Science.gov

Sample records for antarctic southern ocean

  1. Antarctic warming driven by internal Southern Ocean deep convection oscillations

    NASA Astrophysics Data System (ADS)

    Martin, Torge; Pedro, Joel B.; Steig, Eric J.; Jochum, Markus; Park, Wonsun; Rasmussen, Sune O.

    2016-04-01

    Simulations with the free-running, complex coupled Kiel Climate Model (KCM) show that heat release associated with recurring Southern Ocean deep convection can drive centennial-scale Antarctic temperature variations of 0.5-2.0 °C. We propose a mechanism connecting the intrinsic ocean variability with Antarctic warming that involves the following three steps: Preconditioning: heat supplied by the lower branch of the Atlantic Meridional Overturning Circulation (AMOC) accumulates at depth in the Southern Ocean, trapped by the Weddell Gyre circulation; Convection onset: wind and/or sea-ice changes tip the preconditioned, thermally unstable system into the convective state; Antarctic warming: fast sea-ice-albedo feedbacks (on annual to decadal timescales) and slower Southern Ocean frontal and sea-surface temperature adjustments to the convective heat release (on multi-decadal to centennial timescales), drive an increase in atmospheric heat and moisture transport towards Antarctica resulting in warming over the continent. Further, we discuss the potential role of this mechanism to explain climate variability observed in Antarctic ice-core records.

  2. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    USGS Publications Warehouse

    McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ~3.3 Ma, followed by a coastal sea surface temperature cooling of ~2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.

  3. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    PubMed Central

    McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world. PMID:22496594

  4. Antarctic and Southern Ocean influences on Late Pliocene global cooling.

    PubMed

    McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D

    2012-04-24

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world. PMID:22496594

  5. Risk maps for Antarctic krill under projected Southern Ocean acidification

    NASA Astrophysics Data System (ADS)

    Kawaguchi, S.; Ishida, A.; King, R.; Raymond, B.; Waller, N.; Constable, A.; Nicol, S.; Wakita, M.; Ishimatsu, A.

    2013-09-01

    Marine ecosystems of the Southern Ocean are particularly vulnerable to ocean acidification. Antarctic krill (Euphausia superba; hereafter krill) is the key pelagic species of the region and its largest fishery resource. There is therefore concern about the combined effects of climate change, ocean acidification and an expanding fishery on krill and ultimately, their dependent predators--whales, seals and penguins. However, little is known about the sensitivity of krill to ocean acidification. Juvenile and adult krill are already exposed to variable seawater carbonate chemistry because they occupy a range of habitats and migrate both vertically and horizontally on a daily and seasonal basis. Moreover, krill eggs sink from the surface to hatch at 700-1,000m (ref. ), where the carbon dioxide partial pressure (pCO2) in sea water is already greater than it is in the atmosphere. Krill eggs sink passively and so cannot avoid these conditions. Here we describe the sensitivity of krill egg hatch rates to increased CO2, and present a circumpolar risk map of krill hatching success under projected pCO2 levels. We find that important krill habitats of the Weddell Sea and the Haakon VII Sea to the east are likely to become high-risk areas for krill recruitment within a century. Furthermore, unless CO2 emissions are mitigated, the Southern Ocean krill population could collapse by 2300 with dire consequences for the entire ecosystem.

  6. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  7. Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation.

    PubMed

    Houben, Alexander J P; Bijl, Peter K; Pross, Jörg; Bohaty, Steven M; Passchier, Sandra; Stickley, Catherine E; Röhl, Ursula; Sugisaki, Saiko; Tauxe, Lisa; van de Flierdt, Tina; Olney, Matthew; Sangiorgi, Francesca; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk; Dotti, Carlota Escutia; Klaus, Adam; Fehr, Annick; Williams, Trevor; Bendle, James A P; Carr, Stephanie A; Dunbar, Robert B; Flores, José-Abel; Gonzàlez, Jhon J; Hayden, Travis G; Iwai, Masao; Jimenez-Espejo, Francisco J; Katsuki, Kota; Kong, Gee Soo; McKay, Robert M; Nakai, Mutsumi; Pekar, Stephen F; Riesselman, Christina; Sakai, Toyosaburo; Salzmann, Ulrich; Shrivastava, Prakash K; Tuo, Shouting; Welsh, Kevin; Yamane, Masako

    2013-04-19

    The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean. PMID:23599491

  8. Southern Ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene

    NASA Astrophysics Data System (ADS)

    Kuhnert, Henning; Bickert, Torsten; Paulsen, Harald

    2009-07-01

    The middle Miocene climate approximately 14 Ma ago was characterized by the glaciation of Antarctica, deep-ocean cooling and variations in the global carbon cycle. Although the Southern Ocean underwent significant oceanographic changes, there is limited information on their spatial extent and timing. However, such knowledge is crucial for understanding the role of the Southern Ocean and the Antarctic Circumpolar Current (ACC) for Antarctic glaciation and the coupling between the ocean and continental climate. We have reconstructed surface temperatures and seawater oxygen isotopes at Ocean Drilling Program (ODP) Site 1092 in the Polar Frontal Zone of the Atlantic sector of the Southern Ocean from foraminiferal oxygen isotopes ( δ18O) and magnesium to calcium ratios (Mg/Ca). Sea surface cooling by ~ 4 °C and freshening indicated by the ~ 1‰ reduction of seawater δ18O ( δ18O sw) at 14.2 Ma precede the major step in Antarctic ice sheet growth at 13.8-13.9 Ma. This pattern qualitatively mirrors previous findings from the Pacific sector, and we interpret the surface hydrographic changes to reflect the circum-Antarctic northward shift of the Southern Ocean fronts and specifically at Site 1092 the passage of the Subantarctic Front. The magnitude of change in reconstructed δ18O sw requires a δ18O sw: salinity gradient significantly higher than the modern value (~ 0.52‰) and it possibly exceeded 1.1‰. This implies the Polar Frontal Zone was influenced by freshwater derived from Antarctica, which in turn confirms higher than modern continental precipitation. The latter has previously been suggested to have contributed to Antarctic glaciation.

  9. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  10. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula.

    PubMed

    Shevenell, A E; Ingalls, A E; Domack, E W; Kelly, C

    2011-02-10

    The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Niño/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling. PMID:21307939

  11. A Roadmap for Antarctic and Southern Ocean Science for the Next Two Decades and Beyond

    NASA Astrophysics Data System (ADS)

    Kennicutt, M. C., II

    2015-12-01

    Abstract: Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.

  12. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years

    NASA Astrophysics Data System (ADS)

    Crampton, James S.; Cody, Rosie D.; Levy, Richard; Harwood, David; McKay, Robert; Naish, Tim R.

    2016-06-01

    It is not clear how Southern Ocean phytoplankton communities, which form the base of the marine food web and are a crucial element of the carbon cycle, respond to major environmental disturbance. Here, we use a new model ensemble reconstruction of diatom speciation and extinction rates to examine phytoplankton response to climate change in the southern high latitudes over the past 15 My. We identify five major episodes of species turnover (origination rate plus extinction rate) that were coincident with times of cooling in southern high-latitude climate, Antarctic ice sheet growth across the continental shelves, and associated seasonal sea-ice expansion across the Southern Ocean. We infer that past plankton turnover occurred when a warmer-than-present climate was terminated by a major period of glaciation that resulted in loss of open-ocean habitat south of the polar front, driving non-ice adapted diatoms to regional or global extinction. These findings suggest, therefore, that Southern Ocean phytoplankton communities tolerate “baseline” variability on glacial–interglacial timescales but are sensitive to large-scale changes in mean climate state driven by a combination of long-period variations in orbital forcing and atmospheric carbon dioxide perturbations.

  13. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years.

    PubMed

    Crampton, James S; Cody, Rosie D; Levy, Richard; Harwood, David; McKay, Robert; Naish, Tim R

    2016-06-21

    It is not clear how Southern Ocean phytoplankton communities, which form the base of the marine food web and are a crucial element of the carbon cycle, respond to major environmental disturbance. Here, we use a new model ensemble reconstruction of diatom speciation and extinction rates to examine phytoplankton response to climate change in the southern high latitudes over the past 15 My. We identify five major episodes of species turnover (origination rate plus extinction rate) that were coincident with times of cooling in southern high-latitude climate, Antarctic ice sheet growth across the continental shelves, and associated seasonal sea-ice expansion across the Southern Ocean. We infer that past plankton turnover occurred when a warmer-than-present climate was terminated by a major period of glaciation that resulted in loss of open-ocean habitat south of the polar front, driving non-ice adapted diatoms to regional or global extinction. These findings suggest, therefore, that Southern Ocean phytoplankton communities tolerate "baseline" variability on glacial-interglacial timescales but are sensitive to large-scale changes in mean climate state driven by a combination of long-period variations in orbital forcing and atmospheric carbon dioxide perturbations. PMID:27274061

  14. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    NASA Astrophysics Data System (ADS)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through

  15. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Phipps, S. J.; Turney, C. S. M.; Golledge, N. R.

    2015-10-01

    Despite advances in our understanding of the processes driving contemporary sea level rise, the stability of the Antarctic ice sheets and their contribution to sea level under projected future warming remains uncertain due to the influence of strong ice-climate feedbacks. Disentangling these feedbacks is key to reducing uncertainty. Here we present a series of climate system model simulations that explore the potential effects of increased West Antarctic Ice Sheet (WAIS) meltwater flux on Southern Ocean dynamics. We project future changes driven by sectors of the WAIS, delivering spatially and temporally variable meltwater flux into the Amundsen, Ross, and Weddell embayments over future centuries. Focusing on the Amundsen Sea sector of the WAIS over the next 200 years, we demonstrate that the enhanced meltwater flux rapidly stratifies surface waters, resulting in a significant decrease in the rate of Antarctic Bottom Water (AABW) formation. This triggers rapid pervasive ocean warming (>1°C) at depth due to advection from the original site(s) of meltwater input. The greatest warming is predicted along sectors of the ice sheet that are highly sensitized to ocean forcing, creating a feedback loop that could enhance basal ice shelf melting and grounding line retreat. Given that we do not include the effects of rising CO2—predicted to further reduce AABW formation—our experiments highlight the urgent need to develop a new generation of fully coupled ice sheet climate models, which include feedback mechanisms such as this, to reduce uncertainty in climate and sea level projections.

  16. The Biogeochemical Role of Antarctic Krill and Baleen Whales in Southern Ocean Nutrient Cycling.

    NASA Astrophysics Data System (ADS)

    Ratnarajah, L.

    2015-12-01

    Iron limits primary productivity in large areas of the Southern Ocean. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but evidence on their contribution is scarce. We analysed the concentration of iron in Antarctic krill and baleen whale faeces and muscle. Iron concentrations in Antarctic krill were over 1 million times higher, and whale faecal matter were almost 10 million times higher than typical Southern Ocean High Nutrient Low Chlorophyll seawater concentrations. This suggests that Antarctic krill act as a reservoir of in in Southern Ocean surface waters, and that baleen whales play an important role in converting this fixed iron into a liquid form in their faeces. We developed an exploratory model to examine potential contribution of blue, fin and humpback whales to the Southern Ocean iron cycle to explore the effect of the recovery of great whales to historical levels. Our results suggest that pre-exploitation populations of blue whales and, to a lesser extent fin and humpback whales, could have contributed to the more effective recycling of iron in surface waters, resulting in enhanced phytoplankton production. This enhanced primary productivity is estimated to be: 8.3 x 10-5 to 15 g C m-2 yr-1 (blue whales), 7 x 10-5 to 9 g C m-2 yr-1 (fin whales), and 10-5 to 1.7 g C m-2 yr-1 (humpback whales). To put these into perspective, current estimates of primary production in the Southern Ocean from remotely sensed ocean colour are in the order of 57 g C m-2 yr-1 (south of 50°). The high degree of uncertainty around the magnitude of these increases in primary productivity is mainly due to our limited quantitative understanding of key biogeochemical processes including iron content in krill, krill consumption rates by whales, persistence of iron in the photic zone, bioavailability of retained iron, and carbon-to-iron ratio of phytoplankton

  17. Antarctic ice dynamics and southern ocean surface hydrology during the last glacial maximum

    SciTech Connect

    Labeyrie, L.D.; Burckle, L.; Labracherie, M.; Pichon, J.J.; Ippolito, P.; Grojean, M.C.; Duplessy, J.C.

    1985-01-01

    Eight high sedimentation rate cores located between 61/sup 0/S and 43/sup 0/S in the Atlantic and Indian sectors of the Southern Ocean have been studied in detail for foraminifera and diatom /sup 18/O//sup 16/O ratios, and changes in radiolarian and diatom specific abundance. Comparison of these different parameters permits a detailed description of the surface water hydrology during the last glacial maximum. The authors demonstrate that from 25 kyr BP to 15 kyr BP a large number of icebergs formed around the Antarctic continent. Melting along the Polar Front decreased surface salinity by approximately 1.5 per thousand between 43/sup 0/S and 50/sup 0/S. They propose that an increase of snow accumulation at the Antarctic periphery and downdraw during maximum ice extension are primary causes for this major discharge of icebergs.

  18. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Golledge, N. R.; Menviel, L.; Carter, L.; England, M. H.; Cortese, G.; Levy, R. H.

    2014-12-01

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise - `meltwater pulses' - took place. Although the timing and magnitude of these events have become better-constrained, a causal link between ocean stratification, the meltwater pulses, and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  19. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Golledge, N. R.; Menviel, L.; Carter, L.; Fogwill, C. J.; England, M. H.; Cortese, G.; Levy, R. H.

    2014-09-01

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise—meltwater pulses—took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  20. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.

    PubMed

    Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H

    2014-01-01

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat. PMID:25263015

  1. Southern Ocean Asteroidea: a proposed update for the Register of Antarctic Marine Species

    PubMed Central

    Aguera, Antonio; Jossart, Quentin; Danis, Bruno

    2015-01-01

    Abstract Background The Register of Antarctic Marine Species (RAMS, De Broyer et al. 2015) is the regional component of the World Register of Marine Species (WoRMS Editorial Board 2015) in the Southern Ocean. It has been operating for the last ten years, with a special effort devoted towards its completion after the International Polar Year (IPY) in 2007-2008, in the framework of the Census of Antarctic Marine Life (CAML, 2005 - 2010). Its objective is to offer free and open access to a complete register of all known species living in the Southern Ocean, building a workbench of the present taxonomic knowledge for that region. The Antarctic zone defined by this dynamic and community-based tool has been investigated with a particular interest. The Sub-Antarctic zone was a secondary objective during the establishment of the RAMS and is still lacking the impulse of the scientific community for some taxa. New information In the present study, more than 13,000 occurrences records of Asteroidea (Echinodermata) have been compiled within the RAMS area of interest and checked against the RAMS species list of sea stars, using WoRMS Taxon Match tool. Few mismatches (basionym mistakes : i.e. original name misspelled or incorrect) were found within the existing list and 97 unregistered species are actually occurring within the RAMS boundaries. After this update, the number of Asteroidea species was increased by around 50%, now reaching 295 accepted species. PMID:26696769

  2. Ocean export production and foraminiferal stable isotopes in the Antarctic Southern Ocean across the mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A. P.; Martinez-Garcia, A.; Jaccard, S.; Hodell, D. A.; Vance, D.; Bernasconi, S. M.; Greaves, M.; Haug, G. H.

    2014-12-01

    Changes in buoyancy forcing in the Antarctic Zone (AZ) of the Southern Ocean are believed to play an instrumental role in modulating atmospheric CO2 concentrations during glacial cycles by regulating the transfer of carbon between the ocean interior and the atmosphere. Indeed, a million-year-spanning high-resolution excess Barium record from the AZ of the South Atlantic (ODP 1094), which traces changes in export production, shows decreased export production during cold periods suggesting decreased overturning. Here, we extend this AZ export production record back to 1.6 Myr. In addition, we present new carbon and oxygen isotope records of benthic and planktic foraminifera from the same site, complemented by Mg/Ca measurements in some intervals. The interpretation of these new data in the context of other South Atlantic records contributes to a better understanding of Southern Ocean hydrography and its role in modulating glacial/interglacial cycles over the past 1.6 Myr.

  3. Atmospheric occurrence and deposition of hexachlorobenzene and hexachlorocyclohexanes in the Southern Ocean and Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Galbán-Malagón, Cristóbal; Cabrerizo, Ana; Caballero, Gemma; Dachs, Jordi

    2013-12-01

    Despite the distance of Antarctica and the Southern Ocean to primary source regions of organochlorine pesticides, such as hexachlorobenzene (HCB) and hexachlorocyclohexanes (HCHs), these organic pollutants are found in this remote region due to long range atmospheric transport and deposition. This study reports the gas- and aerosol-phase concentrations of α-HCH, γ-HCH, and HCB in the atmosphere from the Weddell, South Scotia and Bellingshausen Seas. The atmospheric samples were obtained in two sampling cruises in 2008 and 2009, and in a third sampling campaign at Livingston Island (2009) in order to quantify the potential secondary sources of HCHs and HCB due to volatilization from Antarctic soils and snow. The gas phase concentrations of HCHs and HCB are low, and in the order of very few pg m-3 α-HCH and γ-HCH concentrations were higher when the air mass back trajectory was coming from the Antarctic continent, consistent with net volatilization fluxes of γ-HCH measured at Livingston Island being a significant secondary source to the regional atmosphere. In addition, the Southern ocean is an important net sink of HCHs, and to minor extent of HCB, due to high diffusive air-to-water fluxes. These net absorption fluxes for HCHs are presumably due to the role of bacterial degradation, depleting the water column concentrations of HCHs in surface waters and driving an air-water disequilibrium. This is the first field study that has investigated the coupling between the atmospheric occurrence of HCHs and HCB, the simultaneous air-water exchange, soil/snow-air exchange, and long range transport of organic pollutants in Antarctica and the Southern Ocean.

  4. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  5. A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 1: Oceanic conditions

    NASA Astrophysics Data System (ADS)

    Le Roux, J. P.

    2012-03-01

    Oceanic conditions around southern South America and the Antarctic Peninsula have a major influence on climate patterns in these subcontinents. During the Tertiary, changes in ocean water temperatures and currents also strongly affected the continental climates and seem to have been controlled in turn by global tectonic events and sea-level changes. During periods of accelerated sea-floor spreading, an increase in the mid-ocean ridge volumes and the outpouring of basaltic lavas caused a rise in sea-level and mean ocean temperature, accompanied by the large-scale release of CO2. The precursor of the South Equatorial Current would have crossed the East Pacific Rise twice before reaching the coast of southern South America, thus heating up considerably during periods of ridge activity. The absence of the Antarctic Circumpolar Current before the opening of the Drake Passage suggests that the current flowing north along the present western seaboard of southern South American could have been temperate even during periods of ridge inactivity, which might explain the generally warm temperatures recorded in the Southeast Pacific from the early Oligocene to middle Miocene. Along the east coast of southern South America, water temperatures also fluctuated between temperate-cool and warm until the early Miocene, when the first incursion of temperate-cold to cold Antarctic waters is recorded. The cold Falkland/Malvinas Current initiated only after the middle Miocene. After the opening of the Drake Passage, the South Equatorial Current would have joined the newly developed, cold Antarctic Circumpolar Current on its way to Southern South America. During periods of increased sea-floor spreading, it would have contributed heat to the Antarctic Circumpolar Current that caused a poleward shift in climatic belts. However, periods of decreased sea-floor spreading would have been accompanied by diminishing ridge volumes and older, cooler and denser oceanic plates, causing global sea

  6. Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?

    PubMed Central

    Griffiths, Huw J.

    2010-01-01

    The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are

  7. Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.

    2012-04-01

    The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during

  8. Response of the Southern Ocean dynamics to the changes in the Antarctic glacial runoff and icebergs discharge

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Nurser, George; Bacon, Sheldon; Rye, Craig; Megann, Alex; Kjellsson, Joakim; Holland, Paul; Ridley, Jeff; Coward, Andrew; Marshall, Gareth; Marsh, Bob; Mathiot, Pierre

    2016-04-01

    This study examines how changes in the freshwater discharge from the Antarctic (liquid runoff and icebergs) affect stratification and ocean circulation in the Southern Ocean. The changes in the ocean circulation could potentially modify transports of the warm subsurface waters onto the continental shelves and increase ice sheet melting. We investigate impacts of the increased freshwater discharge in the 1990s-2000s on the subsurface waters in the Southern Ocean in the NEMO 1° global sea ice-ocean model. In the simulations the warming signal is largely circum-Antarctic, with "hot spots" in the Bellingshausen-Amundsen and Ross seas. The warming of the subsurface waters in the Bellingshausen-Amundsen Sea exceeds 0.5°C/decade. Differences in spreading of the liquid freshwater and icebergs in the Southern Ocean are investigated. Hindcasts and forward projections with the eddy-admitting global NEMO 1/4° model are diagnosed to examine regional trends in the ocean and sea ice states and to attribute these to the changes in the freshwater forcing and wind. The study contributes to the "Poles Apart" research project and is funded by the Natural Environment Research Council UK.

  9. Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.

    PubMed

    Hill, Simeon L; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services. PMID:23991072

  10. Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

    PubMed Central

    Hill, Simeon L.; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services. PMID:23991072

  11. The impact of changes in the Antarctic wind field on the Southern Ocean sea ice

    NASA Astrophysics Data System (ADS)

    Haid, Verena; Iovino, Dorotea; Masina, Simona

    2016-04-01

    Satellite observations show an enlargement of the sea ice extent of the Southern Ocean in the last decades. A possible trigger for the increase is a change in the atmospheric circulation, which leads to a southward shift and intensification of the westerlies around Antarctica. We performed a sensitivity study with an eddy-permitting sea ice-ocean model forced by ERA-Interim data. We compare a set of numerical simulations with simple manipulations of the wind velocities in the forcing data and investigate the response of sea ice and on-shelf water properties. In our results, increases of the zonal wind component lead to the onset of deep convection in the Weddell Sea within 10 years (with one exception) and a reduction of sea ice. Manipulations of the meridional wind component can lead to an increase of ice extent and volume, but only if regions of strengthened northward wind alternate with regions of increased southward wind. The convergent drift against the shoreline is necessary to thicken the sea ice. Without it, enhanced northward drift leads to an exhanced ice extent during winter but combined with a loss of sea ice thickness which entails a strongly reduced ice extent during summer. For increases of the westward/eastward wind component at the Antarctic coastline, the on-shelf water temperatures increase/decrease due to Ekman pumping. Except for regions with more southerly winds, the manipulated forcing in all cases increases the sea ice production at the coastline and therefore the on-shelf waters are more saline. After a period of 10 years in all the experiments the increased wind results in a higher density of the on-shelf water column.

  12. Dinoflagellate cyst assemblages from the Southern Ocean during the Oligocene Icehouse: tracers for Antarctic Sea ice, productivity and oceanic frontal systems?

    NASA Astrophysics Data System (ADS)

    Bijl, Peter; Houben, Alexander J. P.; Sangiorgi, Francesca

    2013-04-01

    The Oligocene Epoch (33.9-23 Ma) is the time interval in the Cenozoic that saw the establishment of a continental-scale Antarctic ice-sheet. Numerical modelling studies suggest that alongside, first sea-ice conditions may have started along the East Antarctic Margin. Integrated Ocean Drilling Expedition 318 drilled the Antarctic Margin in 2010, and recovered sediments from this early phase of Antarctic glaciation. With this record, we can now evaluate the robustness of the results of these numerical models with field data. Particularly the sediments recovered from Site U1356 yield a thick and relatively complete (albeit compromised by core gaps) Oligocene succession that is chronostratigraphically well-calibrated with use of nannoplankton- dinocyst- and magnetostratigraphy. Notably, this record yields well-preserved dinoflagellate cysts (dinocysts). Dinocysts are the fossilizable remains of dinoflagellates, some of which are today specifically linked to the high (seasonal) productivity of the ecosystems associated with sea-ice and oceanic fronts. Up to now, well-calibrated and complete records of dinocyst assemblages beyond the Pleistocene become progressively scarcer going further back in time. In the earliest Oligocene, just after the onset of Antarctic glaciation, we document the installation of dinoflagellate cyst assemblages that bear remarkable similarity with those of the present-day Southern Ocean. We interpret this as a regime-shift in plankton communities in response to the installation of the seasonally highly productive sea-ice ecosystem. Following this initial installation, we document variable dinocyst assemblages during the remainder of the Oligocene. These patterns argue that changes in sea-ice extent, and/or the intensity of the vertical mixing of the water column occurred in response to the waxing and waning of the Antarctic ice sheet and feedbacks. I will present a paleo-environmental reconstruction of the Oligocene Southern Ocean surface waters

  13. Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean

    NASA Astrophysics Data System (ADS)

    Whittaker, Joanne M.; Goncharov, Alexey; Williams, Simon E.; Müller, R. Dietmar; Leitchenkov, German

    2013-08-01

    We present a new, 5 min sediment thickness grid for the Australian-Antarctic region (60°E-155°E, 30°S-70°S). New seismic reflection and refraction data have been used to add detail to the conjugate Australian and Antarctic margins and intervening ocean floor where regional sediment thickness patterns were poorly known previously. On the margins, sediment thickness estimates were computed from velocity-depth functions from sonobuoy/refraction velocity solutions ground-truthed against seismic reflection data. For the Southeast Indian Ridge abyssal plains, sediment thickness contours from Geli et al. (2007) were used. The new regional minimum sediment thickness grid was combined with the global National Geophysical Data Center (NGDC) sediment grid to create an updated global grid. Even using the minimum estimates, sediment accumulations on the extended Australian and Antarctic continental margins are 2 km thicker across large regions and up to 9 km thicker in the Ceduna Basin compared to the global NGDC compilation of sediment thickness data.

  14. Evolution of aerosol and CCN properties on the Antarctic Peninsula and Southern Ocean during the spring and summer seasons.

    NASA Astrophysics Data System (ADS)

    Corrigan, C.; Roberts, G.; Grant, G.

    2014-12-01

    The Southern Ocean has been identified as one of the key regions that need aerosol measurements to improve our models of global climate change. The Portable AERosol Observing System (PAEROS) was deployed in an extended field campaign to measure CCN and aerosols in Antarctica and the Southern Ocean from October 2013 to mid-March 2014. PAEROS is a lightweight, man-portable instrument package developed at the Scripps Institution of Oceanography for the purpose of collecting autonomous measurements of aerosol and cloud condensation nuclei (CCN) properties in remote and challenging environments. The initial phase involved the PAEROS package sampling onboard the R/V Gould during the five-day transit of the Drake Passage between Punta Arenas, Chile and Palmer Station on the Antarctic Peninsula. Upon arrival at Palmer Station, PAEROS was transferred to land and installed on top of a hill about 500 m from the main buildings. For five months, aerosol and CCN number concentrations, size distributions, black carbon concentrations, solar fluxes, and meteorological parameters were continuously measured at Palmer Station. The experiment covered most of an austral spring and summer cycle, during which time the sea ice retreated and biological activity flourished along the Antarctic Peninsula. While crossing the Drake Passage, a distinct gradient in aerosol concentrations was observed with increasing distance from South America. At Palmer Station, the total aerosol concentrations showed a seasonal cycle with lowest concentration in air masses originating from the Antarctic continent and highest number concentrations coming from the ocean during the peak of biological activity. Chlorophyll concentrations are routinely measured at Palmer Station and showed peak activity in the month of January 2014. Total aerosol and CCN concentrations increased in late spring (November) as the sea ice recedes from Palmer Station, probably a result of being closer to sea spray and biological activity

  15. Southern Ocean and Antarctic Peninsula Temperatures During Critical Climate Transitions of the Cenozoic Constrained by Clumped Isotope Thermometry

    NASA Astrophysics Data System (ADS)

    Dill, R.; Eagle, R.; Henry, D.; Praskin, S.; Mering, J. A.; Petryshyn, V. A.; Priyadarshi, A.; Rycroft, L.; Vollmer, T.; Chea, Y.; Dix, J.; Aguilar, A.; Supakkul, K.; Tran, B.; Lipel, Z.; Flores, S.; Riesselman, C. R.; Taviani, M.; Marenssi, S.; Harwood, D. M.; Lunt, D. J.; Valdes, P. J.; Meckler, A. N.; Tripati, A.

    2014-12-01

    The Southern Ocean and Antarctica play fundamental roles in the global climate system. These polar regions are a major area for the net loss of heat to space. Ice storage on Antarctica also influences the global water cycle. Through upwelling of deep waters, the Southern Ocean is an important regulator of atmospheric CO2. To better constrain the evolution of paleoclimate in this region over major climate transitions of the Cenozoic, we estimated ocean temperatures using clumped isotope thermometry. Clumped isotope thermometry is a thermodynamically-based stable isotope thermometer that can be used to constrain temperatures previously estimated using other paleothermometers (which in turn leads to constraints on ice volume), as it allows the exclusion of water isotope composition from temperature estimates (unlike the δ18O thermometer). We previously have published calibrations for foraminifera and mollusks, two of the major archives used in this study. Critical transitions investigated include the Eocene-Oligocene boundary and the Middle Miocene Climate Transition. Study sites include Seymour Island (Antarctic Peninsula), ANDRILL (Southern McMurdo Sounds), Ocean Drilling Program (ODP) Sites 689/690 (Weddell Sea), and ODP 744 (Kerguelen Plateau). Results will be compared to GCM output.

  16. The Effect of Ice Shelf Meltwater on Antarctic Sea Ice and the Southern Ocean in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Pauling, A.; Bitz, C. M.; Smith, I.; Langhorne, P.

    2015-12-01

    It has been suggested that recent Antarctic sea ice expansion resulted from an increase in fresh water reaching the Southern Ocean. This presentation investigates this conjecture in an Earth System Model. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in the Fifth Coupled Model Intercomparison Project (CMIP5). However, CMIP5 models do account for the fresh water from precipitation minus evaporation (P-E). On average in CMIP5 models P- E reaching the Southern Ocean has increased to a present value of about 2600 Gt yr-1 greater than pre-industrial times and 3-8 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves. Two sets of model experiments were conducted from 1980-2013 in CESM1-CAM5 artificially distributing fresh water either at the ocean surface according to an estimate of iceberg melt, or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes, and an associated increase in sea ice area. A freshwater enhancement of 1780 Gt yr-1 (approximately 1.3 times either present day basal melt or iceberg calving freshwater fluxes) raised the sea ice total area by 1×106 km2. Yet, even a freshwater enhancement up to 2670 Gt yr-1 was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of fresh water injection.

  17. Marine gravity of the Southern Ocean and Antarctic margin from Geosat

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Mcadoo, David C.

    1988-01-01

    Geosat altimeter data, collected from an orbit with a ground rack that repeated every 17 days and overlayed one of the 17-day Seasat ground tracks, were used to map the gravity field of the Southern Ocean and the continental margin of Antarctica. The combination of ascending an descending profiles produced a typical Geosat ground track spacing of 70 km at the equator, with the best coverage occurring between the latitudes of 60 and 72 deg in both the Northern and Southern hemispheres. The new data reveal many previously uncharted seamounts and fracture zones in the extreme Southern Ocean areas adjacent to Antarctica, showing the detailed gravity signatures of the passive and active continental margins of Antarctica. Seven large age-offset fracture zones apparent in the Geosat data record the early breakup of Gondwana.

  18. Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation

    PubMed Central

    Hall, Brenda L.; Denton, George H.; Fountain, Andrew G.; Hendy, Chris H.; Henderson, Gideon M.

    2010-01-01

    The phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere. These data suggest a coherent Southern Hemisphere pattern of climate change on millennial time scales, at least in the Pacific sector, and indicate that any hypothesis concerning the origin of these events must account for synchronous changes in both high and temperate latitudes. PMID:21115838

  19. Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation.

    PubMed

    Hall, Brenda L; Denton, George H; Fountain, Andrew G; Hendy, Chris H; Henderson, Gideon M

    2010-12-14

    The phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere. These data suggest a coherent Southern Hemisphere pattern of climate change on millennial time scales, at least in the Pacific sector, and indicate that any hypothesis concerning the origin of these events must account for synchronous changes in both high and temperate latitudes. PMID:21115838

  20. Subglacial biochemical weathering and transport drove fertilization in the Southern Ocean during Antarctic temperature maxima and NH Heinrich events

    NASA Astrophysics Data System (ADS)

    Frisia, S.; Augustinus, P. M.; Hellstrom, J.; Borsato, A.; Drysdale, R.; Weyrich, L.; Cooper, A.; Johnston, V. E.; Cotte, M.

    2013-12-01

    Changes in bioproductivity in the subantarctic region have been observed to coincide with episodes of significant iceberg discharge in the North Atlantic (Heinrich events), thus linking iron delivery to the Southern Ocean (SO) with abrupt climate changes in the Northern Hemisphere. Whilst upwelling has been proposed as a likely source of bioavailable iron during Heinrich events, it is well known that, today, subglacial metabolic pathways under limited carbon supply may accumulate divalent iron, which could have been mobilized and delivered to the SO during full glacial conditions. This alternative hypothesis remains largely untested for the SO because of the difficulties in accessing palaeoenvironmental archives from beneath the Antarctic ice sheets. We present a record of the subglacial production and fate of nutrients from calcite crusts formed beneath a tributary of the Rennick outlet glacier (East Antarctic Ice Sheet, EAIS) during the Last Glacial Maximum. Chemistry, stratigraphy and preliminary ancient DNA characterization of the microbial consortium of 27- to 17-kyr-old calcites suggest that bioweathering released iron in hypoxic pools of local basal meltwater. Anaerobic methane oxidising microbes released bicarbonate and sulfuric acid in the isolated pockets, which facilitated local weathering of the amphibolite rock. During episodes of channelized flow, identified by clast-rich microsparites, and which have ages near-commensurate with Antarctic Isotope Maximum2 (AIM2) and Heinrich event 2, ferrous iron may have been mobilized and transported subglacially to the ice shelf. The calcites formed during this phase preserve evidence of microbes using sulfite dehydrogenase, which explains the accumulation of sulfate in the calcite. Our data thus indicate that subglacial processes contributed to SO productivity increases at the time of Heinrich event 2, ultimately leading to drawdawn of atmospheric carbon dioxide at millennial scale.

  1. On the development of Antarctic katabatic winds and their impact on ocean and ice processes in the coastal Southern Ocean with implications for primary productivity

    NASA Astrophysics Data System (ADS)

    Goodrick, Scott Lawrence

    1997-10-01

    As a first step toward improving the present understanding of the physics that control air-sea CO2 exchange in the Southern Ocean, a coupled mesoscale atmosphere-ocean-sea ice model is described and used to examine the interaction of Antarctic katabatic winds with coastal ocean and sea ice processes. These winds are a dominant factor in shaping the climatology of Antarctica, particularly during the austral winter. Simulations are presented for winter and early spring conditions. For the spring case a simple primary productivity model is used to examine the early stages of phytoplankton bloom development. Latent heat polynyas are a common feature along the Antarctic coast. These ice-free regions are maintained by a balance between wind driven ice divergence and ice production. For the winter simulation the coupled model creates an initial polynya that closes after 4 days of simulation. The closing of the polynya is linked to the adjustment of the katabatic winds to the alongshore direction which forces shoreward Ekman transport of the sea ice, closing the polynya. Seasonal variations in the magnitude of the katabatic flows are linked to variations in the strength of the East Wind Drift. During the winter, the offshore directed katabtic winds adjust geostrophically, contributing to the strong polar easterlies of high southern latitudes. Shoreward Ekman transport associated with these easterlies supports a barotropic coastal current, the East Wind Drift. During spring the adjustment process is interrupted by the diurnal cycle, weakening the Ekman transport and the coastal current. Phytoplankton blooms in the Southern Ocean are typically linked to the retreat of the seasonal ice cover. As the sea ice melts the associated input of fresh water stabilizes the surface layer of the ocean limiting the depth of turbulent mixing. In early spring, sea ice coverage, incoming solar irradiance and wind stress are shown to be the major factors contributing to early bloom

  2. Postmiocene geodynamic evolution of the drake passage, Western Antarctic Region, southern ocean

    NASA Astrophysics Data System (ADS)

    Teterin, D. E.

    2011-08-01

    In 1994-2006, the German research vessel, Polarstern, and the Russian research vessel, Akademik Boris Petrov, carried out marine geologic and geophysical explorations in the Western Antarctic Region within the Bellingshausen, Amundsen, and Scotia marginal Seas and the Drake Passage. In these expeditions, new unique data on submarine topography have been collected by a multibeam echosounder, gravity and magnetic measurements have been carried out, multichannel seismic profiling has been performed, and the collections of rock samples have been acquired. The analysis and interpretation of new evidence together with previous geologic and geophysical data for the Drake Passage region have shown that end of spreading in the Aluk Ridge three million years ago resulted in the redistribution of stresses associated with the relative motion of the Antarctic, Scotia, and Phoenix Plates, which, in turn, caused significant tectonic reconstruction of the entire transition zone of the Drake Passage.

  3. Is there a linkage between the tropical cyclone activity in the southern Indian Ocean and the Antarctic Oscillation?

    NASA Astrophysics Data System (ADS)

    Mao, Rui; Gong, Dao-Yi; Yang, Jing; Zhang, Zi-Yin; Kim, Seong-Joong; He, Hao-Zhe

    2013-08-01

    this article, the relationship between the Antarctic Oscillation (AAO) and the tropical cyclone (TC) activity in the southern Indian Ocean (SIO) was examined. It was found that on the interannual time scale, the AAO is well linked with the TC activity in the SIO during TC season (December-March). The rank correlation coefficient between the AAO index and the TC frequency (TCF) in the SIO is 0.37, which is significant at the 95% confidence level. When the AAO is in a positive phase, TC passage in the northwestern coast of Australia (100E°-120°E and 10°S-30°S) increases by approximately 50%-100% from the climatology. The increase in the TC passage is primarily the result of more frequent TCs originating in this region due to enhanced water vapor convergence and ascending motions, which are caused by a cyclonic height anomaly over the western coast of Australia associated with the positive AAO phases. In addition, the AAO-height covariations, which are essential to the formation of the AAO-TC links in the SIO, were investigated through a historical climate simulation using the Community Climate System Model 4 from the Coupled Model Intercomparison Project Phase 5. The AAO-height links were well reproduced in the simulation. The similarity in the AAO-height links between the observation and the simulation supports the physical robustness of the AAO-TC links in the SIO.

  4. Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jena, Babula

    2016-04-01

    The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl-a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl-a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl-a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl-a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the northeastward Fawn Trough Current.

  5. Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jena, Babula

    2016-09-01

    The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl- a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl- a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl- a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl- a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the northeastward Fawn Trough Current.

  6. Simulations of Antarctic ice shelves and the Southern Ocean in the POP2x ocean model coupled with the BISICLES ice-sheet model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew

    2014-05-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to

  7. Distributions of dissolved and particulate iron in the sub-Antarctic and Polar Frontal Southern Ocean (Australian sector)

    NASA Astrophysics Data System (ADS)

    Lannuzel, Delphine; Bowie, Andrew R.; Remenyi, Tomas; Lam, Phoebe; Townsend, Ashley; Ibisanmi, Enitan; Butler, Edward; Wagener, Thibaut; Schoemann, Véronique

    2011-11-01

    This paper presents iron (Fe) profiles in the upper 1000 m from nine short-term (transect) stations and three long-term (process) stations occupied in the Australian sector of the Southern Ocean during the SAZ-Sense expedition in austral summer (January-February) 2007. Strong vertical and horizontal gradients in Fe concentrations were observed between the 18 sampled profiles (i.e. 0.09-0.63 nmol/l dissolved Fe (dFe)). Average dFe concentrations in surface gggwaters in the northern Sub-Antarctic Zone (SAZ-N) West (station P1) were 0.27±0.04 nmol/l. This is lower in the SAZ-N East region (station P3 and around) where average dFe values in the mixed layer were 0.48±0.10 nmol/l. The Polar Front (PF) station (P2) exhibited the lowest average surface Fe values (i.e., 0.22±0.02 nmol/l). Iron concentrations in deep waters down to 1000 m were more uniform (0.25-0.37 nmol/l dFe), which is in accordance with values reported elsewhere in remote waters of the Southern Ocean, but lower than those observed in the North Atlantic and North Pacific basins. A strong decoupling was observed between dFe and nutrient cycles at all stations. Particulate Fe levels were generally very low for all SAZ stations (<0.08-1.38 nmol/l), with higher values observed at stations collected near Tasmania and in the SAZ-N East region. The intrusion of subtropical waters, enriched with Fe from sediments or dust further north, is thought to mediate Fe input to the SAZ-N and STZ areas, while input from below would be the main source of Fe in the PF region. We applied the tracer Fe * (Fe *= [dFe]- RFe:P×[PO 43-], where RFe:P is the algal uptake ratio) to estimate the degree to which the water masses were Fe limited. In this study, Fe * tended to be negative and decreased with increasing depths and latitude. Positive Fe * values, indicating Fe sufficiency, were observed in the (near-)surface waters collected in the SAZ-N East and near continental sources, where primary production was higher and

  8. Ocean processes at the Antarctic continental slope.

    PubMed

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  9. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean.

    PubMed

    Fromant, Aymeric; Carravieri, Alice; Bustamante, Paco; Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent; Churlaud, Carine; Chastel, Olivier; Cherel, Yves

    2016-02-15

    Trace elements (n=14) and persistent organic pollutants (POPs, n=30) were measured in blood, liver, kidney, muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean, in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships. Liver, kidney and feathers presented the highest burdens of arsenic, cadmium and mercury, respectively. Concentrations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways of metabolism and storage were similar for these elements. The major POPs were 4,4'-DDE, mirex, PCB-153 and PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in accordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Antarctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium and some emerging-POPs, which merits further toxicological investigations. PMID:26674704

  10. Ocean processes at the Antarctic continental slope

    PubMed Central

    Heywood, Karen J.; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker

    2014-01-01

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389

  11. Bone-eating worms from the Antarctic: the contrasting fate of whale and wood remains on the Southern Ocean seafloor

    PubMed Central

    Glover, Adrian G.; Wiklund, Helena; Taboada, Sergio; Avila, Conxita; Cristobo, Javier; Smith, Craig R.; Kemp, Kirsty M.; Jamieson, Alan J.; Dahlgren, Thomas G.

    2013-01-01

    We report the results from the first experimental study of the fate of whale and wood remains on the Antarctic seafloor. Using a baited free-vehicle lander design, we show that whale-falls in the Antarctic are heavily infested by at least two new species of bone-eating worm, Osedax antarcticus sp. nov. and Osedax deceptionensis sp. nov. In stark contrast, wood remains are remarkably well preserved with the absence of typical wood-eating fauna such as the xylophagainid bivalves. The combined whale-fall and wood-fall experiment provides support to the hypothesis that the Antarctic circumpolar current is a barrier to the larvae of deep-water species that are broadly distributed in other ocean basins. Since humans first started exploring the Antarctic, wood has been deposited on the seafloor in the form of shipwrecks and waste; our data suggest that this anthropogenic wood may be exceptionally well preserved. Alongside the new species descriptions, we conducted a comprehensive phylogenetic analyses of Osedax, suggesting the clade is most closely related to the frenulate tubeworms, not the vestimentiferans as previous reported. PMID:23945684

  12. Vertical distribution of pelagic ostracods (Myodocopa) in the Subantarctic and Antarctic zones of the Australian-New Zealand sector in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Chavtur, V. G.; Mazdygan, E. R.

    2015-03-01

    Materials from the Russian expeditions in the Australia-New Zealand sector of the Southern Ocean during the period from 1956 until 1983 have been studied. In the Subantarctic zone, the fauna of pelagic ostracods is formed mainly by the allochthonic complex tropical-subtropical and antarctic species. The number of ostracod species, as well as their density and biomass, increase with depth, reaching a maximum at the 400-500-m layer and decreasing closer to the bottom. The vertical distribution of pelagic ostracods is similar in the Antarctic and Subantarctic zones. Nevertheless, the maximum number of species here is determined mainly by the aboriginal complex of widespread and cold-water ostracods, which moves deeper when moving to higher latitudes. There are regular changes in the vertical distribution of dominant species with latitude. They are determined by the specific structure and dynamics of water masses in separate subzones of the study region.

  13. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research: Recommendations of a New Study from the National Academes of Sciences, Engineering, and Medicine.

    NASA Astrophysics Data System (ADS)

    Weller, R. A.; Bell, R. E.; Geller, L.

    2015-12-01

    A Committee convened by the National Academies of Sciences, Engineering, and Medicine carried out a study (at the request of NSF's Division of Polar Programs) to develop a strategic vision for the coming decade of NSF's investments in Antarctic and Southern Ocean research. The study was informed by extensive efforts to gather ideas from researchers across the United States. This presentation will provide an overview of the Committee's recommendations—regarding an overall strategic framework for a robust U.S. Antarctic program, regarding the specific areas of research recommended as highest priority for NSF support, and regarding the types of infrastructure, logistical support, data management, and other critical foundations for enabling and adding lasting value to the proposed research .

  14. A new source of Southern Ocean and Antarctic aerosol from tropospheric polar cell chemistry of sea ice emissions

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Robinson, A. D.; Harris, N. R. P.; Keywood, M.; Ward, J.; Galbally, I.; Molloy, S.; Thomas, A.; Wilson, S. R.

    2014-12-01

    The Antarctic region is a pristine environment with minimal anthropogenic influence. Aerosol measurements in this environment allow the study of natural aerosols and polar atmospheric dynamics. Measurements in this region have been limited primarily to continental and coastal locations where permanent stations exist, with a handful of measurements in the sea ice region. The MAPS campaign (Measurements of Aerosols and Precursors during SIPEXII) occurred as part of SIPEX II (Sea Ice Physics and Ecosystems eXperiment II) voyage in Spring, 2012, and produced the first Antarctic pack-ice focused aerosol dataset aimed at characterizing new particle formation processes off the coast of East Antarctica (~65°S, 120°E). Numerous atmospheric parameters and species were measured, including the number of aerosol particles in the 3-10 nm size range, the range associated with nucleating particle formation. A latitudinal transect through the sea ice identified the Polar Front from sudden changes in nucleating particle concentrations, averaging 51cm-3 north of the front in the Ferrel cell, and 766 cm-3 south of the front, in the Polar cell region. The Polar Front location was also confirmed by meteorological and back-trajectory data. Background aerosol populations in the Polar cell fluctuated significantly but displayed no growth indicators, suggesting transport. Back-trajectories revealed that air parcels often descended from the free-troposphere within the previous 24-48 hrs. It is proposed that particle formation occurs in the free troposphere from precursors uplifted at the polar front region which, being a sea-ice/ocean region, is a significant precursor source. After tropospheric formation, populations descending at the poles are transported northward and reach the sea ice surface, missing continental stations. Current measurements of Antarctic aerosol suggest very low loading which may be explained by these circulation patterns and may underestimate total regional loading

  15. Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica

    NASA Astrophysics Data System (ADS)

    Passchier, S.

    2011-12-01

    Ice-rafted debris mass accumulation rates (IRD MAR) at a drill site on the Antarctic continental margin are investigated to evaluate the linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures in the early to mid-Pliocene. ODP Site 1165 is within 400 km of the Antarctic coastline and in the direct pathway of icebergs released by the Amery Ice Shelf. The Amery Ice Shelf is the largest ice shelf in East Antarctica and it buttresses the Lambert Glacier drainage system, which accounts for 14% of the outflow from the East Antarctic Ice Sheet. IRD MAR were low during peak Southern Ocean warming in the early Pliocene. After a brief precursor, a tenfold increase in IRD MAR at 3.3 Ma marks the termination of the early Pliocene ice sheet minimum, coincident with the M2 glacial. For the mid-Pliocene, a strong correlation exists between the high-amplitude signal in the LR04 benthic stack and IRD MAR, suggesting linkages between East Antarctic ice extent, global ice volume and deep-water temperatures. The IRD record at Site 1165 provides evidence of greater sensitivity of the Lambert Glacier-Amery Ice Shelf system to Southern Ocean warming than is currently predicted by ice sheet models, which may relate to uncertainties in the understanding of ocean heat uptake, poleward heat transport and ice sheet-ocean interactions.

  16. Oceanographic changes in the Southern Ocean and Antarctic cryosphere dynamics during the Oligocene and Miocene: a view from offshore Wilkes Land

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Francesca; Bijl, Peter K.; Hartman, Julian D.; Schouten, Stefan; Brinkhuis, Henk

    2016-04-01

    With the ongoing increase in atmospheric CO2 and global temperatures, a fundamental scientific and societal question arises concerning the stability of the Antarctic cryosphere. Modern observational data indicate the Southern Ocean has experienced significant warming, with oceanic fronts being pushed several tenth of km closer to the continent. Moreover, basal melt of ice shelves from warming oceans is causing accelerated grounding line retreat of the Antarctic ice sheets and shelves. However, monitoring data are available for the last few decades only, which prevents the evaluation of long-term changes in ice mass balance. Studying intervals in Earth's past history, which represent the best possible analogues of (near) future conditions, becomes thus essential. The Oligocene and Miocene Epochs encompass periods with CO2 concentrations between today's and those expected for the (near) future. It has also become clear that ice-proximal oceanographic regime is a critical factor for the stability and mass balance of ice sheets. Integrated Ocean Drilling Program (IODP) Expedition 318 offshore Wilkes Land (East Antarctica) Site U1356 satisfies both requirements of being ice-proximal and having a relative complete, stratigraphically well-resolved Oligocene-Miocene sequence (albeit with a possible 5-Myrs gap between Late Oligocene and Early Miocene). This allows for the first time studying oceanographic changes and cryosphere dynamics in the interval ~34-13 Myrs. Thus far, ice-proximal reconstructions were hindered by the paucity of suitable sedimentary archives around Antarctica and/or poor stratigraphic constraints. We reconstructed changes in surface oceanography and seawater temperatures by means of dinoflagellate cyst assemblages and TEX86 paleothermometry. The dinocyst data suggest (summer) sea-ice occurrence at Site U1356 only for the first 1.5 Ma following the onset of full Antarctic glaciation and after the Mid-Miocene Climatic Optimum. In between, both dinocysts

  17. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys

    NASA Astrophysics Data System (ADS)

    Bombosch, Annette; Zitterbart, Daniel P.; Van Opzeeland, Ilse; Frickenhaus, Stephan; Burkhardt, Elke; Wisz, Mary S.; Boebel, Olaf

    2014-09-01

    Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005-2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.

  18. Antarctic and Southern Ocean Mineral Dust Aerosol Transport Pathways: Forward-Trajectory Modeling and Source Constraints Derived from the RICE Ice Core

    NASA Astrophysics Data System (ADS)

    Neff, P. D.; Tuohy, A.; Bertler, N. A. N.; Edwards, R.

    2014-12-01

    Mineral dust fertilization of Southern Ocean surface waters, and mixing with Antarctic deep-water, influences oceanic uptake of atmospheric carbon dioxide and draws down global atmospheric CO2concentration during glacial periods. Quantifying modern variability in dust source and transport strength, especially with respect to high- and low-latitude climate phenomena (e.g. SAM, ENSO), will improve understanding of this important aspect of the global carbon cycle. Here we present data from a new intermediate-depth, coastal ice core drilled at Roosevelt Island, Antarctica as part of the Roosevelt Island Climate Evolution (RICE) project. Using HySPLIT forward trajectories, climate reanalysis and geochemistry data, this work explores variability in atmospheric transport for modern Southern Hemisphere dust source areas (primarily Australia, southern South America and southern Africa). While New Zealand represents a relatively small dust source at present, it is strongly-connected to the Antarctic due to its position within the circumpolar westerly winds and was a major dust source during the last glacial period. Geochemical data from the RICE ice core (79.36ºS, 161.71ºW, 550 m a.s.l.) are used to constrain sources of dust in this sector. The lanthanide elements—common in crustal material and not susceptible to fractionation—can preserve the signature of their original source material, allowing for characterisation of dust provenance. Initial results suggest that only air trajectories originating in New Zealand regularly reach the Ross Sea, Marie Byrd Land and Roosevelt Island within 3 to 5 days (see Figure 1), a characteristic travel time of suspended dust particles. We discuss estimates of the relative source strength of New Zealand compared with other dust source areas to evaluate its overall contribution. Figure 1: Daily 96-hour forward trajectories for Southern Hemisphere dust source areas, 2010-2013 (NOAA HySPLIT, NCEP reanalysis). NCEP reanalysis 1980

  19. Ecology and biogeochemistry of the antarctic circumpolar current during austral spring: a summary of southern ocean JGOFS cruise ANT X/6 of R.V. Polarstern

    NASA Astrophysics Data System (ADS)

    Smetacek, V.; De Baar, H. J. W.; Bathmann, U. V.; Lochte, K.; Rutgers Van Der Loeff, M. M.

    The R.V. Polarstern cruise ANT X/6, part of the international Southern Ocean JGOFS programme, investigated phytoplankton spring bloom development and its biogeochemical effects in different water masses of the Atlantic sector of the Southern Ocean: the Polar Frontal region (PFr), the southern Antarctic Circumpolar Current zone (sACC), its boundary with the Weddell Gyre (AWB) and the marginal ice zone (MIZ). The relative roles of physical stability, iron limitation and grazing pressure in enhancing or constraining phytoplankton biomass accumulation were examined. Three sections were carried out between the PFr and the ice edge along the 6°W meridian from early October to late November 1992. This paper summarises the major findings of the cruise and discusses their implications for our understanding of Southern Ocean ecology and biogeochemistry. A major finding was the negligible build-up of plankton biomass and concomitant absence of CO 2 drawdown associated with seasonal retreat of the ice cover. In striking contrast to this unexpected poverty of both the MIZ and the frontal region of the AWB, distinct phytoplankton blooms, dominated by different diatom species, accumulated in the PFr. Chlorophyll stocks in the sACC remained monotonously low throughout the study. Our findings confirm those of other studies that frontal regions are the major productive sites in the Southern Ocean and that input of meltwater and associated ice algae to the surface layer from a retreating ice edge is by itself an insufficient condition for induction of phytoplankton blooms. The blooms in the PFr developed under conditions of shallow mixing layers, high iron concentrations and relatively low grazing pressure. However, in all three blooms, high biomass extended to deeper than 70 m, which cannot be explained by either in situ growth or sinking out of a part of the population from the upper euphotic zone. Subduction of adjoining, shallower layers to explain depth distribution is invoked

  20. Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: evidence from biogenic and terrigenous depositional patterns at ODP Site 1090

    NASA Astrophysics Data System (ADS)

    Diekmann, Bernhard; Kuhn, Gerhard; Gersonde, Rainer; Mackensen, Andreas

    2004-02-01

    During Leg 177 of the Ocean Drilling Program (ODP), a well-preserved middle Eocene to lower Miocene sediment record was recovered at Site 1090 on the Agulhas Ridge in the Atlantic sector of the Southern Ocean. This new sediment record shows evidence of a hitherto unknown late Eocene opal pulse. Lithological variations, compositional data, mass-accumulation rates of biogenic and lithogenic sediment constituents, grain-size distributions, geochemistry, and clay mineralogy are used to gain insights into mid-Cenozoic environmental changes and to explore the circumstances of the late Eocene opal pulse in terms of reorganizations in ocean circulation. The base of the section is composed of middle Eocene nannofossil oozes mixed with red clays enriched in authigenic clinoptilolite and smectite, deposited at low sedimentation rates (≤2 cm ka -1). It indicates reduced terrigenous sediment input and moderate biological productivity during this preglacial warm climatic stage. The basal strata are overlain by an extended succession (100 m, 4 cm ka -1) of biosiliceous oozes and muds, comprising the upper middle Eocene, the entire late Eocene, and the lowermost early Oligocene. The opal pulse occurred between 37.5 and 33.5 Ma and documents the development of upwelling cells along topographic highs, and the utilization of a marine nutrient- and silica reservoir established during the pre-late Eocene through enhanced submarine hydrothermal activity and the introduction of terrigenous solutions from chemical weathering on adjacent continents. This palaeoceanographic overturn probably was initiated through the onset of increased meridional ocean circulation, caused by the diversion of the Indian equatorial current to the south. The opal pulse was accompanied by increased influxes of terrigenous detritus from southern African sources (illite), mediated by enhanced ocean particle advection in response to modified ocean circulation. The opal pulse ended because of frontal shifts to

  1. Population-Level Transcriptomic Responses of the Southern Ocean Salp Salpa thompsoni to Environment Variability of the Western Antarctic Peninsula Region

    NASA Astrophysics Data System (ADS)

    Bucklin, A. C.; Batta Lona, P. G.; Maas, A. E.; O'Neill, R. J.; Wiebe, P. H.

    2015-12-01

    In response to the changing Antarctic climate, the Southern Ocean salp Salpa thompsoni has shown altered patterns of distribution and abundance that are anticipated to have profound impacts on pelagic food webs and ecosystem dynamics. The physiological and molecular processes that underlay ecological function and biogeographical distribution are key to understanding present-day dynamics and predicting future trajectories. This study examined transcriptome-wide patterns of gene expression in relation to biological and physical oceanographic conditions in coastal, shelf and offshore waters of the Western Antarctic Peninsula (WAP) region during austral spring and summer 2011. Based on field observations and collections, seasonal changes in the distribution and abundance of salps of different life stages were associated with differences in water mass structure of the WAP. Our observations are consistent with previous suggestions that bathymetry and currents in Bransfield Strait could generate a retentive cell for an overwintering population of S. thompsoni, which may generate the characteristic salp blooms found throughout the region later in summer. The statistical analysis of transcriptome-wide patterns of gene expression revealed differences among salps collected in different seasons and from different habitats (i.e., coastal versus offshore) in the WAP. Gene expression patterns also clustered by station in austral spring - but not summer - collections, suggesting stronger heterogeneity of environmental conditions. During the summer, differentially expressed genes covered a wider range of functions, including those associated with stress responses. Future research using novel molecular transcriptomic / genomic characterization of S. thompsoni will allow more complete understanding of individual-, population-, and species-level responses to environmental variability and prediction of future dynamics of Southern Ocean food webs and ecosystems.

  2. An Investigation of Biogenic Trace Gas Emissions from the Southern Ocean: Impact on Boundary Layer Marine Composition and on the Distant Antarctic Plateau Atmosphere

    NASA Astrophysics Data System (ADS)

    Davis, D. D.; Neff, W.; Wang, Y.; Zeng, T.; Slusher, D.; Bradshaw, J.; Stickel, R.; Nicovitch, M.

    2008-12-01

    During the last ten years chemical measurements at the South Pole as well as over extended regions of the larger plateau have revealed the presences of a chemically unique boundary layer (BL) atmosphere. Unique in that it has been shown to have a very large chemical oxidizing capacity. This has been reflected in summertime concentration measurements of the hydroxyl radical that average between 2 to 3 x 10(6) molec/cm(3). These new findings make quite evident that the Antarctic plateau (geographically the size of continental USA) must now be viewed as much more than a chemical graveyard where species transported to its surface from a multitude of SH sources are simply buried in ice. In fact, during the Austral spring, summer, and fall months, chemical elements arriving at the plateau may in many cases be further oxidized before burial and in still other cases oxidized even after burial. To be presented are several previously unreported observations of biogenic gases measured both over the Southern Ocean and on the plateau, some of which span all seasons of the year. Of particular significance will be regional modeling results that suggest that the concentration levels and chemical forms that these biogenic gases appear upon reaching the plateau depend not only on the productivity of the Southern Ocean and the seas surrounding Antarctica, but also on at least two additional factors. These include the efficiency of the transport process (e.g., as influenced by the sea ice extent) and the chemical oxidizing capacity of the Antarctic plateau's BL atmosphere.

  3. Seasonal study of carbon dioxide in the southern extreme of the pacific sector, Antarctic Ocean. Progress report

    SciTech Connect

    Takahashi, Taro; Goddard, J.G.; Rubin, S.I.; Breger, D.

    1994-05-05

    This report describes the progress made during the six-month period between December 1, 1993, when this grant was awarded, and May 1, 1994. The major aim of this investigation is to measure the distribution of the total CO{sub 2} concentration and pCO{sub 2} in seawater in the Pacific sector of the extreme Southern Ocean as far south as 78{degrees}S. The areas investigated include the continental shelf areas in the Ross, Amundsen and Bellingshausen Seas ad the off-shore deep water areas as far north as 67{degrees}S. The measurements were made aboard the R/VIB Nathaniel B. Palmer between February 14, 1994 and April 5, 1994, and the preliminary results are briefly described in this report. This expedition constitutes the first of a pair expeditions. The first is designed investigate oceanic CO{sub 2} sink/source conditions during the austral summer The second expedition, which is designed for the following winter, has been scheduled for September, 1994.

  4. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia

    NASA Astrophysics Data System (ADS)

    Römer, M.; Torres, M.; Kasten, S.; Kuhn, G.; Graham, A. G. C.; Mau, S.; Little, C. T. S.; Linse, K.; Pape, T.; Geprägs, P.; Fischer, D.; Wintersteller, P.; Marcon, Y.; Rethemeyer, J.; Bohrmann, G.

    2014-10-01

    An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.

  5. Southern Ocean eddy phenomenology

    NASA Astrophysics Data System (ADS)

    Frenger, I.; Münnich, M.; Gruber, N.; Knutti, R.

    2015-11-01

    Mesoscale eddies are ubiquitous features in the Southern Ocean, yet their phenomenology is not well quantified. To tackle this task, we use satellite observations of sea level anomalies and sea surface temperature (SST) as well as in situ temperature and salinity measurements from profiling floats. Over the period 1997-2010, we identified over a million mesoscale eddy instances and were able to track about 105 of them over 1 month or more. The Antarctic Circumpolar Current (ACC), the boundary current systems, and the regions where they interact are hot spots of eddy presence, representing also the birth places and graveyards of most eddies. These hot spots contrast strongly to areas shallower than about 2000 m, where mesoscale eddies are essentially absent, likely due to topographical steering. Anticyclones tend to dominate the southern subtropical gyres, and cyclones the northern flank of the ACC. Major causes of regional polarity dominance are larger formation numbers and lifespans, with a contribution of differential propagation pathways of long-lived eddies. Areas of dominance of one polarity are generally congruent with the same polarity being longer-lived, bigger, of larger amplitude, and more intense. Eddies extend down to at least 2000 m. In the ACC, eddies show near surface temperature and salinity maxima, whereas eddies in the subtropical areas generally have deeper anomaly maxima, presumably inherited from their origin in the boundary currents. The temperature and salinity signatures of the average eddy suggest that their tracer anomalies are a result of both trapping in the eddy core and stirring.

  6. The seasonal succession of zooplankton in the Southern Ocean south of Australia, part II: The Sub-Antarctic to Polar Frontal Zones

    NASA Astrophysics Data System (ADS)

    Hunt, Brian P. V.; Hosie, Graham W.

    2006-07-01

    Between October 2001 and March 2002 six transects were completed at monthly intervals in the Sub-Antarctic Zone (SAZ) and Inter-Sub-Antarctic Front Zone (ISAFZ)/Polar Frontal Zone (PFZ) in the Southern Ocean south of Australia. Zooplankton were collected with a Continuous Plankton Recorder and NORPAC net and multivariate analysis was used to analyse the seasonal succession of communities. Despite strong, seasonally consistent, biogeographic differences between the SAZ and ISAFZ/PFZ, community structure in all zones was dominated by a suite of common taxa. These included the ubiquitous Oithona similis, foraminiferans and appendicularians (Core taxa), occurring in >97% of samples and contributing an average of 75% to total sample abundance, and Calanus simillimus, Rhincalanus gigas, Ctenocalanus citer, Clausocalanus brevipes, Clausocalanus laticeps, Oithona frigida, Limacina spp. and chaetognaths (Summer taxa), present in >57% of samples and occurring at seasonally high densities. Because of the dominance of the Core and Summer taxa, the seasonal succession was most clearly evident as a change in zooplankton densities. In October densities averaged <15 ind m -3, rising to 52 ind m -3 (max=92 ind m -3) in November, and subsequently increasing slowly through to January (ave=115 ind m -3; max=255 ind m -3). Densities peaked abruptly in February (ave=634 ind m -3; max=1593 ind m -3), and remained relatively high in March (ave=193 ind m -3; max=789 ind m -3). A latitudinal lag in seasonal development was observed with peak densities occurring first in the SAZ (February) and then in the ISAFZ/PFZ (March). The seasonal community succession was strongly influenced by species population cycles. The role of zooplankton in biogeochemical cycling in the SAZ and ISAFZ/PFZ was discussed in the light of past sediment trap data collected from the study area.

  7. Particulate export and lateral advection in the Antarctic Polar Front (Southern Pacific Ocean): One-year mooring deployment

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Ravaioli., M.; Giglio, F.; Capotondi, L.

    2012-12-01

    An instrumented mooring line with sediment traps, current meters and recorders of temperature and conductivity was deployed just south of the Antarctic Polar Front (63° 26‧ S, 178° 03‧E; water depth 4400 m) from January 9th 1999 to January 10th 2000. Sediment traps at 900 and 3700 m had a single large cup to collect particulate material throughout the 1-year study whereas time-series sediment traps were used to characterize the temporal variability at 1300 and 2400 m. Samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera identification. High vertical fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During autumn and winter, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~ 60 and ~ 90% of the material caught at 2400 and 3700 m, respectively. Although resuspended material showed an elemental composition relatively similar to vertical summer fluxes, samples collected during high energy events contained benthic foraminifera and exhibited significantly higher 210Pb activity indicating a longer residence time in the water column. In addition, during quiescent periods characterized by low mass fluxes, the content of lithogenic particles increased at the expense of phytodetritus indicating the influence of material advected through the benthic nepheloid layer. Organic matter content was particularly high during these periods and showed

  8. Migration of the Antarctic Circumpolar Current in the Late Neogene: reconstruction from sediment wave on the Conrad Rise, Indian Sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Oiwane, H.; Ikehara, M.; Suganuma, Y.; Nakamura, Y.; Nogi, Y.; Miura, H.; Sato, T.

    2012-12-01

    ACC is the largest and strongest ocean current in the world. It is important for the interoceanic exchange of water, exchange of gases to the atmosphere, and thermal isolation of the Antarctic continent. Fluctuation of the ACC has been reconstructed from several methods such as microfossils, anisotropy of magnetic susceptibilities, and statistical analysis of Ice-Rafted Debris. On the other hand, sediment waves are investigated and interpreted to reconstruct the fluctuation of the bottom- and contour currents. In this study, we tried reconstructing the ACC using sediment waves based on multidisciplinary survey on the Conrad Rise in the Indian sector of the Southern Ocean. The Conrad Rise is a topographic high that is elevated ca. 3000 m from the ocean floor. We conducted multibeam bathymetry, seismic reflection, and sediment coring on the southwestern slope of the rise. Seismic units on the Conrad Rise are divided into three units, A, B, and C in descending order. Unit A shows transparent to low amplitude with sediment wave structure. Sediment waves don't show systematic changes of its dimension and thickness. Sedimentary core showed that the surface sediment is composed of diatom ooze. Unit B shows higher amplitude than that of unit A, and shows planar, parallel configuration. Unit C has high-amplitude reflectors at its top and shows chaotic facies below. Based on morphological characteristics of the sediment waves, oceanographic setting of the Conrad Rise, and components of the surface sediment, it is most likely that the sedimentary structure and component of the Unit A is significantly constrained by the ACC. On the other hand, the Unit B shows planar configuration suggesting deposition without current effect. Additionally, higher amplitude suggests different component form that of the Unit A. These a series of evidence represent difference of sedimentary environment between units A and B, especially on the point of the influence of the ACC. Accordingly, onset

  9. The Southern Ocean: Source and sink?

    NASA Astrophysics Data System (ADS)

    Strugnell, J. M.; Cherel, Y.; Cooke, I. R.; Gleadall, I. G.; Hochberg, F. G.; Ibáñez, C. M.; Jorgensen, E.; Laptikhovsky, V. V.; Linse, K.; Norman, M.; Vecchione, M.; Voight, J. R.; Allcock, A. L.

    2011-03-01

    Many members of the benthic fauna of the Antarctic continental shelf share close phylogenetic relationships to the deep-sea fauna adjacent to Antarctica and in other ocean basins. It has been suggested that connections between the Southern Ocean and the deep sea have been facilitated by the presence of a deep Antarctic continental shelf coupled with submerging Antarctic bottom water and emerging circumpolar deep water. These conditions may have allowed 'polar submergence', whereby shallow Southern Ocean fauna have colonised the deep sea and 'polar emergence', whereby deep-sea fauna colonised the shallow Southern Ocean. A recent molecular study showed that a lineage of deep-sea and Southern Ocean octopuses with a uniserial sucker arrangement on their arms appear to have arisen via polar submergence. A distantly related clade of octopuses with a biserial sucker arrangement on their arms (historically placed in the genus Benthoctopus) is also present in the deep-sea basins of the world and the Southern Ocean. To date their evolutionary history has not been examined. The present study investigated the origins of this group using 3133 base pairs (bp) of nucleotide data from five mitochondrial genes (12S rRNA, 16S rRNA, cytochrome c oxidase subunit I, cytochrome c oxidase subunit III, cytochrome b) and the nuclear gene rhodopsin from at least 18 species (and 7 outgroup taxa). Bayesian relaxed clock analyses showed that Benthoctopus species with a high-latitude distribution in the Southern Hemisphere represent a paraphyletic group comprised of three independent clades. The results suggest that the Benthoctopus clade originated in relatively shallow Northern Hemisphere waters. Benthoctopus species distributed in the Southern Ocean are representative of polar emergence and occur at shallower depths than non-polar Benthoctopus species.

  10. Pteropods in Southern Ocean ecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, B. P. V.; Pakhomov, E. A.; Hosie, G. W.; Siegel, V.; Ward, P.; Bernard, K.

    2008-09-01

    To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO 2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group. Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m -3 (max = 800 ind m -3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m -3 (max = 2681 ind m -3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m -3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation. Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind -1 d -1), while those of L

  11. Population genetic variation of the Southern Ocean krill, Euphausia superba, in the Western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs)

    NASA Astrophysics Data System (ADS)

    Batta-Lona, Paola G.; Bucklin, Ann; Wiebe, Peter H.; Patarnello, Tomaso; Copley, Nancy J.

    2011-07-01

    The Southern Ocean krill, Euphausia superba, is one of the best-studied marine zooplankton species in terms of population genetic diversity and structure; with few exceptions, previous studies have shown the species to be genetically homogeneous at larger spatial scales. The goals of this study are to examine sub-regional scale population genetic diversity and structure of E. superba using molecular characters selected with this goal in mind, and to thereby examine hypotheses of the source(s) of recruitment for krill populations of the Western Antarctic Peninsula (WAP). Collections were made throughout the WAP region during US GLOBEC cruises in austral fall, 2001 and 2002. A total of 585 E. superba (including all 6 furcilia larval stages, juveniles, and adults) was analyzed after confirmation of species identification using a competitive multiplexed species-specific PCR (SS-PCR) reaction based on mitochondrial cytochrome oxidase I (mtCOI) sequences. The molecular markers used were allele frequencies at single nucleotide polymorphism (SNP) sites in the gene encoding mitochondrial Cytochrome b (cyt b). Four SNP sites that showed desirable patterns of allelic variation were selected; alleles were detected using a multiplexed single-base extension PCR protocol. A total of 22 SNP haplotypes (i.e., strings of polymorphisms at the four SNP sites) was observed; haplotype diversity (Hd)=0.811 (s.d.=0.008). Analysis of molecular variation within and among samples, areas (i.e., Marguerite Bay, Crystal Sound, shelf, and offshore) and collection years revealed no difference between 2001 and 2002 collections overall, although differences between 2001 and 2002 collections from Marguerite Bay explained 7.4% of the variance ( FST=0.072; p=0.002±0.001). Most of the variation (96.3%) occurred within samples each year, with no significant differentiation among areas. There was small, but significant differentiation among samples within areas in 2001 (4.6%; FST=0.045; p=0.015±0

  12. Benthic Epiphytic Diatoms in Deep-sea Southern Ocean Sediments as a New Tool for Reconstructing Antarctic Paleoclimatic and Paleoceanographic History: Implications of Floating 'Macroalgal Biotic Oases'

    NASA Astrophysics Data System (ADS)

    Harwood, D. M.; Porter, N.; OConnell, S.

    2014-12-01

    A new paleobiological proxy for Antarctic paleoclimate history provides insight into past extent of open marine shelves on Wilkes Land margin, and calls for reassessment of IRD interpretations in the deep-sea. Marine, epiphytic benthic diatoms that grow attached to macroalgae (seaweed) are recovered in Miocene sediment from DSDP Site 269. They suggest periodic presence of floating rafts or 'biotic oases' in the Southern Ocean comprising buoyant macroalgae, attached benthic diatoms, and biota associated with this displaced coastal community. Macroalgae attach to the substrate with a holdfast, a multi-fingered structure that serves as an anchor. Uprooted holdfasts attached to buoyant macroalgae can raft sedimentary particles, some large (>50 kg), into the deep-sea. In addition, a rich biota of associated invertebrates live in cavities within the holdfast, the dispersal of which may explain the biogeographic distribution of organisms on Subantarctic islands. The stratigraphic occurrence of large, benthic epiphytic diatoms of genera Arachnoidiscus, Isthmia, Rhabdonema, Gephyra, Trigonium, and smaller Achnanthes, Cocconeis, Grammatophora, and Rhaphoneis in sediment cores from DSDP Site 269 reflect a rich, productive epiphytic diatom flora that maintained its position in the photic zone attached to their buoyant seaweed hosts. Amphipods and other herbivores grazed the benthic diatoms and produced diatom-rich fecal pellets that were delivered to the sea-floor. The discontinuous stratigraphic occurrence of the epiphytic diatoms, amongst the background of planktonic diatoms in Core 9 of DSDP Site 269, suggests environmental changes induced by either warm or cold events may have controlled the production and/or release of the macroalgae into the deep-sea. Warm events led to increased shelf areas, and cold events led to formation of ice on the macroalgae to increase their buoyancy and lift-off. Complicating the distinction between warm and cold events is the potential for the

  13. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    PubMed

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future. PMID:25079555

  14. The Future of Southern Ocean Observing Systems

    NASA Astrophysics Data System (ADS)

    Talley, L. D.

    2015-12-01

    Knowledge of the Southern Ocean's role in global climate from seasonal to millennial timescales is evolving, with rapidly increasing recognition of the centrality of the Southern Ocean to Earth's heat, carbon, nutrient, and freshwater budgets, and of the impact of interactions between the ocean and the major ice shelves and grounded ice sheets of Antarctica, which have been decreasing in mass. Observations in this data-sparse and logistically remote region have never been so important, and many nations are rising to the challenge of supporting both experiments and long-term sustained observations. As illustrated in the figure from Meredith et al. (Current Op. Env. Sustain. 2013), autonomous in situ technologies are at the fore because of the difficulty and expense of sending ships year-round and because the crucial satellite remote sensing must be accompanied by in situ observations, including beneath sea ice and ice shelves. The Southern Ocean Observing System (SOOS) has grown out of this recognized need for coordinated observations from the Antarctic coastline northward to the subtropics, from the bottom water production regions in coastal polynyas over the continental shelves, to the regions of interaction of warm ocean waters with Antarctic ice shelves, beneath the vast seasonal sea ice region, and in the hot spots of air-sea fluxes and cross-Antarctic Circumpolar Current (ACC) mixing where the ACC interacts with topography and continental boundaries. The future includes international coordination and collaboration and strengthening of new and existing technologies, which include satellite observing, ice-enabled profiling floats, profiling from marine mammals, moored measurements in many strategic locations, glider and other autonomous operations in all regions, and drilling through floating ice shelves to measure the ocean waters below. Improved and consistent weather observations around the Antarctic coastlines will improve forecasting and reanalysis. Ice

  15. Fate of Polycyclic Aromatic Hydrocarbons in Seawater from the Western Pacific to the Southern Ocean (17.5°N to 69.2°S) and Their Inventories on the Antarctic Shelf.

    PubMed

    Cai, Minggang; Liu, Mengyang; Hong, Qingquan; Lin, Jing; Huang, Peng; Hong, Jiajun; Wang, Jun; Zhao, Wenlu; Chen, Meng; Cai, Minghong; Ye, Jun

    2016-09-01

    Semivolatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have the potential to reach pristine environments through long-range transport. To investigate the long-range transport of the PAHs and their fate in Antarctic seawater, dissolved PAHs in the surface waters from the western Pacific to the Southern Ocean (17.5°N to 69.2°S), as well as down to 3500 m PAH profiles in Prydz Bay and the adjacent Southern Ocean, were observed during the 27th Chinese National Antarctic Research Expedition in 2010. The concentrations of Σ9PAH in the surface seawater ranged from not detected (ND) to 21 ng L(-1), with a mean of 4.3 ng L(-1); and three-ring PAHs were the most abundant compounds. Samples close to the Australian mainland displayed the highest levels across the cruise. PAHs originated mainly from pyrogenic sources, such as grass, wood, and coal combustion. Vertical profiles of PAHs in Prydz Bay showed a maximum at a depth of 50 m and less variance with depth. In general, we inferred that the water masses as well as the phytoplankton were possible influencing factors on PAH surface-enrichment depth-depletion distribution. Inventory estimation highlighted the contribution of intermediate and deep seawater on storing PAHs in seawater from Prydz Bay, and suggested that climate change rarely shows the rapid release of the PAHs currently stored in the major reservoirs (intermediate and deep seawater). PMID:27509536

  16. Southern Ocean Response to NADW Changes

    NASA Technical Reports Server (NTRS)

    Rind, David; Schmidt, G.; Russell, G.; deMenocal, P.; Hansen, James E. (Technical Monitor)

    2000-01-01

    The possibility of North Atlantic Deep Water (NADW) changes in both past and future climates has raised the issue of how the Southern Ocean would respond. Recent experiments with the GISS coupled atmosphere-ocean model have shown that a "bipolar see-saw" between NADW production and Antarctic Bottom Water (AABW) production in the Weddell Sea can occur in conjunction with freshening of the North Atlantic. However, this effect operates not through a slow ocean response but via a rapid atmospheric mechanism. As NADW reduces, colder temperatures in the North Atlantic, and Northern Hemisphere in general, are associated with higher surface pressure (increased atmospheric mass). Reduced mass in the Southern Hemisphere occurs in response, with lower pressure over the South Pole (an EOF #1 effect, the "high phase" of the Antarctic Oscillation).The lower pressure is associated with stronger west winds that generate an intensified Antarctic Circumpolar Current (ACC), which leads to longitudinal heat divergence in the South Atlantic (and heat convergence in the Southern Indian Ocean). Colder temperatures in the Weddell Sea region lead to sea ice growth, increased salinity and surface water density, and greater Weddell Sea Bottom Water production. Increased poleward transport of heat occurs in the South Atlantic in conjunction with increased bottom water production, but its convergence at high latitudes is not sufficient to offset the longitudinal heat divergence due to the intensified ACC. The colder temperatures at high latitudes in the South Atlantic increase the latitudinal temperature gradient, baroclinic instability, eddy energy and eddy poleward transport of momentum, helping to maintain the lower pressure over the pole in an interactive manner. The heat flux convergence in the Indian Ocean provides a warming tendency in that region, and overall global production of AABW remains unchanged. These results have implications for the interpretation of the ice core records of

  17. Warming of the Southern Ocean since the 1950s.

    PubMed

    Gille, Sarah T

    2002-02-15

    Autonomous Lagrangian Circulation Explorer floats recorded temperatures in depths between 700 and 1100 meters in the Southern Ocean throughout the 1990s. These temperature records are systematically warmer than earlier hydrographic temperature measurements from the region, suggesting that mid-depth Southern Ocean temperatures have risen 0.17 degrees C between the 1950s and the 1980s. This warming is faster than that of the global ocean and is concentrated within the Antarctic Circumpolar Current, where temperature rates of change are comparable to Southern Ocean atmospheric temperature increases. PMID:11847337

  18. Abundant Hydrothermal Venting in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.

    2014-12-01

    Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for hydrothermal activity and chemosynthetic ecosystems. The InterRidge Vents Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) active sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize hydrothermal activity on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known vent fields than any other vent site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise venting locations. We call this area the Mujin "Misty Harbor" vent field. Vent frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly <0.015 fM/J, indicative of chronic venting, but 3 samples, 0.021-0.034 fM/J, are ratios typical of a recent eruption. The spatial density of hydrothermal activity along KR1 and KR2 is similar to other intermediate-rate spreading ridges. We calculate the plume incidence (ph) along

  19. Ecological importance of the Southern Boundary of the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Tynan, Cynthia T.

    1998-04-01

    The Southern Ocean surrounds the Antarctic continent and supports one of the most productive marine ecosystems. Migratory and endemic species of whales, seals and birds benefit from the high biomass of their principal prey, krill (Euphausia superba) and cephalopods, in this area. Most species of baleen whales and male sperm whales in the Southern Hemisphere migrate between low-latitude breeding grounds in winter and highly productive Antarctic feeding grounds in summer. Here I show the importance of the southernmost reaches of the strongest ocean current, the Antarctic Circumpolar Current (ACC), to a complex and predictable food web of the Southern Ocean. The circumpolar distributions of blue, fin and humpback whales from spring to midsummer trace the non-uniform high-latitude penetration of shoaled, nutrient-rich Upper Circumpolar Deep Water, which is carried eastward by the ACC. The poleward extent of this water mass delineates the Southern Boundary of the ACC and corresponds not only to the circumpolar distributions of baleen whales, but also to distributions of krill and to regions of high, seasonally averaged, phytoplankton biomass. Sperm whales, which feed on cephalopods, also congregate in highest densities near the Southern Boundary. The association of primary production, Krill, and whales with the Southern Boundary, suggests that it provides predictably productive foraging for many species, and is of critical importance to the function of the Southern Ocean ecosystem.

  20. Primary production in Southern Ocean waters

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.; Worthen, Denise; Schnell, Anthony; Lizotte, Michael P.

    1998-07-01

    The Southern Ocean forms a link between major ocean basins, is the site of deep and intermediate water ventilation, and is one of the few areas where macronutrients are underutilized by phytoplankton. Paradoxically, prior estimates of annual primary production are insufficient to support the Antarctic food web. Here we present results from a primary production algorithm based upon monthly climatological phytoplankton pigment concentrations from the coastal zone color scanner (CZCS). Phytoplankton production was forced using monthly temperature profiles and a radiative transfer model that computed changes in photosynthetically usable radiation at each CZCS pixel location. Average daily productivity (g C m-2 d-1) and total monthly production (Tg C month-1) were calculated for each of five geographic sectors (defined by longitude) and three ecological provinces (defined by sea ice coverage and bathymetry as the pelagic province, the marginal ice zone, and the shelf). Annual primary production in the Southern Ocean (south of 50°S) was calculated to be 4414 Tg C yr-1, 4-5 times higher than previous estimates made from in situ data. Primary production was greatest in the month of December (816 Tg C month-1) and in the pelagic province (contributing 88.6% of the annual primary production). Because of their small size the marginal ice zone (MIZ) and the shelf contributed only 9.5% and 1.8%, respectively, despite exhibiting higher daily production rates. The Ross Sea was the most productive region, accounting for 28% of annual production. The fourfold increase in the estimate of primary production for the Southern Ocean likely makes the notion of an "Antarctic paradox" (primary production insufficient to support the populations of Southern Ocean grazers, including krill, copepods, microzooplankton, etc.) obsolete.

  1. Recent Changes in the Ventilation of the Southern Oceans

    NASA Astrophysics Data System (ADS)

    Waugh, Darryn W.; Primeau, Francois; DeVries, Tim; Holzer, Mark

    2013-02-01

    Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans.

  2. Recent changes in the ventilation of the southern oceans.

    PubMed

    Waugh, Darryn W; Primeau, Francois; Devries, Tim; Holzer, Mark

    2013-02-01

    Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans. PMID:23372011

  3. On the birth of near-modern Southern Ocean ecosystems

    NASA Astrophysics Data System (ADS)

    Houben, A.; Bohaty, S. M.; Passchier, S.; Roehl, U.; Bijl, P.; Pross, J.; Stickley, C. E.; van de Flierdt, T.; Escutia, C.; Klaus, A.; Brinkhuis, H.

    2011-12-01

    It has become widely appreciated that the initiation of major Antarctic glaciation occurred around Eocene - Oligocene boundary times (~34-33 Ma). Some studies suggest that this greenhouse-icehouse transition (GIT) invoked a more productive Southern Ocean and therefore circum-Antarctic marine systems as a result of e.g., increased wind-stress and upwelling after ice-sheet arrival and related atmospheric reorganization. Yet, actual documentation of such presumed major reorganization among plankton communities in the Southern Ocean is quite limited. This is partly due to scarce and incomplete records, and/or lack of suitable plankton remains for various reasons. Principally on the basis of the recent Integrated Ocean Drilling Program Expedition 318, drilling of the Wilkes Land margin, and in context with studies into e.g., XRF-geochemistry, ice rafted debris, and clay mineralogy, we here discuss late Eocene to early Oligocene dinoflagellate cyst assemblage changes related to the GIT, and compare results with several other circum-Antarctic sites. Conspicuously, the earliest Oligocene circum-Antarctic dinoflagellate cyst assemblages are consistently dominated by protoperidinioid taxa, in sharp contrast to the Eocene assemblages. Extant protoperidinioid dinoflagellates have a heterotrophic feeding strategy, are therefore found in association with high productivity ecosystems, and particularly dominate modern southern ocean settings. Combined results indicate the birth of near modern circum-Antarctic marine ecosystems to coincide with the GIT.

  4. Dynamic thinning of glaciers on the Southern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wouters, B.; Martin-Español, A.; Helm, V.; Flament, T.; van Wessem, J. M.; Ligtenberg, S. R. M.; van den Broeke, M. R.; Bamber, J. L.

    2015-05-01

    Growing evidence has demonstrated the importance of ice shelf buttressing on the inland grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens inland. Such ice sheet geometry is potentially unstable. We use satellite altimetry and gravity observations to show that a major portion of the region has, since 2009, destabilized. Ice mass loss of the marine-terminating glaciers has rapidly accelerated from close to balance in the 2000s to a sustained rate of -56 ± 8 gigatons per year, constituting a major fraction of Antarctica’s contribution to rising sea level. The widespread, simultaneous nature of the acceleration, in the absence of a persistent atmospheric forcing, points to an oceanic driving mechanism.

  5. Spatial Patterns of Variability in Antarctic Surface Temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation

    NASA Technical Reports Server (NTRS)

    Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.

  6. Observations of change in the Southern Ocean.

    PubMed

    Jacobs, Stan

    2006-07-15

    The Southern Ocean has been in a state of disequilibrium with its atmosphere and cryosphere during recent decades. Ocean station and drifting float observations have revealed rising temperatures in the upper 3000m. Salinity has declined in intermediate waters and more rapidly in the sparsely sampled high latitudes. Dissolved oxygen levels may also have decreased, but measurement accuracy is inconsistent. Sea ice area increased from 1979 to 1998, particularly in the Ross Sea, while a decline in ice extent since the early 1970s has been led by the Amundsen-Bellingshausen sector. Fresher waters with lower oxygen isotope content on the Pacific-Antarctic continental shelf are consistent with increased melting of continental ice. Newly forming bottom water has become colder and less salty downstream from that region, but generally warmer in the Weddell Sea. Many ice shelves have retreated or thinned, but others have grown and no trend is apparent in the large iceberg calving rate. Warming and isotherm shoaling within the polar gyres may result in part from changes in the Southern Annular Mode, which could facilitate deep-water access to the continental shelves. Sea-level rise over the past half century has a strong eustatic component and has recently accelerated. Observations over longer periods and with better spatial coverage are needed to better understand the processes causing these changes and their links to the Antarctic ice sheet. PMID:16782605

  7. The Southern Ocean CIRCLE initiative

    NASA Astrophysics Data System (ADS)

    Murphy, E. J.; Ellis-Evans, J. C.

    2003-04-01

    The circumpolar Southern Ocean is the principal ocean connection between the Atlantic, Pacific and Indian Oceans, and exerts a profound influence on world climate through ocean circulation and its major role in the global carbon cycle. It is a major repository of biodiversity and also the only ocean system where significant marine living resources are yet to be fully exploited. However, this key component of the Earth System is still poorly understood, in part due to the logistical problems of a harsh, remote location and the circumpolar nature of the environment. Circumpolar patterns of variability have now been recognized and the current challenge is to understand how, at a circumpolar scale, this variability is generated, its impact on the regional biogeochemical cycles, its interaction with ecosystem processes and the links to global scale processes. Many of these scientific issues can only be addressed by Southern Ocean scale studies, and although a range of national and international research programmes are already targeting particular aspects, the research effort is largely uncoordinated. The European Polar Board is sponsoring a pan-European initiative (Southern Ocean CIRCLE) to coordinate the currently disparate Southern Ocean research effort and this initiative aims to address climate variability, biogeochemical cycling and ecosystem dynamics with particular reference to the links between these aspects in the circumpolar Southern Ocean. This poster outlines the development of the SO CIRCLE initiative, the major areas of science and proposals for implementation. It also outlines how SO CIRCLE will link to other programmes with a Southern Ocean component (e.g. CLIVAR, CliC, GLOBEC, SOLAS). A key aspect of the initiative will be to coordinate European scientific effort in the Southern Ocean with that of the wider international community.

  8. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport

    NASA Astrophysics Data System (ADS)

    Armour, Kyle C.; Marshall, John; Scott, Jeffery R.; Donohoe, Aaron; Newsom, Emily R.

    2016-07-01

    The Southern Ocean has shown little warming over recent decades, in stark contrast to the rapid warming observed in the Arctic. Along the northern flank of the Antarctic Circumpolar Current, however, the upper ocean has warmed substantially. Here we present analyses of oceanographic observations and general circulation model simulations showing that these patterns--of delayed warming south of the Antarctic Circumpolar Current and enhanced warming to the north--are fundamentally shaped by the Southern Ocean's meridional overturning circulation: wind-driven upwelling of unmodified water from depth damps warming around Antarctica; greenhouse gas-induced surface heat uptake is largely balanced by anomalous northward heat transport associated with the equatorward flow of surface waters; and heat is preferentially stored where surface waters are subducted to the north. Further, these processes are primarily due to passive advection of the anomalous warming signal by climatological ocean currents; changes in ocean circulation are secondary. These findings suggest the Southern Ocean responds to greenhouse gas forcing on the centennial, or longer, timescale over which the deep ocean waters that are upwelled to the surface are warmed themselves. It is against this background of gradual warming that multidecadal Southern Ocean temperature trends must be understood.

  9. Water masses, ocean fronts, and the structure of Antarctic seabird communities: Putting the eastern Bellingshausen Sea in perspective

    NASA Astrophysics Data System (ADS)

    Ribic, Christine A.; Ainley, David G.; Glenn Ford, R.; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2011-07-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April-September) and summer (October-March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins ( Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated

  10. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    USGS Publications Warehouse

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2015-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April–September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group

  11. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    USGS Publications Warehouse

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2011-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April–September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group

  12. Southern Ocean Iron Experiment (SOFex)

    SciTech Connect

    Coale, Kenneth H.

    2005-07-28

    The Southern Ocean Iron Experiment (SOFeX) was an experiment decades in the planning. It's implementation was among the most complex ship operations that SIO has been involved in. The SOFeX field expedition was successful in creating and tracking two experimentally enriched areas of the Southern Ocean, one characterized by low silicic acid, one characterized by high silicic acid. Both experimental sites were replete with abundant nitrate. About 100 scientists were involved overall. The major findings of this study were significant in several ways: (1) The productivity of the southern ocean is limited by iron availability. (2) Carbon uptake and flux is therefore controlled by iron availability (3) In spite of low silicic acid, iron promotes non-silicious phytoplankton growth and the uptake of carbon dioxide. (4) The transport of fixed carbon from the surface layers proceeds with a C:N ratio that would indicate differential remineralization of nitrogen at shallow depths. (5) These finding have major implications for modeling of carbon export based on nitrate utilization. (6) The general results of the experiment indicate that, beyond other southern ocean enrichment experiments, iron inputs have a much wider impact of productivity and carbon cycling than previously demonstrated. Scientific presentations: Coale, K., Johnson, K, Buesseler, K., 2002. The SOFeX Group. Eos. Trans. AGU 83(47) OS11A-0199. Coale, K., Johnson, K. Buesseler, K., 2002. SOFeX: Southern Ocean Iron Experiments. Overview and Experimental Design. Eos. Trans. AGU 83 (47) OS22D-01. Buesseler, K.,et al. 2002. Does Iron Fertilization Enhance Carbon Sequestration? Particle flux results from the Southern Ocean Iron Experiment. Eos. Trans. AGU 83 (47), OS22D-09. Johnson, K. et al. 2002. Open Ocean Iron Fertilization Experiments From IronEx-I through SOFeX: What We Know and What We Still Need to Understand. Eos. Trans. AGU 83 (47), OS22D-12. Coale, K. H., 2003. Carbon and Nutrient Cycling During the Southern

  13. Modeling the coupled ocean-katabatic wind systems of the Antarctic

    SciTech Connect

    McNider, R.T.; Goodrick, S.L.

    1994-12-31

    The wind stress distribution along the periphery of the antarctic continent is like no other place on Earth. A large easterly component near the coast is evidently attributable to the geostrophic adjustment of the katabatic winds driven by the cold antarctic plateau. The large curl between these topographically driven easterlies and the strong Southern Hemispheric westerlies may have a significant role in the upwelling and associated biological productivity of the southern oceans. The direct downslope databatic flows and their alongshore adjustment may have also have significance to polynya development, bottom-water formation, and the maintenance of the coastal currents including the East Wind Drift. This paper reports on preliminary model studies of the coupling between antarctic katabatic flows and the coastal ocean. Although considerable past work in coupling large-scale and low-order ocean/atmosphere models has been done, relatively less work on coupling true mesoscale multidimensional models containing high-resolution boundary layers has been under taken. The following describes a coupled atmosphere/ocean model which has been developed by McNider from the frameworks of a mesoscale atmospheric model and a coastal ocean model. 9 refs., 3 figs.

  14. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  15. Cadmium isotope variations in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Xue, Zichen; Rehkämper, Mark; Horner, Tristan J.; Abouchami, Wafa; Middag, Rob; van de Flierd, Tina; de Baar, Hein J. W.

    2013-11-01

    Cadmium concentrations and isotope compositions were determined for 47 seawater samples from the high nutrient low chlorophyll (HNLC) zone of the Atlantic sector of the Southern Ocean. The samples include 13 surface waters from a transect of the Weddell Gyre and 3 depth profiles from the Weddell Sea and Drake Passage. The Southern Ocean mixed layer samples from this study and Abouchami et al. (2011) define a clear but broad ‘HNLC trend’ in a plot of εCd114/110 versus [Cd], which is primarily a consequence of isotopic fractionation associated with biological uptake (εCd114/110 is the deviation of the 114Cd/110Cd ratio of a sample from NIST SRM 3108 Cd in parts per 10,000). The trend is especially apparent in comparison to the large range of values shown by a global set of seawater Cd data for shallow depths. The Southern Ocean samples are also distinguished by their relatively high Cd concentrations (typically 0.2 to 0.6 nmol/kg) and moderately fractionated εCd114/110 (generally between +4 and +8) that reflect the limited biological productivity of this region. Detailed assessment reveals fine structure within the ‘HNLC trend’, which may record differences in the biological fractionation factor, different scenarios of closed and open system isotope fractionation, and/or distinct source water compositions. Southern Ocean seawater from depths ⩾1000 m has an average εCd114/110 of +2.5±0.2 (2se, n=16), and together with previous results this establishes a relatively constant εCd114/110 value of +3.0±0.3 (2se, n=27) for global deep waters. Significant isotopic variability was observed at intermediate depths in the Southern Ocean. Seawater from 200 m to 400 m in Weddell Sea has high Cd concentrations and εCd114/110 as low as +1, presumably due to remineralization of Cd from biomass that records incomplete nutrient utilization. Antarctic Intermediate Water, which was sampled at 150 to 750 m depth in the Drake Passage, features a distinct Cd isotope

  16. Atmosphere-ocean interactions in the Pacific Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Gersonde, R.; Purcell, C.; Winckler, G.; Tiedemann, R.; Knorr, G.

    2014-12-01

    Atmosphere-ocean interactions play an important role for understanding processes and feedbacks in the Southern Ocean (SO) that play a key role for explaining the variability in atmospheric CO2 concentrations. The most important atmospheric forcing at high and mid-latitudes of the Southern Hemisphere is the westerly wind belt which strongly impacts the strength and extension of the Antarctic Circumpolar Current (ACC), upwelling of deep-water masses, and also controls the back-flow of intermediate waters to the tropics. We combine sea surface temperature, current strength, and mineral dust proxy data from the Pacific SO including Drake Passage with climate model results. Our data show that Drake Passage throughflow was reduced and the ACC generally weakened during the last glacial. The reduced Drake Passage throughflow was accompanied by a pronounced northward extension of the Antarctic cold-water sphere in the Southeast Pacific sector and stronger export of surface and intermediate water into the South Pacific gyre. These oceanographic changes are consistent with reduced westerly winds within the modern maximum wind strength zone over the subantarctic ACC and reduced wind forcing due to extended sea-ice further south. Despite of reduced winds in the core of the westerlies, we observe 3-fold higher dust deposition during glacial periods in the Pacific SO. This observation may be explained by a combination of factors including more expanded arid dust source areas in Australia and a northward extent or enhancement of the westerlies over Southeast Australia during glacials that would plausibly increase the dust uptake and export into the Pacific SO. Such scenario would imply stronger westerlies at the present northernmost margin of the wind belt coeval with weaker core westerlies and reduced ACC strength including Drake Passage throughflow during glacials. These results have strong implications for the global meridional overturning circulation and the interbasin

  17. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Sutter, Johannes; Gierz, Paul; Grosfeld, Klaus; Thoma, Malte; Lohmann, Gerrit

    2016-03-01

    The West Antarctic Ice Sheet (WAIS) is considered the major contributor to global sea level rise in the Last Interglacial (LIG) and potentially in the future. Exposed fossil reef terraces suggest sea levels in excess of 7 m in the last warm era, of which probably not much more than 2 m are considered to originate from melting of the Greenland Ice Sheet. We simulate the evolution of the Antarctic Ice Sheet during the LIG with a 3-D thermomechanical ice sheet model forced by an atmosphere-ocean general circulation model (AOGCM). Our results show that high LIG sea levels cannot be reproduced with the atmosphere-ocean forcing delivered by current AOGCMs. However, when taking reconstructed Southern Ocean temperature anomalies of several degrees, sensitivity studies indicate a Southern Ocean temperature anomaly threshold for total WAIS collapse of 2-3°C, accounting for a sea level rise of 3-4 m during the LIG. Potential future Antarctic Ice Sheet dynamics range from a moderate retreat to a complete collapse, depending on rate and amplitude of warming.

  18. Icecolors `93: Beginnings of an antarctic phytoplankton and bacterial DNA library from southern ocean natural communities exposed to ultraviolet-B

    SciTech Connect

    Jovine, R.V.M.; Prezelin, B.

    1994-12-31

    Springtime ozone depletion and the resultant increase in ultraviolet-B (UV-B) radiation [280-320 nanometers (nm)] have deleterious effects on primary productivity. To assess damage to cellular components other than the photosynthetic apparatus, we isolated total community DNA from samples in the field before, during, and after the 1993 springtime depletion in stratospheric ozone. The effort was motivated by the concern that the ozone-dependent increases in UV-B radiation may increase DNA damage within primary producers. This increase in damage could result in changes of species composition as well as hereditary changes within species that can influence the competitiveness of these organisms in their natural community. Previous studies have focused on DNA damage in isolated cultures of antarctic phytoplankton that were irradiated with UV-B under lab conditions. These studies clearly indicate variable species sensitivities to the increase in UV-B flux. These studies, however, did not resolve the question of whether such damage occurred in field samples collected from actively mixing, polyphyletic phytoplankton communities. Potential species composition changes and the resultant changes in the trophic dynamics cannot be interpreted in terms of DNA damage unless this damage can be documented in samples isolated under these dynamic natural conditions. 7 refs., 2 figs.

  19. Microwave remote sensing of the Southern Ocean ice cover

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.; Grenfell, Thomas C.; Lange, Manfred; Lohanick, Alan W.; Moore, Richard K.; Wadhams, Peter

    The Southern Ocean sea ice cover grows dramatically to about 20 × 106 km2 in the spring and breaks up abruptly to about 4 × 106 km2 in the summer (e.g., Zwally et al. [1983b]). This makes it one of the most seasonally variable climate parameters on the surface of the globe. Compared to the Northern Hemisphere, the ice cover in the Southern Ocean is about 20% greater at its maximum extent [Comiso and Zwally, 1984; Gloersen and Campbell, 1988]. By virtue of its size alone, the impact of the Southern Ocean ice cover on the regional and global climate can be considerable, since sea ice drastically changes surface albedo and roughness and insulates the ocean from the atmosphere. Seasonal and interannual variations in the spatial distribution of sea ice also cause the redistribution of salts, which, in turn, cause changes in the vertical stratification of the ocean. Compared to the Arctic, the environmental geographical background for sea ice in the Antarctic is also very different. Land surrounds most of the southern limits of the Arctic ice cover, whereas in the Antarctic, there is no corresponding land boundary in the north. The Southern Ocean ice cover is more divergent since it is more vulnerable to dynamic forcing than its Arctic counterpart. Accurate estimation of the percentage of open water is important because heat and salinity fluxes increase considerably even with just small increases in the fraction of open water or new ice [Maykut, 1978; Allison, 1981]. These fluxes are, in turn, closely linked with bottom water formation, ocean circulation, and momentum exchange between the ocean and the atmosphere. Oceanic heat flux is also believed to be a major determinant of ice growth rate [Bagriantsev et. al., 1989].

  20. Volcanic time-markers for Marine Isotopic Stages 6 and 5 in Southern Ocean sediments and Antarctic ice cores: implications for tephra correlations between palaeoclimatic records

    NASA Astrophysics Data System (ADS)

    Hillenbrand, C.-D.; Moreton, S. G.; Caburlotto, A.; Pudsey, C. J.; Lucchi, R. G.; Smellie, J. L.; Benetti, S.; Grobe, H.; Hunt, J. B.; Larter, R. D.

    2008-03-01

    Three megascopic and disseminated tephra layers (which we refer to as layers A, B, and C) occur in late Quaternary glaciomarine sediments deposited on the West Antarctic continental margin. The stratigraphical positions of the distal tephra layers in 28 of the 32 studied sediment cores suggest their deposition during latest Marine Isotopic Stage (MIS) 6 and MIS 5. One prominent tephra layer (layer B), which was deposited subsequent to the penultimate deglaciation (Termination II), is present in almost all of the cores. Geochemical analyses carried out on the glass shards of the layers reveal a uniform trachytic composition and indicate Marie Byrd Land (MBL), West Antarctica, as the common volcanic source. The geochemical composition of the marine tephra is compared to that of ash layers of similar age described from Mount Moulton and Mount Takahe in MBL and from ice cores drilled at Dome Fuji, Vostok and EPICA Dome C in East Antarctica. The three tephra layers in the marine sediments are chemically indistinguishable. Also five englacial ash layers from Mt. Moulton, which originated from highly explosive Plinian eruptions of the Mt. Berlin volcano in MBL between 142 and 92 ka ago, are chemically very similar, as are two tephra layers erupted from Mt. Takahe at ca 102 ka and ca 93 ka. Statistical analysis of the chemical composition of the glass shards indicates that the youngest tephra (layer A) in the marine cores matches the ash layer that erupted from Mt. Berlin at 92 ka, which was previously correlated with tephra layers in the EPICA Dome C and the Dome Fuji ice cores. A tephra erupted from Mt. Berlin at 136 ka seems to correspond to a tephra layer deposited at 1733 m in the EPICA Dome C ice core. Additionally, the oldest tephra (layer C) in the marine sediments resembles an ash layer deposited at Vostok around 142 ka, but statistical evidence for the validity of this correlation is inconclusive. Although our results underscore the potential of

  1. STS-48 ESC Earth observation of Antarctic sea ice and clouds over Indian Ocean

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of Antarctic sea ice and clouds over the southern Indian Ocean. Considerable detail can be seen in the ice field. The distribution of the ice field as seen through the breaks in the clouds is complex, and according to NASA scientists studying the STS-48 imagery, it likely contains information about ocean currents. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  2. The Southern Hemisphere quasi-stationary eddies and their relationship with Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Hobbs, William Richard

    The west Antarctic region shows one of the strongest warming trends globally over the late 20th century, whilst much of the Antarctic continent shows little trend or even cooling. Additionally, sea ice reductions in the Antarctic Peninsula region have been balanced by sea ice increases in the Ross Sea region. Despite this heterogeneity, much recent research in the Southern Hemisphere has focused on the approximately zonally-symmetric Southern Annular Mode. In this research, reanalysis and satellite data are analyzed to show that at monthly and annual timescales the zonally asymmetric circulation over the Southern Ocean is dominated by two quasi-stationary anticyclones; a stable western anticyclone approximately located south of New Zealand, and a more variable eastern anticyclone located over the Drake Passage region. Time series describing each anticyclone's strength and longitude, and these time series are used to investigate the physical nature and influence of the anticyclones. The anticyclones are found to have some covariance, and in particular they tend to shift in phase, but their strengths are negatively correlated. Quasi-geostrophic diagnosis indicates that the west anticyclone is maintained by meridional vorticity advection by poleward airflow south of Australia, whereas the east anticyclone is forced by zonal convergence over the Pacific Ocean. The differences in variability and dynamic nature between the anticyclones bring into question the utility of the zonal wave decomposition, which is commonly used in analysis of the Southern Hemisphere zonally asymmetric circulation. It is shown that the quasi-stationary anticyclones influence west Antarctic sea ice in a pattern that resembles the 1st and 3rd principal components of ice variability. The anticyclones have some effect on wind-driven sea ice motion, but the primary mechanism explaining their link to sea ice appears to be meridional thermal advection.

  3. A Southern Ocean mode of multidecadal variability

    NASA Astrophysics Data System (ADS)

    Le Bars, D.; Viebahn, J. P.; Dijkstra, H. A.

    2016-03-01

    A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40-50 year. The peak-to-peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three-layer quasi-geostrophic eddy-resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation.

  4. Eddy stirring in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, A. C.; Ferrari, R.; Polzin, K. L.

    2011-09-01

    There is an ongoing debate concerning the distribution of eddy stirring across the Antarctic Circumpolar Current (ACC) and the nature of its controlling processes. The problem is addressed here by estimating the isentropic eddy diffusivity κ from a collection of hydrographic and altimetric observations, analyzed in a mixing length theoretical framework. It is shown that, typically, κ is suppressed by an order of magnitude in the upper kilometer of the ACC frontal jets relative to their surroundings, primarily as a result of a local reduction of the mixing length. This observation is reproduced by a quasi-geostrophic theory of eddy stirring across a broad barotropic jet based on the scaling law derived by Ferrari and Nikurashin (2010). The theory interprets the observed widespread suppression of the mixing length and κ in the upper layers of frontal jets as the kinematic consequence of eddy propagation relative to the mean flow within jet cores. Deviations from the prevalent regime of mixing suppression in the core of upper-ocean jets are encountered in a few special sites. Such `leaky jet' segments appear to be associated with sharp stationary meanders of the mean flow that are generated by the interaction of the ACC with major topographic features. It is contended that the characteristic thermohaline structure of the Southern Ocean, consisting of multiple upper-ocean thermohaline fronts separated and underlaid by regions of homogenized properties, is largely a result of the widespread suppression of eddy stirring by parallel jets.

  5. Sea Ice on the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1998-01-01

    Year-round satellite records of sea ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic sea ice. In the Amundsen & Bellingshausen Seas, sea ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The sea ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of sea ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross Sea, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of sea ice range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade

  6. Ceilometer measurements in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    McDonald, Adrian; Alexander, Simon; French, John; Harvey, Mike; Ichoja, Andrew; Klekociuk, Andrew; Plank, Graeme; Katurji, Marwan

    2016-04-01

    Current climate models display a consistent deficit of reflected shortwave radiation over the Southern Ocean which is mainly due to the poor representation of clouds. Recent work has also shown that reanalysis also perform poorly relative to satellite observations in terms of cloud fraction. In particular, satellite observations have shown that low-level clouds (with tops below 3 km) are ubiquitous over the Southern Ocean. But, most satellite instruments, even the current generation of active satellite instruments, have difficulties in sampling low level clouds. As part of the New Zealand Deep South challenge project focussed on improving the representation of clouds in the Southern Ocean, we have begun to deploy autonomous instruments on 'ships of opportunity'. This study discusses measurements from a Väisälä CL51 laser ceilometer and ancillary instruments on the first two research voyages in the Southern Ocean and initial results. The route of the first voyage covers a return trip from Wellington (New Zealand) to Terra Nova Bay (Antarctica) onboard the R/V Tangaroa and occurred in January to mid-February 2015. The second deployment is onboard the Aurora Australis Australian Antarctic Division supply ship and began in October 2015 and is planned to finish at Macquarie Island in March 2016. The sampling provided by the ships route allows the ceilometer measurements of the height of the cloud base in a region where limited data apart from, potentially biased, satellite measurements of low-level cloud exist. Analysis of the boundary layer height derived from the ceilometer is also presented. The climatological structure derived from the ceilometer measurements is first detailed. We then compare these measurements with satellite and ground-based observations. We then examine variations in these measurements relative to their meteorological context. Details of plans for future voyages are also detailed. We will also present a preliminary analysis of a case study of

  7. Late Pleistocene variations in Antarctic sea ice II: effect of interhemispheric deep-ocean heat exchange

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas J.; Parkinson, Claire L.

    1988-10-01

    Variations in production rates of warm North Atlantic Deep Water (NADW) have been proposed as a mechanism for linking climate fluctuations in the northern and southern hemispheres during the Pleistocene. We have tested this hypothesis by examining the sensitivity of a thermodynamic/dynamic model for Antarctic sea ice to changes in vertical ocean heat flux and comparing the simulations with modified CLIMAP sea-ice maps for 18 000 B.P. Results suggest that changes in NADW production rates, and the consequent changes in the vertical ocean heat flux in the Antarctic, can only account for about 20% 30% of the overall variance in Antarctic sea-ice extent. This conclusion has been validated against an independent geological data set involving a time series of sea-surface temperatures from the subantarctic. The latter comparison suggests that, although the overall influence of NADW is relatively minor, the linkage may be much more significant at the 41 000-year obliquity period. Despite some limitations in the models and geological data, we conclude that NADW variations may have played only a modest role in causing late Pleistocene climate change in the high latitudes of the southern hemisphere. Our conclusion is consistent with calculations by Manabe and Broccoli (1985) suggesting that atmospheric CO2 changes may be more important for linking the two hemispheres.

  8. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic

    PubMed Central

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei

    2013-01-01

    Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m3 in the boundary layer over remote oceans. PMID:23880782

  9. Improved representation of Southern Ocean fronts in a finite element ocean model

    NASA Astrophysics Data System (ADS)

    Janjic, T.; Timmerman, R.; Schroeter, J.

    2012-04-01

    Orsi et al. 1995 determined the positions of fronts in Southern Ocean based on the water mass criteria from hydrographic sections data. Following Orsi et al. 1995 three main Southern Ocean fronts are distinguished, the subantarctic front (SAF), the polar front (PF) and the southern Antarctic Circumpolar current (sACC) front. All three fronts are continuous features of the ACC, and extend from the sea surface to the deep ocean. Several studies used satellite observations (gradients of sea surface height and sea surface temperature) to locate ACC fronts. In recent work by Sokolov and Rintoul 2009, the authors introduced south, north and middle branches of each of the three major fronts. The position of the branches are determined based on the contour lines of absolute SSH, where the absolute SSH values were calculated by adding the SSH anomalies to the mean surface dynamic height (relative to 2500 dbar) derived from the World Ocean Circulation Experiment climatology. In this work, we estimate the locations of the Southern Ocean fronts using the finite element ocean model and the same criteria as specified in Orsi et al. 1995. The ocean model representation of the locations of fronts is improved by assimilating dynamical ocean topography (DOT) data. In our study, the DOT is generated using the satellite altimetry and our knowledge of the geoid as given by the GOCO2S model which combines GRACE and GOCE gravity data. In addition, front locations determined in such a way are compared to the streamline approach of Sokolov and Rintoul 2009.

  10. Metagenomic Analysis of a Southern Maritime Antarctic Soil

    PubMed Central

    Pearce, David A.; Newsham, Kevin K.; Thorne, Michael A. S.; Calvo-Bado, Leo; Krsek, Martin; Laskaris, Paris; Hodson, Andy; Wellington, Elizabeth M.

    2012-01-01

    Our current understanding of Antarctic soils is derived from direct culture on selective media, biodiversity studies based on clone library construction and analysis, quantitative PCR amplification of specific gene sequences and the application of generic microarrays for microbial community analysis. Here, we investigated the biodiversity and functional potential of a soil community at Mars Oasis on Alexander Island in the southern Maritime Antarctic, by applying 454 pyrosequencing technology to a metagenomic library constructed from soil genomic DNA. The results suggest that the commonly cited range of phylotypes used in clone library construction and analysis of 78–730 OTUs (de-replicated to 30–140) provides low coverage of the major groups present (∼5%). The vast majority of functional genes (>77%) were for structure, carbohydrate metabolism, and DNA/RNA processing and modification. This study suggests that prokaryotic diversity in Antarctic terrestrial environments appears to be limited at the generic level, with Proteobacteria, Actinobacteria being common. Cyanobacteria were surprisingly under-represented at 3.4% of sequences, although ∼1% of the genes identified were involved in CO2 fixation. At the sequence level there appeared to be much greater heterogeneity, and this might be due to high divergence within the relatively restricted lineages which have successfully colonized Antarctic terrestrial environments. PMID:23227023

  11. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Watson, Andrew J.; Vallis, Geoffrey K.; Nikurashin, Maxim

    2015-11-01

    Atmospheric CO2 concentrations over glacial-interglacial cycles closely correspond to Antarctic temperature patterns. These are distinct from temperature variations in the mid to northern latitudes, so this suggests that the Southern Ocean is pivotal in controlling natural CO2 concentrations. Here we assess the sensitivity of atmospheric CO2 concentrations to glacial-interglacial changes in the ocean's meridional overturning circulation using a circulation model for upwelling and eddy transport in the Southern Ocean coupled with a simple biogeochemical description. Under glacial conditions, a broader region of surface buoyancy loss results in upwelling farther to the north, relative to interglacials. The northern location of upwelling results in reduced CO2 outgassing and stronger carbon sequestration in the deep ocean: we calculate that the shift to this glacial-style circulation can draw down 30 to 60 ppm of atmospheric CO2. We therefore suggest that the direct effect of temperatures on Southern Ocean buoyancy forcing, and hence the residual overturning circulation, explains much of the strong correlation between Antarctic temperature variations and atmospheric CO2 concentrations over glacial-interglacial cycles.

  12. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Huckstadt, L.; Costa, D. P.; McDonald, B. I.; Tremblay, Y.; Crocker, D. E.; Goebel, M. E.; Fedak, M. E.

    2006-12-01

    We examined the foraging behavior of 18 southern elephant seals foraging over two seasons in the Western Antarctic Peninsula. The foraging behavior and habitat utilization of 7 females in 2005 and 12 in 2006 were followed using satellite linked Satellite Relay Data Loggers that measured diving behavior as well collected salinity and temperature profiles as the animals dove. Animals were tagged after the annual molt during February at Cape Shirreff Livngston Island, South Shetland Islands. There was significant interannual variation in the regions of the Southern Ocean used by seals from Livingston Island. In 2005 of the 7 animals tagged one foraged 4700 km due west of the Antarctic Peninsula going as far as 150 W. The remaining females headed south along the Western Antarctic Peninsula bypassing Marguerite Bay moving south along Alexander Island. Three of these animals continued to forage in the pack ice as it developed. On their return trip all females swam past Livingston Island, continuing on to South Georgia Island where they apparently bred in the austral spring. One animal returned to Cape Shirreff to molt and her tag was recovered. During 2006 animals initially followed a similar migratory pattern going south along the Antarctic Peninsula, but unlike 2005 where the majority of the animals remained in the immediate vicinity of the Western Antarctic Peninsula, most of the animals in 2006 moved well to the west foraging as far as the Amundsen Sea. We compared the area restricted search (focal foraging areas) areas of these animals using a newly developed fractal landscape technique that identifies and quantifies areas of intensive search. The fractal analysis of area restricted search shows that the area, distance and coverage (Fractal D) searched were not different between years, while the time spent in the search areas was higher in 2005. Further analysis will examine how the physical properties of the water column as determined from the CTD data derived from

  13. Fisheries in the Southern Ocean: an ecosystem approach.

    PubMed

    Kock, Karl-Hermann; Reid, Keith; Croxall, John; Nicol, Stephen

    2007-12-29

    The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) is bound by its Article II, 3 to follow an ecosystem approach to management. This approach has been extended to the application of a precautionary approach in the late 1980s. In our review, we deal primarily with the science-related aspects of CCAMLR and its development towards an ecosystem approach to the management of the living resources of the Southern Ocean. To assist the Commission in meeting its objectives, as set out in Article II, 3, the Scientific Committee established the CCAMLR Ecosystem Monitoring Programme to detect possible effects of krill fishing on the performance of top-level predators, such as albatrosses, penguins, petrels and fur seals. Fisheries in the Southern Ocean followed the fate of other fisheries worldwide in which target species were depleted to low level one after the other. Currently, two types of fisheries are open: the longline fisheries on Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (Dissostichus mawsoni) and the trawl fisheries on mackerel icefish (Champsocephalus gunnari). Both fisheries are managed in a single-species context, however, with conservation measures in place to protect by-catch species, such as rattails (Macrouridae) and skates and rays (Rajidae). Two major problems still exist in fisheries in the Southern Ocean: the by-catch of birds in longline fisheries primarily in the Indian Ocean and the high level of IUU fishing again in the Indian Ocean. Both, the by-catch of birds and high IUU catches undermine the credibility of CCAMLR to safeguard the marine living resources in the Southern Ocean. PMID:17553767

  14. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux

    NASA Astrophysics Data System (ADS)

    Pakhomov, E. A.; Froneman, P. W.; Perissinotto, R.

    Available data on the spatial distribution and feeding ecophysiology of Antarctic krill, Euphausia superba, and the tunicate, Salpa thompsoni, in the Southern Ocean are summarized in this study. Antarctic krill and salps generally display pronounced spatial segregation at all spatial scales. This appears to be the result of a clear biotopical separation of these key species in the Antarctic pelagic food web. Krill and salps are found in different water masses or water mass modifications, which are separated by primary or secondary frontal features. On the small-scale (<100 km), Antarctic krill and salps are usually restricted to the specific water parcels, or are well segregated vertically. Krill and salp grazing rates estimated using the in situ gut fluorescence technique are among the highest recorded in the Antarctic pelagic food web. Although krill and salps at times may remove the entire daily primary production, generally their grazing impact is moderate (⩽50% of primary production). The regional ecological consequences of years of high salp densities may be dramatic. If the warming trend, which is observed around the Antarctic Peninsula and in the Southern Ocean, continues, salps may become a more prominent player in the trophic structure of the Antarctic marine ecosystem. This likely would be coupled with a dramatic decrease in krill productivity, because of a parallel decrease in the spatial extension of the krill biotope. The high Antarctic regions, particularly the Marginal Ice Zone, have, however, effective physiological mechanisms that may provide protection against the salp invasion.

  15. Antarctic ice-rafted detritus (IRD) in the South Atlantic: Indicators of iceshelf dynamics or ocean surface conditions?

    USGS Publications Warehouse

    Nielsen, Simon H.H.; Hodell, D.A.

    2007-01-01

    Ocean sediment core TN057-13PC4/ODP1094, from the Atlantic sector of the Southern Ocean, contains elevated lithogenic material in sections representing the last glacial period compared to the Holocene. This ice-rafted detritus is mainly comprised of volcanic glass and ash, but has a significant input of what was previously interpreted as quartz during peak intervals (Kanfoush et al., 2000, 2002). Our analysis of these clear mineral grains indicates that most are plagioclase, and that South Sandwich Islands is the predominant source, similar to that inferred for the volcanic glass (Nielsen et al., in review). In addition, quartz and feldspar with possible Antarctic origin occur in conjunction with postulated episodes of Antarctic deglaciation. We conclude that while sea ice was the dominant ice rafting agent in the Polar Frontal Zone of the South Atlantic during the last glacial period, the Holocene IRD variability may reflect Antarctic ice sheet dynamics.

  16. Oceanic an climatic consequences of a sudden large-scale West Antarctic Ice Sheet collapse

    NASA Astrophysics Data System (ADS)

    Scarff, Katie; Green, Mattias; Schmittner, Andreas

    2015-04-01

    Atmospheric warming is progressing to the point where the West Antarctic Ice Sheet (WAIS) will experience an elevated rate of discharge. The current discharge rate of WAIS is around 0.005Sv, but this rate will most likely accelerate over this century. The input of freshwater, in the form of ice, may have a profound effect on oceanic circulation systems, including potentially reducing the formation of deep water in the Southern Ocean and thus triggering or enhancing the bipolar seesaw. Using UVic - an intermediate complexity ocean-climate model - we investigate how various hosing rates from the WAIS will impact of the present and future ocean circulation and climate. These scenarios range from observed hosing rates (~0.005Sv) being applied for 100 years, to a total collapse of the WAIS over the next 100 years (the equivalent to a0.7Sv hosing). We show that even the present day observed rates can have a significant impact on the ocean and atmospheric temperatures, and that the bipolar seesaw may indeed be enhanced by the Southern Ocean hosing. Consequently, there is a speed-up of the Meridional Overturning Circulation (MOC) early on during the hosing, which leads to a warming over the North Atlantic, and a subsequent reduction in the MOC on centennial scales. The larger hosing cases show more dramatic effects with near-complete shutdowns of the MOC during the hosing. Furthermore, global warming scenarios based on the IPCC "business as usual" scenario show that the atmospheric warming will change the response of the ocean to Southern Ocean hosing and that the warming will dominate the perturbation. The potential feedback between changes in the ocean stratification in the scenarios and tidally driven abyssal mixing via tidal conversion is also explored.

  17. Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Lefebvre, Vincent; Donnadieu, Yannick; Sepulchre, Pierre; Swingedouw, Didier; Zhang, Zhong-Shi

    2012-12-01

    Growth of Antarctic ice sheet during the Cenozoic 34 million years ago appears as a potential tipping point in the long term cooling trend that began 50 Ma ago. For decades, the onset of the Antarctic Circumpolar Current (ACC) following the opening of the Drake Passage and of the Tasman Seaway has been suggested as the main driver of the continental-scale Antarctic glaciation. However, recent modeling works emphasized that the Eocene/Oligocene atmospheric carbon dioxide (CO2) lowering could be the primary forcing of the Antarctic glaciation, questioning the ACC theory. Here, we investigate the response of the ACC to changes in CO2concentrations occurring from the late Eocene to the late Oligocene. We used a fully coupled atmosphere-ocean model (FOAM) with a mid-Oligocene geography. We find that the opening of southern oceanic gateways does not trigger the onset of the ACC for CO2typical of the late Eocene (>840 ppm). A cooler background climatic state such as the one prevalent at the end of the Oligocene is required to simulate a well-developed ACC. In this cold configuration, the intensified sea-ice development around Antarctica and the resulting brine formation lead to a strong latitudinal density gradient in the Southern Ocean favoring the compensation of the Ekman transport, and consequently the ACC. Our results imply that the ACC has acted as a feedback rather than as a driver of the global cooling.

  18. Ocean forcing of glacier retreat in the western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Cook, A. J.; Holland, P. R.; Meredith, M. P.; Murray, T.; Luckman, A.; Vaughan, D. G.

    2016-07-01

    In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ~1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region.

  19. Ocean forcing of glacier retreat in the western Antarctic Peninsula.

    PubMed

    Cook, A J; Holland, P R; Meredith, M P; Murray, T; Luckman, A; Vaughan, D G

    2016-07-15

    In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ~1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region. PMID:27418507

  20. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae).

    PubMed

    Thornhill, Daniel J; Mahon, Andrew R; Norenburg, Jon L; Halanych, Kenneth M

    2008-12-01

    Open-ocean environments provide few obvious barriers to the dispersal of marine organisms. Major currents and/or environmental gradients potentially impede gene flow. One system hypothesized to form an open-ocean dispersal barrier is the Antarctic Polar Front, an area characterized by marked temperature change, deep water, and the high-flow Antarctic Circumpolar current. Despite these potential isolating factors, several invertebrate species occur in both regions, including the broadcast-spawning nemertean worm Parborlasia corrugatus. To empirically test for the presence of an open-ocean dispersal barrier, we sampled P. corrugatus and other nemerteans from southern South America, Antarctica, and the sub-Antarctic islands. Diversity was assessed by analyzing mitochondrial 16S rRNA and cytochrome c oxidase subunit I sequence data with Bayesian inference and tcs haplotype network analysis. Appropriate neutrality tests were also employed. Although our results indicate a single well-mixed lineage in Antarctica and the sub-Antarctic, no evidence for recent gene flow was detected between this population and South American P. corrugatus. Thus, even though P. corrugatus can disperse over large geographical distances, physical oceanographic barriers (i.e. Antarctic Polar Front and Antarctic Circumpolar Current) between continents have likely restricted dispersal over evolutionary time. Genetic distances and haplotype network analysis between South American and Antarctic/sub-Antarctic P. corrugatus suggest that these two populations are possibly two cryptic species. PMID:18992005

  1. Sensitivity of the recent increase in Antarctic sea ice in ocean models

    NASA Astrophysics Data System (ADS)

    Kjellsson, Joakim; Holland, Paul; Marshall, Gareth; Coward, Andrew; Aksenov, Yevgeny; Bacon, Sheldon; Megann, Alexis; Ridley, Jeff

    2015-04-01

    We study the recent increase in Antarctic sea ice using a coupled ocean--sea ice model forced by atmospheric reanalysis. We investigate the impact on sea ice from both model parameters (e.g. vertical mixing and eddy parameterisation) as well as external forcing (e.g. precipitation and melt water from the Antarctic continent). We use the NEMO ocean model coupled to the CICE sea-ice model at 1 degree horizontal resolution forced with ERA-Interim reanalysis. The results will have impacts for our understanding of the Southern Ocean, its sea ice and their representation in future coupled climate-model studies, e.g. CMIP6. Since the dawn of the satellite era there has been a slow increase in Antarctic sea ice with pronounced spatial structure. The reason for this increase is not yet fully understood and very few climate-model simulations reproduce the observed mean state and/or increase. By varying model parameters and external forcing, we determine that obtaining a realistic sea ice cover requires a complex balance of horizontal and vertical mixing as well as fresh water input. The surface fresh water balance impacts the vertical salinity gradient and thus vertical fluxes of heat and salt. Underestimation of precipitation or melt water results in deep convection in the open ocean and the opening of large polynyas in the Weddell and Ross sea. The presence of polynyas reduces the sea ice extent. The depth of the mixed layer has a large impact on the sea ice seasonal cycle. The summer mixed layer must be sufficiently deep to prevent SST from becoming too high but not so deep as to mix up heat and salt from below. In winter, a deep mixed layer lets brine rejected from sea ice mix down to depths below that of the summer mixed layer thus maintaining a necessary stratification.

  2. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf

    NASA Astrophysics Data System (ADS)

    Ballerini, Tosca; Hofmann, Eileen E.; Ainley, David G.; Daly, Kendra; Marrari, Marina; Ribic, Christine A.; Smith, Walker O.; Steele, John H.

    2014-03-01

    The productivity and linkages in the food web of the southern region of the west Antarctic Peninsula continental shelf were investigated using a multi-trophic level mass balance model. Data collected during the Southern Ocean Global Ocean Ecosystem Dynamics field program were combined with data from the literature on the abundance and diet composition of zooplankton, fish, seabirds and marine mammals to calculate energy flows in the food web and to infer the overall food web structure at the annual level. Sensitivity analyses investigated the effects of variability in growth and biomass of Antarctic krill (Euphausia superba) and in the biomass of Antarctic krill predators on the structure and energy fluxes in the food web. Scenario simulations provided insights into the potential responses of the food web to a reduced contribution of large phytoplankton (diatom) production to total primary production, and to reduced consumption of primary production by Antarctic krill and mesozooplankton coincident with increased consumption by microzooplankton and salps. Model-derived estimates of primary production were 187-207 g C m-2 y-1, which are consistent with observed values (47-351 g C m-2 y-1). Simulations showed that Antarctic krill provide the majority of energy needed to sustain seabird and marine mammal production, thereby exerting a bottom-up control on higher trophic level predators. Energy transfer to top predators via mesozooplanton was a less efficient pathway, and salps were a production loss pathway because little of the primary production they consumed was passed to higher trophic levels. Increased predominance of small phytoplankton (nanoflagellates and cryptophytes) reduced the production of Antarctic krill and of its predators, including seabirds and seals.

  3. Platelet ice distribution in Antarctic sea ice and its implications for ocean - ice shelf interaction

    NASA Astrophysics Data System (ADS)

    Langhorne, P.; Hughes, K. G.; Gough, A. J.; Smith, I.; Williams, M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mohoney, A. R.; Haas, C.; Haskell, T. G.

    2015-12-01

    Ice shelf basal melting freshens and cools the fluid in the ice shelf-ocean boundary layer, producing Ice Shelf Water (ISW). The potential temperature of ISW is below the surface freezing point. Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. We have synthesized platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. Where suitable observations exist, oceanic heat fluxes are derived from sub-ice platelet layer measurements and these are shown in the figure. They demonstrate that in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of approximately -30 Wm-2 that persists for several months during winter. This heat flux from the sea ice to the ocean significantly increases the sea ice thickness close to an ice shelf. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. The most extensive dataset, which includes our new results, dates back to 1902 and extends north of the combined Ross and McMurdo Ice Shelf front in the southern Ross Sea. Here the surface water is held just below its freezing point as it enters McMurdo Sound from beneath the McMurdo Ice Shelf. Despite a more recent decrease in ocean salinity consistent with observations in the south-western Ross Sea, there has been no detectable change in the volume or temperature of this supercooled ISW under sea ice since the early twentieth century. The inclusion of platelet ice into first year sea ice is an annual process. Hence it will respond immediately to changes in the sub-ice shelf circulation pattern and its export of supercooled water, emphasizing the urgent need for careful, Antarctic-wide monitoring.

  4. Controlling high-latitude Southern Ocean convection in climate models

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; Notz, Dirk; Haumann, F. Alexander; Haak, Helmuth; Jungclaus, Johann; Mikolajewicz, Uwe

    2015-02-01

    Earth System Models (ESMs) generally suffer from a poor simulation of the High-Latitude Southern Ocean (HLSO). Here we aim at a better understanding of the shortcomings by investigating the sensitivity of the HLSO to the external freshwater flux and the horizontal resolution in forced and coupled simulations with the Max-Planck-Institute Ocean Model (MPIOM). Forced experiments reveal an immediate reduction of open-ocean convection with additional freshwater input. The latter leads to a remarkably realistic simulation of the distinct water-mass structure in the central Weddell Sea featuring a temperature maximum of +0.5 °C at 250 m depth. Similar, but more modest improvements occur over a time span of 40 years after switching from a forced to a coupled simulation with an eddy-resolving version of MPIOM. The switch is accompanied with pronounced changes of the external freshwater flux and the wind field, as well as a more realistic heat flux due to coupling. Similar to the forced freshwater-flux experiments, a heat reservoir develops at depth, which in turn decreases the vertically integrated density of the HLSO and reduces the Antarctic Circumpolar Current to rather realistic values. Coupling with a higher resolution version of the atmosphere model (ECHAM6) yields distinct improvements of the HLSO water-mass structure and sea-ice cover. While the coupled simulations reveal a realistic amount of Antarctic runoff, its distribution appears too concentrated along the coast. Spreading the runoff over a wider region, as suggested in earlier studies to mimic the effect of freshwater transport through icebergs, also leads to noticeable improvements of the HLSO water-mass properties, predominantly along the coast. This suggests that the spread of the runoff improves the representation of Antarctic Bottom Water formation through enhanced near-boundary convection rather than weakened open-ocean convection.

  5. Southern Ocean Deep-Convection as a Driver of Centennial-to-Millennial-Scale Climate Variability at Southern High Latitudes

    NASA Astrophysics Data System (ADS)

    Pedro, J. B.; Martin, T.; Steig, E. J.; Jochum, M.; Park, W.; Rasmussen, S.

    2014-12-01

    Antarctic Isotope Maxima (AIM) are centennial-to-millennial scale warming events observed in Antarctic ice core records from the last glacial period and deglaciation. Mounting evidence links AIM events to parallel variations in atmospheric CO2, Southern Ocean (SO) sea surface temperatures and Antarctic Bottom Water production. According to the prevailing view, AIM events are forced from the North Atlantic by melt-water discharge from ice sheets suppressing the production of North Atlantic Deep Water and associated northward heat transport in the Atlantic. However observations and model studies increasingly suggest that melt-water fluxes have the wrong timing to be invoked as such a trigger. Here, drawing on results form the Kiel Climate Model, we present an alternative hypothesis in which AIM events are forced via internal oscillations in SO deep-convection. The quasi-periodic timescale of deep-convection events is set by heat (buoyancy) accumulation at SO intermediate depths and stochastic variability in sea ice conditions and freshening at the surface. Massive heat release from the SO convective zone drives Antarctic and large-scale southern hemisphere warming via a two-stage process involving changes in the location of Southern Ocean fronts, in the strength and intensity of the Westerlies and in meridional ocean and atmospheric heat flux anomalies. The potential for AIM events to be driven by internal Southern Ocean processes and the identification of time-lags internal to the southern high latitudes challenges conventional views on the North Atlantic as the pacemaker of millennial-scale climate variability.

  6. Topographic form stress in the Southern Ocean State Estimate

    NASA Astrophysics Data System (ADS)

    Masich, Jessica; Chereskin, Teresa K.; Mazloff, Matthew R.

    2015-12-01

    We diagnose the Southern Ocean momentum balance in a 6 year, eddy-permitting state estimate of the Southern Ocean. We find that 95% of the zonal momentum input via wind stress at the surface is balanced by topographic form stress across ocean ridges, while the remaining 5% is balanced via bottom friction and momentum flux divergences at the northern and southern boundaries of the analysis domain. While the time-mean zonal wind stress field exhibits a relatively uniform spatial distribution, time-mean topographic form stress concentrates at shallow ridges and across the continents that lie within the Antarctic Circumpolar Current (ACC) latitudes; nearly 40% of topographic form stress occurs across South America, while the remaining 60% occurs across the major submerged ridges that underlie the ACC. Topographic form stress can be divided into shallow and deep regimes: the shallow regime contributes most of the westward form stress that serves as a momentum sink for the ACC system, while the deep regime consists of strong eastward and westward form stresses that largely cancel in the zonal integral. The time-varying form stress signal, integrated longitudinally and over the ACC latitudes, tracks closely with the wind stress signal integrated over the same domain; at zero lag, 88% of the variance in the 6 year form stress time series can be explained by the wind stress signal, suggesting that changes in the integrated wind stress signal are communicated via rapid barotropic response down to the level of bottom topography.

  7. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  8. Simulations of coupled, Antarctic ice-ocean evolution using POP2x and BISICLES (Invited)

    NASA Astrophysics Data System (ADS)

    Price, S. F.; Asay-Davis, X.; Martin, D. F.; Maltrud, M. E.; Hoffman, M. J.

    2013-12-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and land ice evolution models. The ocean model, POP2x is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (1999), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008; Kimura et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). The land ice model, BISICLES (Cornford et al., 2012), includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (southern ocean) simulations using POP2x with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.

  9. Source of the Magnetic Susceptibility Variations in Southern Ocean Sediments Over the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Maher, B.; Thompson, R.

    2014-12-01

    Changes in the sources, mineralogy and rates of iron supply to the Southern Ocean may have global impact and significance, by influencing plankton growth rates and nutrient take-up in this, the largest of the high nutrient low chlorophyll (HNLC) regions of the world ocean. Iron 'fertilization' in the Southern Ocean may increase rates of carbon export production and thus the ocean uptake flux of atmospheric CO2, and also diminish the northward flow of residual nutrients to the extra-polar ocean, especially the HNLC regions of the Pacific. Changes in Southern Ocean export production may contribute to global climate change over glacial-interglacial timescales. The key sources of iron for the Southern Ocean are reported to be windblown dust and sedimentary supply; their relative significance an issue of much long-standing debate. Links between aeolian dust fluxes to the Southern Ocean and to the Antarctic ice cores have been proposed for the Scotia Sea region of the Southern Ocean, downwind from the South American land mass. Regional downcore variations in the magnetic susceptibility of sediments from the Scotia Sea show remarkable similarity to variations in dust concentration and flux in East Antarctic ice cores (with glacial stages characterised by increases in ice dust and sediment magnetic susceptibility). Indeed, the strength of the ice dust/sediment magnetism correlations (r ~ 0.7) provides a pragmatic basis for use of the sedimentary magnetic susceptibility records as a chronostratigraphic proxy, a boon in the carbonate-free deep-sea sediments of the Southern Ocean. However, the source and causal basis of the sediment magnetism/ice dust co-variations remain controversial; aeolian dust, bacterial magnetite and wind-driven current transport of marine sediment have all been invoked as possible key sources. Here, we use magnetic and isotopic methods to resolve this debate, and identify and quantify the sources of magnetic material to the Scotia Sea for the last

  10. Circulation of Antarctic intermediate water in the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Fine, Rana A.

    1993-10-01

    Chlorofluorocarbon (CFC) and hydrographic data collected on the R.R.S. Charles Darwin Cruise 29 along 32°S during November-December 1987, are used to examine the circulation in the South Indian Ocean. The emphasis is on Antarctic Intermediate Water (AAIW); bottom waters and mode waters are also examined. Bottom waters entering in the western boundary of the Crozet Basin (about 60°E) and in the Mozambique Basin (about 40°E) have low concentrations of anthropogenic CFCs. The rest of the bottom and deep waters up to about 2000 m have concentrations that are below blank levels. Above the intermediate waters there are injections of mode waters, which are progressively denser in the eastward direction. They form a broad subsurface CFC maximum between 200 and 400 m. The injections of recently ventilated (with respect to CFCs and oxygen) Subantarctic Mode Waters (SAMWs) at different densities indicate that there is considerable exchange between the subtropical and subantarctic regions. The tracer data presented show that the circulation of AAIW in the South Indian Ocean is different from that in the South Atlantic and South Pacific oceans in several ways. (1) The most recently ventilated AAIW is observed in a compact anticyclonic gyre west of 72°E. The shallow topography (e.g. that extending northeastward from the Kerguelen Plateau) may deflect and limit the eastward extent of the most recently ventilated AAIW. As a consequence, there is a zonal offset in the South Indian Ocean of the location of the most recently ventilated SAMW and AAIW, which does not occur in the other two oceans. The strongest component of SAMW is in the east, while the AAIW is strongest in the western-central South Indian Ocean. The offset results in a higher vertical gradient in CFCs in the east. (2) The Agulhas Current may impede input of AAIW along the western boundary. (3) Tracers are consistent with an inter-ocean flow from the South Pacific into the Eastern Indian Ocean, similar to the

  11. Glacier mass loss. Dynamic thinning of glaciers on the Southern Antarctic Peninsula.

    PubMed

    Wouters, B; Martin-Español, A; Helm, V; Flament, T; van Wessem, J M; Ligtenberg, S R M; van den Broeke, M R; Bamber, J L

    2015-05-22

    Growing evidence has demonstrated the importance of ice shelf buttressing on the inland grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens inland. Such ice sheet geometry is potentially unstable. We use satellite altimetry and gravity observations to show that a major portion of the region has, since 2009, destabilized. Ice mass loss of the marine-terminating glaciers has rapidly accelerated from close to balance in the 2000s to a sustained rate of -56 ± 8 gigatons per year, constituting a major fraction of Antarctica's contribution to rising sea level. The widespread, simultaneous nature of the acceleration, in the absence of a persistent atmospheric forcing, points to an oceanic driving mechanism. PMID:25999505

  12. Sustained growth of the Southern Ocean carbon storage in a warming climate

    NASA Astrophysics Data System (ADS)

    Ito, Takamitsu; Bracco, Annalisa; Deutsch, Curtis; Frenzel, Hartmut; Long, Matthew; Takano, Yohei

    2015-06-01

    We investigate the mechanisms controlling the evolution of Southern Ocean carbon storage under a future climate warming scenario. A subset of Coupled Model Intercomparison Project Phase 5 models predicts that the inventory of biologically sequestered carbon south of 40°S increases about 18-34 Pg C by 2100 relative to the preindustrial condition. Sensitivity experiments with an ocean circulation and biogeochemistry model illustrates the impacts of the wind and buoyancy forcings under a warming climate. Intensified and poleward shifted westerly wind strengthens the upper overturning circulation, not only leading to an increased uptake of anthropogenic CO2 but also releasing biologically regenerated carbon to the atmosphere. Freshening of Antarctic Surface Water causes a slowdown of the lower overturning circulation, leading to an increased Southern Ocean biological carbon storage. The rectified effect of these processes operating together is the sustained growth of the carbon storage in the Southern Ocean, even under the warming climate with a weaker global ocean carbon uptake.

  13. Dissolved organic carbon in the deep Southern Ocean: Local versus distant controls

    NASA Astrophysics Data System (ADS)

    Bercovici, Sarah K.; Hansell, Dennis A.

    2016-02-01

    The global ocean contains a massive reservoir (662 ± 32 Pg C) of dissolved organic carbon (DOC), and its dynamics, particularly in the deepest zones, are only slowly being understood. DOC in the deep ocean is ubiquitously low in concentration (~35 to 48 µmol kg-1) and aged (4000 to 6000 years), persisting for multiple meridional overturning circulations. Deep waters relatively enriched in DOC form in the North Atlantic, migrate to the Southern Ocean to mix with waters from Antarctic shelves and the deep Pacific and Indian Oceans, in turn forming the voluminous waters of the Circumpolar Deep Water. Here we seek evidence for local (autochthonous) versus distant (allochthonous) processes in determining the distribution of DOC in the deep Southern Ocean. Prior analyses on DOC in the deep Southern Ocean have conflicted, describing both conservative and nonconservative traits: the deep DOC field has been reported as uniform in distribution, yet local inputs have been suggested as quantitatively important. We use multiple approaches (multiple linear regression, mass transport, and mass balance calculations) with data from Climate Variability and Predictability Repeat Hydrography sections to evaluate the system. We find that DOC concentrations in the deep Southern Ocean largely reflect the conservative mixing of the several deep waters entering the system from the north. Mass balance suggests that the relatively depleted DOC radiocarbon content in the deep Southern Ocean is a conserved property as well. These analyses advance our understanding of the controls on the DOC reservoir of the Southern Ocean.

  14. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.

    PubMed

    Kennedy, A T; Farnsworth, A; Lunt, D J; Lear, C H; Markwick, P J

    2015-11-13

    The glaciation of Antarctica at the Eocene-Oligocene transition (approx. 34 million years ago) was a major shift in the Earth's climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere-ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet-climate simulations to properly represent and investigate feedback processes acting on these time scales. PMID:26438285

  15. Shearwater Foraging in the Southern Ocean: The Roles of Prey Availability and Winds

    PubMed Central

    Raymond, Ben; Shaffer, Scott A.; Sokolov, Serguei; Woehler, Eric J.; Costa, Daniel P.; Einoder, Luke; Hindell, Mark; Hosie, Graham; Pinkerton, Matt; Sagar, Paul M.; Scott, Darren; Smith, Adam; Thompson, David R.; Vertigan, Caitlin; Weimerskirch, Henri

    2010-01-01

    Background Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. Methodology/Principal Findings Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. Conclusions/Significance The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem. PMID:20532034

  16. Feedbacks between ice and ocean dynamics at the West Antarctic Filchner-Ronne Ice Shelf in future global warming scenarios

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph

    2016-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the complex interactions between ocean and ice dynamics at the Filchner-Ronne Ice Shelf. We focus on the impact of a changing ice shelf cavity on ocean dynamics as well as the feedback of the resulting sub-shelf melting rates on the ice shelf geometry and implications for the dynamics of the adjacent marine-based Westantarctic Ice Sheet. Our simulations reveal the high sensitivity of grounding line migration to ice-ocean interactions within the Filchner-Ronne Ice Shelf and emphasize the importance of coupled model studies for realistic assessments of the Antarctic mass balance in future global warming scenarios.

  17. Performance of a Southern Ocean sea ice forecast model

    NASA Astrophysics Data System (ADS)

    Heil, P.; Roberts, A.; Budd, W.

    2003-12-01

    The presentation examines the forecast peformance of an oriented fracture sea ice model applied to the Southern Ocean to predict sea ice state up to five days in advance. The model includes a modified Coulombic elastic-viscous-plastic rheology, enthalpy conserving thermodynamics and a new method of parameterising thickness distribution mechanics. 15 ice thickness classes are employed within each grid cell with a horizontal resolution of 50km. The model provides considerable insight into the thickness evolution and climatology of Antarctic sea ice. To date, thickness evolution of the Southern Ocean sea ice zone has mostly been assessed using course two-category models in climate simulations and results presented in this talk provide much greater detail over some existing model output. Simulations are presented from the model driven with NCEP-2 atmospheric analyses, NOAA sea surface temperatures, and mean climatogological currents generated using an eddy resolving ocean model. Analyses are generated by nudging ice concentrations with daily satellite derived open water fractions, and simulations using this method are compared to those without. There are important considerations in assimilating passive microwave ice concentration data into thickness distribution models, and particular attention is given to the treatment of lead ice and the impact this has on estimated total Southern Ocean sea ice volume. It is shown that nudging the model with satellite derived concentrations has an impact on ice mechanics as judged from simulated buoy tracks. A comparison with sonar soundings of sea ice draft is also favourable but shows variation with location. Whilst 5 day forecasts are reasonably skilled, predictive performance changes with season. Application of this research to operational ocean data assimilation systems is discussed in the final stages of the talk.

  18. Multi-year record of atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic influences

    NASA Astrophysics Data System (ADS)

    Angot, Hélène; Dion, Iris; Vogel, Nicolas; Legrand, Michel; Magand, Olivier; Dommergue, Aurélien

    2016-07-01

    Under the framework of the Global Mercury Observation System (GMOS) project, a 3.5-year record of atmospheric gaseous elemental mercury (Hg(0)) has been gathered at Dumont d'Urville (DDU, 66°40' S, 140°01' E, 43 m above sea level) on the East Antarctic coast. Additionally, surface snow samples were collected in February 2009 during a traverse between Concordia Station located on the East Antarctic plateau and DDU. The record of atmospheric Hg(0) at DDU reveals particularities that are not seen at other coastal sites: a gradual decrease of concentrations over the course of winter, and a daily maximum concentration around midday in summer. Additionally, total mercury concentrations in surface snow samples were particularly elevated near DDU (up to 194.4 ng L-1) as compared to measurements at other coastal Antarctic sites. These differences can be explained by the more frequent arrival of inland air masses at DDU than at other coastal sites. This confirms the influence of processes observed on the Antarctic plateau on the cycle of atmospheric mercury at a continental scale, especially in areas subject to recurrent katabatic winds. DDU is also influenced by oceanic air masses and our data suggest that the ocean plays a dual role on Hg(0) concentrations. The open ocean may represent a source of atmospheric Hg(0) in summer whereas the sea-ice surface may provide reactive halogens in spring that can oxidize Hg(0). This paper also discusses implications for coastal Antarctic ecosystems and for the cycle of atmospheric mercury in high southern latitudes.

  19. Mercury depletion events over Antarctic and Arctic oceans

    NASA Astrophysics Data System (ADS)

    Nerentorp Mastromonaco, M. G.; Gardfeldt, K.; Wangberg, I.; Jourdain, B.; Dommergue, A.; Kuronen, P.; Pirrone, N.; Jacobi, H.

    2013-12-01

    Mercury is a global pollutant and in its elemental form it is spread by air to remote areas far away from point sources. In Antarctic and Arctic regions the airborne mercury may be oxidized, followed by deposition of the metal on land and sea surfaces. It is previously known that during early spring in these regions, processes involving halogen radical photochemistry induce an oxidation of gaseous elemental mercury (GEM) in air. This phenomenon is known as an atmospheric mercury depletion event (AMDE) and is characterized by sudden and remarkable decreases in GEM that occurs within hours or days. All or most part of the GEM in air is transformed into gaseous oxidized mercury (GOM) and particulate mercury (HgP). Equivalent ozone depletion events (ODE) do also occur in Antarctic and Arctic regions and the halogen radical photolytic processes involved for AMDEs and ODEs are interrelated. During two oceanographic campaigns at the Weddell Sea onboard RV Polarstern, ANTXXIX/6 (130608-130812) and ANTXXIX/7 (130814-131016), continuous measurements of GEM, GOM and HgP in air were performed using the Tekran mercury speciation system 1130/35. This is the first time such long time series of GEM-, GOM- and HgP data has been achieved over water in the Antarctic during winter and spring. Several mercury depletion events were detected as early as in the middle of July and are correlated and verified with ozone measurements onboard the ship. The observed depletion events were characterised by sudden major decreases in both GEM and ozone concentrations and highly elevated values of HgP. A depletion event is a local phenomenon but evidences show that traces of such events can be detected far away from its origin. During a spring campaign at the Pallas-Matorova station in northern Finland (68o00'N, 24o14'E), GEM, GOM and HgP were measured during three weeks in April 2012 using the Tekran mercury speciation system 1130/35. Traces of remote AMDEs were observed by sudden decreases of GEM

  20. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations

    NASA Astrophysics Data System (ADS)

    Patara, Lavinia; Böning, Claus W.; Biastoch, Arne

    2016-05-01

    The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to interannual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here the multidecadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 s-2 decade-1. In the western Atlantic, EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multidecadal trends are close to zero. The nonuniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.

  1. Observations of frozen skin of southern ocean from multifrequency scanning microwave radiometer (MSMR) onboard oceansat - 1

    NASA Astrophysics Data System (ADS)

    Vyas, N.; Bhandari, S.; Dash, M.; Pandey, P.; Khare, N.

    Encircling the Antarctic, Southern Ocean connects all the three oceans of the world with fastest current system found anywhere in the world. The region is thermally very stable and is covered with ice, which has a strong seasonal variability. The sea ice pulsates annually with seasonal migration varying from 4 million square kilometer to 20 million square kilometer during summer and winter respectively. This has strong influence on energy balance of the ocean-ice-atmosphere system, and hence on atmospheric general circulation affecting weather and climate. Sea ice also works as an insulator thus inhibiting the energy flux between ocean and atmosphere. It also influences the ecosystem of the southern ocean, which has rich fish resources with global economic values such as krill and tooth fish. During winter Krill survives on algae found at the under side of the sea ice. The southern ocean is known to have high nutrition but low concentration of chlorophyll-a, which is a proxy of the phytoplankton. It is now understood that iron is the limiting factor as has been shown by various iron fertilization experiments. Passive microwave radiometry from space has been extensively used for the study of sea ice types and concentration in the Arctic and the Antarctic regions. Since late 1970s, data from SMMR and SSM/I have been used to study trends in sea ice extent and area. We have further extended the above studies by using data from OCEANSAT - 1 MSMR. The data, acquired at 18 GHz (H) with 50 kilometer resolution and having a swath of 1360 kilometer and a repeat cycle of 2 days, was processed to generate the brightness temperature maps over the Antarctica for a period of 2 years and the results were analyzed in conjunction with those obtained earlier (since 1978) through the study of SMMR and SSM/I data. Besides strong seasonal variability, our analysis shows an increasing trend in the sea ice extent during the recent years and the rate appears to be accelerating contrary to

  2. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    PubMed Central

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; Zhang, Pengfei

    2013-01-01

    Biomass burning is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we report the molecular tracer levoglucosan concentrations in marine air from the Arctic Ocean through the North and South Pacific Ocean to Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels with the highest atmospheric loadings present in the mid-latitudes (30°–60° N and S), intermediate loadings in the Arctic, and lowest loadings in the Antarctic and equatorial latitudes. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Biomass burning has a significant impact on atmospheric Hg and water-soluble organic carbon (WSOC) from pole-to-pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere. PMID:24176935

  3. Foraging habitats of southern elephant seals, Mirounga leonina, from the Northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Muelbert, Monica M. C.; de Souza, Ronald B.; Lewis, Mirtha N.; Hindell, Mark A.

    2013-04-01

    Elephant Island (EI) is uniquely placed to provide southern elephant seals (SES) breeding there with potential access to foraging grounds in the Weddell Sea, the frontal zones of the South Atlantic Ocean, the Patagonian shelf and the Western Antarctic Peninsula (WAP). Quantifying where seals from EI forage therefore provides insights into the types of important habitats available, and which are of particular importance to elephant seals. Twenty nine SES (5 sub-adult males—SAM and 24 adult females—AF) were equipped with SMRU CTD-SLDRs during the post-breeding (PB 2008, 2009) and post-moulting (PM 2007, 2008, 2009, 2010) trips to sea. There were striking intra-annual and inter-sex differences in foraging areas, with most of the PB females remaining within 150 km of EI. One PB AF travelled down the WAP as did 16 out of the 20 PM females and foraged near the winter ice-edge. Most PM sub-adult males remained close to EI, in areas similar to those used by adult females several months earlier, although one SAM spent the early part of the winter foraging on the Patagonian Shelf. The waters of the Northern Antarctic Peninsula (NAP) contain abundant resources to support the majority of the Islands' SES for the summer and early winter, such that the animals from this population have shorter migrations than those from most other populations. Sub-adult males and PB females are certainly taking advantage of these resources. However, PM females did not remain there over the winter months, instead they used the same waters at the ice-edge in the southern WAP that females from both King George Island and South Georgia used. Females made more benthic dives than sub-adult males—again this contrasts with other sites where SAMs do more benthic diving. Unlike most other populations studied to date EI is a relatively southerly breeding colony located on the Antarctic continental shelf. EI seals are using shelf habitats more than other SES populations but some individuals still

  4. Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca

    NASA Astrophysics Data System (ADS)

    Linse, Katrin; Griffiths, Huw J.; Barnes, David K. A.; Clarke, Andrew

    2006-04-01

    For many decades molluscan data have been critical to the establishment of the concept of a global-scale increase in species richness from the poles to the equator. Low polar diversity is key to this latitudinal cline in diversity. Here we investigate richness patterns in the two largest classes of molluscs at both local and regional scales throughout the Southern Ocean. We show that biodiversity is very patchy in the Southern Ocean (at the 1000-km scale) and test the validity of historical biogeographic sub-regions and provinces. We used multivariate analysis of biodiversity patterns at species, genus and family levels to define richness hotspots within the Southern Ocean and transition areas. This process identified the following distinct sub-regions in the Southern Ocean: Antarctic Peninsula, Weddell Sea, East Antarctic—Dronning Maud Land, East Antarctic—Enderby Land, East Antarctic—Wilkes Land, Ross Sea, and the independent Scotia arc and sub Antarctic islands. Patterns of endemism were very different between the bivalves and gastropods. On the basis of distributional ranges and radiation centres of evolutionarily successful families and genera we define three biogeographic provinces in the Southern Ocean: (1) the continental high Antarctic province excluding the Antarctic Peninsula, (2) the Scotia Sea province including the Antarctic Peninsula, and (3) the sub Antarctic province comprising the islands in the vicinity of the Antarctic Circumpolar Current.

  5. Extraordinarily high biomass benthic community on Southern Ocean seamounts.

    PubMed

    Thresher, R E; Adkins, J; Fallon, S J; Gowlett-Holmes, K; Althaus, F; Williams, A

    2011-01-01

    We describe a previously unknown assemblage of seamount-associated megabenthos that has by far the highest peak biomass reported in the deep-sea outside of vent communities. The assemblage was found at depths of 2-2.5 km on rocky geomorphic features off the southeast coast of Australia, in an area near the Sub-Antarctic Zone characterised by high rates of surface productivity and carbon export to the deep-ocean. These conditions, and the taxa in the assemblage, are widely distributed around the Southern mid-latitudes, suggesting the high-biomass assemblage is also likely to be widespread. The role of this assemblage in regional ecosystem and carbon dynamics and its sensitivities to anthropogenic impacts are unknown. The discovery highlights the lack of information on deep-sea biota worldwide and the potential for unanticipated impacts of deep-sea exploitation. PMID:22355636

  6. Benthic myodocopid Ostracoda (Philomedidae) from the Southern Ocean.

    PubMed

    Chavtur, Vladimir G; Keyser, Dietmar

    2016-01-01

    This study is based on the material of myodocopid ostracodes of the family Philomedidae collected by the Russian Antarctic Polar Expeditions (1963-2007) and the Germany Expeditions on R/V "Polarstern" (1990-2002) from the continental shelf and upper slope near the Mawson and Davis stations, the Weddell Seas, the region of the South Shetland Islands near the Russian Polar station "Molodezhnaya" and adjacent waters. Eight philomedid species belonging to two genera were identified in these collections. Scleroconcha tuberculata sp. nov. is described and figured as a new species. Additional descriptions and figures for the species S. gallardoi Kornicker, 1971, Philomedes assimilis Brady, 1907, P. charcoti Daday, 1908, P. heptatrix Kornicker, 1975, P. rotunda Skogsberg, 1920, P. orbicularis Brady, 1907 and P. tetrathrix Kornicker, 1975 are given. Keys for all species of the mentioned genera known from the Southern Ocean are presented. A list of sampling stations and species collected is provided in the Appendix 1. PMID:27470832

  7. Extraordinarily high biomass benthic community on Southern Ocean seamounts

    PubMed Central

    Thresher, R. E.; Adkins, J.; Fallon, S. J.; Gowlett-Holmes, K.; Althaus, F.; Williams, A.

    2011-01-01

    We describe a previously unknown assemblage of seamount-associated megabenthos that has by far the highest peak biomass reported in the deep-sea outside of vent communities. The assemblage was found at depths of 2–2.5 km on rocky geomorphic features off the southeast coast of Australia, in an area near the Sub-Antarctic Zone characterised by high rates of surface productivity and carbon export to the deep-ocean. These conditions, and the taxa in the assemblage, are widely distributed around the Southern mid-latitudes, suggesting the high-biomass assemblage is also likely to be widespread. The role of this assemblage in regional ecosystem and carbon dynamics and its sensitivities to anthropogenic impacts are unknown. The discovery highlights the lack of information on deep-sea biota worldwide and the potential for unanticipated impacts of deep-sea exploitation. PMID:22355636

  8. Southern Ocean Eddies as Weather Makers

    NASA Astrophysics Data System (ADS)

    Frenger, Ivy; Byrne, David; Gruber, Nicolas; Knutti, Reto; Münnich, Matthias; Papritz, Lukas

    2013-04-01

    Several hundred mesoscale eddies populate the Southern Ocean south of 30°S at any time, however, little is known about their effect on the overlying atmosphere. As these eddies feature sea surface temperature (SST) anomalies one can expect them to play a role in the coupling of the atmosphere and the ocean. Here we show based on satellite observations of about 600,000 eddies occurring between 1997 and 2010, that these ocean eddies significantly alter near surface wind, cloud properties and rainfall by several percent. Relative to the atmospheric variability, the magnitude of the anomalies related to ocean eddies represents ±13-15 % (wind, cloud fraction), ±6-10 % (cloud water content) and ±2-6 % (rain). This impact on the atmosphere is striking given the fact that oceanic eddies constitute non-stationary SST fronts of moderate size relative to the much larger atmospheric low pressure systems which are constantly passing by at these latitudes. The spatial pattern of these changes is consistent with a mechanism labeled downward momentum mechanism in which the SST anomalies related to eddies modify the stability and thus turbulence of the atmospheric boundary layer. We will investigate the mechanisms and impact of the atmospheric modifications associated with ocean eddies in a regional high-resolution coupled atmosphere-ocean model (COSMO-ROMS) over the Southern Ocean.

  9. Does the sensitivity of Southern Ocean circulation depend upon bathymetric details?

    PubMed

    Hogg, Andrew McC; Munday, David R

    2014-07-13

    The response of the major ocean currents to changes in wind stress forcing is investigated with a series of idealized, but eddy-permitting, model simulations. Previously, ostensibly similar models have shown considerable variation in the oceanic response to changing wind stress forcing. Here, it is shown that a major reason for these differences in model sensitivity is subtle modification of the idealized bathymetry. The key bathymetric parameter is the extent to which the strong eddy field generated in the circumpolar current can interact with the bottom water formation process. The addition of an embayment, which insulates bottom water formation from meridional eddy fluxes, acts to stabilize the deep ocean density and enhances the sensitivity of the circumpolar current. The degree of interaction between Southern Ocean eddies and Antarctic shelf processes may thereby control the sensitivity of the Southern Ocean to change. PMID:24891390

  10. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.

    PubMed

    Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F

    2016-02-11

    No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration. PMID:26840491

  11. Southern elephant seals from Kerguelen Islands confronted by Antarctic Sea ice. Changes in movements and in diving behaviour

    NASA Astrophysics Data System (ADS)

    Bailleul, Frédéric; Charrassin, Jean-Benoıˆt; Ezraty, Robert; Girard-Ardhuin, Fanny; McMahon, Clive R.; Field, Iain C.; Guinet, Christophe

    2007-02-01

    The behaviour of southern elephant seals from Kerguelen Island ( 49∘50'S, 70∘30'E) was investigated in relation to the oceanographic regions of the Southern Ocean. The oceanographic and the seal behaviour data, including location and diving activity, were collected using a new generation of satellite-relayed devices measuring and transmitting pressure, temperature, and salinity along with locations. Dive duration, maximum diving depth, time spent at the bottom of the dives, and shape of dive profiles were compared between male and female seals, and were related to the oceanographic characteristics of areas prospected by the seals. Most animals travelled to the Antarctic shelf. However, during winter, adult females travelled away from the continent, remained and foraged within the marginal sea-ice zone, while juvenile males remained within the pack ice to forage mainly on the Antarctic shelf. Therefore, as the ice expanded females appeared to shift from benthic to pelagic foraging farther north, while males continued to forage almost exclusively benthically on the continental shelf. This difference is likely related to the different energetic requirements between the two sexes, but also may be related to pregnant females having to return to Kerguelen in early spring in order to give birth and successfully raise their pups, while males can remain in the ice. Our results show an important link between elephant seals and Antarctic sea ice and suggest that changes in sea-ice conditions could strongly affect the behaviour of this species.

  12. Southern Ocean biological impacts on global ocean oxygen

    NASA Astrophysics Data System (ADS)

    Keller, David P.; Kriest, Iris; Koeve, Wolfgang; Oschlies, Andreas

    2016-06-01

    Southern Ocean (SO) physical and biological processes are known to have a large impact on global biogeochemistry. However, the role that SO biology plays in determining ocean oxygen concentrations is not completely understood. These dynamics are investigated here by shutting off SO biology in two marine biogeochemical models. The results suggest that SO biological processes reduce the ocean's oxygen content, mainly in the deep ocean, by 14 to 19%. However, since these processes also trap nutrients that would otherwise be transported northward to fuel productivity and subsequent organic matter export, consumption, and the accompanying oxygen consumption in midlatitude to low-latitude waters, SO biology helps to maintain higher oxygen concentrations in these subsurface waters. Thereby, SO biology can influence the size of the tropical oxygen minimum zones. As a result of ocean circulation the link between SO biological processes and remote oxygen changes operates on decadal to centennial time scales.

  13. Community structure across a large-scale ocean productivity gradient: Marine bird assemblages of the Southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hyrenbach, K. David; Veit, Richard R.; Weimerskirch, Henri; Metzl, Nicolas; Hunt, George L., Jr.

    2007-07-01

    Our objective was to understand how marine birds respond to oceanographic variability across the Southern Indian Ocean using data collected during an 16-day cruise (4-21 January 2003). We quantified concurrent water mass distributions, ocean productivity patterns, and seabird distributions across a heterogeneous pelagic ecosystem from subtropical to sub-Antarctic waters. We surveyed 5155 km and sighted 15,606 birds from 51 species, and used these data to investigate how seabirds respond to spatial variability in the structure and productivity of the ocean. We addressed two spatial scales: the structure of seabird communities across macro-mega scale (1000 s km) biogeographic domains, and their coarse-scale (10 s km) aggregation at hydrographic and bathymetric gradients. Both seabird density and species composition changed with latitudinal and onshore-offshore gradients in depth, water temperature, and chlorophyll-a concentration. The average seabird density increased across the subtropical convergence (STC) from 2.4 birds km -2 in subtropical waters to 23.8 birds km -2 in sub-Antarctic waters. The composition of the avifauna also differed across biogeographic domains. Prions ( Pachyptila spp.) accounted for 57% of all sub-Antarctic birds, wedge-tailed shearwaters ( Puffinus pacificus) accounted for 46% of all subtropical birds, and Indian Ocean yellow-nosed albatross ( Thallasarche carteri) accounted for 32% of all birds in the STC. While surface feeders were the most abundant foraging guild across the study area, divers were disproportionately more numerous in the sub-Antarctic domain, and plungers were disproportionately more abundant in subtropical waters. Seabird densities were also higher within shallow shelf-slope regions, especially in sub-Antarctic waters, where large numbers of breeding seabirds concentrated. However, we did not find elevated seabird densities along the STC, suggesting that this broad frontal region is not a site of enhanced aggregation.

  14. Southern Ocean isopycnal mixing and ventilation changes driven by winds

    NASA Astrophysics Data System (ADS)

    Abernathey, Ryan; Ferreira, David

    2015-12-01

    Observed and predicted changes in the strength of the westerly winds blowing over the Southern Ocean have motivated a number of studies on the response of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation (MOC) to wind perturbations and led to the hypothesis of the "eddy compensation" regime, wherein the MOC becomes insensitive to wind changes. In addition to the MOC, tracer transport also depends on mixing processes. Here we show, in a high-resolution process model, that isopycnal mixing by mesoscale eddies is strongly dependent on the wind strength. This dependence can be explained by mixing length theory and is driven by increases in eddy kinetic energy; the mixing length does not change strongly in our simulation. Simulation of a passive ventilation tracer (analogous to CFCs or anthropogenic CO2) demonstrates that variations in tracer uptake across experiments are dominated by changes in isopycnal mixing, rather than changes in the MOC. We argue that to properly understand tracer uptake under different wind-forcing scenarios, the sensitivity of isopycnal mixing to winds must be accounted for.

  15. Southern Ocean heat and carbon uptake: mechanisms, recent trends, and future changes

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.

    2015-12-01

    The Southern Ocean's dominant influence on the global heat balance and nutrient and carbon cycles stems from the fact that it is the primary gateway through which Earth's cold, centuries old and nutrient rich deep and bottom waters interact with the atmosphere. The westerly winds in the Southern Hemisphere drive a strongly divergent surface flow that draws up water from below in a wide ring circling the Antarctic continent. In the first part of the talk, we assess the uptake, transport, and storage of oceanic anthropogenic carbon and heat in the Southern Ocean over the period 1861-2005 in a new set of carbon-climate Earth System Models. Simulations show that the Southern Ocean south of 30°S, covering only 30% of the global surface ocean area, accounts for more than 40% of global anthropogenic carbon uptake. Furthermore, the Southern Ocean takes up three quarters of the total excess heat generated by the increasing levels of greenhouse gases in the atmosphere. Anthropogenic carbon and heat storage show a common broad-scale pattern of change, but ocean heat storage is more structured than ocean carbon storage suggesting that different mechanisms are important. The Southern Ocean, however, remains the region where models differ the most in the representation of anthropogenic carbon and, in particular, heat uptake. While the Southern Ocean carbon uptake has increased considerably in recent decades, as expected based on the substantial increase in atmospheric CO2, there is considerable concern that this sink will saturate or even reverse in response to warming, changing ocean circulation and chemistry. In the second part of the talk, novel multi-millennial global warming simulations with a comprehensive Earth System Model under a 1% yr-1 atmospheric CO2 increase to 2xCO2 and constant forcing thereafter scenario will be used to explore future long-term changes in the Southern Ocean carbon uptake. We show that after full equilibration of the model with doubling of

  16. The International Bathymetric Chart of the Southern Ocean - A new Map of Antarctica

    NASA Astrophysics Data System (ADS)

    Arndt, J.; Schenke, H. W.

    2012-12-01

    The International Bathymetric Chart of the Southern Ocean (IBCSO) is an expert group of the Scientific Committee on Antarctic Research (SCAR) since the XXVIII SCAR Conference held on 30th July 2004 in Bremen Germany and a regional Mapping project of the General Bathymetric Chart of the Ocean (GEBCO) operated under the joint auspices of the Intergovernmental Oceanographic Commission (IOC) (of UNESCO) and the International Hydrographic Organization (IHO). The objective of IBCSO was to produce a first seamless bathymetric grid for the area south of latitude 60° S covering the area of the Antarctic Treaty. The IBCSO is going to be a benefit for scientific purposes. These include (a) interpretation of seabed geology, (b) the building of habitat models and maps, and (c) mapping and tracing of deep ocean current pathways. In addition the IBCSO is going to serve as database for the development of new Electronic Nautical Charts (ENC) in the Southern Ocean to improve the safety of navigation in Antarctic waters. As the first version of the IBCSO grid is close to be released, so is the corresponding map. It is proposed to present the latest draft version, or even the final version, of the new IBCSO map. Besides the map itself, the process to achieve the first version of the IBCSO grid and map is going to be presented. This includes a description of the datasets used to create the map and a rough explanation of the working steps to generate the first grid version of the IBCSO.

  17. Low densities of drifting litter in the African sector of the Southern Ocean.

    PubMed

    Ryan, Peter G; Musker, Seth; Rink, Ariella

    2014-12-15

    Only 52 litter items (>1cm diameter) were observed in 10,467 km of at-sea transects in the African sector of the Southern Ocean. Litter density north of the Subtropical Front (0.58 items km(-2)) was less than in the adjacent South Atlantic Ocean (1-6 items km(-2)), but has increased compared to the mid-1980s. Litter density south of the Subtropical Front was an order of magnitude less than in temperate waters (0.032 items km(-2)). There was no difference in litter density between sub-Antarctic and Antarctic waters either side of the Antarctic Polar Front. Most litter was made of plastic (96%). Fishery-related debris comprised a greater proportion of litter south of the Subtropical Front (33%) than in temperate waters (13%), where packaging dominated litter items (68%). The results confirm that the Southern Ocean is the least polluted ocean in terms of drifting debris and suggest that most debris comes from local sources. PMID:25455366

  18. Pronounced warming in the Indian and Pacific sectors of the Southern Ocean during the 1970s

    NASA Astrophysics Data System (ADS)

    Turney, Chris; Fogwill, Chris; Palmer, Jonathan; van Sebille, Erik; Thomas, Zoë; McGlone, Matt; Richardson, Sarah; Wilmshurst, Janet; Fenwick, Pavla; Carter, Lionel; Jones, Richard; Harsch, Melanie; Wilson, Kerry-Jayne; Clark, Graeme; Marzinelli, Ezequiel; Rogers, Tracey; Rainsley, Eleanor; Ciasto, Laura; Waterman, Stephanie; Antarctic Expedition 2013-2014 Members, Australasian

    2015-04-01

    Occupying some 20% of the world's ocean surface, the Southern Ocean is home to a diverse and unique biota and plays a fundamental role in global oceanic circulation, climate variability, Antarctic ice sheet stability and carbon cycling. Significant warming has been observed over recent decades, most prominently in the Antarctic Circumpolar Current (ACC). The mechanism(s) behind this warming, however, remain uncertain. Here, we integrate historic ocean and atmospheric observations and climate-sensitive tree growth on subantarctic islands from the northern limit of the ACC to extend historic and satellite measurements to produce a unique proxy record of temperature across 4˚ of latitude in the southwest Pacific. We demonstrate a hitherto unobserved abrupt warming during the 1970s that is unprecedented over the past 130 years, coincident with a significant decline in marine vertebrate populations and wider warming across the Indian Ocean. Comparison between our reconstruction and high-resolution ocean modelling provides a possible mechanism, suggesting warmer waters resulted from a poleward migration of the subtropical and ACC fronts. Projected increases in the strength of westerly winds are likely to continue the fronts' migration, driving warming in the Southern Ocean (>50˚S), with significant impacts on biota.

  19. Observed and Modeled Trends in Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2003-01-01

    Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong

  20. Satellite-Derived Dynamics of Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    Antarctic ERS-2, RADARSAT Synthetic Aperture Radar and ERS-1/2 Scatterometer images were analyzed with SMMI radiometer image time-series data to investigate seasonal variability in satellite-tracked sea-ice dynamics in the Southern Ocean during 1992. Supporting field data were acquired during 'in-situ' experiments including the winter 1992 Ice Station Weddell and Winter Weddell Gyre studies. A variety of surface measurements were made during these experiments including Argos-buoy deployment and GPS drift measurements. These are used in conjunction with International Program for Antarctic Buoys drift trajectories for ice-motion tracking validation. Comparisons between gridded Special Sensor Microwave Imager (SSMI) ice-motion vectors and European Center for Medium Range Weather Forecasts/National Centers for Environmental Prediction (ECMWF/NCEP) analyses indicate that large-scale drift is forced predominantly by the long-term mean, large-scale synoptic pressure field. Only sub-daily SAR sea-ice tracking can capture high-frequency fluctuations, driven by polar lows or tidal forcing. In these cases, sea-ice drift can respond rapidly to changes in forcing on semi-diurnal time scales depending on the location with respect to the coastline. Seasonality of ice drift, particularly in the Weddell and Ross Seas, is linked to ice extent and compactness, and internal ice stresses transmitted through the pack ice from the coast. Three-monthly seasonal climatologies are presented of austral winter of ice drift in the Southern Ocean. The large Weddell and Ross Sea gyres are clearly resolved along with key seasonal and spatial attributes of their cyclonic circulation. Regional time series of ice dynamics parameters are used to illustrate correlations with meteorological forcing. Persistent divergence such as that occurring in the Ronne-Filchner polynya system results in large fractions of new ice. Similarly, convergence zones produce large fractions of deformed ice and characterize

  1. Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity.

    PubMed

    Lewis, Patrick N; Hewitt, Chad L; Riddle, Martin; McMinn, Andrew

    2003-02-01

    This study investigated the potential for transport of organisms between Hobart, Macquarie Island and the Antarctic continent by ships used in support of Antarctic science and tourism. Northward transport of plankton in ballast water is more likely than southward transport because ballast is normally loaded in the Antarctic and unloaded at the home port. Culturing of ballast water samples revealed that high-latitude hitchhikers were able to reach greater diversities when cultured at temperate thermal conditions than at typical Southern Ocean temperatures, suggesting the potential for establishment in the Tasmanian coastal environment. Several known invasive species were identified among fouling communities on the hulls of vessels that travel between Hobart and the Southern Ocean. Southward transport of hull fouling species is more likely than northward transport due to the accumulation of assemblages during the winter period spent in the home port of Hobart. This study does not prove that non-indigenous marine species have, or will be, transported and established as a consequence of Antarctic shipping but illustrates that the potential exists. Awareness of the potential risk and simple changes to operating procedures may reduce the chance of introductions in the future. PMID:12586117

  2. Southern Ocean biogeochemical control of glacial/interglacial carbon dioxide change

    NASA Astrophysics Data System (ADS)

    Sigman, D. M.

    2014-12-01

    In the effort to explain the lower atmospheric CO2 concentrations observed during ice ages, two of the first hypotheses involved redistributing dissolved inorganic carbon (DIC) within the ocean. Broecker (1982) proposed a strengthening of the ocean's biological pump during ice ages, which increased the dissolved inorganic carbon gradient between the dark, voluminous ocean interior and the surface ocean's sun-lit, wind-mixed layer. Boyle (1988) proposed a deepening in the ocean interior's pool of DIC associated with organic carbon regeneration, with its concentration maximum shifting from intermediate to abyssal depths. While not irrefutable, evidence has arisen that these mechanisms can explain much of the ice age CO2 reduction and that both were activated by changes in the Southern Ocean. In the Antarctic Zone, reduced exchange of water between the surface and the underlying ocean sequestered more DIC in the ocean interior (the biological pump mechanism). Dust-borne iron fertilization of the Subantarctic surface lowered CO2 partly by the biological pump mechanism and partly by Boyle's carbon deepening. Each mechanism owes a part of its CO2 effect to a transient increase in seafloor calcium carbonate dissolution, which raised the ice age ocean's alkalinity, causing it to absorb more CO2. However, calcium carbonate cycling also sets limits on these mechanisms and their CO2 effects, such that the combination of Antarctic and Subantarctic changes is needed to achieve the full (80-100 ppm) ice age CO2 decline. Data suggest that these changes began at different phases in the development of the last ice age, 110 and 70 ka, respectively, explaining a 40 ppm CO2 drop at each time. We lack a robust understanding of the potential causes for both the implied reduction in Antarctic surface/deep exchange and the increase in Subantarctic dust supply during ice ages. Thus, even if the evidence for these Southern Ocean changes were to become incontrovertible, conceptual gaps stand

  3. East Antarctic land-ice/ocean networks: progress and questions

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Roberts, J. L.; van Ommen, T. D.; Aitken, A.; Siegert, M. J.

    2014-12-01

    International collaborative exploration over the last decade has revealed East Antarctica as a geologically diverse continent underlying an ice sheet with significant sea level potential, parts of which are currently undergoing rapid change. The Wilkes and Aurora Subglacial Basins (WSB and ASB), two of the largest reservoirs of sea level potential in Antarctica, are broader, deeper, and more susceptible to marine ice sheet instability than previously known. The morphology and coastal connections of the ASB indicate a dynamic early ice sheet with a significant erosional history and multiple ice sheet configurations. Recent results imply significant retreat into the WSB during the Pliocene while today irreversible discharge there is halted by only a small ridge. We have unveiled complex contemporary subglacial landscapes beneath both basins providing new challenges and opportunities to ice sheet modelers. For instance, geothermal heat flow varies spatially on multiple scales in the continental crust assumed to be homogeneous. A large, active, subglacial hydrological system flows through the ASB along pathways that likely predate large-scale glaciation. Proxies indicate four to eight meters of global sea level rise during the last interglacial period. Ice core results constrain the amount of sea level rise to one to three meters from contributed by East Antarctica. Going forward, new altimetry data along the East Antarctic coast reveal extensive lowering of the Totten and Denman Glaciers while satellite gravity indicate a variable but persistent record of negative regional mass loss. These discoveries provide a new baseline as the international community increases its focus on the region through ongoing airborne and marine exploration to address the many outstanding questions: What is the character and distribution of subglacial boundary conditions and water systems upstream of the grounding line in areas of significant potential sea level impact? How much subglacial

  4. Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature.

    PubMed

    Yin, Qiuzhen

    2013-02-14

    Glacial-interglacial cycles characterized by long cold periods interrupted by short periods of warmth are the dominant feature of Pleistocene climate, with the relative intensity and duration of past and future interglacials being of particular interest for civilization. The interglacials after 430,000 years ago were characterized by warmer climates and higher atmospheric concentrations of carbon dioxide than the interglacials before, but the cause of this climatic transition (the so-called mid-Brunhes event (MBE)) is unknown. Here I show, on the basis of model simulations, that in response to insolation changes only, feedbacks between sea ice, temperature, evaporation and salinity caused vigorous pre-MBE Antarctic bottom water formation and Southern Ocean ventilation. My results also show that strong westerlies increased the pre-MBE overturning in the Southern Ocean via an increased latitudinal insolation gradient created by changes in eccentricity during austral winter and by changes in obliquity during austral summer. The stronger bottom water formation led to a cooler deep ocean during the older interglacials. These insolation-induced differences in the deep-sea temperature and in the Southern Ocean ventilation between the more recent interglacials and the older ones were not expected, because there is no straightforward systematic difference in the astronomical parameters between the interglacials before and after 430,000 years ago. Rather than being a real 'event', the apparent MBE seems to have resulted from a series of individual interglacial responses--including notable exceptions to the general pattern--to various combinations of insolation conditions. Consequently, assuming no anthropogenic interference, future interglacials may have pre- or post-MBE characteristics without there being a systematic change in forcings. These findings are a first step towards understanding the magnitude change of the interglacial carbon dioxide concentration around 430

  5. Glacial-interglacial variability in diatom abundance and valve size: Implications for Southern Ocean paleoceanography

    NASA Astrophysics Data System (ADS)

    Nair, Abhilash; Mohan, Rahul; Manoj, M. C.; Thamban, Meloth

    2015-10-01

    Antarctic sea ice extent along with Southern Ocean biological productivity varied considerably during glacial-interglacial periods, and both are known to have played a considerable role in regulating atmospheric CO2 variations in the past. Here we present data on diatom absolute abundance (valves/g of sediment) and size over the past ~ 42 ka B.P. and how they link to glacial-interglacial changes in Antarctic sea ice extent, Southern Ocean frontal systems, and aeolian dust flux. Our records of sea ice and permanent open ocean zone diatom abundances suggest a shift in the Antarctic winter sea ice limit and Polar Front respectively up to the modern-day Polar Frontal Zone during marine isotopic stages (MIS) 2 and late MIS 3. In addition to glacial shifts in the Polar Front, diatom assemblages also recorded a plausible northward shifts in Polar Front during few intervals of MIS 1. Glacial periods north of the Polar Front in the Indian sector of the Southern Ocean were characterized by higher total diatom abundance, larger Fragilariopsis kerguelensis apical length, and Thalassiosira lentiginosa radius. This is probably a consequence of (1) a northward expansion of the opal belt, a region characterized by high production and export of biogenic silica; (2) an increase in terrigenous input, via erosion of Crozet Islands; and (3) the alleviation of iron deficit by high input of Fe-bearing dust. The larger and highly silicified diatoms such as F. kerguelensis and T. lentiginosa may have mainly contributed in transporting biogenic silica and organic carbon to the seabed for the last 42 ka, in the northern Polar Frontal Zone of the Indian sector of the Southern Ocean.

  6. Deglacial Atlantic Radiocarbon: A Southern Ocean Perspective

    NASA Astrophysics Data System (ADS)

    Robinson, L. F.; Burke, A.; Adkins, J. F.; Chen, T.; Spooner, P.

    2014-12-01

    It is widely accepted that the Southern Ocean is an important component of the climate system, acting as a key site for carbon and heat exchange between the atmosphere and oceans. The deglaciation with its associated millenial climate changes is a key time period for testing the mechanisms behind these exchanges. Ascertaining the precise timing of these events is a challenge given complications from variable and largely unconstrained reservoir ages, dissolution of carbonate hard parts and sediment redistribution by strong currents. Nevertheless improvements to our understanding of Southern Ocean dynamics in the past requires accurately-dated proxy records that can be embedded in GCM models. Radiocarbon measured in deep-sea corals offers just such an archive and proxy. Using the skeletons of deep-sea corals we are now able to reconstruct aspects of the history of three distinct water masses in the Drake Passage on a precise timescale, allowing direct comparison to U-series dated speleothem terrestrial records and polar ice cores. We present here a new deglacial radiocarbon record from the Drake Passage which more than doubles the resolution of published records. We focus on the deglacial, as well as providing insights from the contrasting period leading up to the LGM. Together with new data from far-field sites we interpret our results as evidence for a Southern Ocean control on atmospheric carbon dioxide and radiocarbon evolution during the deglaciation, and a northern hemisphere control during the run up to the LGM.

  7. Methyl iodine over oceans from the Arctic Ocean to the maritime Antarctic

    NASA Astrophysics Data System (ADS)

    Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Yu, Juan; Zhang, Yanli

    2016-05-01

    Studies about methyl iodide (CH3I), an important atmospheric iodine species over oceans, had been conducted in some maritime regions, but the understanding of the spatial distribution of CH3I on a global scale is still limited. In this study, we reports atmospheric CH3I over oceans during the Chinese Arctic and Antarctic Research Expeditions. CH3I varied considerably with the range of 0.17 to 2.9 pptv with absent of ship emission. The concentration of CH3I generally decreased with increasing latitudes, except for higher levels in the middle latitudes of the Northern Hemisphere than in the low latitudes. For sea areas, the Norwegian Sea had the highest CH3I concentrations with a median of 0.91 pptv, while the Central Arctic Ocean had the lowest concentrations with all values below 0.5 pptv. CH3I concentration over oceans was affected by many parameters, including sea surface temperature, salinity, dissolved organic carbon, biogenic emissions and input from continents, with distinctive dominant factor in different regions, indicating complex biogeochemical processes of CH3I on a global scale.

  8. Methyl iodine over oceans from the Arctic Ocean to the maritime Antarctic.

    PubMed

    Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Yu, Juan; Zhang, Yanli

    2016-01-01

    Studies about methyl iodide (CH3I), an important atmospheric iodine species over oceans, had been conducted in some maritime regions, but the understanding of the spatial distribution of CH3I on a global scale is still limited. In this study, we reports atmospheric CH3I over oceans during the Chinese Arctic and Antarctic Research Expeditions. CH3I varied considerably with the range of 0.17 to 2.9 pptv with absent of ship emission. The concentration of CH3I generally decreased with increasing latitudes, except for higher levels in the middle latitudes of the Northern Hemisphere than in the low latitudes. For sea areas, the Norwegian Sea had the highest CH3I concentrations with a median of 0.91 pptv, while the Central Arctic Ocean had the lowest concentrations with all values below 0.5 pptv. CH3I concentration over oceans was affected by many parameters, including sea surface temperature, salinity, dissolved organic carbon, biogenic emissions and input from continents, with distinctive dominant factor in different regions, indicating complex biogeochemical processes of CH3I on a global scale. PMID:27184471

  9. Methyl iodine over oceans from the Arctic Ocean to the maritime Antarctic

    PubMed Central

    Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Yu, Juan; Zhang, Yanli

    2016-01-01

    Studies about methyl iodide (CH3I), an important atmospheric iodine species over oceans, had been conducted in some maritime regions, but the understanding of the spatial distribution of CH3I on a global scale is still limited. In this study, we reports atmospheric CH3I over oceans during the Chinese Arctic and Antarctic Research Expeditions. CH3I varied considerably with the range of 0.17 to 2.9 pptv with absent of ship emission. The concentration of CH3I generally decreased with increasing latitudes, except for higher levels in the middle latitudes of the Northern Hemisphere than in the low latitudes. For sea areas, the Norwegian Sea had the highest CH3I concentrations with a median of 0.91 pptv, while the Central Arctic Ocean had the lowest concentrations with all values below 0.5 pptv. CH3I concentration over oceans was affected by many parameters, including sea surface temperature, salinity, dissolved organic carbon, biogenic emissions and input from continents, with distinctive dominant factor in different regions, indicating complex biogeochemical processes of CH3I on a global scale. PMID:27184471

  10. Sources and Levels of Ambient Ocean Sound near the Antarctic Peninsula

    PubMed Central

    Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.

    2015-01-01

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean. PMID:25875205

  11. Sources and levels of ambient ocean sound near the Antarctic Peninsula.

    PubMed

    Dziak, Robert P; Bohnenstiehl, DelWayne R; Stafford, Kathleen M; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J; Lau, Tai-Kwan; Haxel, Joseph H; Mellinger, David K

    2015-01-01

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean. PMID:25875205

  12. Sources and levels of ambient ocean sound near the antarctic peninsula

    DOE PAGESBeta

    Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.; et al

    2015-04-14

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open,more » deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.« less

  13. Sources and levels of ambient ocean sound near the antarctic peninsula

    SciTech Connect

    Dziak, Robert P.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Lee, Won Sang; Fowler, Matt J.

    2015-04-14

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  14. How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Popova, E. E.; Yool, A.; Srokosz, M.; Lampitt, R. S.; Blundell, J. R.

    2014-04-01

    Artificial ocean iron fertilization (OIF) enhances phytoplankton productivity and is being explored as a means of sequestering anthropogenic carbon within the deep ocean. To be considered successful, carbon should be exported from the surface ocean and isolated from the atmosphere for an extended period (e.g., the Intergovernmental Panel on Climate Change's standard 100 year time horizon). This study assesses the impact of deep circulation on carbon sequestered by OIF in the Southern Ocean, a high-nutrient low-chlorophyll region known to be iron stressed. A Lagrangian particle-tracking approach is employed to analyze water mass trajectories over a 100 year simulation. By the end of the experiment, for a sequestration depth of 1000 m, 66% of the carbon had been reexposed to the atmosphere, taking an average of 37.8 years. Upwelling occurs predominately within the Antarctic Circumpolar Current due to Ekman suction and topography. These results emphasize that successful OIF is dependent on the physical circulation, as well as the biogeochemistry.

  15. Last Glacial - Holocene climate variability in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Xiao, Wenshen; Esper, Oliver; Gersonde, Rainer

    2016-03-01

    The Southern Ocean plays a major role in the glacial/interglacial global carbon cycle. However, there is a substantial lack of information from its Antarctic Zone south of the Polar Front (PF) to understand key climate processes (e.g., sea ice variability, productivity changes, CO2 source region, shifts of the Southern Westerly Wind) active in this region during the glacial/interglacial transition, due to the limited high-resolution sediment records from this area. To close this gap, we investigated high resolution diatom records from a series of sediment cores from the Atlantic and Western Indian sectors of the Southern Ocean between the modern PF and the Winter Sea Ice (WSI) edge. Summer Sea Surface Temperature (SSST) and sea ice information spanning the past 30 thousand years were derived from diatom transfer functions and indicators, which augment comprehensive information on past surface ocean conditions and related ocean and atmospheric circulation, as well as opal deposition. These complementary lines of evidences also provide important environmental boundary conditions for climate simulations understanding the past climate development in the high latitudes Southern Ocean. Our reconstructions show that the Last Glacial (LG) SSSTs south of the modern PF are 1-3 °C colder than modern conditions, WSI expanded to the modern PF. Our data suggests effective carbon export in the Antarctic Zone during the LG. Deglacial two steps of warming support the bipolar seesaw mechanism. Antarctic Zone is an important source region for the CO2 deglacial increase. The warming was more suppressed towards south, due to continuous ice discharge from Antarctica. The SSSTs exceeded modern values during the early Holocene optimum, when WSI extent probably retreated south of its modern position. The southern boundary of maximum opal deposition zone may have shifted to south of 55°S in the Bouvet Island area at this time. The mid-late Holocene cooling with WSI re-expanding to the

  16. Bicarbonate uptake by Southern Ocean phytoplankton

    NASA Astrophysics Data System (ADS)

    Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.

    2004-06-01

    Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the

  17. The Evolutionary Origins of the Southern Ocean Philobryid Bivalves: Hidden Biodiversity, Ancient Persistence

    PubMed Central

    Jackson, Jennifer A.; Linse, Katrin; Whittle, Rowan; Griffiths, Huw J.

    2015-01-01

    Philobryids (Bivalvia: Arcoida) are one of the most speciose marine bivalve families in the Southern Ocean and are common throughout the Southern Hemisphere. Considering this diversity and their brooding reproductive mode (limiting long-distance dispersal), this family may have been present in the Southern Ocean since its inception. However Philobrya and Adacnarca appear only in the Quaternary fossil record of the Antarctic, suggesting a much more recent incursion. Molecular dating provides an independent means of measuring the time of origin and radiation of this poorly known group. Here we present the first combined molecular and morphological investigation of the Philobryidae in the Southern Ocean. Two nuclear loci (18S and 28S) were amplified from 35 Southern Ocean Adacnarca and Philobrya specimens, with a combined sequence length of 2,282 base pairs (bp). Adacnarca specimens (A. nitens and A. limopsoides) were resolved as a strongly supported monophyletic group. Genus Philobrya fell into two strongly supported groups (‘sublaevis’ and ‘magellanica/wandelensis’), paraphyletic with Adacnarca. The A. nitens species complex is identified as at least seven morpho-species through morphological and genetic analysis of taxon clustering. Phylogenetic analyses resolve Philobryidae as a strongly supported monophyletic clade and sister taxon to the Limopsidae, as anticipated by their classification into the superfamily Limopsoidea. Bayesian relaxed clock analyses of divergence times suggest that genus Adacnarca radiated in the Southern Ocean from the Early Paleogene, while P. sublaevis and P. wandelensis clades radiated in the late Miocene, following the formation of the Antarctic Circumpolar Current. PMID:25853413

  18. Strong coupling among Antarctic ice shelves, ocean circulation and sea ice in a global sea-ice - ocean circulation model

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2016-04-01

    The thermodynamic effects of Antarctic ice shelf interaction with ocean circulation are investigated using a global, high-resolution, isopycnal ocean-circulation model coupled to a sea-ice model. The model uses NASA MERRA Reanalysis from 1992 to 2011 as atmospheric forcing. The simulated long-period variability of ice-shelf melting/freezing rates differ across geographic locations. The ice shelves in Antarctic Peninsula, Amundsen and Bellingshausen sea embayments and the Amery Ice Shelf experience an increase in melting starting from 2005. This increase in melting is due to an increase in the subsurface (100-500 m) ocean heat content in the embayments of these ice shelves, which is caused by an increase in sea-ice concentration after 2005, and consequent reduction of the heat loss to the atmosphere. Our simulations provide a strong evidence for a coupling between ocean circulation, sea ice and ice shelves.

  19. The Influence of Sea Ice on Primary Production in the Southern Ocean: A Satellite Perspective

    NASA Technical Reports Server (NTRS)

    Smith, Walker O., Jr.; Comiso, Josefino C.

    2007-01-01

    Sea ice in the Southern Ocean is a major controlling factor on phytoplankton productivity and growth, but the relationship is modified by regional differences in atmospheric and oceanographic conditions. We used the phytoplankton biomass (binned at 7-day intervals), PAR and cloud cover data from SeaWiFS, ice concentrations data from SSM/I and AMSR-E, and sea-surface temperature data from AVHRR, in combination with a vertically integrated model to estimate primary productivity throughout the Southern Ocean (south of 60"s). We also selected six areas within the Southern Ocean and analyzed the variability of the primary productivity and trends through time, as well as the relationship of sea ice to productivity. We found substantial interannual variability in productivity from 1997 - 2005 in all regions of the Southern Ocean, and this variability appeared to be driven in large part by ice dynamics. The most productive regions of Antarctic waters were the continental shelves, which showed the earliest growth, the maximum biomass, and the greatest areal specific productivity. In contrast, no large, sustained blooms occurred in waters of greater depth (> 1,000 m). We suggest that this is due to the slightly greater mixed layer depths found in waters off the continental shelf, and that the interactive effects of iron and irradiance (that is, increased iron requirements in low irradiance environments) result in the limitation of phytoplankton biomass over large regions of the Southern Ocean.

  20. Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change

    NASA Astrophysics Data System (ADS)

    Rodhouse, Paul G. K.

    2013-10-01

    Southern Ocean squid are important predators and prey and are a potential fishery resource. Their future under climate change is analysed from predictions of change by 2100 and assessments of the effects on squid biology. There are ˜18 Antarctic species of squid. Young feed primarily on crustaceans and switch later to fishes. They are preyed on by odontocetes, seals and seabirds - which together consume ˜34×106tyr-1 - and fish. As predators, squid are second to fish as biomass producers but recent evidence suggests predator consumption of squid needs to be reassessed. Fatty acid composition and stable nitrogen isotope ratios indicate some predators consume less squid in their diet than gut contents data suggest. Southern Ocean oceanography is unique in having circumpolar circulation and frontal systems and at high latitudes it is heavily influenced by sea ice. The Antarctic Peninsula is among the fastest warming regions worldwide but elsewhere the Southern Ocean is warming more slowly and the Ross Sea is probably cooling. Sea ice is receding in the Peninsula region and increasing elsewhere. Modelled predictions for 2100 suggest although the Southern Ocean will warm less than other oceans and sea ice will reduce. The Antarctic Circumpolar Current may shift slightly southwards with intensification of westerly winds but resolution of the models is insufficient to predict mesoscale change. Globally, pH of seawater has decreased by 0.1 units since the mid-1900s and is predicted to decrease by another 0.5 units by 2100. Impact on calcifying organisms will be high in the cold Southern Ocean where solubility of calcium carbonate is high. Predicted temperature increases are unlikely to have major effects on squid other than changes in distribution near the limits of their range; acidification may have greater impact. Small changes in large scale circulation are unlikely to affect squid but changes in mesoscale oceanography may have high impact. Change in sea ice extent

  1. Extensive lake sediment coring survey on Sub-Antarctic Indian Ocean Kerguelen Archipelago (French Austral and Antarctic Lands)

    NASA Astrophysics Data System (ADS)

    Arnaud, Fabien; Fanget, Bernard; Malet, Emmanuel; Poulenard, Jérôme; Støren, Eivind; Leloup, Anouk; Bakke, Jostein; Sabatier, Pierre

    2016-04-01

    Recent paleo-studies revealed climatic southern high latitude climate evolution patterns that are crucial to understand the global climate evolution(1,2). Among others the strength and north-south shifts of westerlies wind appeared to be a key parameter(3). However, virtually no lands are located south of the 45th South parallel between Southern Georgia (60°W) and New Zealand (170°E) precluding the establishment of paleoclimate records of past westerlies dynamics. Located around 50°S and 70°E, lost in the middle of the sub-Antarctic Indian Ocean, Kerguelen archipelago is a major, geomorphologically complex, land-mass that is covered by hundreds lakes of various sizes. It hence offers a unique opportunity to reconstruct past climate and environment dynamics in a region where virtually nothing is known about it, except the remarkable recent reconstructions based on a Lateglacial peatbog sequence(4). During the 2014-2015 austral summer, a French-Norwegian team led the very first extensive lake sediment coring survey on Kerguelen Archipelago under the umbrella of the PALAS program supported by the French Polar Institute (IPEV). Two main areas were investigated: i) the southwest of the mainland, so-called Golfe du Morbihan, where glaciers are currently absent and ii) the northernmost Kerguelen mainland peninsula so-called Loranchet, where cirque glaciers are still present. This double-target strategy aims at reconstructing various independent indirect records of precipitation (glacier advance, flood dynamics) and wind speed (marine spray chemical species, wind-borne terrigenous input) to tackle the Holocene climate variability. Despite particularly harsh climate conditions and difficult logistics matters, we were able to core 6 lake sediment sites: 5 in Golfe du Morbihan and one in Loranchet peninsula. Among them two sequences taken in the 4km-long Lake Armor using a UWITEC re-entry piston coring system by 20 and 100m water-depth (6 and 7m-long, respectively). One

  2. Paleoceanography and Paleoclimatology of the Southern Ocean: A Synthesis of Three Decades of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Warnke, D. A.; Filippelli, G.; Flores, J.; Marchitto, T. M.

    2004-12-01

    A Workshop on " Paleoceanography and Paleoclimatology of the Southern Ocean: A Synthesis of Three Decades of Scientific Ocean Drilling" Jan. 21-23, 2005 Boulder, CO Co-Convenors: D. Warnke, G. Filippelli, J.-A. Flores, T. Marchitto One of the greatest successes of the Ocean Drilling Program has been the concerted drilling efforts and exciting results recovered from the Southern Ocean (SO), which has been the focus of ten DSDP/ODP drilling legs. The SO is a critical component in the development and persistence of Antarctic glaciation, is a sensitive mixing pool of global water masses, a locus of high biological sedimentation, and contains high resolution records of climate forcing and response. As such, it is one of the most important oceanographic regions in the world. It is now an important time to mine the rich results from scientific ocean drilling over the past several decades and develop a scientific framework for future ocean drilling in this region. The focus of this Synthesis Workshop will be on the biogeochemical history of the SO, including: · Productivity proxies, rates, records, variations, and role of climate · Sedimentary records of organic carbon, calcium, silica, nutrients, and biogenic proxies: The role of the SO as a biogeochemical sink · Development and dynamics of the APFZ · Thermal structure and evolution of the SO · The role of limiting nutrients The overall goal to integrate the various proxies into a coherent paleoceanographic picture. Such a goal will help to synthesize several decades of scientific ocean drilling in the SO, and will likely bring to the forefront the as-yet-unanswered questions about the biogeochemical history of this important oceanic system. With this goal in mind, workshop participants will submit of a short (~250 word) abstract as the Workshop application, commit to presenting a poster at the workshop based on this abstract, and contribute to one or more manuscripts that will be published after the workshop, likely

  3. Southern Ocean circulation changes across the last deglaciation: contribution from Marion-Dufresne cruises

    NASA Astrophysics Data System (ADS)

    Michel, Elisabeth; Siani, Giuseppe; Mazaud, Alain; Paterne, Martine; deVries, Tim; Jaccard, Samuel; Waelbroeck, Claire; Crosta, Xavier; Isguder, Gulay; Dewilde, Fabien; De Pol-Holz, Ricardo; Skinner, Luke; Kissel, Catherine

    2015-04-01

    The last deglaciation is marked by rapid climatic events linked to large reorganizations of the deep ocean circulation. To decipher the role of the Southern Ocean in these deep circulation changes requires reconstructing the evolution of its stratification and its zonal behavior during the last deglaciation from high resolution, well dated records. Furthermore, nowadays the connection between atmosphere and the deep ocean occurs through the Southern Ocean, and it might had a leading role in the evolution of atmospheric CO2 concentrations across the deglaciation. However, establishing a precise chronology for marine sediment records in high latitudes is a difficult task, as it requires the determination of radiocarbon surface water age changes. It has been possible to retrieve high sedimentation rate cores during Indian and Pacific oceanographic cruises, particularly PACHIDERME and INDIEN SUD expeditions. We pre. We aim at tying these marine records to terrestrial records, using tephra deposited in marine and terrestrial region in the different sector of the Southern Ocean when it is possible. This work is in progress within a French-Swedish project. We will present results at different depth from South West Pacific sector of the Southern Ocean and from the Indian sector. A precise chronology in the Indian sector requires to first establish the tephrochronology of Kerguelen Islands that is under progress. We compare these new records with previously published records of the Atlantic and Pacific sectors. It indicates that upwelling events drive radiocarbon changes in waters above 2500 m depth and increases in atmospheric CO2. Oceanic circulation changes are not synchroneous at deeper depth between 2500 and 4000 m depth. Southern Ocean temperature and vertical mixing increases occurs synchroneously with temperature increase above the Antarctic and atmospheric CO2 increases within error of marine and Ice chronologies, while the ACC current intensity decrease (or

  4. Transient tracer applications in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Stöven, T.; Tanhua, T.; Hoppema, M.

    2014-10-01

    Transient tracers can be used to constrain the Inverse-Gaussian transit time distribution (IG-TTD) and thus provide information about ocean ventilation. Individual transient tracers have different time and application ranges which are defined by their atmospheric history (chronological transient tracers) or their decay rate (radioactive transient tracers). The classification ranges from tracers for highly ventilated water masses, e.g. sulfur hexafluoride (SF6), the decay of Tritium (δ3H) and to some extent also dichlorodifluoromethane (CFC-12) to tracers for less ventilated deep ocean basins, e.g. CFC-12, Argon-39 (39Ar) and radiocarbon (14C). The IG-TTD can be empirically constrained by using transient tracer couples with sufficiently different input functions. Each tracer couple has specific characteristics which influence the application limit of the IG-TTD. Here we provide an overview of commonly used transient tracer couples and their validity areas within the IG-TTD by using the concept of tracer age differences (TAD). New measured CFC-12 and SF6 data from a section along 10° E in the Southern Ocean in 2012 are presented. These are combined with a similar data set of 1998 along 6° E in the Southern Ocean as well as with 39Ar data from the early 1980s in the western Atlantic Ocean and the Weddell Sea for investigating the application limit of the IG-TTD and to analyze changes in ventilation in the Southern Ocean. We found that the IG-TTD can be constrained south to 46° S which corresponds to the Subantarctic Front (SAF) denoting the application limit. The constrained IG-TTD north of the SAF shows a slight increase in mean ages between 1998 and 2012 in the upper 1200 m between 42-46° S. The absence of SF6 inhibits ventilation analyses below this depth. The time lag analysis between the 1998 and 2012 data shows an increase in ventilation down to 1000 m and a steady ventilation between 2000 m-bottom south of the SAF between 51-55° S.

  5. A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 2: continental conditions

    NASA Astrophysics Data System (ADS)

    Le Roux, J. P.

    2012-03-01

    Climate changes in southern South America and the Antarctic Peninsula during the Tertiary show a strong correlation with ocean warming and cooling events, which are in turn related to tectonic processes. During periods of accelerated sea-floor spreading and mid-ocean ridge activity, sea-levels rose so that parts of the continents were flooded and forests were destroyed. However, this was balanced by the large-scale release of CO2 during volcanic outgassing and carbonate precipitation on the continental shelves, which caused rising air temperatures and the poleward expansion of (sub)tropical and temperate forests. Cooling episodes generally caused an increase in the north-south thermal gradient because of an equatorward shift in climate belts, so that the Westerly Winds intensified and brought higher rainfall to the lower latitudes. An increase in wind-blown dust caused temperatures to drop further by reflecting sunlight back into space. The rising Andes Range had a marked influence on climate patterns. Up to the middle Miocene it was still low enough to allow summer rainfall to reach central and north-central Chile, but after about 14 Ma it rose rapidly and effectively blocked the spill-over of moisture from the Atlantic Ocean and Amazon Basin. At this time, the cold Humboldt Current was also established, which together with the Andes helped to create the "Arid Diagonal" of southern South America stretching from the Atacama Desert to the dry steppes of Patagonia. This caused the withdrawal of subtropical forests to south-central Chile and the expansion of sclerophytic vegetation to central Chile. However, at the same time it intercepted more rain from the northeast, causing the effect of the South American monsoon to intensify in northwestern Argentina and southern Bolivia, where forest communities presently occur. In Patagonia, glaciation started as early as 10.5 Ma, but by 7 Ma had become a prominent feature of the landscape and continued apparently

  6. Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of Southern Ocean gateway openings

    NASA Astrophysics Data System (ADS)

    Borrelli, Chiara; Cramer, Benjamin S.; Katz, Miriam E.

    2014-04-01

    We present evidence for Antarctic Circumpolar Current (ACC)-like effects on Atlantic deepwater circulation beginning in the late-middle Eocene. Modern ocean circulation is characterized by a thermal differentiation between Southern Ocean and North Atlantic deepwater formation regions. In order to better constrain the timing and nature of the initial thermal differentiation between Northern Component Water (NCW) and Southern Component Water (SCW), we analyze benthic foraminiferal stable isotope (δ18Obf and δ13Cbf) records from Ocean Drilling Program Site 1053 (upper deep water, western North Atlantic). Our data, compared with published records and interpreted in the context of ocean circulation models, indicate that progressive opening of Southern Ocean gateways and initiation of a circum-Antarctic current caused a transition to a modern-like deep ocean circulation characterized by thermal differentiation between SCW and NCW beginning ~38.5 Ma, in the initial stages of Drake Passage opening. In addition, the relatively low δ18Obf values recorded at Site 1053 show that the cooling trend of the middle-late Eocene was not global, because it was not recorded in the North Atlantic. The timing of thermal differentiation shows that NCW contributed to ocean circulation by the late-middle Eocene, ~1-4 Myr earlier than previously thought. We propose that early NCW originated in the Labrador Sea, based on tectonic reconstructions and changes in foraminiferal assemblages in this basin. Finally, we link further development of meridional isotopic gradients in the Atlantic and Pacific in the late Eocene with the Tasman Gateway deepening (~34 Ma) and the consequent development of a circumpolar proto-ACC.

  7. Modelling Antarctic ice shelf melting under LGM and doubled CO2 climate using ice shelf-ocean model and climate model

    NASA Astrophysics Data System (ADS)

    Obase, T.; Abe-Ouchi, A.; Kusahara, K.; Hasumi, H.

    2014-12-01

    Ice-ocean interaction is thought to be a responsible process on long-term Antarctic ice sheet variations, such as retreat of West Antarctic Ice Sheet during Eemian interglacial. Numerical simulation of Antarctic ice sheet require melt rate at ice shelf base as a boundary condition, but the relation between climate and melt rate is unclear. We calculate Antarctic ocean and basal melting of Antarctic ice shelves under Last Glacial Maximum(LGM) and doubled CO2(2xCO2) climate at equilibrium as well as present-day(CTL). We use circumpolar ice shelf-ocean general circulation model(OGCM, based on COCO) and outputs of climate model(MIROC). For the CTL case, we drive OGCM with surface atmospheric climatology based on reanalysis(OMIP) and present-day ocean temperature and salinity for restoration at northern boundary, placed at around latitude of 40S. The surface boundary conditions for LGM(or 2xCO2) is computed from the outputs from climate model simulations. Annual mean marine 2m air temperature anomaly averaged for south of 60S is -7.3℃ for LGM and +6.0℃ for 2xCO2. LGM (or 2xCO2) anomalies of surface atmospheric variables are superimposed to OMIP to make LGM (or 2xCO2) atmospheric boundary conditions. We modify the ocean temperature and salinity column for restoration at northern boundary by superimposing anomaly to present-day ocean climatology. Present-day geometry of ice sheet and ice shelf is used in all experiments to test the sensitivity to climate. We show that melting amount of Antarctic ice shelves show 23% reduction for the LGM and 3.5 times increase for the 2xCO2 compared to the CTL case. We perform a series of additional sensitivity experiments to investigate the role of surface change in sea surface atmospheric variables (temperature, wind) and ocean structures in the Southern Ocean on melt rate of ice shelves. Water mass, ocean circulation and sea ice production on continental shelf are analyzed.

  8. Phytoplankton and cloudiness in the Southern Ocean.

    PubMed

    Meskhidze, Nicholas; Nenes, Athanasios

    2006-12-01

    The effect of ocean biological productivity on marine clouds is explored over a large phytoplankton bloom in the Southern Ocean with the use of remotely sensed data. Cloud droplet number concentration over the bloom was twice what it was away from the bloom, and cloud effective radius was reduced by 30%. The resulting change in the short-wave radiative flux at the top of the atmosphere was -15 watts per square meter, comparable to the aerosol indirect effect over highly polluted regions. This observed impact of phytoplankton on clouds is attributed to changes in the size distribution and chemical composition of cloud condensation nuclei. We propose that secondary organic aerosol, formed from the oxidation of phytoplankton-produced isoprene, can affect chemical composition of marine cloud condensation nuclei and influence cloud droplet number. Model simulations support this hypothesis, indicating that 100% of the observed changes in cloud properties can be attributed to the isoprene secondary organic aerosol. PMID:17082422

  9. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt

    PubMed Central

    Raiswell, Rob; Benning, Liane G; Tranter, Martyn; Tulaczyk, Slawek

    2008-01-01

    Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01–0.13 Tg yr-1) and icebergs (0.06–0.12 Tg yr-1) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions. PMID:18513396

  10. Detection and characterization of a Cryptosporidium isolate from a southern elephant seal (Mirounga leonina) from the Antarctic peninsula.

    PubMed

    Rengifo-Herrera, C; Ortega-Mora, L M; Gómez-Bautista, M; García-Moreno, F T; García-Párraga, D; Castro-Urda, J; Pedraza-Díaz, S

    2011-02-01

    The presence of Cryptosporidium and Giardia in 221 fecal samples from different species of Antarctic pinnipeds was investigated by immunofluorescence microscopy and PCR. Cryptosporidium, a skunk-like genotype, was detected only in a southern elephant seal. Giardia was not detected. This is the first report of a Cryptosporidium sp. in Antarctic marine mammals. PMID:21169427

  11. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean

    PubMed Central

    Costello, Mark J.

    2016-01-01

    Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future. PMID:26925334

  12. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean.

    PubMed

    Basher, Zeenatul; Costello, Mark J

    2016-01-01

    Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future. PMID:26925334

  13. The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum

    SciTech Connect

    Liu, Wei; Lu, Jian; Leung, Lai-Yung R.; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang

    2015-02-22

    This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition has most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.

  14. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Benz, Verena; Esper, Oliver; Gersonde, Rainer; Lamy, Frank; Tiedemann, Ralf

    2016-08-01

    Sea surface temperatures and sea-ice extent are most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 and ocean-atmosphere circulation. Here we present diatom transfer function-based summer sea surface temperature (SSST) and winter sea-ice (WSI) estimates from the Pacific sector of the Southern Ocean to bridge a gap in information that has to date hampered a well-established reconstruction of the last glacial Southern Ocean at circum-Antarctic scale. We studied the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 calendar years before present) in 17 cores and consolidated our LGM picture of the Pacific sector taking into account published data from its warmer regions. Our data display a distinct east-west differentiation with a rather stable WSI edge north of the Pacific-Antarctic Ridge in the Ross Sea sector and a more variable WSI extent over the Amundsen Abyssal Plain. The zone of maximum cooling (>4 K) during the LGM is in the present Subantarctic Zone and bounded to its south by the 4 °C isotherm. The isotherm is in the SSST range prevailing at the modern Antarctic Polar Front, representing a circum-Antarctic feature, and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). The northward deflection of colder than modern surface waters along the South American continent led to a significant cooling of the glacial Humboldt Current surface waters (4-8 K), which affected the temperature regimes as far north as tropical latitudes. The glacial reduction of ACC temperatures may also have resulted in significant cooling in the Atlantic and Indian Southern Ocean, thus enhancing thermal differentiation of the Southern Ocean and Antarctic continental cooling. The comparison with numerical temperature and sea-ice simulations yields discrepancies, especially concerning the estimates of the sea-ice fields, but some simulations

  15. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    SciTech Connect

    Asay-Davis, Xylar Storm

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  16. Effect of Atmospheric Forcing Resolution on Delivery of Ocean Heat to the Antarctic Floating Ice Shelves

    NASA Astrophysics Data System (ADS)

    Klinck, J. M., II; Dinniman, M. S.; Bromwich, D. H.; Holland, D. M.

    2014-12-01

    Oceanic melting of the base of the floating Antarctic ice shelves is now thought to be a more significant cause of mass loss for the Antarctic ice sheet than iceberg calving. In this study, we use a 10 km horizontal resolution circum-Antarctic ocean/sea ice/ice shelf model (based on ROMS) to study the delivery of ocean heat to the base of the ice shelves. The atmospheric forcing comes from the ERA-Interim reanalysis (~80 km resolution) and from simulations using the Polar-optimized WRF model (30 km resolution) where the upper atmosphere was relaxed to the ERA-Interim reanalysis. Total basal ice shelf melt increases by 14% with the higher resolution winds but only 3% with both the higher resolution winds and atmospheric surface temperatures. The higher resolution winds lead to more heat being delivered to the ice shelf cavities from the adjacent ocean and an increase in the efficiency of heat transfer between the water and the ice. The higher resolution winds also lead to changes in the heat delivered from the open ocean to the continental shelves as well as changes in the heat lost to the atmosphere over the shelves and the sign of these changes varies regionally. Addition of the higher resolution temperatures to the winds results in lowering, primarily during summer, the wind driven increase in heat advected into the ice shelf cavities due to colder summer air temperatures near the coast.

  17. Southern Ocean overturning, export production and climate variability over the past 1 Myr

    NASA Astrophysics Data System (ADS)

    Jaccard, S.; Hayes, C. T.; Martinez Garcia, A.; Galbraith, E. D.; Anderson, R. F.; Sigman, D. M.; Haug, G. H.

    2011-12-01

    of ODP site 1094. New evidence from ODP site 1090 (42°S, 9°E, 3700 m) shows that iron fertilization in the SAZ would have permitted to sequester additional remineralized carbon in the ocean interior, forcing the climate system to reach full glacial conditions. This mechanism was only effective when the Southern Ocean lid was already sealed, precluding the sequestered CO2 to evade through the Antarctic valve. The threshold persisted throughout the lukewarm interval, suggesting that processes taking place in the Antarctic Zone of the Southern Ocean were responsible for the observed reduced interglacial pCO2 levels.

  18. Holocene polar front migrations over the Conrad Rise in the Indian sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ikehara, M.; Katsuki, K.; Yokoyama, Y.; Yamane, M.; Khim, B.

    2011-12-01

    The Southern Ocean has played a significant role in the global climate system during the geologic past. In order to understand the paleoceanographic variations with the polar front system and Antarctic Circumpolar Current (ACC), we conducted two cruises KH-07-4 and KH-10-7 in the Indian sector of the Southern Ocean. Two piston cores were collected from the Conrad Rise. We examined centennial-scale changes of diatom assemblages and stable isotopic ratios in planktic foraminifera during the Holocene in a high-accumulation-rate sediment core from the Conrad Rise. Although abundances of dominant diatom taxa (Fragilariopsis kerguelensis and Thalassiothrix antarctica) are comparatively constant, relative abundances of secondary taxa fluctuate. Before ca 9900 cal. yr BP, winter sea-ice and cold water covered the Conrad Rise. Following deglaciation the sea-ice retreated from the Conrad Rise. The Polar Front moved southward during the early Holocene optimum and north Antarctic Zone waters covered the Conrad Rise for about 650 yr. After 9300 cal. yr BP, solar insolation strongly influenced sea surface temperature and primary productivity in the Southern Ocean. In the high-latitude Indian Sector, productivity increased 1500 yr after the onset of late Holocene neoglaciation. Periodic δ18O and cold-water diatom taxa spikes (at intervals of 200 and 300-500 yr, respectively) occurred after 9300 cal. yr BP, probably associated with solar activity. Fluctuations in short-term sea surface temperature and cold-water taxa are synchronous with changes in dD observed in an east Antarctic ice core.

  19. High Biomass Low Export Regimes in the Southern Ocean

    SciTech Connect

    Lam, Phoebe J.; Bishop, James K.B.

    2006-01-27

    This paper investigates ballasting and remineralization controls of carbon sedimentation in the twilight zone (100-1000 m) of the Southern Ocean. Size-fractionated (<1 {micro}m, 1-51 {micro}m, >51 {micro}m) suspended particulate matter was collected by large volume in-situ filtration from the upper 1000 m in the Subantarctic (55 S, 172 W) and Antarctic (66 S, 172 W) zones of the Southern Ocean during the Southern Ocean Iron Experiment (SOFeX) in January-February 2002. Particles were analyzed for major chemical constituents (POC, P, biogenic Si, CaCO3), and digital and SEM image analyses of particles were used to aid in the interpretation of the chemical profiles. Twilight zone waters at 66 S in the Antarctic had a steeper decrease in POC with depth than at 55 S in the Subantarctic, with lower POC concentrations in all size fractions at 66 S than at 55 S, despite up to an order of magnitude higher POC in surface waters at 66 S. The decay length scale of >51 {micro}m POC was significantly shorter in the upper twilight zone at 66 S ({delta}{sub e}=26 m) compared to 55 S ({delta}{sub e}=81 m). Particles in the carbonate-producing 55 S did not have higher excess densities than particles from the diatom-dominated 66 S, indicating that there was no direct ballast effect that accounted for deeper POC penetration at 55 S. An indirect ballast effect due to differences in particle packaging and porosities cannot be ruled out, however, as aggregate porosities were high ({approx}97%) and variable. Image analyses point to the importance of particle loss rates from zooplankton grazing and remineralization as determining factors for the difference in twilight zone POC concentrations at 55 S and 66 S, with stronger and more focused shallow remineralization at 66 S. At 66 S, an abundance of large (several mm long) fecal pellets from the surface to 150 m, and almost total removal of large aggregates by 200 m, reflected the actions of a single or few zooplankton species capable of

  20. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.

    PubMed

    Strobel, Anneli; Graeve, Martin; Poertner, Hans O; Mark, Felix C

    2013-01-01

    Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4-6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency), proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia-/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean warming and

  1. Regional variation in lytic and lysogenic viral infection in the Southern Ocean and its contribution to biogeochemical cycling.

    PubMed

    Evans, Claire; Brussaard, Corina P D

    2012-09-01

    Lytic and lysogenic viral infection was investigated throughout the Southern Ocean at sites spanning the sub-Antarctic zone, the Antarctic Circumpolar Current, and an Antarctic continental sea. Higher lytic virus activity was recorded in the more productive sub-Antarctic zone than in the iron-limited waters of the Antarctic Circumpolar Current during two transects. Reduced lytic viral activity in the Antarctic Circumpolar Current was combined with a shift toward lysogenic infection, probably resulting from the lower concentration of potential prokaryotic hosts. Superimposed on this variation, lytic viral production was lower in a transect completed in the Drake Passage in autumn (1.8 × 10(8) to 1.5 × 10(9) liter(-1) day(-1)) than over the Greenwich Meridian during summer (5.1 × 10(8) to 2.0 × 10(10) cells liter(-1) day(-1)), indicating that viral activity is linked to the overall seasonal fluctuations in biotic activity. Interestingly, while prokaryotic abundance was lowest in the coastal Weddell Sea, levels of bacterial and lytic viral production (4.3 × 10(8) to 1.7 × 10(10) cells liter(-1) day(-1)) in this area were similar to those of the other zones. This may explain the weak relationship between the distribution of prokaryotes and chlorophyll in the Weddell Sea, as a high turnover of prokaryotic biomass may have been stimulated by the availability of substrates in the form of viral lysate. With estimated carbon and iron releases of 0.02 to 7.5 μg liter(-1) day(-1) and 1.5 to 175.7 pg liter(-1) day(-1), respectively, viral activity in the Southern Ocean is shown to be a major contributor to satisfying the elemental requirements of microbes, notably prokaryotes in the Weddell Sea and phytoplankton in the sub-Antarctic zone. PMID:22798377

  2. Coastal zone color scanner pigment concentrations in the southern ocean and relationships to geophysical surface features

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-01-01

    Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.

  3. On the interannual variability of ocean temperatures around South Georgia, Southern Ocean: Forcing by El Niño/Southern Oscillation and the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Murphy, Eugene J.; Hawker, Elizabeth J.; King, John C.; Wallace, Margaret I.

    2008-09-01

    The ocean around South Georgia, in the southwest Atlantic sector of the Southern Ocean, is highly productive, with large stocks of Antarctic krill supporting extensive colonies of marine- and land-based predators. The operation of this ecosystem is strongly influenced by physical forcings, and the role of the El Niño/Southern Oscillation (ENSO) phenomenon has been highlighted previously. Here we examine in detail the transmission of ENSO signals to South Georgia, and investigate other sources of interannual variability. ENSO variability generates anomalies in sea-surface temperature (SST) across the South Pacific via atmospheric teleconnections. These anomalies are advected toward South Georgia within the Antarctic Circumpolar Current (ACC), and previous studies have focussed on long-period advection (order of 2-3 years) from the southwest Pacific. We observe here, however, that the region close to the Antarctic Peninsula in the southeast Pacific is especially susceptible to ENSO forcing via anomalous meridional winds; this induces SST anomalies that are advected to South Georgia on a much more rapid timescale (order 5-6 months). The phasing of these teleconnections is such that anomalies that reach the southeast Pacific from farther west tend to be reinforced here by air-sea-ice interaction. We also find an important role for the Southern Annular Mode (SAM) in determining SST variability at South Georgia. This is a circumpolar mode of climate variability, and thus can readily influence local SST at South Georgia directly. The SAM is, however, not perfectly zonally symmetric, and (like ENSO) has a particular impact on meridional winds in the southeast Pacific. The average timescale for SAM influence on South Georgia SST is shorter than that of ENSO, since it includes a stronger component of direct local forcing. The South Georgia ecosystem is not self-sustaining, with import of krill from breeding and nursery grounds upstream in the ACC being important. We

  4. Dynamics of the Oligocene Southern Ocean: dinocysts as surface paleoceanographic tracers

    NASA Astrophysics Data System (ADS)

    Bijl, Peter; Houben, Alexander; Brinkhuis, Henk; Sangiorgi, Francesca

    2015-04-01

    The Oligocene Epoch (33.9-23 Ma) is the time interval in the Cenozoic that saw the establishment of a continental-scale Antarctic ice-sheet. There remains a controversy about whether this early episode of a glaciated Antarctica was stable, or whether dynamic ice conditions prevailed. Most of this controversy persists due to the absence of chronostratigraphically well-dated sedimentary archives from close to the east Antarctic ice sheet, which has recorded a direct signal of glacial dynamics. Another major question is how the Oligocene Southern Ocean responded to the glaciation and subsequent evolution of the ice sheet, as the Southern ocean is a major player in global ocean circulation. Numerical modelling studies suggest that alongside the buildup of continental ice on Antarctica, first sea-ice conditions may have started along the East Antarctic Margin, but this conclusion lacks support from field evidence. Other numerical models predict that hysteresis effects within the ice sheet will make a continental-size Antarctic ice sheet rather insensitive to warming. In contrast, deep-water benthic foraminiferal oxygen isotope records across the Oligocene suggest dramatic waxing and waning of Antarctic ice sheets. This paradox is as yet not solved Integrated Ocean Drilling Expedition 318 drilled the Antarctic Margin in 2010, and recovered sediments from the early phase of Antarctic glaciation. With this record, we can now evaluate the robustness of the results of the numerical models and the oceanographic changes with field data. Sediments recovered from Site U1356 yield a thick and relatively complete (albeit compromised by core gaps) Oligocene succession both of which are chrono-stratigraphically well-calibrated with use of nannoplankton- dinocyst- and magnetostratigraphy. Notably, this record yields well-preserved dinoflagellate cysts (dinocysts), which we can use to investigate surface-water condition changes across the Eocene-Oligocene to provide answers to these

  5. The reinvigoration of the Southern Ocean carbon sink.

    PubMed

    Landschützer, Peter; Gruber, Nicolas; Haumann, F Alexander; Rödenbeck, Christian; Bakker, Dorothee C E; van Heuven, Steven; Hoppema, Mario; Metzl, Nicolas; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wanninkhof, Rik

    2015-09-11

    Several studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized. PMID:26359401

  6. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    PubMed

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change. PMID:24451542

  7. Antarctic-type blue whale calls recorded at low latitudes in the Indian and eastern Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Stafford, Kathleen M.; Bohnenstiehl, DelWayne R.; Tolstoy, Maya; Chapp, Emily; Mellinger, David K.; Moore, Sue E.

    2004-10-01

    Blue whales, Balaenoptera musculus, were once abundant around the Antarctic during the austral summer, but intensive whaling during the first half of the 20th century reduced their numbers by over 99%. Although interannual variability of blue whale occurrence on the Antarctic feeding grounds was documented by whalers, little was known about where the whales spent the winter months. Antarctic blue whales produce calls that are distinct from those produced by blue whales elsewhere in the world. To investigate potential winter migratory destinations of Antarctic blue whales, we examined acoustic data for these signals from two low-latitude locales: the eastern tropical Pacific Ocean and the Indian Ocean. Antarctic-type blue whale calls were detected on hydrophones in both regions during the austral autumn and winter (May-September), with peak detections in July. Calls occurred over relatively brief periods in both oceans, suggesting that there may be only a few animals migrating so far north and/or producing calls. Antarctic blue whales appear to use both the Indian and eastern Pacific Oceans concurrently, indicating that there is not a single migratory destination. Acoustic data from the South Atlantic and from mid-latitudes in the Indian or Pacific Oceans are needed for a more global understanding of migratory patterns and destinations of Antarctic blue whales.

  8. The biodiversity of the deep Southern Ocean benthos

    PubMed Central

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K.E; Gooday, A.J; Hilbig, B; Linse, K; Thomson, M.R.A; Tyler, P.A

    2006-01-01

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae. PMID:17405207

  9. Trends and variability of the atmosphere-ocean turbulent heat flux in the extratropical Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Herman, Agnieszka

    2015-10-01

    Ocean-atmosphere interactions are complex and extend over a wide range of temporal and spatial scales. Among the key components of these interactions is the ocean-atmosphere (latent and sensible) turbulent heat flux (THF). Here, based on daily optimally-interpolated data from the extratropical Southern Hemisphere (south of 30°S) from a period 1985-2013, we analyze short-term variability and trends in THF and variables influencing it. It is shown that, in spite of climate-change-related positive trends in surface wind speeds over large parts of the Southern Ocean, the range of the THF variability has been decreasing due to decreasing air-water temperature and humidity differences. Occurrence frequency of very large heat flux events decreased accordingly. Remarkably, spectral analysis of the THF data reveals, in certain regions, robust periodicity at frequencies 0.03-0.04 day-1, corresponding exactly to frequencies of the baroclinic annular mode (BAM). Finally, it is shown that the THF is correlated with the position of the major fronts in sections of the Antarctic Circumpolar Current where the fronts are not constrained by the bottom topography and can adjust their position to the atmospheric and oceanic forcing, suggesting differential response of various sections of the Southern Ocean to the changing atmospheric forcing.

  10. Sea ice, winter convection, and the temperature minimum layer in the Southern Ocean

    SciTech Connect

    Toole, J.M.

    1981-09-20

    The structure of the near surface waters in the Southern Ocean, poleward of the Antarctic Polar Front but away from continental margins, is investigated with a three-dimensional time-dependent numerical model which resolves the annual sea ice cycle. The growth and decay of the ice field is predicted, using one of Semtner's (1976) thermodynamic ice models, in terms of specified atmospheric data and computed thermohaline characteristics of the ocean layers. The ice field is found to be sensitive to the lateral advection of heat by the oceanic circulation as well as vertical heat transports due to deep winter convection. The model treats the temperature minimum layer in the Southern Ocean as the remnant of a deep winter mixed layer which becomes capped by surface heating and precipitation in summer. The predicted thermohaline characteristics of the temperature minimum layer and the surface mixed layer are in good agreement with observations. Finally, the annual air-sea heat exchange predicted by the model is discussed. The model's predicted area averaged heat loss experienced by the ocean south of the Atlantic Polar Front is much smaller than was previously estimated. This is attributed to errors in the southern region of the model domain. It is suggested that models, which include the interactions between sea ice and surface, deep, and bottom waters along the continental margins, are needed to investigate this region.

  11. Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Comiso, J. C.

    2001-01-01

    The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988

  12. The interdisciplinary marine system of the Amundsen Sea, Southern Ocean: Recent advances and the need for sustained observations

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Ducklow, Hugh W.; Schofield, Oscar; Wåhlin, Anna; Newman, Louise; Lee, SangHoon

    2016-01-01

    The Southern Ocean exerts a profound influence on the functioning of the Earth System, in part because its location and unique bathymetric configuration enable direct linkages to the other major ocean basins (Ganachaud and Wunsch, 2000; Lumpkin and Speer, 2007). It is the site of the world's largest current system, the Antarctic Circumpolar Current (ACC), which transfers waters and climatically/ecologically-important tracers between the Atlantic, Indian and Pacific Oceans (Rintoul et al., 2001). In addition to the strong horizontal connectivity, the ACC is also characterized by a vigorous overturning circulation, which upwells warm, nutrient-rich waters from intermediate depth to the surface, where they are modified by interactions with the atmosphere and cryosphere to form new water masses, some of which are lighter and others more dense (Marshall and Speer, 2012). This overturning circulation structures the Southern Ocean both horizontally and vertically, dictates the levels of its communication with the rest of the global ocean, and is a fundamental control on the sequestration of carbon from the atmosphere into the ocean interior (Sallée et al., 2012). In some locations, the upwelled waters can intrude onto the Antarctic shelves, supplying heat and nutrients to the shallower regions. This is believed to be especially effective in west Antarctica, where the southern edge of the ACC moves close to the shelf break (Martinson, 2011; Orsi et al., 1995; Thoma et al., 2008).

  13. The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations

    NASA Technical Reports Server (NTRS)

    Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim

    2003-01-01

    The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.

  14. On the role of the Antarctic continent in forcing large-scale circulations in the high southern latitudes

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Bromwich, David H.; Tzeng, Ren-Yow

    1994-01-01

    The Antarctic topography and attendant katabatic wind regime appear to play a key role in the climate of the high southern latitudes. During the nonsummer months, persistent and often times intense katabatic winds occur in the lowest few hundred meters of the Antarctic atmosphere. These slope flows transport significant amounts of cold air northward and thereby modify the horizontal pressure field over the high southern latitudes. Three-year seasonal cycle numerical simulations using the NCAR Community Climate Model Version 1 (CCM1) with and without representation of the Antarctic orography were performed to explore the role of the elevated terrain and drainage flows on the distribution and evolution of the horizontal pressure field. The katabatic wind regime is an important part of a clearly defined mean meridional circulation in the high southern latitudes. The position and intensity of the attendant sea level low pressure belt appears to be tied to the Antarctic orography. The seasonal movement of mass in the high southern latitudes is therefore constrained by the presence of the Antarctic ice sheet. The semiannual oscillation of pressure over Antarctica and the high southern latitutdes is well depicted in the CCM1 only when the Antarctic orography is included.

  15. Decadal Changes in Hydrography of the Southern Pacific Ocean and Ross Sea

    NASA Astrophysics Data System (ADS)

    Talley, L. D.; Carter, B.; Warner, M. J.; Swift, J. H.; Orsi, A. H.; Sloyan, B.

    2014-12-01

    Quasi-decadal hydrographic sections of the GO-SHIP program cross the world's oceans with the highest accuracy measurements, documenting temporal variability in physical and chemical properties. The central southern Pacific and Ross Sea have been surveyed regularly along GO-SHIP sections P16S (150W) and S4P (67S) since the first occupation in WOCE in 1992. Observed changes are consistent with anthropogenic forcing. The central Ross Sea gyre's bottom 1000 m is nearly adiabatic (well mixed), and well-ventilated based on chlorofluorocarbon (CFC) and sulfur hexafluoride observations (see Figure), and can be easily compared from one survey to the next. This Ross Sea bottom layer observed in March, 2014, on P16S continued to warm, with a monotonic increase over the 4 WOCE/GO-SHIP surveys thus far: 1992, 2005, 2011, and now 2014 (see Figure). Deep temperature has increased by 0.1°C since 1992, continuing the trend of enhanced global ocean deep warming in the Southern Ocean documented by Purkey/Johnson (2010) and IPCC AR5 WG1. The abyssal central Ross Sea waters also continued to freshen slightly. The upper ocean in the Ross Sea warmed, became more stratified, had higher nutrients and total carbon, and was less ventilated in terms of apparent oxygen utilization than in 2005. North of the Antarctic Circumpolar Current along 150W, the upper ocean's Subantarctic Mode Water became saltier, also continuing the subtropical trend of the past several decades (Durack/Wijffels 2010), with an apparently stronger incursion of saline subtropical waters that render it more salt and temperature stratified, ruling out a local deep mixed layer formation mechanism, with an increasing tendency towards double diffusive processes. The Antarctic Intermediate Water salinity minimum continued to freshen. The arrival in 2014 of CFC's at the ocean bottom between 32S and 40S indicates that the Antarctic Bottom Water there is about 40-50 years old. CFCs in the ocean's surface layer decreased, in

  16. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  17. Astronomically-induced Mid-Brunhes Transition in the Southern and Deep Oceans

    NASA Astrophysics Data System (ADS)

    Yin, Qiuzhen

    2013-04-01

    The interglacials after 430 ka (ka: 1000 years) ago were characterized by warmer climates and higher atmospheric CO2 concentrations than the interglacials before, but the cause of this climatic transition (the so-called Mid-Brunhes Event, MBE) is unknown. Based on model simulations, my results show that, in response to insolation changes only, feedbacks between sea ice, temperature, evaporation and salinity caused vigorous pre-MBE Antarctic Bottom Water formation and Southern Ocean ventilation. My results also show that strong Westerlies increased the pre-MBE overturning in the Southern Ocean via an increased latitudinal insolation gradient created by changes in eccentricity during austral winter and in obliquity during austral summer. The stronger bottom water formation led to a cooler deep ocean during the older interglacials. These insolation-induced differences in the deep-sea temperature and in the Southern Ocean ventilation between the more recent interglacials and the older ones were not expected, because there is no straightforward visible systematic difference in the astronomical parameters between the interglacials before and after 430 ka ago. Rather than being a real "event", the apparent MBE (i.e. the difference in the interglacial intensity before and after 430 ka BP) appears in my results to come from the complex response of the climate system to the astronomical and insolation forcings prevailing before and after 430 ka BP. This does not mean that nothing could have happened between MIS-13 and MIS-11 which might have amplified such difference. Given the important roles of the Southern and Deep Oceans on the carbon cycle, these findings are a first step towards understanding the magnitude change of the interglacial CO2 concentration around 430 ka. Reference: Yin Q.Z., 2013. Insolation-induced Mid-Brunhes Transition in the Southern and Deep Oceans. Nature, DOI 10.1038/nature11790. Acknowledgement: This work is supported by the European Research Council

  18. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    PubMed

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate

  19. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing

    PubMed Central

    Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.

    2014-01-01

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an

  20. Antarctic science

    NASA Astrophysics Data System (ADS)

    Summerhayes, Colin

    Once upon a time, dinosaurs roamed Antarctica and swam in its seas. Since then, life evolved as the climate cooled into the ice ages. Life will no doubt continue to evolve there as the globe now warms. But nowadays, humans are having a profound and direct effect on life in Antarctica, the sub-Antarctic islands, and the surrounding Southern Ocean, which are being invaded by a wide range of alien species including microbes, algae, fungi, bryophytes, land plants, invertebrates, fish, birds, and mammals.

  1. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean.

    PubMed

    Samaran, Flore; Stafford, Kathleen M; Branch, Trevor A; Gedamke, Jason; Royer, Jean-Yves; Dziak, Robert P; Guinet, Christophe

    2013-01-01

    Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp) are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four "acoustic populations" occur. Three of these are pygmy blue whale (B.m. brevicauda) populations while the fourth is the Antarctic blue whale (B.m. intermedia). Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds. PMID:23967221

  2. Effects of Drake Passage widening during the Eocene-Oligocene Transition on Southern Ocean bulk sediment trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Elsworth, G.; Galbraith, E. D.; Halverson, G. P.

    2013-12-01

    Presently, the Southern Ocean provides three-quarters of the global nutrient supply to the low latitude surface ocean (Sarmiento et al. 2004; Palter et al. 2010). In this region the removal of nutrients by sinking organic matter is exceeded by wind-driven upwelling of remineralized nutrients along the Antarctic Circumpolar Current (ACC). The excess nutrients are then advected across the ACC into Subantarctic Mode Water (SAMW), a water mass that transfers the unutilized Southern Ocean nutrients to low-latitude upwelling regions (Toggweiler et al. 1991). However, prior to the opening of the Drake Passage near the Eocene-Oligocene Transition (EOT) the ACC did not exist, suggesting a change in nutrient dynamics of the Southern Ocean. Earth system model simulations by Yang et al. 2013 suggest that as the Drake Passage opened, the supply of southern nutrients would have increased, possibly amplifying iron limitation and increasing oxygenation of the deep Southern Ocean. These results indicate that different surface nutrient return pathways in the pre- and post-Drake Passage Southern Ocean may have changed nutrients available to phytoplankton. To assess geological records of these model predictions, Integrated Ocean Drilling Program (IODP) Sites 689 and 1090 have been sampled at 15 to 50 kyr intervals from 31 to 37 Ma. Site 689, located on Maud Rise in the Weddell Sea, and Site 1090, located on Agulhas Ridge in the Southern Atlantic, provide a crucial transect across the Atlantic Sector of the Southern Ocean to examine the influence of the developing ACC on ocean circulation. Bulk sediment trace element analyses using inductively coupled plasma optical emission spectrometry (ICP OES) provide indications of biological surface export (Ca, Ba), deep-water oxygenation (U, Mo, Mn), and dust influx (Th, Rb). Results will be presented at the meeting.

  3. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J. G.; de Baar, H. J. W.; Middag, R.; Vance, D.; Zhao, Y.; Klunder, M.; Mezger, K.; Feldmann, H.; Andreae, M. O.

    2014-02-01

    We present depth profiles of Cd isotopes and concentrations from the Southern Ocean at four stations in the Atlantic sector along the Greenwich Meridian (47°S to 68°S) located across the main Antarctic frontal zones and productivity belt. The vertical profiles of Cd concentration typically show low values in surface waters, elevated values at intermediate depths, reflecting remineralization of sinking particulate organic matter, and constant values in deep waters. The surface-to-deep isotopic gradient shows “heavy” Cd isotope signatures in the mixed surface layer, becoming more pronounced northward, with values up to ɛ112/110Cd of around +4.1 in the Subantarctic sector of the Southern Ocean. Deep Antarctic waters display a uniform and “light” ɛ112/110Cd of +1.18 ± 0.38 and Cd concentrations of 0.761 ± 0.101 nmol/kg (n = 23, 2SD). Intermediate waters are characterized by ɛ112/110Cd lying between those of surface and deep waters, with a constant value of about +0.8 in the High Nutrient Low Chlorophyll sector and a notably higher value of +2.3 in the Subantarctic sector. The Cd isotope fractionation in the Southern Ocean closely follows a simple closed-system Rayleigh model, in which biological uptake of Cd imparts the ɛ112/110Cd signature to the surface layer while that of deep waters is determined by the flux of regenerated isotopically-light Cd from sinking organic matter from the surface ocean and the degree of mixing of distinct water masses. The vertical gradient documented for Cd isotopes and nutrient ratios, along with the meridional gradient in surface waters, highlights the important role played by upwelling in the Southern Ocean in closing the meridional overturning circulation via the export of Antarctic intermediate and mode waters which have a distinctive chemical (low Cd:P) and Cd isotope (“heavy”) signature. The combined Cd-Zn isotope systematics provide evidence for a strong link between the magnitude of biological Cd stable

  4. Planktonic foraminiferal biogeography in the Indian sector of the Southern Ocean: Contribution from CPR data

    NASA Astrophysics Data System (ADS)

    Meilland, Julie; Fabri-Ruiz, Salomé; Koubbi, Philippe; Monaco, Claire Lo; Cotte, Cédric; Hosie, Graham W.; Sanchez, Sophie; Howa, Hélène

    2016-04-01

    Within the framework of the Scientific Committee on Antarctic Research (SCAR) Southern Ocean-Continuous Plankton Recorder (SO-CPR) Survey, the oceanic regions around Crozet and Kerguelen Islands were investigated in February-March 2013. Living planktonic Foraminifera (LPF) were collected in the upper mixed layer with a CPR along a 2160 nautical mile sea transect that crossed main hydrological fronts in the Indian sector of the Southern Ocean. In the SO-CPR database, mean total abundances of Foraminifera occurring during late austral summer are highly variable at an inter-annual scale, from 10 to 250 ind.m-3, representing 10-40% of the total zooplankton abundance, respectively. In the Southern Ocean, major inter-annual changes in zooplankton community structure were already reported. In this study, we describe the large scale distributional pattern of individual planktonic foraminiferal species living in near-surface waters of the Indian sector of the Southern Ocean, and we attempt to explain why major spatial variability in relative species abundances occurs during a late austral summer. In February-March 2013, LPF total abundances recorded between 42.86°S and 56.42°S ranged from 0 to a maximum of 258 ind.m-3. In the Open Ocean Zone, the LPF community was composed of four major species (Globigerinita uvula, Neogloboquadrina pachyderma, Neogloboquadrina incompta, Globigerina bulloides). Generally, LPF total abundances are supposed to mirror primary production induced by hydrological fronts or induced by topography near Crozet and Kerguelen Islands. However, during late austral summer 2013, high foraminiferal abundances in the upper mixed layer did not always match the pattern of near-surface primary production (high Chl-a concentration areas delineated from satellite imagery). Low LPF standing stocks in late austral summer in the Southern Ocean contrasted with the presence of high densities of heavily silicified diatoms. This suggests that the late bloom

  5. Subduction of SAMW/AAIW in the Upper Cell of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Sallee, J.; Speer, K.; Rintoul, S.; Wijffels, S.

    2008-12-01

    The intensity and location of the upper overturning cell in the Southern Ocean is uncertain, for instance if the cell is associated with subduction centered on the Subantarctic Front or the Polar Front. Argo data provide a new view of the Southern Ocean interior and allow for the first time to resolve the seasonal cycle of the upper ocean. This new dataset is used to revisit the role of the mean flow in subducting water masses in the vicinity of the Antarctic Circumpolar Current. New eddy diffusivity estimates are also used to revise the main balances of the 2-d overturning cell, and it is found that horizontal buoyancy mixing plays an important role near the main fronts of the ACC. The new estimate of kappa allows us to also revisit the estimate of the eddy induced advection through the parameterization of Gent and McWilliam (1990). Eddy diffusivity in the Southern Ocean has been estimated from several approaches in order to quantify the role of eddies on mixed layer heat and mass budgets, and to revisit the role of eddies on the upper cell of the meridional overturning circulation. We find 2 main convergences of the 2-d upper cell in the ACC, associated with AAIW and SAMW subduction. The eddy induced advection tends to balance the subduction induced by Ekman and lateral geostrophic induction. We also investigate the regional patterns of the subduction along the circumpolar belt.

  6. Effects of whaling on the structure of the Southern Ocean food web: insights on the "krill surplus" from ecosystem modelling.

    PubMed

    Surma, Szymon; Pakhomov, Evgeny A; Pitcher, Tony J

    2014-01-01

    The aim of this study was to examine the ecological plausibility of the "krill surplus" hypothesis and the effects of whaling on the Southern Ocean food web using mass-balance ecosystem modelling. The depletion trajectory and unexploited biomass of each rorqual population in the Antarctic was reconstructed using yearly catch records and a set of species-specific surplus production models. The resulting estimates of the unexploited biomass of Antarctic rorquals were used to construct an Ecopath model of the Southern Ocean food web existing in 1900. The rorqual depletion trajectory was then used in an Ecosim scenario to drive rorqual biomasses and examine the "krill surplus" phenomenon and whaling effects on the food web in the years 1900-2008. An additional suite of Ecosim scenarios reflecting several hypothetical trends in Southern Ocean primary productivity were employed to examine the effect of bottom-up forcing on the documented krill biomass trend. The output of the Ecosim scenarios indicated that while the "krill surplus" hypothesis is a plausible explanation of the biomass trends observed in some penguin and pinniped species in the mid-20th century, the excess krill biomass was most likely eliminated by a rapid decline in primary productivity in the years 1975-1995. Our findings suggest that changes in physical conditions in the Southern Ocean during this time period could have eliminated the ecological effects of rorqual depletion, although the mechanism responsible is currently unknown. Furthermore, a decline in iron bioavailability due to rorqual depletion may have contributed to the rapid decline in overall Southern Ocean productivity during the last quarter of the 20th century. The results of this study underscore the need for further research on historical changes in the roles of top-down and bottom-up forcing in structuring the Southern Ocean food web. PMID:25517505

  7. Comparisons of The Habitat Utilization Of Top Predators In The Southern Ocean And The North Pacific

    NASA Astrophysics Data System (ADS)

    Costa, D. P.; Robinson, P.; Huckstadt, L. E.; Crocker, D. E.; Goebel, M. E.

    2010-12-01

    Northern and Southern elephant seals (Mirounga angustirostris, M. leonina) separated some 4 MYA. While these congeners are physiologically very similar and thus have the potential to forage in similar ways they inhabit very different habitats. While southern elephant seals (SES) are distributed throughout the southern ocean, northern elephant seals (NES) are limited to the Northeast Pacific Ocean and range over lower latitudes than SES. In order to compare and contrast the physiological capability and response to different habitats we compared the foraging behavior of 167 adult female northern elephant seals (Año Nuevo and San Benitos Islands) and 55 southern elephant seals (Livingston Island, Antarctic Peninsula) using satellite telemetry and dive recorders. As expected both species carried out very similar dive depths (NES 509m ± 166 vs SES 345m±79) and dive durations (NES 23.0 min ± 6.7; SES 22.5 min ± 5.0). However, there were significant differences in their foraging pattern that we attribute to differences in the availability of continental shelf and suitable foraging habitat. While 85% of NES females foraged offshore, the dominant strategy for SES was benthic foraging on the continental shelf. Even with the differences in habitat, the fundamental components of their foraging patterns remained the same as when they foraged pelagically they both species relied on persistent large scale oceanographic features where mixing enhances productivity such as the North Pacific Transition zone (NES) and the Southern Antarctic Circumpolar Current Front (SES). Given the very different habitats and prey species consumed by these two species their overall foraging behavior is surprisingly similar suggesting that as a mesopelagic predator the elephant seal design is rather robust.

  8. The development of Antarctic katabatic winds and implications for the coastal ocean

    SciTech Connect

    Davis, A.M.J.; McNider, R.T.

    1997-05-01

    The influence of katabatic winds on the Antarctic coastal waters is examined by using simple models of the ocean and atmosphere. A katabatic flow model incorporating Coriolis dynamics is solved analytically and another with nonlinear friction is solved numerically to provide wind stress to a two-layer coastal ocean model. The resulting solutions are evidently the first to incorporate Coriolis terms with a thermodynamic equation that includes compressional warming effects. The emphasis in this paper is on delineating the parameters that control the relative adjustment of the katabatic wind into alongshore and offshore components. By including nonlinear friction, it is shown that steeper slopes and weaker stratification tend to direct the wind more toward the ocean. It is further demonstrated that the katabatic forcing supports the strong polar easterlies (winds from the east) along the periphery of the continent and that the offshore extent should be dependent on the atmospheric Rossby deformation radius. The ocean model shows that significant downwelling occurs at the coast, while upwelling is predicted at a distance of the order of the ocean Rossby radius. An alongshore coastal jet from the east is found in the model and is evidently the manifestation of the east wind drift. The upwelling offshore may be a significant aspect of polynya formation and maintenance of the Antarctic divergence zone and contribute to the biological productivity of the region. 19 refs., 6 figs., 2 tabs.

  9. Bathymetric distribution patterns of Southern Ocean macrofaunal taxa: Bivalvia, Gastropoda, Isopoda and Polychaeta

    NASA Astrophysics Data System (ADS)

    Brandt, Angelika; Linse, Katrin; Schüller, Myriam

    2009-11-01

    The aim of this study is to compare the depth distributions of four major Southern Ocean macrobenthic epi- and infaunal taxa, the Bivalvia, Gastropoda, Isopoda, and Polychaeta, from subtidal to abyssal depth. All literature data up to summer 2008, as well as the unpublished data from the most recent ANDEEP I-III (Antarctic benthic deep-sea biodiversity: colonisation history and recent community patterns) expeditions to the Southern Ocean deep sea are included in the analysis. Benthic invertebrates in the Southern Ocean are known for their wide bathymetric ranges. We analysed the distributions of four of the most abundant and species-rich taxa from intertidal to abyssal (5200 m) depths in depth zones of 100 m. The depth distributions of three macrofaunal classes (Bivalvia, Gastropoda, Polychaeta) and one order (Isopoda) showed distinct differences. In the case of bivalves, gastropods and polychaetes, the number of species per depth zone decreased from the shelf to the slope at around 1000 m depth and then showed stable low numbers. The isopods showed the opposite trend; they were less species rich in the upper 1000 m but increased in species numbers from the slope to bathyal and abyssal depths. Depth ranges of families of the studied taxa (Bivalvia: 31 families, Gastropoda: 60, Isopoda: 32, and Polychaeta: 46 families) were compiled and illustrated. At present vast areas of the deep sea in the Southern Ocean remain unexplored and species accumulation curves showed that only a fraction of the species have been discovered to date. We anticipate that further investigations will greatly increase the number of species known in the Southern Ocean deep sea.

  10. Sea ice and the ocean mixed layer over the Antarctic shelf seas

    NASA Astrophysics Data System (ADS)

    Petty, A. A.; Holland, P. R.; Feltham, D. L.

    2013-08-01

    An ocean mixed layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (> 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions (leading to HSSW formation) and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface power input to the mixed layer, we show that the freshwater flux from sea ice growth/melt dominates the evolution of the mixed layer in all seas, with a smaller contribution from the surface heat flux. The Weddell and Ross shelf seas receive an annual surplus of energy at the surface, the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer, and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the temporal and spatial correlations between the autumn/winter mixed layer power input and several atmospheric variables. The temporal mean Weddell and Ross autumn/winter power input shows stronger spatial correlation to several atmospheric variables compared to the Amundsen and Bellingshausen. In contrast the spatial mean autumn/winter power input shows stronger

  11. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    PubMed Central

    Shadwick, E. H.; Trull, T. W.; Thomas, H.; Gibson, J. A. E.

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 μmol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation. PMID:23903871

  12. Vulnerability of polar oceans to anthropogenic acidification: comparison of arctic and antarctic seasonal cycles.

    PubMed

    Shadwick, E H; Trull, T W; Thomas, H; Gibson, J A E

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 μmol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation. PMID:23903871

  13. The reinvigoration of the Southern Ocean carbon sink

    NASA Astrophysics Data System (ADS)

    Landschützer, Peter; Gruber, Nicolas; Haumann, F. Alexander; Rödenbeck, Christian; Bakker, Dorothee C. E.; van Heuven, Steven; Hoppema, Mario; Metzl, Nicolas; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wanninkhof, Rik

    2015-09-01

    Several studies have suggested that the carbon sink in the Southern Ocean—the ocean’s strongest region for the uptake of anthropogenic CO2 —has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.

  14. Pairwise surface drifter separation in the western Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Waterman, Stephanie; Barthel, Alice; Lumpkin, Rick; Keating, Shane R.; Fogwill, Chris; Turney, Chris

    2015-10-01

    The Southern Ocean plays a critical role in global climate, yet the mixing properties of the circulation in this part of the ocean remain poorly understood. Here dispersion in the vicinity of the Southern Antarctic Circumpolar Current Front, one of the branches of the Antarctic Circumpolar Current, is studied using 10 pairs of surface drifters deployed systematically across the frontal jet and its flanks. Drifter pairs were deployed with an initial separation of 13 m and report their position every hour. The separation of the pairs over 7 months, in terms of their Finite-Scale Lyapunov Exponents (FSLE), dispersion, and diffusivity, is characterized and related to expected behavior from Quasi-Geostrophic (QG) and Surface Quasi-Geostrophic (SQG) theories. The FSLE analysis reveals two submesoscale regimes, with SQG-like behavior at scales below 3.2 km and mixed QG/SQG behavior at scales between 3.2 and 73 km. The dispersion analysis, however, suggests QG-like behavior for the smallest scales. Both dispersion and diffusivity appear isotropic for scales up to 500 km. Finally, there is no clear indication of a cross-jet variation of drifter dispersion.

  15. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Reilly, S.; Hedley, S.; Borberg, J.; Hewitt, R.; Thiele, D.; Watkins, J.; Naganobu, M.

    2004-06-01

    Baleen whales are an important group of predators on Antarctic krill in the Southern Ocean. During the CCAMLR 2000 Survey to estimate the biomass and distribution of Antarctic krill, International Whaling Commission observers carried out a visual line transect survey to estimate the number of baleen whales occurring in the survey area. This paper reviews techniques used to estimate krill consumption by baleen whales and in combination with estimates of whale abundance estimates of krill consumption are generated for the South Atlantic sector of the Southern Ocean. This survey estimates that the present populations of whales feeding in this region are likely to consume approximately 1.6 million tonnes, but possibly up to as much as 2.7 million tonnes of krill within the summer season. Although this only represents 4-6% of the estimated krill biomass in the region (and probably less than this percentage of the total annual krill production), the depleted numbers of baleen whales resulting from past or current whaling activities should be taken into account when setting quotas for the commercial exploitation of krill if there is to be a recovery to pre-exploitation biomass levels of baleen whales.

  16. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  17. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  18. Exploring the southern ocean response to climate change

    NASA Technical Reports Server (NTRS)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  19. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Abernathey, Ryan P.; Cerovecki, Ivana; Holland, Paul R.; Newsom, Emily; Mazloff, Matt; Talley, Lynne D.

    2016-08-01

    Ocean overturning circulation requires a continuous thermodynamic transformation of the buoyancy of seawater. The steeply sloping isopycnals of the Southern Ocean provide a pathway for Circumpolar Deep Water to upwell from mid depth without strong diapycnal mixing, where it is transformed directly by surface fluxes of heat and freshwater and splits into an upper and lower branch. While brine rejection from sea ice is thought to contribute to the lower branch, the role of sea ice in the upper branch is less well understood, partly due to a paucity of observations of sea-ice thickness and transport. Here we quantify the sea-ice freshwater flux using the Southern Ocean State Estimate, a state-of-the-art data assimilation that incorporates millions of ocean and ice observations. We then use the water-mass transformation framework to compare the relative roles of atmospheric, sea-ice, and glacial freshwater fluxes, heat fluxes, and upper-ocean mixing in transforming buoyancy within the upper branch. We find that sea ice is a dominant term, with differential brine rejection and ice melt transforming upwelled Circumpolar Deep Water at a rate of ~22 × 106 m3 s-1. These results imply a prominent role for Antarctic sea ice in the upper branch and suggest that residual overturning and wind-driven sea-ice transport are tightly coupled.

  20. Life cycle strategies of epipelagic copepods in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Atkinson, Angus

    1998-06-01

    Twelve epipelagic copepod species were reviewed to compare their adaptations to the short primary production season and low temperatures which characterise the Southern Ocean. The species show a spectrum of adaptations, but three broad life cycle strategies were defined: (1) herbivorous in summer, a short reproductive period and winter diapause at depth ( Calanoides acutus and possibly Ctenocalanus citer); (2) predominantly omnivorous/detritivorous diet, an extended period of feeding, growth and reproduction and less reliance on diapause at depth ( Metridia gerlachei, Calanus propinquus, Calanus simillimus, Oithona similis, Microcalanus pygmaeus, and possibly Oncaea curvata and Oithona frigida); (3) overwintering and feeding within sea ice as early nauplii or copepodids ( Stephos longipes and Paralabidocera antarctica). The large species Rhincalanus gigas appears to be intermediate between strategies (1) and (2). Contrasting species from groups (1) and (2), namely C. acutus and O. similis, were selected for more detailed comparison. For C. acutus, maximum (probably food saturated) feeding and egg production rates are well below equivalent values for Calanus spp. at lower latitudes. Likewise, summer growth and moulting rates are slower, and the growth season of this herbivore is only 2-4 months. Therefore, both the low summer temperatures and short primary production season seem to dictate a long (˜1 year) life cycle for C. acutus. A collation of data on O. similis revealed that its abundance increases about tenfold from the Antarctic shelf northwards to the Polar Frontal Zone, where abundances are similar to those in temperate and tropical shelf seas. In contrast to C. acutus, O. similis appears to remain in the epipelagic and reproduce there year-round, although the food sources which sustain this are still uncertain.

  1. Latitudinal exposure to DDTs, HCB, PCBs, PBDEs and DP in giant petrels (Macronectes spp.) across the Southern Ocean.

    PubMed

    Roscales, Jose L; González-Solís, Jacob; Zango, Laura; Ryan, Peter G; Jiménez, Begoña

    2016-07-01

    Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrels (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ(13)C and δ(15)N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ(13)C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic predators to emerging

  2. Hafnium and neodymium isotope composition of seawater and filtered particles from the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Stichel, T.; Frank, M.; Haley, B. A.; Rickli, J.; Venchiarutti, C.

    2009-12-01

    Radiogenic hafnium (Hf) and neodymium (Nd) isotopes have been used as tracers for past continental weathering regimes and ocean circulation. To date, however, there are only very few data available on dissolved Hf isotope compositions in present-day seawater and there is a complete lack of particulate data. During expedition ANTXXIV/3 (February to April 2008) we collected particulate samples (> 0.8 µm), which were obtained by filtrations of 270-700 liters of water. The samples were separated from the filters, completely dissolved, and purified for Nd and Hf isotope determination by TIMS and MC-ICPMS, respectively. In addition, we collected filtered (0.45 µm) seawater samples (20-120 liters) to determine the dissolved isotopic composition of Hf and Nd. The Hf isotope composition of the particulate fraction in the Drake Passage ranged from 0 to -28 ɛHf and is thus similar to that observed in core top sediments from the entire Southern Ocean in a previous study. The most unradiogenic and isotopically homogenous Hf isotope compositions in our study were found near the Antarctic Peninsula. Most of the stations north of the Southern Antarctic Circumpolar Front (SACC) show a large variation in ɛHf between 0 and -23 within the water column of one station and between the stations. The locations at which these Hf isotope compositions were measured are mostly far away from the potential source areas. Nd, in contrast, was nearly absent throughout the entire sample set and the only measurable ɛNd data ranged from 0 to -7, which is in good agreement with the sediment data in that area. The dissolved seawater isotopic compositions of both Hf and Nd show only minor variance (ɛHf = 4.2 to 4.7 and ɛNd = -8.8 to -7.6, respectively). These patterns in Hf isotopes and the nearly complete absence of Nd indicates that the particulate fraction does not contain a lot of terrigeneous material but is almost entirely dominated by biogenic opal. The homogenous and relatively radiogenic

  3. The Southern Ocean FINEstructure project: Turbulent dissipation and mixing rates and mechanisms in a Southern Ocean mixing hotspot.

    NASA Astrophysics Data System (ADS)

    Waterman, S.; Naveira Garabato, A. C.; Polzin, K. L.

    2012-04-01

    The Southern Ocean FINE structure project is an observational field study designed to investigate various mechanisms of ocean mixing and the roles that they play in the larger-scale circulation in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The region is potentially of special significance to closing both the Southern Ocean overturning circulation and the momentum budget of ACC. By presenting both a large-scale topographic obstacle and small-scale topographic roughness in the path of multiple ACC jets, it is a likely site for both enhanced adiabatic and diabatic mixing processes. We present the first results of the project which relate to the rates and mechanisms of turbulent energy dissipation and turbulent mixing in the region. From the first-ever full-depth microstructure measurements in the Southern Ocean, we map the observed turbulent kinetic energy dissipation and diapycnal mixing rates in this mixing hotspot. We next explore some of the physical mechanisms that observations and theory suggest may underpin the observed distributions. This exploration leads us to a characterization of the internal wave field in the region, and a study of some of the processes related to its generation, evolution and eventual dissipation. Results show that the observed turbulent energy dissipation and mixing rates are highly spatially variable. Systematic structure with depth and proximity to rough topography suggest a link with the local internal wave field, which can be characterized as consisting of near-inertial waves propagating from the surface downwards and higher frequency internal waves potentially sourced at the bottom propagating upwards, both being modified by a background shear as they propagate. Turbulent dissipation is high in regions where internal wave energy is high, however, the rates of turbulent dissipation and mixing are, in key places, generally lower than anticipated from the observed internal wave energy

  4. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.

    PubMed

    Merico, Agostino; Tyrrell, Toby; Wilson, Paul A

    2008-04-24

    One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary (approximately 34 million years ago). This climate transition was accompanied by a deepening of the calcite compensation depth--the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle, rather than changes in continental configuration, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater delta13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era. PMID:18432242

  5. Warm ocean is eroding West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Shepherd, Andrew; Wingham, Duncan; Rignot, Eric

    2004-12-01

    Satellite radar measurements show that ice shelves in Pine Island Bay have thinned by up to 5.5 m yr-1 over the past decade. The pattern of shelf thinning mirrors that of their grounded tributaries - the Pine Island, Thwaites and Smith glaciers - and ocean currents on average 0.5°C warmer than freezing appear to be the source. The synchronised imbalance of the inland glaciers is the result of reduced lateral and basal tractions at their termini, and the drawdown of grounded ice shows that Antarctica is more sensitive to changing climates than was previously considered.

  6. The Leading Modes of Decadal SST Variability in the Southern Ocean in CMIP5 Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Dommenget, Dietmar

    2016-04-01

    The leading modes of Sea Surface Temperature (SST) variability in the Southern Ocean on decadal and even larger time scales are analysed using Coupled Model Intercomparison Project 5 (CMIP5) model simulations and observations. We compare the modes from the CMIP5 super ensemble against several simple null hypotheses, such as isotropic diffusion (red noise) and a Slab Ocean model, to investigate the sources of decadal variability and the physical processes affecting the characteristics of the modes. The results show three main modes in the Southern Ocean: the first and most dominant mode on interannual to decadal time scales is an annular mode with largest amplitudes in the Pacific, which is strongly related to atmospheric forcing by the Southern Annular Mode (SAM) and El Nino Southern Oscillation (ENSO). The second mode is an almost basin wide monopole pattern, which has pronounced multi-decadal and longer time scales variability. It is firstly inducted by the Wave-3 patterns in the atmosphere and further developed via ocean dynamics. The third mode is a dipole pattern in the southern Pacific that has a pronounced peak in the power spectrum at multi-decadal time scales. All three leading modes found in the CMIP5 super model have distinct patterns and time scale behaviour that can not be explained by simple stochastic null hypothesis, thus all three leading modes are ocean-atmospheric coupled modes and are likely to be substantially influenced or driven by ocean dynamical processes. The mechanism of the basin-wide mode is further analysed based on a series of idealized experiments. The results show that the monopole mode has a two-step power spectrum, with a first spectral increase on interannual time scale and a second higher up level on the multi-decadal to centennial time scales. Ocean dynamics, especially the ocean advection, transport the anomalous signals, connect the entire ocean and lead to the homogeneous-like spatial pattern even under stochastic

  7. The response of the West Antarctic Ice Sheet to ocean warming beneath the Filchner Ronne Ice Shelf

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph; Thoma, Malte

    2015-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet (WAIS) is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf (FRIS) within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the sensitivity of the ice dynamics within the entire FRIS catchment to simulated future basal shelf melt rates. Our simulations indicate a high sensitivity of the ice dynamics for the Möller and the Institute Ice Stream but only very little response of other ice streams like Rutford, Foundation and Recovery Ice Stream to enhanced basal shelf melting. The grounding line between the Möller and Institute Ice Streams is located on a submarine ridge in front of a deep trough further inland. In this area, basal shelf melting causes a local thinning of the FRIS. The consequent initial retreat of the grounding line continues once it reaches the adjacent reverse-sloped bedrock. We state, that a possible 'point of no return' for a vast grounding line retreat along this steep reverse bedrock slope might have been crossed already even for simulated present-day melt rates, indicating that the WAIS is currently not in equlibrium. Furthermore, our simulations show an

  8. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.

    PubMed

    Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M

    2012-10-01

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078

  9. Effects of changing continuous iron input rates on a Southern Ocean algal assemblage

    NASA Astrophysics Data System (ADS)

    Hare, C. E.; DiTullio, G. R.; Riseman, S. F.; Crossley, A. C.; Popels, L. C.; Sedwick, P. N.; Hutchins, D. A.

    2007-05-01

    The upwelling of nutrients and iron (Fe) sustains biological production in much of the Southern Ocean. Using a shipboard natural community continuous culture system (Ecostat), we supplied a single added Fe concentration at two dilution rates chosen to examine the effects of variations in realistic growth and loss rates on an Fe-limited algal community in the Antarctic Zone south of Australia. A parallel growout experiment provided "no-dilution" +Fe and -Fe controls. In the continuous flow experiment, phytoplankton biomass was lower and more constant throughout the incubation and major nutrients were never depleted. Nanophytoplankton abundance remained similar in both growout treatments, and therefore, growth of this group did not appear to be Fe-limited. The addition of Fe in a continuous fashion resulted in a community co-dominated by both small diatoms and nanophytoplankton. Increases in dilution rate favored diatom species that were smaller and faster-growing, as well as non-silicified algal groups. Particulate carbon (PC) to particulate nitrogen (PN) ratios increased above the Redfield ratio when Fe was added in a continuous fashion, while biogenic silica (BSi) to PC and PN ratios decreased 2-3 fold in the continuous flow experiment compared to the initial conditions and the parallel growout control experiment. Photosynthetic efficiency increased in the continuous flow treatments above the control but remained significantly lower than in the 1.4 nM Fe addition. The results of our shipboard continuous flow experiments are compared and contrasted with those of the mesoscale Southern Ocean Iron RElease Experiment (SOIREE) carried out at the same site. Our results suggest that increases in natural dilution rates (i.e. vertical turbulent diffusion) in polar Antarctic waters could shift the algal community towards smaller, faster-growing algal species, thus having a major effect on nutrient cycling and carbon export in the Southern Ocean.

  10. An observing system simulation for Southern Ocean carbon dioxide uptake.

    PubMed

    Majkut, Joseph D; Carter, Brendan R; Frölicher, Thomas L; Dufour, Carolina O; Rodgers, Keith B; Sarmiento, Jorge L

    2014-07-13

    The Southern Ocean is critically important to the oceanic uptake of anthropogenic CO2. Up to half of the excess CO2 currently in the ocean entered through the Southern Ocean. That uptake helps to maintain the global carbon balance and buffers transient climate change from fossil fuel emissions. However, the future evolution of the uptake is uncertain, because our understanding of the dynamics that govern the Southern Ocean CO2 uptake is incomplete. Sparse observations and incomplete model formulations limit our ability to constrain the monthly and annual uptake, interannual variability and long-term trends. Float-based sampling of ocean biogeochemistry provides an opportunity for transforming our understanding of the Southern Ocean CO2 flux. In this work, we review current estimates of the CO2 uptake in the Southern Ocean and projections of its response to climate change. We then show, via an observational system simulation experiment, that float-based sampling provides a significant opportunity for measuring the mean fluxes and monitoring the mean uptake over decadal scales. PMID:24891388