from the Asian malaria vector Anopheles stephensi. Here, we present the annotated draft genome sequence of this S. maltophilia strain. This genomic resource will facilitate further characterization of bacteria associated with mosquitoes. PMID:26966198

  3. Genome Sequence of Elizabethkingia anophelis Strain EaAs1, Isolated from the Asian Malaria Mosquito Anopheles stephensi

    PubMed Central

    Raygoza Garay, Juan Antonio; Hughes, Grant L.; Koundal, Vikas; Mwangi, Michael M.

    2016-01-01

    We sequenced the genome of a strain of the Gram-negative bacterial species Elizabethkingia anophelis, which is an important component of the Anopheles mosquito microbiome. This genome sequence will add to the list of resources used to examine host-microbe interactions in mosquitoes. PMID:26966196

  4. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  5. Spatial Patterns of Plasmodium falciparum Clinical Incidence, Asymptomatic Parasite Carriage and Anopheles Density in Two Villages in Mali.

    PubMed

    Sissoko, Mahamadou S; van den Hoogen, Lotus L; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K

    2015-10-01

    Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km(2) in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited. PMID:26324728

  6. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs. PMID:27232122

  7. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae)

    PubMed Central

    Linton, Yvonne-Marie; Ruiz-Lopez, J. Freddy; Conn, Jan E.; Sallum, Maria Anice M.; Póvoa, Marinete M.; Bergo, Eduardo S.; Oliveira, Tatiane M. P.; Sucupira, Izis; Wilkerson, Richard C.

    2015-01-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group. PMID:24820570

  8. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae).

    PubMed

    Foley, Desmond H; Linton, Yvonne-Marie; Ruiz-Lopez, J Freddy; Conn, Jan E; Sallum, Maria Anice M; Póvoa, Marinete M; Bergo, Eduardo S; Oliveira, Tatiane M P; Sucupira, Izis; Wilkerson, Richard C

    2014-06-01

    The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group. PMID:24820570

  9. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.

    PubMed

    Chen, Bin; Harbach, Ralph E; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K

    2012-12-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  10. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    PubMed

    Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B; Bjørnstad, Ottar N

    2013-01-01

    The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases. PMID:24244467

  11. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Ali, Mohamed Yacoob Syed; Ravikumar, Sundaram; Beula, Johanson Margaret

    2013-01-01

    Objective To identify the larvicidal activity of the seaweed extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus Methods Seaweed extracts of Ulva lactuca, Caulerpa racemosa (C. racemosa), Sargassum microystum, Caulerpa scalpelliformis, Gracilaria corticata, Turbinaria decurrens, Turbinaria conoides and Caulerpa toxifolia were dissolved in DMSO to prepare a graded series of concentration. The test for the larvicidal effect of seaweeds against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of three mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (10-100 µg). Each experiment was conducted with triplicate with concurrent a control group. Results Among the seaweeds extract, C. racemosa showed toxicity against 4th instar larvae of Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi with equivalent LC50 value (0.055 6±0.010 3) µg/mL, (0.067 5±0.136 0) µg/mL and (0.066 1±0.007 6) µg/mL, respectively. Conclusions The present study concluded that, the mosquito larvicidal property of C. racemosa might be the prospective alternative source to control the mosquitoes.

  12. Morphological assessment and molecular phylogenetics of the Funestus and Minimus groups of Anopheles (Cellia).

    PubMed

    Garros, Claire; Harbach, Ralph E; Manguin, Sylvie

    2005-07-01

    A morphological comparison and molecular study of the Afrotropical Funestus and Afro-Oriental Minimus groups within the Myzomyia series of Anopheles (Cellia) was conducted to determine their phylogenetic affinities. Relationships were investigated using morphological characters and ribosomal (D3) and mitochondrial (COII) nucleotide sequences. Cross-identification of specimens from one group by using keys for the other group confirmed their morphological similarity, i.e., members of one group shared the key characters with members of the other group. Molecular analyses recognized five clades, not strictly related to geographical distribution: the Aconitus, Culicifacies, Funestus, Minimus, and Rivulorum subgroups. Morphological observations were congruent with the results of molecular analyses. Anopheles leesoni, an Afrotropical species, is closely related to the Oriental Minimus complex, and these taxa share a close relationship with the Fluviatilis complex that occurs from the Arabian Peninsula through India. The immature and adult stages of An. rivulorum in Africa bear morphological characters that distinguish this species from members of the Afrotropical Funestus subgroup. A composite scheme of classification based on the results and previously published information is proposed for the two groups. It is noted that An. fluviatilis species S is conspecific with An. minimus species C. PMID:16119539

  13. Characterization of Anopheles darlingi (Diptera: Culicidae) larval habitats in Belize, Central America

    NASA Technical Reports Server (NTRS)

    Manguin, S.; Roberts, D. R.; Andre, R. G.; Rejmankova, E.; Hakre, S.

    1996-01-01

    Surveys for larvae of Anopheles darlingi Root were conducted in April, May, and August 1994 in riverine habitats of central Belize (Cayo and Belize districts). An. darlingi was present during both the dry and wet seasons. Larvae were encountered most frequently in patches of floating debris along river margins. The floating mats were often formed by bamboo hanging over the banks and dense submersed bamboo roots. Larvae were found less frequently in lake margins, small lagoons, and ground pools with submersed roots and patches of floating leaves or vegetation. In addition to their association with floating debris, larvae of An. darlingi were associated positively with shade and submersed plants in riverine environments. Samples from river habitats showed the larvae of Anopheles albimanus Wiedemann to be strongly associated with sun-exposed sites containing green or blue-green algae. Unlike An. darlingi, An. albimanus was an ubiquitous mosquito, the immatures of which occurred in a wide variety of riverine and nonriverine aquatic habitats. Based on published reports and our experience, the association of An. darlingi with river systems was verified, and its distribution in Central America and Mexico was mapped.

  14. Ecology of Anopheles darlingi Root with respect to vector importance: a review

    PubMed Central

    2011-01-01

    Anopheles darlingi is one of the most important malaria vectors in the Americas. In this era of new tools and strategies for malaria and vector control it is essential to have knowledge on the ecology and behavior of vectors in order to evaluate appropriateness and impact of control measures. This paper aims to provide information on the importance, ecology and behavior of An. darlingi. It reviews publications that addressed ecological and behavioral aspects that are important to understand the role and importance of An. darlingi in the transmission of malaria throughout its area of distribution. The results show that Anopheles darlingi is especially important for malaria transmission in the Amazon region. Although numerous studies exist, many aspects determining the vectorial capacity of An. darlingi, i.e. its relation to seasons and environmental conditions, its gonotrophic cycle and longevity, and its feeding behavior and biting preferences, are still unknown. The vector shows a high degree of variability in behavioral traits. This makes it difficult to predict the impact of ongoing changes in the environment on the mosquito populations. Recent studies indicate a good ability of An. darlingi to adapt to environments modified by human development. This allows the vector to establish populations in areas where it previously did not exist or had been controlled to date. The behavioral variability of the vector, its adaptability, and our limited knowledge of these impede the establishment of effective control strategies. Increasing our knowledge of An. darlingi is necessary. PMID:21923902

  15. A reliable morphological method to assess the age of male Anopheles gambiae

    PubMed Central

    Huho, Bernadette J; Ng'habi, Kija R; Killeen, Gerry F; Nkwengulila, Gamba; Knols, Bart GJ; Ferguson, Heather M

    2006-01-01

    Background Release of genetically-modified (GM) or sterile male mosquitoes for malaria control is hampered by inability to assess the age and mating history of free-living male Anopheles. Methods Age and mating-related changes in the reproductive system of male Anopheles gambiae were quantified and used to fit predictive statistical models. These models, based on numbers of spermatocysts, relative size of sperm reservoir and presence/absence of a clear area around the accessory gland, were evaluated using an independent sample of mosquitoes whose status was blinded during the experiment. Results The number of spermatocysts in male testes decreased with age, and the relative size of their sperm reservoir increased. The presence of a clear area around accessory glands was also linked to age and mating status. A quantitative model was able to categorize males from the blind trial into age groups of young (≤ 4 days) and old (> 4 days) with an overall efficiency of 89%. Using the parameters of this model, a simple table was compiled that can be used to predict male age. In contrast, mating history could not be reliably assessed as virgins could not be distinguished from mated males. Conclusion Simple assessment of a few morphological traits which are easily collected in the field allows accurate age-grading of male An. gambiae. This simple, yet robust, model enables evaluation of demographic patterns and mortality in wild and released males in populations targeted by GM or sterile male-based control programmes. PMID:16872516

  16. Screening for adulticidal bioactivity of South African plants against Anopheles arabiensis

    PubMed Central

    2011-01-01

    Background This study was conducted to evaluate whether a selection of South African ethnomedicinal plants included in this study displayed insecticidal properties when screened against adult stages of the mosquito. Methods 381 crude extracts of 80 plant taxa in 42 families were sprayed onto ceramic tiles and screened using the cone bio-assay method for insecticide efficacy testing. Blood-fed, female Anopheles arabiensis mosquitoes were exposed to the treated tiles for a period of sixty minutes. Mosquito mortality was monitored for twenty-four hours. Results Of all the extracts analysed, the highest activity was observed in Ptaeroxylon obliquum (Ptaeroxylaceae) and Pittosporum viridiflorum (Pittosporaceae), a single extract from each, exhibiting more than 50% mortality. A large proportion (81.63%) of the extracts tested displayed low levels of mosquitocidal activity. The remainder of the extracts (17.85%) exhibited no bioactivity (0% mortality). Conclusions The screening results have shown that in accordance with WHO standards, none of the crude extracts tested had exhibited greater than 60% mortality against the adult stages of the malaria vector Anopheles arabiensis. PMID:21835000

  17. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  18. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  19. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis.

    PubMed

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-01-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases. PMID:26839008

  20. High-throughput genotyping of Anopheles mosquitoes using intact legs by Agena Biosciences iPLEX.

    PubMed

    Fabrigar, Danica Joy; Hubbart, Christina; Miles, Alistair; Rockett, Kirk

    2016-03-01

    Recent developments in genotyping technologies coupled with the growing desire to characterize genome variation in Anopheles populations open the opportunity to develop more effective genotyping strategies for high-throughput screening. A major bottleneck of this goal is nucleic acid extraction. Here, we examined the feasibility of using intact portions of a mosquito's leg as sources of template DNA for whole-genome amplification (WGA) by primer-extension preamplification. We used the Agena Biosciences MassARRAY(®) platform (formerly Sequenom) to genotype 78 SNPs for 265 WGA leg samples. We performed nucleic acid extraction on 36 mosquito carcasses and compared the genotype call concordance with their corresponding legs and observed full concordance. Using three legs instead of one improved genotyping success rates (96% vs. 89%, respectively), although this difference was not significant. We provide a proof of concept that WGA reactions can be performed directly on mosquito legs, thereby eliminating the need to extract nucleic acid. This approach is straightforward and sensitive and allows both species determination and genotyping of Anopheles mosquitoes to be performed in a high-throughput manner. Our protocol also leaves the mosquito body intact facilitating other experimental analysis to be undertaken on the same sample. Based on our findings, this method would also be suitable for use with other insect species. PMID:26426152

  1. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae.

    PubMed

    Butters, Matthew P; Kobylinski, Kevin C; Deus, Kelsey M; da Silva, Ines Marques; Gray, Meg; Sylla, Massamba; Foy, Brian D

    2012-01-01

    Laboratory and field studies have shown that ivermectin, a drug that targets invertebrate ligand-gated ion channels (LGICs), is potently active against Anopheles spp. mosquitoes at concentrations present in human blood after standard drug administrations; thus ivermectin holds promise as a mass human-administered endectocide that could help suppress malaria parasite transmission. We evaluated other systemic LGIC-targeting drugs for their activities against the African malaria vector Anopheles gambiae using in vitro blood feeding assays. Eprinomectin, selamectin, moxidectin, and N-tert-butyl nodulisporamide were evaluated as potentially systemic drugs having similar modes of action to ivermectin; all primarily are agonists of invertebrate glutamate-gated chloride ion channels. Additionally, nitenpyram and spinosad were evaluated as systemic drugs that primarily work as agonists of nicotinic acetylcholine receptor channels. Only eprinomectin killed An. gambiae at concentrations that were comparable to ivermectin. At sub-lethal doses, nitenpyram and moxidectin marginally affected mosquito re-blood feeding ability. The macrocyclic lactones, particularly eprinomectin, caused significantly increased knockdown and significantly inhibited recovery in blood fed females. These data are a first step in evaluating drugs that might be eventually combined with, or substituted for ivermectin for future malaria parasite transmission control. PMID:22019935

  2. The Cadherin Superfamily in Anopheles gambiae: a Comparative Study With Drosophila melanogaster

    PubMed Central

    Simões, Sérgio; Moita, Luís F.; Jacinto, António; Fernandes, Pedro

    2005-01-01

    The cadherin superfamily is a diverse and multifunctional group of proteins with extensive representation across genomes of phylogenetically distant species that is involved in cell–cell communication and adhesion. The mosquito Anopheles gambiae is an emerging model organism for the study of innate immunity and host–pathogen interactions, where the malaria parasite induces a profound rearrangement of the actin cytoskeleton at critical stages of infection. We have used bioinformatics tools to retrieve present sequence knowledge about the complete repertoire of cadherins in A. gambiae and compared it to that of the fruit fly, Drosophila melanogaster. In A. gambiae, we have identified 43 genes coding for cadherin extracellular domains that were re-annotated to 38 genes and represent an expansion of this gene family in comparison to other invertebrate organisms. The majority of Drosophila cadherins show a 1 : 1 Anopheles orthologue, but we have observed a remarkable expansion in some groups in A. gambiae, such as N-cadherins, that were recently shown to have a role in the olfactory system of the fruit fly. In vivo dsRNA silencing of overrepresented genes in A. gambiae and other genes showing expression at critical tissues for parasite infection will likely advance our understanding of the problems of host preference and host–pathogen interactions in this mosquito species. PMID:18629193

  3. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis

    PubMed Central

    Zhou, Dan; Liu, Xianmiao; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2015-01-01

    Anopheles sinensis is an important malaria vector in China and other Southeast Asian countries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and transcriptome provide an opportunity to understand the molecular mechanisms of insecticide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quinquefasciatus, respectively. The considerable contraction in gene number in Anopheles mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. The available An. sinensis transcriptome was also re-analyzed to further identify key resistance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR-strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class. These generated data provide a basis for identifying the resistance-associated genes of An. sinensis at the molecular level. PMID:26588704

  4. Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection.

    PubMed

    Obbard, D J; Linton, Y-M; Jiggins, F M; Yan, G; Little, T J

    2007-08-01

    Anopheles mosquitoes are the primary vectors for malaria in Africa, transmitting the disease to more than 100 million people annually. Recent functional studies have revealed mosquito genes that are crucial for Plasmodium development, but there is presently little understanding of which genes mediate vector competence in the wild, or evolve in response to parasite-mediated selection. Here, we use population genetic approaches to study the strength and mode of natural selection on a suite of mosquito immune system genes, CTL4, CTLMA2, LRIM1, and APL2 (LRRD7), which have been shown to affect Plasmodium development in functional studies. We sampled these genes from two African populations of An. gambiae s.s., along with several closely related species, and conclude that there is no evidence for either strong directional or balancing selection on these genes. We highlight a number of challenges that need to be met in order to apply population genetic tests for selection in Anopheles mosquitoes; in particular the dearth of suitable outgroup species and the potential difficulties that arise when working within a closely-related species complex. PMID:17688548

  5. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    PubMed Central

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-01-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases. PMID:26839008

  6. Diversity of Anopheles mosquitoes in Binh Phuoc and Dak Nong Provinces of Vietnam and their relation to disease

    PubMed Central

    2014-01-01

    Background Human malaria is still a burden in Dak Nong and Binh Phuoc Provinces in south-central Vietnam that border Cambodia. Several Anopheles species that transmit human malarial Plasmodium may also transmit Wuchereria bancrofti, the nematode that causes Bancroftian lymphatic filariasis. The objective of this study was to investigate the role of Anopheles species in the transmission of these two pathogens in the two highly malaria endemic provinces of Vietnam. Methods Anopheles mosquitoes were collected in Dak Nong and Binh Phuoc Provinces in November and December of 2010 and 2011. Human landing catches, paired collections on human and buffalo, and resting captures were made with mouth aspirators. Collections were also made with light traps. Morphological and PCR-based methods were used to identify the species. Real-time PCR was used to detect Plasmodium species and W. bancrofti in individual mosquitoes. Results Twenty-four Anopheles species were identified among 797 captured mosquitoes. Anopheles dirus was found in both provinces and was the predominant species in Binh Phuoc Province; An. maculatus was the most prevalent species in Dak Nong Province. Anopheles minimus was collected only in Binh Phuoc Province. Some specimens of An. minimus and An. pampanai were misidentified based on morphology. Four specimens of An. scanloni were identified, and this is the first report of this species of the Dirus Complex in Vietnam. Two females, one An. dirus and one An. pampanai, collected in Binh Phuoc Province were infected with P. vivax, for an overall infection rate of 0.41% (2/486): 0.28% for An. dirus (1/361) and 20% for An. pampanai (1/5). No mosquitoes were found to be infected with P. falciparum, P. knowlesi or W. bancrofti in either province. Conclusion A diversity of Anopheles species occurs in Dak Nong and Binh Phuoc Provinces of Vietnam, several of which are considered to be actual and potential vectors of malarial protozoa and microfilariae. It is highly

  7. Low and seasonal malaria transmission in the middle Senegal River basin: identification and characteristics of Anopheles vectors

    PubMed Central

    2012-01-01

    Background During the last decades two dams were constructed along the Senegal River. These intensified the practice of agriculture along the river valley basin. We conducted a study to assess malaria vector diversity, dynamics and malaria transmission in the area. Methods A cross-sectional entomological study was performed in September 2008 in 20 villages of the middle Senegal River valley to evaluate the variations of Anopheles density according to local environment. A longitudinal study was performed, from October 2008 to January 2010, in 5 selected villages, to study seasonal variations of malaria transmission. Results Among malaria vectors, 72.34% of specimens collected were An. arabiensis, 5.28% An. gambiae of the S molecular form, 3.26% M form, 12.90% An. pharoensis, 4.70% An. ziemanni, 1.48% An. funestus and 0.04% An. wellcomei. Anopheles density varied according to village location. It ranged from 0 to 21.4 Anopheles/room/day and was significantly correlated with the distance to the nearest ditch water but not to the river. Seasonal variations of Anopheles density and variety were observed with higher human biting rates during the rainy season (8.28 and 7.55 Anopheles bite/man/night in October 2008 and 2009 respectively). Transmission was low and limited to the rainy season (0.05 and 0.06 infected bite/man/night in October 2008 and 2009 respectively). During the rainy season, the endophagous rate was lower, the anthropophagic rate higher and L1014F kdr frequency higher. Conclusions Malaria vectors are present at low-moderate density in the middle Senegal River basin with An. arabiensis as the predominant species. Other potential vectors are An. gambiae M and S form and An. funestus. Nonetheless, malaria transmission was extremely low and seasonal. PMID:22269038

  8. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  9. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  10. Field evaluation of ultra-low volume applications with a mixture of d-allethrin and d-phenothrin for control of Anopheles albimanus in Haiti.

    PubMed

    Shono, Y; Jean-Francois, V; Saint Jean, Y; Itoh, T

    1991-09-01

    Ultra-low volume applications of d-allethrin and d-phenothrin could possibly reduce populations of Anopheles albimanus when used in conjunction with residual spraying of fenitrothion. The experiments were carried out in Les Cayes, Haiti. PMID:1791463

  11. A simple and affordable membrane-feeding method for Aedes aegpyti and Anopheles minimus (Diptera: Culicidae).

    PubMed

    Finlayson, Catherine; Saingamsook, Jassada; Somboon, Pradya

    2015-12-01

    This study developed an artificial feeding (AF) method to replace direct host feeding (DHF) for the maintenance of Aedes aegypti and Anopheles minimus mosquito colonies. The procedure can be adopted by all laboratories due to its simple and affordable materials and design. The apparatus consists of heparinized cow blood contained in a 5cm diameter glass petri dish with 5cm(2) Parafilm M (Bemis(®)) stretched thinly over the top, with a pre-heated bag of vegetable oil placed underneath to keep the blood warm. Both parts are contained within an insulated Styrofoam™ box with a hole in the lid for mosquitoes to access the membrane. Mosquitoes are fed by AF for 15min at a time. Feeding rate and fecundity of Ae. aegypti mosquitoes feeding on the AF device were compared to those feeding on a live rat (DHF(r)), and of Anopheles minimus mosquitoes feeding on the AF device compared to those feeding on a human arm (DHF(h)). Aedes aegypti mosquitoes fed by AF or DHF(r) had similar feeding rates (38.2±21.5% and 35.7±18.2%, respectively) and overall egg production (1.5% difference). Anopheles minimus mosquitoes fed by the AF method had a lower feeding rate (52.0±1.0% for AF compared to 70.7±20.2% for DHF(h)) and overall egg production (40% reduction compared to DHF(h)). However, the number of eggs produced by AF-fed mosquitoes (1808 eggs per 100 mosquitoes) was still sufficient for colony maintenance, and with increased feeding time both parameters are expected to increase. Reduced feeding rate and overall egg production was observed when Ae. aegypti mosquitoes were fed on blood refrigerated for over two weeks. In conclusion, an AF device has been developed which can replace DHF for Ae. aegypti and An. minimus colony maintenance when using blood refrigerated for a maximum of two weeks. PMID:26440474

  12. Molecular confirmation of the occurrence in Germany of Anopheles daciae (Diptera, Culicidae)

    PubMed Central

    2012-01-01

    Background Anopheles daciae, a newly described member of the Maculipennis group, was recently reported from western, southern and eastern Europe. Before its recognition, it had commonly been listed under the name of An. messeae, due to its extreme morphological and genetic similarities. As the sibling species of the Maculipennis group are known to differ in their vector competences for malaria parasites and other pathogens, the occurrence of An. daciae in a given region might have an impact on the epidemiology of mosquito-borne diseases. Mosquito collections from different localities in Germany were therefore screened for An. daciae. Methods Adult and immature Maculipennis group mosquitoes were collected between May 2011 and June 2012 at 23 different sites in eight federal states of Germany. A standard PCR assay was used to differentiate the previously known sibling species while the ITS2 rDNA of specimens preliminarily identified as An. messeae/daciae was sequenced and analysed for species-specific nucleotide differences. Results Four hundred and seventy-seven Anopheles specimens were successively identified to Maculipennis group level by morphology and to species level by DNA-based methods. Four species of the Maculipennis group were registered: An. messeae (n = 384), An. maculipennis (n = 82), An. daciae (n = 10) and An. atroparvus (n = 1). Anopheles daciae occurred at four sites in three federal states of Germany, three of the sites being located in north-eastern Germany (federal states of Brandenburg and Saxony) while one collection site was situated in the northern Upper Rhine Valley in the federal state of Hesse, south-western Germany. Conclusions The detection of An. daciae represents the first recognition of this species in Germany where it was found to occur in sympatry with An. messeae and An. maculipennis. As the collection sites were in both north-eastern and south-western parts of Germany, the species is probably even more widely

  13. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    PubMed Central

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles. PMID:23861952

  14. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia

    PubMed Central

    2013-01-01

    Background Anopheles arabiensis, the main malaria vector in Ethiopia, shows both anthropophilic and zoophilic behaviours. Insecticide resistance is increasing, and alternative methods of vector control are needed. The objectives of this study were to determine the blood meal origins and the susceptibility to insecticides of An. arabiensis from Chano village near Arba Minch in South-West Ethiopia. Methods Blood meal sources of anopheline mosquitoes collected using Centers for Disease Control and Prevention (CDC) light traps and pyrethrum spray catches (PSC) from human dwellings, and hand-held mouth aspirators from outdoor pit shelters were analysed using a direct enzyme-linked-immunosorbent assay (ELISA). The susceptibility of An. arabiensis to pyrethroid insecticides (alphacypermethrin, lambdacyhalothrin, deltamethrin, and cyfluthrin) and DDT was assessed using females reared from larval and pupal collections from natural breeding sites. Results The blood meal origins of 2967 freshly fed Anopheles mosquitoes were determined. An. arabiensis was the predominant species (75%), and it fed mainly on cattle. The densities of both freshly fed An. arabiensis and those fed on human blood followed similar seasonal patterns. The overall human blood index (HBI) of An. arabiensis, including mixed blood meals, was 44% and the bovine blood index (BBI) was 69%. The HBI of An. arabiensis from CDC light trap collections was 75% and this was higher than those for PSC (38%) and outdoor pit shelter collections (13%), while the BBI was 65% for PSC, 68% for outdoor pit shelters and 72% for CDC light traps. More freshly fed and human blood-fed An. arabiensis were sampled from houses close to the shore of Lake Abaya (the major breeding site). A high proportion of An. arabiensis was resistant to the pyrethroid insecticides, with a mortality rate of 56% for lambdacyhalothrin, 50% for cyfluthrin and alphacypermethrin, 47% for deltamethrin, and 10% for DDT. Conclusion Anopheles arabiensis is

  15. Evolution of GOUNDRY, a cryptic subgroup of Anopheles gambiae s.l., and its impact on susceptibility to Plasmodium infection.

    PubMed

    Crawford, Jacob E; Riehle, Michelle M; Markianos, Kyriacos; Bischoff, Emmanuel; Guelbeogo, Wamdaogo M; Gneme, Awa; Sagnon, N'Fale; Vernick, Kenneth D; Nielsen, Rasmus; Lazzaro, Brian P

    2016-04-01

    The recent discovery of a previously unknown genetic subgroup of Anopheles gambiae sensu lato underscores our incomplete understanding of complexities of vector population demographics in Anopheles. This subgroup, named GOUNDRY, does not rest indoors as adults and is highly susceptible to Plasmodium infection in the laboratory. Initial description of GOUNDRY suggested it differed from other known Anopheles taxa in surprising and sometimes contradictory ways, raising a number of questions about its age, population size and relationship to known subgroups. To address these questions, we sequenced the complete genomes of 12 wild-caught GOUNDRY specimens and compared these genomes to a panel of Anopheles genomes. We show that GOUNDRY is most closely related to Anopheles coluzzii, and the timing of cladogenesis is not recent, substantially predating the advent of agriculture. We find a large region of the X chromosome that has swept to fixation in GOUNDRY within the last 100 years, which may be an inversion that serves as a partial barrier to contemporary gene flow. Interestingly, we show that GOUNDRY has a history of inbreeding that is significantly associated with susceptibility to Plasmodium infection in the laboratory. Our results illuminate the genomic evolution of one of probably several cryptic, ecologically specialized subgroups of Anopheles and provide a potent example of how vector population dynamics may complicate efforts to control or eradicate malaria. PMID:26846876

  16. Analysis of the Anopheles (Anopheles) quadrimaculatus complex of sibling species (Diptera: Culicidae) using morphological, cytological, molecular, genetic, biochemical, and ecological techniques in an integrated approach.

    PubMed

    Reinert, J F; Kaiser, P E; Seawright, J A

    1997-12-01

    The Anopheles quadrimaculatus complex of 5 cryptic species (i.e., An. diluvialis Reinert, new species; An. inundatus Reinert, new species; An. maverlius Reinert, new species; An. quadrimaculatus Say; An. smaragdinus Reinert, new species) is analyzed using multiple techniques, including morphological, cytological, molecular, genetic, biochemical, and ecological procedures. All life stages (egg, 4th-instar larva, pupa, and female and male adults) are described using morphological features, and pertinent stages or structures are illustrated. A neotype for An. quadrimaculatus is designated, and the synonymy of An. annulimanus Van der Wulp is confirmed. Several new morphological features are described. New and summarized data from published literature on hybridization, cytological, electrophoretic, molecular, and cuticular hydrocarbon studies are included. Immature and adult bionomics are given. The geographic distribution for each species is listed and shown on maps. Procedures for collecting, processing, and rearing specimens are described. Keys using morphological characters are included for the eggs, 4th-instar larvae, pupae, adult females, and male genitalia. Also, a biochemical key for the 5 species is included. Color and pattern variations of larvae and pupae are discussed. PMID:9474550

  17. Novel Peptide Marker Corresponding to Salivary Protein gSG6 Potentially Identifies Exposure to Anopheles Bites

    PubMed Central

    Poinsignon, Anne; Cornelie, Sylvie; Mestres-Simon, Montserrat; Lanfrancotti, Alessandra; Rossignol, Marie; Boulanger, Denis; Cisse, Badara; Sokhna, Cheikh; Arcà, Bruno; Simondon, François; Remoue, Franck

    2008-01-01

    Background In order to improve malaria control, and under the aegis of WHO recommendations, many efforts are being devoted to developing new tools for identifying geographic areas with high risk of parasite transmission. Evaluation of the human antibody response to arthropod salivary proteins could be an epidemiological indicator of exposure to vector bites, and therefore to risk of pathogen transmission. In the case of malaria, which is transmitted only by anopheline mosquitoes, maximal specificity could be achieved through identification of immunogenic proteins specific to the Anopheles genus. The objective of the present study was to determine whether the IgG response to the Anopheles gambiae gSG6 protein, from its recombinant form to derived synthetic peptides, could be an immunological marker of exposure specific to Anopheles gambiae bites. Methodology/Principal Findings Specific IgG antibodies to recombinant gSG6 protein were observed in children living in a Senegalese area exposed to malaria. With the objective of optimizing Anopheles specificity and reproducibility, we designed five gSG6-based peptide sequences using a bioinformatic approach, taking into consideration i) their potential antigenic properties and ii) the absence of cross-reactivity with protein sequences of other arthropods/organisms. The specific anti-peptide IgG antibody response was evaluated in exposed children. The five gSG6 peptides showed differing antigenic properties, with gSG6-P1 and gSG6-P2 exhibiting the highest antigenicity. However, a significant increase in the specific IgG response during the rainy season and a positive association between the IgG level and the level of exposure to Anopheles gambiae bites was significant only for gSG6-P1. Conclusions/Significance This step-by-step approach suggests that gSG6-P1 could be an optimal candidate marker for evaluating exposure to Anopheles gambiae bites. This marker could be employed as a geographic indicator, like remote sensing

  18. Assignment of two enzyme loci to the X chromosome of Anopheles quadrimaculatus species A.

    PubMed

    Lanzaro, G C; Mitchell, S E; Narang, S K; Seawright, J A

    1991-01-01

    Analysis of isozyme variability in four natural populations of Anopheles quadrimaculatus Species A indicated that the loci for Malic enzyme (Me) and Mannose phosphate isomerase-1 (Mpi-1) are on the X chromosome. There were female heterozygotes, but no male heterozygotes were observed. Strains fixed for fast- and slow-migrating allozymes were devised and crossed. Progeny phenotypes conformed to expectations for sex linkage; female progeny were heterozygous, and male progeny were hemizygous for the maternal allele. The three-point cross, using the Me and Mpi-1 loci with the sex-linked mutant rose eye (ro), established the gene sequence Mpi-1-11.1-Me-40.8-ro. PMID:1880395

  19. Lactate dehydrogenase as a marker of Plasmodium infection in malaria vector Anopheles.

    PubMed

    Riandey, M F; Sannier, C; Peltre, G; Monteny, N; Cavaleyra, M

    1996-06-01

    Lactate dehydrogenase (Ldh) electrophoresis showed the presence of Plasmodium yoelii yoelii in Anopheles stephensi and An. gambiae. The Ldh appeared as an additional band (pLdh) whose activity was more intense with 3-acetyl pyridine adenine dinucleotide as coenzyme than with beta nicotin-amide adenine dinucleotide. Several allelic forms occurred both in the vector and the host. The isoelectric point of Ldh, similar in the vector and host, differed from those of Ldh from mosquito and mouse. The presence of pLdh was detected from the 2nd to the 28th day of infection. The pLdh appeared to be proportional to the number of sporozoites present in infected salivary glands. However, pLdh was not found in salivary glands or midguts, but it was detected in the rest of the corresponding mosquito. The origin and use of pLdh as a marker of Plasmodium in its vector is discussed. PMID:8827592

  20. Molecular taxonomy provides new insights into anopheles species of the neotropical arribalzagia series.

    PubMed

    Gómez, Giovan F; Bickersmith, Sara A; González, Ranulfo; Conn, Jan E; Correa, Margarita M

    2015-01-01

    Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors. PMID:25774795

  1. The impact of insecticides management linked with resistance expression in Anopheles spp. populations.

    PubMed

    Silva, Guilherme Liberato da; Pereira, Thiago Nunes; Ferla, Noeli Juarez; Silva, Onilda Santos da

    2016-06-01

    The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks. PMID:27383351

  2. A newly recognized species in the Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae) from Puerto Carreno, Colombia.

    PubMed

    Brochero, Helena H L; Li, Cong; Wilkerson, Richard C

    2007-06-01

    We report a previously unrecognized mosquito species from eastern Colombia belonging to the Anopheles (Nyssorhynchus) albitarsis complex. We provisionally name this taxon An. albitarsis species "F." Until now, the only members of the Albitarsis Complex recorded from north of the Amazon River have been An. marajoara and a putative phylogenetic species, An. albitarsis "E." As with the other largely monomorphic species in the complex, we were able to detect its presence using ribosomal DNA internal transcribed spacer 2 (rDNA ITS2) and partial white gene sequences. Unlike An. marajoara, but in common with other species in the complex, An. albitarsis F lacks the white gene fourth intron. This species is sympatric with An. marajoara in a malaria-endemic area in Puerto Carreño, Vichada Department, Colombia. It could be an important current and/or historical vector of human malaria parasites at this locality and, depending on its actual distribution, elsewhere in Colombia and Venezuela. PMID:17556620

  3. Molecular Taxonomy Provides New Insights into Anopheles Species of the Neotropical Arribalzagia Series

    PubMed Central

    Gómez, Giovan F.; Bickersmith, Sara A.; González, Ranulfo; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors. PMID:25774795

  4. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Nathan, Sengottayan Senthil; Kalaivani, Kandaswamy; Murugan, Kadarkarai

    2005-10-01

    The effects of the neem (Azadirachta indica A. Juss) limonoids azadirachtin, salannin, deacetylgedunin, gedunin, 17-hydroxyazadiradione and deacetylnimbin on Anopheles stephensi Liston (Diptera: Culicidae) were investigated. In exploring advantages of pure neem limonoids, we studied the larvicidal, pupicidal, adulticidal and antiovipositional activity of neem limonoids. Azadirachtin, salannin and deacetylgedunin showed high bioactivity at all doses, while the rest of the neem limonoids were less active, and were only biologically active at high doses. Azadirachtin was the most potent in all experiments and produced almost 100% larval mortality at 1 ppm concentration. In general, first to third larval instars were more susceptible to the neem limonoids. Neem products may have benefits in mosquito control programs. PMID:16112073

  5. Population genetic structure of urban malaria vector Anopheles stephensi in India.

    PubMed

    Sharma, Richa; Sharma, Arvind; Kumar, Ashwani; Dube, Madhulika; Gakhar, S K

    2016-04-01

    Malaria is a major public health problem in India because climatic condition and geography of India provide an ideal environment for development of malaria vector. Anopheles stephensi is a major urban malaria vector in India and its control has been hampered by insecticide resistance. In present study population genetic structure of A. stephensi is analyzed at macro geographic level using 13 microsatellite markers. Significantly high genetic differentiation was found in all studied populations with differentiation values (FST) ranging from 0.0398 to 0.1808. The geographic distance was found to be playing a major role in genetic differentiation between different populations. Overall three genetic pools were observed and population of central India was found to be coexisting in two genetic pools. High effective population size (Ne) was found in all the studied populations. PMID:26777030

  6. Larvicidal activity of oak Quercus infectoria Oliv. (Fagaceae) gall extracts against Anopheles stephensi Liston.

    PubMed

    Aivazi, Ali-Ashraf; Vijayan, V A

    2009-06-01

    There is a growing interest in the use of botanical insecticides to reduce the use of synthetic pesticides in order to avoid environmental side effects. Anopheles stephensi is the primary vector of urban malaria, an endemic disease in India. So, an effort to assay An. stephensi larvae with gall extracts of Quercus infectoria was made under laboratory conditions at Mysore. Ethyl-acetate extract was found to be the most effective of all the five extracts tested for larvicidal activity against the fourth instar larvae, with LC(50) of 116.92 ppm followed by gallotannin, n-butanol, acetone, and methanol with LC(50) values of 124.62, 174.76, 299.26, and 364.61 ppm, respectively. The efficacy in killing mosquito larvae may make this plant promising for the development of new botanical larvicide. PMID:19148681

  7. Visual arrestins in olfactory pathways of Drosophila and the malaria vector mosquito Anopheles gambiae

    PubMed Central

    Merrill, C. E.; Riesgo-Escovar, J.; Pitts, R. J.; Kafatos, F. C.; Carlson, J. R.; Zwiebel, L. J.

    2002-01-01

    Arrestins are important components for desensitization of G protein-coupled receptor cascades that mediate neurotransmission as well as olfactory and visual sensory reception. We have isolated AgArr1, an arrestin-encoding cDNA from the malaria vector mosquito, Anopheles gambiae, where olfaction is critical for vectorial capacity. Analysis of AgArr1 expression revealed an overlap between chemosensory and photoreceptor neurons. Furthermore, an examination of previously identified arrestins from Drosophila melanogaster exposed similar bimodal expression, and Drosophila arrestin mutants demonstrate impaired electrophysiological responses to olfactory stimuli. Thus, we show that arrestins in Drosophila are required for normal olfactory physiology in addition to their previously described role in visual signaling. These findings suggest that individual arrestins function in both olfactory and visual pathways in Dipteran insects; these genes may prove useful in the design of control strategies that target olfactory-dependent behaviors of insect disease vectors. PMID:11792843

  8. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  9. Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae

    PubMed Central

    Kaufmann, Christian; Brown, Mark R.

    2008-01-01

    The role of adipokinetic hormones (AKHs) in the regulation of carbohydrate and lipid metabolism and flight performance was evaluated for females of the African malaria mosquito, Anopheles gambiae. Injection of various dosages of synthetic Anoga-AKH-I increased carbohydrate levels in the haemolymph and reduced glycogen reserves in sugar-fed females but did not affect lipid levels. Anoga-AKH-I enhanced the flight performance of both intact and decapitated sugar-fed females, during a 4 hour flight period. Anoga-AKH-II had no effect on carbohydrate or lipid levels or flight performance, thus its function remains unknown. Targeted RNA-interference lowered Anoga-AKH receptor expression in sugar-fed females, consequently injections of Anoga-AKH-I failed to mobilize glycogen reserves. Taken together, these results show that a primary role for the neurohormone, Anoga-AKH-I, is to elevate trehalose levels in the haemolymph of female mosquitoes. PMID:18062987

  10. Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax

    PubMed Central

    Moreno, Marta; Tong, Carlos; Guzmán, Mitchel; Chuquiyauri, Raul; Llanos-Cuentas, Alejandro; Rodriguez, Hugo; Gamboa, Dionicia; Meister, Stephan; Winzeler, Elizabeth A.; Maguina, Paula; Conn, Jan E.; Vinetz, Joseph M.

    2014-01-01

    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector–pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi–Plasmodium interactions. PMID:24534811

  11. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    PubMed Central

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  12. [Historical review of the distribution of Anopheles (Nyssorhynchus) darlingi (Diptera: Culicidae) in the Peruvian Amazon].

    PubMed

    Fernández, Roberto; Vera, Hubert; Calderón, Guillermo

    2014-04-01

    Anopheles (Nyssorhynchus) darlingi has been reported since 1931 in border areas of the department of Loreto, mainly along the borders with Brazil and Colombia. In 1994, during an outbreak of malaria, An. darlingi was found in neighboring towns to Iquitos. At present, its distribution has expanded considerably in Loreto. This paper reviews literature available for all possible information on the distribution of mosquitoes, particularly anopheline in the Amazon region of the country, with special emphasis on An darlingi. Entomological collections were also conducted in the departments of Madre de Dios and Ucayali in order to know and verify the distribution of An. darlingi. At present, the distribution of the species is confined to localities in southeastern Peru with Bolivia border towns, in a town near the Abujao River in the department of Ucayali, and widely in the northeastern region of the Amazon basin of Loreto in Peru. PMID:25123872

  13. Inversions and Gene Order Shuffling in Anopheles gambiae and A. funestus

    NASA Astrophysics Data System (ADS)

    Sharakhov, Igor V.; Serazin, Andrew C.; Grushko, Olga G.; Dana, Ali; Lobo, Neil; Hillenmeyer, Maureen E.; Westerman, Richard; Romero-Severson, Jeanne; Costantini, Carlo; Sagnon, N'Fale; Collins, Frank H.; Besansky, Nora J.

    2002-10-01

    In tropical Africa, Anopheles funestus is one of the three most important malaria vectors. We physically mapped 157 A. funestus complementary DNAs (cDNAs) to the polytene chromosomes of this species. Sequences of the cDNAs were mapped in silico to the A. gambiae genome as part of a comparative genomic study of synteny, gene order, and sequence conservation between A. funestus and A. gambiae. These species are in the same subgenus and diverged about as recently as humans and chimpanzees. Despite nearly perfect preservation of synteny, we found substantial shuffling of gene order along corresponding chromosome arms. Since the divergence of these species, at least 70 chromosomal inversions have been fixed, the highest rate of rearrangement of any eukaryote studied to date. The high incidence of paracentric inversions and limited colinearity suggests that locating genes in one anopheline species based on gene order in another may be limited to closely related taxa.

  14. The distribution of insecticide resistance in Anopheles gambiae s.l. populations from Cameroon: an update.

    PubMed

    Ndjemaï, Hamadou N M; Patchoké, Salomon; Atangana, Jean; Etang, Josiane; Simard, Fréderic; Bilong, Charles F Bilong; Reimer, Lisa; Cornel, Anthony; Lanzaro, Gregory C; Fondjo, Etienne

    2009-11-01

    Insecticides are a key component of vector-based malaria control programmes in Cameroon. As part of ongoing resistance surveillance efforts, Anopheles gambiae s.l. female mosquitoes were exposed to organochlorine (DDT), a carbamate (bendiocarb), an organophosphate (malathion), and three pyrethroids (deltamethrin, lambda-cyhalothrin and permethrin) in WHO bioassay test kits. Results indicated a higher level of resistance (reduced mortality and knockdown effect) to DDT and pyrethroids in populations of A. gambiae s.s. than in A. arabiensis. The West and East African knockdown resistance (kdr) mutations were found in both species but at much higher frequencies in A. gambiae s.s. The West Africa kdr mutant was also more frequent in the A. gambiae S form than in the M form. No resistance to bendiocarb and malathion was found. Carbamate and organophosphorous compounds could thus be used as alternatives in locations in Cameroon where pyrethroid-resistant populations are found. PMID:19155034

  15. A comparison of Anopheles gambiae and Plasmodium falciparum genetic structure over space and time.

    PubMed

    Prugnolle, Franck; Durand, Patrick; Jacob, Koella; Razakandrainibe, Fabien; Arnathau, Céline; Villarreal, Diana; Rousset, François; de Meeûs, Thierry; Renaud, François

    2008-03-01

    Population genetic structure and subdivision are key factors affecting the evolution of organisms. In this study, we analysed and compared the population genetic structure of the malaria parasite Plasmodium falciparum and its mosquito vector Anopheles gambiae over space and time in the Nianza Province, near Victoria Lake in Kenya. The parasites were collected from mosquitoes caught in six villages separated by up to 68 km in 2002 and 2003. A total of 545 oocysts were dissected from 122 infected mosquitoes and genotyped at seven microsatellite markers. Five hundred and forty-seven mosquitoes, both infected and uninfected, were genotyped at eight microsatellites. For the parasite and the vector, the analysis revealed no (or very little) genetic differentiation among villages. This may be explained by high local population sizes for the parasite and the mosquito. The small level of genetic differentiation observed between populations may explain the speed at which antimalarial drug resistance and insecticide resistance spread into the African continent. PMID:18321750

  16. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes.

    PubMed

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    Since ancient times, plant products were used in various aspects. However, their use against pests decreased when chemical products became developed. Recently, concerns increased with respect to public health and environmental security requiring detection of natural products that may be used against insect pests. In this study, 41 plant extracts and 11 oil mixtures were evaluated against the yellow fever mosquito, Aedes aegypti (Linnaeus), the malaria vector, Anopheles stephensi (Liston), and the filariasis and encephalitis vector, Culex quinquefasciatus (Say) (Diptera: Culicidae) using the skin of human volunteers to find out the protection time and repellency. The five most effective oils were those of Litsea (Litsea cubeba), Cajeput (Melaleuca leucadendron), Niaouli (Melaleuca quinquenervia), Violet (Viola odorata), and Catnip (Nepeta cataria), which induced a protection time of 8 h at the maximum and a 100% repellency against all three species. This effect needs, however, a peculiar formulation to fix them on the human skin. PMID:16642384

  17. Intradomiciliary behavior of Anopheles albimanus on the coastal plain of southern Mexico: implications for malaria control.

    PubMed

    Bown, D N; Rodriguez, M H; Arredondo-Jimenez, J I; Loyola, E G; Rodriguez, M C

    1993-09-01

    The postfeeding indoor resting behavior of Anopheles albimanus in experimental houses in southern México was investigated by using a mark-recapture procedure. The majority of mosquitoes rested inside houses after taking a blood meal indoors. There was a higher landing frequency on interior surfaces other than walls and roofs; however, mosquitoes rested for longer periods on these 2 surfaces. Successive landings on walls after short flights showed that mosquitoes gradually increased their mean landing height from 1.0 to 1.4 m. Similarly, mosquitoes resting at the base of inner roofs had a successive landing height range of about 0.5 m. Based on these observations and the potential for reduction of nearly 50% in the quantity of insecticide used and the time needed to apply it, village-scale studies involving the selective spraying of a 1-m-wide swath of insecticide on walls and on roofs are recommended in this area. PMID:8245943

  18. Effects of transmission-blocking immunity on Plasmodium vivax infections in Anopheles albimanus populations.

    PubMed

    Ramsey, J M; Salinas, E; Rodriguez, M H; Beaudoin, R L

    1994-02-01

    Two colonized populations of Anopheles albimanus isolated from the Suchiate region, Chiapas State, Mexico, were compared for their susceptibility to coindigenous Plasmodium vivax. Groups of mosquitoes were fed in vitro with either autologous donor blood or the same blood cells substituted with serum negative for anti-gametocyte antibody. Significant differences in susceptibility between the 2 colonies were encountered if the autologous blood from a patient was fed to mosquitoes: mean infection rates of AnA2-positive groups was double that in AnA1 mosquitoes. Consistent for both colonies, only 23.6% of samples positive from malaria-negative serum-substituted blood were infected with an autologous blood feed. Vector competence in these mosquito populations was partially linked to the human populations's immune response to the parasite. PMID:8308663

  19. Use of generalized regression tree models to characterize vegetation favoring Anopheles albimanus breeding.

    PubMed

    Hernandez, J E; Epstein, L D; Rodriguez, M H; Rodriguez, A D; Rejmankova, E; Roberts, D R

    1997-03-01

    We propose the use of generalized tree models (GTMs) to analyze data from entomological field studies. Generalized tree models can be used to characterize environments with different mosquito breeding capacity. A GTM simultaneously analyzes a set of predictor variables (e.g., vegetation coverage) in relation to a response variable (e.g., counts of Anopheles albimanus larvae), and how it varies with respect to a set of criterion variables (e.g., presence of predators). The algorithm produces a treelike graphical display with its root at the top and 2 branches stemming down from each node. At each node, conditions on the value of predictors partition the observations into subgroups (environments) in which the relation between response and criterion variables is most homogeneous. PMID:9152872

  20. Biological variation in two Anopheles vestitipennis populations with different feeding preferences in southern Mexico.

    PubMed

    Ulloa, Armando; Rodríguez, Mario H; Arredondo-Jimenez, Juan I; Fernandez-Salas, Ildefonso

    2005-12-01

    The lengths of gonotrophic cycle and egg development and survival rate were studied in Anopheles vestitipennis collected in horse and human-baited traps in southern Mexico. The gonotrophic cycle duration was estimated using cross-correlation analysis, whereas the survival rate was assessed using a vertical method. Daily changes of parity rates gave significant correlation indices at 3 and 4 days in the zoophilic and anthropophilic populations, respectively. The minimum time required to develop mature eggs after blood feeding was 54 and 60 h, and the survival rate was 0.93 and 0.88 in zoophilic and anthropophilic female mosquito populations, respectively. These biological differences provide additional support for the existence of subpopulations with distinctive feeding preferences within An. vestitipennis in southern Mexico. PMID:16506558

  1. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development.

    PubMed

    Shaw, W Robert; Marcenac, Perrine; Childs, Lauren M; Buckee, Caroline O; Baldini, Francesco; Sawadogo, Simon P; Dabiré, Roch K; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  2. Small-scale field evaluation of the monomolecular surface film 'Arosurf MSF' against Anopheles arabiensis Patton.

    PubMed

    Karanja, D M; Githeko, A K; Vulule, J M

    1994-04-01

    A field trial was conducted to test the insecticidal action of the monolayer surface film 'Arosurf MSF' applied by knapsack sprayers, against larvae and pupae of Anopheles arabiensis Patton in a rice irrigation scheme in Western Kenya. Larval and pupal densities and the number of emerging adults were determined by dipping and emergence cages respectively. Application of the monolayer by knapsack sprayers provided good coverage. There were high daily mortalities of the fourth instar larvae, with no adult emergence from 'Arosurf MSF' treated plots compared to lower fourth instar mortalities and continuous adult emergence from untreated control plots, indicating the potential of the monolayer for control of An. arabiensis mosquitoes in rice fields. PMID:8023759

  3. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation.

    PubMed

    Clarkson, Chris S; Weetman, David; Essandoh, John; Yawson, Alexander E; Maslen, Gareth; Manske, Magnus; Field, Stuart G; Webster, Mark; Antão, Tiago; MacInnis, Bronwyn; Kwiatkowski, Dominic; Donnelly, Martin J

    2014-01-01

    Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of two exceptionally large genomic islands of divergence separating the Anopheles gambiae species pair. Here we show that transfer of the Vgsc mutation results in homogenization of the entire genomic island region (~1.5% of the genome) between species. Despite this massive disruption, introgression is clearly adaptive with a dramatic rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive isolation between species. Our results show (1) how resilience of genomes to massive introgression can permit rapid adaptive response to anthropogenic selection and (2) that even extreme prominence of genomic islands of divergence can be an unreliable indicator of importance in speciation. PMID:24963649

  4. Effect of temperature on an enzyme assay to detect fenitrothion resistance in Anopheles albimanus mosquitos.

    PubMed Central

    Beach, R. F.; Brogdon, W. G.; Castañaza, L. A.; Cordón-Rosales, C.; Calderón, M.

    1989-01-01

    A laboratory strain of Anopheles albimanus Wiedemann of known fenitrothion resistance was used in the field to compare the results of the WHO test for determining fenitrothion resistance in mosquitos with those of an enzyme microplate assay. The level of resistance obtained with the enzyme assay increased with the ambient temperature, and in order to compensate for this temperature effect, the incubation time was reduced. With the adjusted incubation times, the results for the microassay from 23 degrees C to 32 degrees C were the same as those found with the WHO test. The fenitrothion resistance of a field population of A. albimanus mosquitos determined between 27 degrees C and 31 degrees C using the adjusted enzyme microassay or the WHO test did not differ in a statistically significant way. PMID:2743539

  5. Imidacloprid and Thiamethoxam Induced Mutations in Internal Transcribed Spacer 2 (ITS2) of Anopheles stephensi

    PubMed Central

    Bhinder, Preety; Chaudhry, Asha; Barna, Bhupinder; Kaur, Satvinderjeet

    2012-01-01

    The present article deals with the polymerase chain reaction (PCR)-based genotoxicity evaluation of neonicotinoid pesticides, imidacloprid and thiamethoxam, by using the genome of a mosquito Anopheles stephensi taken as an experimental model. After treatment of the second instar larvae with LC20 of the pesticides for 24 h, the induced nucleotide sequence variations in the internal transcribed spacer 2 (ITS2) of freshly hatched unfed control and treated individuals was studied from the sequence alignment data and the mutations in the form of insertion, deletion and substitution of bases were recorded. Measurable differences, indicative of the genetic damage due to imidacloprid and thiamethoxam were observed when ITS2 sequences of control and treated individuals were compared. It was found that imidacloprid-treated individual had 8 deletions, 29 insertions, 18 transitions and 33 transversions, whereas thiamethoxam-treated individual had 10 deletions, 8 insertions, 47 transitions and 68 transversions. PMID:22778521

  6. In vitro and in vivo host range of Anopheles gambiae densovirus (AgDNV)

    PubMed Central

    Suzuki, Yasutsugu; Barik, Tapan K.; Johnson, Rebecca M.; Rasgon, Jason L.

    2015-01-01

    AgDNV is a powerful gene transduction tool and potential biological control agent for Anopheles mosquitoes. Using a GFP reporter virus system, we investigated AgDNV host range specificity in four arthropod cell lines (derived from An. gambiae, Aedes albopictus and Drosophila melanogaster) and six mosquito species from 3 genera (An. gambiae, An. arabiensis, An. stephensi, Ae. albopictus, Ae. aegypti and Culex tarsalis). In vitro, efficient viral invasion, replication and GFP expression was only observed in MOS55 An. gambiae cells. In vivo, high levels of GFP were observed in An. gambiae mosquitoes. Intermediate levels of GFP were observed in the closely related species An. arabiensis. Low levels of GFP were observed in An. stephensi, Ae. albopictus, Ae. aegypti and Cx. tarsalis. These results suggest that AgDNV is a specific gene transduction tool for members of the An. gambiae species complex, and could be potentially developed into a biocontrol agent with minimal off-target effects. PMID:26220140

  7. Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2.

    PubMed

    McLaughlin, L A; Niazi, U; Bibby, J; David, J-P; Vontas, J; Hemingway, J; Ranson, H; Sutcliffe, M J; Paine, M J I

    2008-04-01

    Three CYP6Z genes are linked to a major pyrethroid resistance locus in the mosquito Anopheles gambiae. We have expressed CYP6Z2 in Escherichia coli and produced a structural model in order to examine its role in detoxification. E. coli membranes co-expressing CYP6Z2 and An. gambiae P450 reductase (AgCPR) catalysed the dealkylation of benzyloxyresorufin with kinetic parameters K(m) = 0.13 microM; K(cat) = 1.5 min(-1). The IC(50) values of a wide range of compounds were measured. Pyrethroids cypermethrin and permethrin produced low IC(50) values, but were not metabolized. Plant flavanoids were the most potent inhibitors. Several compounds were shown to be substrates, suggesting that CYP6Z2 has broad substrate specificity and plays an important chemo-protective role during the herbivorous phase of the life-cycle. PMID:18353102

  8. A modular chitin-binding protease associated with hemocytes and hemolymph in the mosquito Anopheles gambiae.

    PubMed

    Danielli, A; Loukeris, T G; Lagueux, M; Müller, H M; Richman, A; Kafatos, F C

    2000-06-20

    Sp22D, a modular serine protease encompassing chitin binding, low density lipoprotein receptor, and scavenger receptor cysteine-rich domains, was identified by molecular cloning in the malaria vector, Anopheles gambiae. It is expressed in multiple body parts and during much of development, most intensely in hemocytes. The protein appears to be posttranslationally modified. Its integral, putatively glycosylated form is secreted in the hemolymph, whereas a smaller form potentially generated by proteolytic processing is associated with the tissues. Bacterial challenge or wounding result in low-level RNA induction, but the protein does not bind to bacteria, nor is its processing affected by infection. However, Sp22D binds to chitin with high affinity and undergoes transient changes in processing during pupal to adult metamorphosis; it may respond to exposure to naked chitin during tissue remodeling or damage. PMID:10860981

  9. Morphological and chromosomal descriptions of new species in the Anopheles subpictus complex.

    PubMed

    Suguna, S G; Rathinam, K G; Rajavel, A R; Dhanda, V

    1994-01-01

    Anopheles subpictus Grassi is shown to comprise four reproductively distinct species, designated A, B, C and D, occurring sympatrically in villages of Pondicherry, southeast India. Adult females were reared individually from wild larvae and examined for their morphological and chromosomal characters. Paracentric fixed inversions on the X-chromosome serve to distinguish the species cytogenetically, with no inversion heterozygotes (i.e. no interspecific hybrids) among totals of 717 species A (X+a, +b), 1863 species B (Xa, b), 869 species C (Xa, +b) and 1365 species D (X+a, b) identified. Morphologically, diagnostic characters for each of the four species are seen in the egg float ridge number, larval mesothoracic seta 4, pupal seta 7-I and the palpi of female adults. Species A, C and D immatures inhabit freshwater, whereas the malaria vector species B breeds in saltwater and was found only in coastal villages. PMID:8161853

  10. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    PubMed Central

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  11. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles).

    PubMed

    Wilkerson, R C; Parsons, T J; Albright, D G; Klein, T A; Braun, M J

    1993-01-01

    The usefulness of random amplified polymorphic DNA (RAPD) was examined as a potential tool to differentiate cryptic mosquito species. It proved to be a quick, effective means of finding genetic markers to separate two laboratory populations of morphologically indistinguishable African malaria vectors, Anopheles gambiae and An. arabiensis. In an initial screening of fifty-seven RAPD primers, 377 bands were produced, 295 of which differed between the two species. Based on criteria of interpretability, simplicity and reproducibility, thirteen primers were chosen for further screening using DNA from thirty individuals of each species. Seven primers produced diagnostic bands, five of which are described here. Some problematic characteristics of RAPD banding patterns are discussed and approaches to overcome these are suggested. PMID:8269099

  12. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization.

    PubMed

    Mitchell, S E; Cockburn, A F; Seawright, J A

    1993-12-01

    The complete sequence (15,455 bp) of the mitochondrial DNA of the mosquito Anopheles quadrimaculatus species A is reported. This genome is compact and very A+T rich (77.4% A+T). It contains genes for 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 13 subunits of the mitochondrial inner membrane respiratory complexes. The gene arrangement is the same as in Drosophila yakuba, except that the positions of two contiguous tRNAs are reversed and a third tRNA is transcribed from the complementary strand. Protein-coding genes, rRNAs, and most tRNAs were similar to D. yakuba. Two tRNAs had nonstandard secondary structures comparable with those of nematode mitochondrial tRNAs. The very small putative control region (625 bp) contains no sequence motifs similar to those used in vertebrates and other insects for initiation of transcription and replication. PMID:8112570

  13. A new cytotype of Anopheles nuneztovari from western Venezuela and Colombia.

    PubMed

    Conn, J; Puertas, Y R; Seawright, J A

    1993-09-01

    Cytogenetic analysis of the larval polytene chromosomes of Anopheles nuneztovari from 5 collection sites in Táchira and Zulia states northwest of the Andean Cordillera in western Venezuela and from 2 sites in the Department of Valle, western Colombia, revealed what appears to be a distinctive cytotype informally designated as An. nuneztovari C. Its chromosomes are homosequential with those of An. nuneztovari B from western Venezuela southeast of the Cordillera but differ in the presence of a well-defined chromocenter and unique inversion polymorphisms. The large complex inversion in western Venezuela, 2Lb, is present at a frequency of 0.263 and deviates significantly from Hardy-Weinberg equilibrium in 3 of the 5 sites. Two smaller inversions (2Lc and 2Ld) that are included in 2Lb are present in the Colombian samples at a frequency of 0.300. PMID:8245938

  14. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection.

    PubMed

    Dimopoulos, George; Christophides, George K; Meister, Stephan; Schultz, Jörg; White, Kevin P; Barillas-Mury, Carolina; Kafatos, Fotis C

    2002-06-25

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram- bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways. PMID:12077297

  15. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection

    PubMed Central

    Dimopoulos, George; Christophides, George K.; Meister, Stephan; Schultz, Jörg; White, Kevin P.; Barillas-Mury, Carolina; Kafatos, Fotis C.

    2002-01-01

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram− bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways. PMID:12077297

  16. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae.

    PubMed

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A; Serhan, Charles N; Ribeiro, Jose M; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to 'remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  17. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection.

    PubMed

    Oliveira, Jose Henrique M; Gonçalves, Renata L S; Oliveira, Giselle A; Oliveira, Pedro L; Oliveira, Marcus F; Barillas-Mury, Carolina

    2011-06-01

    Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  18. Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi

    PubMed Central

    BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.

    2012-01-01

    Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344

  19. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development

    PubMed Central

    Shaw, W. Robert; Marcenac, Perrine; Childs, Lauren M.; Buckee, Caroline O.; Baldini, Francesco; Sawadogo, Simon P.; Dabiré, Roch K.; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  20. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes.

    PubMed

    Salas, M L; Romero, J F; Solarte, Y; Olano, V; Herrera, M A; Herrera, S

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain. PMID:7565121

  1. Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages.

    PubMed

    Schielke, Erika; Costantini, Carlo; Carchini, Gianmaria; Sagnon, N'falé; Powell, Jeffrey; Caccone, Adalgisa

    2007-09-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detected after ingestion by members of the families Lestidae (order Odonata) after four hours, Libellulidae (order Odonata) after six hours, and Notonectidae (order Hemiptera) after 24 hours. This method is an improvement over previously published methods because of ease of execution and increased time of detection after ingestion. PMID:17827361

  2. Changes in Genetic Diversity from Field to Laboratory During Colonization of Anopheles darlingi Root (Diptera: Culicidae).

    PubMed

    Lainhart, William; Bickersmith, Sara A; Moreno, Marta; Rios, Carlos Tong; Vinetz, Joseph M; Conn, Jan E

    2015-11-01

    The process of colonizing any arthropod species, including vector mosquitoes, necessarily involves adaptation to laboratory conditions. The adaptation and evolution of colonized mosquito populations needs consideration when such colonies are used as representative models for pathogen transmission dynamics. A recently established colony of Anopheles darlingi, the primary malaria vector in Amazonian South America, was tested for genetic diversity and bottleneck after 21 generations, using microsatellites. As expected, laboratory An. darlingi had fewer private and rare alleles (frequency < 0.05), decreased observed heterozygosity, and more common alleles (frequency > 0.50), but no significant evidence of a bottleneck, decrease in total alleles, or increase in inbreeding compared with field specimens (founder population). Low-moderate differentiation between field and laboratory populations was detected. With these findings, and the documented inherent differences between laboratory and field populations, results of pathogen transmission studies using this An. darlingi colony need to be interpreted cautiously. PMID:26283742

  3. Tibet Orbivirus, a Novel Orbivirus Species Isolated from Anopheles maculatus Mosquitoes in Tibet, China

    PubMed Central

    Zhao, Guoyan; Fu, Shihong; Wang, David; Wang, Zhiyu; Liang, Guodong

    2014-01-01

    Background The genus Orbivirus includes a number of important pathogenic viruses, including Bluetongue virus (BTV), African horse sickness virus (AHSV), and Epizootic hemorrhagic disease virus (EHDV). In this study we describe the isolation and characterization of an Orbivirus strain isolated from Anopheles maculatus mosquitoes collected in Tibet, China. Methods and Results Initial viral screening identified a viral strain (XZ0906) that caused significant cytopathic effect (CPE) in BHK-21 cells, including rounding, cell rupture, and floating. Although CPE was not observed in insect cells (C6/36), these cells supported viral replication. Polyacrylamide gel analysis revealed a genome consisting of 10 segments of double-stranded RNA (dsRNA), with a distribution pattern of 3-3-3-1. 454 high throughput sequencing of culture supernatant was used for viral identification. Complete genome sequencing was performed by Sanger sequencing in combination with 5′-RACE and 3′-RACE. Sequence analysis demonstrated that all 5′- and 3′- untranslated regions (UTRs) for each of the 10 genome segments contained a series of six highly conserved nucleotides. In addition, homology analysis and phylogenetic analysis based on amino acid sequence was completed, and all results show that virus XZ0906 was not a member of any known species or serotype of Orbivirus, indicating it to be a new species within the genus Orbivirus. Conclusions The isolated Orbivirus strain was designated Tibet Orbivirus, TIBOV to denote the location from which it was isolated. TIBOV is a novel orbivirus species which is isolated from Anopheles maculatus mosquitoes collected in Tibet, China. PMID:24533145

  4. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species.

    PubMed

    Dong, Yuemei; Aguilar, Ruth; Xi, Zhiyong; Warr, Emma; Mongin, Emmanuel; Dimopoulos, George

    2006-06-01

    Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading

  5. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes

    PubMed Central

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter

    2011-01-01

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  6. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae

    PubMed Central

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J.; Tittiger, Claus; Juárez, M. Patricia; Mijailovsky, Sergio J.; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J.; Vontas, John

    2016-01-01

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of 14C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An. gambiae. PMID:27439866

  7. Composition and Biting Activity of Anopheles (Diptera: Culicidae) in the Amazon Region of Colombia

    PubMed Central

    RODRÍGUEZ, MAURICIO; PÉREZ, LIGIA; CAICEDO, JUAN CARLOS; PRIETO, GUILLERMO; ARROYO, JOSÉ ANTONIO; KAUR, HARPARKASH; SUÁREZ-MUTIS, MARTHA; DE LA HOZ, FERNANDO; LINES, JO; ALEXANDER, NEAL

    2013-01-01

    To provide information for public health policy on mosquito nets in the Amazon region of Colombia, we conducted landing catches to estimate Anopheles species composition and biting activity. Two hundred twenty person-nights of catches were done in seven locations over a period of 14 mo. A total of 1,780 Anopheles mosquitoes were caught (8.1 per person-night). Among the nine species found, An. oswaldoi Peryassú was the most common (776 mosquitoes, 44%), followed by An. darlingi Root s.l. (498, 28%). An. oswaldoi was the most common species collected outdoors, where its biting rate dropped steadily from a peak of >15 bites/person-night at the start of the night (1800–1900 hours) to ≈2 bites/person-night before dawn. An. darlingi was the most common species collected indoors, with a biting rate of ≈3–4 bites/person-night until about midnight, when the rate dropped below 1 bite/person-night, before showing a secondary peak before dawn. Sixty-four mosquito nets were analyzed by the technique of high-performance liquid chromatography (HPLC) for levels of deltamethrin (DM). All but two (62) of these were reported by their owners to have been impregnated with insecticide, and 53 were found by HPLC to have deltamethrin. However, one half (32) of the nets had concentrations <4 mg/m2 and therefore were likely to have been inadequately protective. An inverse association was found between the reported time between washes and deltamethrin concentration. These findings show a need for additional protection from mosquitoes when not inside nets, as well as for more effective impregnation, possibly through wash-resistant insecticide formulation. PMID:19351081

  8. Mosquito biting activity on humans & detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India

    PubMed Central

    Korgaonkar, Nandini S.; Kumar, Ashwani; Yadav, Rajpal S.; Kabadi, Dipak; Dash, Aditya P.

    2012-01-01

    Background & objectives: Knowledge of the bionomics of mosquitoes, especially of disease vectors, is essential to plan appropriate vector avoidance and control strategies. Information on biting activity of vectors during the night hours in different seasons is important for choosing personal protection measures. This study was carried out to find out the composition of mosquito fauna biting on humans and seasonal biting trends in Goa, India. Methods: Biting activities of all mosquitoes including vectors were studied from 1800 to 0600 h during 85 nights using human volunteers in 14 different localities of three distinct ecotypes in Goa. Seasonal biting trends of vector species were analysed and compared. Seasonal biting periodicity during different phases of night was also studied using William's mean. Results: A total of 4,191 mosquitoes of five genera and 23 species were collected. Ten species belonged to Anopheles, eight to Culex, three to Aedes and one each to Mansonia and Armigeres. Eleven vector species had human hosts, including malaria vectors Anopheles stephensi (1.3%), An. fluviatilis (1.8%), and An. culicifacies (0.76%); filariasis vectors Culex quinquefasciatus (40.8%) and Mansonia uniformis (1.8%); Japanese encephalitis vectors Cx. tritaeniorhynchus (17.4%), Cx. vishnui (7.7%), Cx. pseudovishnui (0.1%), and Cx. gelidus (2.4%); and dengue and chikungunya vectors Aedes albopictus (0.9%) and Ae. aegypti (0.6%). Two An. stephensi of the total 831 female anophelines, were found positive for P. falciparum sporozoites. The entomological inoculation rate (EIR) of P. falciparum was 18.1 and 2.35 for Panaji city and Goa, respectively. Interpretation & conclusions: Most of the mosquito vector species were collected in all seasons and throughout the scotophase. Biting rates of different vector species differed during different phases of night and seasons. Personal protection methods could be used to stop vector-host contact. PMID:22382193

  9. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village.

    PubMed

    Huestis, Diana L; Yaro, Alpha S; Traoré, Adama I; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2011-07-15

    In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion. PMID:21697426

  10. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes.

    PubMed

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A P; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J; Sullivan, David J; Thuma, Philip E; Liu, Kun; Agre, Peter

    2011-11-15

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections--S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30-80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples-S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2-12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent-S108T (90%), with A16V and the 108T+16V double mutant (49-57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  11. Evolutionary Dynamics of the Ty3/Gypsy LTR Retrotransposons in the Genome of Anopheles gambiae

    PubMed Central

    Tubio, Jose Manuel C.; Tojo, Marta; Bassaganyas, Laia; Escaramis, Georgia; Sharakhov, Igor V.; Sharakhova, Maria V.; Tornador, Cristian; Unger, Maria F.; Naveira, Horacio; Costas, Javier; Besansky, Nora J.

    2011-01-01

    Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr) groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis. PMID:21283637

  12. Visualizing Non Infectious and Infectious Anopheles gambiae Blood Feedings in Naive and Saliva-Immunized Mice

    PubMed Central

    Choumet, Valerie; Attout, Tarik; Chartier, Loïc; Khun, Huot; Sautereau, Jean; Robbe-Vincent, Annie; Brey, Paul; Huerre, Michel; Bain, Odile

    2012-01-01

    Background Anopheles gambiae is a major vector of malaria and lymphatic filariasis. The arthropod-host interactions occurring at the skin interface are complex and dynamic. We used a global approach to describe the interaction between the mosquito (infected or uninfected) and the skin of mammals during blood feeding. Methods Intravital video microscopy was used to characterize several features during blood feeding. The deposition and movement of Plasmodium berghei sporozoites in the dermis were also observed. We also used histological techniques to analyze the impact of infected and uninfected feedings on the skin cell response in naive mice. Results The mouthparts were highly mobile within the skin during the probing phase. Probing time increased with mosquito age, with possible effects on pathogen transmission. Repletion was achieved by capillary feeding. The presence of sporozoites in the salivary glands modified the behavior of the mosquitoes, with infected females tending to probe more than uninfected females (86% versus 44%). A white area around the tip of the proboscis was observed when the mosquitoes fed on blood from the vessels of mice immunized with saliva. Mosquito feedings elicited an acute inflammatory response in naive mice that peaked three hours after the bite. Polynuclear and mast cells were associated with saliva deposits. We describe the first visualization of saliva in the skin by immunohistochemistry (IHC) with antibodies directed against saliva. Both saliva deposits and sporozoites were detected in the skin for up to 18 h after the bite. Conclusion This study, in which we visualized the probing and engorgement phases of Anopheles gambiae blood meals, provides precise information about the behavior of the insect as a function of its infection status and the presence or absence of anti-saliva antibodies. It also provides insight into the possible consequences of the inflammatory reaction for blood feeding and pathogen transmission. PMID

  13. Effect of larval crowding on mating competitiveness of Anopheles gambiae mosquitoes

    PubMed Central

    Ng'habi, Kija R; John, Bernadette; Nkwengulila, Gamba; Knols, Bart GJ; Killeen, Gerry F; Ferguson, Heather M

    2005-01-01

    Background The success of sterile or transgenic Anopheles for malaria control depends on their mating competitiveness within wild populations. Current evidence suggests that transgenic mosquitoes have reduced fitness. One means of compensating for this fitness deficit would be to identify environmental conditions that increase their mating competitiveness, and incorporate them into laboratory rearing regimes. Methods Anopheles gambiae larvae were allocated to three crowding treatments with the same food input per larva. Emerged males were competed against one another for access to females, and their corresponding longevity and energetic reserves measured. Results Males from the low-crowding treatment were much more likely to acquire the first mating. They won the first female approximately 11 times more often than those from the high-crowding treatment (Odds ratio = 11.17) and four times more often than those from the medium-crowding treatment (Odds ratio = 3.51). However, there was no overall difference in the total number of matings acquired by males from different treatments (p = 0.08). The survival of males from the low crowding treatment was lower than those from other treatments. The body size and teneral reserves of adult males did not differ between crowding treatments, but larger males were more likely to acquire mates than small individuals. Conclusion Larval crowding and body size have strong, independent effects on the mating competitiveness of adult male An. gambiae. Thus manipulation of larval crowding during mass rearing could provide a simple technique for boosting the competitiveness of sterile or transgenic male mosquitoes prior to release. PMID:16197541

  14. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village

    PubMed Central

    Huestis, Diana L.; Yaro, Alpha S.; Traoré, Adama I.; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2011-01-01

    SUMMARY In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion. PMID:21697426

  15. Survivorship of Anopheles darlingi (Diptera: Culicidae) in Relation with Malaria Incidence in the Brazilian Amazon

    PubMed Central

    de Barros, Fábio Saito Monteiro; Honório, Nildimar Alves; Arruda, Mércia Eliane

    2011-01-01

    We performed a longitudinal study of adult survival of Anopheles darlingi, the most important vector in the Amazon, in a malarigenous frontier zone of Brazil. Survival rates were determined from both parous rates and multiparous dissections. Anopheles darlingi human biting rates, daily survival rates and expectation of life where higher in the dry season, as compared to the rainy season, and were correlated with malaria incidence. The biting density of mosquitoes that had survived long enough for completing at least one sporogonic cycle was related with the number of malaria cases by linear regression. Survival rates were the limiting factor explaining longitudinal variations in Plasmodium vivax malaria incidence and the association between adult mosquito survival and malaria was statistically significant by logistic regression (P<0.05). Survival rates were better correlated with malaria incidence than adult mosquito biting density. Mathematical modeling showed that P. falciparum and P. malariae were more vulnerable to changes in mosquito survival rates because of longer sporogonic cycle duration, as compared to P. vivax, which could account for the low prevalence of the former parasites observed in the study area. Population modeling also showed that the observed decreases in human biting rates in the wet season could be entirely explained by decreases in survival rates, suggesting that decreased breeding did not occur in the wet season, at the sites where adult mosquitoes were collected. For the first time in the literature, multivariate methods detected a statistically significant inverse relation (P<0.05) between the number of rainy days per month and daily survival rates, suggesting that rainfall may cause adult mortality. PMID:21857927

  16. Anopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species

    PubMed Central

    Dong, Yuemei; Aguilar, Ruth; Xi, Zhiyong; Warr, Emma; Mongin, Emmanuel; Dimopoulos, George

    2006-01-01

    Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading

  17. Inducible peroxidases mediate nitration of anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion.

    PubMed

    Kumar, Sanjeev; Gupta, Lalita; Han, Yeon Soo; Barillas-Mury, Carolina

    2004-12-17

    Plasmodium berghei invasion of Anopheles stephensi midgut cells causes severe damage, induces expression of nitric-oxide synthase, and leads to apoptosis. The present study indicates that invasion results in tyrosine nitration, catalyzed as a two-step reaction in which nitric-oxide synthase induction is followed by increased peroxidase activity. Ookinete invasion induced localized expression of peroxidase enzymes, which catalyzed protein nitration in vitro in the presence of nitrite and H(2)O(2). Histochemical stainings revealed that when a parasite migrates laterally and invades more than one cell, the pattern of induced peroxidase activity is similar to that observed for tyrosine nitration. In Anopheles gambiae, ookinete invasion elicited similar responses; it induced expression of 5 of the 16 peroxidase genes predicted by the genome sequence and decreased mRNA levels of one of them. One of these inducible peroxidases has a C-terminal oxidase domain homologous to the catalytic moiety of phagocyte NADPH oxidase and could provide high local levels of superoxide anion (O(2)), that when dismutated would generate the local increase in H(2)O(2) required for nitration. Chemically induced apoptosis of midgut cells also activated expression of four ookinete-induced peroxidase genes, suggesting their involvement in general apoptotic responses. The two-step nitration reaction provides a mechanism to precisely localize and circumscribe the toxic products generated by defense reactions involving nitration. The present study furthers our understanding of the biochemistry of midgut defense reactions to parasite invasion and how these may influence the efficiency of malaria transmission by anopheline mosquitoes. PMID:15456781

  18. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    PubMed

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae. PMID:27439866

  19. Anopheles (Diptera: Culicidae) malaria vectors in the municipality of Puerto Carreno, Vichada, Colombia

    PubMed Central

    Jiménez, Pilar; Conn, Jan E.; Wirtz, Robert; Brochero, Helena

    2013-01-01

    Introduction The study of the biological aspects of Anopheles spp., strengthens the entomological surveillance. Objective To determine biological aspects and behavior of adult Anopheles mosquitoes in the urban area of Puerto Carreño municipality, Vichada, Colombia. Materials and methods Wild anophelines were collected landing on humans both indoors and outdoors between 18:00h and 06:00h for 50 min/h during two consecutive nights/month for eight months in the urban area of Puerto Carreño. The biting rate activity, the natural infection by Plasmodium falciparum and P. vivax VK247 and VK210 using ELISA, and the annual entomological inoculation rate were determined for each species. The members of the Albitarsis complex were determined by amplificacion of the white gene by polymerase chain reaction. Results In order of abundance the species found were An. darlingi (n=1,166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) and An. oswaldoi sensu lato (n=2). An. darlingi showed two activity peaks between 21:00 to 22:00 and 05:00 to 06:00 hours outdoors and between 21:00 to 22:00 and 04:00 to 05:00 indoors. Natural infection of this species was found with P. vivax VK210 and its annual entomological inoculation rate was 2. Natural infection of An marajoara sensu stricto with P. falciparum was found, with an annual entomological inoculation rate of 5 and a peak biting activity between 18:00 to 19:00 hrs both indoors and outdoors. Conclusion Transmission of malaria in the urban area of Puerto Carreño, Vichada, can occur by An. darlingi and An. marajoara s. s. PMID:23235809

  20. Kdr-based insecticide resistance in Anopheles gambiae s.s populations in

    PubMed Central

    2011-01-01

    Background The spread of insecticide resistance in the malaria mosquito, Anopheles gambiae is a serious threat for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S6 transmembrane segment of domain II in the voltage gated sodium channel, known as kdr (knockdown resistance) mutations leading to a change of a Leucine to a Phenylalanine (L1014F) or to a Serine (L1014S) confer resistance to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the kdr alleles in wild Anopheles gambiae populations in Cameroon. Results A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and identified as An. gambiae (N = 1,248; 88.8%), An. arabiensis (N = 120; 8.5%) and An. melas (N = 37; 2.6%). Both kdr alleles 1014F and 1014S were identified in the M and S molecular forms of An. gambiae s.s. The frequency of the 1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from 3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both resistant kdr alleles. Conclusion This study provides an updated distribution map of the kdr alleles in wild An. gambiae populations in Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the country may be critical for the planning and implementation of malaria vector control interventions based on IRS and ITNs, as currently ongoing in Cameroon. PMID:22035176

  1. Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum

    PubMed Central

    Harris, Caroline; Lambrechts, Louis; Rousset, François; Abate, Luc; Nsango, Sandrine E.; Fontenille, Didier; Morlais, Isabelle; Cohuet, Anna

    2010-01-01

    Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs) associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria. PMID:20862317

  2. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons.

    PubMed

    Arcaz, Arthur C; Huestis, Diana L; Dao, Adama; Yaro, Alpha S; Diallo, Moussa; Andersen, John; Blomquist, Gary J; Lehmann, Tovi

    2016-06-01

    The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism. PMID:27207644

  3. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons

    PubMed Central

    Arcaz, Arthur C.; Huestis, Diana L.; Dao, Adama; Yaro, Alpha S.; Diallo, Moussa; Andersen, John; Blomquist, Gary J.; Lehmann, Tovi

    2016-01-01

    ABSTRACT The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii. Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism. PMID:27207644

  4. Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Gupta, Kuldeep; Gupta, Lalita; Kumar, Sanjeev

    2016-06-01

    The interaction of mosquito immune system with Plasmodium is critical in determining the vector competence. Thus, blocking the crucial mosquito molecules that regulate parasite development might be effective in controlling the disease transmission. In this study, we characterized a full-length AsHPX15 gene from the major Indian malaria vector Anopheles stephensi. This gene is true ortholog of Anopheles gambiae heme peroxidase AgHPX15 (AGAP013327), which modulates midgut immunity and regulates Plasmodium falciparum development. We found that AsHPX15 is highly induced in mosquito developmental stages and blood fed midguts. In addition, this is a lineage-specific gene that has identical features and 65-99% amino acids identity with other HPX15 genes present in eighteen worldwide-distributed anophelines. We discuss that the conserved HPX15 gene might serve as a common target to manipulate mosquito immunity and arresting Plasmodium development inside the vector host. PMID:26943999

  5. Spatio-Temporal Patterns in kdr Frequency in Permethrin and DDT Resistant Anopheles gambiae s.s. from Uganda

    PubMed Central

    Verhaeghen, Katrijn; Bortel, Wim Van; Roelants, Patricia; Okello, Paul Edward; Talisuna, Ambrose; Coosemans, Marc

    2010-01-01

    The planned upscaling of vector control strategies requires insight into the epidemiological consequences of vector resistance. Therefore, the pyrethroid and DDT resistance status of Anopheles gambiae s.l. was assessed in Uganda from 2004 to 2006, and spatial and seasonal variations in knockdown resistance (kdr) frequencies were analyzed in terms of epidemiological significance. Anopheles gambiae s.l. was DDT and pyrethroid resistant in central and eastern Uganda. The L1014S kdr allele frequencies varied from 3% to 48% in An. gambiae s.s. Although the homozygous resistant genotype was the most prevalent genotype among survivors, the genotypes could not entirely explain the bioassay results. In the dry season, the kdr frequency was significantly higher in Plasmodium falciparum-infected mosquitoes, indicating that mosquitoes bearing a kdr mutation have a better adult survival, hence a higher likelihood of becoming infectious. This study showed that kdr might have an epidemiological impact that could jeopardize the vector control strategies. PMID:20348500

  6. Caudal is a negative regulator of the Anopheles IMD Pathway that controls resistance to P. falciparum infection

    PubMed Central

    Clayton, April M.; Cirimotich, Chris M.; Dong, Yuemei; Dimopoulos, George

    2013-01-01

    Malaria parasite transmission depends upon the successful development of Plasmodium in its Anopheles mosquito vector. The mosquito’s innate immune system constitutes a major bottleneck for parasite population growth. We show here that in Anopheles gambiae, the midgut-specific transcription factor Caudal acts as a negative regulator in the Imd pathway-mediated immune response against the human malaria parasite P. falciparum. Caudal also modulates the mosquito midgut bacterial flora. RNAi-mediated silencing of Caudal enhanced the mosquito’s resistance to bacterial infections and increased the transcriptional abundance of key immune effector genes. Interestingly, Caudal’s silencing resulted in an increased lifespan of the mosquito, while it impaired reproductive fitness with respect to egg laying and hatching. PMID:23178401

  7. Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands.

    PubMed

    Foley, D H; Bryan, J H

    2000-03-01

    Among the Punctulatus Group of Anopheles mosquitoes (Diptera: Culicidae), first-instar larvae of the medically unimportant freshwater Anopheles farauti species No. 7 survives a seawater tolerance test (SST) that was previously thought to be diagnostic for the saltwater-tolerant malaria vector species, An. farauti Laveran s.s. Salt tolerance in these two closely related isomorphic species appears to be a shared derived character within the Farauti Complex. Failure to differentiate An. farauti s.s. from An. farauti No. 7 will overestimate potential malaria vector numbers and waste limited larval control resources. Use of the SST should therefore be discontinued on Guadalcanal and other techniques such as allozyme electrophoresis used instead. PMID:10759320

  8. Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands [corrected].

    PubMed

    Foley, D H; Bryan, J H

    2000-12-01

    Among the Punctulatus Group of Anopheles mosquitoes (Diptera: Culicidae), first-instar larvae of the medically unimportant freshwater Anopheles farauti species No. 7 survives a seawater tolerance test (STT) that was previously thought to be diagnostic for the saltwater-tolerant malaria vector species, An. farauti Laveran s.s. Salt tolerance in these two closely related isomorphic species appears to be a shared derived character within the Farauti Complex. Failure to differentiate An. farauti s.s. from An. farauti No.7 will overestimate potential malaria vector numbers and waste limited larval control resources. Use of the STT should therefore be discontinued on Guadalcanal and other techniques such as allozyme electrophoresis used instead [corrected]. PMID:11129712

  9. Susceptibility of three laboratory strains of Anopheles albimanus (Diptera: Culicidae) to coindigenous Plasmodium vivax in southern Mexico.

    PubMed

    Chan, A S; Rodríguez, M H; Torres, J A; Rodríguez, M del C; Villarreal, C

    1994-05-01

    Three morphologically different pupal phenotypes (green, striped, brown) were selected from a parent strain of Anopheles albimanus Wiedemann collected from the Suchiate region in the state of Chiapas, Mexico. Significant differences in susceptibility to coindigenous Plasmodium vivax Grassi & Feletti were observed when striped was compared with the parent colony as well as with brown and with green phenotypes. Differences in susceptibility were not significant between the other phenotypes and the parent colony. PMID:8057314

  10. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in Córdoba and Antioquia states in northwestern Colombia

    PubMed Central

    Gutiérrez, Lina A; González, John J; Gómez, Giovan F; Castro, Martha I; Rosero, Doris A; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2011-01-01

    Malaria is a serious health problem in Córdoba and Antioquia states in northwestern Colombia, where 64.4% of the total Colombian cases were reported in 2007. Because little entomological information is available in this region, the aim of this work was to identify the Anopheles species composition and natural infectivity of mosquitoes distributed in seven localities with the highest malaria transmission. A total of 1,768 Anopheles mosquitoes were collected using human landing catches from March 2007 to July 2008. Ten species were identified; overall, An. nuneztovari s.l. was the most widespread (62%) and showed the highest average human biting rates. There were six other species of the Nyssorhynchus subgenus: An. albimanus (11.6%), An. darlingi (9.8%), An. braziliensis (6.6%), An. triannulatus s.l. (3.5%), An. albitarsis s.l. and An. oswaldoi s.l. at <1%; and three of the Anopheles subgenus: An. punctimacula, An. pseudopunctipennis s.l. and An. neomaculipalpus at <1% each. Two species from Córdoba, An. nuneztovari and An. darlingi, were detected naturally infected by Plasmodium vivax VK247 using ELISA and confirmed by nested PCR. All species were active indoors and outdoors. These results provide basic information for targeted vector control strategies in these localities. PMID:20140372

  11. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole. PMID:24961025

  12. Resting behaviour of Anopheles gambiae s.l. and its implication on malaria transmission in Uyui District, western Tanzania.

    PubMed

    Sindato, Calvin; Kabula, Bilali; Mbilu, Togolai J N K; Manga, Chacha; Tungu, Patrick; Kazimoto, John P; Kibonai, Stafford N; Kisinza, William N; Magesa, Stephen M

    2011-10-01

    An entomological survey to determine resting behaviour and species composition of malaria vectors was carried out in Uyui District in western Tanzania in May 2009. Mosquitoes were collected using indoor resting catch, window exit trap and outdoor "bed-net" techniques. The mosquitoes were identified using morphological key and polymerase chain reaction (PCR). A total of 672 Anopheles gambiae sensu lato were collected. Of these, 661 (98.4%) were collected outdoor whereas few (1.6%) were collected indoor. The exit trap catch: mechanical aspirator catch ratio was 1:1.75. The overall indoor resting density of An. gambiae s.l. as determined by mechanical aspirator and exit trap was 0.7 and 0.5 mosquitoes per room, respectively. The overall density of the host-seeking as determined by bed net trap outdoor was 44.1 mosquitoes per person. A sample of 44 specimens taken randomly from morphologically identified An.gambiae s.l. population was further analyzed to species level using PCR techniques. Of these 44 specimens 26 (59%) and 18 (41%) were Anopheles arabiensis and Anopheles gambiae sensu stricto respectively. This study contributes to the understanding of the distribution of malaria vectors with respect to species composition and their resting behaviour that could contribute to vector control operations in western Tanzania. A longitudinal study considering dry and wet seasons is recommended to provide more information on the seasonal distribution, abundance and biting behaviour of malaria vectors in the study area. PMID:26592058

  13. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes

    PubMed Central

    2014-01-01

    Background Increased understanding of the dry-season survival mechanisms of Anopheles gambiae in semi-arid regions could benefit vector control efforts by identifying weak links in the transmission cycle of malaria. In this study, we examined the effect of photoperiod and relative humidity on morphologic and chemical traits known to control water loss in mosquitoes. Methods Anopheles gambiae body size (indexed by wing length), mesothoracic spiracle size, and cuticular hydrocarbon composition (both standardized by body size) were examined in mosquitoes raised from eggs exposed to short photoperiod and low relative humidity, simulating the dry season, or long photoperiod and high relative humidity, simulating the wet-season. Results Mosquitoes exposed to short photoperiod exhibited larger body size and larger mesothoracic spiracle length than mosquitoes exposed to long photoperiod. Mosquitoes exposed to short photoperiod and low relative humidity exhibited greater total cuticular hydrocarbon amount than mosquitoes exposed to long photoperiod and high relative humidity. In addition, total cuticular hydrocarbon amount increased with age and was higher in mated females. Mean n-alkane retention time (a measure of cuticular hydrocarbon chain length) was lower in mosquitoes exposed to short photoperiod and low relative humidity, and increased with age. Individual cuticular hydrocarbon peaks were examined, and several cuticular hydrocarbons were identified as potential biomarkers of dry- and wet-season conditions, age, and insemination status. Conclusions Results from this study indicate that morphological and chemical changes underlie aestivation of Anopheles gambiae and may serve as biomarkers of aestivation. PMID:24970701

  14. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools

    PubMed Central

    Lobo, Neil F.; Laurent, Brandyce St.; Sikaala, Chadwick H.; Hamainza, Busiku; Chanda, Javan; Chinula, Dingani; Krishnankutty, Sindhu M.; Mueller, Jonathan D.; Deason, Nicholas A.; Hoang, Quynh T.; Boldt, Heather L.; Thumloup, Julie; Stevenson, Jennifer; Seyoum, Aklilu; Collins, Frank H.

    2015-01-01

    The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination. PMID:26648001

  15. Evaluation of Environmental Data for Identification of Anopheles (Diptera: Culicidae) Aquatic Larval Habitats in Kisumu and Malindi, Kenya

    PubMed Central

    JACOB, BENJAMIN G.; ARHEART, KRISTOPHER L.; GRIFFITH, DANIEL A.; MBOGO, CHARLES M.; GITHEKO, ANDREW K.; REGENS, JAMES L.; GITHURE, JOHN I.; NOVAK, ROBERT; BEIER, JOHN C.

    2009-01-01

    This research evaluates the extent to which use of environmental data acquired from field and satellite surveys enhances predictions of urban mosquito counts. Mosquito larval habitats were sampled, and multispectral thermal imager (MTI) satellite data in the visible spectrum at 5-m resolution were acquired for Kisumu and Malindi, Kenya, during February and March 2001. All entomological parameters were collected from January to May 2001, June to August 2002, and June to August 2003. In a Poisson model specification, for Anopheles funestus Giles, shade was the best predictor, whereas substrate was the best predictor for Anopheles gambiae, and vegetation for Anopheles arabensis Patton. The top predictors found with a logistic regression model specification were habitat size for An. gambiae Giles, pollution for An. arabensis, and shade for An. funestus. All other coefficients for canopy, debris, habitat nature, permanency, emergent plants, algae, pollution, turbidity, organic materials, all MTI waveband frequencies, distance to the nearest house, distance to the nearest domestic animal, and all land use land cover changes were nonsignificant. MTI data at 5-m spatial resolution do not have an additional predictive value for mosquito counts when adjusted for field-based ecological data. PMID:16365996

  16. Characterization of the Rel2-regulated transcriptome and proteome of Anopheles stephensi identifies new anti-Plasmodium factors.

    PubMed

    Pike, Andrew; Vadlamani, Alekhya; Sandiford, Simone L; Gacita, Anthony; Dimopoulos, George

    2014-09-01

    Mosquitoes possess an innate immune system that is capable of limiting infection by a variety of pathogens, including the Plasmodium spp. parasites responsible for human malaria. The Anopheles immune deficiency (IMD) innate immune signaling pathway confers resistance to Plasmodium falciparum. While some previously identified Anopheles anti-Plasmodium effectors are regulated through signaling by Rel2, the transcription factor of the IMD pathway, many components of this defense system remain uncharacterized. To begin to better understand the regulation of immune effector proteins by the IMD pathway, we used oligonucleotide microarrays and iTRAQ to analyze differences in mRNA and protein expression, respectively, between transgenic Anopheles stephensi mosquitoes exhibiting blood meal-inducible overexpression of an active recombinant Rel2 and their wild-type conspecifics. Numerous genes were differentially regulated at both the mRNA and protein levels following induction of Rel2. While multiple immune genes were up-regulated, a majority of the differentially expressed genes have no known immune function in mosquitoes. Selected up-regulated genes from multiple functional categories were tested for both anti-Plasmodium and anti-bacterial action using RNA interference (RNAi). Based on our experimental findings, we conclude that increased expression of the IMD immune pathway-controlled transcription factor Rel2 affects the expression of numerous genes with diverse functions, suggesting a broader physiological impact of immune activation and possible functional versatility of Rel2. Our study has also identified multiple novel genes implicated in anti-Plasmodium defense. PMID:24998399

  17. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools.

    PubMed

    Lobo, Neil F; St Laurent, Brandyce; Sikaala, Chadwick H; Hamainza, Busiku; Chanda, Javan; Chinula, Dingani; Krishnankutty, Sindhu M; Mueller, Jonathan D; Deason, Nicholas A; Hoang, Quynh T; Boldt, Heather L; Thumloup, Julie; Stevenson, Jennifer; Seyoum, Aklilu; Collins, Frank H

    2015-01-01

    The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination. PMID:26648001

  18. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to resistance, high operational costs and adverse non-target effects. Nowadays, plant-borne mosquitocides may serve as suitable alternative in the fight against mosquito vectors. In this study, the mosquito larvicidal activity of Origanum vulgare (Lamiaceae) leaf essential oil (EO) and its major chemical constituents was evaluated against the malaria vectors Anopheles stephensi and An. subpictus, the filariasis vector Culex quinquefasciatus and the Japanese encephalitis vector Cx. tritaeniorhynchus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the essential oil of O. vulgare contained 17 compounds. The major chemical components were carvacrol (38.30%) and terpinen-4-ol (28.70%). EO had a significant toxic effect against early third-stage larvae of An. stephensi, An. subpictus, Cx. quinquefasciatus and Cx. tritaeniorhynchus, with LC50 values of 67.00, 74.14, 80.35 and 84.93 μg/ml. The two major constituents extracted from the O. vulgare EO were tested individually for acute toxicity against larvae of the four mosquito vectors. Carvacrol and terpinen-4-ol appeared to be most effective against An. stephensi (LC50=21.15 and 43.27 μg/ml, respectively) followed by An. subpictus (LC50=24.06 and 47.73 μg/ml), Cx. quinquefasciatus (LC50=26.08 and 52.19 μg/ml) and Cx. tritaeniorhynchus (LC50=27.95 and 54.87 μg/ml). Overall, this research adds knowledge to develop newer and safer natural larvicides against malaria, filariasis and Japanese encephalitis mosquito vectors. PMID:26850541

  19. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    PubMed

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  20. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus

    PubMed Central

    Oliver, Shüné V.; Brooke, Basil D.

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  1. Integrated vector management targeting Anopheles darlingi populations decreases malaria incidence in an unstable transmission area, in the rural Brazilian Amazon

    PubMed Central

    2012-01-01

    Background Studies on vector behaviour should be conducted in order to evaluate the effectiveness of vector control measures on malaria protection in endemic areas of Latin America, where P. vivax predominates. This work aims to investigate the fauna of anopheline mosquitoes and verify the impact of integrated vector management in two colonization projects in the Careiro Municipality, Western Brazilian Amazon. Methods Four mosquitoes’ captures were carried out from August 2008 to March 2010, with an interval of six months between each collection. Since September 2009 a large programme to reduce the burden of malaria has started in the two communities by distribution of insecticide-treated bed nets (ITN) and intensification of indoor residual spraying (IRS). Human biting rates (HBRs), entomological inoculation rates (EIRs), malaria incidence rate (MIR) and Plasmodium carrier’s prevalence were used as outcomes to estimate the impact of the control measures. Results A total of 3,189 anophelines were collected, belonging to 13 species. Anopheles darlingi was the predominant species in the period (42.6%), followed by Anopheles albitarsis (38.4%). An. darlingi HBRs showed a notable decreasing trend from the start to the end of the study. Conversely, An. albitarsis increased its contribution to overall HBRs throughout the study. For An. darlingi there was a significant positive correlation between HBRs and MIR (p = 0.002). Anopheles albitarsis HBRs showed a significant negative correlation with the corresponding MIR (p = 0.045). EIR from total anophelines and from An. darlingi and An. albitarsis presented decreasing patterns in the successive collections. Four species of anophelines (An. darlingi, An. albitarsis, Anopheles braziliensis and Anopheles nuneztovari) were naturally infected with Plasmodium, albeit at very low infection rates. There were a decrease in the MIR for both vivax and falciparum malaria and in the prevalence of Plasmodium vivax and

  2. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina.

    PubMed

    Dantur Juri, María Julia; Estallo, Elizabet; Almirón, Walter; Santana, Mirta; Sartor, Paolo; Lamfri, Mario; Zaidenberg, Mario

    2015-06-01

    Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas. PMID:26047182

  3. Optimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus

    PubMed Central

    Vallejo, Andrés F.; Rubiano, Kelly; Amado, Andres; Krystosik, Amy R.; Herrera, Sócrates; Arévalo-Herrera, Myriam

    2016-01-01

    Introduction Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro culture system for Plasmodium vivax has been an important drawback for development of a standardized method to assess TB responses to this parasite. This study evaluated host, vector, and parasite factors that may influence Anopheles mosquito infection in order to develop an efficient and reliable assay to assess the TB immunity. Methods/Principal Findings A total of 94 P. vivax infected patients were enrolled as parasite donors or subjects of direct mosquito feeding in two malaria endemic regions of Colombia (Tierralta, and Buenaventura). Parasite infectiousness was assessed by membrane feeding assay or direct feeding assay using laboratory reared Anopheles mosquitoes. Infection was measured by qPCR and by microscopically examining mosquito midguts at day 7 for the presence of oocysts. Best infectivity was attained in four day old mosquitoes fed at a density of 100 mosquitos/cage. Membrane feeding assays produced statistically significant better infections than direct feeding assays in parasite donors; cytokine profiles showed increased IFN-γ, TNF and IL-1 levels in non-infectious individuals. Mosquito infections and parasite maturation were more reliably assessed by PCR compared to microscopy. Conclusions We evaluated mosquito, parasite and host factors that may affect the outcome of parasite transmission as measured by artificial membrane feeding assays. Results have led us to conclude that: 1) optimal mosquito infectivity occurs with mosquitoes four days after emergence at a cage density of 100; 2) mosquito infectivity is best quantified by PCR as it may be underestimated

  4. Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia.

    PubMed

    Walton, C; Handley, J M; Tun-Lin, W; Collins, F H; Harbach, R E; Baimai, V; Butlin, R K

    2000-06-01

    Separating the confounding effects of long-term population history from gene flow can be difficult. Here, we address the question of what inferences about gene flow can be made from mitochondrial sequence data in three closely related species of mosquitoes, Anopheles dirus species A, C, and D, from southeast Asia. A total of 84 sequences of 923 bp of the mitochondrial cytochrome oxidase I gene were obtained from 14 populations in Thailand, Myanmar, and Bangladesh. The genealogy of sequences obtained from two populations of AN: dirus C indicates no contemporary gene flow between them. The F(ST) value of 0.421 therefore probably represents a recent common history, perhaps involving colonization events. Anopheles dirus A and D are parapatric, yet no differentiation was seen either within or between species. The starlike genealogy of their haplotypes, smooth unimodal mismatch distributions, and excess of low frequency mutations indicate population expansion in An. dirus A and D. This, rather than widespread gene flow, explains their low within-species F(ST) values (0.018 and 0.022). The greater genetic diversity of An. dirus D suggests that expansion occurred first in species D and subsequently in species A. The current geographical separation and low hybrid fitness of these species also argue against ongoing interspecific gene flow. They suggest instead either historical introgression of mtDNA from An. dirus D into species A followed by independent range expansions, or a selective sweep of mtDNA that originated in An. dirus D. While not excluding contemporary gene flow, historical population processes are sufficient to explain the data in An. dirus A and D. The genealogical relationships between haplotypes could not be used to make inferences of gene flow because of extensive homoplasy due to hypervariable sites and possibly also recombination. However, it is concluded that this approach, rather than the use of fixation indices, is required in the future to understand

  5. The role of cow urine in the oviposition site preference of culicine and Anopheles mosquitoes

    PubMed Central

    2011-01-01

    Background Chemical and behavioural ecology of mosquitoes plays an important role in the development of chemical cue based vector control. To date, studies available have focused on evaluating mosquito attractants and repellents of synthetic and human origins. This study, however, was aimed at seasonal evaluation of the efficiency of cow urine in producing oviposition cues to Anopheles gambiae s.l. and Culex quinquefasciatus in both laboratory and field conditions. Methods Oviposition response evaluation in laboratory conditions was carried out in mosquito rearing cages. The oviposition substrates were located in parallel or in diagonal positions inside the cage. Urine evaluation against gravid females of An. arabiensis and Cx. quinquefasciatus was carried out at Day 1, Day 3 and Day 7. Five millilitres (mls) of cow urine was added to oviposition substrate while de-chlorinated water was used as a control. In field experiments, 500 mls of cow urine was added in artificial habitats with 2500 mls of de-chlorinated water and 2 kgs of soil. The experiment was monitored for thirty consecutive days, eggs were collected daily from the habitats at 7.00 hrs. Data analysis was performed using parametric and non-parametric tests for treatments and controls while attraction of the oviposition substrate in each species was presented using Oviposition Activity Index (OAI). Results The OAI was positive with ageing of cattle urine in culicine species in both laboratory and field experiments. The OAI for anopheline species was positive with fresh urine. The OAI during the rainy season was positive for all species tested while in the dry season the OAI for culicine spp and Anopheles gambiae s.l., changed with time from positive to negative values. Based on linear model analysis, seasons and treatments had a significant effect on the number of eggs laid in habitats, even though the number of days had no effect. Conclusion Oviposition substrates treated with cow urine in both

  6. [Malaria, anopheles, the anti-malaria campaign in French Guyana: between dogmatism and judgment].

    PubMed

    Raccurt, C P

    1997-01-01

    The recrudescence of malaria in French Guiana involves both border regions. One notes the predominance of Plasmodium falciparum along the Maroni River on the Surinam frontier and the transmission of both Plasmodium falciparum and Plasmodium vivax in amerindian settlements along the Oyapock River on the Brazilian frontier. The main mosquito vector is the endoexophile species, Anopheles darlingi. The role of man-biting forest anophelines in malaria transmission is still unclear. At the present time, malaria control is based on curative treatment of the confirmed cases (approximately 4,000 cases a year by active and passive screening). Vector control is supported by annual houses insecticides spraying and, to a lesser degree, use of insecticide-impregnated bednets. The main limiting factors for successful control have been difficulty in implementing a strategy adapted to the cultures of the amerindian and bushnegro populations living on either side of the river-frontiers and in organizing effective cross-border cooperation. The alleged role of immigration in transmission dynamics has been more speculative than real. However the growth of the population and the increase of human activities inside rain forest areas have favorized Anopheles darlingi breeding by uncontrolled deforestation. This situation need to be monitored closely. Information campaigns to improve public awareness could be useful. Following measures could improve control in sparsely populated, remote areas: to promote an integrated preventive program for a real community-wide distribution of primary health care; to discontinue insecticides spraying in houses which is poorly accepted by the bushnegro population and unsuitable to the amerindian dwellings; to support the use of personal protection; to initiate an effective anopheline larvae control; to determine the impact of the transmission during day-time activities especially among very small settlements far from the main villages where members of the

  7. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae

    PubMed Central

    Manda, Hortance; Gouagna, Louis C; Foster, Woodbridge A; Jackson, Robert R; Beier, John C; Githure, John I; Hassanali, Ahmed

    2007-01-01

    Background A previous study showed for Anopheles gambiae s.s. a gradation of feeding preference on common plant species growing in a malaria holoendemic area in western Kenya. The present follow-up study determines whether there is a relationship between the mosquito's preferences and its survival and fecundity. Methods Groups of mosquitoes were separately given ad libitum opportunity to feed on five of the more preferred plant species (Hamelia patens, Parthenium hysterophorus, Ricinus communis, Senna didymobotrya, and Tecoma stans) and one of the less preferred species (Lantana camara). The mosquitoes were monitored daily for survival. Sugar solution (glucose 6%) and water were used as controls. In addition, the fecundity of mosquitoes on each plant after (i) only one blood meal (number of eggs oviposited), and (ii) after three consecutive blood meals (proportion of females ovipositing, number of eggs oviposited and hatchability of eggs), was determined. The composition and concentration of sugar in the fed-on parts of each plant species were determined using gas chromatography. Using SAS statistical package, tests for significant difference of the fitness values between mosquitoes exposed to different plant species were conducted. Results and Conclusion Anopheles gambiae that had fed on four of the five more preferred plant species (T. stans, S. didymobotrya, R. communis and H. patens, but not P. hysterophorus) lived longer and laid more eggs after one blood meal, when compared with An. gambiae that had fed on the least preferred plant species L. camara. When given three consecutive blood-meals, the percentage of females that oviposited, but not the number of eggs laid, was significantly higher for mosquitoes that had previously fed on the four more preferred plant species. Total sugar concentration in the preferred plant parts was significantly correlated with survival and with the proportion of females that laid eggs. This effect was associated mainly with

  8. Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa

    PubMed Central

    Kerah-Hinzoumbé, Clément; Péka, Mallaye; Nwane, Philippe; Donan-Gouni, Issa; Etang, Josiane; Samè-Ekobo, Albert; Simard, Frédéric

    2008-01-01

    Background Indoor residual spraying and insecticide-treated nets (ITN) are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in Anopheles gambiae sensu lato from an area of large scale ITN distribution programme in south-western Chad. Methods Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The An. gambiae Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the kdr locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA). Results During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1%) was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9) with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. Anopheles arabiensis was the predominant species of the An. gambiae complex in the study area, representing 75 to 100% of the samples. Screening for kdr mutations detected the L1014F mutation in 88.6% (N = 35) of surviving An. gambiae sensu stricto S form mosquitoes. All surviving An. arabiensis (N = 49) and M form An. gambiae s.s. (N = 1) carried the susceptible allele. Conclusion This first

  9. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?

    PubMed Central

    2012-01-01

    Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. Results At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014F kdr mutation increased throughout the three years and by 2010, the frequency of 1014F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003) and in 2010 the 1014S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12%) were observed in Soumousso in 2009 and the difference between sites is significant for each year. Conclusion Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and between rounds of testing, and

  10. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa

    PubMed Central

    2013-01-01

    Background Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. Methods Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95) were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S) using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. Results The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates > 98%) and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. Conclusion In Cameroon, multiple resistance mechanisms segregate in the S form of An. gambiae resulting in

  11. Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution.

    PubMed

    Rothschild, Jeremy B; Tsimiklis, Panagiotis; Siggia, Eric D; François, Paul

    2016-05-01

    Molecular evolution is an established technique for inferring gene homology but regulatory DNA turns over so rapidly that inference of ancestral networks is often impossible. In silico evolution is used to compute the most parsimonious path in regulatory space for anterior-posterior patterning linking two Dipterian species. The expression pattern of gap genes has evolved between Drosophila (fly) and Anopheles (mosquito), yet one of their targets, eve, has remained invariant. Our model predicts that stripe 5 in fly disappears and a new posterior stripe is created in mosquito, thus eve stripe modules 3+7 and 4+6 in fly are homologous to 3+6 and 4+5 in mosquito. We can place Clogmia on this evolutionary pathway and it shares the mosquito homologies. To account for the evolution of the other pair-rule genes in the posterior we have to assume that the ancestral Dipterian utilized a dynamic method to phase those genes in relation to eve. PMID:27227405

  12. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae.

    PubMed

    Manoukis, Nicholas C; Powell, Jeffrey R; Touré, Mahamoudou B; Sacko, Adama; Edillo, Frances E; Coulibaly, Mamadou B; Traoré, Sekou F; Taylor, Charles E; Besansky, Nora J

    2008-02-26

    The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via "ecotypification," a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species. PMID:18287019

  13. Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy.

    PubMed

    Mongkol, Watcharakorn; Arunyawat, Uraiwan; Surat, Wunrada; Kubera, Anchanee

    2015-11-01

    Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity. PMID:26352934

  14. Hemocytome: deep sequencing analysis of mosquito blood cells in Indian malarial vector Anopheles stephensi.

    PubMed

    Thomas, Tina; De, Tanwee Das; Sharma, Punita; Lata, Suman; Saraswat, Priyanka; Pandey, Kailash C; Dixit, Rajnikant

    2016-07-10

    Hemocytes are tiny circulating blood cells of insects known to play multiple roles in physiological as well as cellular immune responses. However, the molecular nature of hemocytes in blood feeding insects, especially mosquitoes which transmit several deadly diseases such as malaria, dengue etc. is still limited. Therefore, to know the basic molecular composition of naïve mosquito hemocyte encoded proteins, we sequenced RNA-Seq library and analyzed a total of 13,105,858 Illumina sequencing reads in the mosquito Anopheles stephensi, an urban malarial vector in India. Denovo assembly approach yielded a buildup of 3025 contigs, for molecular and functional annotation. A total of 1829 contigs (48%) could be mapped to the mosquito transcript database, while out of remaining 1196 unmatched contigs, at least 1108 contigs i.e. 40% of total contigs, yielded a significant match to the available draft genome. ImmunoDB analysis predicted a total of 88 putative hemocyte transcripts belonging to 11 immune family proteins. A comprehensive molecular analysis of several unique transcripts including novel LRR, Holotricin, OBP, NiFU, that are involved in immunity, chemo sensing, cell-cell communication, nitrogen fixation/metabolism etc. provides initial evidence that mosquito hemocytes carry unique ability to meet and manage cell specific diverse functions of the mosquito blood. An unexpected observation of abundant transcripts encoding hypothetical proteins with unknown functions indicated that a much of the hemocyte biology remains to be understood. PMID:26915489

  15. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae.

    PubMed

    Zhang, Xin; Zhang, Jianzhen; Park, Yoonseong; Zhu, Kun Yan

    2012-09-01

    Chitin synthase (CHS) represents an attractive target site for combating insect pests as insect growth and development are strictly dependent on precisely tuned chitin biosynthesis and this pathway is absent in humans and other vertebrates. Current knowledge on CHS in insects, especially their structures, functions, and regulations is still very limited. We report the identification and characterization of two chitin synthase genes, AgCHS1 and AgCHS2, in African malaria mosquito, Anopheles gambiae. AgCHS1 and AgCHS2 were predicted to encode proteins of 1,578 and 1,586 amino acid residues, respectively. Their deduced amino acid sequences show high similarities to other insect chitin synthases. Transcriptional analysis indicated that AgCHS1 was expressed in egg, larval, pupal and adult stages whereas AgCHS2 appeared to be expressed at relatively low levels, particularly during the larval stages as examined by reverse transcription (RT)-PCR and real-time quantitative PCR. Relatively high expression was detected in the carcass followed by the foregut and hindgut for AgCHS1, and the foregut (cardia included) followed by the midgut for AgCHS2. Fluorescence in situ hybridization (FISH) and immunohistochemical analysis revealed new information including the localization of the two enzymes in the ommatidia of the compound eyes, and AgCHS2 in the thoracic and abdominal inter-segmental regions of pupal integument. PMID:22683441

  16. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria.

    PubMed

    Awolola, T S; Oduola, O A; Strode, C; Koekemoer, L L; Brooke, B; Ranson, H

    2009-11-01

    Pyrethroid insecticide resistance in Anopheles gambiae sensu stricto is a major concern to malaria vector control programmes. Resistance is mainly due to target-site insensitivity arising from a single point mutation, often referred to as knockdown resistance (kdr). Metabolic-based resistance mechanisms have also been implicated in pyrethroid resistance in East Africa and are currently being investigated in West Africa. Here we report the co-occurrence of both resistance mechanisms in a population of An. gambiae s.s. from Nigeria. Bioassay, synergist and biochemical analysis carried out on resistant and susceptible strains of An. gambiae s.s. from the same geographical area revealed >50% of the West African kdr mutation in the resistant mosquitoes but <3% in the susceptible mosquitoes. Resistant mosquitoes synergized using pyperonyl butoxide before permethrin exposure showed a significant increase in mortality compared with the non-synergized. Biochemical assays showed an increased level of monooxygenase but not glutathione-S-transferase or esterase activities in the resistant mosquitoes. Microarray analysis using the An. gambiae detox-chip for expression of detoxifying genes showed five over-expressed genes in the resistant strain when compared with the susceptible one. Two of these, CPLC8 and CPLC#, are cuticular genes not implicated in pyrethroid metabolism in An. gambiae s.s, and could constitute a novel set of candidate genes that warrant further investigation. PMID:18829056

  17. Comparison of the functional features of the pump organs of Anopheles sinensis and Aedes togoi.

    PubMed

    Ha, Young-Ran; Lee, Seung-Chul; Seo, Seung-Jun; Ryu, Jeongeun; Lee, Dong-Kyu; Lee, Sang-Joon

    2015-01-01

    Mosquitoes act as vectors for severe tropical diseases. Mosquito-borne diseases are affected by various factors such as environmental conditions, host body susceptibility, and mosquito feeding behavior. Among these factors, feeding behavior is affected by the feeding pump system located inside the mosquito head and also depends on the species of mosquito. Therefore, the 3D morphological structures of the feeding pumps of Aedes togoi and Anopheles sinensis were comparatively investigated using synchrotron X-ray microscopic computed tomography. In addition, the feeding behaviors of their pumping organs were also investigated using a 2D X-ray micro-imaging technique. An. sinensis, a malarial vector mosquito, had a larger feeding pump volume than Ae. togoi in the static or resting position. Interestingly, the two species of mosquitoes exhibited different feeding behaviors. Ae. togoi had a higher feeding frequency and expansion ratio than An. sinensis. Ae. togoi also exhibited F-actin localization more clearly. These distinctive variations in feeding volumes and behaviors provide essential insight into the blood-feeding mechanisms of female mosquitoes as vectors for tropical diseases. PMID:26464043

  18. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae).

    PubMed

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    Mosquitoes in the larval stage are attractive targets for pesticides because mosquitoes breed in water, and thus, it is easy to deal with them in this habitat. The use of conventional pesticides in the water sources, however, introduces many risks to people and/or the environment. Natural pesticides, especially those derived from plants, are more promising in this aspect. Aromatic plants and their essential oils are very important sources of many compounds that are used in different respects. In this study, the oils of 41 plants were evaluated for their effects against third-instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. At first, the oils were surveyed against A. aegypti using a 50-ppm solution. Thirteen oils from 41 plants (camphor, thyme, amyris, lemon, cedarwood, frankincense, dill, myrtle, juniper, black pepper, verbena, helichrysum and sandalwood) induced 100% mortality after 24 h, or even after shorter periods. The best oils were tested against third-instar larvae of the three mosquito species in concentrations of 1, 10, 50, 100 and 500 ppm. The lethal concentration 50 values of these oils ranged between 1 and 101.3 ppm against A. aegypti, between 9.7 and 101.4 ppm for A. stephensi and between 1 and 50.2 ppm for C. quinquefasciatus. PMID:16642386

  19. Relationship between Knockdown Resistance, Metabolic Detoxification and Organismal Resistance to Pyrethroids in Anopheles sinensis

    PubMed Central

    Zhong, Daibin; Chang, Xuelian; Zhou, Guofa; He, Zhengbo; Fu, Fengyang; Yan, Zhentian; Zhu, Guoding; Xu, Tielong; Bonizzoni, Mariangela; Wang, Mei-Hui; Cui, Liwang; Zheng, Bin; Chen, Bin; Yan, Guiyun

    2013-01-01

    Anopheles sinensis is the most important vector of malaria in Southeast Asia, including China. Currently, the most effective measure to prevent malaria transmission relies on vector control through the use of insecticides, primarily pyrethroids. Extensive use of insecticides poses strong selection pressure on mosquito populations for resistance. Resistance to insecticides can arise due to mutations in the insecticide target site (target site resistance), which in the case of pyrethroids is the para-type sodium channel gene, and/or the catabolism of the insecticide by detoxification enzymes before it reaches its target (metabolic detoxification resistance). In this study, we examined deltamethrin resistance in An. sinensis from China and investigated the relative importance of target site versus metabolic detoxification mechanisms in resistance. A high frequency (>85%) of nonsynonymous mutations in the para gene was found in populations from central China, but not in populations from southern China. Metabolic detoxification as measured by the activity of monooxygenases and glutathione S-transferases (GSTs) was detected in populations from both central and southern China. Monooxygenase activity levels were significantly higher in the resistant than the susceptible mosquitoes, independently of their geographic origin. Stepwise multiple regression analyses in mosquito populations from central China found that both knockdown resistance (kdr) mutations and monooxygenase activity were significantly associated with deltamethrin resistance, with monooxygenase activity playing a stronger role. These results demonstrate the importance of metabolic detoxification in pyrethroid resistance in An. sinensis, and suggest that different mechanisms of resistance could evolve in geographically different populations. PMID:23405157

  20. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Alout, Haoues; Dabiré, Roch K; Djogbénou, Luc S; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1(R) mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  1. Authentication scheme for routine verification of genetically similar laboratory colonies: a trial with Anopheles gambiae

    PubMed Central

    Wilkins, Elien E; Marcet, Paula L; Sutcliffe, Alice C; Howell, Paul I

    2009-01-01

    Background When rearing morphologically indistinguishable laboratory strains concurrently, the threat of unintentional genetic contamination is constant. Avoidance of accidental mixing of strains is difficult due to the use of common equipment, technician error, or the possibility of self relocation by adult mosquitoes ("free fliers"). In many cases, laboratory strains are difficult to distinguish because of morphological and genetic similarity, especially when laboratory colonies are isolates of certain traits from the same parental strain, such as eye color mutants, individuals with certain chromosomal arrangements or high levels of insecticide resistance. Thus, proving genetic integrity could seem incredibly time-consuming or impossible. On the other hand, lacking proof of genetically isolated laboratory strains could question the validity of research results. Results We present a method for establishing authentication matrices to routinely distinguish and confirm that laboratory strains have not become physically or genetically mixed through contamination events in the laboratory. We show a specific example with application to Anopheles gambiae sensu stricto strains at the Malaria Research and Reference Reagent Resource Center. This authentication matrix is essentially a series of tests yielding a strain-specific combination of results. Conclusion These matrix-based methodologies are useful for several mosquito and insect populations but must be specifically tailored and altered for each laboratory based on the potential contaminants available at any given time. The desired resulting authentication plan would utilize the least amount of routine effort possible while ensuring the integrity of the strains. PMID:19849838

  2. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii

    PubMed Central

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M.; Zwiebel, Laurence J.

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females. PMID:26900947

  3. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae

    PubMed Central

    Wang, Guirong; Carey, Allison F.; Carlson, John R.; Zwiebel, Laurence J.

    2010-01-01

    A systematic functional analysis across much of the conventional Anopheles gambiae odorant receptor (AgOR) repertoire was carried out in Xenopus oocytes using two-electrode, voltage-clamp electrophysiology. The resulting data indicate that each AgOR manifests a distinct odor-response profile and tuning breadth. The large diversity of tuning responses ranges from AgORs that are responsive to a single or small number of odorants (specialists) to more broadly tuned receptors (generalists). Several AgORs were identified that respond robustly to a range of human volatiles that may play a critical role in anopheline host selection. AgOR responses were analyzed further by constructing a multidimensional odor space representing the relationships between odorants and AgOR responses. Within this space, the distance between odorants is related to both chemical class and concentration and may correlate with olfactory discrimination. This study provides a comprehensive overview of olfactory coding mechanisms of An. gambiae that ultimately may aid in fostering the design and development of olfactory-based strategies for reducing the transmission of malaria and other mosquito-borne diseases. PMID:20160092

  4. A Functional Role for Anopheles gambiae Arrestin1 in Olfactory Signal Transduction

    PubMed Central

    Walker, William B.; Smith, Elaine M.; Jan, Taha; Zwiebel, L.J.

    2008-01-01

    Insect sensory arrestins act to desensitize visual and olfactory signal transduction pathways, as evidenced by the phenotypic effects of mutations in the genes encoding both Arr1 and Arr2 in Drosophila melanogaster. To assess whether such arrestins play similar roles in other, more medically relevant dipterans, we examined the ability of Anopheles gambiae sensory arrestin homologues AgArr1 and AgArr2 to rescue phenotypes associated with an olfactory deficit observed in D. melanogaster arrestin mutants. Of these, only AgArr1 facilitated significant phenotypic rescue of the corresponding Drosophila arr mutant olfactory phenotype, consistent with the view that functional orthology is shared by these Arr1 homologues. These results represent the first step in the functional characterization of AgArr1, which is highly expressed in olfactory appendages of An. gambiae in which it is likely to play an essential role in olfactory signal transduction. In addition to providing insight into the common elements of the peripheral olfactory system of dipterans, this work validates the importance of AgArr1 as a potential target for novel anti-malaria strategies that focus on olfactory-based behaviors in An. gambiae. PMID:18328499

  5. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae

    PubMed Central

    Xia, Yuanfeng; Wang, Guirong; Buscariollo, Daniela; Pitts, R. Jason; Wenger, Heidi; Zwiebel, Laurence J.

    2008-01-01

    The mosquito Anopheles gambiae is the principal Afrotropical vector for human malaria. A central component of its vectorial capacity is the ability to maintain sufficient populations of adults. During both adult and preadult (larval) stages, the mosquitoes depend on the ability to recognize and respond to chemical cues that mediate feeding and survival. In this study, we used a behavioral assay to identify a range of odorant-specific responses of An. gambiae larvae that are dependent on the integrity of the larval antennae. Parallel molecular analyses have identified a subset of the An. gambiae odorant receptors (AgOrs) that are localized to discrete neurons within the larval antennae and facilitate odor-evoked responses in Xenopus oocytes that are consistent with the larval behavioral spectrum. These studies shed light on chemosensory-driven behaviors and represent molecular and cellular characterization of olfactory processes in mosquito larvae. These advances may ultimately enhance the development of vector control strategies, targeting olfactory pathways in larval-stage mosquitoes to reduce the catastrophic effects of malaria and other diseases. PMID:18427108

  6. Assessment of the kill of Anopheles gambiae by the fumigant insecticide dichlorvos in experimental huts*

    PubMed Central

    Smith, A.; Park, P. O.; Hocking, K. S.

    1964-01-01

    As part of the World Health Organization's programme for the evaluation and testing of new insecticides, different types of dichlorvos dispenser were installed in experimental huts in Tanganyika for study of their effectiveness in killing Anopheles gambiae. It was found that satisfactorily high mosquito mortalities of 75% or more were maintained for one to two months after installation of a dispenser. Mortalities were about 10% higher in huts with grass roofs than in those with mud-lined roofs. The vapour toxicity was similar in the two types of hut, but the results of bio-assay tests on different types of surface showed that there was a residual contact effect of the insecticide as well as the fumigant effect; the lower mortalities in the mud-roofed huts may be due in part to removal or decomposition of the dichlorvos by the mud surface. Measurements of blood pseudo-cholinesterase levels in persons who slept in the experimental huts gave no indication that the dichlorvos had any harmful effect on them. PMID:14267749

  7. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi

    PubMed Central

    Macias, V; Coleman, J; Bonizzoni, M; James, A A

    2014-01-01

    The ability of transposons to mobilize to new places in a genome enables them to introgress rapidly into populations. The piRNA pathway has been characterized recently in the germ line of the fruit fly, Drosophila melanogaster, and is responsible for downregulating transposon mobility. Transposons have been used as tools in mosquitoes to genetically transform a number of species including Anopheles stephensi, a vector of human malaria. These mobile genetic elements also have been proposed as tools to drive antipathogen effector genes into wild mosquito populations to replace pathogen-susceptible insects with those engineered genetically to be resistant to or unable to transmit a pathogen. The piRNA pathway may affect the performance of such proposed genetic engineering strategies. In the present study, we identify and describe the An. stephensi orthologues of the major genes in the piRNA pathway, Ago3, Aubergine (Aub) and Piwi. Consistent with a role in protection from transposon movement, these three genes are expressed constitutively in the germ-line cells of ovaries and induced further after a blood meal. PMID:24947897

  8. Proteomics reveals major components of oogenesis in the reproductive tract of sugar-fed Anopheles aquasalis.

    PubMed

    Dias-Lopes, Geovane; Borges-Veloso, Andre; Saboia-Vahia, Leonardo; Padrón, Gabriel; de Faria Castro, Cássia Luana; Guimarães, Ana Carolina Ramos; Britto, Constança; Cuervo, Patricia; De Jesus, Jose Batista

    2016-05-01

    Anopheles (Nyssorhynchus) aquasalis is a malaria vector mainly distributed along the coastal regions of South and Central America. In the absence of an effective vaccine against malaria, strategies for controlling the vector are the main tool for interrupting parasite transmission. Mechanisms of oogenesis and embryogenesis in anautogenous mosquitoes are mainly modulated by blood feeding. However, the expression, at the protein level, of genes involved in such mechanisms in sugar-fed females is unknown. In this work, total protein extracts of the reproductive tract of female An. aquasalis that were fed sugar were analyzed using liquid chromatography followed by mass spectrometry for protein identification and bioinformatic tools for data mining. We identified 922 proteins expressed in the organ, and using several databases, we attributed biological meaning for several of them. Remarkably, nine proteins involved in oogenesis were identified in females fed sugar. Putative vitellogenins, vitellogenin receptor, lipid storage droplet, transferrin, ferritin, and apolipoprotein, identified here, are proteins involved in egg development. Proteins involved in embryonic development, such as paxillin, exuperantia, several growth factors, and dorsal switch protein, were identified. Interestingly, in this study, we identified 15 peptidases of various classes such as aminopeptidases, carboxypeptidases, serine protease, cathepsin, and metalloprotease that could potentially interact with male seminal components. Here, we demonstrated that the reproductive tract of female An. aquasalis fed on sugar expresses proteins involved in oogenesis and embryonic development. These findings reveal unknown aspects of the physiology of this organ under the given nutritional conditions. PMID:26850722

  9. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection

    PubMed Central

    Liu, Kun; Dong, Yuemei; Huang, Yuzheng; Rasgon, Jason L.; Agre, Peter

    2013-01-01

    Anopheles gambiae is a major vector mosquito for Plasmodium falciparum, the deadly pathogen causing most human malaria in sub-Saharan Africa. Synthesized in the fat body, trehalose is the predominant sugar in mosquito hemolymph. It not only provides energy but also protects the mosquito against desiccation and heat stresses. Trehalose enters the mosquito hemolymph by the trehalose transporter AgTreT1. In adult female A. gambiae, AgTreT1 is predominantly expressed in the fat body. We found that AgTreT1 expression is induced by environmental stresses such as low humidity or elevated temperature. AgTreT1 RNA silencing reduces the hemolymph trehalose concentration by 40%, and the mosquitoes succumb sooner after exposure to desiccation or heat. After an infectious blood meal, AgTreT1 RNA silencing reduces the number of P. falciparum oocysts in the mosquito midgut by over 70% compared with mock-injected mosquitoes. These data reveal important roles for AgTreT1 in stress adaptation and malaria pathogen development in a major vector mosquito. Thus, AgTreT1 may be a potential target for malaria vector control. PMID:24101462

  10. Exploring Proteins in Anopheles gambiae Male and Female Antennae through MALDI Mass Spectrometry Profiling

    PubMed Central

    Dani, Francesca R.; Francese, Simona; Mastrobuoni, Guido; Felicioli, Antonio; Caputo, Beniamino; Simard, Frederic; Pieraccini, Giuseppe; Moneti, Gloriano; Coluzzi, Mario; della Torre, Alessandra; Turillazzi, Stefano

    2008-01-01

    MALDI profiling and imaging mass spectrometry (IMS) are novel techniques for direct analysis of peptides and small proteins in biological tissues. In this work we applied them to the study of Anopheles gambiae antennae, with the aim of analysing expression of soluble proteins involved in olfaction perireceptor events. MALDI spectra obtained by direct profiling on single antennae and by the analysis of extracts, showed similar profiles, although spectra obtained through profiling had a richer ion population and higher signal to noise ratio. Male and female antennae showed distinct protein profiles. MALDI imaging experiments were also performed and differences were observed in the localization of some proteins. Two proteins were identified through high resolution measurement and top-down MS/MS experiments. A 8 kDa protein only present in the male antennae matched with an unannotated sequence of the An. gambiae genome, while the presence of odorant binding protein 9 (OBP-9) was confirmed through experiments of 2-DE, followed by MS and MS/MS analysis of digested spots. This work shows that MALDI MS profiling is a technique suitable for the analysis of proteins of small and medium MW in insect appendices, and allows obtaining data for several specimens which can be investigated for differences between groups. Proteins of interest can be identified through other complementary MS approaches. PMID:18665262

  11. Swarming and mating activity of Anopheles gambiae mosquitoes in semi-field enclosures.

    PubMed

    Achinko, D; Thailayil, J; Paton, D; Mireji, P O; Talesa, V; Masiga, D; Catteruccia, F

    2016-03-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the major Afro-tropical vector of malaria. Novel strategies proposed for the elimination and eradication of this mosquito vector are based on the use of genetic approaches, such as the sterile insect technique (SIT). These approaches rely on the ability of released males to mate with wild females, and depend on the application of effective protocols to assess the swarming and mating behaviours of laboratory-reared insects prior to their release. The present study evaluated whether large semi-field enclosures can be utilized to study the ability of males from a laboratory colony to respond to natural environmental stimuli and initiate normal mating behaviour. Laboratory-reared males exhibited spatiotemporally consistent swarming behaviour within the study enclosures. Swarm initiation, peak and termination time closely tracked sunset. Comparable insemination rates were observed in females captured in copula in the semi-field cages relative to females in small laboratory cages. Oviposition rates after blood feeding were also similar to those observed in laboratory settings. The data suggest that outdoor enclosures are suitable for studying swarming and mating in laboratory-bred males in field-like settings, providing an important reference for future studies aimed at assessing the comparative mating ability of strains for SIT and other vector control strategies. PMID:26508420

  12. The population genomics of trans-specific inversion polymorphisms in Anopheles gambiae.

    PubMed

    White, Bradley J; Cheng, Changde; Sangaré, Djibril; Lobo, Neil F; Collins, Frank H; Besansky, Nora J

    2009-09-01

    In the malaria mosquito Anopheles gambiae polymorphic chromosomal inversions may play an important role in adaptation to environmental variation. Recently, we used microarray-based divergence mapping combined with targeted resequencing to map nucleotide differentiation between alternative arrangements of the 2La inversion. Here, we applied the same technique to four different polymorphic inversions on the 2R chromosome of An. gambiae. Surprisingly, divergence was much lower between alternative arrangements for all 2R inversions when compared to the 2La inversion. For one of the rearrangements, 2Ru, we successfully mapped a very small region (approximately 100 kb) of elevated divergence. For the other three rearrangements, we did not identify any regions of significantly high divergence, despite ample independent evidence from natural populations of geographic clines and seasonal cycling, and stable heterotic polymorphisms in laboratory populations. If these inversions are the targets of selection as hypothesized, we suggest that divergence between rearrangements may have escaped detection due to retained ancestral polymorphism in the case of the youngest 2R rearrangements and to extensive gene flux in the older 2R inversion systems that segregate in both An. gambiae and its sibling species An. arabiensis. PMID:19581444

  13. Genetic Structure of a Local Population of the Anopheles gambiae Complex in Burkina Faso

    PubMed Central

    Markianos, Kyriacos; Bischoff, Emmanuel; Mitri, Christian; Guelbeogo, Wamdaogo M.; Gneme, Awa; Eiglmeier, Karin; Holm, Inge; Sagnon, N’Fale; Vernick, Kenneth D.; Riehle, Michelle M.

    2016-01-01

    Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. Population heterogeneities for ecological and behavioral attributes expand and stabilize malaria transmission over space and time, and populations may change in response to vector control, urbanization and other factors. There is a need for approaches to comprehensively describe the structure and characteristics of a sympatric local mosquito population, because incomplete knowledge of vector population composition may hinder control efforts. To this end, we used a genome-wide custom SNP typing array to analyze a population collection from a single geographic region in West Africa. The combination of sample depth (n = 456) and marker density (n = 1536) unambiguously resolved population subgroups, which were also compared for their relative susceptibility to natural genotypes of Plasmodium falciparum malaria. The population subgroups display fluctuating patterns of differentiation or sharing across the genome. Analysis of linkage disequilibrium identified 19 new candidate genes for association with underlying population divergence between sister taxa, A. coluzzii (M-form) and A. gambiae (S-form). PMID:26731649

  14. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.

    PubMed

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E

    2015-06-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  15. Antennal-expressed ammonium transporters in the malaria vector mosquito Anopheles gambiae.

    PubMed

    Pitts, R Jason; Derryberry, Stephen L; Pulous, Fadi E; Zwiebel, Laurence J

    2014-01-01

    The principal Afrotropical malaria vector mosquito, Anopheles gambiae remains a significant threat to human health. In this anthropophagic species, females detect and respond to a range of human-derived volatile kairomones such as ammonia, lactic acid, and other carboxylic acids in their quest for blood meals. While the molecular underpinnings of mosquito olfaction and host seeking are becoming better understood, many questions remain unanswered. In this study, we have identified and characterized two candidate ammonium transporter genes, AgAmt and AgRh50 that are expressed in the mosquito antenna and may contribute to physiological and behavioral responses to ammonia, which is an important host kairomone for vector mosquitoes. AgAmt transcripts are highly enhanced in female antennae while a splice variant of AgRh50 appears to be antennal-specific. Functional expression of AgAmt in Xenopus laevis oocytes facilitates inward currents in response to both ammonium and methylammonium, while AgRh50 is able to partially complement a yeast ammonium transporter mutant strain, validating their conserved roles as ammonium transporters. We present evidence to suggest that both AgAmt and AgRh50 are in vivo ammonium transporters that are important for ammonia sensitivity in An. gambiae antennae, either by clearing ammonia from the sensillar lymph or by facilitating sensory neuron responses to environmental exposure. Accordingly, AgAmt and AgRh50 represent new and potentially important targets for the development of novel vector control strategies. PMID:25360676

  16. Unraveling dual feeding associated molecular complexity of salivary glands in the mosquito Anopheles culicifacies

    PubMed Central

    Sharma, Punita; Sharma, Swati; Mishra, Ashwani Kumar; Thomas, Tina; Das De, Tanwee; Rohilla, Suman Lata; Singh, Namita; Pandey, Kailash C.; Valecha, Neena; Dixit, Rajnikant

    2015-01-01

    ABSTRACT Mosquito salivary glands are well known to facilitate meal acquisition, however the fundamental question on how adult female salivary gland manages molecular responses during sugar versus blood meal uptake remains unanswered. To investigate these responses, we analyzed a total of 58.5 million raw reads generated from two independent RNAseq libraries of the salivary glands collected from 3–4 day-old sugar and blood fed Anopheles culicifacies mosquitoes. Comprehensive functional annotation analysis of 10,931 contigs unraveled that salivary glands may encode diverse nature of proteins in response to distinct physiological feeding status. Digital gene expression analysis and PCR validation indicated that first blood meal significantly alters the molecular architecture of the salivary glands. Comparative microscopic analysis also revealed that first blood meal uptake not only causes an alteration of at least 12–22% of morphological features of the salivary glands but also results in cellular changes e.g. apoptosis, confirming together that adult female salivary glands are specialized organs to manage meal specific responses. Unraveling the underlying mechanism of mosquito salivary gene expression, controlling dual feeding associated responses may provide a new opportunity to control vector borne diseases. PMID:26163527

  17. Analysis of the metabolome of Anopheles gambiae mosquito after exposure to Mycobacterium ulcerans

    PubMed Central

    Hoxmeier, J. Charles; Thompson, Brice D.; Broeckling, Corey D.; Small, Pamela; Foy, Brian D.; Prenni, Jessica; Dobos, Karen M.

    2015-01-01

    Infection with Mycobacterium ulcerans causes Buruli Ulcer, a neglected tropical disease. Mosquito vectors are suspected to participate in the transmission and environmental maintenance of the bacterium. However, mechanisms and consequences of mosquito contamination by M. ulcerans are not well understood. We evaluated the metabolome of the Anopheles gambiae mosquito to profile the metabolic changes associated with bacterial colonization. Contamination of mosquitoes with live M. ulcerans bacilli results in disruptions to lipid metabolic pathways of the mosquito, specifically the utilization of glycerolipid molecules, an affect that was not observed in mosquitoes exposed to dead M. ulcerans. These results are consistent with aberrations of lipid metabolism described in other mycobacterial infections, implying global host-pathogen interactions shared across diverse saprophytic and pathogenic mycobacterial species. This study implicates features of the bacterium, such as the putative M. ulcerans encoded phospholipase enzyme, which promote virulence, survival, and active adaptation in concert with mosquito development, and provides significant groundwork for enhanced studies of the vector-pathogen interactions using metabolomics profiling. Lastly, metabolic and survival data suggest an interaction which is unlikely to contribute to transmission of M. ulcerans by A. gambiae and more likely to contribute to persistence of M. ulcerans in waters cohabitated by both organisms. PMID:25784490

  18. Anopheles albimanus (Diptera: Culicidae) and cyanobacteria: an example of larval habitat selection.

    PubMed

    Rejmankova, E; Roberts, D R; Manguin, S; Pope, K O; Komarek, J; Post, R A

    1996-10-01

    Northern Belize has extensive herbaceous wetlands. Those dominated by sparse emergent macrophytes, rushes (Eleocharis spp.) and sawgrass (Cladium jamaicense Crantz), often develop floating mats of cyanobacteria (blue-green algae). These mats provide suitable habitat for larvae of the malaria transmitting mosquito Anopheles albimanus Wiedemann. Presence/absence of A. albimanus larvae and cyanobacterial mats was assessed in marshes located throughout northern Belize. Of the 21 marshes examined during the 1993 wet and 1994 dry seasons, cyanobacterial mats were found in 11 and A. albimanus larvae were detected in 9 of these 11 marshes. No A. albimanus larvae were found in marshes without cyanobacterial mats. Mosquito larvae were collected along two 1,000 m long transects in both the wet season (August 1993) and the dry season (March 1994) to delineate larval distribution in marshes with cyanobacterial mats. A. albimanus larval densities in cyanobacterial mats were relatively high in both seasons: 2.8 and 2.3 larvae per dip in the wet and dry seasons, respectively, in Chan Chen marsh; and 0.8 and 1.02 larvae per dip in Buena Vista marsh. Numbers of larvae per dip did not significantly change with increasing distance from houses/pastures or margins of the marsh. A field experiment showed a strong preference of ovipositing A. albimanus for cyanobacterial mats. Higher temperatures and higher CO2 emissions from cyanobacterial mats are possible ovipositional cues. PMID:11540613

  19. Genetic Structure of a Local Population of the Anopheles gambiae Complex in Burkina Faso.

    PubMed

    Markianos, Kyriacos; Bischoff, Emmanuel; Mitri, Christian; Guelbeogo, Wamdaogo M; Gneme, Awa; Eiglmeier, Karin; Holm, Inge; Sagnon, N'Fale; Vernick, Kenneth D; Riehle, Michelle M

    2016-01-01

    Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. Population heterogeneities for ecological and behavioral attributes expand and stabilize malaria transmission over space and time, and populations may change in response to vector control, urbanization and other factors. There is a need for approaches to comprehensively describe the structure and characteristics of a sympatric local mosquito population, because incomplete knowledge of vector population composition may hinder control efforts. To this end, we used a genome-wide custom SNP typing array to analyze a population collection from a single geographic region in West Africa. The combination of sample depth (n = 456) and marker density (n = 1536) unambiguously resolved population subgroups, which were also compared for their relative susceptibility to natural genotypes of Plasmodium falciparum malaria. The population subgroups display fluctuating patterns of differentiation or sharing across the genome. Analysis of linkage disequilibrium identified 19 new candidate genes for association with underlying population divergence between sister taxa, A. coluzzii (M-form) and A. gambiae (S-form). PMID:26731649

  20. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control. PMID:22284012

  1. Distribution of Anopheles culicifacies and Detection of its Sibling Species E from Madhya Pradesh: Central India

    PubMed Central

    Sharma, Ajay Kumar; Tyagi, Varun; Singh, Sompal; Veer, Vijay; Agrawal, Om Prakash; Sukumaran, Devanathan

    2014-01-01

    Background: Anopheles culicifacies is an important vector of malaria in Southeast Asia, contributing to almost 70% of malaria cases in India. It exists as a complex of five morphologically indistinguishable species A, B, C, D and E with varied geographical distribution patterns. In India, 8% of the total population of Madhya Pradesh (Central India) contributes about 30% of total malaria cases, 60% of total falciparum cases and 50% of malaria deaths. An. culicifacies is the major malaria vector in this state. Vector control mainly relies on the proper identification and distribution of vector species exists in a particular area. The present study was carried out to identify the distribution of An. culicifacies sibling species in certain endemic district of Central India, Madhya Pradesh. Methods: The An. culicifacies mosquitoes collected from the study districts were identified morphologically. The genomic DNA was isolated from the mosquitoes and subjected to Allele specific PCR targeting D3 domain of 28S ribosomal DNA. Results: The mean prevalence of An. culicifacies during the study period was in the range of 8–120 per man per hour (PMH). From the study areas species B was identified from Jabalpur, Chindwara and Hoshangabad, Species C from Hoshangabad only, Species D from Narsinghpur and Khandwa and sibling species E from Mandla, Chindwara and Hoshangabad respectively. Conclusion: This is the first report to detect species E from Madhya Pradesh region which necessitate for reconsideration of species distribution of each An. culicifacies sibling species that would enable to develop required vector control strategies. PMID:26114132

  2. Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso.

    PubMed

    Yawson, A E; McCall, P J; Wilson, M D; Donnelly, M J

    2004-12-01

    The Ghanaian National Malaria Control Programme has prioritized insecticide-treated materials as a key strategy for malaria control. We report on a survey of the distribution of the molecular forms of Anopheles gambiae Giles (Diptera: Culicidae) and insecticide resistance (the kdr mutation), carried out by sampling mosquitoes from 11 locations in Ghana and one additional site in Burkina Faso. The molecular M and S forms of An. gambiae were found to occur in sympatry in southern Ghana. The S form predominated throughout its distribution in the coastal savannah, except at one location in the strand and mangrove zone where rice was cultivated. The M form was the only form collected in northern Ghana and was the predominant form (97.5%) in Burkina Faso. No M/S hybrids were detected. The kdr mutation was observed at very high frequencies (98-100%) within the S form but reached a maximum of only 3.38% in the M form in one population at an irrigation scheme in the Ghanaian coastal savannah zone. PMID:15642004

  3. Sequencing and analysis of the complete mitochondrial genome in Anopheles culicifacies species B (Diptera: Culicidae).

    PubMed

    Hua, Ya-Qiong; Yan, Zhen-Tian; Fu, Wen-Bo; He, Qi-Yi; Zhou, Yong; Chen, Bin

    2016-07-01

    The complete mitochondrial genome sequence of Anopheles culicifacial species B was sequenced in this study. The length of the mitochondrial genome is 15 330 bp, which contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a non-coding control region. The gene order and the gene composition are consistent with those previously reported for other mosquito species. The initiation codon of the PCGs complies with the ATN rule except for COI using TCG and ND5 using GTG as a start codon, and the termination codon is TAA or imcomplete, an only T. The total base composition is 40.4% A, 38.1% T, 12.4% C, and 9.1% G. The phylogenetic tree based on the sequences of 13 protein-coding genes showed that these species were classified into two clades, corresponding to the subgenus Cellia and subgenus Nyssorhynchus. An. culicifacies species B of Myzomyia Series was clustered with An. gambiae of Pyretophorus Series with a high bootstrap value of 100%. The complete mitogenome data can provide a basis for molecular identification and phylogenetic studies of mosquito species. PMID:26114319

  4. Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi.

    PubMed

    Hauck, Eric S; Antonova-Koch, Yevgeniya; Drexler, Anna; Pietri, Jose; Pakpour, Nazzy; Liu, Darin; Blacutt, Jacob; Riehle, Michael A; Luckhart, Shirley

    2013-11-01

    The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control. PMID:23774695

  5. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Zdobnov, Evgeny M.; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R.; Christophides, George K.; Thomasova, Dana; Holt, Robert A.; Subramanian, G. Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H.; Wells, Michael A.; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L.; Kokoza, Elena; Kraft, Cheryl L.; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M.; Salzberg, Steven L.; Sutton, Granger G.; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H.; Ribeiro, Jose; Gelbart, William M.; Kafatos, Fotis C.; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small ``microsyntenic'' clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.

  6. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae

    PubMed Central

    Alout, Haoues; Dabiré, Roch K.; Djogbénou, Luc S.; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1R mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  7. Avoidance Behavior to Essential Oils by Anopheles minimus, a Malaria Vector in Thailand.

    PubMed

    Nararak, Jirod; Sathantriphop, Sunaiyana; Chauhan, Kamal; Tantakom, Siripun; Eiden, Amanda L; Chareonviriyaphap, Theeraphap

    2016-03-01

    Essential oils extracted from 4 different plant species--citronella (Cymbopogon nardus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), and vetiver (Vetiveria zizanioides)-were investigated for their irritant and repellent activities against Anopheles minimus, using an excito-repellency test system. Pure essential oils were used in absolute ethanol at the concentrations of 0.5%, 1%, 2.5%, and 5% (v/v) compared with deet. At the lowest concentration of 0.5%, hairy basil displayed the best irritant and repellent effects against An. minimus. Citronella and vetiver at 1-5% showed strong irritant effects with>80% escape, while repellent effects of both oils were observed at 1% and 2.5% citronella (73-89% escape) and at 5% vetiver (83.9% escape). Sweet basil had only moderate irritant action at 5% concentration (69.6% escape) and slightly repellent on test mosquitoes (<50% escape). The results found that hairy basil, citronella, and vetiver are promising potential mosquito repellent products for protection against An. minimus. PMID:27105214

  8. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2013-11-01

    The biological activity of essential oil extracted from the leaves of Polygonum hydropiper and a compound, confertifolin, isolated from this plant was bioassayed against larva of mosquitoes, Anopheles stephensi and Culex quinquefasciatus. The essential oil showed the LC50 values of 189 and 243ppm; 217 and 242ppm, confertifolin (6,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-c]furan-3(1H)-one) showed the LC50 values of 2.40 and 3.09ppm; 4.07 and 4.18ppm against the second and fourth instar larvae of An. stephensi and Cx. quinquefasciatus, respectively. At 10ppm confertifolin showed ovicidal activity of 100, 98.6 and 86.4% against An. stephensi and 100, 100 and 75.2% against Cx. quinquefasciatus on 0-6, 6-12 and 12-18h old eggs; the repellent activity persisted for 314.6 and 319.0min; oviposition deterrent activity was 97.2 and 99% and adulticidal activity was 100 and 100% against An. stephensi and Cx. quinquefasciatus, respectively. The results were statistically significant. Confertifolin could be considered for use in the control of human vector mosquitoes. PMID:23942240

  9. Fumigant toxicity of the essential oils of some African plants against Anopheles gambiae sensu stricto.

    PubMed

    Omolo, M O; Okinyo, D; Ndiege, I O; Lwande, W; Hassanali, A

    2005-03-01

    The essential oils from 15 species of African plants selected by ethnobotanical considerations and field inspection (odour and presence of insects) were screened for fumigant toxicity to Anopheles gambiae s.s. in the laboratory. Essential oils from 6 species showed varying levels of toxicity, with Conyza newii (Compositae) and Plectranthus marruboides (Labiateae) being the most potent. Fifty compounds representing approximately 74% of the essential oil of C. newii were identified by GC-MS and GC-coinjection (for available standards). The major and some of the minor constituents of the two oils were assayed at different doses. Two compounds, from C. newii, perillaldehyde and perillyl alcohol, exhibited higher fumigant toxicity (LD50 = 1.05 x 10(-4) and 2.52 x 10(-4) mg cm(-3), respectively) than the parent oil (2.0 x 10(-3) mg cm(-3)). GC-MS analysis of the essential oil of P. marruboides gave results similar to that previously reported. Interestingly, none of its components were active, suggesting that the insecticidal activity of the oil results from either some of the minor components or as a blend effect of some of the major constituents. PMID:15830848

  10. Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi.

    PubMed

    Rajkumar, S; Jebanesan, A

    2007-12-01

    In recent years, use of environment friendly and biodegradable natural insecticides of plant origin have received renewed attention as agents for vector control. In this study, essential oils extracted by steam distillation from leaves of five plant species Centella asiatica L., Ipomoea cairica L., Momordica charantia L., Psidium guajava L. and Tridax procumbens L. were evaluated for their topical repellency effects against malarial vector Anopheles stephensi in mosquito cages. All essential oils were tested at three different concentrations (2, 4 and 6%). Of these, the essential oils of I. cairica, M. charantia and T. procumbens exhibited relatively high repellency effect (>300 minutes at 6% concentration), followed by C. asiatica and P. guajava which showed less effective (< 150 minutes at 6 % concentration). However, the ethanol applied arm served as control provided maximum 8.0 minutes repellency in this study. In general, clear dose-response relationships were established in all essential oils, with the highest concentration of 6% provided high repellency effect. The results obtained from this study suggest that essential oils of I. cairica, M. charantia and T. procumbens are promising as repellents at 6% concentration against An. stephensi and could be useful in the search for new natural repellent compounds. PMID:18209711

  11. Laser dosimetry for disabling anopheles stephensi mosquitoes in-flight (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keller, Matthew D.; Norton, Bryan J.; Rutschman, Phil; Farrar, David J.; Marvit, Maclen; Makagon, Artyom

    2016-03-01

    The Photonic Fence is a system designed to detect mosquitoes and other pestilent flying insects in an active region and to apply lethal doses of laser light to them. Previously, we determined lethal fluence levels for a variety of lasers and pulse conditions on anesthetized Anopheles stephensi mosquitoes. In this work, similar studies were performed while the bugs were freely flying within transparent cages. Dose-response curves were created for various beam diameter, pulse width, and power conditions at 455 nm, 532 nm, 1064nm, and 1540 nm wavelengths. Besides mortality outcomes, the flight behavior of the bugs and the performance of the tracking system were monitored for consistency and to ensure that they had no impact on the mortality outcomes. As in anesthetized experiments, the visible wavelengths required significantly less fluence than near infrared wavelengths to reliably disable bugs. For the visible wavelengths, lethal fluence values were generally equivalent to those found in anesthetized dosing, while near infrared wavelengths required approximately twice the fluence compared with anesthetized experiments. The performance of the optical tracking system remained highly stable throughout the experiments, and it was found not to influence mortality results for pulse widths up to 25 ms. In general, keeping energy constant while decreasing power and increasing pulse width reduced mortality levels. The results of this study further affirm the practicality of using optical approaches to protect people and crops from flying insects.

  12. Life on the edge: African malaria mosquito (Anopheles gambiae s. l.) larvae are amphibious

    NASA Astrophysics Data System (ADS)

    Miller, James R.; Huang, Juan; Vulule, John; Walker, Edward D.

    2007-03-01

    Anopheles gambiae s.l. is the main vector of malaria in Sub-Saharan Africa. Here, an estimated 1 million people die every year from this disease. Despite considerable research on An. gambiae that increasingly explores sub-organismal phenomena, important facets of the field biology of this deadly insect are yet being discovered. In the current study, we used simple observational tools to reveal that the habitat of larval An. gambiae is not limited within the boundaries of temporary mud puddles, as has been the accepted generalization. Thus, control tactics aimed at immatures must consider zones larger than puddles per se. In fact, eggs are more likely to be found outside than inside puddles. Eggs can develop and larvae can emerge on mud. Larvae are then capable of three distinct modes of terrestrial displacement (two active and one passive), whereby, they can reach standing water. On mud bearing a film of water, larvae actively displace backwards by sinusoidal undulations shown to be only a slight variation of the swimming motor program. On drying mud, larvae switch to a slower and forward form of active locomotion resembling that of a crawling caterpillar. During rains, small larvae may be passively displaced by flowing rainwater so as to be deposited into puddles. These capabilities for being amphibious, along with very rapid growth and development, help explain how An. gambiae thrives in a highly uncertain and often hostile larval environment.

  13. Vegetation-derived cues for the selection of oviposition substrates by Anopheles albimanus under laboratory conditions.

    PubMed

    Torres-Estrada, José Luis; Meza-Alvarez, R Amanda; Cibrián-Tovar, Juan; Rodríguez-López, Mario H; Arredondo-Jiménez, Juan I; Cruz-López, Leopoldo; Rojas-Leon, Julio C

    2005-12-01

    Oviposition response of gravid Anopheles albimanus Wiedemman (Diptera: Culicidae) females to water containing Brachiaria mutica, Cynodon dactylon, Jouvea straminea, Fimbristylis spadicea, and Ceratophyllum demersum was investigated. Gravid An. albimanus females deposited similar egg numbers in cups containing natural plants in water from natural breeding sites and in cups containing natural plants in distilled water. Gravid mosquitoes deposited significantly more eggs in cups containing natural plants in water from natural breeding sites than in cups containing artificial plants in water from the corresponding natural breeding sites. These results were confirmed in experiments conducted in a wind tunnel, indicating that female response is mediated by chemical cues from plants. Bioassays with organic extracts of all 5 plant species indicated that these extracts at 100%, 10%, and 1% concentrations had an oviposition repellent effect, while attractiveness was observed at 0.1%, 0.01%, and 0.001%. Gas chromatography and mass spectrometry analysis of the organic extracts found in all 5 plants showed a mixture of terpenoid and alcohol compounds, among them: guaiacol, phenol, isoeugenol, longifolene, caryophyllene, phenyl ethyl alcohol, and p-cresol. These results suggest that middle-range volatiles from plants may function as chemical cues for the female's oviposition response in this mosquito species. PMID:16506557

  14. Peri-/intradomicillary behavior in relation to host-seeking of Anopheles pseudopunctipennis in southern Mexico.

    PubMed

    Casas, M; Rodríguez, M H; Bown, D N

    1994-09-01

    Peri-/intradomicillary resting and host-seeking behavior of Anopheles pseudopunctipennis was studied in an experimental house (surrounded by a curtain-net) that had not been sprayed with insecticide. Peak mosquito densities were recorded resting on vegetation 1 h earlier (1900-2000 h) than on the curtain-net, suggesting that a proportion of females prefer resting on adjacent vegetation prior to moving indoors. Between 2000 and 2100 h there was a marked decrease in numbers of mosquitoes resting on the exterior of the curtain-net. In separate experiments without the net, a single peak in numbers of mosquitoes resting on interior surfaces and/or biting human bait occurred between 2000 and 2100 h. Unfed mosquitoes had higher numbers of contacts with wall surfaces than with the roof. Moreover, a higher proportion of mosquitoes collected on human bait had > or = 1 dilatation(s), and higher parity rates than those resting on walls. Higher proportions of parous mosquitoes more frequently fed from 1800 to 2100 h, whereas higher proportions of nulliparous mosquitoes fed during morning hours. Nearly 25% of all mosquitoes exited 1 h following their release inside the house, whereas nearly 7% remained indoors for > 9 h. Overall results demonstrated that the behavior of An. pseudopunctipennis females depends on outdoor/indoor stimuli, being multivariable in nature. This includes contacts with a variety of biological (i.e., vegetation, human) and inert surfaces, which in part appears to be controlled by age structure. PMID:7807077

  15. [Intra-domiciliary low volume spraying of malathion and deltamethrin for controlling Anopheles sp].

    PubMed

    Vaca-Marín, M A; Rodríguez-López, M H; Bown, D N; Ríos, R

    1991-01-01

    The effectiveness of low volume (LV) house-spraying of deltamethrin 0.027 per cent and malathion 20 per cent in the control of Anopheles sp was evaluated in two villages of Tabasco, México during the last semester of 1987. Two spray rounds were carried out at three-month intervals, using Fontan R-12 back-pack-space sprayers. Residual effect and cost-benefit were evaluated and compared to the standard DDT spraying technique using the Hudson X-pert sprayer. The entomological evaluation focused on mortality rates and density levels observed from intra and peridomicilliary man biting collections, indoor mosquito resting densities, curtain trap and the standard WHO wall bioassay. It was determined that when using the LV method these insecticides were highly effective. Malathion showed a residual effect of eight weeks whereas deltamethrin was found to have a residual activity of up to 12 weeks. Deltamethrin was more effective in reducing intra and peridomiciliary biting rates, and indoor resting mosquitoes. The cost-benefit ratio of deltamethrin and malathion LV house-spraying was 2.56 and 0.89, respectively, as compared to the standard DDT house-spraying. Considering its effectiveness in anopheline control and its cost-benefit, in addition to being a functional technique, intradomicile LV insecticide spraying should be considered as a practical alternative in malaria control programs. PMID:1948426

  16. Intradomicillary pre- and postfeeding behavior of Anopheles pseudopunctipennis of southern Mexico: implications for malaria control.

    PubMed

    Casas, M; Bown, D N; Rodríguez, M H

    1994-09-01

    The intradomicillary pre- and postfeed resting behavior of Anopheles pseudopunctipennis was studied in an experimental house in southern Mexico. During resting periods (both pre-/postfeed) mosquitos had greater contact (landings) with the inner roof than with the walls and other surfaces. A comparison of mean landing frequency and overall resting time (pre-/postfeed) showed that a greater periodic and prolonged contact occurred prefeed, probably as a result of disturbed activity associated with host movements. Pre-/postfeed resting patterns on walls were limited to a 0.6-0.5-m-wide band, nearly 1 m from the floor, and to a narrower band on the roof, 0.3-0.2 m wide, approximately 2.3 m from the floor, respectively. We calculated that with a band width of 0.8 m on the walls and another band 0.8 m wide on the roof, 87.2% of the mosquitoes had at least one contact with either the wall, the roof, or with both surfaces, along with an overall mean resting time (pre-/postfeed) of 8.1 min/landing. These findings suggest that a high potential for control can be achieved by spraying preferred wall and roof resting sites in this region where the intradomicillary application of residual insecticide is the primary malaria control measure. PMID:7807076

  17. Landscape surrounding human settlements and Anopheles albimanus (Diptera: Culicidae) abundance in Southern Chiapas, Mexico.

    PubMed

    Rodriguez, A D; Rodriguez, M H; Hernandez, J E; Dister, S W; Beck, L R; Rejmankova, E; Roberts, D R

    1996-01-01

    Landscape characteristics that may influence important components of the Anopheles albimanus Wiedemann life cycle, including potential breeding sites, suitable diurnal resting sites, and possible sources of blood meals, were analyzed at 14 villages in a malarious area of southern Mexico. An. albimanus adults were collected weekly in each village using UV-light traps between July 1991 and August 1992. Based on rainfall, the study was divided into 6 seasonal periods. Villages were considered to have high mosquito abundance when >5 mosquitoes per trap per night were collected during any 1 of the 6 seasonal periods. The extension and frequency of 11 land cover types surrounding villages were determined using aerial photographs and subsequently verified through field surveys. Elevation was the main landscape feature that separated villages with low and high mosquito abundance. All villages with high mosquito abundance were below 25 m. Transitional and mangrove land cover types were found only in the high mosquito abundance group. Flooded areas as potential breeding sites and potential adult resting sites in unmanaged pastures were significantly more frequent in areas surrounding villages with high mosquito abundance. No significant differences in density of cattle and horses were found among village groups. Overall, surrounding breeding sites located at low elevations in flooded unmanaged pastures seemed to be the most important determinants of An. albimanus adult abundance in the villages. PMID:8906903

  18. Bionomics of adult Anopheles pseudopunctipennis (Diptera: Culicidae) in the Tapachula foothills area of southern Mexico.

    PubMed

    Fernandez-Salas, I; Rodriguez, M H; Roberts, D R; Rodriguez, M C; Wirtz, R A

    1994-09-01

    Field studies on the bionomics of adult Anopheles pseudopunctipennis Theobald were conducted to assess its relative importance as a primary vector of vivax malaria in southern Mexico. In four malaria endemic villages in a foothill region near Tapachula, Mexico, population densities of A. pseudopunctipennis increased during the dry seasons of 1990 and 1991. The pattern of nocturnal host-seeking activity indoors was unimodal with a late night peak at 0100 hours enhancing its vectorial significance, because it occurred when most residents were asleep and fully exposed to the anophelines. Comparisons of trapping methods showed that a horse-baited trap was more effective than human landing catches or UV light traps. Pit shelters, on the other hand, were more effective than indoor and natural shelter resting collections. Results of enzyme-linked immunosorbent assays performed on wild-caught A. pseudopunctipennis specimens documented the presence of natural infections with the VK210 and new VK247 circumsporozoite polymorphs of P. vivax. These findings verify the importance of A. pseudopunctipennis as a major vector of vivax malaria at higher elevations and extend the geographical range of the VK247 P. vivax polymorph in Mexico. PMID:7966168

  19. Selective and conventional house-spraying of DDT and bendiocarb against Anopheles pseudopunctipennis in southern Mexico.

    PubMed

    Casas, M; Torres, J L; Bown, D N; Rodríguez, M H; Arredondo-Jiménez, J I

    1998-12-01

    Indoor feeding behaviors and mortalities of Anopheles pseudopunctipennis females were evaluated following contact with selective (bands covering mosquitoes' preferred resting areas) and full applications of DDT and bendiocarb on indoor sprayable surfaces. The DDT residues provoked strong avoidance behavior. To a lesser degree, mosquitoes were also repelled by bendiocarb-sprayed surfaces. Because of strong irritancy/repellency, unfed mosquitoes were driven outdoors in proportionally higher numbers. The resting time on selectively or fully DDT-sprayed huts was greatly reduced in comparison to bendiocarb-sprayed huts. Although unfed mosquitoes tended to rest on non-DDT-sprayed surfaces in the selectively treated hut, the man-biting rate was similar with both types of treatments. Unfed mosquitoes were repelled less from selectively bendiocarb-treated surfaces. Similar reductions in postfed resting times were observed on all surfaces suggesting that once fed, mosquitoes rested on sprayed surfaces for shorter intervals of time. Engorged mosquitoes had normal resting behavior (pre- and postspray) within the range of preferred resting heights in both DDT- and bendiocarb-sprayed huts, but the proportion of mosquitoes fed in the DDT-treated huts was lower. Selective spraying of walls was as effective as spraying the complete walls with both insecticides, but DDT was more effective in reducing mosquito-human contact. These studies show that by more effectively targeting vector behavior, a cost-effective alternative to traditional control techniques can be achieved. PMID:10084135

  20. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development.

    PubMed

    Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E

    2003-05-01

    Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area. PMID:12943119

  1. Gonotrophic cycle and survivorship of Anopheles pseudopunctipennis (Diptera: Culicidae) in the Tapachula foothills of southern Mexico.

    PubMed

    Fernandez-Salas, I; Rodriguez, M H; Roberts, D R

    1994-05-01

    Mark-release-recapture experiments were conducted to determine the length of the gonotrophic cycle and survivorship of Anopheles pseudopunctipennis Theobald in the Tapachula foothills of southern Mexico. Separate trials with wild-caught females were conducted in the early and late dry season to examine intraseasonal differences. The gonotrophic cycle of insectary-reared, nulliparous females was estimated during the late dry season. A total of 5.4-5.7% of marked females was recaptured. A 3-d gonotrophic cycle was characteristic of wild-caught females, whereas a 4-d gonotrophic cycle was characteristic for insectary-reared females. Engorged, wild-caught females completed oogenesis in approximately 60 h under field conditions. Blood digestion in 23.5% of 2,221 and 21.9% of 1,195 engorged, wild-caught females held in the insectary was not accompanied by egg development. Dissections of these females showed that nearly 85% were nulliparous and presumably pregravid. These statistics plus other field data were used to determine that 60% of all nulliparous entered a pregravid condition. The body size and wing length of gravids was significantly larger than pregravids. Daily survival estimates of 0.875 and 0.884 were calculated for field-collected females during the early and late dry season, respectively. PMID:8057307

  2. The spatial distribution of Anopheles gambiae sensu stricto and An. arabiensis (Diptera: Culicidae) in Mali.

    PubMed

    Sogoba, N; Vounatsou, P; Bagayoko, M M; Doumbia, S; Dolo, G; Gosoniu, L; Traore, S F; Toure, Y T; Smith, T

    2007-05-01

    Variations in the biology and ecology and the high level of genetic polymorphism of malaria vectors in Africa highlight the value of mapping their spatial distribution to enhance successful implementation of integrated vector management. The objective of this study was to collate data on the relative frequencies of Anopheles gambiae s.s. and An. arabiensis mosquitoes in Mali, to assess their association with climate and environmental covariates, and to produce maps of their spatial distribution. Bayesian geostatistical logistic regression models were fitted to identify environmental determinants of the relative frequencies of An. gambiae s.s. and An. arabiensis species and to produce smooth maps of their geographical distribution. The frequency of An. arabiensis was positively associated with the normalized difference vegetation index, the soil water storage index, the maximum temperature and the distance to water bodies. It was negatively associated with the minimum temperature and rainfall. The predicted map suggests that, in West Africa, An. arabiensis is concentrated in the drier savannah areas, while An. gambiae s.s. prefers the southern savannah and land along the rivers, particularly the inner delta of Niger. Because the insecticide knockdown resistance (kdr) gene is reported only in An. gambiae s.s. in Mali, the maps provide valuable information for vector control. They may also be useful for planning future implementation of malaria control by genetically manipulated mosquitoes. PMID:18686246

  3. Molecular Taxonomy of Anopheles (Nyssorhynchus) benarrochi (Diptera: Culicidae) and Malaria Epidemiology in Southern Amazonian Peru

    PubMed Central

    Conn, Jan E.; Moreno, Marta; Saavedra, Marlon; Bickersmith, Sara A.; Knoll, Elisabeth; Fernandez, Roberto; Vera, Hubert; Burrus, Roxanne G.; Lescano, Andres G.; Sanchez, Juan Francisco; Rivera, Esteban; Vinetz, Joseph M.

    2013-01-01

    Anopheline specimens were collected in 2011 by human landing catch, Shannon and CDC traps from the malaria endemic localities of Santa Rosa and San Pedro in Madre de Dios Department, Peru. Most specimens were either Anopheles (Nyssorhynchus) benarrochi B or An. (Nys.) rangeli, confirmed by polymerase chain reaction-restriction fragment length polymorphism-internal transcribed spacer 2 (PCR-RFLP-ITS2) and, for selected individuals, ITS2 sequences. A few specimens from Lupuna, Loreto Department, northern Amazonian Peru, were also identified as An. benarrochi B. A statistical parsimony network using ITS2 sequences confirmed that all Peruvian An. benarrochi B analyzed were identical to those in GenBank from Putumayo, southern Colombia. Sequences of the mtDNA COI BOLD region of specimens from all three Peruvian localities were connected using a statistical parsimony network, although there were multiple mutation steps between northern and southern Peruvian sequences. A Bayesian inference of concatenated Peruvian sequences of ITS2+COI detected a single clade with very high support for all An. benarrochi B except one individual from Lupuna that was excluded. No samples were positive for Plasmodium by CytB-PCR. PMID:23243107

  4. Computational identification of novel microRNAs and their targets in the malarial vector, Anopheles stephensi.

    PubMed

    Krishnan, Remya; Kumar, Vinod; Ananth, Vivek; Singh, Shailja; Nair, Achuthsankar S; Dhar, Pawan K

    2015-06-01

    MicroRNAs are a ~22 nucleotide small non-coding RNAs found in animals, plants and viruses. They regulate key cellular processes by enhancing, degrading or silencing protein coding targets. Currently most of the data on miRNA is available from Drosophila . Given their important post-transcriptional role in several organisms, there is a need to understand the miRNA mediated processes in normal and abnormal conditions. Here we report four novel microRNAs ast - mir - 2502, ast - mir - 2559, ast - mir - 3868 and ast - mir - 9891 in Anopheles stephensi identified from a set of 3,052 transcriptome sequences, showing average minimum free energy of -31.8 kcal/mol of duplex formation with mRNA indicating their functional relevance. Phylogenetic study shows conservation of sequence signatures within the Class Insecta. Furthermore, 26 potential targets of these four miRNAs have been predicted that play an important role in the mosquito life-cycle. This work leads to novel leads and experimental possibilities for improved understanding of gene regulatory processes in mosquito. PMID:25972985

  5. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    PubMed Central

    2012-01-01

    Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic), that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol) (1:1), methanol and purified water) of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo), an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool. PMID:22963538

  6. Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle

    2002-11-01

    Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples. PMID:12495179

  7. Chromosomal inversions among insecticide-resistant strains of Anopheles stephensi Liston, a malaria mosquito.

    PubMed

    Shetty, N J; Hariprasad, T P N; Sanil, D; Zin, T

    2013-11-01

    Polytene chromosomes were prepared from the ovarian nurse cells of semi-gravid females of ten insecticide-resistant strains of Anopheles stephensi. Altogether, 16 heterozygous paracentric inversions, namely b/+ (11D-16C) in alphamethrin; i/+ (14B-18A) and h/+ (27B-28A) in DDT; j/+ (14A-16B) in chlorpyrifos; k/+ (11D-16B) in cyfluthrin; l/+ (11A-16C) in deltamethrin; m/+ (14B-15C) and e/+ (32A-33B) in bifenthrin; n/+ (12D-14B), f/+ (33A-36A) and g/+ (33C-34A) in propoxur; o/+ (11A-12D), h/+ (37A-37C) and i/+ (31C-32C) in temephos; d/+ (33D-35C) in carbofuran and a/+ (41C-43B) in neem strains, were reported. No inversions were observed in X chromosome so far. The frequency of inversions in different insecticides was found to be highest in the 2R arm, followed by the 3R arm. Such inversions were not reported in the corresponding susceptible strains or in the parental stocks. PMID:23982309

  8. Site-specific genetic engineering of the Anopheles gambiae Y chromosome.

    PubMed

    Bernardini, Federica; Galizi, Roberto; Menichelli, Miriam; Papathanos, Philippos-Aris; Dritsou, Vicky; Marois, Eric; Crisanti, Andrea; Windbichler, Nikolai

    2014-05-27

    Despite its function in sex determination and its role in driving genome evolution, the Y chromosome remains poorly understood in most species. Y chromosomes are gene-poor, repeat-rich and largely heterochromatic and therefore represent a difficult target for genetic engineering. The Y chromosome of the human malaria vector Anopheles gambiae appears to be involved in sex determination although very little is known about both its structure and function. Here, we characterize a transgenic strain of this mosquito species, obtained by transposon-mediated integration of a transgene construct onto the Y chromosome. Using meganuclease-induced homologous repair we introduce a site-specific recombination signal onto the Y chromosome and show that the resulting docking line can be used for secondary integration. To demonstrate its utility, we study the activity of a germ-line-specific promoter when located on the Y chromosome. We also show that Y-linked fluorescent transgenes allow automated sex separation of this important vector species, providing the means to generate large single-sex populations. Our findings will aid studies of sex chromosome function and enable the development of male-exclusive genetic traits for vector control. PMID:24821795

  9. Survivorship and distribution of immature Anopheles gambiae s.l. (Diptera: Culicidae) in Banambani village, Mali.

    PubMed

    Edillo, Frances E; Touré, Yeya T; Lanzaro, Gregory C; Dolo, Guimogo; Taylor, Charles E

    2004-05-01

    We observed the survivorship and distribution of larvae and pupae of Anopheles gambiae s.l. Giles immature stages in three habitats (rock pools, swamp, and puddles) in Banambani village. Mali, West Africa, during the mid-rainy season of 2000. Horizontal life tables were constructed for immatures in the laboratory. Times spent in the various immature stages were determined, and laboratory survival was measured. Vertical life tables were obtained from each habitat. We found large day-to-day variation for age class composition within habitats across days. The swamp samples had small but statistically significant different distributions in some instar stages compared with rock pools and puddles as affected by precipitation history. There were obviously unstable age distributions in the swamp and puddles and to some extent in rock pools. There were more individuals in some later age classes than in earlier ones. The daily survival estimates using an exponential decay model were 0.807 in rock pools, 0.899 in the swamp, 0.818 in puddles, and 0.863 in the overall village. Possible reasons for the departure from stable age distribution were cannibalism, predation and other complex interactions, rainfall effects, sampling bias, and differences in physicochemical properties of the water in the habitats. PMID:15185933

  10. Comparison of DNA probe and cytogenetic methods for identifying field collected Anopheles gambiae complex mosquitoes.

    PubMed

    Collins, F H; Petrarca, V; Mpofu, S; Brandling-Bennett, A D; Were, J B; Rasmussen, M O; Finnerty, V

    1988-12-01

    A recently developed DNA probe method was compared with the standard cytogenetic method for identifying the species of individual mosquitoes in the Anopheles gambiae complex. The complex consists of 6 morphologically indistinguishable sibling species that include the major African malaria vectors. Half-gravid, field collected mosquitoes were split into 2 portions: the abdomen was preserved for ovarian nurse cell cytotaxonomy and the head/thorax portion was desiccated for DNA extraction. Cytogenetic examination of the Kenya specimens showed 88 An. gambiae and 108 An. arabiensis. The Zimbabwe specimens consisted of 6 An. gambiae and 55 An. Quadriannulatus. All samples of the 3 species were polymorphic for the major chromosomal inversions previously recorded in field specimens from eastern and southern Africa, indicating that the collections reflected natural levels of intraspecific variation in the field populations sampled. Approximately 97% of the cytologically identified mosquitoes were also identified to species by the DNA probe method, and in every case the DNA probe and cytogenetic methods of species identification produced concordant results. PMID:3207175

  11. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission

    PubMed Central

    2009-01-01

    Background Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. Methods A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Results Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. Conclusion These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies. PMID:19822012

  12. Multiple insecticide resistance in Anopheles gambiae (Diptera: Culicidae) from Pointe Noire, Republic of the Congo.

    PubMed

    Koekemoer, Lizette L; Spillings, Belinda L; Christian, Riann N; Lo, Te-Chang M; Kaiser, Maria L; Norton, Ryan A I; Oliver, Shune V; Choi, Kwang S; Brooke, Basil D; Hunt, Richard H; Coetzee, Maureen

    2011-08-01

    Successful implementation of an integrated vector control program will rely on availability of accurate vector information in the specific location. However, such information can be limited in some countries. The aim of this study was to obtain baseline vector information from Pointe Noire on the Congo coast (Republic of the Congo). Field sampling was conducted during April 2009 in the village of Boutoto and its surrounds, close to the city of Pointe Noire. Anopheles gambiae sensu lato mosquitoes were collected resting indoors. Samples were analyzed for insecticide susceptibility, species identification, and Plasmodium sporozoite infection. Molecular and biochemical assays were conducted to characterize insecticide resistance mechanisms. The malaria vector A. gambiae S-form was the only mosquito species identified, and it had a high Plasmodium falciparum infection rate (9.6%). Multiple insecticide resistance was detected in this population with full susceptibility to only one insecticide class, the organophosphates. Dieldrin and DDT resistance was mainly attributed to target-site resistance (the Rdl and L1014F/L1014S kdr mutations respectively), whereas pyrethroid resistance was mainly attributed to P450 metabolic enzyme-mediated detoxification in addition to kdr. The role of various insecticide resistance mechanisms revealed a complex association between metabolic detoxification and reduced target-site sensitivity. PMID:21417925

  13. Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi

    PubMed Central

    Hauck, Eric S.; Antonova-Koch, Yevgeniya; Drexler, Anna; Pietri, Jose; Pakpour, Nazzy; Liu, Darin; Blacutt, Jacob; Riehle, Michael A.; Luckhart, Shirley

    2013-01-01

    The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control. PMID:23774695

  14. Isolation of Bacillus sphaericus from Lombok Island, Indonesia, and Their Toxicity against Anopheles aconitus

    PubMed Central

    Suryadi, Bambang Fajar; Yanuwiadi, Bagyo; Ardyati, Tri; Suharjono

    2015-01-01

    Malaria is endemic to Lombok Island, Indonesia. One approach to suppress malaria spread is to eliminate anopheline larvae in their habitat and the environmentally safe agent is bacteria, that is, Bacillus sphaericus. However, there is no information regarding local isolate of B. sphaericus that is toxic to mosquito larvae from Lombok. The aims of the study were to isolate B. sphaericus from soil in areas close to beach surrounding Lombok Island and to test their toxicity against 3rd instar Anopheles aconitus larvae. Soil samples were collected from 20 different sampling locations from Lombok Island and homogenized with sterile physiological salt solution. Suspension was heat-shocked at 80°C for 30 minutes and then spread onto antibiotic-supplemented NYSM solid medium. Colonies grown were characterized and subjected to initial toxicity test against anopheline larvae. Isolates with more than 50% killing percentage were subjected to bioassay testing against anopheline larvae. From 20 locations, 1 isolate showed mild toxicity (namely, isolate MNT) and 2 isolates showed high toxicity (namely, isolates SLG and TJL2) against An. aconitus. Those 3 isolates were potentially useful isolates, as they killed almost all larvae in 24 hours. The discovery of toxic indigenous isolates of B. sphaericus from Lombok Island opens opportunity to develop a biopesticide from local resources. PMID:26788061

  15. Pantropic retroviral vectors integrate and express in cells of the malaria mosquito, Anopheles gambiae.

    PubMed Central

    Matsubara, T; Beeman, R W; Shike, H; Besansky, N J; Mukabayire, O; Higgs, S; James, A A; Burns, J C

    1996-01-01

    The lack of efficient mechanisms for stable genetic transformation of medically important insects, such as anopheline mosquitoes, is the single most important impediment to progress in identifying novel control strategies. Currently available techniques for foreign gene expression in insect cells in culture lack the benefit of stable inheritance conferred by integration. To overcome this problem, a new class of pantropic retroviral vectors has been developed in which the amphotropic envelope is completely replaced by the G glycoprotein of vesicular stomatitis virus. The broadened host cell range of these particles allowed successful entry, integration, and expression of heterologous genes in cultured cells of Anopheles gambiae, the principle mosquito vector responsible for the transmission of over 100 million cases of malaria each year. Mosquito cells in culture infected with a pantropic vector expressing hygromycin phosphotransferase from the Drosophila hsp70 promoter were resistant to the antibiotic hygromycin B. Integrated provirus was detected in infected mosquito cell clones grown in selective media. Thus, pantropic retroviral vectors hold promise as a transformation system for mosquitoes in vivo. Images Fig. 2 Fig. 4 Fig. 5 PMID:8650240

  16. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

    PubMed Central

    Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor

    2004-01-01

    Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337

  17. Establishment and characterization of a cell line from the mosquito Anopheles albimanus (Diptera: Culicidae).

    PubMed

    Bello, F J; Brochero, H; Boshell, J; Olano, V; Rey, G

    1997-01-01

    A new cell line designated LSB-AA695BB, was established from embryos of the mosquito Anopheles albimanus. The primary culture was initiated in April, 1995, and the first passage was made 48 days later. Serial subcultures of the cells have been carried through 90 passage from Abril 1995 to February 1996. The cells were grown at 28 degrees C in MK/VP12 medium, supplemented with 20% fetal bovine serum: the pH tolerance ranged between 6.8 to 7.0. The cells have also been adapted to MM/VP12 medium under the same pH, temperature and serum concentration. The majority of the cells were a fibroblast-type. Isozyme characterization showed a pattern similar to that of An. albimanus pupae and adults but distinct from Ae. taeniorhynchus and Ae. albopictus (C6/36) mosquito cell lines. The culture was shown to be free of mycoplasma, bacteria and fungi. Microsporidia contamination of transovarial transmission was controlled with 6.0 micrograms/ml of albendazole. PMID:9302423

  18. Anopheles species associations in Southeast Asia: indicator species and environmental influences

    PubMed Central

    2013-01-01

    Background Southeast Asia presents a high diversity of Anopheles. Environmental requirements differ for each species and should be clarified because of their influence on malaria transmission potential. Monitoring projects collect vast quantities of entomological data over the whole region and could bring valuable information to malaria control staff but collections are not always standardized and are thus difficult to analyze. In this context studying species associations and their relation to the environment offer some opportunities as they are less subject to sampling error than individual species. Methods Using asymmetrical similarity coefficients, indirect clustering and the search of indicator species, this paper identified species associations. Environmental influences were then analysed through canonical and discriminant analysis using climatic and topographic data, land cover in a 3 km buffer around villages and vegetation indices. Results Six groups of sites characterized the structure of the species assemblage. Temperature, rainfall and vegetation factors all play a role. Four out of the six groups of sites based on species similarities could be discriminated using environmental information only. Conclusions Vegetation indices derived from satellite imagery proved very valuable with one variable explaining more variance of the species dataset than any other variable. The analysis could be improved by integrating seasonality in the sampling and collecting at least 4 consecutive days. PMID:23642279

  19. Ecophysiology of Anopheles gambiae s.l.: Persistence in the Sahel

    PubMed Central

    Huestis, Diana L.; Lehmann, Tovi

    2014-01-01

    The dry-season biology of malaria vectors is poorly understood, especially in arid environments when no surface waters are available for several months, such as during the dry season in the Sahel. Here we reappraise results on the dry-season physiology of members of the Anopheles gambiae s.l. complex in the broad context of dormancy in insects and especially in mosquitoes. We examine evidence on seasonal changes in reproduction, metabolism, stress tolerance, nutrition, molecular regulation, and environmental conditions and determine if the current results are compatible with dry-season diapause (aestivation) as the primary strategy for persistence throughout the dry season in the Sahel. In the process, we point out critical gaps in our knowledge that future studies can fill. We find compelling evidence that members of the An. gambiae s.l. complex undergo a form of aestivation during the Sahelian dry season by shifting energetic resources away from reproduction and towards increased longevity. Considering the differences between winter at temperate latitudes, which entails immobility of the insect and hence reliance on physiological solutions, as opposed to the Sahelian dry season, which restricts reproduction exclusively, we propose that behavioral changes play an important role in complementing physiological changes in this strategy. PMID:24933461

  20. Efficacy of repellent products against caged and free flying Anopheles stephensi mosquitoes.

    PubMed

    Trongtokit, Yuwadee; Curtis, Christopher F; Rongsriyam, Yupha

    2005-11-01

    The efficacy of 9 repellents (8 commercial repellents and one product under development) was evaluated on the skin at dosages of 0.65 and 1.7 mg of product/cm2, the latter dosage being the industrial standard for deet based repellents. The repellents were applied to the arm or lower leg of a human subject and tested against Anopheles stephensi in a cage or flying freely in a mosquito-proof room. In the cage tests, a product with 20% p-menthane-3, 8-diol (PMD) active ingredient provided complete repellency for 7-8 hours, while with 10% PMD had complete repellency for only 30 minutes. The natural oils of clove (Syzygium aromaticum) (10% active ingredient) plus makaen (Zanthoxylum limonella) (10% active ingredient) gave protection for 4-5 hours. In the case of free flying mosquitoes, products with 20% and 30% PMD gave complete protection for 11-12 hours at a dosage of 1.7 mg/cm2 or 6 hours at half the dosage, while the product with 10% PMD afforded protection for less than 2 hours. At the higher dosage rate 40% citronella and hydroxyethyl isobutyl piperidine carboxylate, a new synthetic compound, provided complete repellency for 7 hours. Fifty percent deet (N,N-diethyl-3-methylbenzamide) was effective for 30 hours if left undisturbed on the skin. PMID:16610644

  1. Efficacy of three insect repellents against the malaria vector Anopheles arabiensis.

    PubMed

    Govere, J; Durrheim, D N; Baker, L; Hunt, R; Coetzee, M

    2000-12-01

    Three commercial repellents marketed in South Africa: Bio-Skincare (BSC, oils of coconut, jojoba, rapeseed and vitamin E), Mosiguard towelletes with 0.574 g quwenling (p-menthane-3,8-diol, PMD) and the standard deet (15% diethyl-3-methylbenzamide, Tabard lotion), were compared against a laboratory colony of the mosquito Anopheles arabiensis Patton (Diptera: Culicidae), the predominant malaria vector in South Africa. Human forearms were treated with 1.2 g BSC, 0.8 g PMD towelette or 0.5 g deet and exposed to 200 hungry An. arabiensis females for 1 min, at intervals of 1-6 h post-treatment. Tests were conducted by three adult male volunteers (aged 30-45 years, crossover controlled test design for 3 consecutive days), using their left arm for treatment and right arm for untreated control. Biting rates averaged 39-52 bites/min on untreated arms. All three repellents provided complete protection against An. arabiensis for up to 3-4 h post-application; deet and PMD gave 90-100% protection up to 5-6h, but BSC declined to only 52% protection 6h post-treatment. These results are interpreted to show that all three repellent products give satisfactory levels of personal protection against An. arabiensis for 4-5 h, justifying further evaluation in the field. PMID:11129710

  2. Egg-float ridge number in Anopheles stephensi: ecological variation and genetic analysis.

    PubMed

    Subbarao, S K; Vasantha, K; Adak, T; Sharma, V P; Curtis, C F

    1987-07-01

    Eight Indian laboratory stocks of Anopheles stephensi Liston could be grouped into three categories with, respectively, 14-22, 12-17 and 9-15 ridges on the egg-floats. The mode number of ridges among the eggs laid by individual females in these stocks was 16-19, 13-16 and 10-14, respectively. The category with the highest egg-float ridge number corresponded with the type-form and the lowest with var. mysorensis Sweet and Rao; the new egg-float category with ridge number modes of thirteen to sixteen was designated as 'intermediate'. All three forms, i.e. type-form, intermediate and myosorensis were observed in semi-urban areas while only intermediate and mysorensis were seen in rural areas. Breeding experiments indicated no post-copulatory barriers between the populations. Likelihood analysis of the results of crosses and back crosses indicated that variation in ridge number is controlled by more than one genetic factor. The stocks with different ridge numbers are best considered as 'ecological variants'. PMID:2979540

  3. Suitability of monotypic and mixed diets for Anopheles hermsi larval development.

    PubMed

    Beasley, Donald A; Walton, William E

    2016-06-01

    The developmental time and survival to eclosion of Anopheles hermsi Barr & Guptavanij fed monotypic and mixed diets of ten food types were examined in laboratory studies. Larvae fed monotypic diets containing animal detritus (freeze-dried rotifers, freeze-dried Daphnia pulicaria, and TetraMin® fish food flakes) and the mixotrophic protistan Cryptomonas ovata developed faster and survived better than larvae that were fed other monotypic diets. Survival to adulthood of larvae fed several concentrations of the diatom Planothidium (=Achnanthes) lanceolatum was poor (<13%) and larval development time was approximately twice that of larvae fed TetraMin® fish food flakes, the standard laboratory diet. Larvae fed monotypic diets containing prokaryotes (bacteria [Bacillus cereus] and cyanobacteria [Oscillatoria prolifera]) and brewer's yeast (Saccharomyces cerevisiae) failed to survive beyond the 1(st) and 2(nd) instar, respectively. Larvae fed only chlorophytes, single-celled Chlamydomonas reinhardtii and filamentous Spirogyra communis, failed to complete larval development, regardless of the concentration tested. Cohorts fed a combination of food types (mixed diets) usually developed better than cohorts fed monotypic diets. Food types that failed to support complete development when fed alone often facilitated development to adulthood when fed in combination with food types containing >1% C20 polyunsaturated fatty acids as total fat, but regardless of essential fatty acid content, algae that produced mucilage and filaments that sank out of the feeding zone were poor quality diets. PMID:27232128

  4. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae

    PubMed Central

    Rund, Samuel S. C.; Bonar, Nicolle A.; Champion, Matthew M.; Ghazi, John P.; Houk, Cameron M.; Leming, Matthew T.; Syed, Zainulabeuddin; Duffield, Giles E.

    2013-01-01

    We recently characterized 24-hr daily rhythmic patterns of gene expression in Anopheles gambiae mosquitoes. These include numerous odorant binding proteins (OBPs), soluble odorant carrying proteins enriched in olfactory organs. Here we demonstrate that multiple rhythmically expressed genes including OBPs and takeout proteins, involved in regulating blood feeding behavior, have corresponding rhythmic protein levels as measured by quantitative proteomics. This includes AgamOBP1, previously shown as important to An. gambiae odorant sensing. Further, electrophysiological investigations demonstrate time-of-day specific differences in olfactory sensitivity of antennae to major host-derived odorants. The pre-dusk/dusk peaks in OBPs and takeout gene expression correspond with peak protein abundance at night, and in turn coincide with the time of increased olfactory sensitivity to odorants requiring OBPs and times of increased blood-feeding behavior. This suggests an important role for OBPs in modulating temporal changes in odorant sensitivity, enabling the olfactory system to coordinate with the circadian niche of An. gambiae. PMID:23986098

  5. Larvicidal potential of essential oils against Musca domestica and Anopheles stephensi.

    PubMed

    Chauhan, Nitin; Malik, Anushree; Sharma, Satyawati; Dhiman, R C

    2016-06-01

    The larvicidal activity of Mentha piperita, Cymbopogan citratus (lemongrass), Eucalyptus globulus and Citrus sinensis (orange) essential oils and their combinations was evaluated against Musca domestica (housefly) and Anopheles stephensi (mosquitoes) through contact toxicity assay. Among all the tested essential oils/combinations, Me. piperita was found to be the most effective larvicidal agent against Mu. domestica and An. stephensi with LC50 values of 0.66 μl/cm(2) and 44.66 ppm, respectively, after 48 h. The results clearly highlighted that the addition of mentha oil to other oils (1:1 ratio) improved their larvicidal activity. The order of effectiveness of essential oils/combinations indicated that the pattern for An. stephensi follows the trend as mentha > mentha + lemongrass > lemongrass > mentha + eucalyptus > eucalyptus > mentha + orange > orange and for Mu. domestica as mentha > mentha + lemongrass > lemongrass > mentha + orange > orange > mentha + eucalyptus > eucalyptus. The images obtained from scanning electron microscopy (SEM) analysis indicated the toxic effect of Me. piperita as the treated larvae were observed to be dehydrated and deformed. This study demonstrates the effectiveness of tested essential oils/combinations against the larval stages of Mu. domestica and An. stephensi and has the potential for development of botanical formulations. PMID:26920567

  6. Unraveling dual feeding associated molecular complexity of salivary glands in the mosquito Anopheles culicifacies.

    PubMed

    Sharma, Punita; Sharma, Swati; Mishra, Ashwani Kumar; Thomas, Tina; Das De, Tanwee; Rohilla, Suman Lata; Singh, Namita; Pandey, Kailash C; Valecha, Neena; Dixit, Rajnikant

    2015-01-01

    Mosquito salivary glands are well known to facilitate meal acquisition, however the fundamental question on how adult female salivary gland manages molecular responses during sugar versus blood meal uptake remains unanswered. To investigate these responses, we analyzed a total of 58.5 million raw reads generated from two independent RNAseq libraries of the salivary glands collected from 3-4 day-old sugar and blood fed Anopheles culicifacies mosquitoes. Comprehensive functional annotation analysis of 10,931 contigs unraveled that salivary glands may encode diverse nature of proteins in response to distinct physiological feeding status. Digital gene expression analysis and PCR validation indicated that first blood meal significantly alters the molecular architecture of the salivary glands. Comparative microscopic analysis also revealed that first blood meal uptake not only causes an alteration of at least 12-22% of morphological features of the salivary glands but also results in cellular changes e.g. apoptosis, confirming together that adult female salivary glands are specialized organs to manage meal specific responses. Unraveling the underlying mechanism of mosquito salivary gene expression, controlling dual feeding associated responses may provide a new opportunity to control vector borne diseases. PMID:26163527

  7. Cuticular hydrocarbon discrimination/variation among strains of the mosquito, Anopheles (Cellia) stephensi Liston.

    PubMed

    Anyanwu, G I; Davies, D H; Molyneux, D H; Phillips, A; Milligan, P J

    1993-06-01

    Cuticular lipids were removed from adult female Anopheles stephensi Liston and the hydrocarbons present were separated and quantified by gas chromatography. Comparison was made between the hydrocarbons of four An. stephensi strains: Russ, sensitive to DDT and malathion and originally isolated in the former U.S.S.R.; Beech, a DDT-resistant Indian strain with high sensitivity to Plasmodium species; St Mal, a strain from Pakistan shown to be resistant to malathion; and Iraq, a DDT-susceptible strain from Iraq. Discriminant analysis indicated that the four groups were distinct and that, on average, 78% of the population could be separated on the basis of the quantities of some of the cuticular hydrocarbons. The profiles of Beech and Russ or Russ and St Mal could be separated in 98% of the cases. There was reduced segregation between the profiles of St. Mal and Iraq, suggesting greater similarity in the hydrocarbons of these two strains. The usefulness of cuticular hydrocarbon in determining species relationships is discussed. PMID:8257238

  8. Isolation of Bacillus sphaericus from Lombok Island, Indonesia, and Their Toxicity against Anopheles aconitus.

    PubMed

    Suryadi, Bambang Fajar; Yanuwiadi, Bagyo; Ardyati, Tri; Suharjono

    2015-01-01

    Malaria is endemic to Lombok Island, Indonesia. One approach to suppress malaria spread is to eliminate anopheline larvae in their habitat and the environmentally safe agent is bacteria, that is, Bacillus sphaericus. However, there is no information regarding local isolate of B. sphaericus that is toxic to mosquito larvae from Lombok. The aims of the study were to isolate B. sphaericus from soil in areas close to beach surrounding Lombok Island and to test their toxicity against 3rd instar Anopheles aconitus larvae. Soil samples were collected from 20 different sampling locations from Lombok Island and homogenized with sterile physiological salt solution. Suspension was heat-shocked at 80°C for 30 minutes and then spread onto antibiotic-supplemented NYSM solid medium. Colonies grown were characterized and subjected to initial toxicity test against anopheline larvae. Isolates with more than 50% killing percentage were subjected to bioassay testing against anopheline larvae. From 20 locations, 1 isolate showed mild toxicity (namely, isolate MNT) and 2 isolates showed high toxicity (namely, isolates SLG and TJL2) against An. aconitus. Those 3 isolates were potentially useful isolates, as they killed almost all larvae in 24 hours. The discovery of toxic indigenous isolates of B. sphaericus from Lombok Island opens opportunity to develop a biopesticide from local resources. PMID:26788061

  9. Infertility resulting from transgenic I-PpoI male Anopheles gambiae in large cage trials

    PubMed Central

    Klein, T A; Windbichler, N; Deredec, A; Burt, A; Benedict, M Q

    2012-01-01

    Objectives Anopheles gambiae is the primary vector of malaria in sub-Saharan Africa and is a potential target of genetic control programs. We determined the capacity of male A. gambiae created by germline transformation to introduce infertility into stable age-distribution populations. We also determined effects of the transgenes on life history. Methods Stable age-distribution populations of A. gambiae mosquitoes were established in large indoor cages. Male mosquitoes carrying an I-PpoI homing endonuclease gene were introduced at ×5 and ×10 release rates where they competed with target male mosquitoes for matings. Similar trials were conducted in small cages with an additional ×1 release level. Results Infertility was successfully introduced into all target populations. In supporting experiments, complete female infertility was observed in all strains and species of the A. gambiae complex to which transgenic males were mated. Life history experiments demonstrated that reductions in I-PpoI male vigor exist in the form of reduced adult male emergence, longevity and competitiveness. Discussion A. gambiae I-PpoI males are capable of introducing high levels of infertility in target populations in indoor cage trials. This was accomplished despite losses of vigor resulting from the HEG transgene. These results motivate further trials of sexually I-PpoI A. gambiae in outdoor cage and field trials. PMID:22595271

  10. Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi

    PubMed Central

    2013-01-01

    Background Transgenic mosquito strains are being developed to contribute to the control of dengue and malaria transmission. One approach uses genetic manipulation to confer conditional, female-specific dominant lethality phenotypes. Engineering of a female-specific flightless phenotype provides a sexing mechanism essential for male-only mosquito, release approaches that result in population suppression of target vector species. Methods An approach that uses a female-specific gene promoter and antibiotic-repressible lethal factor to produce a sex-specific flightless phenotype was adapted to the human malaria vector, Anopheles stephensi. Transposon- and site-specific recombination-mediated technologies were used to generate a number of transgenic An. stephensi lines that when combined through mating produced the phenotype of flight-inhibited females and flight-capable males. Results The data shown here demonstrate the successful engineering of a female-specific flightless phenotype in a malaria vector. The flightless phenotype was repressible by the addition of tetracycline to the larval diet. This conditional phenotype allows the rearing of the strains under routine laboratory conditions. The minimal level of tetracycline that rescues the flightless phenotype is higher than that found as an environmental contaminant in circumstances where there is intensive use of antibiotics. Conclusions These studies support the further development of flightless female technology for applications in malaria control programmes that target the vectors. PMID:23622561

  11. An Integrated Genetic Map of the African Human Malaria Vector Mosquito, Anopheles Gambiae

    PubMed Central

    Zheng, L.; Benedict, M. Q.; Cornel, A. J.; Collins, F. H.; Kafatos, F. C.

    1996-01-01

    We present a genetic map based on microsatellite polymorphisms for the African human malaria vector, Anopheles gambiae. Polymorphisms in laboratory strains were detected for 89% of the tested microsatellite markers. Genotyping was performed for individual mosquitoes from 13 backcross families that included 679 progeny. Three linkage groups were identified, corresponding to the three chromosomes. We added 22 new markers to the existing X chromosome map, for a total of 46 microsatellite markers spanning a distance of 48.9 cM. The second chromosome has 57 and the third 28 microsatellite markers spanning a distance of 72.4 and 93.7 cM, respectively. The overall average distance between markers is 1.6 cM (or 1.1, 1.2, and 3.2 cM for the X, second, and third chromosomes, respectively). In addition to the 131 microsatellite markers, the current map also includes a biochemical selectable marker, Dieldrin resistance (Dl), on the second chromosome and five visible markers, pink-eye (p) and white (w) on the X, collarless (c) and lunate (lu) on the second, and red-eye (r) on the third. The cytogenetic locations on the nurse cell polytene chromosomes have been determined for 47 markers, making this map an integrated tool for cytogenetic, genetic, and molecular analysis. PMID:8725240

  12. The STAT pathway mediates late phase immunity against Plasmodium in the mosquito Anopheles gambiae

    PubMed Central

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E.; Barillas-Mury, Carolina

    2009-01-01

    The STAT family of transcription factors activate expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not essential for mosquitoes to survive a bacterial challenge. AgSTAT-A silencing reduces the number of early Plasmodium oocysts in the midgut, but nevertheless enhances the overall infection by increasing oocyst survival. Silencing of SOCS, a STAT suppressor, has the opposite effect, reducing Plasmodium infection by increasing NOS expression. Chemical inhibition of mosquito NOS activity after oocyte formation increases oocyte survival. Thus, the AgSTAT-A pathway mediates a late phase anti-plasmodial response that reduces oocyst survival in An. gambiae. PMID:19454353

  13. The JNK Pathway Is a Key Mediator of Anopheles gambiae Antiplasmodial Immunity

    PubMed Central

    Garver, Lindsey S.; de Almeida Oliveira, Giselle; Barillas-Mury, Carolina

    2013-01-01

    The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite effect. The JNK pathway limits infection via two coordinated responses. It induces the expression of two enzymes (HPx2 and NOX5) that potentiate midgut epithelial nitration in response to Plasmodium infection and regulates expression of two key hemocyte-derived immune effectors (TEP1 and FBN9). Furthermore, the An. gambiae L3–5 strain that has been genetically selected to be refractory (R) to Plasmodium infection exhibits constitutive overexpression of genes from the JNK pathway, as well as midgut and hemocyte effector genes. Silencing experiments confirmed that this cascade mediates, to a large extent, the drastic parasite elimination phenotype characteristic of this mosquito strain. In sum, these studies revealed the JNK pathway as a key regulator of the ability of An. gambiae mosquitoes to limit Plasmodium infection and identified several effector genes mediating these responses. PMID:24039583

  14. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster.

    PubMed

    Zdobnov, Evgeny M; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R; Christophides, George K; Thomasova, Dana; Holt, Robert A; Subramanian, G Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H; Wells, Michael A; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L; Kokoza, Elena; Kraft, Cheryl L; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M; Salzberg, Steven L; Sutton, Granger G; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H; Ribeiro, Jose; Gelbart, William M; Kafatos, Fotis C; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected. PMID:12364792

  15. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    PubMed Central

    Dana, Ali N; Hong, Young S; Kern, Marcia K; Hillenmeyer, Maureen E; Harker, Brent W; Lobo, Neil F; Hogan, James R; Romans, Patricia; Collins, Frank H

    2005-01-01

    Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. Results In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. Conclusion The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity. PMID:15651988

  16. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae.

    PubMed

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E; Barillas-Mury, Carolina

    2009-05-01

    The STAT family of transcription factors activates expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not essential for mosquitoes to survive a bacterial challenge. AgSTAT-A silencing reduces the number of early Plasmodium oocysts in the midgut, but nevertheless enhances the overall infection by increasing oocyst survival. Silencing of SOCS, a STAT suppressor, has the opposite effect, reducing Plasmodium infection by increasing NOS expression. Chemical inhibition of mosquito NOS activity after oocyte formation increases oocyte survival. Thus, the AgSTAT-A pathway mediates a late-phase antiplasmodial response that reduces oocyst survival in A. gambiae. PMID:19454353

  17. The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity.

    PubMed

    Garver, Lindsey S; de Almeida Oliveira, Giselle; Barillas-Mury, Carolina

    2013-01-01

    The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite effect. The JNK pathway limits infection via two coordinated responses. It induces the expression of two enzymes (HPx2 and NOX5) that potentiate midgut epithelial nitration in response to Plasmodium infection and regulates expression of two key hemocyte-derived immune effectors (TEP1 and FBN9). Furthermore, the An. gambiae L3-5 strain that has been genetically selected to be refractory (R) to Plasmodium infection exhibits constitutive overexpression of genes from the JNK pathway, as well as midgut and hemocyte effector genes. Silencing experiments confirmed that this cascade mediates, to a large extent, the drastic parasite elimination phenotype characteristic of this mosquito strain. In sum, these studies revealed the JNK pathway as a key regulator of the ability of An. gambiae mosquitoes to limit Plasmodium infection and identified several effector genes mediating these responses. PMID:24039583

  18. THE SALIVARY TRANSCRIPTOME OF Anopheles gambiae (DIPTERA: CULICIDAE) LARVAE: A MICROARRAY-BASED ANALYSIS

    PubMed Central

    Neira Oviedo, M.; Ribeiro, J.M.C.; Heyland, A.; VanEkeris, L.; Moroz, T.; Linser, P.J.

    2009-01-01

    In spite of the many recent developments in the field of vector sialomics, the salivary glands of larval mosquitoes have been largely unexplored. We used whole-transcriptome microarray analysis to create a gene-expression profile of the salivary gland tissue of fourth-instar Anopheles gambiae larvae, and compare it to the gene-expression profile of a matching group of whole larvae. We identified a total of 221 probes with expression values that were (a) significantly enriched in the salivary glands, and (b) sufficiently annotated as to allow the prediction of the presence/absence of signal peptides in their corresponding gene products. Based on available annotation of the protein sequences associated with these probes, we propose that the main roles of larval salivary secretions include: (a) immune response, (b) mouthpart lubrication, (c) nutrient metabolism, and (d) xenobiotic detoxification. Other highlights of the study include the cloning of a transcript encoding a previously unknown salivary defensin (AgDef5), the confirmation of mucus secretion by the larval salivary glands, and the first report of salivary lipocalins in the Culicidae. PMID:19328852

  19. Polymorphism at the defensin gene in the Anopheles gambiae complex: testing different selection hypotheses

    PubMed Central

    Simard, Frédéric; Licht, Monica; Besansky, Nora J.; Lehmann, Tovi

    2007-01-01

    Genetic variation in defensin, a gene encoding a major effector molecule of insects immune response was analyzed within and between populations of three members of the Anopheles gambiae complex. The species selected included the two anthropophilic species, An. gambiae and An. arabiensis and the most zoophilic species of the complex, An. quadriannulatus. The first species was represented by four populations spanning its extreme genetic and geographical ranges, whereas each of the other two species was represented by a single population. We found (i) reduced overall polymorphism in the mature peptide region and in the total coding region, together with specific reductions in rare and moderately frequent mutations (sites) in the coding region compared with non coding regions, (ii) markedly reduced rate of nonsynonymous diversity compared with synonymous variation in the mature peptide and virtually identical mature peptide across the three species, and (iii) increased divergence between species in the mature peptide together with reduced differentiation between populations of An. gambiae in the same DNA region. These patterns suggest a strong purifying selection on the mature peptide and probably the whole coding region. Because An. quadriannulatus is not exposed to human pathogens, identical mature peptide and similar pattern of polymorphism across species implies that human pathogens played no role as selective agents on this peptide. PMID:17161659

  20. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae.

    PubMed

    Barillas-Mury, C; Charlesworth, A; Gross, I; Richman, A; Hoffmann, J A; Kafatos, F C

    1996-09-01

    A novel rel family member, Gambif1 (gambiae immune factor 1), has been cloned from the human malaria vector, Anopheles gambiae, and shown to be most similar to Drosophila Dorsal and Dif. Gambif1 protein is translocated to the nucleus in fat body cells in response to bacterial challenge, although the mRNA is present at low levels at all developmental stages and is not induced by infection. DNA binding activity to the kappaB-like sites in the A.gambiae Defensin and the Drosophila Diptericin and Cecropin promoters is also induced in larval nuclear extracts following infection. Gambif1 has the ability to bind to kappaB-like sites in vitro. Co-transfection assays in Drosophila mbn-2 cells show that Gambif1 can activate transcription by interacting with the Drosophila Diptericin regulatory elements, but is not functionally equivalent to Dorsal in this assay. Gambif1 protein translocation to the nucleus and the appearance of kappaB-like DNA binding activity can serve as molecular markers of activation of the immune system and open up the possibility of studying the role of defence reactions in determining mosquito susceptibility/refractoriness to malaria infection. PMID:8887560

  1. [Anopheles mosquitoes (Diptera, Culicidae) of the Tien Shan: morphological, cytogenetic, and molecular genetic analysis].

    PubMed

    Gordeev, M I; Zvantsov, A B; Goriacheva, I I; Shaĭkevich, E V; Ezhov, M N; Usenbaev, N T; Shapieva, Zh Zh; Zhakhongirov, Sh M

    2008-01-01

    Morphological, cytogenetic, and molecular genetic studies of the Anopheles fauna in the valley and foothills of the Tien Shan identified 5 species of malaria mosquitoes: An. artemievi Gordeev et al., An. messeae Fall, An. claviger Meigen, An. hyrcanus Pallas, An. pulcherrimus Theobald, and superpictus Grassi. An. claviger, An. hyrcanus, and An. messeae were prevalent in the Northern Tien-Shan. An. artemievi, An. claviger, An. hyrcanus, An. messeae, and An. superpictus were detected in the Western Tien Shan. An. artemievi was first recorded in Kazakhstan. An. artemievi, An. claviger, and An. superpictus were noted in the Inferior Tien Shan. An. messeae was first observed in the Issyk Kul hollow. An. artemievi, An. claviger, and An. superpictus were habitants of the foothills of the South-Western Tien Shan. An. artemievi, An. hyrcanus, An. superpictus, and An. pulcherrimus were in the plain. An. pulcherrimus and An. superpicts mosquitoes are regarded as important vectors in the new malaria foci of the Fergana regions. The role of An. artemievi in the transmission of malaria is to be specified. PMID:18822504

  2. Anthropogenic Habitat Disturbance and Ecological Divergence between Incipient Species of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Kamdem, Colince; Tene Fossog, Billy; Simard, Frédéric; Etouna, Joachim; Ndo, Cyrille; Kengne, Pierre; Boussès, Philippe; Etoa, François-Xavier; Awono-Ambene, Parfait; Fontenille, Didier; Antonio-Nkondjio, Christophe; Besansky, Nora J.; Costantini, Carlo

    2012-01-01

    Background Anthropogenic habitat disturbance is a prime cause in the current trend of the Earth’s reduction in biodiversity. Here we show that the human footprint on the Central African rainforest, which is resulting in deforestation and growth of densely populated urban agglomerates, is associated to ecological divergence and cryptic speciation leading to adaptive radiation within the major malaria mosquito Anopheles gambiae. Methodology/Principal Findings In southern Cameroon, the frequency of two molecular forms–M and S–among which reproductive isolation is strong but still incomplete, was correlated to an index of urbanisation extracted from remotely sensed data, expressed as the proportion of built-up surface in each sampling unit. The two forms markedly segregated along an urbanisation gradient forming a bimodal cline of ∼6-km width: the S form was exclusive to the rural habitat, whereas only the M form was present in the core of densely urbanised settings, co-occurring at times in the same polluted larval habitats of the southern house mosquito Culex quinquefasciatus–a species association that was not historically recorded before. Conclusions/Significance Our results indicate that when humans create novel habitats and ecological heterogeneities, they can provide evolutionary opportunities for rapid adaptive niche shifts associated with lineage divergence, whose consequences upon malaria transmission might be significant. PMID:22745756

  3. Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae.

    PubMed

    Mutunga, James M; Anderson, Troy D; Craft, Derek T; Gross, Aaron D; Swale, Daniel R; Tong, Fan; Wong, Dawn M; Carlier, Paul R; Bloomquist, Jeffrey R

    2015-06-01

    Insecticide resistance in the malaria vector, Anopheles gambiae, is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a "pseudo-pyrethroid." There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119

  4. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas.

    PubMed

    Deitz, Kevin C; Athrey, Giridhar A; Jawara, Musa; Overgaard, Hans J; Matias, Abrahan; Slotman, Michel A

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  5. Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae

    PubMed Central

    Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.

    2015-01-01

    Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119

  6. Human sweat and 2-oxopentanoic acid elicit a landing response from Anopheles gambiae.

    PubMed

    Healy, T P; Copland, M J

    2000-06-01

    A wind tunnel bioassay and video to observe mosquitoes landing on heated glass cylinders were used to test sweat and some derivatives for responses of Anopheles gambiae Giles (Diptera: Culicidae), a highly anthropophilic African species of malaria vector. Filter papers impregnated with human sweat and a diethyl ether extract from the filter papers elicited significantly more landings than a water control (P<0.001). The concentration of lactic acid in the extract was determined by GLC assay, but bioassays of an equivalent dose of lactic acid (from a commercial supplier) did not elicit landings. Chemical analysis of the extract by combined GLC/mass spectrometry indicated the presence of 73 compounds, of which 40 were tentatively identified. The major components of the extract were aliphatic carboxylic acids. An artificial blend of 22 carboxylic acids did not elicit landings. Bioassays of 2-oxopentanoic acid elicited significantly more, landings (P<0.001). The possible importance of oxo-carboxylic acids for host-seeking by anthropophilic mosquitoes is discussed and their use for trapping is suggested. PMID:10872864

  7. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    PubMed Central

    Deitz, Kevin C.; Athrey, Giridhar A.; Jawara, Musa; Overgaard, Hans J.; Matias, Abrahan; Slotman, Michel A.

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  8. Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution

    PubMed Central

    Rothschild, Jeremy B.; Tsimiklis, Panagiotis; Siggia, Eric D.; François, Paul

    2016-01-01

    Molecular evolution is an established technique for inferring gene homology but regulatory DNA turns over so rapidly that inference of ancestral networks is often impossible. In silico evolution is used to compute the most parsimonious path in regulatory space for anterior-posterior patterning linking two Dipterian species. The expression pattern of gap genes has evolved between Drosophila (fly) and Anopheles (mosquito), yet one of their targets, eve, has remained invariant. Our model predicts that stripe 5 in fly disappears and a new posterior stripe is created in mosquito, thus eve stripe modules 3+7 and 4+6 in fly are homologous to 3+6 and 4+5 in mosquito. We can place Clogmia on this evolutionary pathway and it shares the mosquito homologies. To account for the evolution of the other pair-rule genes in the posterior we have to assume that the ancestral Dipterian utilized a dynamic method to phase those genes in relation to eve. PMID:27227405

  9. Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India.

    PubMed

    Gayathri, V; Murthy, P Balakrishna

    2006-12-01

    The Indian urban malaria vector Anopheles stephensi Liston was selected for deltamethrin resistance for 25 generations (F25) at larval and adult stages separately in the laboratory. There was roughly a 151-fold increase in the lethal concentration (LC)50 and a 99-fold increase in the LC90 in larval selection, when the F25 was compared with the parent colony. Similarly, adult selection resulted in a 39-fold increase in the LC50 and a 31-fold increase in the LC90 in the adults. Knockdown bioassays conducted on adults (selected at the larval and adult stages) against the diagnostic concentration of insecticide-impregnated papers, namely, deltamethrin (0.05%), permethrin (0.75%), lambda-cyhalothrin (0.05%), and cyfluthrin (0.15%), revealed that the adults selected at the adult stage were more resistant to deltamethrin and the other pyrethroids than those selected at the larval stage. A significant cross-resistance to DDT was noticed only in the adults selected at the adult stage, and no cross-resistance to malathion and propoxur was observed in the adults of both resistant colonies. Polymerase chain reaction studies revealed an occurrence of heterozygote level of kdr mutation (leucine to phenylalanine) in the adults selected at the adult stage. This event was not observed in the adults selected at the larval stage. Moreover, this is the first report on the occurrence of kdr mutation in Indian An. stephensi resistant to deltamethrin. PMID:17304937

  10. Triple insecticide resistance in Anopheles culicifacies: a practical impediment for malaria control in Odisha State, India

    PubMed Central

    Sahu, S.S.; Gunasekaran, K.; Vijayakumar, T.; Jambulingam, P.

    2015-01-01

    Background & objectives: In Odisha State, the control of malaria vectors has become dependent on synthetic pyrethroids, which are used for treatment of all approved long-lasting insecticidal nets (LLINs). The vast use of just one class of insecticide has led to the problem of resistance to insecticides in malaria vectors. One of the major malaria vectors in Odisha State is Anopheles culicifacies Giles. The aim of this study was to determine the resistance status of An. culicifacies to deltamethrin, a synthetic pyrethroid and other common insecticides used by the National Vector Borne Diseases Control Programme (NVBDCP) for indoor residual spraying in Odisha State. Methods: Mosquitoes were collected during April 2014 - June 2014 from 15 randomly selected villages in five Plasmodium falciparum endemic southern districts of Odisha State. The blood-fed wild caught females were exposed to the diagnostic dosage of DDT (4.0%), malathion (5.0%) and deltamethrin (0.05%) for one hour. Mortality was recorded at 24 h after the exposure. Results: Results indicated that An. culicifacies was resistant to all the three insecticides used in the malaria control programme in the five districts of Odisha State. Interpretation & conclusions: Resistance management strategy by appropriate rotation of different groups of insecticides including carbamates and incorporating a synergist with synthetic pyrethroids for treating mosquito nets should be considered for the control of malaria vectors in the area, especially where An. culicifacies is predominant. Periodical monitoring of susceptibility/resistance status of An. culicifacies to different insecticides is warranted. PMID:26905243

  11. Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission

    PubMed Central

    Akinosoglou, Karolina A; Bushell, Ellen S C; Ukegbu, Chiamaka Valerie; Schlegelmilch, Timm; Cho, Jee-Sun; Redmond, Seth; Sala, Katarzyna; Christophides, George K; Vlachou, Dina

    2015-01-01

    The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito. At least two of these programmes are associated with the ookinete development that is linked to mosquito midgut invasion and establishment of infection. Targeted disruption by homologous recombination of two of these genes resulted in mutant parasites exhibiting notable infection phenotypes. GAMER encodes a short polypeptide with granular localization in the gametocyte cytoplasm and shows a highly penetrant loss-of-function phenotype manifested as greatly reduced ookinete numbers, linked to impaired male gamete release. HADO encodes a putative magnesium phosphatase with distinctive cortical localization along the concave ookinete periphery. Disruption of HADO compromises ookinete development leading to significant reduction of oocyst numbers. Our data provide important insights into the molecular framework underpinning Plasmodium development in the mosquito and identifies two genes with important functions at initial stages of parasite development in the mosquito midgut. PMID:25225164

  12. Resveratrol Fails to Extend Life Span in the Mosquito Anopheles stephensi.

    PubMed

    Johnson, Adiv A; Riehle, Michael A

    2015-10-01

    Resveratrol, a plant polyphenol present in grape skins, has been theorized to account for the "French Paradox" by explaining how red wine may decrease the health risks associated with unhealthy diets. Resveratrol has been reported to extend life span in several different species. Other studies, however, have failed to find a resveratrol-induced life span effect. A recent meta-study analyzing previously published survival data concluded that, although resveratrol reliably and reproducibly extends life span in some species, its life span effects show diminished reliability in other organisms. The data are mixed, and it remains unclear how evolutionarily conserved resveratrol's effects on life span are. To gain further insight into this controversy, we studied the effects of various concentrations (200 μM, 100 μM, 50 μM, or 0 μM) of orally fed resveratrol on the life span of the mosquito Anopheles stephensi, an important vector of human malaria, under two different feeding treatments--sugar-fed only or sugar-fed with intermittent blood meals. Each treatment was repeated three times and both survivorship and mortality rates were analyzed for each replicate. For the majority of experiments, resveratrol failed to mediate a statistically significant effect on life span. Although there was one instance where resveratrol significantly increased life span, there were five other instances where resveratrol significantly decreased life span. We conclude from these data that, under normal conditions, resveratrol does not extend life span in A. stephensi. PMID:25848933

  13. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae.

    PubMed

    Hillyer, Julián F; Estévez-Lao, Tania Y; Mirzai, Homa E

    2015-10-01

    Serotonin and glutamate are neurotransmitters that in insects are involved in diverse physiological processes. Both serotonin and glutamate have been shown to modulate the physiology of the dorsal vessel of some insects, yet until the present study, their activity in mosquitoes remained unknown. To test whether serotonin or glutamate regulate dorsal vessel physiology in the African malaria mosquito, Anopheles gambiae, live mosquitoes were restrained, and a video of the contracting heart (the abdominal portion of the dorsal vessel) was acquired. These adult female mosquitoes were then injected with various amounts of serotonin, glutamate, or a control vehicle solution, and additional videos were acquired at 2 and 10 min post-treatment. Comparison of the videos taken before and after treatment revealed that serotonin accelerates the frequency of heart contractions, with the cardioacceleration being significantly more pronounced when the wave-like contractions of cardiac muscle propagate in the anterograde direction (toward the head). Comparison of the videos taken before and after treatment with glutamate revealed that this molecule is also cardioacceleratory. However, unlike serotonin, the activity of glutamate does not depend on whether the contractions propagate in the anterograde or the retrograde (toward the posterior of the abdomen) directions. Serotonin or glutamate induces a minor change or no change in the percentage of contractions and the percentage of the time that the heart contracts in the anterograde or the retrograde directions. In summary, this study shows that the neurotransmitters serotonin and glutamate increase the heart contraction rate of mosquitoes. PMID:26099947

  14. The Anopheles-midgut APN1 structure reveals a new malaria transmission-blocking vaccine epitope.

    PubMed

    Atkinson, Sarah C; Armistead, Jennifer S; Mathias, Derrick K; Sandeu, Maurice M; Tao, Dingyin; Borhani-Dizaji, Nahid; Tarimo, Brian B; Morlais, Isabelle; Dinglasan, Rhoel R; Borg, Natalie A

    2015-07-01

    Mosquito-based malaria transmission-blocking vaccines (mTBVs) target midgut-surface antigens of the Plasmodium parasite's obligate vector, the Anopheles mosquito. The alanyl aminopeptidase N (AnAPN1) is the leading mTBV immunogen; however, AnAPN1's role in Plasmodium infection of the mosquito and how anti-AnAPN1 antibodies functionally block parasite transmission have remained elusive. Here we present the 2.65-Å crystal structure of AnAPN1 and the immunoreactivity and transmission-blocking profiles of three monoclonal antibodies (mAbs) to AnAPN1, including mAb 4H5B7, which effectively blocks transmission of natural strains of Plasmodium falciparum. Using the AnAPN1 structure, we map the conformation-dependent 4H5B7 neoepitope to a previously uncharacterized region on domain 1 and further demonstrate that nonhuman-primate neoepitope-specific IgG also blocks parasite transmission. We discuss the prospect of a new biological function of AnAPN1 as a receptor for Plasmodium in the mosquito midgut and the implications for redesigning the AnAPN1 mTBV. PMID:26075520

  15. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival

    PubMed Central

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E.

    2015-01-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a “standard” model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  16. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    PubMed Central

    Okumu, Fredros O; Knols, Bart GJ; Fillinger, Ulrike

    2007-01-01

    Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Results Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Conclusion Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides. PMID:17519000

  17. Knockdown Resistance (kdr) Mutations in Indian Anopheles stephensi (Diptera: Culicidae) Populations.

    PubMed

    Dykes, Cherry L; Das, Manoj K; Eapen, Alex; Batra, Chandra P; Ghosh, Susanta K; Vijayan, V A; Mishra, Shobhna; Singh, Om P

    2016-03-01

    Knockdown resistance (kdr) in insects resulting from mutation(s) in the voltage-gated sodium channel (VGSC) gene is one of the mechanisms of resistance against DDT and the pyrethroid group of insecticides. Earlier, we reported the presence of two classic kdr mutations, i.e., L1014F and L1014S in Anopheles stephensi Liston, a major Indian malaria vector affecting mainly urban areas. This report presents the distribution of these alleles in different An. stephensi populations. Seven populations of An. stephensi from six states of India were screened for the presence of two alternative kdr mutations L1014F and L1014S using allele-specific polymerase chain reaction assays. We recorded the presence of both kdr mutations in northern Indian populations (Alwar and Gurgaon), with the preponderance of L1014S, whereas only L1014F was present in Raipur (central India) and Chennai (southern India). None of the kdr mutations were found in Ranchi in eastern India and in Mangaluru and Mysuru in southern India. This study provides evidence for a focal pattern of distribution of kdr alleles in India. PMID:26747858

  18. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    PubMed

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi. PMID:26767379

  19. Larvicidal Activity of Essential Oils of Apiaceae Plants against Malaria Vector, Anopheles stephensi

    PubMed Central

    Sedaghat, MM; Dehkordi, A Sanei; Abai, MR; Khanavi, M; Mohtarami, F; Abadi, Y Salim; Rafi, F; Vatandoost, H

    2011-01-01

    Background: Plant extracts and oils may act as alternatives to conventional pesticides for malaria vector control. The aim of this study was to evaluate the larvicidal activity of essential oils of three plants of Apiaceae family against Anopheles stephensi, the main malaria vector in Iran. Methods: Essential oils from Heracleum persicum, Foeniculum vulgare and Coriandrum sativum seeds were hydro distillated, then their larvicidal activity were evaluated against laboratory-reared larvae of An. stephensi according to standard method of WHO. After susceptibility test, results were analysis using Probit program. Results: Essential oils were separated from H. persicum, F. vulgare and C. sativum plants and their larvicidal activities were tested. Result of this study showed that F. vulgare oil was the most effective against An. stephensi with LC50 and LC90 values of 20.10 and 44.51 ppm, respectively. Conclusion: All three plants essential oil can serve as a natural larvicide against An. stephensi. F. vulgare oil exhibited more larvicidal properties. PMID:22808418

  20. gSG6-P1 salivary biomarker discriminates micro-geographical heterogeneity of human exposure to Anopheles bites in low and seasonal malaria areas

    PubMed Central

    2013-01-01

    Background Over the past decade, a sharp decline of malaria burden has been observed in several countries. Consequently, the conventional entomological methods have become insufficiently sensitive and probably under-estimate micro-geographical heterogeneity of exposure and subsequent risk of malaria transmission. In this study, we investigated whether the human antibody (Ab) response to Anopheles salivary gSG6-P1 peptide, known as a biomarker of Anopheles exposure, could be a sensitive and reliable tool for discriminating human exposure to Anopheles bites in area of low and seasonal malaria transmission. Methods A multi-disciplinary survey was performed in Northern Senegal where An. gambiae s.l. is the main malaria vector. Human IgG Ab response to gSG6-P1 salivary peptide was compared according to the season and villages in children from five villages in the middle Senegal River valley, known as a low malaria transmission area. Results IgG levels to gSG6-P1 varied considerably according to the villages, discriminating the heterogeneity of Anopheles exposure between villages. Significant increase of IgG levels to gSG6-P1 was observed during the peak of exposure to Anopheles bites, and decreased immediately after the end of the exposure season. In addition, differences in the season-dependent specific IgG levels between villages were observed after the implementation of Long-Lasting Insecticidal Nets by The National Malaria Control Program in this area. Conclusion The gSG6-P1 salivary peptide seems to be a reliable tool to discriminate the micro-geographical heterogeneity of human exposure to Anopheles bites in areas of very low and seasonal malaria transmission. A biomarker such as this could also be used to monitor and evaluate the possible heterogeneous effectiveness of operational vector control programs in low-exposure areas. PMID:23497646

  1. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota.

    PubMed

    Carissimo, Guillaume; Pondeville, Emilie; McFarlane, Melanie; Dietrich, Isabelle; Mitri, Christian; Bischoff, Emmanuel; Antoniewski, Christophe; Bourgouin, Catherine; Failloux, Anna-Bella; Kohl, Alain; Vernick, Kenneth D

    2015-01-13

    Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens. PMID:25548172

  2. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito.

  3. PCR identification of five species from the Anopheles maculipennis complex (Diptera: Culicidae) in North-Eastern Romania.

    PubMed

    Ivanescu, Maria-Larisa; Acatrinei, Dumitru; Pavel, Ionuţ; Sulesco, Tatiana; Miron, Liviu

    2015-06-01

    The members of the Anopheles maculipennis complex have been incriminated for the transmission of the malaria in Europe, which was endemic until the middle of the century. The global warming and the intensification of the intercontinental travel constitute a risk of the re-emergence of the malaria in Europe, given the presence of the Anopheles vectors. The study has attempted the identification by using the PCR (Polymerase Chain Reaction) of the members of the Anopheles maculipennis complex from the North-eastern area of Romania from the city of Iaşi. In total there have been identified by using the PCR amplifying the ITS2 sequence of the ribosomal DNA, 217 specimens belonging to the complex of A. maculipennis among which: 58 A. atroparvus, 18 A. melanoon, 2 A. labranchiae, 52 A. maculipennis and 87 A. messeae. The ITS2 sequences of the ribosomal DNA have been compared to those of the species belonging to the A. maculipennis available in GenBank. The Species A. labranchiae is reported for the first time in Romania, being identified in the larval stage IV. The adaptation of a new species to the climatic conditions present in the North-eastern Romania, confirms the phenomenon of global warming and also the intensification of the travelling. As a result of the analysis of the A. labranchiae sequence, this one corresponds to the extent of 96% to the species from Italy, registered in GenBank, given the fact that a high number of the inhabitants of the municipality of Iaşi are working in this country. PMID:26203997

  4. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya.

    PubMed

    Petrarca, V; Beier, J C

    1992-02-01

    The paracentric inversion polymorphisms of Anopheles gambiae and An. arabiensis populations in the Kisumu area of western Kenya were studied in relation to parameters of Plasmodium falciparum transmission. Anopheles gambiae (n = 1,387) was polymorphic for inversions b on chromosomal arm 2R and a on arm 2L, with frequencies of the inverted arrangements of 17% and 43%, respectively. Anopheles arabiensis (n = 484) was polymorphic for inversion b on chromosomal arm 2R and a on 3R, with frequencies of the inverted arrangements of 58% and 5%, respectively. Observed karyotypic frequencies did not deviate from Hardy-Weinberg equilibrium, indicating a condition of panmixia (i.e., random mating) for both species. The overall degree of intraspecific polymorphism was low, confirming findings from other zones of East Africa. No significant differences in inversion frequencies of either An. gambiae or An. arabiensis were observed, either between collecting sites or between similar sampling periods of consecutive years. At the same time, a stable, significant two-fold difference in Plasmodium infection rates was detected among An. gambiae carriers of different inversion karyotypes on chromosome 2. A significant non-uniform distribution of human- and bovid-fed specimens was also detected among the carriers of different 2Rb inversion karyotypes in indoor resting An. arabiensis. Relationships among inversion karyotypes of the two major malaria vectors in the An. gambiae complex and key factors affecting malaria transmission intensity emphasize that intraspecific variation could contribute significantly to the diversity and stability of malaria vectorial systems in Africa. PMID:1539757

  5. Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast

    PubMed Central

    2013-01-01

    Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria

  6. Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control

    PubMed Central

    2011-01-01

    Background Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development. Methods To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference. Results The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP+-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) Vmax with NAD+ was 3-fold higher than that with NADP+, (ii) addition of Mg2+ or Mn2+ increased the Vmax by 9- to 21-fold, with Mn2+ 2.3-fold more effective than Mg2+, (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD+-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate). Conclusions The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting

  7. Toxicity of extracts from three Tagetes against adults and larvae of yellow fever mosquito and Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Perich, M J; Wells, C; Bertsch, W; Tredway, K E

    1994-11-01

    Whole-plant Soxhlet extractions for the three Tagetes species showed that T. minuta had the greatest biocidal effect on the larvae and adults of Aedes aegypti (L.) and Anopheles stephensi Liston. Bioassays of simultaneous steam distillation extractions of the various parts of T. minuta found extracts from the flowers provided LD90s of 4 and 8 ppm against the larvae and 0.4 and 0.45% against the adults of A. aegypti and A. stephensi, respectively. Further research on T. minuta floral extracts as new biorational insecticides are discussed. PMID:7815394

  8. BIONOMICS AND ECOLOGY OF ANOPHELES LITORALIS ON BONGAO ISLAND, TAWI-TAWI PROVINCE, PHILIPPINES: IMPLICATIONS FOR VECTOR CONTROL.

    PubMed

    Salazar, Ferdinand V; Torno, Majhalia M; Galang, Cristina; Baquilod, Mario; Bangs, Michael J

    2015-05-01

    Entomological surveys were conducted to identify Anopheles malaria vector species, their feeding and resting behaviors, and characterization of larval habitats on Bongao Island, Tawi-tawi Province, in July and November, 2007. Survey parameters included all-evening human-landing collections (HLC), evening buffalo-baited trap (BBT) collections, daytime indoor and outdoor adult resting collections, adult female age-grading, identification of natural Plasmodium infections in mosquitoes, larval habitat identification and physical/biological characterization, and adult insecticide susceptibility assays. Both surveys revealed the predominant and putative malaria vector species on Bongao Island is Anopheles litoralis. Anophelesflavirostris was collected on only one occasion. The HLC during the July survey produced approximately 4 mosquitoes/human/night (mhn). The November survey yielded 1.27 mhn due, in part, to inclement weather conditions during time of sampling. Anopheles litoralis host seeking behavior occurred throughout the evening (06:00 PM - 06:00 AM) with peak biting between 10:00 PM and 04:00 AM. This species exhibited stronger zoophilic behavior based on comparison of HLC and BBT data. HLC showed a slightly greater exophagic (outdoor) behavior (1.4:1 ratio). During the July collection, an older adult population was present (75% parous) compared to the lower numbers of An. litoralis dissected in November (25% parous). Albeit a small sample size (n=19), 10.5% of An. litoralis dissected contained midgut oocysts of Plasmodium. Daytime adult resting harborages included biotic and abiotic sites in and around partially shaded, brackish water habitats where immature stages were common. Anopheles litoralis was found susceptible to pirimiphos-methyl and four different synthetic pyrethroids. This survey provides further epidemiological evidence of the importance of An. litoralis in malaria transmission on Bongao Island, and presumably throughout much of the Sulu

  9. Repellent activities of stereoisomers of p-menthane-3,8-diols against Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Barasa, Stephen S; Ndiege, Isaiah O; Lwande, Wilber; Hassanali, Ahmed

    2002-09-01

    Four stereoisomers of p-menthane-3,8-diol, which make up the natural product obtained from Eucalyptus citriodora, were synthesized through stereoselective procedures. Repellency assays showed that all the four were equally active against Anopheles gambiae s.s. Racemic blends and the diastereoisomeric mixture of all the four isomers were also equally repellent. 1-alpha-terpeneol, with a single hydroxyl function at C-8 and unsaturation at C-8, and menthol, with a single hydroxyl function at C-3, were not repellent. The practical implication of these results is discussed. PMID:12349856

  10. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya

    PubMed Central

    2010-01-01

    Background The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Methods Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Results Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. Conclusion

  11. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, west Kenya

    PubMed Central

    Chen, Hong; Minakawa, Noboru; Beier, John; Yan, Guiyun

    2004-01-01

    Background Understanding the genetic structure of island Anopheles gambiae populations is important for the current tactics in mosquito control and for the proposed strategy using genetically-modified mosquitoes (GMM). Genetically-isolated mosquito populations on islands are a potential site for testing GMM. The objective of this study was to determine the genetic structure of A. gambiae populations on the islands in Lake Victoria, western Kenya. Methods The genetic diversity and the population genetic structures of 13 A. gambiae populations from five islands on Lake Victoria and six villages from the surrounding mainland area in the Suba District were examined using six microsatellite markers. The distance range of sampling sites varied between 2.5 and 35.1 km. Results A similar level of genetic diversity between island mosquito populations and adjacent mainland populations was found. The average number of alleles per locus was 7.3 for the island populations and 6.8 for the mainland populations. The average observed heterozygosity was 0.32 and 0.28 for the island and mainland populations, respectively. A low but statistically significant genetic structure was detected among the island populations (FST = 0.019) and between the island and mainland populations (FST = 0.003). A total of 12 private alleles were found, and nine of them were from the island populations. Conclusion A level of genetic differentiation between the island and mainland populations was found. Large extent of gene flow between the island and mainland mosquito populations may result from wind- or human-assisted dispersal. Should the islands on Lake Victoria be used as a trial site for the release program of GMM, mosquito dispersal between the islands and between the island and the mainland should be vigorously monitored. PMID:15581429

  12. Characterization of two globin genes from the malaria mosquito Anopheles gambiae: divergent origin of nematoceran haemoglobins.

    PubMed

    Burmester, Thorsten; Klawitter, Sabine; Hankeln, Thomas

    2007-04-01

    The chironomid midges are the only insects that harbour true haemoglobin in their haemolymph. Here we report the identification of haemoglobin genes in two other nematoceran species. Two paralogous haemoglobin genes (glob1 and glob2) from the malaria mosquito Anopheles gambiae were cloned and sequenced. Furthermore, we identified two orthologous haemoglobin genes in the yellow fever mosquito Aedes aegypti. All four haemoglobins were predicted to be intracellular proteins, with the amino acids required for heme- and oxygen-binding being conserved. In situ-hybridization studies showed that glob1 and glob2 expression in An. gambiae is mainly associated with the tracheal system. This pattern resembles that of other insect intracellular globins. We also observed expression of glob2 in visceral muscles. Phylogenetic analyses showed that the globins of the mosquitoes and the Chironomidae are not orthologous. The chironomid haemoglobins share a recent common origin with the brachyceran glob1 proteins. The mosquito glob1 and glob2 proteins, which separated by gene duplication around 170 million years ago, form a distinct clade of more ancient evolutionary origin within the insects. The glob1 genes have introns in the ancestral globin positions B12.2 and G7.0. An additional intron was observed in Ae. aegypti glob1 helix position E18.0, providing evidence for a recent intron gain event. Both mosquito glob2 genes have lost the B12.2 intron. This pattern must be interpreted in terms of dynamic intron gain and loss events in the globin gene lineage. PMID:17298561

  13. Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi

    PubMed Central

    Nacer, Adéla; Walker, Karen; Hurd, Hilary

    2008-01-01

    Background Oocysts of the malaria parasite form and develop in close proximity to the mosquito midgut basal lamina and it has been proposed that components of this structure play a crucial role in the development and maturation of oocysts that produce infective sporozoites. It is further suggested that oocysts incorporate basal lamina proteins into their capsule and that this provides them with a means to evade recognition by the mosquito's immune system. The site of production of basal lamina proteins in insects is controversial and it is still unclear whether haemocytes or midgut epithelial cells are the main source of components of the mosquito midgut basal lamina. Of the multiple molecules that compose the basal lamina, laminin is known to interact with a number of Plasmodium proteins. In this study, the localisation of mosquito laminin within the capsule and cytoplasm of Plasmodium berghei oocysts and in the midgut epithelial cells of Anopheles stephensi was investigated. Results An ultrastructural examination of midgut sections from infected and uninfected An. stephensi was performed. Post-embedded immunogold labelling demonstrated the presence of laminin within the mosquito basal lamina. Laminin was also detected on the outer surface of the oocyst capsule, incorporated within the capsule and associated with sporozoites forming within the oocysts. Laminin was also found within cells of the midgut epithelium, providing support for the hypothesis that these cells contribute towards the formation of the midgut basal lamina. Conclusion We suggest that ookinetes may become coated in laminin as they pass through the midgut epithelium. Thereafter, laminin secreted by midgut epithelial cells and/or haemocytes, binds to the outer surface of the oocyst capsule and that some passes through and is incorporated into the developing oocysts. The localisation of laminin on sporozoites was unexpected and the importance of this observation is less clear. PMID:18808667

  14. Seasonal Variation in Spatial Distributions of Anopheles gambiae in a Sahelian Village: Evidence for Aestivation

    PubMed Central

    Lehmann, Tovi; Dao, A.; Yaro, A. S.; Diallo, M.; Timbiné, S.; Huestis, D. L.; Adamou, A.; Kassogué, Y.; Traoré, A. I.

    2014-01-01

    Changes in spatial distribution of mosquitoes over time in a Sahelian village were studied to understand the sources of the mosquitoes during the dry season when no larval sites are found. At that time, the sources of Anopheles gambiae Giles may be local shelters used by aestivating mosquitoes or migrants from distant populations. The mosquito distribution was more aggregated during the dry season, when few houses had densities 7- to 24-fold higher than expected. The high-density houses during the dry season differed from those of the wet season. Most high-density houses during the dry season changed between years, yet their vicinity was rather stable. Scan statistics confirmed the presence of one or two adjacent hotspots in the dry season, usually found on one edge of the village. These hotspots shifted between the early and late dry season. During the wet season, the hotspots were relatively stable near the main larval site. The locations of the hotspots in the wet season and early and late dry season were similar between years. Season-specific, stable, and focal hotspots are inconsistent with the predictions based on the arrival of migrants from distant localities during the dry season, but are consistent with the predictions based on local shelters used by aestivating mosquitoes. Targeting hotspots in Sahelian villages for vector control may not be effective because the degree of aggregation is moderate, the hotspots are not easily predicted, and they are not the sources of the population. However, targeting the dry-season shelters may be highly cost-effective, once they can be identified and predicted. PMID:24605449

  15. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan*

    PubMed Central

    Omer, Salah M.; Cloudsley-Thompson, J. L.

    1970-01-01

    The dry-season biology of a member of the Anopheles gambiae complex (probably species B) was studied in 2 areas in the Khartoum region of Sudan. It was found that in the valley of the White Nile the species maintained itself by low-level breeding, as shown by the continuing presence of larvae, male mosquitos and parous females through the dry months (9 months in the year). In the scattered villages of arid areas situated more than 20 km from the Nile Valley, on the other hand, regular sampling through the cool dry and hot dry months of the year failed to detect any An. gambiae except nulliparous females. These were found in occupied huts, deserted huts, dry wells and animal burrows. The great majority of 213 females collected in the 11 dry months between November 1966 and December 1967 had fresh or older blood-meals but the abdomen was never found fully distended in the dry season. Examination of the ovaries showed that they did not develop beyond Christophers' stage II in the period from November to February, stage III in March and April, or beyond stage IV in May. But, in June and July stage IV and V ovaries predominated and few specimens remained in stage late-II. It is inferred from these observations that the local population of An. gambiae is highly adapted to survive in the adult stage through the severe drought and heat of the arid zone of Sudan. Some feeding activity continues but ovarian development is extremely retarded, and only one batch of eggs matures during the whole 9-month period. Evidence collected in the Nile Valley indicated that female An. gambiae in that area were not subjected to similar retardation of the ovarian cycle; in fact, clear evidence was obtained there of continuous year-round breeding by the mosquito. PMID:5310144

  16. Transcriptome Sequencing and Developmental Regulation of Gene Expression in Anopheles aquasalis

    PubMed Central

    Silva, Maria C. P.; Lopes, Adriana R.; Barros, Michele S.; Sá-Nunes, Anderson; Kojin, Bianca B.; Carvalho, Eneas; Suesdek, Lincoln; Silva-Neto, Mário Alberto C.; James, Anthony A.; Capurro, Margareth L.

    2014-01-01

    Background Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. Methodology/Principal Findings A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. Conclusions/Significance This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx. PMID:25033462

  17. Identification of the Temperature Induced Larvicidal Efficacy of Agave angustifolia against Aedes, Culex, and Anopheles Larvae.

    PubMed

    Kajla, Mithilesh; Bhattacharya, Kurchi; Gupta, Kuldeep; Banerjee, Ujjwal; Kakani, Parik; Gupta, Lalita; Kumar, Sanjeev

    2015-01-01

    Synthetic insecticides are generally employed to control the mosquito population. However, their injudicious over usage and non-biodegradability are associated with many adverse effects on the environment and mosquitoes. The application of environment-friendly mosquitocidals might be an alternate to overcome these issues. In this study, we found that organic or aqueous extracts of Agave angustifolia leaves exhibited a strong larvicidal activity (LD50 28.27 μg/ml) against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi larvae within a short exposure of 12 h. The larvicidal activity of A. angustifolia is inherited and independent of the plants vegetative growth. Interestingly, the plant larvicidal activity was observed exclusively during the summer season (April-August, when outside temperature is between 30 and 50°C) and it was significantly reduced during winter season (December-February, when the outside temperature falls to ~4°C or lower). Thus, we hypothesized that the larvicidal components of A. angustifolia might be induced by the manipulation of environmental temperature and should be resistant to the hot conditions. We found that the larvicidal activity of A. angustifolia was induced when plants were maintained at 37°C in a semi-natural environment against the controls that were growing outside in cold weather. Pre-incubation of A. angustifolia extract at 100°C for 1 h killed 60% larvae in 12 h, which gradually increased to 100% mortality after 24 h. In addition, the dry powder formulation of A. angustifolia, also displayed a strong larvicidal activity after a long shelf life. Together, these findings revealed that A. angustifolia is an excellent source of temperature induced bioactive metabolites that may assist the preparedness for vector control programs competently. PMID:26793700

  18. Screening of Methanolic Plant Extracts against Larvae of Aedes aegypti and Anopheles stephensi in Mysore

    PubMed Central

    Mohankumar, Thirumalapura Krishnaiah; Shivanna, Kumuda Sathigal; Achuttan, Vijayan Valiakottukal

    2016-01-01

    Background: Mosquitoes transmit serious human diseases, causing millions of death every year. Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Nine different locally available medicinally important plants suspected to posse larvicidal property were screened against fourth instar larvae of Aedes aegypti and Anopheles stephensi to a series of concentrations of the methanolic extracts. Methods: Susceptibility tests on Ae. aegypti and An. stephensi were conducted using standard WHO methods. The larvae of two mosquito species were exposed to methanolic extracts and mortality counts were made after 24 hours of exposure as per WHO method. Larvae of Ae. aegypti were more susceptible than that of An. stephensi. Results: Among the nine plant species tested, Annona reticulata leaf extract was more effective against Ae. aegypti larvae with LC50 and LC90 values of 95.24 and 262.64 ppm respectively and against An. stephensi larvae 262.71 and 636.94 ppm respectively. The least efficacy was in Cosmos bipinnatus with LC50 and LC90 values of 442.6 and 1225.93 ppm against Ae. aegypti and LC50 and LC90 values of 840.69 and 1334.01 ppm of Thespesia populnea against An. stephensi. Conclusion: The crude methanolic extract of the An. reticulata with good larvicidal efficacy could be considered for further characterization to control mosquito vectors instead of chemical insecticides. High efficacy found in An. reticulata extract will be considered for further studies to isolate the bioactive compound. PMID:27308289

  19. Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali

    NASA Astrophysics Data System (ADS)

    Rian, Sigrid Katrine Eivindsdatter

    The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.

  20. Molecular population genetics of the NADPH cytochrome P450 reductase (CPR) gene in Anopheles minimus.

    PubMed

    Srivastava, Hemlata; Huong, Ngo Thi; Arunyawat, Uraiwan; Das, Aparup

    2014-08-01

    Development of insecticide resistance (IR) in mosquito vectors is a primary huddle to malaria control program. Since IR has genetic basis, and genes constantly evolve with response to environment for adaptation to organisms, it is important to know evolutionary pattern of genes conferring IR in malaria vectors. The mosquito Anopheles minimus is a major malaria vector of the Southeast (SE) Asia and India and is susceptible to all insecticides, and thus of interest to know if natural selection has shaped variations in the gene conferring IR. If not, the DNA fragment of such a gene could be used to infer population structure and demography of this species of malaria vector. We have therefore sequenced a ~569 bp DNA segment of the NADPH cytochrome P450 reductase (CPR) gene (widely known to confer IR) in 123 individuals of An. minimus collected in 10 different locations (eight Indian, one Thai and one Vietnamese). Two Indian population samples were completely mono-morphic in the CPR gene. In general, low genetic diversity was found with no evidence of natural selection in this gene. The data were therefore analyzed to infer population structure and demography of this species. The 10 populations could be genetically differentiated into four different groups; the samples from Thailand and Vietnam contained high nucleotide diversity. All the 10 populations conform to demographic equilibrium model with signature of past population expansion in four populations. The results in general indicate that the An. minimus mosquitoes sampled in the two SE Asian localities contain several genetic characteristics of being parts of the ancestral population. PMID:25038863

  1. Phylogenetic Analysis and DNA-based Species Confirmation in Anopheles (Nyssorhynchus)

    PubMed Central

    Foster, Peter G.; Bergo, Eduardo S.; Bourke, Brian P.; Oliveira, Tatiane M. P.; Nagaki, Sandra S.; Sant’Ana, Denise C.; Sallum, Maria Anice M.

    2013-01-01

    Specimens of neotropical Anopheles (Nyssorhynchus) were collected and identified morphologically. We amplified three genes for phylogenetic analysis–the single copy nuclear white and CAD genes, and the COI barcode region. Since we had multiple specimens for most species we were able to test how well the single or combined genes were able to corroborate morphologically defined species by placing the species into exclusive groups. We found that single genes, including the COI barcode region, were poor at confirming species, but that the three genes combined were able to do so much better. This has implications for species identification, species delimitation, and species discovery, and we caution that single genes are not enough. Higher level groupings were partially resolved with some well-supported groupings, whereas others were found to be either polyphyletic or paraphyletic. There were examples of known groups, such as the Myzorhynchella Section, which were poorly supported with single genes but were well supported with combined genes. From this we can infer that more sequence data will be needed in order to show more higher-level groupings with good support. We got unambiguously good support (0.94–1.0 Bayesian posterior probability) from all DNA-based analyses for a grouping of An. dunhami with An. nuneztovari and An. goeldii, and because of this and because of morphological similarities we propose that An. dunhami be included in the Nuneztovari Complex. We obtained phylogenetic corroboration for new species which had been recognised by morphological differences; these will need to be formally described and named. PMID:23390494

  2. Genetic differentiation and diagnostic loci of Anopheles nuneztovari, An. trinkae, and An. rangeli (Diptera: Culicidae).

    PubMed

    Fritz, G N; Bermudez, H; Seawright, J A

    1995-09-01

    Samples of Anopheles rangeli Gabaldon, Cova Garcia & Lopez, An. trinkae Causey, and An. nuneztovari Gabaldon from Venezuela, Ecuador, Brazil, and Bolivia were analyzed for genetic variability at 24 enzyme loci. Estimates of genetic variability for An. rangeli and An. trinkae from Ecuador and for An. nuneztovari in Venezuela had the following ranges: 46-58% polymorphic loci, 1.7-2.0 (SEM = 0.1-0.3) mean number of alleles per locus, and 0.069-0.113 (SEM = 0.03-0.04) expected mean heterozygosity. Genetic variability estimates of An. rangeli from Bolivia were 20.8-29.2% polymorphic loci, 1.2-1.6 (SEM = 0.1-0.2) mean number of alleles per locus, and 0.037-0.054 (SEM = 0.02-0.03) expected mean heterozygosity. The estimated genetic distance between An. rangeli and An. trinkae ranged from 0.149 to 0.197. The genetic distance between these 2 species and An. nuneztovari ranged from 0.319 to 0.440. Although there were allele frequency differences at some loci between samples of An. nuneztovari sampled from either side of the Andes Mountains in Venezuela, there were no diagnostic loci and the estimated genetic distance was only 0.023. Seven enzyme loci were diagnostic between An. nuneztovari and one or both of its sister species: Acon-2, Ao, Hk-1, Idh-2, Me, Pgi, and Pgm. The diagnostic loci Hk-1 and Acon-2 were not polymorphic in any species. An. rangeli and An. trinkae can be distinguished by the diagnostic loci Ao, Idh-2, and Me-1, and with a 97% probability by Pgm. Distance Wagner and unweighted pair-group method with arithmetic averaging analyses support a close phylogenetic relationship between An. trinkae and An. rangeli. PMID:7473622

  3. Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae

    PubMed Central

    Omondi, Bonaventure Aman; Majeed, Shahid; Ignell, Rickard

    2015-01-01

    ABSTRACT Olfactory information drives several behaviours critical for the survival and persistence of insect pests and vectors. Insect behaviour is variable, linked to their biological needs, and regulated by physiological dynamics. For mosquitoes, CO2 is an important cue that signifies the presence of a host, and which elicits activation and attraction. To investigate the genetic basis of olfactory modulation in mosquitoes, we assayed changes in CO2 detection from receptor gene expression through physiological function to behaviour, associated with the onset of host seeking in the malaria vector, Anopheles gambiae. The gene encoding a subunit of the CO2 receptor, AgGr22, was found to be significantly up-regulated in host-seeking females, consistent with a significant increase in sensitivity of CO2-responsive neurons (cpA) housed in capitate peg sensilla of the maxillary palp. In addition, the odorant receptor AgOr28, which is expressed in cpC neurons, was significantly up-regulated. In contrast, AgOr8, which is expressed in cpB neurons, was not affected by this change in physiological state, in agreement with results for the obligate co-receptor Orco. Moreover, the sensitivity of the cpB neuron to (R)-1-octen-3-ol, a well-known mammalian kairomone, did not change in response to the onset of host seeking. The concentration of CO2 flux influenced both the propensity of A. gambiae to take off into the wind and the speed with which this activation occurred. Female A. gambiae mosquitoes responded to CO2 whether mature for host seeking or not, but onset of host seeking enhanced sensitivity and speed of activation at relevant doses of CO2. PMID:26056246

  4. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing.

    PubMed

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V; Reimer, Lisa; Siba, Peter; Walker, Edward D; Zimmerman, Peter A; Serre, David

    2016-03-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  5. Identification of the Temperature Induced Larvicidal Efficacy of Agave angustifolia against Aedes, Culex, and Anopheles Larvae

    PubMed Central

    Kajla, Mithilesh; Bhattacharya, Kurchi; Gupta, Kuldeep; Banerjee, Ujjwal; Kakani, Parik; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Synthetic insecticides are generally employed to control the mosquito population. However, their injudicious over usage and non-biodegradability are associated with many adverse effects on the environment and mosquitoes. The application of environment-friendly mosquitocidals might be an alternate to overcome these issues. In this study, we found that organic or aqueous extracts of Agave angustifolia leaves exhibited a strong larvicidal activity (LD50 28.27 μg/ml) against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi larvae within a short exposure of 12 h. The larvicidal activity of A. angustifolia is inherited and independent of the plants vegetative growth. Interestingly, the plant larvicidal activity was observed exclusively during the summer season (April–August, when outside temperature is between 30 and 50°C) and it was significantly reduced during winter season (December–February, when the outside temperature falls to ~4°C or lower). Thus, we hypothesized that the larvicidal components of A. angustifolia might be induced by the manipulation of environmental temperature and should be resistant to the hot conditions. We found that the larvicidal activity of A. angustifolia was induced when plants were maintained at 37°C in a semi-natural environment against the controls that were growing outside in cold weather. Pre-incubation of A. angustifolia extract at 100°C for 1 h killed 60% larvae in 12 h, which gradually increased to 100% mortality after 24 h. In addition, the dry powder formulation of A. angustifolia, also displayed a strong larvicidal activity after a long shelf life. Together, these findings revealed that A. angustifolia is an excellent source of temperature induced bioactive metabolites that may assist the preparedness for vector control programs competently. PMID:26793700

  6. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus.

    PubMed

    Zhu, Liang; Tian, Yingjuan

    2013-03-01

    Artemisia gilvescens, a traditional Chinese medicinal plant, is chiefly distributed in the middle and lower reaches of the Yangtze River, China. Chemical composition of hydrodistilled essential oil from A. gilvescens was investigated by gas chromatography and mass spectroscopy (GC-MS), and larvicidal activity of the oil and its six main compounds against Anopheles anthropophagus was carried out by WHO method. In total, 56 compounds corresponding to 98.20 % of the total oil were identified and the major compounds identified were camphor (13.49 %), eucalyptol (12.13 %), terpine-4-ol (9.65 %), germacrene D (8.62 %), caryophyllene oxide (4.65 %), and caryophyllene (4.29 %). Essential oil induced 8, 46, 80, 85, 94, and 100 % larval mortality at the concentrations of 25, 50, 75, 100, 125, and 150 mg/l, and the LC(50) and LC(90) values were 49.95 and 97.36 mg/l, respectively. Among the six compounds, the most potent larvicidal compound was caryophyllene oxide and germacrene D, with LC(50) values of 49.46 and 49.81 mg/l and LC(90) values of 115.38 and 106.19 mg/l, respectively. Terpine-4-ol had LC(50) and LC(90) values of 76.70 and 139.42 mg/l followed by camphor which showed LC(50) and LC(90) values of 129.17 and 192.42 mg/l, respectively. The least potent among the six compounds were eucalyptol and caryophyllene, with and LC(50) value exceeding 200 mg/l. In general, it also shows a dose-dependent effect on mortality, with increasing concentrations of essential oil and compounds increasing mortality of the larvae. The essential oil of A. gilvescens and its several major compounds may have potential for use in control of A. anthropophagus. PMID:23263328

  7. Predictions of adult Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats

    NASA Technical Reports Server (NTRS)

    Rejmankova, E.; Roberts, D. R.; Pawley, A.; Manguin, S.; Polanco, J.

    1995-01-01

    Remote sensing is particularly helpful for assessing the location and extent of vegetation formations, such as herbaceous wetlands, that are difficult to examine on the ground. Marshes that are sparsely populated with emergent macrophytes and dense cyanobacterial mats have previously been identified as very productive Anopheles albimanus larval habitats. This type of habitat was detectable on a classified multispectral System Probatoire d'Observation de la Terre image of northern Belize as a mixture of two isoclasses. A similar spectral signature is characteristic for vegetation of river margins consisting of aquatic grasses and water hyacinth, which constitutes another productive larval habitat. Based on the distance between human settlements (sites) of various sizes and the nearest marsh/river exhibiting this particular class combination, we selected two groups of sites: those located closer than 500 m and those located more than 1,500 m from such habitats. Based on previous adult collections near larval habitats, we defined a landing rate of 0.5 mosquitoes/human/min from 6:30 PM to 8:00 PM as the threshold for high (> or = 0.5 mosquitoes/human/min) versus low (< 0.5 mosquitoes/human/min) densities of An. albimanus. Sites located less than 500 m from the habitat were predicted as having values higher than this threshold, while lower values were predicted for sites located greater than 1,500 m from the habitat. Predictions were verified by collections of mosquitoes landing on humans. The predictions were 100% accurate for sites in the > 1,500-m category and 89% accurate for sites in the < 500-m category.

  8. Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats

    PubMed Central

    Koenraadt, Constantianus JM; Paaijmans, Krijn P; Githeko, Andrew K; Knols, Bart GJ; Takken, Willem

    2003-01-01

    Background Although the effects of rainfall on the population dynamics of the malaria vector Anopheles gambiae have been studied in great detail, the effects of dry periods on its survival remain less clear. Methods The effects of drying conditions were simulated by creating desiccated habitats, which consisted of trays filled with damp soil. Experiments were performed in these trays to (i) test the ability of An. gambiae sensu stricto eggs to hatch on damp soil and for larvae to reach an artificial breeding site at different distances of the site of hatching and (ii) to record survival of the four larval stages of An. gambiae s.s. when placed on damp soil. Results Eggs of An. gambiae s.s. hatched on damp soil and emerging larvae were capable of covering a distance of up to 10 cm to reach surface water enabling further development. However, proportions of larvae reaching the site decreased rapidly with increasing distance. First, second and third-instar larvae survived on damp soil for an estimated period of 64, 65 and 69 hrs, respectively. Fourth-instar larvae survived significantly longer and we estimated that the maximum survival time was 113 hrs. Conclusion Short-term survival of aquatic stages of An. gambiae on wet soil may be important and adaptive when considering the transient nature of breeding sites of this species in sub-Saharan Africa. In addition, the results suggest that, for larval vector control methods to be effective, habitats should remain drained for at least 5 days to kill all larvae (e.g. in rice fields) and habitats that recently dried up should be treated as well, if larvicidal agents are applied. PMID:12919636

  9. Comparative use of bendiocarb and DDT to control Anopheles pseudopunctipennis in a malarious area of Mexico.

    PubMed

    Loyola, E G; Vaca, M A; Bown, D N; Pérez, E; Rodriguez, M H

    1991-04-01

    The state of Sinaloa has one of the highest and most persistent malaria transmission levels in Mexico. Due to this situation, with resistance of the vector Anopheles pseudopunctipennis Theobald to DDT, the carbamate insecticide bendiocarb was evaluated as an alternative to DDT for residual house-spraying in village-scale trials during 1985-87. Application rates of the active ingredient per square metre of sprayable surface (ai/m2) were 0.4 g bendiocarb 80% wettable powder (80WP) and 2 g DDT 75% WP. Both insecticides failed to control mosquito populations. Human-bait mosquito densities were not altered as a result of insecticide spraying and human-bait collected mosquito mortality rates were low, suggesting little pre-biting insecticide contact due to avoidance or insufficient resting time indoors. Lower densities of indoor-resting mosquitoes were observed with DDT as opposed to bendiocarb treated houses. Anopheline mortality was higher (98-100%) when exposed for 1 h to 1% bendiocarb in standard WHO susceptibility tests and wall bioassays. Mortality-rates of 15-48% due to 1 h exposure to 4% DDT indicated that this insecticide may continue to be partially effective. House curtain and mark-recapture mosquito studies indicated that DDT produced higher excito-repellency than bendiocarb, as reflected by more mosquito landings but lower feeding rates, shorter resting period and earlier exit time from DDT sprayed houses. In the absence of insecticide, more than 50% of blood-fed An.pseudopunctipennis females exited from houses within 2-4 h of release, showing exophilic behaviour. The outdoor/indoor density ratio indicated that the majority were exophagic. These behavioural characteristics limit the usefulness of any residual insecticide against An.pseudopunctipennis. PMID:1768914

  10. CLIPB8 is part of the prophenoloxidase activation system in Anopheles gambiae mosquitoes.

    PubMed

    Zhang, Xin; An, Chunju; Sprigg, KaraJo; Michel, Kristin

    2016-04-01

    In insects and other arthropods the formation of eumelanin (melanization) is a broad spectrum and potent immune response that is used to encapsulate and kill invading pathogens. This immune response is regulated by the activation of prophenoxidase (proPO), which is controlled by proteinase cascades and its serpin inhibitors, together forming the proPO activation system. While the molecular composition of these protease cascades are well understood in insect model systems, major knowledge gaps remain in mosquitoes. Recently, a regulatory unit of melanization in Anopheles gambiae was documented, comprised of the inhibitory serpin-clip-serine proteinase, CLIPB9 and its inhibitor serpin-2 (SRPN2). Partial reversion of SRPN2 phenotypes in melanotic tumor formation and adult survival by SRPN2/CLIPB9 double knockdown suggested other target proteinases of SRPN2 in regulating melanization. Here we report that CLIPB8 supplements the SRPN2/CLIPB9 regulatory unit in controlling melanization in An. gambiae. As with CLIPB9, knockdown of CLIPB8 partially reversed the pleiotropic phenotype induced by SRPN2 silencing with regards to adult survival and melanotic tumor formation. Recombinant SRPN2 protein formed an SDS-stable protein complex with activated recombinant CLIPB8, however did not efficiently inhibit CLIPB8 activity in vitro. CLIPB8 did not directly activate proPO in vitro nor was it able to cleave and activate proCLIPB9. Nevertheless, epistasis analysis using RNAi placed CLIPB8 and CLIPB9 in the same pathway leading to melanization, suggesting that CLIPB8 either acts further upstream of CLIPB9 or is required for activation of a yet to be identified serine proteinase homolog. Taken together, this study identifies CLIPB8 as an additional player in proPO activation cascade and highlights the complexity of the proteinase network that regulates melanization in An. gambiae. PMID:26926112

  11. A novel biopesticide PONNEEM to control human vector mosquitoes Anopheles stephensi L. and Culex quinquefasciatus Say.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-09-01

    Organophosphate pesticides are widely used in vector mosquito management and agricultural pest management. These chemicals enter into natural water bodies and soil and cause hazards to the environment. The objective of this study was to prepare a natural pesticide which will not harm the environment and yet control vector mosquitoes. PONNEEM, a novel biopesticide, patented and prepared from the oils of Azadirachta indica and Pongamia glabra, was tested against Anopheles stephensi and Culex quinquefasciatus. One hundred percent larvicidal and ovicidal activities were observed at 0.1-ppm concentration of PONNEEM against the two mosquito species under laboratory and sunlight conditions up to 12 months from the date of manufacture. Very high oviposition reduction of 26.46 and 32.16 % is also recorded. Reductions in α-esterase level (0.0818 ± 0.340 and 0.2188 ± 0.003), β-esterase level (0.0866 ± 0.026 and 0.0398 ± 0.010 μg naphthol produced/min/mg larval protein), glutathione S-transferase enzyme (14.2571 ± 0.51 and 15.3326 ± 0.51 μmol/min/mg larval protein) and total protein levels (0.0390 ± 0.008 and 0.1975 ± 0.029 mg/individual larva in treated groups of A. stephensi and C. quinquefasciatus at 0.1-ppm concentration, respectively. The non-target organisms such as Gambusia affinis and Diplonychus indicus were not affected. Biopesticides are good alternatives to synthetic pesticides. PONNEEM can be effectively used for the management of human vector mosquitoes. Since it has a biodegradable nature and does not alter the environmental condition of water and soil. PMID:25929457

  12. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya

    PubMed Central

    Manda, H.; Gouagna, L. C.; Nyandat, E.; Kabiru