Science.gov

Sample records for anthropogenic noise effects

  1. How anthropogenic noise affects foraging.

    PubMed

    Luo, Jinhong; Siemers, Björn M; Koselj, Klemen

    2015-09-01

    The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered. PMID:26046451

  2. Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats.

    PubMed

    Hage, Steffen R; Metzner, Walter

    2013-07-01

    We previously reported that band-pass filtered noise (BFN, bandwidth 20 kHz) affected the echolocation behavior of horseshoe bats in different ways depending on which frequencies within the bats' hearing range BFN was centered. We found that call amplitudes only increased when BFN was centered on the dominant frequency of the bats' calls. In contrast, call frequencies were shifted for all BFN stimuli centered on or below the dominant frequency of echolocation calls including when BFN was centered at 20 kHz (BFN20), which is far below the range of the bats' echolocation call frequencies. In the present study we focused on masking effects of BFN20 and used it as a model stimulus for anthropogenic noise to investigate how this noise affected call parameters of echolocation calls, such as their frequency, amplitude, duration and rate. We show that only call frequencies shifted in response to masking BFN20, whereas all other call parameters tested exhibited no noise-related changes. Our findings provide an empirical basis to quantitatively predict the impact of anthropogenic noise on echolocation behavior in bats. They also emphasize the need for a better understanding of the impact of anthropogenic noise on bioacoustic communication and orientation systems in general. PMID:23986811

  3. Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats

    PubMed Central

    Hage, Steffen R.; Metzner, Walter

    2013-01-01

    We previously reported that band-pass filtered noise (BFN, bandwidth 20 kHz) affected the echolocation behavior of horseshoe bats in different ways depending on which frequencies within the bats’ hearing range BFN was centered. We found that call amplitudes only increased when BFN was centered on the dominant frequency of the bats' calls. In contrast, call frequencies were shifted for all BFN stimuli centered on or below the dominant frequency of echolocation calls including when BFN was centered at 20 kHz (BFN20), which is far below the range of the bats’ echolocation call frequencies. In the present study we focused on masking effects of BFN20 and used it as a model stimulus for anthropogenic noise to investigate how this noise affected call parameters of echolocation calls, such as their frequency, amplitude, duration and rate. We show that only call frequencies shifted in response to masking BFN20, whereas all other call parameters tested exhibited no noise-related changes. Our findings provide an empirical basis to quantitatively predict the impact of anthropogenic noise on echolocation behavior in bats. They also emphasize the need for a better understanding of the impact of anthropogenic noise on bioacoustic communication and orientation systems in general. PMID:23986811

  4. Effects of anthropogenic noise on endocrine and reproductive function in White's treefrog, Litoria caerulea

    PubMed Central

    Kaiser, Kristine; Devito, Julia; Jones, Caitlin G.; Marentes, Adam; Perez, Rachel; Umeh, Lisa; Weickum, Regina M.; McGovern, Kathryn E.; Wilson, Emma H.; Saltzman, Wendy

    2015-01-01

    Urbanization is a major driver of ecological change and comes with a suite of habitat modifications, including alterations to the local temperature, precipitation, light and noise regimes. Although many recent studies have investigated the behavioural and ecological ramifications of urbanization, physiological work in this area has lagged. We tested the hypothesis that anthropogenic noise is a stressor for amphibians and that chronic exposure to such noise leads to reproductive suppression. In the laboratory, we exposed male White's treefrogs, Litoria caerulea, to conspecific chorus noise either alone or coupled with pre-recorded traffic noise nightly for 1 week. Frogs presented with anthropogenic noise had significantly higher circulating concentrations of corticosterone and significantly decreased sperm count and sperm viability than did control frogs. These results suggest that in addition to having behavioural and ecological effects, anthropogenic change might alter physiology and Darwinian fitness. Future work should integrate disparate fields such as behaviour, ecology and physiology to elucidate fully organisms’ responses to habitat change. PMID:27293682

  5. Anthropogenic noise affects behavior across sensory modalities.

    PubMed

    Kunc, Hansjoerg P; Lyons, Gillian N; Sigwart, Julia D; McLaughlin, Kirsty E; Houghton, Jonathan D R

    2014-10-01

    Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species using acoustic signals (i.e., species relying on signals that use the same sensory modality as anthropogenic noise). Yet many species use other sensory modalities, such as visual and olfactory signals, to communicate. However, we have only little understanding of whether changes in the acoustic environment affect species that use sensory modalities other than acoustic signals. We studied the impact of anthropogenic noise on the common cuttlefish Sepia officinalis, which uses highly complex visual signals. We showed that cuttlefish adjusted their visual displays by changing their color more frequently during a playback of anthropogenic noise, compared with before and after the playback. Our results provide experimental evidence that anthropogenic noise has a marked effect on the behavior of species that are not reliant on acoustic communication. Thus, interference in one sensory channel, in this case the acoustic one, affects signaling in other sensory channels. By considering sensory channels in isolation, we risk overlooking the broader implications of environmental changes for the behavior of animals. PMID:25226190

  6. Anthropogenic noise increases fish mortality by predation.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Nedelec, Sophie L; Ferrari, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    Noise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans. PMID:26847493

  7. Anthropogenic noise increases fish mortality by predation

    PubMed Central

    Simpson, Stephen D.; Radford, Andrew N.; Nedelec, Sophie L.; Ferrari, Maud C. O.; Chivers, Douglas P.; McCormick, Mark I.; Meekan, Mark G.

    2016-01-01

    Noise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans. PMID:26847493

  8. Impact of Anthropogenic Noise on Aquatic Animals: From Single Species to Community-Level Effects.

    PubMed

    Sabet, Saeed Shafiei; Neo, Yik Yaw; Slabbekoorn, Hans

    2016-01-01

    Anthropogenic noise underwater is on the rise and may affect aquatic animals of marine and freshwater ecosystems. Many recent studies concern some sort of impact assessment of a single species. Few studies addressed the noise impact on species interactions underwater, whereas there are some studies that address community-level impact but only on land in air. Key processes such as predator-prey or competitor interactions may be affected by the masking of auditory cues, noise-related disturbance, or attentional interference. Noise-associated changes in these interactions can cause shifts in species abundance and modify communities, leading to fundamental ecosystem changes. To gain further insight into the mechanism and generality of earlier findings, we investigated the impact on both a predator and a prey species in captivity, zebrafish (Danio rerio) preying on waterfleas (Daphnia magna). PMID:26611055

  9. Masking Experiments in Humans and Birds Using Anthropogenic Noises.

    PubMed

    Dooling, Robert J; Blumenrath, Sandra H

    2016-01-01

    This study investigated the masking of pure tones by anthropogenic noises in humans and birds. Bird experiments were conducted in the laboratory using operant conditioning and psychophysical procedures but with anthropogenic noises rather than white noise. Humans were tested using equivalent psychophysical procedures in the field with ambient background noise. Results show that for both humans and birds published critical ratios can be used to predict the masking thresholds for pure tones by these complex noises. Thus, the species' critical ratio can be used to estimate the effect of anthropogenic environmental noises on the perception of communication and other biologically relevant sounds. PMID:26610965

  10. Predicting Anthropogenic Noise Contributions to US Waters.

    PubMed

    Gedamke, Jason; Ferguson, Megan; Harrison, Jolie; Hatch, Leila; Henderson, Laurel; Porter, Michael B; Southall, Brandon L; Van Parijs, Sofie

    2016-01-01

    To increase understanding of the potential effects of chronic underwater noise in US waters, the National Oceanic and Atmospheric Administration (NOAA) organized two working groups in 2011, collectively called "CetSound," to develop tools to map the density and distribution of cetaceans (CetMap) and predict the contribution of human activities to underwater noise (SoundMap). The SoundMap effort utilized data on density, distribution, acoustic signatures of dominant noise sources, and environmental descriptors to map estimated temporal, spatial, and spectral contributions to background noise. These predicted soundscapes are an initial step toward assessing chronic anthropogenic noise impacts on the ocean's varied acoustic habitats and the animals utilizing them. PMID:26610977

  11. Peer-Reviewed Studies on the Effects of Anthropogenic Noise on Marine Invertebrates: From Scallop Larvae to Giant Squid.

    PubMed

    de Soto, Natacha Aguilar

    2016-01-01

    Marine invertebrates at the base of oceanic trophic webs play important ecological and economical roles supporting worldwide fisheries worth millions. There is an increasing concern about the effects of anthropogenic noise on marine fauna but little is known about its effects on invertebrates. Here the current peer-reviewed literature on this subject is reviewed, dealing with different ontogenetic stages and taxa. These studies show that the noise effects on marine invertebrates range from apparently null to behavioral/physiological responses to mortalities. They emphasize the need to consider potential interactions of human activities using intense sound sources with the conservation and fisheries of local invertebrate stocks. PMID:26610940

  12. Blue whales respond to anthropogenic noise.

    PubMed

    Melcón, Mariana L; Cummins, Amanda J; Kerosky, Sara M; Roche, Lauren K; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood. PMID:22393434

  13. The sperm whale sonar: Monitoring and use in mitigation of anthropogenic noise effects in the marine environment

    NASA Astrophysics Data System (ADS)

    André, Michel

    2009-04-01

    Noise pollution in the marine environment is an emerging but serious concern. Its implications are less well understood than other global threats and largely undetectable to everyone but the specialist. In addition, the assessment of the acoustic impact of artificial sounds in the sea is not a trivial task, certainly because there is a lack of information on how the marine organisms process and analyse sounds and how relevant these sounds are for the balance and development of the populations. Further, this possible acoustic impact not only concerns the hearing systems but may also affect other sensory or systemic levels and result equally lethal for the animal concerned. If we add that the negative consequences of a short or long term exposure to artificial sounds may not be immediately observed one can understood how challenging it is to obtain objective data allowing an efficient control of the introduction of anthropogenic sound in the sea. To answer some of these questions, the choice to investigate cetaceans and their adaptation to an aquatic environment is not fortuitous. Cetaceans, because of their optimum use of sound as an ad-hoc source of energy and their almost exclusive dependence on acoustic information, represent not only the best bio-indicator of the effects of noise pollution in the marine environment, but also a source of data to improve and develop human underwater acoustic technology. Here, we present how the characteristics and performance of the sperm whale mid-range biosonar can be used to develop a mitigation solution based on passive acoustics and ambient noise imaging to prevent negative interactions with human activities by monitoring cetacean movements in areas of interest, e.g. deep-sea observatories.

  14. Condition-dependent physiological and behavioural responses to anthropogenic noise.

    PubMed

    Purser, Julia; Bruintjes, Rick; Simpson, Stephen D; Radford, Andrew N

    2016-03-01

    Anthropogenic (man-made) noise, a global pollutant of international concern, is known to affect the physiology and behaviour of a range of organisms. However, experimental studies have tended to focus on trait means; intra-population variation in responses are likely, but have rarely been explored. Here we use established experimental methods to demonstrate a condition-dependent effect of additional noise. We show that juvenile European eels (Anguilla anguilla) in good condition do not respond differently to playbacks of ambient coastal noise and coastal noise with passing ships. By contrast, the additional noise of ship passes caused an increase in ventilation rate and a decrease in startling to a looming predatory stimulus in poor condition eels. Intra-population variation in responses to noise has important implications both for population dynamics and the planning of mitigation measures. PMID:26686756

  15. Anthropogenic noise affects song structure in red-winged blackbirds (Agelaius phoeniceus).

    PubMed

    Hanna, Dalal; Blouin-Demers, Gabriel; Wilson, David R; Mennill, Daniel J

    2011-11-01

    Anthropogenic noise can mask animal signals that are crucial for communicating information about food, predators and mating opportunities. In response to noise masking, signallers can potentially improve acoustic signal transmission by adjusting the timing, frequency or amplitude of their signals. These changes can be a short-term modification in response to transient noise or a long-term modification in response to chronic noise. An animal's ability to adapt to anthropogenic noise can be crucial to its success. In this study, we evaluated the effects of anthropogenic noise on the structure of red-winged blackbird song. First, we manipulated the presence of anthropogenic noise by experimentally broadcasting either silence or low-frequency white noise to subjects inhabiting quiet marshes located away from roadsides. Subjects exhibited increased signal tonality when temporarily exposed to low-frequency white noise, suggesting that red-winged blackbirds can alter their signals rapidly in response to sudden noise. Second, we compared songs produced in quiet marshes located away from roadsides with songs produced during quiet periods at roadside marshes that are normally noisy. This allowed us to test whether birds that are exposed to chronic anthropogenic noise exhibit altered song structure during temporarily quiet periods. Subjects residing in roadside marshes that are normally polluted with anthropogenic noise sang songs with increased tonality during quiet periods. Overall, our results show that anthropogenic noise influences the structure of birdsong. These effects should be considered in conservation and wildlife management. PMID:21993783

  16. Potential Uses of Anthropogenic Noise as a Source of Information in Animal Sensory and Communication Systems.

    PubMed

    Stansbury, Amanda; Deecke, Volker; Götz, Thomas; Janik, Vincent M

    2016-01-01

    Although current research on the impact of anthropogenic noise has focused on the detrimental effects, there is a range of ways by which animals could benefit from increased noise levels. Here we discuss two potential uses of anthropogenic noise. First, local variations in the ambient-noise field could be used to perceive objects and navigate within an environment. Second, introduced sound cues could be used as a signal for prey detection or orientation and navigation. Although the disadvantages of noise pollution will likely outweigh any positive effects, it is important to acknowledge that such changes may benefit some species. PMID:26611074

  17. United States Bureau of Ocean Energy Management, Regulation and Enforcement: filling data gaps to better understand the effects of anthropogenic noise on marine life.

    PubMed

    Lewandowski, Jill; Burkhard, Elizabeth; Skrupky, Kimberly; Epperson, Deborah

    2012-01-01

    Protecting the environment while ensuring the safe development of our Nation's offshore energy(from both renewable and traditional sources) and marine mineral resources is a critical part of the mission of the BOEMRE. The BOEMRE, as with all federal agencies, must consider the potential environmental impacts for every decision made. This includes understanding the potential for and degree of adverse effects that may result from the introduction of anthropogenic noise into the marine environment from BOEMRE-regulated industry sources. The ESP and the TAR Program are integral in helping the BOEMRE achieve this mission because the strength and quality of the environmental decision making can only be as good as the science supporting it. Cumulatively,these research programs help the BOEMRE pursue an adaptive and ecosystem-based approach to its stewardship responsibilities. PMID:22278565

  18. Is anthropogenic ambient noise in the ocean increasing?

    NASA Astrophysics Data System (ADS)

    McCarthy, Elena; Miller, James H.

    2002-11-01

    It is commonly accepted that the ocean's ambient noise levels are rising due to increased human activities in coastal and offshore areas. It has been estimated that low-frequency noise levels increased more than 10 dB in many parts of the world between 1950 and 1975. [Ross, Acoustics Bulletin, Jan/Feb (1993)]. Several other sources cite an increase in manmade, or anthropogenic, noise over the past few decades. [D. A. Croll et al., Animal Conservation 4(1) (2001); Marine Mammal Commission Report to Congress (1999); C. W. Turl, NOSC Tech. Report 776 (1982)]. However, there are few historical records of ambient noise data to substantiate these claims. This paper examines several sectors of anthropogenic activities to determine their contributions to ambient noise. These activities include shipping, oil and gas exploration, military sonar development, and academic research. A series of indices for each of these industries is developed to predict ambient noise trends in the sea. It is found that the amount of noise generated by individual activities may have decreased overall due to new technologies and improved efficiency even if the intensity of such activities has increased.

  19. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird.

    PubMed

    Engels, Svenja; Schneider, Nils-Lasse; Lefeldt, Nele; Hein, Christine Maira; Zapka, Manuela; Michalik, Andreas; Elbers, Dana; Kittel, Achim; Hore, P J; Mouritsen, Henrik

    2014-05-15

    Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50 kHz to 5 MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate. PMID:24805233

  20. Anthropogenic noise compromises antipredator behaviour in European eels.

    PubMed

    Simpson, Stephen D; Purser, Julia; Radford, Andrew N

    2015-02-01

    Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thresholds, communication, movement and foraging in a range of species. However, consequences for survival and reproductive success are difficult to ascertain. Using a series of laboratory-based experiments and an open-water test with the same methodology, we show that acoustic disturbance can compromise antipredator behaviour--which directly affects survival likelihood--and explore potential underlying mechanisms. Juvenile European eels (Anguilla anguilla) exposed to additional noise (playback of recordings of ships passing through harbours), rather than control conditions (playback of recordings from the same harbours without ships), performed less well in two simulated predation paradigms. Eels were 50% less likely and 25% slower to startle to an 'ambush predator' and were caught more than twice as quickly by a 'pursuit predator'. Furthermore, eels experiencing additional noise had diminished spatial performance and elevated ventilation and metabolic rates (indicators of stress) compared with control individuals. Our results suggest that acoustic disturbance could have important physiological and behavioural impacts on animals, compromising life-or-death responses. PMID:25098970

  1. Does Anthropogenic Noise in National Parks Impair Memory?

    ERIC Educational Resources Information Center

    Benfield, Jacob A.; Bell, Paul A.; Troup, Lucy J.; Soderstrom, Nick

    2010-01-01

    Research on noise shows that a variety of effects including stress, annoyance, and performance decrements exist for certain types of sounds. Noise interferes with cognitive ability by overloading the attentional system or simply distracting from efficient encoding or rehearsal, but very little research has extended those findings to recreation or…

  2. Vocal frequency change reflects different responses to anthropogenic noise in two suboscine tyrant flycatchers

    PubMed Central

    Francis, Clinton D.; Ortega, Catherine P.; Cruz, Alexander

    2011-01-01

    Anthropogenic noise is prevalent across the globe and can exclude birds from otherwise suitable habitat and negatively influence fitness; however, the mechanisms responsible for species' responses to noise are not always clear. One effect of noise is a reduction in effective acoustic communication through acoustic masking, yet some urban songbirds may compensate for masking by noise through altering their songs. Whether this vocal flexibility accounts for species persistence in noisy areas is unknown. Here, we investigated the influence of noise on habitat use and vocal frequency in two suboscine flycatchers using a natural experiment that isolated effects of noise from confounding stimuli common to urban habitats. With increased noise exposure, grey flycatcher (Empidonax wrightii) occupancy declined, but vocal frequency did not change. By contrast, ash-throated flycatcher (Myiarchus cinerascens) occupancy was uninfluenced by noise, but individuals in areas with greater noise amplitudes vocalized at a higher frequency, although the increase (≈200 kHz) may only marginally improve communication and may represent a secondary effect from increased vocal amplitude. Even so, the different flycatcher behavioural responses suggest that signal change may help some species persist in noisy areas and prompt important questions regarding which species will cope with an increasingly noisy world. PMID:21123268

  3. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    NASA Astrophysics Data System (ADS)

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-07-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.

  4. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    PubMed Central

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-01-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function. PMID:25080997

  5. Ecology of estuaries: Anthropogenic effects

    SciTech Connect

    Kennish, M.J.

    1992-01-01

    Estuaries and near-shore oceanic water are subjected to a multitude of human wastes. The principal objective of this book is to examine anthropogenic effects on estuaries, and it focuses primarily on contaminants in coastal systems. Covered within various chapters are the following topics: waste disposal strategies; definition and classification of pollutants (including organic loading, oil pollution, polynuclear aromatic hydrocarbons; chlorinated hydrocarbons; heavy metals; radionuclides) biological impacts; waste management; impacts of power plants; dredging and spoil disposal; case studies, primarily Chesapeake Bay. The book serves as a text and as a reference.

  6. Anthropogenic noise causes body malformations and delays development in marine larvae

    PubMed Central

    de Soto, Natacha Aguilar; Delorme, Natali; Atkins, John; Howard, Sunkita; Williams, James; Johnson, Mark

    2013-01-01

    Understanding the impact of noise on marine fauna at the population level requires knowledge about the vulnerability of different life-stages. Here we provide the first evidence that noise exposure during larval development produces body malformations in marine invertebrates. Scallop larvae exposed to playbacks of seismic pulses showed significant developmental delays and 46% developed body abnormalities. Similar effects were observed in all independent samples exposed to noise while no malformations were found in the control groups (4881 larvae examined). Malformations appeared in the D-veliger larval phase, perhaps due to the cumulative exposure attained by this stage or to a greater vulnerability of D-veliger to sound-mediated physiological or mechanical stress. Such strong impacts suggest that abnormalities and growth delays may also result from lower sound levels or discrete exposures during the D-stage, increasing the potential for routinely-occurring anthropogenic noise sources to affect recruitment of wild scallop larvae in natural stocks. PMID:24088868

  7. Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest.

    PubMed

    Bayne, Erin M; Habib, Lucas; Boutin, Stan

    2008-10-01

    The effects of human activities in forests are often examined in the context of habitat conversion. Changes in habitat structure and composition are also associated with increases in the activity of people with vehicles and equipment, which results in increases in anthropogenic noise. Anthropogenic noise may reduce habitat quality for many species, particularly those that rely on acoustic signals for communication. We compared the density and occupancy rate of forest passerines close to versus far from noise-generating compressor stations and noiseless well pads in the boreal forest of Alberta, Canada. Using distance-based sampling, we found that areas near noiseless energy facilities had a total passerine density 1.5 times higher than areas near noise-producing energy sites. The White-throated Sparrow (Zonotrichia albicollis), Yellow-rumped Warbler (Dendroica coronata), and Red-eyed Vireo (Vireo olivaceus) were less dense in noisy areas. We used repeat sampling to estimate occupancy rate for 23 additional species. Seven had lower conditional or unconditional occupancy rates near noise-generating facilities. One-third of the species examined showed patterns that supported the hypothesis that abundance is influenced by anthropogenic noise. An additional 4 species responded negatively to edge effects. To mitigate existing noise impacts on birds would require approximately $175 million. The merits of such an effort relative to other reclamation actions are discussed. Nevertheless, given the $100 billion energy-sector investment planned for the boreal forest in the next 10 years, including noise suppression technology at the outset of construction, makes noise mitigation a cost-effective best-management practice that might help conserve high-quality habitat for boreal birds. PMID:18616740

  8. The importance of invertebrates when considering the impacts of anthropogenic noise

    PubMed Central

    Morley, Erica L.; Jones, Gareth; Radford, Andrew N.

    2014-01-01

    Anthropogenic noise is now recognized as a major global pollutant. Rapidly burgeoning research has identified impacts on individual behaviour and physiology through to community disruption. To date, however, there has been an almost exclusive focus on vertebrates. Not only does their central role in food webs and in fulfilling ecosystem services make imperative our understanding of how invertebrates are impacted by all aspects of environmental change, but also many of their inherent characteristics provide opportunities to overcome common issues with the current anthropogenic noise literature. Here, we begin by explaining why invertebrates are likely to be affected by anthropogenic noise, briefly reviewing their capacity for hearing and providing evidence that they are capable of evolutionary adaptation and behavioural plasticity in response to natural noise sources. We then discuss the importance of quantifying accurately and fully both auditory ability and noise content, emphasizing considerations of direct relevance to how invertebrates detect sounds. We showcase how studying invertebrates can help with the behavioural bias in the literature, the difficulties in drawing strong, ecologically valid conclusions and the need for studies on fitness impacts. Finally, we suggest avenues of future research using invertebrates that would advance our understanding of the impact of anthropogenic noise. PMID:24335986

  9. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  10. A temporal and spatial analysis of anthropogenic noise sources affecting SNMR

    NASA Astrophysics Data System (ADS)

    Dalgaard, E.; Christiansen, P.; Larsen, J. J.; Auken, E.

    2014-11-01

    One of the biggest challenges when using the surface nuclear magnetic resonance (SNMR) method in urban areas is a relatively low signal level compared to a high level of background noise. To understand the temporal and spatial behavior of anthropogenic noise sources like powerlines and electric fences, we have developed a multichannel instrument, noiseCollector (nC), which measures the full noise spectrum up to 10 kHz. Combined with advanced signal processing we can interpret the noise as seen by a SNMR instrument and also obtain insight into the more fundamental behavior of the noise. To obtain a specified acceptable noise level for a SNMR sounding the stack size can be determined by quantifying the different noise sources. Two common noise sources, electromagnetic fields stemming from powerlines and fences are analyzed and show a 1/r2 dependency in agreement with theoretical relations. A typical noise map, obtained with the nC instrument prior to a SNMR field campaign, clearly shows the location of noise sources, and thus we can efficiently determine the optimal location for the SNMR sounding from a noise perspective.

  11. Applicability of Information Theory to the Quantification of Responses to Anthropogenic Noise by Southeast Alaskan Humpback Whales

    NASA Astrophysics Data System (ADS)

    Doyle, Laurance R.; McCowan, Brenda; Hanser, Sean F.; Chyba, Christopher; Bucci, Taylor; Blue, J. E.

    2008-06-01

    We assess the effectiveness of applying information theory to the characterization and quantification of the affects of anthropogenic vessel noise on humpback whale (Megaptera novaeangliae) vocal behavior in and around Glacier Bay, Alaska. Vessel noise has the potential to interfere with the complex vocal behavior of these humpback whales which could have direct consequences on their feeding behavior and thus ultimately on their health and reproduction. Humpback whale feeding calls recorded during conditions of high vessel-generated noise and lower levels of background noise are compared for differences in acoustic structure, use, and organization using information theoretic measures. We apply information theory in a self-referential manner (i.e., orders of entropy) to quantify the changes in signaling behavior. We then compare this with the reduction in channel capacity due to noise in Glacier Bay itself treating it as a (Gaussian) noisy channel. We find that high vessel noise is associated with an increase in the rate and repetitiveness of sequential use of feeding call types in our averaged sample of humpback whale vocalizations, indicating that vessel noise may be modifying the patterns of use of feeding calls by the endangered humpback whales in Southeast Alaska. The information theoretic approach suggested herein can make a reliable quantitative measure of such relationships and may also be adapted for wider application to many species where environmental noise is thought to be a problem.

  12. Different behavioural responses to anthropogenic noise by two closely related passerine birds

    PubMed Central

    Francis, Clinton D.; Ortega, Catherine P.; Cruz, Alexander

    2011-01-01

    Anthropogenic noise, now common to many landscapes, can impair acoustic communication for many species, yet some birds compensate for masking by noise by altering their songs. The phylogenetic distribution of these noise-dependent signal adjustments is uncertain, and it is not known whether closely related species respond similarly to noise. Here, we investigated the influence of noise on habitat occupancy rates and vocal frequency in two congeneric vireos with similar song features. Noise exposure did not influence occupancy rates for either species, yet song features of both changed, albeit in different ways. With increases in noise levels, plumbeous vireos (Vireo plumbeus) sang shorter songs with higher minimum frequencies. By contrast, grey vireos (Vireo vicinior) sang longer songs with higher maximum frequencies. These findings support the notion that vocal plasticity may help some species occupy noisy areas, but because there were no commonalities among the signal changes exhibited by these closely related birds, it may be difficult to predict how diverse species may modify their signals in an increasingly noisy world. PMID:21613284

  13. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  14. Documenting and Assessing Dolphin Calls and Ambient and Anthropogenic Noise Levels via PAM and a SPL Meter.

    PubMed

    Dudzinski, Kathleen M; Melillo-Sweeting, Kelly; Gregg, Justin D

    2016-01-01

    Song Meter SM2M marine recorders were deployed to document dolphin calls and ambient and anthropogenic noise. Recordings from Bimini were split into 2-h segments; no segment was without dolphin calls. At Dolphin Encounters, average noise levels ranged from 110 to 125 dB; the highest source level was 147.98 dB re 1 μPa at 1 m. Average ambient-noise levels documented at 4 sites in Guam were below 118 dB re 1 μPa at 1 m. These data were compared with values from a custom-built sound pressure level (SPL) meter and confirm that the SM2M recorder is a useful tool for assessing animal calls and ambient and anthropogenic noise levels. PMID:26610966

  15. Investigation of anthropogenic and natural noise at Bucovina and Plostina seismic arrays, Romania

    NASA Astrophysics Data System (ADS)

    Grecu, Bogdan; Borleanu, Felix; Neagoe, Cristian; Zaharia, Bogdan; Tataru, Dragos

    2016-04-01

    At present, two seismic arrays are installed on the Romanian territory and record continuously the ground motion and send the data in real time to the National Data Center, in Magurele, Romania. One array is located in the Northern part of the country, in Bucovina (BURAR array), while the second one (Plostina - PLOR array) is situated right above the Vrancea seismic nest, the region with the highest seismic activity in Romania. The BURAR array consists of ten stations with seismic sensors installed in boreholes at depths of 30 and 50 m, covering an area of 5x5 km2. Nine stations are equipped with GS21 short period vertical sensors and one station has a 3-component broadband sensor (KS54000). In 2008, three more 3-component broadband sensors (CMG-40T) were installed at surface; two of them collocated with existing sites and one in a different site. The PLOR array consists of 7 elements equipped with 3-component broadband sensors (CMG40T - 6 and STS2 - 1). The aperture of the array is 2.5 km, with a distance between inner elements of 250 m and 1100 m for the outer elements. We analyze the power spectral density of BURAR and PLOR arrays continuous records to characterize the temporal noise variations and investigate their influence on the detection capabilities for intermediate-depth earthquakes, occurred in Vrancea region, as well as for local crustal events produced in various places of the country. We also perform polarization and array specific analyses to identify the main sources of the high frequency noise and secondary microseisms. Diurnal variations caused by anthropogenic activities have been observed at all stations, but their significance depends strongly on the distance to the sources of the noise. For BURAR array, the maximum difference between nighttime and daytime noise levels is 25 dB, while for PLOR array we observe differences up to 42 dB. In the microseismic band, the noise variations are correlated well with the seasons and have their maximum

  16. Climatic and anthropogenic stress on water levels: basin-scale observations with seismic noise

    NASA Astrophysics Data System (ADS)

    Lecocq, Thomas; Pedersen, Helle; Brenguier, Florent; Stammler, Klaus

    2016-04-01

    Monitoring changes in shear wave velocities within the crust have become possible through recently developed techniques based on seismic noise analysis. In the present work we address the challenge of using these techniques for environmental monitoring at upper crustal level. Our work is based on data from the broadband Gräfenberg array (Germany) which was installed in 1976 and for which the continuous data acquired has been preserved until today. Using state of the art pre-processing and cross-correlation techniques (MSNoise), we computed daily cross-correlation functions (CCF) between 4 stations (6 pairs) of the Gräfenberg array over the period 1977-2007. The daily CCFs are then stacked to form an average CCF per month. Instead of doing classic "one versus reference" comparisons, the monthly CCFs are compared pairwise using Moving Window Cross-Spectral analysis (MWCS). In total, 387 720 MWCS have been computed between 20 s and 80 s lapse time to obtain relative velocity changes (dv/v). All dv/v are then inverted using a Bayesian weighted least square procedure. Depending on the smoothing weight used during the inversion, seasonal to long term trends can be evidenced. The results show clear and stable trends in the data. We present possible causes explaining these trends and abrupt changes of dv/v by showing modelled (GLDAS) and observed climatic data together with anthropogenic observables. A combination of climatic (warmer surface temperatures, less rainfall) and anthropogenic (more population, more irrigated land) factors are the most probable causes of the progressive relative increase of seismic velocities under the Gräfenberg array. We interpret these results as a progressive depletion of the water resources in the large karstified Malm reservoir (Late Jurassic) below the array.

  17. First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise.

    PubMed

    Miller, P J O; Kvadsheim, P H; Lam, F P A; Tyack, P L; Curé, C; DeRuiter, S L; Kleivane, L; Sivle, L D; van IJsselmuide, S P; Visser, F; Wensveen, P J; von Benda-Beckmann, A M; Martín López, L M; Narazaki, T; Hooker, S K

    2015-06-01

    Although northern bottlenose whales were the most heavily hunted beaked whale, we have little information about this species in its remote habitat of the North Atlantic Ocean. Underwater anthropogenic noise and disruption of their natural habitat may be major threats, given the sensitivity of other beaked whales to such noise disturbance. We attached dataloggers to 13 northern bottlenose whales and compared their natural sounds and movements to those of one individual exposed to escalating levels of 1-2 kHz upsweep naval sonar signals. At a received sound pressure level (SPL) of 98 dB re 1 μPa, the whale turned to approach the sound source, but at a received SPL of 107 dB re 1 μPa, the whale began moving in an unusually straight course and then made a near 180° turn away from the source, and performed the longest and deepest dive (94 min, 2339 m) recorded for this species. Animal movement parameters differed significantly from baseline for more than 7 h until the tag fell off 33-36 km away. No clicks were emitted during the response period, indicating cessation of normal echolocation-based foraging. A sharp decline in both acoustic and visual detections of conspecifics after exposure suggests other whales in the area responded similarly. Though more data are needed, our results indicate high sensitivity of this species to acoustic disturbance, with consequent risk from marine industrialization and naval activity. PMID:26543576

  18. First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise

    PubMed Central

    Miller, P. J. O.; Kvadsheim, P. H.; Lam, F. P. A.; Tyack, P. L.; Curé, C.; DeRuiter, S. L.; Kleivane, L.; Sivle, L. D.; van IJsselmuide, S. P.; Visser, F.; Wensveen, P. J.; von Benda-Beckmann, A. M.; Martín López, L. M.; Narazaki, T.; Hooker, S. K.

    2015-01-01

    Although northern bottlenose whales were the most heavily hunted beaked whale, we have little information about this species in its remote habitat of the North Atlantic Ocean. Underwater anthropogenic noise and disruption of their natural habitat may be major threats, given the sensitivity of other beaked whales to such noise disturbance. We attached dataloggers to 13 northern bottlenose whales and compared their natural sounds and movements to those of one individual exposed to escalating levels of 1–2 kHz upsweep naval sonar signals. At a received sound pressure level (SPL) of 98 dB re 1 μPa, the whale turned to approach the sound source, but at a received SPL of 107 dB re 1 μPa, the whale began moving in an unusually straight course and then made a near 180° turn away from the source, and performed the longest and deepest dive (94 min, 2339 m) recorded for this species. Animal movement parameters differed significantly from baseline for more than 7 h until the tag fell off 33–36 km away. No clicks were emitted during the response period, indicating cessation of normal echolocation-based foraging. A sharp decline in both acoustic and visual detections of conspecifics after exposure suggests other whales in the area responded similarly. Though more data are needed, our results indicate high sensitivity of this species to acoustic disturbance, with consequent risk from marine industrialization and naval activity. PMID:26543576

  19. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  20. Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird

    PubMed Central

    Rodríguez-Rocha, Manuel; Brumm, Henrik

    2016-01-01

    Birds in cities start singing earlier in the morning than in rural areas; commonly this shift is attributed to light pollution. Some studies have suggested that traffic noise has a stronger influence on singing activity than artificial light does. Changes in the timing of singing behaviour in relation to noise and light pollution have only been investigated in the temperate zones. Tropical birds, however, experience little seasonal variation in day length and may be less dependent on light intensity as a modifier for reproductive behaviours such as song. To test whether noise or light pollution has a stronger impact on the dawn chorus of a tropical bird, we investigated the singing behaviour of rufous-collared sparrows (Zonotrichia capensis) in Bogota, Colombia at two times during the year. We found that birds in places with high noise levels started to sing earlier. Light pollution did not have a significant effect. Birds may begin to sing earlier in noisy areas to avoid acoustic masking by traffic later in the morning. Our results also suggest that some tropical birds may be less sensitive to variations in day length and thus less sensitive to light pollution. PMID:27493778

  1. Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird.

    PubMed

    Dorado-Correa, Adriana M; Rodríguez-Rocha, Manuel; Brumm, Henrik

    2016-07-01

    Birds in cities start singing earlier in the morning than in rural areas; commonly this shift is attributed to light pollution. Some studies have suggested that traffic noise has a stronger influence on singing activity than artificial light does. Changes in the timing of singing behaviour in relation to noise and light pollution have only been investigated in the temperate zones. Tropical birds, however, experience little seasonal variation in day length and may be less dependent on light intensity as a modifier for reproductive behaviours such as song. To test whether noise or light pollution has a stronger impact on the dawn chorus of a tropical bird, we investigated the singing behaviour of rufous-collared sparrows (Zonotrichia capensis) in Bogota, Colombia at two times during the year. We found that birds in places with high noise levels started to sing earlier. Light pollution did not have a significant effect. Birds may begin to sing earlier in noisy areas to avoid acoustic masking by traffic later in the morning. Our results also suggest that some tropical birds may be less sensitive to variations in day length and thus less sensitive to light pollution. PMID:27493778

  2. Physiological, Psychological, and Social Effects of Noise

    NASA Technical Reports Server (NTRS)

    Kryter, K. D.

    1984-01-01

    The physiological, and behavioral effects of noise on man are investigated. Basic parameters such as definitions of noise, measuring techniques of noise, and the physiology of the ear are presented prior to the development of topics on hearing loss, speech communication in noise, social effects of noise, and the health effects of noise pollution. Recommendations for the assessment and subsequent control of noise is included.

  3. The effects of noise on man

    SciTech Connect

    Kryter, K.D.

    1985-01-01

    As a reference source of research concerning effects of noise on people, this book reports and analyzes procedures used in regulation and control of noise. Quantitative relations are formed between physical measures of environmental noise and the reactions of people and communities to noise. The author reviews scientific and engineering research published from 1970 to the present. The Effects of Noise on Man, Second Edition discusses: adverse effects of noise and noise-induced hearing loss on speech communications; damage to hearing from ''everyday'' noise; damage to hearing from industrial noise and gunfire; work performance in noise; effects of noise on non-auditory systems of the body and sleep; aircraft and street traffic noise and its effects on health, annoyance, and house depreciation; physical measurements used for the assessment and control of environmental noise; federal standards and guidelines for community noise and proposed modification based on recent research findings.

  4. The Effects of Noise on Pupil Performance.

    ERIC Educational Resources Information Center

    Slater, Barbara Ruth

    Effects of school noise conditions on student written task performance were studied. Three noise levels were examined--(1) irregular interval noise, 75-90 decibels, (2) average or normal noise, and (3) quiet condition, 45-55 decibels. An attempt was made to reproduce noise conditions typical of the school environment. A second controlled…

  5. Effects of noise upon human information processing

    NASA Technical Reports Server (NTRS)

    Cohen, H. H.; Conrad, D. W.; Obrien, J. F.; Pearson, R. G.

    1974-01-01

    Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation.

  6. Detecting anthropogenic footprints in sea level rise: the role of complex colored noise

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Jensen, Jürgen

    2015-04-01

    While there is scientific consensus that global mean sea level (MSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Uncovering the anthropogenic contribution requires profound knowledge about the persistence of natural MSL variations. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we statistically estimate the upper bounds of naturally forced centennial MSL trends on the basis of two separate components: a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Resting on a combination of spectral analyses of tide gauge records, ocean reanalysis data and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate, the persistence of natural volumetric changes is underestimated. If each component is assessed separately, natural centennial trends are locally up to ~0.5 mm/yr larger than in case of an integrated assessment. This implies that external trends in MSL rise related to anthropogenic forcing might be generally overestimated. By applying our approach to the outputs of a centennial ocean reanalysis (SODA), we estimate maximum natural trends in the order of 1 mm/yr for the global average. This value is larger than previous estimates, but consistent with recent paleo evidence from periods in which the anthropogenic contribution was absent. Comparing our estimate to the observed 20th century MSL rise of 1.7 mm/yr suggests a minimum external contribution of at least 0.7 mm/yr. We conclude that an accurate detection of anthropogenic footprints in MSL rise requires a more careful assessment of the persistence of intrinsic natural variability.

  7. Improved representation of stratocumulus clouds and the anthropogenic aerosol effect

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna; Frontoso, Grazia M.

    2014-05-01

    Stratocumulus clouds are important for future climate predictions as they have a strong cooling effect and the feedback of low clouds is believed to be a major cause of the model spread in climate sensitivity. Stratocumulus clouds are difficult to represent in a general circulation model because of their small vertical extent. Stratocumulus regions are also areas of a strong anthropogenic aerosol effect. Simulations of the anthropogenic aerosol effect can be expected to depend on the representation of stratocumulus clouds in climate models. We address the representation of several of the physical processes that have to be accounted for when modeling stratocumuli in the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM2 (Zhang et al., 2012). As a 'long tail' stability function can lead to excessive mixing at high stabilities we replaced it with a 'sharp' stability function. The stratocumulus cloud cover and liquid water path increase, similar to previous studies, with the 'sharp' stability function in ECHAM6-HAM2. We also study the impact of increased vertical resolution in the lower troposphere in ECHAM6-HAM2 on stratocumulus clouds. First results show improvements for the cloud height and thickness with increased vertical resolution. To simulate a realistic mixing state and size of particles released by evaporation of clouds and precipitation we include aerosol processing in stratiform clouds. First results from multi-year simulations show that using a 'sharp' stability function decreases the anthropogenic aerosol effect from -1.5 W/m2 to -1.2 W/m2 and in-cloud aerosol processing to -0.8 W/m2. This strong decrease is due to an increase in the background aerosol load. Increased vertical resolution doesn't seem to affect the anthropogenic aerosol effect in the global average. Further results on the impact of changing the vertical resolution, a different stability function and in-cloud aerosol processing in ECHAM6-HAM2 on the

  8. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    PubMed

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz. PMID:26611092

  9. Using chemometrics to evaluate anthropogenic effects in Daya Bay, China

    NASA Astrophysics Data System (ADS)

    Wu, Mei-Lin; Wang, You-Shao

    2007-05-01

    In this work, we have monitored 12 stations to study the effects caused by natural, marine and anthropogenic activities on water quality in Daya Bay, China. Results show that the N:P ratios are 71.54, 41.29, 81.50 and 98.27 in winter, spring, summer and autumn, respectively. Compared with the data of the past 20 years, the atomic N:P ratios have increased, indicating increased potential for P limitation; the atomic Si:N ratios have decreased; the nutrient structure has substantially changed over a period of 20 years. These findings show that the nutrient structure may be related to anthropogenic influence. The data matrix has been built according to the results, which were analyzed by principal component analysis (PCA). This analysis extracted the first four principal components (PC), explaining 73.58% of the total variance of the raw data. PC1 (25.53% of the variance) is associated with temperature, salinity and nitrate. PC2 (21.64% of the variance) is characterized by dissolved oxygen and silicate. PC3 (15.91% of the variance) participates mainly by nitrite (NO 2-N) and ammonia (NH 4-N). PC4 explaining 10.50% of the variance is mainly contributed by parameters of organic pollution (dissolved oxygen, 5-day biochemical oxygen demand and chemical oxygen demand). PCA has found the important factors that can describe the natural, marine and anthropogenic influences. Temperature and salinity are important indicators of natural and marine characters in this bay. The northeast monsoons from October to April and southwest monsoons from May to September have important effects on the waters in Daya Bay. It has been demonstrated that anthropogenic activities have significant influence on nitrogen form character. In spatial pattern, a marine aquaculture area and a non-aquaculture area are widely identified by the scores of stations. In seasonal pattern, dry and wet season characters have been demonstrated.

  10. Noise in the Library: Effects and Control.

    ERIC Educational Resources Information Center

    Eagan, Ann

    1991-01-01

    Describes the physiological and psychological effects of noise in libraries and suggests methods of controlling noise from telephones, computers, printers, and photocopiers. Hearing loss and stress-related problems are discussed, the effects of noise on performance are described, and planning is emphasized as a method of avoiding noise problems.…

  11. Effects of simulated forward flight on jet noise, shock noise and internal noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tanna, H. K.; Tester, B. J.

    1979-01-01

    Inflight simulation experiments are conducted in an anechoic free-jet facility to examine the flight effects on various combinations of jet noise, shock noise and internal noise. The jet mixing noise component reduces with forward velocity at all angles and frequencies. When jet mixing noise is contaminated with internal noise, forward motion provides a noise reduction in the rear arc and a noise increase in the forward arc, with little change at 90 deg. The results are similar for shock-containing jets. It is found that the existing anomalies between full-scale flight data and model-scale flight simulation data could well be due to the contamination of the flight data by internal noise.

  12. Health Effects of Noise Exposure in Children.

    PubMed

    Stansfeld, Stephen; Clark, Charlotte

    2015-06-01

    Environmental noise exposure, such as road traffic noise and aircraft noise, is associated with a range of health outcomes in children. Children demonstrate annoyance responses to noise, and noise is also related to lower well-being and stress responses, such as increased levels of adrenaline and noradrenaline. Noise does not cause more serious mental health problems, but there is growing evidence for an association with increased hyperactivity symptoms. Studies also suggest that noise might cause changes in cardiovascular functioning, and there is some limited evidence for an effect on low birth weight. There is robust evidence for an effect of school noise exposure on children's cognitive skills such as reading and memory, as well as on standardised academic test scores. Environmental noise does not usually reach levels that are likely to affect children's hearing; however, increasing use of personal electronic devices may leave some children exposed to harmful levels of noise. PMID:26231366

  13. Can anthropogenic aerosol concentrations effect the snowfall rate?

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-04-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE.ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. Borys et al. (2000) proposed that anthropogenically-induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud due to its higher cloud droplet number concentration. Instead the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shut-down of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a 10-fold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates. We will also perform climate model simulations to estimate the importance of this effect globally.

  14. Asian anthropogenic dust and its climate effect (Invited)

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.

    2013-12-01

    Anthropogenic dust originates mainly from areas of localized human disturbance, such as traffic-on-roads, agricultural fields, grazing, military installations, construction sites, and off-road vehicle areas. To understand historical and possible future changes in dust emissions, the percentage of atmospheric dust load originating from anthropogenic source and its distribution must be quantified. CALIPSO lidar, which shoots a laser into the atmosphere, provides new insight into the detection of anthropogenic dust emission. Here, we present the distribution of Asian anthropogenic dust emissions and its relation to human activity by using CALIPSO lidar measurements. We found that the local anthropogenic dust aerosols account for significant portion of the total dust burden in the atmosphere. The anthropogenic dust emissions mainly occur over the heavy human activity and poor ecosystem region, such as semi-arid region. The impact of Asian anthropogenic dust on regional climate will also be discussed in this talk.

  15. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  16. Effects of Noise on Reading Comprehension.

    ERIC Educational Resources Information Center

    Jewell, Larry R.; And Others

    1979-01-01

    A study compared the effects of two different noise intensities on the cognitive performance of students. Findings indicated that at the higher noise intensity in the learning environment, performance on the reading comprehension task decreased. (LRA)

  17. Aircraft and background noise annoyance effects

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1984-01-01

    To investigate annoyance of multiple noise sources, two experiments were conducted. The first experiment, which used 48 subjects, was designed to establish annoyance-noise level functions for three community noise sources presented individually: jet aircraft flyovers, air conditioner, and traffic. The second experiment, which used 216 subjects, investigated the effects of background noise on aircraft annoyance as a function of noise level and spectrum shape; and the differences between overall, aircraft, and background noise annoyance. In both experiments, rated annoyance was the dependent measure. Results indicate that the slope of the linear relationship between annoyance and noise level for traffic is significantly different from that of flyover and air conditioner noise and that further research was justified to determine the influence of the two background noises on overall, aircraft, and background noise annoyance (e.g., experiment two). In experiment two, total noise exposure, signal-to-noise ratio, and background source type were found to have effects on all three types of annoyance. Thus, both signal-to-noise ratio, and the background source must be considered when trying to determine community response to combined noise sources.

  18. [Health effects of environmental noise exposure].

    PubMed

    Röösli, Martin

    2013-12-01

    In the EU 27 countries about 100 million persons are exposed to road traffic noise above 55 dB (LDEN) according to the European Environment Agency. Exposure to railway noise affects 16 million individuals, aircraft noise 4 million and industry noise 1 million persons. Although the proportion of people reporting to be annoyed by noise exposure is substantial, health effects of noise is rarely an issue in general practitioners' consultations. According to stress models chronic noise exposure results in an increased allostatic load by direct physiological responses as well as psychological stress responses including sleep disturbances. In relation to acute and chronic noise exposure an increase of blood pressure was observed in epidemiological studies. An association between ischemic heart diseases and noise exposure was observed in various studies. However, the data is less consistent for other cardiovascular diseases and for cognitive effects in children. The association between metabolic syndrome and noise has rarely been investigated so far. Recently an association between road traffic noise and diabetes was observed in a Danish cohort study. Given the plausibility for a noise effect, general practitioners should consider noise exposure in patients with increased cardiometabolic risk. PMID:24297857

  19. Rarity Value and Species Extinction: The Anthropogenic Allee Effect

    PubMed Central

    Courchamp, Franck; Signoret, Laetitia; Bull, Leigh; Meinard, Yves

    2006-01-01

    Standard economic theory predicts that exploitation alone is unlikely to result in species extinction because of the escalating costs of finding the last individuals of a declining species. We argue that the human predisposition to place exaggerated value on rarity fuels disproportionate exploitation of rare species, rendering them even rarer and thus more desirable, ultimately leading them into an extinction vortex. Here we present a simple mathematical model and various empirical examples to show how the value attributed to rarity in some human activities could precipitate the extinction of rare species—a concept that we term the anthropogenic Allee effect. The alarming finding that human perception of rarity can precipitate species extinction has serious implications for the conservation of species that are rare or that may become so, be they charismatic and emblematic or simply likely to become fashionable for certain activities. PMID:17132047

  20. Effects of environmental noise on sleep.

    PubMed

    Hume, Kenneth I; Brink, Mark; Basner, Mathias

    2012-01-01

    This paper summarizes the findings from the past 3 year's research on the effects of environmental noise on sleep and identifies key future research goals. The past 3 years have seen continued interest in both short term effects of noise on sleep (arousals, awakenings), as well as epidemiological studies focusing on long term health impacts of nocturnal noise exposure. This research corroborated findings that noise events induce arousals at relatively low exposure levels, and independent of the noise source (air, road, and rail traffic, neighbors, church bells) and the environment (home, laboratory, hospital). New epidemiological studies support already existing evidence that night-time noise is likely associated with cardiovascular disease and stroke in the elderly. These studies collectively also suggest that nocturnal noise exposure may be more relevant for the genesis of cardiovascular disease than daytime noise exposure. Relative to noise policy, new effect-oriented noise protection concepts, and rating methods based on limiting awakening reactions were introduced. The publications of WHO's ''Night Noise Guidelines for Europe'' and ''Burden of Disease from Environmental Noise'' both stress the importance of nocturnal noise exposure for health and well-being. However, studies demonstrating a causal pathway that directly link noise (at ecological levels) and disturbed sleep with cardiovascular disease and/or other long term health outcomes are still missing. These studies, as well as the quantification of the impact of emerging noise sources (e.g., high speed rail, wind turbines) have been identified as the most relevant issues that should be addressed in the field on the effects of noise on sleep in the near future. PMID:23257581

  1. Scaling of The Tropospheric Ozone Concentrations and Anthropogenic Effects

    NASA Astrophysics Data System (ADS)

    Audiffren, N.; Duroure, C.

    The statistical characteristics of long time series of ozone mixing ratios in free tro- posphere and in urban environment are compared.We use a five year dataset with 15 minute resolution of ozone concentrations in a free tropospheric condition (Puy de Dôme) and in four different towns in the mesoscale vicinity (Auvergne region), (data from Atmo-Auvergne) The free tropospheric ozone field have the same scaling behaviour (Fourier spectrum, structure functions and intermittency measure) than a passive scalar in a 3D higthly turbulent dynamic field. We don't observe a mesoscale gap and the inertial range is ranging from (at least) one minute to a few days for eule- rian measurements (from hundred meters to hundreds of kilometers for the lagrangian space scale). The probability density functions (PDF) of the ozone mixing ratio incre- ments are higthly non gaussian, with tails decreasing slower than negative exponential, indicating an "intermittent" behaviour. The scale evolution of the intermittency is esti- mated using the normalized fourth moment of the discrete laplacian and is compared with other turbulent geophysical fields (mesoscale cloud coverage, updraft velocity, rainfall serie). On the opposite, for the urban measurements, the modifications of the statistical properties not only affect the mean but also the scaling exponent (Fourier slope closer to -1) and the intermittency structure function. The one day periodic peak is more pronounced than for the free troposphere measurements and appears a (purely anthropogenic) peak of seven days. For large towns ,the PDF of gradient are close to a Levy-stable PDF with a characteristic exponent close to 2 (the Gaussian limit). The anthropogenic effects on ozone concentration make the statistical characteristics closer to those observed for the web flux, the traffic jams, or the properties of speach and music.

  2. Effect of helicopter noise on passenger annoyance

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Leatherwood, J. D.

    1979-01-01

    The effects of helicopter interior noise on passenger annoyance for both reverie and listening situations was investigated. The relative effectiveness of several metrics for quantifying annoyance response for these situations was also studied. The noise stimuli were based upon recordings of the interior noise of civil helicopter research aircraft. These noises were presented at levels ranging from approximately 70 to 86 d with various tonal components selectively attenuated to give a range of spectra. The listening task required the subjects to listen to and record phonetically-balanced words presented within the various noise environments. Results indicate that annoyance during a listening condition is generally higher than annoyance under a reverie condition for corresponding interior noise environments. Attenuation of the tonal components results in increases in listening performance but has only a small effect upon annoyance for a given noise level.

  3. An overview of health effects on noise

    NASA Astrophysics Data System (ADS)

    Osada, Y.

    1988-12-01

    Although noise can damage the inner ear and cause other pathological changes, its most common negative effects are non-somatic, such as a perception of noisiness and disturbance of daily activities. According to the definition of health by WHO, this should be considered as a health hazard. These health effects of noise can be classified into the following three categories: (I) hearing loss, perception of noisiness and masking are produced along the auditory pathway and are thus direct and specific effects of noise; (II) interference with performance, rest and sleep, a feeling of discomfort and some physiological effects are produced as indirect and non-specific effects via reticular formation of the midbrain; (III) annoyance is not merely a feeling of unpleasantness but the feeling of being bothered or troubled, and includes the development of a particular attitude toward the noise source. Individual or group behavioral responses will be evoked when annoyance develops. Annoyance and behavioral response are integrated and composite effects. The health effects of noise are modified by many factors related to both the noise and the individual. Noise level, frequency spectrum, duration and impulsiveness modify the effects. Sex, age, health status and mental character also have an influence on the effects. Direct effects of noise are most dependent on the physical nature of the noise and least dependent on human factors. Indirect effects are more dependent, and integrated effects most dependent, on human factors.

  4. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    USGS Publications Warehouse

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  5. Effects of aircraft noise on human activities

    NASA Technical Reports Server (NTRS)

    Arnoult, M. D.; Gilfillan, L. G.

    1983-01-01

    The effects of aircrft noise on human activities was investigated by developing a battery of tasks (1) representative of a range of human activities and (2) sensitive to the disruptive effects of noise. The noise used were recordings of jet aircraft and helicopter sounds at three lvels of loudness--60, 70, and 80 dB(A). Experiment 1 investigated 12 different cognitive tasks, along with two intelligibility tasks included to validate that the noises were being effective. Interference with intelligibility was essentially the same as found in the research literature, but only inconsistent effects were found on either accuracy or latency of performance on the cognitive tasks. When the tasks were grouped into four categories (Intelligibility, Matching, Verbal, and Arithmetic), reliable differences in rated annoyingness of the noises were related to the task category and to the type of noise (jet or helicopter).

  6. The effects of noise on performance

    NASA Astrophysics Data System (ADS)

    Suter, Alice H.

    1989-06-01

    The effects of noise on task performance are quite complex, and not as predictable as other noise effects. They are often affected by non-acoustical factors, such as biological and psychological state, as well as external factors such as task complexity and the presence of other stressors. This report describes the rationale and some of the problems inherent in noise and performance research, as well as theories on the mechanisms of effects, and summarizes the various effects. Research on noise and vision suggests some effects from high noise levels on thresholds of sensitivity, critical flicker fusion, and visual field shifts. Small but reliable effects have been demonstrated on vestibular function, expecially with asymmetric exposures. Motor performance usually adapts with repeated or prolonged exposure, but high noise levels can show persistent decrements. Some startle responses, notably the eye-blink response, do not habituate. With respect to task variables, noise has little effect on simple tasks, and can even improve performance on monotonous tasks. Tasks requiring continuous performance may be disrupted, especially by noise levels over 100 dB and if the job requires a high level of sustained performance. Intellectual function is not usually affected, but vigilance tasks are susceptible to noise, particularly under certain conditions. Complex tasks requiring more than one activity are much more likely to be disrupted than simple tasks.

  7. No evidence for an effect of traffic noise on the development of the corticosterone stress response in an urban exploiter.

    PubMed

    Angelier, Frédéric; Meillère, Alizée; Grace, Jacquelyn K; Trouvé, Colette; Brischoux, François

    2016-06-01

    Anthropogenic noise can have important physiological and behavioral effects on wild animals. For example, urban noise could lead to a state of chronic stress and could alter the development of the hypothalamus-pituitary-adrenal (HPA) axis. Supporting this hypothesis, several studies have found that human disturbance is associated with increased circulating corticosterone (CORT) levels. However, it remains unclear whether increased CORT levels are the result of anthropogenic noise or other anthropogenic factors. Here, we experimentally tested the impact of urban noise on the CORT stress response in an urban exploiter (the house sparrow, Passer domesticus) by exposing chicks to a traffic noise ('disturbed chicks') or not ('control chicks'). If noise exposure has a negative impact on developing chicks, we predicted that (1) disturbed chicks will grow slower, will be in poorer condition, and will have a lower fledging probability than controls; (2) disturbed chicks will have higher baseline CORT levels than control; (3) the CORT stress response will be affected by this noise exposure. Contrary to these predictions, we found no effect of our experiment on growth, body condition, and fledging success, suggesting that house sparrow chicks were not negatively affected by this noise exposure. Moreover, we did not find any effect of noise exposure on either baseline CORT levels or the CORT stress response of chicks. This suggests not only that house sparrow chicks did not perceive this noise as stressful, but also that the development of the HPA axis was not affected by such noise exposure. Our study suggests that, contrary to urban avoiders, urban exploiters might be relatively insensitive to urban noise during their development. Further comparative studies are now needed to understand whether such insensitivity to anthropogenic noise is a consistent phenomenon in urban exploiters and whether this is a major requirement of an urban way of life. PMID:26686316

  8. Anthropogenic effects on sedimentary facies in Lake Baldeney, West Germany

    NASA Astrophysics Data System (ADS)

    Neumann-Mahlkau, Peter; Niehaus, Heinz Theo

    1983-12-01

    Analysis of well logs of Lake Baldeney, a reservoir of the Ruhr River, yields four facies factors that reflect the effect of anthropogenic processes on the sediment. First, the sedimentation rate is directly related to the subsidence caused by mining. The extent of the subsidence was such that the sediment load of the river could not compensate for the sinking of the lake bottom. Discharged sediment filled about one-fifth of the basin within 40 years. In certain areas of the basin the sedimentation rate reached up to 10 cm per year. Second, the grain-size distribution of the sediment was influenced by long-term and short-term events. During the subsidence, grain-size distribution remained relatively constant. The destruction of the Möhne River dam during World War II resulted in the presence of an extremely large grain size as evidenced by the so-called Möhnelage. The filling of the lake after 1961 was accompanied by a continual increase in medium grain size. Third, until 1975, the mode of the lake sediment reflects the effect of mining in the vicinity of the lake. High coal content can be traced to its origin. The introduction of modern production processes, modernization of coal dressing, and hydraulic hauling is documented in the sediment. Finally, the heavy metal content of the sediment corresponds to the industrial development in the drainage area the Ruhr River. The accumulation of Cd reached an extreme concentration, exceeding the natural content by a thousand times. Variation in concentration reflects an increase in industrial production, as well as measures undertaken to restore water quality.

  9. Nuisance levels of noise effects radiologists' performance

    NASA Astrophysics Data System (ADS)

    McEntee, Mark F.; Coffey, Amina; Ryan, John; O'Beirne, Aaron; Toomey, Rachel; Evanoff, Micheal; Manning, David; Brennan, Patrick C.

    2010-02-01

    This study aimed to measure the sound levels in Irish x-ray departments. The study then established whether these levels of noise have an impact on radiologists performance Noise levels were recorded 10 times within each of 14 environments in 4 hospitals, 11 of which were locations where radiologic images are judged. Thirty chest images were then presented to 26 senior radiologists, who were asked to detect up to three nodular lesions within 30 posteroanterior chest x-ray images in the absence and presence of noise at amplitude demonstrated in the clinical environment. The results demonstrated that noise amplitudes rarely exceeded that encountered with normal conversation with the maximum mean value for an image-viewing environment being 56.1 dB. This level of noise had no impact on the ability of radiologists to identify chest lesions with figure of merits of 0.68, 0.69, and 0.68 with noise and 0.65, 0.68, and 0.67 without noise for chest radiologists, non-chest radiologists, and all radiologists, respectively. the difference in their performance using the DBM MRMC method was significantly better with noise than in the absence of noise at the 90% confidence interval (p=0.077). Further studies are required to establish whether other aspects of diagnosis are impaired such as recall and attention and the effects of more unexpected noise on performance.

  10. Noise-induced effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  11. Playback Experiments for Noise Exposure.

    PubMed

    Holles, Sophie; Simpson, Stephen D; Lecchini, David; Radford, Andrew N

    2016-01-01

    Playbacks are a useful tool for conducting well-controlled and replicated experiments on the effects of anthropogenic noise, particularly for repeated exposures. However, playbacks are unlikely to fully reproduce original sources of anthropogenic noise. Here we examined the sound pressure and particle acceleration of boat noise playbacks in a field experiment and reveal that although there remain recognized limitations, the signal-to-noise ratios of boat playbacks to ambient noise do not exceed those of a real boat. The experimental setup tested is therefore of value for use in experiments on the effects of repeated exposure of aquatic animals to boat noise. PMID:26610992

  12. Contribution of seasonal presence of cetaceans, earthquakes, drifting icebergs and anthropogenic activity to the ambient noise level in the Southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, Eve; Royer, Jean-Yves

    2015-04-01

    Assessing the ambient sound level in the oceans is essential for a better understanding of the interactions between the ecosystem and anthropogenic activities. Ambient noise studies conducted in the North Pacific and Atlantic oceans, have shown that since the 60's oceanic noise level increases with the ship traffic, even if potential impacts of shipping noise on the ecosystem is not yet fully understood. However long-term acoustic records for the Indian Ocean are still limited. Here we present long-term statistics on the ambient sound in the Southern Indian Ocean basin based on 2 years of data collected at 5 widely distributed autonomous hydrophones. The data consist of single hydrophone spectra (10-100 Hz in 1-Hz bins) averaged using Welch's method over 200 s. Spectral probability distributions of the ambient sound level are analyzed in order to identify the main sound sources and their geographical and time variability. The mean sound level within the array is 10 to 20 dB lower than in other oceans, revealing a weaker influence of shipping on the Southern Indian Ocean noise budget. Seismic events are evenly distributed in time and space and mostly contribute to the general low-frequency background noise. Periodic signals are mainly associated with the seasonal presence of 3 types of blue whales and fin whales whose signatures are easily identified at target frequencies. Winter lows and summer highs of the ambient noise levels are also well correlated with ice volume variations. Icebergs are found to be a major sound source, strongly contributing to seasonal variations even at northernmost sites of the array. Although anthropogenic factors do not seem to dominate the noise spectrum, shipping sounds are present north and east of the array. Observed higher sound levels are consistent with the proximity of major traffic lanes.

  13. Effects of Noise on Small Group Interaction.

    ERIC Educational Resources Information Center

    Whitehead, Jack L.

    This study reports an analysis of the effects of moderate levels of noise on task performance of an interacting group. Groups of students first interacted in information-sharing discussions under varying conditions of noise and then responded to an objective test over the shared information and to a series of semantic differential scales designed…

  14. Source and processing effects on noise correlations

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas

    2014-05-01

    We quantify the effects of spatially heterogeneous noise sources and seismic processing on noise correlation measurements and their sensitivity to Earth structure. Our analysis is based on numerical wavefield simulations in heterogeneous media. This allows us to calculate inter-station correlations for arbitrarily distributed noise sources where - as in the real Earth - different frequencies are generated in different locations. Using adjoint methods, we compute the exact structural sensitivities for a given combination of source distribution, processing scheme, and measurement technique. The key results of our study are as follows: (1) Heterogeneous noise sources and subjective processing, such as the application of spectral whitening, have profound effects on noise correlation wave forms. (2) Nevertheless, narrow-band traveltime measurements are only weakly affected by heterogeneous noise sources and processing. This result is in accord with previous analytical studies, and it explains the similarity of noise and earthquake tomographies that only exploit traveltime information. (3) Spatially heterogeneous noise sources can lead to structural sensitivities that deviate strongly from the classical cigar-shaped sensitivities. Furthermore, the frequency dependence of sensitivity kernels can go far beyond the well-know dependence of the Fresnel zone width on frequency. Our results imply that a meaningful application of modern full waveform inversion methods to noise correlations is not possible unless both the noise source distribution and the processing scheme are properly taken into account. Failure to do so can lead to erroneous misfit quantifications, slow convergence of optimisation schemes, and to the appearance of tomographic artefacts that reflect the incorrect structural sensitivity. These aspects acquire special relevance in the monitoring of subtle changes of subsurface structure that may be polluted when the time dependence of heterogeneous noise sources

  15. The Effect of Human Activities and Their Associated Noise on Ungulate Behavior

    PubMed Central

    Brown, Casey L.; Hardy, Amanda R.; Barber, Jesse R.; Fristrup, Kurt M.; Crooks, Kevin R.; Angeloni, Lisa M.

    2012-01-01

    Background The effect of anthropogenic noise on terrestrial wildlife is a relatively new area of study with broad ranging management implications. Noise has been identified as a disturbance that has the potential to induce behavioral responses in animals similar to those associated with predation risk. This study investigated potential impacts of a variety of human activities and their associated noise on the behavior of elk (Cervus elaphus) and pronghorn (Antilocapra americana) along a transportation corridor in Grand Teton National Park. Methodology/Principal Findings We conducted roadside scan surveys and focal observations of ungulate behavior while concurrently recording human activity and anthropogenic noise. Although we expected ungulates to be more responsive with greater human activity and noise, as predicted by the risk disturbance hypothesis, they were actually less responsive (less likely to perform vigilant, flight, traveling and defensive behaviors) with increasing levels of vehicle traffic, the human activity most closely associated with noise. Noise levels themselves had relatively little effect on ungulate behavior, although there was a weak negative relationship between noise and responsiveness in our scan samples. In contrast, ungulates did increase their responsiveness with other forms of anthropogenic disturbance; they reacted to the presence of pedestrians (in our scan samples) and to passing motorcycles (in our focal observations). Conclusions These findings suggest that ungulates did not consistently associate noise and human activity with an increase in predation risk or that they could not afford to maintain responsiveness to the most frequent human stimuli. Although reduced responsiveness to certain disturbances may allow for greater investment in fitness-enhancing activities, it may also decrease detections of predators and other environmental cues and increase conflict with humans. PMID:22808175

  16. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  17. Noise effects in two different biological systems

    NASA Astrophysics Data System (ADS)

    Spagnolo, B.; Spezia, S.; Curcio, L.; Pizzolato, N.; Fiasconaro, A.; Valenti, D.; Lo Bue, P.; Peri, E.; Colazza, S.

    2009-05-01

    We investigate the role of the colored noise in two biological systems: (i) adults of Nezara viridula (L.) (Heteroptera: Pentatomidae), and (ii) polymer translocation. In the first system we analyze, by directionality tests, the response of N. viridula individuals to subthreshold signals plus noise in their mating behaviour. The percentage of insects that react to the subthreshold signal shows a nonmonotonic behaviour, characterized by the presence of a maximum, as a function of the noise intensity. This is the signature of the non-dynamical stochastic resonance phenomenon. By using a “soft” threshold model we find that the maximum of the input-output cross correlation occurs in the same range of noise intensity values for which the behavioural activation of the insects has a maximum. Moreover this maximum value is lowered and shifted towards higher noise intensities, compared to the case of white noise. In the second biological system the noise driven translocation of short polymers in crowded solutions is analyzed. An improved version of the Rouse model for a flexible polymer is adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and the effects of a Lennard-Jones potential between all beads. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion in the presence of thermal fluctuations and a colored noise source. At low temperatures or for strong colored noise intensities the translocation process of the polymer chain is delayed. At low noise intensity, as the polymer length increases, we find a nonmonotonic behaviour for the mean first translocation time of the polymer centre of inertia. We show how colored noise influences the motion of short polymers, by inducing two different regimes of translocation in the dynamics of molecule transport.

  18. Noise effects on reproduction— animal experiments

    NASA Astrophysics Data System (ADS)

    Takigawa, H.; Sakamoto, H.; Murata, M.; Matsumura, Y.

    1988-12-01

    Noise effects on fetal development were observed in animals. While the copulatory function was not affected, birth rate decreased when the animals were exposed to noise. An increased number of stunted fetuses was observed when the animals were intermittently exposed. However, malformations in the fetuses increased with exposure to both intermittent and continuous noise. Two phases of hormonal change were observed in connection with noise exposure. One is the initial response phase, characterized by the increment of 11-OHCS in the adrenal gland. The other is the end phenomena phase, characterized by a disorder in central control. It is discussed that the disturbance of fetal development by exposure to noise is related to these changes in the hormonal condition.

  19. Threshold of the precedence effect in noise

    PubMed Central

    Freyman, Richard L.; Griffin, Amanda M.; Zurek, Patrick M.

    2014-01-01

    Three effects that show a temporal asymmetry in the influence of interaural cues were studied through the addition of masking noise: (1) The transient precedence effect—the perceptual dominance of a leading transient over a similar lagging transient; (2) the ongoing precedence effect—lead dominance with lead and lag components that extend in time; and (3) the onset capture effect—determination by an onset transient of the lateral position of an otherwise ambiguous extended trailing sound. These three effects were evoked with noise-burst stimuli and were compared in the presence of masking noise. Using a diotic noise masker, detection thresholds for stimuli with lead/lag interaural delays of 0/500 μs were compared to those with 500/0 μs delays. None of the three effects showed a masking difference between those conditions, suggesting that none of the effects is operative at masked threshold. A task requiring the discrimination between stimuli with 500/0 and 0/500 μs interaural delays was used to determine the threshold for each effect in noise. The results showed similar thresholds in noise (10–13 dB SL) for the transient and ongoing precedence effects, but a much higher threshold (33 dB SL) for onset capture of an ambiguous trailing sound. PMID:24815272

  20. Effects of noise levels and call types on the source levels of killer whale calls.

    PubMed

    Holt, Marla M; Noren, Dawn P; Emmons, Candice K

    2011-11-01

    Accurate parameter estimates relevant to the vocal behavior of marine mammals are needed to assess potential effects of anthropogenic sound exposure including how masking noise reduces the active space of sounds used for communication. Information about how these animals modify their vocal behavior in response to noise exposure is also needed for such assessment. Prior studies have reported variations in the source levels of killer whale sounds, and a more recent study reported that killer whales compensate for vessel masking noise by increasing their call amplitude. The objectives of the current study were to investigate the source levels of a variety of call types in southern resident killer whales while also considering background noise level as a likely factor related to call source level variability. The source levels of 763 discrete calls along with corresponding background noise were measured over three summer field seasons in the waters surrounding the San Juan Islands, WA. Both noise level and call type were significant factors on call source levels (1-40 kHz band, range of 135.0-175.7 dB(rms) re 1 [micro sign]Pa at 1 m). These factors should be considered in models that predict how anthropogenic masking noise reduces vocal communication space in marine mammals. PMID:22087938

  1. Effect of noise on the standard mapping

    SciTech Connect

    Karney, C.F.F.; Rechester, A.B.; White, R.B.

    1981-03-01

    The effect of a small amount of noise on the standard mapping is considered. Whenever the standard mapping possesses accelerator models (where the action increases approximately linearly with time), the diffusion coefficient contains a term proportional to the reciprocal of the variance of the noise term. At large values of the stochasticity parameter, the accelerator modes exhibit a universal behavior. As a result the dependence of the diffusion coefficient on stochasticity parameter also shows some universal behavior.

  2. Anthropogenic effects on winter behavior of ferruginous hawks

    USGS Publications Warehouse

    Plumpton, D.L.; Andersen, D.E.

    1998-01-01

    Little information is known about the ecology of ferruginous hawks (Buteo regalis) in winter versus the breeding season and less about how the species adapts to fragmented grassland habitats. Accordingly, we studied the behavior of 38 radiotagged ferruginous hawks during 3 winters from 1992 to 1995. We used 2 adjacent sites in Colorado that were characterized by low and high levels of anthropogenic influence and habitat fragmentation: the Rocky Mountain Arsenal National Wildlife Refuge (RMANWR; low-level influence), and several adjacent Denver suburbs (high-level influence). Relative abundance of ferruginous hawks differed by treatment area and year (P 0.05) at RMANWR and suburban sites. Ferruginous hawks appear to modify their behavior in fragmented, largely human-altered habitats, provided some foraging habitats with adequate populations of suitable prey species are present.

  3. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  4. 78 FR 78822 - Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammals-Acoustic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Anthropogenic Sound on Marine Mammals--Acoustic Threshold Levels for Onset of Permanent and Temporary Threshold... the effects of anthropogenic sound on marine mammal species under NOAA's jurisdiction. The guidance... anthropogenic sound sources. NOAA solicits public comment on the draft guidance. DATES: Comments must...

  5. The 'shell effect': music from environmental noise

    NASA Astrophysics Data System (ADS)

    Diodati, Paolo

    2005-02-01

    The 'shell effect' can be used to play music with a pleasant and characteristic timbre. If you place a sensitive microphone at the rim of pipes of suitable length and diameter to obtain resonance frequencies, ambient noise will produce musical notes. The corresponding optical effect, i.e. extracting visible light from ambient radiation considered dark by the human eye, is also discussed.

  6. Forward speed effects on blown flap noise

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.

    1977-01-01

    The effects of forward speed on the noise of under-the-wing (externally blown flaps, EBF) and over-the-wing (upper surface blown, USB) blown flap configurations were measured in wind tunnel model tests with cold jets. The results are presented without correction for the effects (e.g., signal convection, shear layer refraction) associated with flight simulation in a wind tunnel or free jet facility. Noise decreases were generally observed at microphones forward of the wing. The reductions were larger at the low frequencies (below peak SPL) than at the high (above peak SPL). Noise increases of 10 dB or more were observed at the aft microphones, especially in the high frequency range.

  7. Sleep deepening effect of steady pink noise

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Kawada, T.; Ogawa, M.; Aoki, S.

    1991-12-01

    Sleep under a steady pink noise was studied by a hypnogram of EEG. A young male subject slept all night under a steady pink noise of 40, 50 or 60 dB(A) for 4 to 5 nights, and for 10 nights under unexposed conditions with 35 dB(A). The hypnogram showed a significant decrease in the proportion of REM and an increase in the proportion of stage 2, at 60 dB(A) of steady pink noise exposure. The proportion of stage 3 increased significantly at 40 and 50 dB(A) as compared with 35 dB(A). The average depth of a night's sleep at 60 dB(A), calculated postulating stage W, 1, 2, 3 and 4 to be 0·0, 1·0, 2·0, 3·0 and 4·0, respectively, and REM to be 1·5, was significantly deeper than that at 35 and 40 dB(A). These findings are all sleep deepening effects of a steady noise. A second experiments was carried out with four other subjects exposed to a night of 60 dB(A) of steady pink noise and a paired quiet night. All four subjects also showed a decrease in the proportion of REM and an increase in the proportion of stage 2 at this exposure level. No significant change in subjective sleep was observed in either experiment. An inhibition pulse from the cortex may suppress the activation of reticular formation, which could make sleep under a steady noise deeper. However, the meaning of a depressed proportion of REM under steady pink noise is not clear.

  8. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  9. Toxic Elements in Aquatic Sediments: Distinguishing Natural Variability from Anthropogenic Effects

    PubMed Central

    DeLaune, Ronald D.; Tan, MeiHuey; Reams, Margaret; Laws, Edward

    2016-01-01

    Regressions of aluminum against potentially toxic elements in the sediments of freshwater aquatic systems in Louisiana were used to distinguish natural variability from anthropogenic pollution when elemental concentrations exceeded screening effects levels. The data were analyzed using geometric mean model II regression methods to minimize, insofar as possible, bias that would have resulted from the use of model I regression. Most cadmium concentrations exceeded the threshold effects level, but there was no evidence of an anthropogenic impact. In Bayou Trepagnier, high concentrations of Cr, Cu, Pb, Ni, and Zn appeared to reflect anthropogenic pollution from a petrochemical facility. In Capitol Lake, high Pb concentrations were clearly associated with anthropogenic impacts, presumably from street runoff. Concentrations of potentially toxic elements varied naturally by as much as two orders of magnitude; hence it was important to filter out natural variability in order to identify anthropogenic effects. The aluminum content of the sediment accounted for more than 50% of natural variability in most cases. Because model I regression systematically under-estimates the magnitude of the slope of the regression line when the independent variable is not under the control of the investigator, use of model II regression methods in this application is necessary to facilitate hypothesis testing and to avoid incorrectly associating naturally high elemental concentrations with human impacts. PMID:27330231

  10. Emergency Vehicle Siren Noise Effectiveness

    NASA Astrophysics Data System (ADS)

    D'Angela, Peter

    Navigating safely through traffic, while responding to an emergency, is often a challenge for emergency responders. To help alert other motorists, these responders use emergency lights and/or sirens. However, the former is useful only if within clear visual range of the other drivers. This shortcoming puts a greater emphasis on the importance of the audible emergency siren, which has its own shortcomings. This study considered several emergency siren systems with the goal to determine the most effective siren system(s) based on several criteria. Multiple experimental measurements and subjective analysis using jury testing using an NVH driving simulator were performed. It was found that the traditional mechanical siren was the most effective audible warning device; however, with significantly reduced electrical power requirements, the low frequency Rumbler siren, in conjunction with a more conventional electronic Yelp siren, was the preferred option. Recommendations for future work are also given.

  11. Noise Effects on Human Performance: A Meta-Analytic Synthesis

    ERIC Educational Resources Information Center

    Szalma, James L.; Hancock, Peter A.

    2011-01-01

    Noise is a pervasive and influential source of stress. Whether through the acute effects of impulse noise or the chronic influence of prolonged exposure, the challenge of noise confronts many who must accomplish vital performance duties in its presence. Although noise has diffuse effects, which are shared in common with many other chronic forms of…

  12. Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities

    PubMed Central

    Nemeth, Erwin; Pieretti, Nadia; Zollinger, Sue Anne; Geberzahn, Nicole; Partecke, Jesko; Miranda, Ana Catarina; Brumm, Henrik

    2013-01-01

    When animals live in cities, they have to adjust their behaviour and life histories to novel environments. Noise pollution puts a severe constraint on vocal communication by interfering with the detection of acoustic signals. Recent studies show that city birds sing higher-frequency songs than their conspecifics in non-urban habitats. This has been interpreted as an adaptation to counteract masking by traffic noise. However, this notion is debated, for the observed frequency shifts seem to be less efficient at mitigating noise than singing louder, and it has been suggested that city birds might use particularly high-frequency song elements because they can be produced at higher amplitudes. Here, we present the first phonetogram for a songbird, which shows that frequency and amplitude are strongly positively correlated in the common blackbird (Turdus merula), a successful urban colonizer. Moreover, city blackbirds preferentially sang higher-frequency elements that can be produced at higher intensities and, at the same time, happen to be less masked in low-frequency traffic noise. PMID:23303546

  13. Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities.

    PubMed

    Nemeth, Erwin; Pieretti, Nadia; Zollinger, Sue Anne; Geberzahn, Nicole; Partecke, Jesko; Miranda, Ana Catarina; Brumm, Henrik

    2013-03-01

    When animals live in cities, they have to adjust their behaviour and life histories to novel environments. Noise pollution puts a severe constraint on vocal communication by interfering with the detection of acoustic signals. Recent studies show that city birds sing higher-frequency songs than their conspecifics in non-urban habitats. This has been interpreted as an adaptation to counteract masking by traffic noise. However, this notion is debated, for the observed frequency shifts seem to be less efficient at mitigating noise than singing louder, and it has been suggested that city birds might use particularly high-frequency song elements because they can be produced at higher amplitudes. Here, we present the first phonetogram for a songbird, which shows that frequency and amplitude are strongly positively correlated in the common blackbird (Turdus merula), a successful urban colonizer. Moreover, city blackbirds preferentially sang higher-frequency elements that can be produced at higher intensities and, at the same time, happen to be less masked in low-frequency traffic noise. PMID:23303546

  14. Effects of noise-disturbed sleep—A laboratory study on habituation and subjective noise sensitivity

    NASA Astrophysics Data System (ADS)

    Öhström, E.; Björkman, M.

    1988-04-01

    The effect of road traffic noise from heavy vehicles during the night was investigated in a two week laboratory experiment. Body movements, heart rate, subjective sleep quality, mood and performance was evaluated among two different groups of subjects, non-sensitive and sensitive to noise. Acute physiological effects, increased heart rate and an increased number of body movements, in connection with noise events were found and neither of these reactions decreased towards the end of the noise period. A significant effect on subjective sleep quality was found only among the sensitive subjects. No habititation was seen for the negative influence of noise on sleep quality, mood and performance.

  15. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  16. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    SciTech Connect

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

  17. Effect of forward motion on engine noise

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.; Low, J. K. C.; Watkins, J. A.; Merriman, J. E.

    1977-01-01

    Methods used to determine a procedure for correcting static engine data for the effects of forward motion are described. Data were analyzed from airplane flyover and static-engine tests with a JT8D-109 low-bypass-ratio turbofan engine installed on a DC-9-30, with a CF6-6D high-bypass-ratio turbofan engine installed on a DC-10-10, and with a JT9D-59A high-bypass-ratio turbofan engine installed on a DC-10-40. The observed differences between the static and the flyover data bases are discussed in terms of noise generation, convective amplification, atmospheric propagation, and engine installation. The results indicate that each noise source must be adjusted separately for forward-motion and installation effects and then projected to flight conditions as a function of source-path angle, directivity angle, and acoustic range relative to the microphones on the ground.

  18. The Anthropogenic "Greenhouse Effect": Greek Prospective Primary Teachers' Ideas about Causes, Consequences and Cures

    ERIC Educational Resources Information Center

    Ikonomidis, Simos; Papanastasiou, Dimitris; Melas, Dimitris; Avgoloupis, Stavros

    2012-01-01

    This study explores the ideas of Greek prospective primary teachers about the anthropogenic greenhouse effect, particularly about its causes, consequences and cures. For this purpose, a survey was conducted: 265 prospective teachers completed a closed-form questionnaire. The results showed serious misconceptions in all areas (causes, consequences…

  19. Sweeprate and temperature effects on crackling noise

    NASA Astrophysics Data System (ADS)

    White, Robert Allen

    Crackling noise, defined as separate bursts characterized by power law behavior of the frequency histograms over many decades, is observed in many driven systems far from equilibrium. Examples of such systems pepper a remarkable range of length and energy scales from jerky domain wall motion of disordered magnets, to the sometimes devastating crackling of the earth to the bursty release of energy in the photosphere of the sun dwarfing that of our most horrible WMD. Typically, crackling noise is modeled in the infinitely slow driving rate limit at zero temperature. In this dissertation I investigate the effects of relaxing these limits. First I consider the crackling system at zero temperature and finite sweeprate. I discuss how the temporal overlap of power law bursts can account for a wide range of scaling behavior and provide a criterion for sweeprate controlled exponents based on exponents obtained in the infinitely slowly driven limit. I also discuss scaling arguments for hitherto unexplained results in the power spectrum of crackling response in disordered magnets, commonly referred to as Barkhausen noise. Scaling arguments and numerical results are compared to Barkhausen noise measurements in two materials representing distinct adiabatically driven universality classes. Relaxation of the zero temperature constraint cannot be done without considering finite sweeprates due to global relaxation timescales that arise at finite temperatures. We investigate the connection between sweeprate and thermal fluctuations in the far from equilibrium limit typical of crackling systems. Again, using scaling arguments and numerical simulations of the random field Ising model near a disorder-induced critical point we analyze interesting crossover phenomena in the power spectra which are also observed in Barkhausen noise but have yet to be explained.

  20. EVOLUTIONARY AND ECOLOGICAL EFFECTS OF MULTIGENERATIONAL EXPOSURES TO ANTHROPOGENIC STRESSORS

    EPA Science Inventory

    Biological and ecological responses to stress are dictated by duration and frequency, as well as instantaneous magnitude. Conditional compensatory responses at the physiological and behavioral levels, referred to as ?acclimation', may mitigate effects on individuals experiencing ...

  1. Effects of aircraft noise on human sleep.

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.

    1972-01-01

    Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.

  2. Effects of anthropogenic developments on common raven nesting biology in the West Mojave Desert.

    PubMed

    Kristan, William B; Boarman, William I

    2007-09-01

    Subsidized predators may affect prey abundance, distribution, and demography. Common Ravens (Corvus corax) are anthropogenically subsidized throughout their range and, in the Mojave Desert, have increased in number dramatically over the last 3-4 decades. Human-provided food resources are thought to be important drivers of raven population growth, but human developments add other features as well, such as nesting platforms. From 1996 to 2000, we examined the nesting ecology of ravens in the Mojave Desert, relative to anthropogenic developrhent. Ravens nested disproportionately near point sources of food and water subsidies (such as towns, landfills, and ponds) but not near roads (sources of road-killed carrion), even though both sources of subsidy enhanced fledging success. Initiation of breeding activity was more likely when a nest from the previous year was present at the start of a breeding season but was not affected by access to food. The relative effect of environmental modifications on fledging success varied from year to year, but the effect of access to human-provided resources was comparatively consistent, suggesting that humans provide consistently high-quality breeding habitat for ravens. Anthropogenic land cover types in the desert are expected to promote raven population growth and to allow ravens to occupy parts of the desert that otherwise would not support them. Predatory impacts of ravens in the Mojave Desert can therefore be considered indirect effects of anthropogenic development. PMID:17913134

  3. Effects of anthropogenic developments on common Raven nesting biology in the west Mojave Desert

    USGS Publications Warehouse

    Kristan, W. B., III; Boarman, W.I.

    2007-01-01

    Subsidized predators may affect prey abundance, distribution, and demography. Common Ravens (Corvus corax) are anthropogenically subsidized throughout their range and, in the Mojave Desert, have increased in number dramatically over the last 3-4 decades. Human-provided food resources are thought to be important drivers of raven population growth, but human developments add other features as well, such as nesting platforms. From 1996 to 2000, we examined the nesting ecology of ravens in the Mojave Desert, relative to anthropogenic development. Ravens nested disproportionately near point sources of food and water subsidies (such as towns, landfills, and ponds) but not near roads (sources of road-killed carrion), even though both sources of subsidy enhanced fledging success. Initiation of breeding activity was more likely when a nest from the previous year was present at the start of a breeding season but was not affected by access to food. The relative effect of environmental modifications on fledging success varied from year to year, but the effect of access to humanprovided resources was comparatively consistent, suggesting that humans provide consistently high-quality breeding habitat for ravens. Anthropogenic land cover types in the desert are expected to promote raven population growth and to allow ravens to occupy parts of the desert that otherwise would not support them. Predatory impacts of ravens in the Mojave Desert can therefore be considered indirect effects of anthropogenic development. ?? 2007 by the Ecological Society of America.

  4. Linking effects of anthropogenic debris to ecological impacts.

    PubMed

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  5. Linking effects of anthropogenic debris to ecological impacts

    PubMed Central

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  6. Assessment of management to mitigate anthropogenic effects on large whales.

    PubMed

    Van der Hoop, Julie M; Moore, Michael J; Barco, Susan G; Cole, Timothy V N; Daoust, Pierre-Yves; Henry, Allison G; McAlpine, Donald F; McLellan, William A; Wimmer, Tonya; Solow, Andrew R

    2013-02-01

    United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can provide

  7. Direct radiative effects of anthropogenic aerosols on Indian summer monsoon circulation

    NASA Astrophysics Data System (ADS)

    Das, Sushant; Dey, Sagnik; Dash, S. K.

    2016-05-01

    The direct radiative impacts of anthropogenic aerosols on the dynamics of Indian summer monsoon circulation are examined using the regional climate model version 4.1 (RegCM4.1). High anthropogenic aerosol optical depth (AAOD >0.1) and surface shortwave cooling (<-6 W m-2) are simulated over the Indo-Gangetic Basin (IGB), northeast India, east coast of India, and its outflow to the Bay of Bengal (BoB) during the monsoon season (June to September) in the period 2001 to 2010. The analysis reveals a decrease in near surface air temperature at 2 m over the IGB and east coast of India by >0.2 °C due to the dimming effect of anthropogenic aerosols. The aerosol-induced cooling leads to an increase in surface pressure over the local hotspots in the Indian landmass, which reduces the land-sea pressure contrast resulting in weakening of summer monsoon circulation. The simulated surface pressure anomaly also inhibits moisture transport from the BoB towards Indian landmass thereby enhancing precipitation over the BoB and parts of the east coast of India. The impacts are interpreted as conservative estimates because of the underestimation of AAOD by the model due to uncertainties in emission inventory and biases in simulated meteorology. Our results demonstrate the direct radiative impacts of anthropogenic aerosols on the Indian monsoon circulation and call for future studies combining the dynamical and microphysical impacts, which are not considered in this study.

  8. Anthropogenic effects on global riverine sediment and water discharge - a spatially explicit analysis

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A. J.; Syvitski, J. P.

    2013-12-01

    Changes in global riverine water discharge and suspended sediment flux over a 50-year period, 1960-2010 are studied, applying a new version of the WBMsed (WBMsed v.2.0) global hydrological water balance model. A new floodplain component is introduced to better represent water and sediment dynamics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsed v.2.0 simulation results show considerable improvement over the original model. Anthropogenic impact on sediment and water discharge is evaluated by comparing global scale simulations with and without human drivers and parameters (agricultural land use, water intake form aquifers and rivers, sediment trapping in reservoirs, and human-induced soil erosion). The results show that, on average, global riverine sediment flux is reduced by approximately 25% by anthropogenic activities (almost exclusively due to trapping in reservoirs) while water discharge is reduced by about 2%. These results correspond to previous analysis by other research groups. Substantial global and intra-basin variability is observed (see Figure 1) for the first time. In some regions an opposite anthropogenic effect on sediment and water discharge was predicted (e.g. west Mississippi Basin, Rio Grande River, Indian subcontinent). We discuss the western part of the Mississippi Basin as an example of this intriguing anthropogenic impact. Figure 1. Percent change between disturbed and pristine simulations (with and without human footprint respectively) for sediment flux (top) and water discharge (bottom).

  9. Identifying Variations in Baseline Behavior of Killer Whales (Orcinus orca) to Contextualize Their Responses to Anthropogenic Noise.

    PubMed

    Samarra, Filipa I P; Miller, Patrick J O

    2016-01-01

    Determining the baseline behavior of a whale requires understanding natural variations occurring due to environmental context, such as changes in prey behavior. Killer whales feeding on herring consistently encircle herring schools; however, depth of feeding differs from near the surface in winter to deeper than 10 m in spring and summer. These variations in feeding depth are probably due to the depth of the prey and the balance between the costs and benefits of bringing schools of herring to the surface. Such variation in baseline behavior may incur different energetic costs and consequently change the motivation of whales to avoid a feeding area. Here, we discuss these variations in feeding behavior in the context of exposure to noise and interpret observed responses to simulated navy sonar signals. PMID:26611056

  10. Assessment of Management to Mitigate Anthropogenic Effects on Large Whales

    PubMed Central

    Van Der Hoop, Julie M; Moore, Michael J; Barco, Susan G; Cole, Timothy VN; Daoust, Pierre-Yves; Henry, Allison G; McAlpine, Donald F; McLellan, William A; Wimmer, Tonya; Solow, Andrew R

    2013-01-01

    Abstract United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can

  11. Noise effects on passenger communication in light aircraft

    NASA Technical Reports Server (NTRS)

    Rupf, J. A.

    1977-01-01

    This paper considers the effect of noise on conversation between two persons seated in a close, side-by-side position such as in a small aircraft. Twelve pairs of subjects were required to converse while being exposed to noises of various levels and spectra similar to those currently found in general aviation aircraft. After a period of noise exposure, subjects rated the disruptive effect of the noise on conversation and judged the acceptability of the noise. Subjective estimates of the maximum times for pleasant conversation in the noises were also obtained.

  12. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  13. Interspecific comparison of traffic noise effects on dove coo transmission in urban environments.

    PubMed

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen; Lin, Szu-Ying

    2016-01-01

    Most previous studies concerning avian adaptation to anthropogenic noise have focused on songbirds, but few have focused on non-songbirds commonly found in urban environments such as doves. We conducted field playback-recording experiments on the perch-coos of five dove species, including four native Taiwan species (the spotted dove, Spilopelia chinensis, the oriental turtle-dove, Streptopelia orientalis, the red collared-dove, Streptopelia tranquebarica, and the emerald dove, Chalcophaps indica) and one species not native to Taiwan (the zebra dove, Geopelia striata) to evaluate the detection and recognition of dove coos in habitats with differing levels of traffic noise. Our results suggest that traffic noise has selected dominant urban species such as the spotted dove to temporally and spatially adjust cooing to reduce the masking effects of traffic noise and rare urban species such as the emerald dove to avoid areas of high traffic noise. Additionally, although the zebra dove had the highest coo frequency among the study species, its coos showed the highest detection value but not the highest recognition value. We conclude that traffic noise is an important factor in shaping the distribution of rare and dominant dove species in urban environments through its significant effects on coo transmission. PMID:27578359

  14. Interspecific comparison of traffic noise effects on dove coo transmission in urban environments

    PubMed Central

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen; Lin, Szu-Ying

    2016-01-01

    Most previous studies concerning avian adaptation to anthropogenic noise have focused on songbirds, but few have focused on non-songbirds commonly found in urban environments such as doves. We conducted field playback-recording experiments on the perch-coos of five dove species, including four native Taiwan species (the spotted dove, Spilopelia chinensis, the oriental turtle-dove, Streptopelia orientalis, the red collared-dove, Streptopelia tranquebarica, and the emerald dove, Chalcophaps indica) and one species not native to Taiwan (the zebra dove, Geopelia striata) to evaluate the detection and recognition of dove coos in habitats with differing levels of traffic noise. Our results suggest that traffic noise has selected dominant urban species such as the spotted dove to temporally and spatially adjust cooing to reduce the masking effects of traffic noise and rare urban species such as the emerald dove to avoid areas of high traffic noise. Additionally, although the zebra dove had the highest coo frequency among the study species, its coos showed the highest detection value but not the highest recognition value. We conclude that traffic noise is an important factor in shaping the distribution of rare and dominant dove species in urban environments through its significant effects on coo transmission. PMID:27578359

  15. Effects of noise suppression on intelligibility: dependency on signal-to-noise ratios.

    PubMed

    Hilkhuysen, Gaston; Gaubitch, Nikolay; Brookes, Mike; Huckvale, Mark

    2012-01-01

    The effects on speech intelligibility of three different noise reduction algorithms (spectral subtraction, minimal mean squared error spectral estimation, and subspace analysis) were evaluated in two types of noise (car and babble) over a 12 dB range of signal-to-noise ratios (SNRs). Results from these listening experiments showed that most algorithms deteriorated intelligibility scores. Modeling of the results with a logit-shaped psychometric function showed that the degradation in intelligibility scores was largely congruent with a constant shift in SNR, although some additional degradation was observed at two SNRs, suggesting a limited interaction between the effects of noise suppression and SNR. PMID:22280614

  16. Assessing the Potential Effect of Anthropogenic Aerosol Dimming on Sea Surface Temperatures (SSTs)

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    It is beyond doubt that anthropogenic aerosols have an impact on the Earth's radiative balance and hydrological cycle through both direct and indirect effects. The focus of this presentation is the statistically robust quantification of anthropogenic aerosol dimming over oceans, using a global climate model (ECHAM5 at T42L19 resolution) combined with a detailed aerosol microphysics module (HAM, the Hamburg Aerosol Module). The long term goal is to quantify consequences of such forcing on sea surface temperatures (SSTs). We use a series of atmosphere only experiments with prescribed observed transient SSTs covering the years 1870-2000. All experimental setups are identical except for anthropogenic aerosol emissions, which are once transient (13 ensemble members) and once held constant at pre-industrial levels (9 ensemble members). On regional scales and in recent decades, anthropogenic aerosol dimming at the sea surface can reach considerable magnitudes, exceeding 20W/m2 in the model. To quantify these findings in more detail, we assume that anthropogenic aerosols spread from the continents in plumes, and introduce identification criteria for said plumes based on statistical testing of changes in aerosol optical thickness and downward short-wave radiation (clear-sky and all-sky). Using the pre-industrial experiment data to construct a reference distribution, the above three variables are tested at each grid point for each month and decade of the transient experiment against the respective reference distribution to identify significant changes in aerosol-induced surface forcing, in the form of changes in downward clearsky shortwave radiation (direct aerosol effect) or in the form or changes of downward allsky shortwave radiation (including also indirect aerosol effects). The resulting aerosol plume regions are analysed for size, intensity and associated surface dimming, persistence, seasonality, and interdecadal trends. The sensitivity of the results towards the

  17. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  18. Effects of Anthropogenic Disturbance and Climate on Patterns of Bat Fly Parasitism

    PubMed Central

    Pilosof, Shai; Dick, Carl W.; Korine, Carmi; Patterson, Bruce D.; Krasnov, Boris R.

    2012-01-01

    Environmental conditions, including anthropogenic disturbance, can significantly alter host and parasite communities. Yet, our current knowledge is based mainly on endoparasites, while ectoparasites remain little studied. We studied the indirect effects of anthropogenic disturbance (human population density) and climate (temperature, precipitation and elevation) on abundance of highly host-specific bat flies in four Neotropical bat species across 43 localities in Venezuela. We formulated a set of 11 a priori hypotheses that included a combination of the two effectors and host species. Statistically, each of these hypotheses was represented by a zero-inflated negative binomial mixture model, allowing us to control for excess zeros in the data. The best model was selected using Akaike's information criteria. Fly abundance was affected by anthropogenic disturbance in Artibeus planirostris, Carollia perspicillata and Pteronotus parnellii, but not Desmodus rotundus. Climate affected fly abundance in all bat species, suggesting mediation of these effects via the host or by direct effects on flies. We conclude that human disturbance may play a role in shaping bat-bat fly interactions. Different processes could determine fly abundance in the different bat species. PMID:22829953

  19. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    PubMed Central

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.

    2014-01-01

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  20. Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism.

    PubMed

    Pilosof, Shai; Dick, Carl W; Korine, Carmi; Patterson, Bruce D; Krasnov, Boris R

    2012-01-01

    Environmental conditions, including anthropogenic disturbance, can significantly alter host and parasite communities. Yet, our current knowledge is based mainly on endoparasites, while ectoparasites remain little studied. We studied the indirect effects of anthropogenic disturbance (human population density) and climate (temperature, precipitation and elevation) on abundance of highly host-specific bat flies in four Neotropical bat species across 43 localities in Venezuela. We formulated a set of 11 a priori hypotheses that included a combination of the two effectors and host species. Statistically, each of these hypotheses was represented by a zero-inflated negative binomial mixture model, allowing us to control for excess zeros in the data. The best model was selected using Akaike's information criteria. Fly abundance was affected by anthropogenic disturbance in Artibeus planirostris, Carollia perspicillata and Pteronotus parnellii, but not Desmodus rotundus. Climate affected fly abundance in all bat species, suggesting mediation of these effects via the host or by direct effects on flies. We conclude that human disturbance may play a role in shaping bat-bat fly interactions. Different processes could determine fly abundance in the different bat species. PMID:22829953

  1. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-04-01

    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950-2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  2. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2011-08-01

    We investigate the climate response to US anthropogenic aerosol sources over the 1950 to 2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the potential warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  3. [The effect of occupational exposure to noise among tractor drivers: assessment based on 'noise threshold'].

    PubMed

    Solecki, L

    1998-01-01

    The effects of occupational exposure to noise was analysed among operators of agricultural tractors (n = 172). The assessment was based on a parameter called 'noise immission level' (dose connected with the period of employment). The study showed that the correlation between hearing loss and noise immission dose was stronger than that between hearing loss and the period of employment. Equations of simple regression presented in this paper allow us to make a prognosis concerning the risk of occupational deafness and to develop the system of the prevention interventions. The results obtained indicated that the parameter of hygiene evaluation of exposure to noise, called 'noise immission level' should be used more frequently for the noise measurement, especially in the prevention of occupational diseases. PMID:10204143

  4. Anthropogenic Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosols or airborne dust can originate from sources unrelated to anthropogenic activity but may also be initiated or exacerbated by anthropogenic actions. Anthropogenic dust refers to dust activity (emission and suppression) that is present due to human activity. Wind erosion in the U.S. is a sign...

  5. Anthropogenic halo disturbances alter landscape and plant richness: a ripple effect.

    PubMed

    Liu, Bingliang; Su, Jinbao; Chen, Jianwei; Cui, Guofa; Ma, Jianzhang

    2013-01-01

    Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs), with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence-here we term these "Halo disturbance effects" (HDEs). We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed) as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies. PMID:23424648

  6. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

    NASA Astrophysics Data System (ADS)

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-01

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  7. Effects of anthropogenic particles on the chemical and geophysical properties of urban soils, Detroit, Michigan

    NASA Astrophysics Data System (ADS)

    Orlicki, Katharine M.

    There is a great need in many cities for a better quality of urban soil maps. This is due to the increasing interest in repurposing vacant land for urban redevelopment, agriculture, and green infrastructure. Mapping vacant urban land in Detroit can be very difficult because anthropogenic soils were often highly variable and frequently contained demolition debris (such as brick), making it difficult to use a hand auger. This study was undertaken in Detroit, MI to create a more efficient way to map urban soils based on their geophysical and chemical properties. This will make the mapping process faster, less labor intensive, and therefore more cost effective. Optical and chemical criteria for the identification and classification of microartifacts (MAs) were made from a set of reference artifacts of a known origin. These MAs were then observed and tested in urban topsoil samples from sites in Detroit, Michigan that represent three different land use types (residential demolition, fly ash-impacted, and industrial). Optical analyses, SEM, EDAX, and XRD showed that reference MAs may be classified into five basic compositional types (carbonaceous, calcareous, siliceous, ferruginous and miscellaneous). Reference MAs were generally distinguishable using optical microscopy by color, luster, fracture and microtexture. MAs that were more difficult to classify were further differentiable when using SEM, EDAX, and XRD. MAs were found in all of the anthropogenic soils studied, but were highly variable. All three study sites had concentrations coal-related wastes were the most common types of MAs observed and often included coal, ash (microspheres, microagglomerate), cinders, and burnt shale. MAs derived from waste building materials such as brick, mortar, and glass, were typically found on residential demolition sites. Manufacturing waste MAs, which included iron-making slag and coked coal were commonly observed on industrial sites. Fly ash-impacted sites were composed of only

  8. Cardiovascular effects of environmental noise: research in Sweden.

    PubMed

    Bluhm, Gösta; Eriksson, Charlotta

    2011-01-01

    In Sweden, as in many other European countries, traffic noise is an important environmental health issue. At present, almost two million people are exposed to average noise levels exceeding the outdoor national guideline value (55 dB(A)). Despite efforts to reduce the noise burden, noise-related health effects, such as annoyance and sleep disturbances, are increasing. The scientific interest regarding more serious health effects related to the cardiovascular system is growing, and several experimental and epidemiological studies have been performed or are ongoing. Most of the studies on cardiovascular outcomes have been related to noise from road or aircraft traffic. Few studies have included railway noise. The outcomes under study include morning saliva cortisol, treatment for hypertension, self-reported hypertension, and myocardial infarction. The Swedish studies on road traffic noise support the hypothesis of an association between long-term noise exposure and cardiovascular disease. However, the magnitude of effect varies between the studies and has been shown to depend on factors such as sex, number of years at residence, and noise annoyance. Two national studies have been performed on the cardiovascular effects of aircraft noise exposure. The first one, a cross-sectional study assessing self-reported hypertension, has shown a 30% risk increase per 5 dB(A) noise increase. The second one, which to our knowledge is the first longitudinal study assessing the cumulative incidence of hypertension, found a relative risk (RR) of 1.10 (95% CI 1.01 - 1.19) per 5 dB(A) noise increase. No associations have been found between railway noise and cardiovascular diseases. The findings regarding noise-related health effects and their economic consequences should be taken into account in future noise abatement policies and community planning. PMID:21537104

  9. Effect of tactile vibration on annoyance to synthesized propfan noise

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1981-01-01

    Design information that maximizes passenger comfort for propfan aircraft is presented. Predicted noise and vibration environments and the resultant passenger acceptability were studied. The effect of high frequency tactile vibration (i.e., greater than 30 Hz) on passenger reactions was analyzed. Passenger reactions to a wide range of noise with and without tactile vibration was studied. The passenger ride quality simulator was employed using subjects who evaluated either synthesized propeller noises only, or these noises combined with seat/arm vibration. The noises ranging from 80-100 dB consisted of a turbulent boundary layer noise with a factorial combination of five blade passage frequencies (50-200 Hz), two harmonic rolloffs, and three tone/noise ratios. It is indicated that passenger reaction (annoyance) to noise is not significantly changed in the presence of tactile vibration.

  10. Cardiovascular effects of environmental noise: research in Germany.

    PubMed

    Maschke, Christian

    2011-01-01

    Research on systematic noise effects started in Germany back in the fifties with basic experimental studies on humans. As a result, noise was classified as a non-specific stressor, which could cause an ergotropic activation of the complete organism. In the light of this background research a hypothesis was proposed that long-term noise exposure could have an adverse effect on health. This hypothesis was further supported by animal studies. Since the sixties, the adverse effects of chronic road traffic noise exposure were further examined in humans with the help of epidemiological studies. More epidemiological aircraft noise studies followed in the 1970s and thereafter. The sample size was increased, relevant confounding factors were taken into account, and the exposure and health outcomes were investigated objectively and with higher quality measures. To date, more than 20 German epidemiological traffic noise studies have focused on noise-induced health effects, mainly on the cardiovascular system. In particular, the newer German noise studies demonstrate a clear association between residential exposure to traffic noise (particularly night noise) and cardiovascular outcomes. Nevertheless, additional research is needed, particularly on vulnerable groups and multiple noise exposures. The epidemiological findings have still not been fully considered in German regulations, particularly for aircraft noise. The findings, however, were taken into account in national recommendations. The Federal Environment Agency recommends noise rating levels of 65 dB(A) for the day and 55 dB(A) for the night, as a short-term goal. In the medium term, noise rating levels of 60 / 50 (day, night) should be reached and noise rating levels of 55 / 45 in the long run. PMID:21537103

  11. Measuring Hair Cortisol Concentrations to Assess the Effect of Anthropogenic Impacts on Wild Chimpanzees (Pan troglodytes).

    PubMed

    Carlitz, Esther H D; Miller, Robert; Kirschbaum, Clemens; Gao, Wei; Hänni, Daniel C; van Schaik, Carel P

    2016-01-01

    Non-human primates face major environmental changes due to increased human impacts all over the world. Although some species are able to survive in certain landscapes with anthropogenic impact, their long-term viability and fitness may be decreased due to chronic stress. Here we assessed long-term stress levels through cortisol analysis in chimpanzee hair obtained from sleeping nests in northwestern Uganda, in order to estimate welfare in the context of ecotourism, forest fragmentation with human-wildlife conflicts, and illegal logging with hunting activity (albeit not of primates), compared with a control without human contact or conflict. Concerning methodological issues, season [F(2,129) = 37.4, p < 0.0001, r2 = 0.18] and the age of nests [F(2,178) = 20.3, p < 0.0001, r2 = 0.11] significantly predicted hair cortisol concentrations (HCC). With regard to effects of anthropogenic impacts, our results neither showed elevation of HCC due to ecotourism, nor due to illegal logging compared to their control groups. We did, however, find significantly increased HCC in the fragment group compared to chimpanzees living in a nearby intact forest [F(1,88) = 5.0, p = 0.03, r2 = 0.20]. In conclusion, our results suggest that hair cortisol analysis is a powerful tool that can help understanding the impact of anthropogenic disturbances on chimpanzee well-being and could be applied to other great ape species. PMID:27050418

  12. Anthropogenic Halo Disturbances Alter Landscape and Plant Richness: A Ripple Effect

    PubMed Central

    Liu, Bingliang; Su, Jinbao; Chen, Jianwei; Cui, Guofa; Ma, Jianzhang

    2013-01-01

    Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs), with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence–here we term these “Halo disturbance effects” (HDEs). We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed) as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies. PMID:23424648

  13. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  14. Measuring Hair Cortisol Concentrations to Assess the Effect of Anthropogenic Impacts on Wild Chimpanzees (Pan troglodytes)

    PubMed Central

    Carlitz, Esther H. D.; Miller, Robert; Kirschbaum, Clemens; Gao, Wei; Hänni, Daniel C.; van Schaik, Carel P.

    2016-01-01

    Non-human primates face major environmental changes due to increased human impacts all over the world. Although some species are able to survive in certain landscapes with anthropogenic impact, their long-term viability and fitness may be decreased due to chronic stress. Here we assessed long-term stress levels through cortisol analysis in chimpanzee hair obtained from sleeping nests in northwestern Uganda, in order to estimate welfare in the context of ecotourism, forest fragmentation with human-wildlife conflicts, and illegal logging with hunting activity (albeit not of primates), compared with a control without human contact or conflict. Concerning methodological issues, season [F(2,129) = 37.4, p < 0.0001, r2 = 0.18] and the age of nests [F(2,178) = 20.3, p < 0.0001, r2 = 0.11] significantly predicted hair cortisol concentrations (HCC). With regard to effects of anthropogenic impacts, our results neither showed elevation of HCC due to ecotourism, nor due to illegal logging compared to their control groups. We did, however, find significantly increased HCC in the fragment group compared to chimpanzees living in a nearby intact forest [F(1,88) = 5.0, p = 0.03, r2 = 0.20]. In conclusion, our results suggest that hair cortisol analysis is a powerful tool that can help understanding the impact of anthropogenic disturbances on chimpanzee well-being and could be applied to other great ape species. PMID:27050418

  15. The matrix influences direct and indirect effects of an anthropogenic disturbance on marine organisms.

    PubMed

    Mayer-Pinto, Mariana; Underwood, Antony J; Marzinelli, Ezequiel M

    2015-01-01

    The magnitude and direction of direct and indirect effects of disturbances can be context-dependent, with the matrix (surrounding habitat) in which populations are embedded either mitigating or worsening the impacts of disturbances. Chemical disturbances are particularly harmful and can affect organisms directly or indirectly. We used bleach, a common stressor in marine systems, to test hypotheses about direct and indirect effects of anthropogenic disturbances on intertidal grazers and the influence of the surrounding macro-algal matrix on such effects. We manipulated the contaminant, food (biofilm) and surrounding macro-algal matrix. Fewer limpets were found in contaminated areas. Bleach had a strong direct negative effect on limpets and caused a reduction in biofilm food, indirectly affecting limpets. This effect was strongest in the presence of macro-algal matrix. Anthropogenic disturbances can have major consequences via direct and indirect effects on key interacting species. We showed that such effects are, however, context-dependent. Capsule: Pollution is a major driver of biodiversity declines. We show that direct and indirect effects of contaminants on organisms depend on the context in which they occur. PMID:25460615

  16. Effects of the Noises' Statistics and Spectrum on Noise-Induced Phase Transitions

    NASA Astrophysics Data System (ADS)

    Deza, Roberto R.; Fuentes, Miguel A.; Wio, Horacio S.

    2007-07-01

    The study of the effect of the noises' statistics and spectrum on second-order, purely noise-induced phase transition (NIPT) is of wide interest: It is simplified if the noises are dynamically generated by means of stochastic differential equations driven by white noises, a well known case being that of Ornstein-Uhlenbeck noises with a self-correlation time τ whose effect on the NIPT phase diagram has been studied some time ago. Another case is when the stationary pdf is a (colored) q-Gaussian which, being a fat-tail distribution for q > 1 and a compact-support one for q < 1, allows for a controlled study of the effects of the departure from Gaussian statistics. As done with stochastic resonance and other phenomena, we exploit this tool to study—within a simple mean-field approximation—the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small τ, it is shown that whereas for fat-tail noise distributions counteract the effect of self-correlation, compact-support ones enhance it.

  17. Colored noise effects on batch attitude accuracy estimates

    NASA Technical Reports Server (NTRS)

    Bilanow, Stephen

    1991-01-01

    The effects of colored noise on the accuracy of batch least squares parameter estimates with applications to attitude determination cases are investigated. The standard approaches used for estimating the accuracy of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight experience measurement noise often contains significant time correlations and thus is colored. For example, horizon scanner measurements from low Earth orbit were observed to show correlations over many minutes in response to large scale atmospheric phenomena. A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the resulting equations provides insight into the effects of any particular noise color and the worst case noise coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively short term correlations can be accommodated by a simple correction factor. The errors in the predicted accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do not take into account the noise color characteristics are discussed. The appearance of a variety of sample noise color characteristics are demonstrated through simulation, and their effects are discussed for sample estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.

  18. Auditory and non-auditory effects of noise on health.

    PubMed

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-04-12

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  19. Auditory and non-auditory effects of noise on health

    PubMed Central

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  20. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal.

    PubMed

    Fontúrbel, Francisco E; Candia, Alina B; Malebrán, Javiera; Salazar, Daniela A; González-Browne, Catalina; Medel, Rodrigo

    2015-11-01

    Anthropogenic habitat disturbance is a strong biodiversity change driver that compromises not only the species persistence but also the ecological interactions in which they are involved. Even though seed dispersal is a key interaction involved in the recruitment of many tree species and in consequence critical for biodiversity maintenance, studies assessing the effect of different anthropogenic disturbance drivers on this interaction have not been performed under a meta-analytical framework. We assessed the way habitat fragmentation and degradation processes affect species diversity (abundance and species richness) and interaction rates (i.e., fruit removal and visitation rates) of different groups of seed-disperser species at a global scale. We obtained 163 case studies from 37 articles. Results indicate that habitat degradation had a negative effect on seed-disperser animal diversity, whereas habitat fragmentation had a negative effect on interaction rates. Birds and insects were more sensitive in terms of their diversity, whereas mammals showed a negative effect on interaction rates. Regarding habitat, both fragmentation and degradation had a negative effect on seed-disperser animal diversity only in temperate habitats, and negative effects on interaction rates in tropical and temperate habitats. Our results indicate that the impact of human disturbance on seed-disperser species and interactions is not homogeneous. On the contrary, the magnitude of effects seems to be dependent on the type of disturbance, taxonomic group under assessment, and geographical region where the human impact occurs. PMID:26149368

  1. Effects of band-limited noise on human observer performance

    NASA Astrophysics Data System (ADS)

    Salem, Salem; Jacobs, Eddie; Moore, Richard; Hogervorst, Maarten; Bijl, Piet; Halford, Carl

    2007-04-01

    Perception tests establish the effects of spatially band-limited noise and blur on human observer performance. Previously, Bijl showed that the contrast threshold of a target image with spatially band-limited noise is a function of noise spatial frequency. He used the method of adjustment to find the contrast thresholds for each noise frequency band. A noise band exists in which the target contrast threshold reaches a peak relative to the threshold for higher- or lower-noise frequencies. Bijl also showed that the peak of this noise band shifts as high frequency information is removed from the target images. To further establish these results, we performed forced-choice experiments. First, a Night Vision and Electronics Sensors Directorate (NVESD) twelve (12)-target infrared tracked vehicle image set identification (ID) experiment, second, a bar-pattern resolving experiment, and third, a Triangle Orientation Discrimination (TOD) experiment. In all of the experiments, the test images were first spatially blurred, then spatially band-limited noise was added. The noise center spatial frequency was varied in half-octave increments over seven octaves. Observers were shown images of varying target-to-noise contrasts, and a contrast threshold was calculated for each spatial noise band. Finally, we compared the Targeting Task Performance (TTP) human observer model predictions for performance in the presence of spatially band-limited noise with these experimental results.

  2. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar.

    PubMed

    Farris, Zach J; Golden, Christopher D; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M; Kelly, Marcella J

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore conservation worldwide. Utilizing photographic, line-transect, and habitat sampling, as well as landscape analyses and village-based bushmeat hunting surveys, we provide the first investigation of how multiple forms of habitat degradation (fragmentation, exotic carnivores, human encroachment, and hunting) affect carnivore occupancy across Madagascar's largest protected area: the Masoala-Makira landscape. We found that as degradation increased, native carnivore occupancy and encounter rates decreased while exotic carnivore occupancy and encounter rates increased. Feral cats (Felis species) and domestic dogs (Canis familiaris) had higher occupancy than half of the native carnivore species across Madagascar's largest protected landscape. Bird and small mammal encounter rates were negatively associated with exotic carnivore occupancy, but positively associated with the occupancy of four native carnivore species. Spotted fanaloka (Fossa fossana) occupancy was constrained by the presence of exotic feral cats and exotic small Indian civet (Viverricula indica). Hunting was intense across the four study sites where hunting was studied, with the highest rates for the small Indian civet (mean=90 individuals consumed/year), the ring-tailed vontsira (Galidia elegans) (mean=58 consumed/year), and the fosa (Cryptoprocta ferox) (mean=31 consumed/year). Our modeling results suggest hunters target intact forest where carnivore occupancy, abundance, and species richness, are highest. These various

  3. Does noise affect learning? A short review on noise effects on cognitive performance in children

    PubMed Central

    Klatte, Maria; Bergström, Kirstin; Lachmann, Thomas

    2013-01-01

    The present paper provides an overview of research concerning both acute and chronic effects of exposure to noise on children's cognitive performance. Experimental studies addressing the impact of acute exposure showed negative effects on speech perception and listening comprehension. These effects are more pronounced in children as compared to adults. Children with language or attention disorders and second-language learners are still more impaired than age-matched controls. Noise-induced disruption was also found for non-auditory tasks, i.e., serial recall of visually presented lists and reading. The impact of chronic exposure to noise was examined in quasi-experimental studies. Indoor noise and reverberation in classroom settings were found to be associated with poorer performance of the children in verbal tasks. Regarding chronic exposure to aircraft noise, studies consistently found that high exposure is associated with lower reading performance. Even though the reported effects are usually small in magnitude, and confounding variables were not always sufficiently controlled, policy makers responsible for noise abatement should be aware of the potential impact of environmental noise on children's development. PMID:24009598

  4. Does noise affect learning? A short review on noise effects on cognitive performance in children.

    PubMed

    Klatte, Maria; Bergström, Kirstin; Lachmann, Thomas

    2013-01-01

    The present paper provides an overview of research concerning both acute and chronic effects of exposure to noise on children's cognitive performance. Experimental studies addressing the impact of acute exposure showed negative effects on speech perception and listening comprehension. These effects are more pronounced in children as compared to adults. Children with language or attention disorders and second-language learners are still more impaired than age-matched controls. Noise-induced disruption was also found for non-auditory tasks, i.e., serial recall of visually presented lists and reading. The impact of chronic exposure to noise was examined in quasi-experimental studies. Indoor noise and reverberation in classroom settings were found to be associated with poorer performance of the children in verbal tasks. Regarding chronic exposure to aircraft noise, studies consistently found that high exposure is associated with lower reading performance. Even though the reported effects are usually small in magnitude, and confounding variables were not always sufficiently controlled, policy makers responsible for noise abatement should be aware of the potential impact of environmental noise on children's development. PMID:24009598

  5. Effects of noise correlations on information encoding and decoding.

    PubMed

    Averbeck, Bruno B; Lee, Daeyeol

    2006-06-01

    Response variability is often correlated across populations of neurons, and these noise correlations may play a role in information coding. In previous studies, this possibility has been examined from the encoding and decoding perspectives. Here we used d prime and related information measures to examine how studies of noise correlations from these two perspectives are related. We found that for a pair of neurons, the effect of noise correlations on information decoding can be zero when the effect of noise correlations on the information encoded obtains its largest positive or negative values. Furthermore, there can be no effect of noise correlations on the information encoded when it has an effect on information decoding. We also measured the effect of noise correlations on information encoding and decoding in simultaneously recorded neurons in the supplementary motor area to see how well d prime accounted for the information actually present in the neural responses and to see how noise correlations affected encoding and decoding in real data. These analyses showed that d prime provides an accurate measure of information encoding and decoding in our population of neurons. We also found that the effect of noise correlations on information encoding was somewhat larger than the effect of noise correlations on information decoding, but both were relatively small. Finally, as predicted theoretically, the effects of correlations were slightly greater for larger ensembles (3-8 neurons) than for pairs of neurons. PMID:16554512

  6. Nonauditory-system response to noise and effects on health

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Continued exposure to noise in real life can be a source of physiological stress possibly capable of causing health disorders beyond that of direct damage to the auditory receptor system. Some theorists hold that some of these effects occur because of innate, reflexive responses to noise that cannot be prevented or, when suppressed, that require some effort that may itself become somewhat debilitting in time. An alternative theory is that the truly nonhabituating reflexive responses to noise are not sufficient in character to cause any ill health, and that those responses to noise that are or could be significant in this regard are not directly the result of exposure to noise but are responses to the emotional meanings conveyed by the sounds. Obviously, the degree to which noise can lead to harm to nonauditory physiological systems of the body are questions of utmost importance for the assessment of the need for noise control.

  7. Public policy and environmental noise: modeling exposure or understanding effects.

    PubMed

    Staples, S L

    1997-12-01

    This paper argues that if the federal government is to successfully protect the public from the adverse effects of environmental noise, its policies will need to be informed by a scientific understanding of the psychological and social factors that determine when noise results in annoyance and when noise may affect health as an environmental stressor. The overreliance of federal agencies on mathematical modeling of average group responses to physical noise levels is discussed as oversimplifying and limiting the understanding of noise effects in crucial ways. The development of a more sophisticated information base is related to policy needs, such as the need to make accurate predictions about the annoyance of particular communities, the need to understand relationships between public participation in noise abatement efforts and annoyance, and the need to identify populations that may be susceptible to stress-related health effects. PMID:9431308

  8. Jets over Labrador and Quebec: noise effects on human health.

    PubMed Central

    Rosenberg, J

    1991-01-01

    OBJECTIVE: To determine whether the noise from low-level flights over Labrador and Quebec is harmful to human health. DATA SOURCE AND SELECTION: Search of MEDLINE for articles on the effect of noise, particularly impulse noise associated with low-level flights, and a search of the references from identified articles. DATA SYNTHESIS: The noise levels from low-level flights could affect hearing acuity. However, the more important consequences appear to be stress-mediated physiologic effects, especially cardiovascular ones, and psychologic distress, particularly in children. Subjective perception of control over the noise has been found to mitigate some physiologic effects. CONCLUSION: There is sufficient evidence to show that the noise from low-level flights is harmful to human health. PMID:2007238

  9. Public policy and environmental noise: modeling exposure or understanding effects.

    PubMed Central

    Staples, S L

    1997-01-01

    This paper argues that if the federal government is to successfully protect the public from the adverse effects of environmental noise, its policies will need to be informed by a scientific understanding of the psychological and social factors that determine when noise results in annoyance and when noise may affect health as an environmental stressor. The overreliance of federal agencies on mathematical modeling of average group responses to physical noise levels is discussed as oversimplifying and limiting the understanding of noise effects in crucial ways. The development of a more sophisticated information base is related to policy needs, such as the need to make accurate predictions about the annoyance of particular communities, the need to understand relationships between public participation in noise abatement efforts and annoyance, and the need to identify populations that may be susceptible to stress-related health effects. PMID:9431308

  10. The effects of noise on key workplace skills.

    PubMed

    Molesworth, Brett R C; Burgess, Marion; Zhou, Annie

    2015-10-01

    This study explored the effect on memory and psychomotor performance of wideband noise (simulated in-cabin aircraft noise) at 75 dBA, which is similar to that experienced during the cruise phase of a commercial flight. The results from the tests were compared to the effects of a widely known and common metric on the same skills, namely, blood alcohol concentration (BAC). All 32 participants, half non-native English speakers, completed three different tests (recognition memory, working memory, and reaction time) presented in counterbalanced order, either in the presence of noise, with or without noise attenuation headphones, and without noise but with a BAC of 0.05 or 0.10. Simulated aircraft noise was found to affect recognition memory but not working memory or reaction time. These effects were more pronounced for non-native speakers and reflected performance similar to that for BAC of 0.05 or 0.10. PMID:26520289

  11. Noise constraints effecting optimal propeller designs

    NASA Technical Reports Server (NTRS)

    Miller, C. J.; Sullivan, J. P.

    1985-01-01

    A preliminary design tool for advanced propellers was developed combining a fast vortex lattice aerodynamic analysis, a fast subsonic point source noise analysis, and an optimization scheme using a conjugate directions method. Twist, chord and sweep distributions are optimized to simultaneously improve both the aerodynamic performance and the noise observed at a fixed relative position. The optimal noise/performance tradeoffs for straight and advanced concept blades are presented. The techniques used include increasing the blade number, blade sweep, reducing the rotational speed, shifting the spanwise loading and diameter changes.

  12. Noise-Induced Phase Transitions: Effects of the Noises' Statistics and Spectrum

    NASA Astrophysics Data System (ADS)

    Deza, Roberto R.; Wio, Horacio S.; Fuentes, Miguel A.

    2007-05-01

    The local, uncorrelated multiplicative noises driving a second-order, purely noise-induced, ordering phase transition (NIPT) were assumed to be Gaussian and white in the model of [Phys. Rev. Lett. 73, 3395 (1994)]. The potential scientific and technological interest of this phenomenon calls for a study of the effects of the noises' statistics and spectrum. This task is facilitated if these noises are dynamically generated by means of stochastic differential equations (SDE) driven by white noises. One such case is that of Ornstein-Uhlenbeck noises which are stationary, with Gaussian pdf and a variance reduced by the self-correlation time τ, and whose effect on the NIPT phase diagram has been studied some time ago. Another such case is when the stationary pdf is a (colored) Tsallis' q-Gaussian which, being a fat-tail distribution for q > 1 and a compact-support one for q < 1, allows for a controlled exploration of the effects of the departure from Gaussian statistics. As done before with stochastic resonance and other phenomena, we now exploit this tool to study—within a simple mean-field approximation and with an emphasis on the order parameter and the "susceptibility"—the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small τ, it is shown that whereas fat-tail noise distributions (q > 1) counteract the effect of self-correlation, compact-support ones (q < 1) enhance it. Also, an interesting effect on the susceptibility is seen in the last case.

  13. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

    PubMed Central

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-01-01

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324

  14. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    PubMed

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324

  15. Anthropogenic Deforestation and its Effect on the Carbon Cycle of Europe Over the Past Three Millennia

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.; Krumhardt, K. M.

    2008-12-01

    Over the past three millennia, both climate and anthropogenic land use and land cover change (LULUC) have substantially affected the European landscape. Anthropogenic deforestation for agriculture and pasture has been the most significant of these land cover changes, though climate variability itself may have had an impact on European ecosystems. In this study we attempt to quantify the influence of both LULUC and climate change on the carbon cycle of Europe during preindustrial time, and speculate on the ramifications for global atmospheric composition and biogeochemical feedbacks to the climate system. To quantify the effect of millennial-scale climate change and LULUC on the carbon cycle over the past three millennia, we assembled spatially explicit datasets of these quantities and ran a dynamic global vegetation model (LPJ-DGVM) in a number of experiments and sensitivity tests on a high-resolution grid for Europe. Climate data needed to run LPJ were synthesized from gridded datasets of mean monthly temperature and precipitation based on multiproxy climate reconstructions. Though it is certain that many European countries were substantially deforested before 1850, no coherent data set of the progression of deforestation that occurred during preindustrial time was available to us. We have therefore created a 10km, annually resolved gridded time series of European LULUC for the past three millennia by digitizing and synthesizing a database of population history for Europe and finding a relationship between population density, land quality for agricultural and pastoral activities, and anthropogenic deforestation. With these input data, we ran a series of experiments and sensitivity tests with LPJ to simulate the effect that changes in climate, LULUC and length- of-run (starting the run at 1700, 1850 or 1900) have on European carbon storage and its trajectory at year 2000. Climate variability in Europe over the past three millennia years caused modest reductions in

  16. Using scaling fluctuation analysis to quantify global and regional precipitation and to estimate anthropogenic effects

    NASA Astrophysics Data System (ADS)

    Elias, L.; Lovejoy, S.; de Lima, I. P.

    2013-12-01

    using the GHCN and 20CR which we divide into land and ocean subsets. We have recently shown that anthropogenic effects can be estimated by using the CO2 radiative forcings as a surrogate for all the anthropogenic effects. This is quite accurate and works because due to economic activity, the anthropogenic effects are highly correlated. We find that for a CO2 doubling, that over the oceans, we can ascribe 4.5×1.9, 9.8×3.1 mm/month (≈5, 10%) of increased rain rate (depending on whether we relate the precipitation to the forcing without a time lag or with a 20 year time lag respectively). Over the period 1900-2005, these values correspond to 1.73×0.72, 3.73×1.16 mm/decade of annual increase. This is not only larger than the (land only) IPCC estimate (1.08×1.87 mm/decade of annual precipitation for the GHCN data), but unlike the IPCC estimate it also shows a statistically significant trend. Finally, using long station data (particularly from the Iberian peninsula), with the help of spatial scaling properties, we examine these issues in a regional context. We discuss the implications.

  17. Contrast vs noise effects on image quality

    NASA Astrophysics Data System (ADS)

    Hadar, Ofer; Corse, N.; Rotman, Stanley R.; Kopeika, Norman S.

    1996-11-01

    Low noise images are contract-limited, and image restoration techniques can improve resolution significantly. However, as noise level increases, resolution improvements via image processing become more limited because image restoration increases noise. This research attempts to construct a reliable quantitative means of characterizing the perceptual difference between target and background. A method is suggested for evaluating the extent to which it is possible to discriminate an object which has merged with its surroundings, in noise-limited and contrast limited images, i.e., how hard it would be for an observer to recognize the object against various backgrounds as a function of noise level. The suggested model will be a first order model to begin with, using a regular bar-chart with additive uncorrelated Gaussian noise degraded by standard atmospheric blurring filters. The second phase will comprise a model dealing with higher-order images. This computational model relates the detectability or distinctness of the object to measurable parameters. It also must characterize human perceptual response, i.e. the model must develop metrics which are highly correlated to the ease or difficulty which the human observer experiences in discerning the target from its background. This requirement can be fulfilled only by conducting psychophysical experiments quantitatively comparing the perceptual evaluations of the observers with the results of the mathematical model.

  18. Durations required to distinguish noise and tone: Effects of noise bandwidth and frequency.

    PubMed

    Taghipour, Armin; Moore, Brian C J; Edler, Bernd

    2016-05-01

    Perceptual audio coders exploit the masking properties of the human auditory system to reduce the bit rate in audio recording and transmission systems; it is intended that the quantization noise is just masked by the audio signal. The effectiveness of the audio signal as a masker depends on whether it is tone-like or noise-like. The determination of this, both physically and perceptually, depends on the duration of the stimuli. To gather information that might improve the efficiency of perceptual coders, the duration required to distinguish between a narrowband noise and a tone was measured as a function of center frequency and noise bandwidth. In experiment 1, duration thresholds were measured for isolated noise and tone bursts. In experiment 2, duration thresholds were measured for tone and noise segments embedded within longer tone pulses. In both experiments, center frequencies were 345, 754, 1456, and 2658 Hz and bandwidths were 0.25, 0.5, and 1 times the equivalent rectangular bandwidth of the auditory filter at each center frequency. The duration thresholds decreased with increasing bandwidth and with increasing center frequency up to 1456 Hz. It is argued that the duration thresholds depended mainly on the detection of amplitude fluctuations in the noise bursts. PMID:27250144

  19. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    USGS Publications Warehouse

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  20. Effect of electrical steel grade on transformer core audible noise

    NASA Astrophysics Data System (ADS)

    Valkovic, Z.

    1994-05-01

    The effect of different core material grades (M4, MOH and ZDKH) on noise level was investigated experimentally on single-phase dry-type transformer models. Two types of core design were used (conventional mitred overlapping and step-lap overlapping). The models with MOH and ZDKH material have roughly the same noise levels. The models with M4 grade material have higher noise levels than those with MOH or ZDKH, but the difference depends on core induction and core design.

  1. Anthropogenic effects on a tropical forest according to the distance from human settlements.

    PubMed

    Popradit, Ananya; Srisatit, Thares; Kiratiprayoon, Somboon; Yoshimura, Jin; Ishida, Atsushi; Shiyomi, Masae; Murayama, Takehiko; Chantaranothai, Pranom; Outtaranakorn, Somkid; Phromma, Issara

    2015-01-01

    The protection of tropical forests is one of the most urgent issues in conservation biology because of the rapid deforestation that has occurred over the last 50 years. Even in protected forests, the anthropogenic effects from newly expanding villages such as harvesting of medicinal plants, pasturing cattle and forest fires can induce environmental modifications, especially on the forest floor. We evaluated the anthropogenic effects of the daily activities of neighboring residents on natural forests in 12 plots extending from the village boundary into a natural forest in Thailand. The basal area per unit land area did not present a significant trend; however, the species diversity of woody plants decreased linearly towards the village boundary, which caused a loss of individual density because of severe declines in small saplings compared with adult trees and large saplings in proximity to the village. An analysis of tree-size categories indicates a lack of small samplings near the village boundary. The current forest appears to be well protected based on the adult tree canopy, but regeneration of the present-day forests is unlikely because of the loss of seedlings. PMID:26434950

  2. Anthropogenic effects on a tropical forest according to the distance from human settlements

    NASA Astrophysics Data System (ADS)

    Popradit, Ananya; Srisatit, Thares; Kiratiprayoon, Somboon; Yoshimura, Jin; Ishida, Atsushi; Shiyomi, Masae; Murayama, Takehiko; Chantaranothai, Pranom; Outtaranakorn, Somkid; Phromma, Issara

    2015-10-01

    The protection of tropical forests is one of the most urgent issues in conservation biology because of the rapid deforestation that has occurred over the last 50 years. Even in protected forests, the anthropogenic effects from newly expanding villages such as harvesting of medicinal plants, pasturing cattle and forest fires can induce environmental modifications, especially on the forest floor. We evaluated the anthropogenic effects of the daily activities of neighboring residents on natural forests in 12 plots extending from the village boundary into a natural forest in Thailand. The basal area per unit land area did not present a significant trend; however, the species diversity of woody plants decreased linearly towards the village boundary, which caused a loss of individual density because of severe declines in small saplings compared with adult trees and large saplings in proximity to the village. An analysis of tree-size categories indicates a lack of small samplings near the village boundary. The current forest appears to be well protected based on the adult tree canopy, but regeneration of the present-day forests is unlikely because of the loss of seedlings.

  3. Multi-scale Modelling of Anthropogenic Effects On Floods In The Rhine Catchment, Part I: Methodology

    NASA Astrophysics Data System (ADS)

    Bárdossy, A.; Bronstert, A.; Buiteveld, H.; Disse, M.; Engel, H.; Fritsch, U.; Hundecha, Y.; Lammersen, R.; Niehoff, D.; Ritter, N.

    The frequent occurrence of several extreme flood events in the Rhine river basin, caus- ing severe damage for riparians, has brought up an ongoing debate about the human impact on this phenomenon. There is no doubt that changes of land-use as well as river training activities in great parts of Central Europe have influenced the flood sit- uation in this region. Important land-use changes in this respect are the river training measures accompanied by loss of flooding areas, intensive agricultural management, the persisting urbanisation process and anthropogenic climate changes. So far, the cor- relation between the mentioned environmental changes and their effect on flood gen- eration and flood wave propagation has been described mostly in a qualitative way, but has not yet quantitatively substantiated. This contribution presents the methodol- ogy for an integrated and quantitatively based assessment of anthropogenic impacts on flood conditions in the Rhine basin between Maxau and the German/Dutch border. This part of the Rhine catchment covers an area of approximately 110000 square km. The assessment is based on a nested modelling approach, applying models of differ- ent complexity representing different hydrological/hydraulic processes at appropriate spatial scales. This framework offers the possibility to simulate a variety of land-use change effects, retention measures, and climatic change scenarios on the flooding con- ditions of the Rhine.

  4. Decomposition of climate change effects on ocean natural and anthropogenic carbon uptake.

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Marinov, Irina; Palter, Jaime; Sarmiento, Jorge; Galbraith, Eric

    2013-04-01

    The ocean has been the only net sink of anthropogenic CO2 over the last 200 years, removing more than 30% of emitted anthropogenic carbon [Sabine et al., 2004]. The Southern Ocean accounts for up to half of this sink through the formation of various bottom, intermediate and mode water masses [Gruber et al., 2009]. Therefore, understanding the full range of global warming's possible consequences for the Earth system hinges on an understanding of the Southern Ocean's continued ability to serve as a carbon sink in the future. Many of the physical processes that are crucial to ocean carbon uptake and storage are expected to change under warming conditions, with consequences that are difficult to predict. The recent observed increase in the strength of the Southern Ocean Westerlies might enhance the anthropogenic carbon uptake through a more vigorous vertical mixing. However, this could also cause a decrease in natural carbon storage with a compensating effect. On the other hand, projected changes in buoyancy fluxes are expected to work in the opposite direction leading to a reduction of the vertical mixing. Finally, CO2 solubility at the sea surface will be affected by changes in temperature and salinity. We use a coupled atmosphere-ocean model (CM2Mc, Gallbraith et al., 2011) to perform a series of modeling experiments aimed to quantify the separate impact of these mechanisms on the various processes responsible for the functioning of the ocean carbon pumps. The experiments are based on the IPCC rcp8.5 scenario for the 21st century climate and consist in a combination of perturbations in which only one of the forcing factors is varying. This approach allows us to evaluate the relative importance of each process on the ability of the ocean to store carbon through the solubility and biological pumps. We also discuss the future climate projected changes in the relative importance of the Southern Ocean with respect to the global Ocean, for the total carbon uptake

  5. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    NASA Astrophysics Data System (ADS)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    Environmental Programme's Intergovernmental Panel on Climate Change, IPCC, reports (1990, 1995 and 2001). Our review highlights only the enormous scientific difficulties facing the calculation of climatic effects of added atmospheric CO2 in a GCM. The purpose of such a limited review of the deficiencies of climate model physics and the use of GCMs is to illuminate areas for improvement. Our review does not disprove a significant anthropogenic influence on global climate.

  6. The Effect of Road Traffic Noise on Reaction Time

    PubMed Central

    Alimohammadi, Iraj; Zokaei, Mojtaba; Sandrock, Stephan

    2015-01-01

    Background: Traffic noise is one of the main important sources in urban noise pollution, which causes various physiological and psychological effects that can cause disturbs in performance, sleep disturbances, hearing loss and impact on job performance. This study was conducted to verify the impact of road traffic noise on reaction time in terms of extraversion and sex. Methods: Traffic noise was measured and recorded in 10 arterial streets in Tehran, and then the recorded noise was emitted towards participants in an acoustic room. The participants were 80 (40 cases and 40 controls) students. Personality type was determined by Eysenck Personality Inventory (EPI) questioner. Reaction time before and after exposure to traffic noise was measured. Results: Reaction time before exposure to traffic noise did not differ (P=0.437) significantly between introverts and extraverts. However, it was increased significantly in both groups after exposure to traffic noise (P<0.01). Introvert’s reaction time was more increased than that of extraverts. Conclusion: Traffic noise augmented reaction time of both males and females. This study also revealed that exposure to traffic noise leads to increase in reaction time. PMID:26634199

  7. Noise and the Perceptual Filling-in effect

    PubMed Central

    Zomet, Ativ; Polat, Uri; Levi, Dennis M.

    2016-01-01

    Nearby collinear flankers increase the false alarm rate (reports of the target being present when it is not) in a Yes-No experiment. This effect has been attributed to “filling-in” of the target location due to increased activity induced by the flankers. According to signal detection theory, false alarms are attributed to noise in the visual nervous system. Here we investigated the effect of external noise on the filling-in effect by adding white noise to a low contrast Gabor target presented between two collinear Gabor flankers at a range of target-flanker separations. External noise modulates the filling-in effect, reducing visual sensitivity (d′) and increasing the filling-in effect (False Alarm rate). We estimated the amount of external noise at which the false alarm rate increases by the √2 (which we refer to as NFA). Across flank distances, both the false alarm rate and d′ (with no external noise) are correlated with NFA. These results are consistent with the notion that nearby collinear flankers add both signal and noise to the target location. The increased signal results in higher d′ values; the increased noise to higher false alarm rates (the filling effect). PMID:27103594

  8. Noise and the Perceptual Filling-in effect.

    PubMed

    Zomet, Ativ; Polat, Uri; Levi, Dennis M

    2016-01-01

    Nearby collinear flankers increase the false alarm rate (reports of the target being present when it is not) in a Yes-No experiment. This effect has been attributed to "filling-in" of the target location due to increased activity induced by the flankers. According to signal detection theory, false alarms are attributed to noise in the visual nervous system. Here we investigated the effect of external noise on the filling-in effect by adding white noise to a low contrast Gabor target presented between two collinear Gabor flankers at a range of target-flanker separations. External noise modulates the filling-in effect, reducing visual sensitivity (d') and increasing the filling-in effect (False Alarm rate). We estimated the amount of external noise at which the false alarm rate increases by the √2 (which we refer to as NFA). Across flank distances, both the false alarm rate and d' (with no external noise) are correlated with NFA. These results are consistent with the notion that nearby collinear flankers add both signal and noise to the target location. The increased signal results in higher d' values; the increased noise to higher false alarm rates (the filling effect). PMID:27103594

  9. Effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1979-01-01

    A laboratory experiment was conducted to determine the effects of duration and other noise characteristics on the annoyance caused by aircraft-flyover noise. Duration, doppler shift, and spectra were individually controlled by specifying aircraft operational factors, such as velocity, altitude, and spectrum, in a computer synthesis of the aircraft-noise stimuli. This control allowed the separation of the effects of duration from the other main factors in the experimental design: velocity, tonal content, and sound pressure level. The annoyance of a set of noise stimuli which were comprised of factorial combinations of a 3 durations, 3 velocities, 3 sound pressure levels, and 2 tone conditions were judged. The judgements were made by using a graphical scale procedure similar to numerical category scaling. Each of the main factors except velocity was found to affect the judged annoyance significantly. The interaction of tonal content with sound pressure level was also found to be significant. The duration correction used in the effective-perceived-noise-level procedure, 3 dB per doubling of effective duration, was found to account most accurately for the effect of duration. No significant effect doppler shift was found.

  10. Laboratory and community studies of aircraft noise effects

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Powell, C. A.

    1978-01-01

    The noise effects programs objective is to develop aircraft noise criteria and noise reduction methods for achieving greater community and passenger acceptance of air transportation systems. The approach consists of laboratory tests to subjectively evaluate the properties of aircraft-generated noise that are responsible for causing annoyance and field surveys to study the broader problems of community and passenger acceptability. The program is organized into two major thrusts: community acceptance and passenger acceptance. The community acceptance includes subjective response studies of single and multiple aircraft overflights as well as longer term community noise exposure. Emphasis is on the development of units and indices which accurately quantify annoyance. The passenger acceptance program includes studies to determine acceptably levels of interior noise and vibration for speech intelligibility and comfort of crew and passengers. Selected results from several recent studies are presented to indicate the nature, scope, and methods of the research program.

  11. Effects of rotating flows on combustion and jet noise.

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1972-01-01

    Experimental investigations of combustion in rotating (swirling) flow have shown that the mixing and combustion processes were accelerated, flame length and noise levels significantly decreased, and flame stability increased relative to that obtained without rotation. Unsteady burning accompanied by a pulsating flame, violent fluctuating jet, and intense noise present in straight flow burning were not present in rotating flow burning. Correlations between theory and experiment show good agreement. Such effects due to rotating flows could lead to suppressing jet noise, improving combustion, reducing pollution, and decreasing aircraft engine size. Quantitative analysis of the aero-acoustic relationship and noise source characteristics are needed.-

  12. The Retarding Effect of Noise on Entanglement Sudden Death

    NASA Astrophysics Data System (ADS)

    Kayhan, Hünkar

    2015-10-01

    In this paper, we consider a system of two atoms in which one atom is in a JC cavity under the influence of a random phase telegraph noise and the other is an isolated atom. We obtain an exact solution to the time evolution of this system to investigate the effects of noise on the entanglement dynamics of the atoms. We show that the noise causes entanglement sudden death without recovery in a finite time interval. The time for this is independent of the initial state of the pure entangled atomic state. Moreover, an intensive noise delays the entanglement sudden death.

  13. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  14. Environmental versus Anthropogenic Effects on Population Adaptive Divergence in the Freshwater Snail Lymnaea stagnalis

    PubMed Central

    Bouétard, Anthony; Côte, Jessica; Besnard, Anne-Laure; Collinet, Marc; Coutellec, Marie-Agnès

    2014-01-01

    Repeated pesticide contaminations of lentic freshwater systems located within agricultural landscapes may affect population evolution in non-target organisms, especially in species with a fully aquatic life cycle and low dispersal ability. The issue of evolutionary impact of pollutants is therefore conceptually important for ecotoxicologists. The impact of historical exposure to pesticides on genetic divergence was investigated in the freshwater gastropod Lymnaea stagnalis, using a set of 14 populations from contrasted environments in terms of pesticide and other anthropogenic pressures. The hypothesis of population adaptive divergence was tested on 11 life-history traits, using QST -FST comparisons. Despite strong neutral differentiation (mean FST = 0.291), five adult traits or parameters were found to be under divergent selection. Conversely, two early expressed traits showed a pattern consistent with uniform selection or trait canalization, and four adult traits appeared to evolve neutrally. Divergent selection patterns were mostly consistent with a habitat effect, opposing pond to ditch and channel populations. Comparatively, pesticide and other human pressures had little correspondence with evolutionary patterns, despite hatching rate impairment associated with global anthropogenic pressure. Globally, analyses revealed high genetic variation both at neutral markers and fitness-related traits in a species used as model in ecotoxicology, providing empirical support for the need to account for genetic and evolutionary components of population response in ecological risk assessment. PMID:25207985

  15. Auditory intensity processing: Effect of MRI background noise.

    PubMed

    Angenstein, Nicole; Stadler, Jörg; Brechmann, André

    2016-03-01

    Studies on active auditory intensity discrimination in humans showed equivocal results regarding the lateralization of processing. Whereas experiments with a moderate background found evidence for right lateralized processing of intensity, functional magnetic resonance imaging (fMRI) studies with background scanner noise suggest more left lateralized processing. With the present fMRI study, we compared the task dependent lateralization of intensity processing between a conventional continuous echo planar imaging (EPI) sequence with a loud background scanner noise and a fast low-angle shot (FLASH) sequence with a soft background scanner noise. To determine the lateralization of the processing, we employed the contralateral noise procedure. Linearly frequency modulated (FM) tones were presented monaurally with and without contralateral noise. During both the EPI and the FLASH measurement, the left auditory cortex was more strongly involved than the right auditory cortex while participants categorized the intensity of FM tones. This was shown by a strong effect of the additional contralateral noise on the activity in the left auditory cortex. This means a massive reduction in background scanner noise still leads to a significant left lateralized effect. This suggests that the reversed lateralization in fMRI studies with loud background noise in contrast to studies with softer background cannot be fully explained by the MRI background noise. PMID:26778471

  16. Hunting, Exotic Carnivores, and Habitat Loss: Anthropogenic Effects on a Native Carnivore Community, Madagascar

    PubMed Central

    Farris, Zach J.; Golden, Christopher D.; Karpanty, Sarah; Murphy, Asia; Stauffer, Dean; Ratelolahy, Felix; Andrianjakarivelo, Vonjy; Holmes, Christopher M.; Kelly, Marcella J.

    2015-01-01

    The wide-ranging, cumulative, negative effects of anthropogenic disturbance, including habitat degradation, exotic species, and hunting, on native wildlife has been well documented across a range of habitats worldwide with carnivores potentially being the most vulnerable due to their more extinction prone characteristics. Investigating the effects of anthropogenic pressures on sympatric carnivores is needed to improve our ability to develop targeted, effective management plans for carnivore conservation worldwide. Utilizing photographic, line-transect, and habitat sampling, as well as landscape analyses and village-based bushmeat hunting surveys, we provide the first investigation of how multiple forms of habitat degradation (fragmentation, exotic carnivores, human encroachment, and hunting) affect carnivore occupancy across Madagascar’s largest protected area: the Masoala-Makira landscape. We found that as degradation increased, native carnivore occupancy and encounter rates decreased while exotic carnivore occupancy and encounter rates increased. Feral cats (Felis species) and domestic dogs (Canis familiaris) had higher occupancy than half of the native carnivore species across Madagascar’s largest protected landscape. Bird and small mammal encounter rates were negatively associated with exotic carnivore occupancy, but positively associated with the occupancy of four native carnivore species. Spotted fanaloka (Fossa fossana) occupancy was constrained by the presence of exotic feral cats and exotic small Indian civet (Viverricula indica). Hunting was intense across the four study sites where hunting was studied, with the highest rates for the small Indian civet (x¯ = 90 individuals consumed/year), the ring-tailed vontsira (Galidia elegans) (x¯ = 58 consumed/year), and the fosa (Cryptoprocta ferox) (x¯ = 31 consumed/year). Our modeling results suggest hunters target intact forest where carnivore occupancy, abundance, and species richness, are

  17. Aircraft noise effects on sleep: mechanisms, mitigation and research needs.

    PubMed

    Basner, Mathias; Griefahn, Barbara; Berg, Martin van den

    2010-01-01

    There is an ample number of laboratory and field studies which provide sufficient evidence that aircraft noise disturbs sleep and, depending on traffic volume and noise levels, may impair behavior and well-being during the day. Although clinical sleep disorders have been shown to be associated with increased risk of cardiovascular diseases, only little is known about the long-term effects of aircraft noise disturbed sleep on health. National and international laws and guidelines try to limit aircraft noise exposure facilitating active and passive noise control to prevent relevant sleep disturbances and its consequences. Adopting the harmonized indicator of the European Union Directive 2002/49/EC, the WHO Night Noise Guideline for Europe (NNG) defines four Lnight , outside ranges associated with different risk levels of sleep disturbance and other health effects ( < 30, 30-40, 40-55, and> 55 dBA). Although traffic patterns differing in number and noise levels of events that lead to varying degrees of sleep disturbance may result in the same Lnight , simulations of nights with up to 200 aircraft noise events per night nicely corroborate expert opinion guidelines formulated in WHO's NNG. In the future, large scale field studies on the effects of nocturnal (aircraft) noise on sleep are needed. They should involve representative samples of the population including vulnerable groups like children and chronically ill subjects. Optimally, these studies are prospective in nature and examine the long-term consequences of noise-induced sleep disturbances. Furthermore, epidemiological case-control studies on the association of nocturnal (aircraft) noise exposure and cardiovascular disease are needed. Despite the existing gaps in knowledge on long-term health effects, sufficient data are available for defining limit values, guidelines and protection concepts, which should be updated with the availability of new data. PMID:20472955

  18. RF noise suppression using the photodielectric effect in semiconductors

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.

    1969-01-01

    Technique using photodielectric effect of semiconductor in high-Q superconductive cavity gives initial improvement of 2-4 db in signal-to-noise enhancement of conventional RF communication systems. Wide band signal plus noise can be transmitted through a narrow-band cavity due to parametric perturbation of the cavity frequency or phase.

  19. Anthropogenic effects are associated with a lower persistence of marine food webs

    PubMed Central

    Gilarranz, Luis J.; Mora, Camilo; Bascompte, Jordi

    2016-01-01

    Marine coastal ecosystems are among the most exposed to global environmental change, with reported effects on species biomass, species richness and length of trophic chains. By combining a biologically informed food-web model with information on anthropogenic influences in 701 sites across the Caribbean region, we show that fishing effort, human density and thermal stress anomaly are associated with a decrease in local food-web persistence. The conservation status of the site, in turn, is associated with an increase in food-web persistence. Some of these associations are explained through effects on food-web structure and total community biomass. Our results unveil a hidden footprint of human activities. Even when food webs may seem healthy in terms of the presence and abundance of their constituent species, they may be losing the capacity to withstand further environmental degradation. PMID:26867790

  20. Anthropogenic effects are associated with a lower persistence of marine food webs.

    PubMed

    Gilarranz, Luis J; Mora, Camilo; Bascompte, Jordi

    2016-01-01

    Marine coastal ecosystems are among the most exposed to global environmental change, with reported effects on species biomass, species richness and length of trophic chains. By combining a biologically informed food-web model with information on anthropogenic influences in 701 sites across the Caribbean region, we show that fishing effort, human density and thermal stress anomaly are associated with a decrease in local food-web persistence. The conservation status of the site, in turn, is associated with an increase in food-web persistence. Some of these associations are explained through effects on food-web structure and total community biomass. Our results unveil a hidden footprint of human activities. Even when food webs may seem healthy in terms of the presence and abundance of their constituent species, they may be losing the capacity to withstand further environmental degradation. PMID:26867790

  1. Effect of operating conditions on gearbox noise

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zakrajsek, James J.; Townsend, Dennis P.; Atherton, William; Lin, Hsiang Hsi

    1992-01-01

    Low contact ratio spur gears were tested in the NASA gear noise rig to study the noise radiated from the top of the gearbox. The measured sound power from the gearbox top was obtained from a near field acoustic intensity scan taken at 63 nodes just above the surface. The sound power was measured at a matrix of 45 operating speeds and torque levels. Results are presented in the form of a spectral speed map and as a plot of sound power versus torque (at constant speed) and as sound power versus speed (at constant torque). Because of the presence of vibration modes, operating speed was found to have more impact on noise generation than torque level. A NASA gear dynamics code was used to compute the gear tooth dynamic overload at the same 45 operating conditions used for the experiment. Similar trends were found between the analytical results for dynamic tooth overload and experimental results for sound power. Dynamic analysis may be used to design high quality gears with profile relief optimized for minimum dynamic load and noise.

  2. The effects of noise vocoding on speech quality perception.

    PubMed

    Anderson, Melinda C; Arehart, Kathryn H; Kates, James M

    2014-03-01

    Speech perception depends on access to spectral and temporal acoustic cues. Temporal cues include slowly varying amplitude changes (i.e. temporal envelope, TE) and quickly varying amplitude changes associated with the center frequency of the auditory filter (i.e. temporal fine structure, TFS). This study quantifies the effects of TFS randomization through noise vocoding on the perception of speech quality by parametrically varying the amount of original TFS available above 1500Hz. The two research aims were: 1) to establish the role of TFS in quality perception, and 2) to determine if the role of TFS in quality perception differs between subjects with normal hearing and subjects with sensorineural hearing loss. Ratings were obtained from 20 subjects (10 with normal hearing and 10 with hearing loss) using an 11-point quality scale. Stimuli were processed in three different ways: 1) A 32-channel noise-excited vocoder with random envelope fluctuations in the noise carrier, 2) a 32-channel noise-excited vocoder with the noise-carrier envelope smoothed, and 3) removal of high-frequency bands. Stimuli were presented in quiet and in babble noise at 18dB and 12dB signal-to-noise ratios. TFS randomization had a measurable detrimental effect on quality ratings for speech in quiet and a smaller effect for speech in background babble. Subjects with normal hearing and subjects with sensorineural hearing loss provided similar quality ratings for noise-vocoded speech. PMID:24333929

  3. Effects of ambient noise on detectability and localization of avian songs and tones by observers in grasslands.

    PubMed

    Koper, Nicola; Leston, Lionel; Baker, Tyne M; Curry, Claire; Rosa, Patricia

    2016-01-01

    Probability of detection and accuracy of distance estimates in aural avian surveys may be affected by the presence of anthropogenic noise, and this may lead to inaccurate evaluations of the effects of noisy infrastructure on wildlife. We used arrays of speakers broadcasting recordings of grassland bird songs and pure tones to assess the probability of detection, and localization accuracy, by observers at sites with and without noisy oil and gas infrastructure in south-central Alberta from 2012 to 2014. Probability of detection varied with species and with speaker distance from transect line, but there were few effects of noisy infrastructure. Accuracy of distance estimates for songs and tones decreased as distance to observer increased, and distance estimation error was higher for tones at sites with infrastructure noise. Our results suggest that quiet to moderately loud anthropogenic noise may not mask detection of bird songs; however, errors in distance estimates during aural surveys may lead to inaccurate estimates of avian densities calculated using distance sampling. We recommend caution when applying distance sampling if most birds are unseen, and where ambient noise varies among treatments. PMID:26811789

  4. Attribution of spring snow water equivalent (SWE) changes over the northern hemisphere to anthropogenic effects

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Il; Sushama, Laxmi; Naveed Khaliq, M.

    2016-07-01

    Snow is an important component of the cryosphere and it has a direct and important influence on water storage and supply in snowmelt-dominated regions. This study evaluates the temporal evolution of snow water equivalent (SWE) for the February-April spring period using the GlobSnow observation dataset for the 1980-2012 period. The analysis is performed for different regions of hemispherical to sub-continental scales for the Northern Hemisphere. The detection-attribution analysis is then performed to demonstrate anthropogenic and natural effects on spring SWE changes for different regions, by comparing observations with six CMIP5 model simulations for three different external forcings: all major anthropogenic and natural (ALL) forcings, greenhouse gas (GHG) forcing only, and natural forcing only. The observed spring SWE generally displays a decreasing trend, due to increasing spring temperatures. However, it exhibits a remarkable increasing trend for the southern parts of East Eurasia. The six CMIP5 models with ALL forcings reproduce well the observed spring SWE decreases at the hemispherical scale and continental scales, whereas important differences are noted for smaller regions such as southern and northern parts of East Eurasia and northern part of North America. The effects of ALL and GHG forcings are clearly detected for the spring SWE decline at the hemispherical scale, based on multi-model ensemble signals. The effects of ALL and GHG forcings, however, are less clear for the smaller regions or with single-model signals, indicating the large uncertainty in regional SWE changes, possibly due to stronger influence of natural climate variability.

  5. Effects of low levels of road traffic noise during the night: a laboratory study on number of events, maximum noise levels and noise sensitivity

    NASA Astrophysics Data System (ADS)

    Öhrström, E.

    1995-01-01

    The objective of the laboratory study presented here was to elucidate the importance of the number of noise events of a relatively low maximum noise level for sleep disturbance effects (body movements, subjective sleep quality, mood and performance). Twelve test persons slept eight nights under home-like laboratory settings. During four of these nights, each test person was exposed to 16, 32, 64 and 128 noise events respectively from recorded road traffic noise at a maximum noise level of 45 dB(A). All test persons (aged 20-42 years) considered themselves rather or very sensitive towards noise. The results show a significant decrease in subjective sleep quality at 32 noise events per night. At 64 noise events, 50% of the test persons experienced difficulties in falling asleep and, as compared with quiet nights, the time required to fall asleep was on average 12 minutes longer. The occurrence of body movements was significantly related to the reported number of awakenings, and the number of body movements was three times higher during the noisy periods of the night as compared with the quiet periods, indicating acute noise effects. The results of a vigilance test indicate that noise during the night might prolong the time needed to solve the test. Finally, and regardless of number of noise events, a significant increase in tiredness during the day was found after nights with noise exposure. In the paper comparisons are also made with earlier experiments using maximum noise levels of 50 and 60 dB(A).

  6. The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations

    NASA Astrophysics Data System (ADS)

    Novakov, T.; Rivera-Carpio, C.; Penner, J. E.; Rogers, C. F.

    1994-04-01

    Nonseasalt sulfate (nss SO42-) mass concentrations, cloud condensation nuclei (CCN) number concentrations, and cloud droplet concentrations in warm cumulus and stratocumulus clouds were simultaneously measured in situ in marine air masses on El Yunque peak in Puerto Rico. Our results show that CNN number concentrations (measured at 0.5% supersaturation) and nss SO42- mass concentrations (in the range of ˜ 400 1700ng m-342- mass concentrations (in the range of ˜ 300 1400ng m-3). In stratocumulus clouds, a small increase in droplet concentration with nss SO42- mass concentrations in the range of ˜ 300 1100ng m-3 was observed. We attribute the low sensitivities of the droplet number concentrations to nss SO42- mass concentrations to the entrainment/mixing processes in these clouds. The magnitudes of the empirically derived sensitivities are considerably lower than those assumed in recent assessments of the effect of anthropogenic sulfate aerosols on cloud albedo.

  7. Effect of individual blade control on noise radiation

    NASA Technical Reports Server (NTRS)

    Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.

    1995-01-01

    In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.

  8. Effects of noise exposure and task demand on cardiovascular function.

    PubMed

    Wu, T N; Huang, J T; Chou, P F; Chang, P Y

    1988-01-01

    Cardiovascular effects under various noise-exposure and task-demand conditions were studied among 40 senior highschool students. The subjects consisted of 20 males and 20 females with a mean age of 16.7 +/- 0.7 years. All subjects had equivalent abacus performance ratings. Each subject was tested with a random sequence of six sessions. The time limit set for each session was 33 min. Six experimental sessions were constructed by a random combination of noise exposure (60, 85 or 90 dB (A] white noise) and task demand (task presence or task absence) variables. Blood pressure measures were taken at the beginning and ending phases of each session. A task-demand variable was defined as a conjoint of mental arithmetic (3 min) and abacus arithmetic (30 min). The results from the present study show that the effect of noise exposure on task performance is remarkable. Only noise exposure tended to influence the performance of male students in abacus arithmetic. The effect of task demand on blood pressure was higher than that of noise exposure. No interaction effect (noise exposure x task demand) on blood pressure, was found via analyses of within-subjects two-way ANOVA. PMID:3346087

  9. Environmental noise alters gastric myoelectrical activity: Effect of age

    PubMed Central

    Castle, James S; Xing, Jin-Hong; Warner, Mark R; Korsten, Mark A

    2007-01-01

    AIM: To evaluate the effect of age and acoustic stress on gastric myoelectrical activity (GMA) and autonomic nervous system function. METHODS: Twenty-one male subjects (age range 22-71 years, mean 44 years) were recruited and exposed, in random order, to three auditory stimuli (Hospital noise, conversation babble and traffic noise) after a 20-min baseline. All periods lasted 20 min and were interspersed with a 10 min of recovery. GMA was obtained using a Synectics Microdigitrapper. Autonomic nerve function was assessed by monitoring blood pressure and heart rate using an automatic recording device. RESULTS: Dominant power tended to decrease with increase of age (P < 0.05). The overall percentage of three cycle per minute (CPM) activity decreased during exposure to hospital noise (12.0%, P < 0.05), traffic noise (13.9%, P < 0.05), and conversation babble (7.1%). The subjects in the younger group (< 50 years) showed a consistent reduction in the percentage of 3 CPM activity during hospital noise (22.9%, P < 0.05), traffic noise (19.0%, P < 0.05), and conversation babble (15.5%). These observations were accompanied by a significant increase in bradygastria: hospital noise (P < 0.05) and traffic noise (P < 0.05). In contrast, the subjects over 50 years of age did not exhibit a significant decrease in 3 CPM activity. Regardless of age, noise did not alter blood pressure or heart rate. CONCLUSION: GMA changes with age. Loud noise can alter GMA, especially in younger individuals. Our data indicate that even short-term exposure to noise may alter the contractility of the stomach. PMID:17230609

  10. Anthropogenic Signatures in Nutrient Loads Exported from Managed Catchments: Emergence of Effective Biogeochemical Stationarity

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Destouni, G.; Jawitz, J. W.; Thompson, S. E.; Rinaldo, A.; Sivapalan, M.; Rao, P. C.

    2010-12-01

    Examining the impacts of large-scale human modifications of watersheds (e.g., land-use intensification for food production; hydrologic modification though extensive tile-drainage, etc.) on the hydrologic and biogeochemical responses, and ecological impacts at various scales has been the focus of monitoring and modeling studies over the past two decades. Complex interactions between hydrology and biogeochemistry and the need to predict responses across scales has led to the development of detailed process based models that are computation intensive and calibration dependent. Despite the perceived complexity, our overall hypothesis is that human modifications and intensive management of these watersheds have led to more predictable responses, typical of an engineered, less-complex system rather than natural, complex systems. Thus, simpler and more efficient approaches can be used in these systems for predicting hydrologic and biogeochemical responses. It has been argued that human interferences and climate change may have contributed to the demise of hydrologic stationarity. However, our synthesis of observational data shows that anthropogenic impacts have also resulted in the emergence of effective biogeochemical stationarity in managed catchments. Long-term monitoring data from the Mississippi-Atchafalaya River Basin (MARB) and the Baltic Sea Drainage Basin (BSDB) reveal that inter-annual variations in loads (LT) for total-N (TN) and total-P (TP), and for geogenic constituents exported from a catchment are linearly correlated to discharge (QT), leading to temporal invariance of the flow-weighted concentration, Cf = (LT/QT). Emergence of this consistent pattern across diverse catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. These responses are characteristic of transport-limited systems. In contrast, in the absence of legacy sources in less

  11. Assessing the effects of anthropogenic stressors on Puget Sound flatfish populations

    NASA Astrophysics Data System (ADS)

    Johnson, Lyndal L.; Landahl, John T.; Kubin, Leslie A.; Horness, Beth H.; Myers, Mark S.; Collier, Tracy K.; Stein, John E.

    1998-03-01

    Puget Sound is an estuary in the northwestern United States which serves as the habitat for a number of recreationally and commercially important species of flatfish. Over the past 100 years, there has been substantial urban and industrial development within this region, resulting in heavy inputs of chemical contaminants at selected sites, as well as significant loss or alteration of marine habitat. Studies show that feral flatfish in Puget Sound are experiencing a range of biological effects due to chemical contaminant exposure, including reproductive dysfunction, altered immune competence, and development of toxicopathic diseases, and there is some evidence of reduced survival in fish from urban areas of Puget Sound from increased infectious and toxicopathic disease. Puget Sound sole are also subject to other anthropogenic stressors, such as fishing pressure or alteration of nearshore nursery habitats. The cumulative impact of these stressors on flatfish abundance in Puget Sound, however, is poorly understood. In a series of field and laboratory studies, we determined vital rates and other life history parameters in English sole ( Pleuronectes vetulus) subpopulations from urban and non-urban sites in Puget Sound, and are using this information to estimate potential population level impacts of anthropogenic stressors, with age and stage-based Leslie-matrix models. Initial results suggest that declines in the fecundity component of the model, as observed in field studies of fish from contaminated sites, could reduce the size of sub-populations in these areas if the loss of recruits is not offset by density-dependent changes in recruitment, immigration, or other compensating mechanisms. Studies on flatfish species from a variety of sites in Europe and North America suggest that contaminant-related disease and reproductive impairment are widespread in this group of fish, although substantial differences in sensitivity have been observed, even among closely related

  12. Effects of anthropogenic nitrogen input on the aquatic food webs of river ecosystem in central Japan

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Togashi, H.; Tokuchi, N.; Yoshimura, M.; Kato, Y.; Ishikawa, N. F.; Osaka, K.; Kondo, M.; Tayasu, I.

    2014-12-01

    To evaluate the impact of the anthropogenic nitrogen input to the river ecosystem, we conducted the monitoring on nutrient status of river waters and food web structures of aquatic organisms. Especially, changes of sources and concentration of nitrate (NO3-) in river water were focused to evaluate the impact of anthropogenic nitrogen loadings from agricultural and residential areas. Stable nitrogen isotope ratio (δ15N) of aquatic organisms has also intensively been monitored not only to describe their food web structure, but also to detect the influences of extraneous nitrogen inputs. Field samplings an observation campaigns were conducted in the Arida river watershed located in central part of Japan at four different seasons from September 2011 to October 2012. Five observation points were set from headwaters to the point just above the brackish waters starts. Water samples for chemical analysis were taken at the observation points for each campaign. Organisms including leaf litters, benthic algae, aquatic insects, crustacean, and fishes were sampled at each point quantitatively. Results of the riverine survey utilizing 5 regular sampling points showed that δ15N of nitrate (NO3-) increased from forested upstream (˜2 ‰) to the downstream (˜7 ‰) due to the sewage loads and fertilizer effluents from agricultural area. Correspondingly the δ15N of benthic algae and aquatic insects increased toward the downstream. This indicates that primary producers of each reach strongly relied on the local N sources and it was utilized effectively in their food web. Simulation using a GIS based mixing model considering the spatial distributions of human population density and fertilizer effluents revealed that strongest impacts of N inputs was originated from organic fertilizers applied to orchards in the middle to lower parts of catchment. Differences in δ15N between primary producers and predators were 6-7 ‰ similarly at all sampling points. Food web structural

  13. Effects of aircraft noise on flight and ground structures

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  14. Effects of conversation interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Key, K. F.; Powell, C. A.

    1980-01-01

    The annoyance and interference effects of aircraft flyover noise on face to face conversation were investigated. Twenty 5 minute sessions, each composed of three flyovers, were presented to each of 20 pairs of female subjects in a simulated living room. Flyovers varied in peak noise level (55-79 dB, A-weighted) and spectrum (low or high frequency components). Subjects engaged in conversation for 10 sessions and in reverie for the other 10 sessions, and completed subjective ratings following every session. Annoyance was affected by noise level, but was not significantly different for the two activities of reverie and conversation. A noise level of 77 db was found unacceptable for conversation by 50 percent of the subjects. Conversation interference was assessed by incidence of increased vocal effort and/or interruption of conversation during flyovers. Although conversation interference increased with noise level, the conversation interference measures did not improve prediction of individual annoyance judgments.

  15. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multidecadal strong and weak monsoon stages

    DOE PAGESBeta

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-18

    Industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, and so the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. In order to further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950–1977) and weak (1978–2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosolmore » emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. Moreover, these results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.« less

  16. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multidecadal strong and weak monsoon stages

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-01

    Because industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. To further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950-1977) and weak (1978-2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosol emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. These results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.

  17. Cardiorespiratory Responses to Acoustic Noise in Belugas.

    PubMed

    Lyamin, Oleg I; Korneva, Svetlana M; Rozhnov, Viatcheslav V; Mukhametov, Lev M

    2016-01-01

    To date, most research on the adverse effects of anthropogenic noise on marine mammals has focused on auditory and behavioral responses. Other responses have received little attention and are often ignored. In this study, the effect of acoustic noise on heart rate was examined in captive belugas. The data suggest that (1) heart rate can be used as a measure of physiological response (including stress) to noise in belugas and other cetaceans, (2) cardiac response is influenced by parameters of noise and adaptation to repeated exposure, and (3) cetacean calves are more vulnerable to the adverse effect of noise than adults. PMID:26611017

  18. Potential effects of anthropogenic greenhouse gases on avian habitas and populations in the northern Great Plains

    SciTech Connect

    Larson, D.L. )

    1994-04-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect CO[sub 2] has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains. Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled CO[sub 2] scenarios will require substantial basic research to clarify. 113 refs., 1 fig.

  19. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  20. Seperation of Ikonos Sensor's Electronic Noise from Atmospheric Induced Effects

    NASA Astrophysics Data System (ADS)

    Mobashery, M. R.; Dastfard, M.

    2013-09-01

    The quality of satellite images has always been of particular importance in remote sensing. Signals received from satellite sensors include some signals other than those of target signal that may be classified totally as the atmospheric effect and the sensor induced noise. Separating non-target signals and attempting in removing them from images is essential. One method for measuring and removing non-target signals is that of atmospheric correction by Dark Object Subtraction (DOS). This method is based on the sensor's output for the targets that should have almost zero reflectance in a given band. Next, the obtained value will be deducted from the remaining pixels values; regardless of the type of the sensors. Each Charge-Coupled Device (CCD) has its own noise behavior; therefore, the amount deducted values from each pixel can be different for each CCD unit and type. Among the various noises of the CCD and their related electronic circuits, dark current noise, non-uniform pixels noise and read noise were selected to be studied in this paper. The data were obtained from multispectral sensor images of IKONOS. This sensor can provide images in two forms of Panchromatic (PAN) and Multispectral (MS). The results of this study showed that the amount of dark object pixels and the total amount of CCD noises in each band are different. Separation of the noises introduced in this paper from the amount of dark object pixel values can result in an upgraded method for image atmosphere corrections.

  1. Cardiovascular effects of environmental noise: research in the United Kingdom.

    PubMed

    Stansfeld, Stephen; Crombie, Rosanna

    2011-01-01

    Although the auditory effects of noise on humans have been established, the non-auditory effects are not so well established. The emerging links between noise and cardiovascular disease (CVD) have potentially important implications on public health and policy. In the United Kingdom (UK), noise from transport is a problem, where more than half of the population is exposed to more than the recommended maximum day-time noise level and just under three-quarters of the population live in areas where the recommended night-time noise level is exceeded. This review focuses on findings from studies conducted in the UK that examined environmental noise and cardiovascular disease. There were statistically no significant associations between road traffic noise and incident ischemic heart disease in the Caerphilly and Speedwell studies, but there was a suggestion of effects when modifying factors such as length of residence, room orientation, and window opening were taken into account. In a sample stratified by pre-existing disease a strongly increased odds of incident ischemic heart disease for the highest annoyance category was found compared to the lowest among men without pre-existing disease (OR = 2.45, 95%1.13 - 5.31), which was not found in men with pre-existing disease. In the Hypertension and exposure to noise near airports (HYENA) study, night time aircraft noise exposure (L night ) was associated with an increased risk of hypertension, in fully adjusted analyses. A 10-dB increase in aircraft noise exposure was associated with an odds ratio of 1.14 (95%CI, 1.01 - 1.29). Aircraft noise was not consistently related to raised systolic blood pressure in children in the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study. There is some evidence of an association among environmental noise exposure and hypertension and ischemic heart disease in the UK studies; further studies are required to explore gender differences, the effects of

  2. Effects of a traffic noise background on judgements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1974-01-01

    A study was conducted in which subjects judged aircraft noises in the presence of road traffic background noise. Two different techniques for presenting the background noises were evaluated. For one technique, the background noise was continuous over the whole of a test session. For the other, the background noise was changed with each aircraft noise. A range of aircraft noise levels and traffic noise levels were presented to simulate typical indoor levels.

  3. Simultaneous effects of noise exposure and smoking on OAEs

    PubMed Central

    Mehrparvar, Amir Houshang; Mollasadeghi, Abolfazl; Hashemi, Seyed Hesam; Sakhvidi, Mohammad Javad Zare; Mostaghaci, Mehrdad; Davari, Mohammad Hossein

    2015-01-01

    Noise is one of the most pervasive hazardous factors in the workplace. Noise-induced hearing loss (NIHL) is the most common disorder related to noise exposure. Smoking is probably associated with hearing loss. The simultaneous effect of noise and smoking on hearing is a recent concern. In this study, we assessed the simultaneous effect of noise and smoking on standard pure tone audiometry (PTA) and distortion product otoacoustic emissions (DP-OAEs). This was an historical cohort study on 224 workers exposed to noise who were divided into two groups: Smokers and nonsmokers. DP-OAE response amplitudes were assessed. Data were analyzed by SPSS software (version 19) using Student's t-test and Mann-Whitney U test. One hundred and five subjects were smokers (case group) and 119 individuals were nonsmokers (control group). All the subjects were exposed to 91.08 ± 2.29 dBA [time-weighted average (TWA) for an 8 h work shift]. Mean DP-OAE response amplitude at frequencies higher than 1,000 Hz was significantly higher in the smokers than the nonsmokers. This study showed that smoking can aggravate the effect of noise on hearing in DP-OAEs. PMID:26168954

  4. Coloured noise effects on deformation parameters of permanent GPS networks

    NASA Astrophysics Data System (ADS)

    Razeghi, S. M.; Amiri-Simkooei, A. R.; Sharifi, M. A.

    2016-03-01

    Deformation analysis in general and strain analysis in particular using permanent GPS networks require proper analysis of time-series in which all functional effects are taken into consideration and all stochastic effects are captured using an appropriate noise model. This contribution addresses both issues when considering the strain parameters of a GPS network. Estimates of spatial correlation, time correlated noise, and multivariate power spectrum for daily position time-series of the Southern California Integrated GPS Network (SCIGN) stations collected between 1996 and 2011 are obtained. Significant signals with periods of 13.63 d and those related to the GPS draconitic year are identified in these time-series. We aim to assess the effect of a realistic noise model of the series on the uncertainties of the strain parameters including displacements, normal and shear strains, and rotations. For the SCIGN network considered, the following results are highlighted. Contrary to the common belief, the uncertainties of the displacements parameters become smaller when taking a realistic noise model into account. This however was not the case when assessing the noise characteristics of the normal and shear strain, and rotation parameters. The uncertainties increase nearly by a factor of two, in agreement to what is expected. Some of the significant deformation parameters of the white noise model become less significant in case of the realistic noise model.

  5. Differential effects of white noise in cognitive and perceptual tasks

    PubMed Central

    Herweg, Nora A.; Bunzeck, Nico

    2015-01-01

    Beneficial effects of noise on higher cognition have recently attracted attention. Hypothesizing an involvement of the mesolimbic dopamine system and its functional interactions with cortical areas, the current study aimed to demonstrate a facilitation of dopamine-dependent attentional and mnemonic functions by externally applying white noise in five behavioral experiments including a total sample of 167 healthy human subjects. During working memory, acoustic white noise impaired accuracy when presented during the maintenance period (Experiments 1–3). In a reward based long-term memory task, white noise accelerated perceptual judgments for scene images during encoding but left subsequent recognition memory unaffected (Experiment 4). In a modified Posner task (Experiment 5), the benefit due to white noise in attentional orienting correlated weakly with reward dependence, a personality trait that has been associated with the dopaminergic system. These results suggest that white noise has no general effect on cognitive functions. Instead, they indicate differential effects on perception and cognition depending on a variety of factors such as task demands and timing of white noise presentation. PMID:26579024

  6. Effect of noise intensity and illumination intensity on visual performance.

    PubMed

    Lin, Chin-Chiuan

    2014-10-01

    The results of Experiment 1 indicated that noise and illumination intensity have a significant effect on character identification performance, which was better at 30 dBA than at 60 and 90 dBA, and better at 500 and 800 lux than at 200 lux. However, the interaction of noise and illumination intensity did not significantly affect visual performance. The results of Experiment 2 indicated that noise and illumination intensity also had a significant effect on reading comprehension performance, which was better at 30 dBA than at 60 and 90 dBA, and better at 500 lux than at 200 and 800 lux. Furthermore, reading comprehension performance was better at 500 lux lighting and 30 dBA noise than with 800 lux and 90 dBA. High noise intensity impaired visual performance, and visual performance at normal illumination intensity was better than at other illumination intensities. The interaction of noise and illumination had a significant effect on reading comprehension. These results indicate that noise intensity lower than 30 dBA and illumination intensity approximately 500 lux might be the optimal conditions for visual work. PMID:25153619

  7. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  8. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand.

    PubMed

    Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa

    2009-04-15

    Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters. PMID:18790519

  9. The effect of road traffic noise on house prices

    NASA Astrophysics Data System (ADS)

    Taylor, S. M.; Breston, B. E.; Hall, F. L.

    1982-02-01

    Existing U.K. legislation compensates home owners for house price depreciation due to increases in environmental noise caused by public works. Several previous studies have been attempted to show the effects of noise on house prices but have been inconclusive because of a failure to meet basic requirements for a rigorous analysis. In this paper these requirements are discussed and a study designed to fulfil them based on the southern Ontario housing market is described. Data on 2277 individual housing transactions at 51 sites close to major roadways were analyzed to determine the effects of road traffic noise on house prices. Results show that noise has a significant and consistent effect equal to approximately 254 per decibel depreciation at the arterial sites examined and 312 per decibel depreciation at the expressway sites.

  10. Effects of Road Traffic Noise on Inhabitants of Tokyo

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Osada, Y.; Kawaguchi, T.; Hoshiyama, Y.; Yoshida, K.; Yamamoto, K.

    1997-08-01

    A questionnaire-based study was performed in an area of about 16 ha near a main road in Tokyo to elucidate any relations between road traffic noise and the effects of this noise among women living on both sides of the road. Questions concerned annoyance, sleep disturbance, interference with daily activities, health-related symptoms and disease histories. 366 inhabitants were analyzed. Dose-response relationships were found in high reported responses to noisiness, annoyance, dissatisfaction with the nearby environment and interference with listening to TV, conversation and reading. It was also found that the number of high responses to questions increases clearly at noise levels above 70 dB(A),Leq(24h), with regard to interference with thinking and sleep disturbance (waking during the night), fatigue, headache, gastroenteric disorders, loss of appetite, depression and irritation. Furthermore, there was an increase in reports of disease histories with noise above 70 dB(A) for climacteric disturbances, and at noise above 65 dB(A) for deafness, heart disease and hypercholestrolemia. These all suggest that noise may be related to the health status of inhabitants living in areas with heavy road traffic. A noise level of 65 dB(A) or 70 dB(A) inLeq(24h)was the critical point above which respondents indicated increased effects on health and reports of disease increased.

  11. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number. PMID:24116405

  12. Noise in ZnO nanowire field effect transistors.

    PubMed

    Xiong, Hao D; Wang, Wenyong; Suehle, John S; Richter, Curt A; Hong, Woong-Ki; Lee, Takhee

    2009-02-01

    The noise power spectra in ZnO nanowire field effect transistors (FETs) were experimentally investigated and showed a classical 1/f dependence. A Hooge's constant of 5 x 10(-3) was estimated. This value is within the range reported for CMOS FETs with high-k dielectrics, supporting the concept that nanowires can be utilized for future beyond-CMOS electronic applications from the point of view of device noise properties. ZnO FETs measured in a dry O2 environment displayed elevated noise levels compared to in vacuum. At low temperature, random telegraph signals are observed in the drain current. PMID:19441450

  13. Effect of thermal noise on random lasers in diffusion regime

    NASA Astrophysics Data System (ADS)

    Zarei, Mohammad Ali; Hosseini-Farzad, Mahmood; Montakhab, Afshin

    2015-09-01

    In this paper, we study the effects of thermal noise on the time evolution of a weak light pulse (probe) in the presence of a strong light pulse (pump) within a gain medium which includes random scatterer particles. Suitable thermal noise term is added to a set of four coupled equations including three diffusion equations for energy densities and a rate equation for the upper level population in a four-level gain medium. These equations have been solved simultaneously by Crank-Nicholson numerical method. The main result is that the back-scattered output probe light is increased as the thermal noise strength is increased and simultaneously, with the same rate, the amplified spontaneous emission is decreased. Therefore, the amplified response of the random laser in diffusion regime for the input probe pulse is enhanced due to effect of the thermal noise.

  14. Effects of Meteorological Conditions on Reactions to Noise Exposure

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Technical Monitor); Fields, James M.

    2004-01-01

    More than 80,000 residents' responses to transportation noise at different times of year provide the best, but imprecise, statistical estimates of the effects of season and meteorological conditions on community response to noise. Annoyance with noise is found to be slightly statistically significantly higher in the summer than in the winter in a seven-year study in the Netherlands. Analyses of 41 other surveys drawn from diverse countries, climates, and times of year find noise annoyance is increased by temperature, and may be increased by more sunshine, less precipitation, and reduced wind speeds. Meteorological conditions on the day of the interview or the immediately preceding days do not appear to have any more effect on reactions than do the conditions over the immediately preceding weeks or months.

  15. Effects of noise on marine mammals: Executive Summary. Final report

    SciTech Connect

    Richardson, W.J.

    1991-02-01

    The report entitled 'Effects of Noise on Marine Mammals' by W.J. Richardson, C.R. Greene Jr., C.I. Malme and D.H. Thomson (OCS Study MMS 90-0093, LGL Report TA834-1), is a review of published and unpublished literature concerning the effects of manmade noise on marine mammals. Emphasis is given to underwater sounds, but airborne sounds are considered as well. Special attention is given to noise-emitting activities associated, directly or indirectly, with offshore hydrocarbon exploration and development, since that is a dominant interest of the U.S. Minerals Management Service, sponsor of the review. However, reactions of marine mammals to noise from all types of human activities are considered. Special attention is given to species of marine mammals and types of human activities that occur in waters around the United States. However, relevant literature from elsewhere is reviewed.

  16. Evaluation of Global Anthropogenic Aerosol Indirect Effects in the GISS Model III

    NASA Astrophysics Data System (ADS)

    Chen, W.; Nenes, A.; Liao, H.; Adams, P. J.; Seinfeld, J. H.

    2008-12-01

    In this study the implementation of the aerosol indirect effect in the 23-layer Goddard Institute for Space Studies (GISS) Global Climate Middle Atmosphere Model III is described. Explicit dependence on cloud droplet number concentrations (Nc) is introduced in the calculations of cloud optical depths and autoconversion rates in liquid-phase stratiform clouds to account for both first and second indirect effects. To diagnose Nc, correlation with concentrations of aerosol soluble ions is developed separately for each model grid and in each month, to reflect seasonal and spatial variations in aerosol-cloud interactions. Based on estimates of pre-industrial, present-day (year 2000), and future (year 2100) concentrations of sulfate, nitrate, ammonium, sea salt, and organic aerosols from the fully coupled Caltech unified model, corresponding offline, monthly averaged Nc were derived and applied to equilibrium climate simulations. Modeled present-day global distributions of Nc, droplet size, cloud cover, and radiative balance are in good agreement with satellite-retrieved climatology. A global anthropogenic indirect forcing of -1.7 W m-2, with a decrease in mean droplet radius of 0.8 μm, and an increase in total liquid water path of 0.2 g cm-2, from pre-industrial to year 2000 is estimated. Future climate responses to aerosol direct and indirect effects are also analyzed and compared to previous studies that consider chemistry- aerosol-climate coupling, revealing the influences of this coupling on climate predictions.

  17. Restoring fish ecological quality in estuaries: Implication of interactive and cumulative effects among anthropogenic stressors.

    PubMed

    Teichert, Nils; Borja, Angel; Chust, Guillem; Uriarte, Ainhize; Lepage, Mario

    2016-01-15

    Estuaries are subjected to multiple anthropogenic stressors, which have additive, antagonistic or synergistic effects. Current challenges include the use of large databases of biological monitoring surveys (e.g. the European Water Framework Directive) to help environmental managers prioritizing restoration measures. This study investigated the impact of nine stressor categories on the fish ecological status derived from 90 estuaries of the North East Atlantic countries. We used a random forest model to: 1) detect the dominant stressors and their non-linear effects; 2) evaluate the ecological benefits expected from reducing pressure from stressors; and 3) investigate the interactions among stressors. Results showed that largest restoration benefits were expected when mitigating water pollution and oxygen depletion. Non-additive effects represented half of pairwise interactions among stressors, and antagonisms were the most common. Dredged sediments, flow changes and oxygen depletion were predominantly implicated in non-additive interactions, whereas the remainder stressors often showed additive impacts. The prevalence of interactive impacts reflects a complex scenario for estuaries management; hence, we proposed a step-by-step restoration scheme focusing on the mitigation of stressors providing the maximum of restoration benefits under a multi-stress context. PMID:26520263

  18. A Millennium of Anthropogenic Land Cover Change and its Effects on Climate

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Reick, C.; Raddatz, T.; Claussen, M.

    2007-12-01

    Anthropogenic climate change is generally thought to have begun with the industrial revolution, when humans started to considerably alter the composition of the atmosphere by emissions from fossil fuels. Human impact on the environment, however, started much earlier: Thousands of years ago, land was already transformed for use in agriculture and livestock farming. It is recognized that anthropogenic land cover change at today's scale has a significant impact on local to global climate. Yet, the effects of pre-industrial land use are not well understood. A main obstacle is the lack of quantitative data on historic land use activity prior to AD~1700 and a detailed analysis of its effects on the surface energy balance and the carbon cycle. This contribution presents advancements in both aspects. First, we present a simple method that consistently estimates the extent of crop and pasture areas for AD~800 to 1700 on a geographically explicit scale based on population data. Published land use data are used from AD~1700 until present. Uncertainties associated with data and method, including the effects of agrotechnical development, are assessed, and data sets of highest and lowest possible land use dynamics are provided. This land use reconstruction can be used to assess the human impact on the environment in pre-industrial times at high spatial and temporal resolution. It will be made freely available to the scientific community. The millennial land use reconstruction is then used in a complex climate model to quantify changes in radiative forcing. Results show that the energy balance was significantly influenced by human activity already in AD~800. Regional monthly means of radiative forcing reach up to 2.5~W/m2. Our results are in line with previous studies covering the recent centuries. The impact of pre-industrial land use change on the carbon balance is estimated using two independent approaches: a process-based soil and vegetation model, and a book-keeping model

  19. Simulated high speed flight effects on supersonic jet noise

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Brown, Martha C.

    1993-01-01

    A free jet is utilized to investigate the changes in the noise received from supersonic jets in high speed subsonic flight. Flight Mach numbers to 0.9 are simulated for supersonic jets with fully expanded Mach numbers between 1 and 2. Plume pressure measurements show only minor changes in the shock structure of off-design jets up to a Mach number of 0.6. Correspondingly, far-field noise measurements indicate little change to the broadband shock noise emitted at right angles to the jet. However, measurements within the free jet show that convection effects on the noise are substantial, and that the point source convective amplification that is proportional to the fourth power of the Doppler factor may apply for broadband shock noise in flight. Measurements of jet mixing noise for an on-design supersonic jet show that the current predictions of mixing noise in flight can be extended to flight Mach numbers of at least 0.5.

  20. Effects of Bifurcations on Aft-Fan Engine Nacelle Noise

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, Fereidoun; Pope, D. Stuart; Vatsa, Veer N.

    2004-01-01

    Aft-fan engine nacelle noise is a significant factor in the increasingly important issue of aircraft community noise. The ability to predict such noise within complex duct geometries is a valuable tool in studying possible noise attenuation methods. A recent example of code development for such predictions is the ducted fan noise propagation and radiation code CDUCT-LaRC. This work focuses on predicting the effects of geometry changes (i.e. bifurcations, pylons) on aft fan noise propagation. Beginning with simplified geometries, calculations show that bifurcations lead to scattering of acoustic energy into higher order modes. In addition, when circumferential mode number and the number of bifurcations are properly commensurate, bifurcations increase the relative importance of the plane wave mode near the exhaust plane of the bypass duct. This is particularly evident when the bypass duct surfaces include acoustic treatment. Calculations involving more complex geometries further illustrate that bifurcations and pylons clearly affect modal content, in both propagation and radiation calculations. Additionally, results show that consideration of acoustic radiation results may provide further insight into acoustic treatment effectiveness for situations in which modal decomposition may not be straightforward. The ability of CDUCT-LaRC to handle complex (non-axisymmetric) multi-block geometries, as well as axially and circumferentially segmented liners, allows investigation into the effects of geometric elements (bifurcations, pylons).

  1. Multiple anthropogenic stressors exert complex, interactive effects on a coral reef community

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, Ranjan; Fong, Peggy

    2014-12-01

    Multiple natural and anthropogenic stressors impact coral reefs across the globe leading to declines of coral populations, but the relative importance of different stressors and the ways they interact remain poorly understood. Because coral reefs exist in environments commonly impacted by multiple stressors simultaneously, understanding their interactions is of particular importance. To evaluate the role of multiple stressors we experimentally manipulated three stressors (herbivore abundance, nutrient supply, and sediment loading) in plots on a natural reef in the Gulf of Panamá in the Eastern Tropical Pacific. Monitoring of the benthic community (coral, macroalgae, algal turf, and crustose coralline algae) showed complex responses with all three stressors impacting the community, but at different times, in different combinations, and with varying effects on different community members. Reduction of top-down control in combination with sediment addition had the strongest effect on the community, and led to approximately three times greater algal biomass. Coral cover was reduced in all experimental units with a negative effect of nutrients over time and a synergistic interaction between herbivore exclosures and sediment addition. In contrast, nutrient and sediment additions interacted antagonistically in their impacts on crustose coralline algae and turf algae so that in combination the treatments limited each other's effects. Interactions between stressors and temporal variability indicated that, while each stressor had the potential to impact community structure, their combinations and the broader environmental conditions under which they acted strongly influenced their specific effects. Thus, it is critical to evaluate the effects of stressors on community dynamics not only independently but also under different combinations or environmental conditions to understand how those effects will be played out in more realistic scenarios.

  2. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California

    PubMed Central

    Batllori, Enric; Moritz, Max A.; Waller, Eric K.; Berck, Peter; Flint, Alan L.; Flint, Lorraine E.; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  3. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    PubMed

    Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change. PMID:27124597

  4. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.

    2007-10-01

    Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double moment cloud microphysics scheme developed for stratiform clouds to convective clouds in the ECHAM5 general circulation model. This increases the liquid water path in the tropics and reduces the sensitivity of the liquid water path with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulations in which greenhouse gases and aerosols emissions are increased since pre-industrial times, accounting for microphysics in convective clouds matches most closely the observed increase in precipitation. The total anthropogenic aerosol effect since pre-industrial time is slightly reduced from -1.6 to -1.9 W m-2 when microphysics are only included in stratiform clouds to -1.5 W m-2 when microphysics are included both in stratiform and convective clouds.

  5. A Minimal Invasive Method to Forecast the Effects of Anthropogenic Disturbance on Tropical Cave Beetle Communities.

    PubMed

    Cajaiba, R L; Cabral, J A; Santos, M

    2016-04-01

    Many tropical landscapes are changing rapidly, with uncertain outcomes for biodiversity, landscape function, and the corresponding landscape services. Therefore, monitoring and adaptively managing the drivers and consequences of landscape change while sustaining the production of essential resources have become research and policy priorities. In this perspective, we have applied a recent framework, the stochastic dynamic methodology (StDM), with the purpose of understanding the effects of natural and anthropogenic disturbances on caves' integrity using cave beetle communities (Coleoptera) as ecological indicators. The proposed method was preceeded by a generalized linear model for discriminating significant relationships between the selected indicators, the structural changes in the caves, and the epigean habitats associated. The obtained results showed different ecological trends in response to the environmental changes. Overall, the simulation results seem to demonstrate the StDM reliability in determining the effects of habitat dynamics, that is, the expansion of agricultural activities, in areas near the caves in the structure of cave beetle communities. The applied method, based on universal information-theoretic principles, can be easily implemented and interpreted by environmental managers and decision makers, enabling anticipating impacts and supporting the development of measures aimed at minimizing the identified problems. PMID:26590143

  6. Application of the anthropogenic allee effect model to trophy hunting as a conservation tool.

    PubMed

    Harris, Richard B; Cooney, Rosie; Leader-Williams, Nigel

    2013-10-01

    Trophy hunting can provide economic incentives to conserve wild species, but it can also involve risk when rare species are hunted. The anthropogenic Allee effect (AAE) is a conceptual model that seeks to explain how rarity may spread the seeds of further endangerment. The AAE model has increasingly been invoked in the context of trophy hunting, increasing concerns that such hunting may undermine rather than enhance conservation efforts. We question the appropriateness of uncritically applying the AAE model to trophy hunting for 4 reasons. First, the AAE assumes an open-access resource, which is a poor characterization of most trophy-hunting programs and obscures the potential for state, communal, or private-property use rights to generate positive incentives for conservation. Second, study results that show the price of hunting increases as the rarity of the animal increases are insufficient to indicate the presence of AAE. Third, AAE ignores the existence of biological and behavioral factors operating in most trophy-hunting contexts that tend to regulate the effect of hunting. We argue that site-specific data, rather than aggregated hunting statistics, are required to demonstrate that patterns of unsustainable exploitation can be well explained by an AAE model. Instead, we suggest that conservation managers seeking to investigate and identify constraints that limit the potential conservation role of trophy hunting, should focus on the critical governance characteristics that shape the potential conservation role of trophy hunting, such as corruption, insecure property rights, and inadequate sharing of benefits with local people. PMID:23869913

  7. Modeling Study of the Effect of Anthropogenic Aerosols on Late Spring Drought in South China

    SciTech Connect

    Hu, Ning; Liu, Xiaohong

    2013-10-01

    In this study, the mechanisms underlying the decadal variability of late spring precipitation in south China are investigated using the latest version 1 of Community Earth System Model (CESM1). We aim to unravel the effects of different climate forcing agents, such as aerosols and greenhouse gases (GHGs), on the decadal variation of precipitation with transient experiments from pre-industry (for year 1850) to present-day (for year 2000). Our results reveal that: (1) CESM1 can reproduce the climatological features of atmospheric circulation and precipitation for the late spring in south China; (2) Only simulations including the forcing of anthropogenic aerosols can reproduce the observed decreasing trend of late spring precipitation from 1950-2000 in south China; (3) Aerosols affect the decadal change of precipitation mainly by altering the large scale atmospheric circulation, and to a less extent by increasing the lower-tropospheric stability to inhibit the convective precipitation; and (4) In comparison, other climate forcing agents, such as GHGs, have much smaller effects on the decadal change of spring precipitation in south China. Key words: precipitation, aerosols, climate change, south China, Community Earth System Model

  8. Effect of external classroom noise on schoolchildren's reading and mathematics performance: correlation of noise levels and gender.

    PubMed

    Papanikolaou, M; Skenteris, N; Piperakis, S M

    2015-02-01

    The present study investigated the effect of low, medium, and high traffic road noise as well as irrelevant background speech noise on primary school children's reading and mathematical performance. A total of 676 participants (324 boys, 47.9% and 352 girls, 52.1%) of the 4th and 5th elementary classes participated in the project. The participants were enrolled in public primary schools from urban areas and had ages ranging from 9 to 10 years and from. Schools were selected on the basis of increasing levels of exposure to road traffic noise and then classified into three categories (Low noise: 55-66 dB, Medium noise: 67-77 dB, and High noise: 72-80 dB). We measured reading comprehension and mathematical skills in accordance with the national guidelines for elementary education, using a test designed specifically for the purpose of this study. On the one hand, children in low-level noise schools showed statistically significant differences from children in medium- and high-level noise schools in reading performance (p<0.001). On the other hand, children in low-level noise schools differed significantly from children in high-level noise schools but only in mathematics performance (p=0.001). Girls in general did better in reading score than boys, especially in schools with medium- and high-level noise. Finally the levels of noise and gender were found to be two independent factors. PMID:24810556

  9. An effective method for computing the noise in biochemical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Nie, Qing; He, Miao; Zhou, Tianshou

    2013-02-01

    We present a simple yet effective method, which is based on power series expansion, for computing exact binomial moments that can be in turn used to compute steady-state probability distributions as well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied to representative reaction networks such as the ON-OFF models of gene expression, gene models of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact formulae for computing the intensities of noise in the species of interest or steady-state distributions are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (reduce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF (or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism and can modulate the noise to the lowest level independently of the mRNA mean. Except for its power in deriving analytical expressions for distributions and noise, our method is programmable and has apparent advantages in reducing computational cost.

  10. Subjective effects of traffic noise exposure, II: Comparisons of noise indices, response scales, and the effects of changes in noise levels

    NASA Astrophysics Data System (ADS)

    Langdon, F. J.; Griffiths, I. D.

    1982-07-01

    Traffic noise and social surveys were carried out at eight London suburban sites. Dwellings at the selected sites were exposed to noise from freely flowing traffic at levels which ranged from 57 to 82 dB(A), measured as 18 hour L10. The study was designed to obtain noise measurements and subjective responses from residents on four repeated occasions throughout the year. A total of 1363 interviews was conducted, 222 respondents each completing four interviews. Traffic noise was measured as L10, L50 and Leq in both linear and A-weighted form. The eight noise indices were found to be very highly intercorrelated. The correlations between each of these and the subjective responses were all equally high. It was therefore not possible to select a "best" index of noise in terms of nuisance experienced by residents, even when the most highly reliable data, derived from averaging responses for the four repeated interviews, were employed. Subjective responses were measured by means of a 7-point scale of "dissatisfaction" and a 4-point verbal scale of "bother" and the former was found to be a significantly better correlate of noise exposure. The data from these eight sites, which underwent no change in noise levels during the survey, were compared with data obtained in "before and after" studies conducted over a roughly similar period. "Dissatisfaction" and "bother" scores for the "after" condition were found to differ from those which would have been predicted from stable and unchanging conditions. A number of possible reasons for this finding are discussed and it is suggested that prediction of the effects resulting from noise reduction procedures requires further study.

  11. Vision and photoentrainment in fishes: the effects of natural and anthropogenic perturbation.

    PubMed

    Collin, Shaun P; Hart, Nathan S

    2015-01-01

    Vision and photoentrainment in fishes are vital for feeding, avoiding predation, spatial orientation, navigation, social communication and the synchronization of many homeostatic functions such as activity patterns and sleep. The camera-like (image-forming) eyes of fishes are optimized to provide a clear view of their preferred ecological niche, while non-visual photoreceptors provide irradiance detection that mediates circadian photoentrainment, an endogenous time-keeping mechanism (biological clock) to respond to predictable changes in environmental conditions. Fish and fisheries are under pressure from both natural and anthropogenic perturbation, which in many cases alters the intensity and spectral composition of the light environment on which they depend for their survival. This review examines the effects of a changing light environment and turbidity on the health of fishes within a developmental and ecological context. Understanding the sensory environment of fishes is vital to predicting their responses and, ultimately, their resilience to environmental change and the potential for maintaining sustainable levels of biodiversity. PMID:24919443

  12. Increasing CO2 Coupled with Other Anthropogenic Perturbations: Effects on Ozone and Other Trace Gases

    NASA Technical Reports Server (NTRS)

    Rosenfield, J. E.; Douglass, A. R.

    1999-01-01

    The GSFC 2D interactive chemistry-radiation-dynamics model has been used to study the effects on stratospheric trace gases of past and future CO2 increases coupled with changes in CFC'S, methane, and nitrous oxide. Previous simulations with the GSFC model showed that the stratospheric cooling calculated to result from doubling atmospheric CO2 would lead, in the absence of a growth of other anthropogenic gases, to a decrease in upper stratospheric NO(y) of roughly 15%. This work has been extended to simulate changes in stratospheric chemistry and dynamics occurring between the years 1960 and 2050. The simulations have been carried out with and without changes in CO2. In the low latitude upper stratosphere ozone is predicted to be 10% greater in 2050 than in 1990 when increased CO2 is included, compared with an increase of only 2% without the inclusion of CO2. In the low latitude lower stratosphere, ozone is predicted to decrease by about 1% between 1990 and 2050 when CO2 changes are taken into account, in contrast to an approximate 3% increase when they are not. The simulated behavior of water vapor is another example of the coupled responses. Between 1990 and 2050 low latitude water vapor is predicted to increase by 4% and 2% in the upper and lower stratosphere, respectively, without the inclusion of CO2 increases. with the inclusion of CO2 changes, the water vapor increases are predicted to be roughly 12% and 8%, for the upper and lower stratosphere, respectively.

  13. Influence of background noise on the performance in the odor sensitivity task: effects of noise type and extraversion.

    PubMed

    Seo, Han-Seok; Hähner, Antje; Gudziol, Volker; Scheibe, Mandy; Hummel, Thomas

    2012-10-01

    Recent research demonstrated that background noise relative to silence impaired subjects' performance in a cognitively driven odor discrimination test. The current study aimed to investigate whether the background noise can also modulate performance in an odor sensitivity task that is less cognitively loaded. Previous studies have shown that the effect of background noise on task performance can be different in relation to degree of extraversion and/or type of noise. Accordingly, we wanted to examine whether the influence of background noise on the odor sensitivity task can be altered as a function of the type of background noise (i.e., nonverbal vs. verbal noise) and the degree of extraversion (i.e., introvert vs. extrovert group). Subjects were asked to conduct an odor sensitivity task in the presence of either nonverbal noise (e.g., party sound) or verbal noise (e.g., audio book), or silence. Overall, the subjects' mean performance in the odor sensitivity task was not significantly different across three auditory conditions. However, with regard to the odor sensitivity task, a significant interaction emerged between the type of background noise and the degree of extraversion. Specifically, verbal noise relative to silence significantly impaired or improved the performance of the odor sensitivity task in the introvert or extrovert group, respectively; the differential effect of introversion/extraversion was not observed in the nonverbal noise-induced task performance. In conclusion, our findings provide new empirical evidence that type of background noise and degree of extraversion play an important role in modulating the effect of background noise on subjects' performance in an odor sensitivity task. PMID:22941357

  14. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  15. The Anthropogenic/Lightning Effects Around Houston: The Houston Environmental Aerosol Thunderstorm (HEAT) Project - 2005

    NASA Astrophysics Data System (ADS)

    Orville, R. E.

    2004-12-01

    A major field program will occur in summer 2005 to determine the sources and causes for the enhanced cloud-to-ground lightning over Houston, Texas. This program will be in association with simultaneous experiments supported by the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ), formally the Texas Natural Resource Conservation Commission (TNRCC). Recent studies covering the period 1989-2002 document a 60 percent increase of cloud-to-ground lightning in the Houston area as compared to surrounding background values, which is second in flash density only to the Tampa Bay, Florida area. We suggest that the elevated flash densities could result from several factors, including 1) the convergence due to the urban heat island effect and complex sea breeze (thermal hypothesis), and 2) the increasing levels of air pollution from anthropogenic sources producing numerous small cloud droplets and thereby suppressing mean droplet size (aerosol hypothesis). The latter effect would enable more cloud water to reach the mixed phase region where it is involved in the formation of precipitation and the separation of electric charge, leading to an enhancement of lightning. The primary goals of HEAT are to examine the effects of (1) pollution, (2) the urban heat island, and (3) the complex coastline on storms and lightning characteristics in the Houston area. The transport of air pollutants by Houston thunderstorms will be investigated. In particular, the relative amounts of lightning-produced and convectively transported NOx into the upper troposphere will be determined, and a comparison of the different NOx sources in the urban area of Houston will be developed. The HEAT project is based on the observation that there is an enhancement in cloud-to-ground (CG) lightning. Total lightning (intracloud (IC) and CG) will be measured using a lightning mapping system (LDAR II) to observe if there is an enhancement in intracloud lightning as well.

  16. Anthropogenic Effects on Total Water Storage from GRACE on Large South American Watersheds

    NASA Astrophysics Data System (ADS)

    Xavier, L.; Becker, M.; Cazenave, A. A.; Güntner, A.; Rotunno, O.

    2009-12-01

    Over continents, GRACE total water storage (TWS) solutions are expected to represent main surface, soil and groundwater stocks variability. Recent studies have showed that intensive groundwater resources withdrawal in India can be “captured” by GRACE. Another important anthropogenic impact on the natural water cycle is the building and operation of large dams. Even though they impact primarily the local water stock variations, one can expect subsequent changes on the water cycle and some evidence of this from GRACE. This would be particularly evident where the volume of stored water behind dams represents a significant proportion of the total TWS. In this study, we analyzed the effect on the water cycle of large dams over South American large watersheds. Most of Brazilians large dams are located in the Upper Paraná watershed, upstream the Itaipu dam. By performing a correlation analysis between the upstream integrated rainfall and the GRACE TWS series, we found a noticeable phase difference between the two quantities. The phase difference is larger over the utmost upstream region of Upper Parana watershed. We assumed that this pattern could be due to an effect of man-made reservoirs. We took into account the reservoirs storage and found that they induce an additional phase-lag of about 1 month in the TWS response to precipitation forcing. We also investigated dams’ impact on the simulations of the Water Gap Hydrological Model. The results also show a similar time delay similar, suggesting that the model correctly accounts for the dam effect. Finally we see similar lags, though smaller, over other South American river basins.

  17. Cardiovascular effects of environmental noise: research in Austria.

    PubMed

    Lercher, Peter; Botteldooren, Dick; Widmann, Ulrich; Uhrner, Ulrich; Kammeringer, Ewald

    2011-01-01

    Cardiovascular effects of noise rank second in terms of disability-adjusted life year (DALYs) after annoyance. Although research during the past decade has consolidated the available data base, the most recent meta-analysis still shows wide confidence intervals - indicating imprecise information for public health risk assessment. The alpine area of Tyrol in the Austrian part of the Alps has experienced a massive increase in car and heavy goods traffic (road and rail) during the last 35 years. Over the past 25 years small-, middle-, and large-sized epidemiological health surveys have been conducted - mostly within the framework of environmental health impact assessments. By design, these studies have emphasized a contextually driven environmental stress perspective, where the adverse health effects on account of noise are studied in a broader framework of environmental health, susceptibility, and coping. Furthermore, innovative exposure assessment strategies have been implemented. This article reviews the existing knowledge from these studies over time, and presents the exposure-response curves, with and without interaction assessment, based on standardized re-analyses and discusses it in the light of past and current cardiovascular noise effects research. The findings support relevant moderation by age, gender, and family history in nearly all studies and suggest a strong need for consideration of non-linearity in the exposure-response analyses. On the other hand, air pollution has not played a relevant role as a moderator in the noise-hypertension or the noise-angina pectoris relationship. Finally, different noise modeling procedures can introduce variations in the exposure response curves, with substantive consequences for public health risk assessment of noise exposure. PMID:21537108

  18. Environmental Effects on Affect: Density, Noise and Personality.

    ERIC Educational Resources Information Center

    Bharucha-Reid, Rodabe; Kivak, H. Asuman

    1982-01-01

    Research findings are reported of a study (N=88 undergraduate males) of molar crowding in urban centers which involved the simultaneous variation of social density, spatial density, noise, and personality as they effect room affect (physical and psychological). Several main effects proved significant. (Author/DC)

  19. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  20. The combined cardiovascular effect of alcohol and noise in rats.

    PubMed

    Morvai, V; Szakmáry, E; Székely, A; Ungváry, G

    1994-01-01

    Groups of 20 CFY male rats were made to drink water containing 10% alcohol and 5% sugar or 5% sugar. Half of both groups (10-10 animals) were exposed to 95 dBAeq mixed industrial noise for 3 weeks, 6 hours daily. Haemodynamic measurements were carried out using isotope (57Co) labelled microspheres, which were repeated after the i.v. administration of 30 micrograms/kg/3 min noradrenaline, using a second isotope (113Sn). It was found, that alcohol decreased the cardiac fraction of the cardiac output, the nutritive blood flow of the myocardium and increased the vascular resistance of the adrenals. Noise decreased the lung fraction of the cardiac output and the hepatic blood flow. Interaction between noise and alcohol, inhibiting the effect of alcohol, was demonstrated on the intestinal blood flow, adrenal fraction of cardiac output and testicular vascular resistance. The haemodynamic effects of noradrenaline observed in the control were in several organs more or less modified in the animals treated with alcohol or noise or both. It was concluded that the exposures (alcohol, noise or both) modify the alpha-adrenergic effect of noradrenaline. PMID:7785440

  1. Effects of motion on jet exhaust noise from aircraft

    NASA Technical Reports Server (NTRS)

    Chun, K. S.; Berman, C. H.; Cowan, S. J.

    1976-01-01

    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles.

  2. The effect of interior aircraft noise on pilot performance.

    PubMed

    Lindvall, Johan; Västfjall, Daniel

    2013-04-01

    This study examined the effect of the interior sounds of an aircraft cockpit on ratings of affect and expected performance decrement. While exposed to 12 interior aircraft sounds, of which half were modified to correspond to what is experienced with an active noise reduction (ANR) headset, 23 participants rated their affective reactions and how they believed their performance on various tasks would be affected. The results suggest that implementation of ANR-technique has a positive effect on ratings of expected performance. In addition, affective reactions to the noise are related to ratings of expected performance. The implications of these findings for both research and pilot performance are discussed. PMID:24032324

  3. ICBEN review of research on the biological effects of noise 2011-2014

    PubMed Central

    Basner, Mathias; Brink, Mark; Bristow, Abigail; de Kluizenaar, Yvonne; Finegold, Lawrence; Hong, Jiyoung; Janssen, Sabine A; Klaeboe, Ronny; Leroux, Tony; Liebl, Andreas; Matsui, Toshihito; Schwela, Dieter; Sliwinska-Kowalska, Mariola; Sörqvist, Patrik

    2015-01-01

    The mandate of the International Commission on Biological Effects of Noise (ICBEN) is to promote a high level of scientific research concerning all aspects of noise-induced effects on human beings and animals. In this review, ICBEN team chairs and co-chairs summarize relevant findings, publications, developments, and policies related to the biological effects of noise, with a focus on the period 2011-2014 and for the following topics: Noise-induced hearing loss; nonauditory effects of noise; effects of noise on performance and behavior; effects of noise on sleep; community response to noise; and interactions with other agents and contextual factors. Occupational settings and transport have been identified as the most prominent sources of noise that affect health. These reviews demonstrate that noise is a prevalent and often underestimated threat for both auditory and nonauditory health and that strategies for the prevention of noise and its associated negative health consequences are needed to promote public health. PMID:25774609

  4. Colored noise and memory effects on formal spiking neuron models

    NASA Astrophysics Data System (ADS)

    da Silva, L. A.; Vilela, R. D.

    2015-06-01

    Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.

  5. Evaluation of anthropogenic effects on water quality and bacterial diversity in Rawal Lake, Islamabad.

    PubMed

    Saeed, Asma; Hashmi, Imran

    2014-05-01

    Water quality and bacterial diversity in the surface water of Rawal Lake was investigated for a period of 8 months to evaluate the pollution load from anthropogenic effects of surrounding areas. Rawal Lake in Islamabad, Pakistan is an artificial reservoir that provides the water needs for the residents of Rawalpindi and Islamabad. Grabbed water samples were collected according to standard protocols from ten different locations of the lake and tributaries keeping in view the recharge points from adjacent areas. Temperature, pH, electrical conductivity, dissolved oxygen, total dissolved solids, hardness, alkalinity, and turbidity of water samples were determined to study the water quality characteristics. The physicochemical parameters showed higher values at the tributaries as compared to the sampling locations within the lake such as values of hardness and alkalinity were 298 and 244 mg/L, respectively, at the tributary of the Nurpur stream. Bacterial strains were isolated by streaking on differential and selective growth media by observing colony morphology and other biochemical tests such as Gram reaction, oxidase, and catalase test. Template DNA was prepared from pure cultivated bacteria and 16S rRNA gene analysis was performed using universal primers for bacteria. Sequencing was performed by using BigDye terminator cycle sequencing kit. Sequences of nearest relative microbial species were identified by using basic local alignment search tool and used as reference sequences for phylogenetic analysis. Phylogenetic trees were inferred using the neighbor-joining method. Sequencing and phylogenetic characterization of microbes showed various phylotypes, of which Firmicutes, Teobacteria, and Proteobacteria were predominant. PMID:24352868

  6. Effects of Anthropogenic Nitrogen Loading on Riverine Nitrogen Export in the Northeastern USA

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Goodale, C. L.; Howarth, R. W.

    2001-05-01

    Human activities have greatly altered the nitrogen (N) cycle, accelerating the rate of N fixation in landscapes and delivery of N to water bodies. To examine the effects of anthropogenic N inputs on riverine N export, we quantified N inputs and riverine N loss for 16 catchments along a latitudinal profile from Maine to Virginia, which encompass a range of climatic variability and are major drainages to the coast of the North Atlantic Ocean. We quantified inputs of N to each catchment: atmospheric deposition, fertilizer application, agricultural and forest biological N fixation, and the net import of N in food and feed. We compared these inputs with N losses from the system in riverine export. The importance of the relative sources varies widely by watershed and is related to land use. Atmospheric deposition was the largest source (>60%) to the forested catchments of northern New England (e.g., Penobscot and Kennebec); import of N in food was the largest source of N to the more populated regions of southern New England (e.g., Charles and Blackstone); and agricultural inputs were the dominant N sources in the Mid-Atlantic region (e.g., Schuylkill and Potomac). Total N inputs to each catchment increased with percent cover in agriculture and urban land, and decreased with percent forest. Over the combined area of the catchments, net atmospheric deposition was the largest single source input (34%), followed by imports of N in food and feed (24%), fixation in agricultural lands (21%), fertilizer use (15%), and fixation in forests (6%). Riverine export of N is well correlated with N inputs, but it accounts for only a fraction (28%) of the total N inputs. This work provides an understanding of the sources of N in landscapes, and highlights how human activities impact N cycling in the northeast region.

  7. Past and present effectiveness of protected areas for conservation of naturally and anthropogenically rare plant species.

    PubMed

    Vellak, Ain; Tuvi, Eva-Liis; Reier, Ülle; Kalamees, Rein; Roosaluste, Elle; Zobel, Martin; Pärtel, Meelis

    2009-06-01

    The Global Strategy of Plant Conservation states that at least 60% of threatened plant species should be within protected areas. This goal has been met in some regions with long traditions of plant protection. We used gap analysis to explore how particular groups of species of conservation interest, representing different types of natural or anthropogenic rarity, have been covered by protected areas on a national scale in Estonia during the last 100 years. Species-accumulation curves indicated that plant species that are naturally rare (restricted global or local distribution, always small populations, or very rare habitat requirements) needed almost twice as many protected areas to reach the 60% target as plant species that are rare owing to lack of suitable management (species depending on grassland management, moderate forest disturbances, extensive traditional agriculture, or species potentially threatened by collecting). Temporal analysis of the establishment of protected areas suggested that grouping plant species according to the predominant cause of rarity accurately reflected the history of conservation decision making. Species found in very rare habitats have previously received special conservation attention; species dependent on traditional extensive agriculture have been largely ignored until recently. Legislative initiative and new nature-protection schemes (e.g., Natura 2000, network of protected areas in the European Union) have had a positive influence on all species groups. Consequently, the species groups needing similar action for their conservation are sensitive indicators of the effectiveness of protected-area networks. Different species groups, however, may not be uniformly conserved within protected areas, and all species groups should fulfill the target of 60% coverage within protected areas. PMID:19128324

  8. Effects of wetland vs. landscape variables on parasite communities of Rana pipiens: links to anthropogenic factors

    USGS Publications Warehouse

    Schotthoefer, Anna M.; Rohr, Jason R.; Cole, Rebecca A.; Koehler, Anson V.; Johnson, Catherine M.; Johnson, Lucinda B.; Beasley, Val R.

    2011-01-01

    The emergence of several diseases affecting amphibian populations worldwide has prompted investigations into determinants of the occurrence and abundance of parasites in frogs. To understand the spatial scales and identify specific environmental factors that determine risks of parasitism in frogs, helminth communities in metamorphic frogs of the northern leopard frog (Rana pipiens) were examined in relation to wetland and landscape factors at local (1 km) and regional (10 km) spatial extents in an agricultural region of Minnesota (USA) using regression analyses, ordination, and variance partitioning techniques. Greater amounts of forested and woody wetland habitats, shorter distances between woody wetlands, and smaller-sized open water patches in surrounding landscapes were the most consistently positive correlates with the abundances, richness, and diversity of helminths found in the frogs. Wetland and local landscape variables were suggested as most important for larval trematode abundances, whereas local and regional landscape variables appeared most important for adult helminths. As previously reported, the sum concentration of atrazine and its metabolite desethylatrazine, was the strongest predictor of larval trematode communities. In this report, we highlight the additional influences of landscape factors. In particular, our data suggest that anthropogenic activities that have resulted in the loss of the availability and connectivity of suitable habitats in the surrounding landscapes of wetlands are associated with declines in helminth richness and abundance, but that alteration of wetland water quality through eutrophication or pesticide contamination may facilitate the transmission of certain parasite taxa when they are present at wetlands. Although additional research is needed to quantify the negative effects of parasitism on frog populations, efforts to reduce inputs of agrochemicals into wetlands to limit larval trematode infections may be warranted

  9. Acute circulatory effects of military low-altitude flight noise.

    PubMed

    Michalak, R; Ising, H; Rebentisch, E

    1990-01-01

    Volunteers aged 70 to 89 years living in a senior citizen's home in Haifa were exposed to flight noise via earphones while watching video films. Their blood pressure and heart rates were measured simultaneously. A high-quality recording and reproduction technique was employed. They were exposed to the noise of two to three overflights with Lmax = 99-114 dB(A) and slow sound pressure level increase (aircraft take off) or with Lmax = 95-112 dB(A) and a fast sound pressure level increase (low-altitude flight at high subsonic speed) at intervals of 10 to 15 min. The systolic and diastolic blood pressure was raised at Lmax = 112 dB(A) and high speed level increase at the average of 23 and 13 mmHg, respectively with individual maximal values of about 40 mm Hg (systolic). In order to prevent risks to the subjects' health, the noise exposure was not raised to levels above 112 dB(A) and fast level increase, although Lmax = 125 dB(A) has been measured in 75 m-low-altitude flight areas. The blood pressure response to a repeated single exposure increased in proportion to the preceding noise exposure. At high intensities and fast level increase an up to fourfold reaction intensification was detected in the majority of subjects. This change in reactivity is regarded as the result of sensitization toward the special type of noise and the implications of these observations for the long-term effects of chronic exposure to low-altitude flight noise are considered. On the basis of these results, proposals are made for limiting values for Lmax and for the speed of sound pressure level increase, the implementation of which would lead to a marked reduction in health risks from low-altitude flight noise. PMID:2228256

  10. Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models

    NASA Astrophysics Data System (ADS)

    Li, Chunxiang; Zhao, Tianbao; Ying, Kairan

    2016-08-01

    Using three models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we compare the direct and other effects of anthropogenic aerosols on observed and simulated annual, winter, and summer temperature changes. Three regions, namely, arid-semiarid area, humid-semiarid area, and the whole of China, are studied. The temperature changes caused by other effects of anthropogenic aerosol (OE) are calculated from the difference between the anthropogenic aerosol forcing run (AA) and the anthropogenic aerosol direct effect forcing run (DE). When the combined effects are considered, a significant area-averaged cooling rate varies in the range of -0.86 to -0.76 °C per century throughout China. Meanwhile, the isolated direct and other effects lower the temperature nationwide by -0.66 to -0.55 °C per century, and -0.31 to -0.11 °C per century, respectively. From a nonlinear perspective, the aerosol-induced temperature experiences a cooling trend, with AA having the largest cooling trend changes both annually and in the summer, while DE has the greatest reduction in the winter. Additionally, the influence of OE cannot be detected in observed annual changes over the arid-semiarid area and the whole of China, while the others are clearly detectable in all cases. AA (DE, OE) reduces the observational temperature mainly over the humid-semihumid region, where the contribution to the observed warming ranges from -515.2 % (-298.7 %, -198.9 %) to -173.6 % (-130.3 %, -66.4 %).

  11. Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models

    NASA Astrophysics Data System (ADS)

    Li, Chunxiang; Zhao, Tianbao; Ying, Kairan

    2015-06-01

    Using three models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we compare the direct and other effects of anthropogenic aerosols on observed and simulated annual, winter, and summer temperature changes. Three regions, namely, arid-semiarid area, humid-semiarid area, and the whole of China, are studied. The temperature changes caused by other effects of anthropogenic aerosol (OE) are calculated from the difference between the anthropogenic aerosol forcing run (AA) and the anthropogenic aerosol direct effect forcing run (DE). When the combined effects are considered, a significant area-averaged cooling rate varies in the range of -0.86 to -0.76 °C per century throughout China. Meanwhile, the isolated direct and other effects lower the temperature nationwide by -0.66 to -0.55 °C per century, and -0.31 to -0.11 °C per century, respectively. From a nonlinear perspective, the aerosol-induced temperature experiences a cooling trend, with AA having the largest cooling trend changes both annually and in the summer, while DE has the greatest reduction in the winter. Additionally, the influence of OE cannot be detected in observed annual changes over the arid-semiarid area and the whole of China, while the others are clearly detectable in all cases. AA (DE, OE) reduces the observational temperature mainly over the humid-semihumid region, where the contribution to the observed warming ranges from -515.2 % (-298.7 %, -198.9 %) to -173.6 % (-130.3 %, -66.4 %).

  12. Fate and Effects of Anthropogenic Chemicals in Mangrove Ecosystems: A Review

    EPA Science Inventory

    The role of anthropogenic chemicals in the decline of plant-dominated, fringe ecosystems such as mangroves is important to understand. Mangrove global coverage has been reduced approximately 50% in recent years and the presence of toxic chemicals may be a contributing factor. T...

  13. Anthropogenic effects on soil quality in ancient terraced agricultural fields of Chihuahua, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soil quality was investigated in ancient field systems near Casas Grandes (also known as Paquimé), one of the largest and most complex prehistoric settlements in the North American Southwest. This research was completed as part of an interdisciplinary study of the anthropogenic ecology...

  14. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity

    EPA Science Inventory

    Climate change and Nr from anthropogenic activities are causing some of the most rapid changes in biodiversity in recent times. Climate change is causing warming trends that result in poleward and elevational range shiftsof flora and fauna, and changes in phenology, particularly ...

  15. TERRE-TOX: A DATA BASE FOR EFFECTS OF ANTHROPOGENIC SUBSTANCES ON TERRESTRIAL ANIMALS

    EPA Science Inventory

    TERRE-TOX is a new data base developed for the US Environmental Protection Agency to aid in evaluating premanufacturing notices and research. TERRE-TOX contains published (1970 to present) information on toxicity of anthropogenic substances to terrestrial animals. Currently speci...

  16. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  17. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  18. Enhanced shot noise in carbon nanotube field-effect transistors

    SciTech Connect

    Betti, A.; Fiori, G.; Iannaccone, G.

    2009-12-21

    We predict shot noise enhancement in defect-free carbon nanotube field-effect transistors through a numerical investigation based on the self-consistent solution of the Poisson and Schroedinger equations within the nonequilibrium Green's functions formalism, and on a Monte Carlo approach to reproduce injection statistics. Noise enhancement is due to the correlation between trapping of holes from the drain into quasibound states in the channel and thermionic injection of electrons from the source, and can lead to an appreciable Fano factor of 1.22 at room temperature.

  19. Effect of remote sensory noise on hand function post stroke.

    PubMed

    Seo, Na Jin; Kosmopoulos, Marcella Lyn; Enders, Leah R; Hur, Pilwon

    2014-01-01

    Hand motor impairment persists after stroke. Sensory inputs may facilitate recovery of motor function. This pilot study tested the effectiveness of tactile sensory noise in improving hand motor function in chronic stroke survivors with tactile sensory deficits, using a repeated measures design. Sensory noise in the form of subthreshold, white noise, mechanical vibration was applied to the wrist skin during motor tasks. Hand dexterity assessed by the Nine Hole Peg Test and the Box and Block Test and pinch strength significantly improved when the sensory noise was turned on compared with when it was turned off in chronic stroke survivors. The subthreshold sensory noise to the wrist appears to induce improvements in hand motor function possibly via neuronal connections in the sensoriomotor cortex. The approach of applying concomitant, unperceivable mechanical vibration to the wrist during hand motor tasks is easily adoptable for clinic use as well as unsupervised home use. This pilot study suggests a potential for a wristband-type assistive device to complement hand rehabilitation for stroke survivors with sensorimotor deficit. PMID:25477806

  20. The effects of noise on speech and warning signals

    NASA Astrophysics Data System (ADS)

    Suter, Alice H.

    1989-06-01

    To assess the effects of noise on speech communication it is necessary to examine certain characteristics of the speech signal. Speech level can be measured by a variety of methods, none of which has yet been standardized, and it should be kept in mind that vocal effort increases with background noise level and with different types of activity. Noise and filtering commonly degrade the speech signal, especially as it is transmitted through communications systems. Intelligibility is also adversely affected by distance, reverberation, and monaural listening. Communication systems currently in use may cause strain and delays on the part of the listener, but there are many possibilities for improvement. Individuals who need to communicate in noise may be subject to voice disorders. Shouted speech becomes progressively less intelligible at high voice levels, but improvements can be realized when talkers use clear speech. Tolerable listening levels are lower for negative than for positive S/Ns, and comfortable listening levels should be at a S/N of at least 5 dB, and preferably above 10 dB. Popular methods to predict speech intelligibility in noise include the Articulation Index, Speech Interference Level, Speech Transmission Index, and the sound level meter's A-weighting network. This report describes these methods, discussing certain advantages and disadvantages of each, and shows their interrelations.

  1. Recruitment-of-loudness effects of attenuative noise reduction algorithms

    NASA Astrophysics Data System (ADS)

    Whitmal, Nathaniel; Vosoughi, Azadeh

    2002-05-01

    Hearing-impaired listeners have greater difficulty understanding speech in noise than normal-hearing listeners do. As a result, hearing aid users are often challenged by the inability of their hearing aids to improve intelligibility in noise. Several investigators have addressed this problem by using well-known signal processing methods (e.g., spectral subtraction, Wiener filtering) to enhance noise-corrupted speech. Unfortunately, these methods have failed to provide significant improvements in intelligibility. One possible explanation is the level-dependent nature of the attenuation that the algorithms impose on the speech. In the cases described above, this attenuation resembles the piecewise-linear input-output characteristic observed in certain recruitment-of-loudness simulators. The purpose of this study was to compare the intelligibility of processed speech with that expected for recruitment-of-loudness simulation. Trials of the CUNY Nonsense Syllable Test were conducted with 12 normal-hearing listeners, using syllables that were mixed with additive noise at SNRs of 6, 12, and 18 dB. Input-output characteristics for the signals were measured and used to determine the effective threshold shift imposed by the algorithms. Comparisons of measured intelligibility scores with articulation index-based intelligibility predictions indicate that the behavior of such noise reduction algorithms can be successfully modeled as a form of mild sensorineural hearing loss.

  2. Noise effect on fidelity of two-qubit teleportation

    SciTech Connect

    Hu Xueyuan; Gu Ying; Gong Qihuang; Guo Guangcan

    2010-05-15

    We investigate the effect of noise on a class of four-qubit entangled channels for two-qubit teleportation from Alice to Bob. These entangled channels include both parallel Bell pairs and inseparable channels with genuine multipartite entanglement. For the situation where only Bob's share of the entangled channel is subject to decoherence, we show by deriving a general expression for the teleported state that teleportation using noisy inseparable channels is equivalent to teleportation using noisy Bell pairs. When Alice's qubits are also subject to noise, we find that the inseparable channels never give a higher teleportation fidelity than Bell pairs, even in the presence of collective noise. Our results can shed some light on practical two-qubit teleportation.

  3. The effect of microphone wind noise on the amplitude modulation of wind turbine noise and its mitigation.

    PubMed

    Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J

    2016-07-01

    Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA. PMID:27475217

  4. Aircraft noise and incidence of hypertension--gender specific effects.

    PubMed

    Eriksson, Charlotta; Bluhm, Gösta; Hilding, Agneta; Ostenson, Claes-Göran; Pershagen, Göran

    2010-11-01

    Recent studies show associations between aircraft noise and cardiovascular outcomes such as hypertension. However, these studies were mostly cross-sectional and there are uncertainties regarding potential gender differences as well as sensitive subgroups. In this study, we investigated the cumulative incidence of hypertension in relation to aircraft noise exposure among Swedish men and women living in Stockholm County. A total of 4721 subjects, aged 35-56 at baseline, were followed for 8-10 years. The population was selected according to family history of diabetes, which was present for half of the subjects. The exposure assessment was performed by geographical information systems and based on residential history during the period of follow-up. Blood pressure was measured at baseline and at the end of follow-up. Additional information regarding diagnosis and treatment of hypertension as well as various lifestyle factors was provided by questionnaires. In the overall population, no increased risk for hypertension was found among subjects exposed to aircraft noise ≥ 50 dB(A) L(den); relative risk (RR) 1.02 (95% CI 0.90-1.15). When restricting the cohort to those not using tobacco at the blood pressure measurements, a significant risk increase per 5 dB(A) of aircraft noise exposure was found in men; RR 1.21 (1.05-1.39), but not in women; RR 0.97 (0.83-1.13). In both sexes combined, an increased risk of hypertension related to aircraft noise exposure was indicated primarily among those reporting annoyance to aircraft noise; RR 1.42 (1.11-1.82). No consistent effect modification was detected for any of the cardiovascular risk factors under investigation although a family history of diabetes appeared to modify the risk in women. In conclusion, the results suggest an increased risk of hypertension following long-term aircraft noise exposure in men, and that subjects annoyed by aircraft noise may be particularly sensitive to noise related hypertension. PMID:20880521

  5. Measuring the effectiveness of methods for evaluating noise jammers

    NASA Astrophysics Data System (ADS)

    Hu, Fang; Huang, Jian-Guo

    2007-09-01

    Reliable evaluations of a noise jammer’s effectiveness are necessary to properly design, manufacture, and operate one, so it is important to have an evaluation model. Based on their characteristics and principles, relevant factors were classified in terms of their contribution to a unit’s effectiveness. In this way an evaluation index system was established. In the proposed mathematical model a noise jammer is analyzed by combining the model of system effectiveness with the method of analytic hierarchical process. A simulation of underwater acoustic countermeasures was used to test the rationality and feasibility of the model. The results showed that this model is an effective way to solve the challenge of evaluating the effectiveness of non-offensive weapons under single working phase.

  6. Effects of Classroom Acoustics and Self-Reported Noise Exposure on Teachers' Well-Being

    ERIC Educational Resources Information Center

    Kristiansen, Jesper; Persson, Roger; Lund, Soren Peter; Shibuya, Hitomi; Nielsen, Per Moberg

    2013-01-01

    Beyond noise annoyance and voice problems, little is known about the effects that noise and poor classroom acoustics have on teachers' health and well-being. The aim of this field study was therefore to investigate the effects of perceived noise exposure and classroom reverberation on measures of well-being. Data on self-reported noise exposure,…

  7. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  8. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish.

    PubMed

    Nichols, Tye A; Anderson, Todd W; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  9. Aquatic noise pollution: implications for individuals, populations, and ecosystems.

    PubMed

    Kunc, Hansjoerg P; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven

    2016-08-17

    Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. PMID:27534952

  10. Aquatic noise pollution: implications for individuals, populations, and ecosystems

    PubMed Central

    Kunc, Hansjoerg P.; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven

    2016-01-01

    Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. PMID:27534952

  11. Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field

    NASA Astrophysics Data System (ADS)

    Huh, Jong-Hoon

    2015-12-01

    We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H . Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H , the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (fc) ]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (fc→∞ ) ; until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise.

  12. Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field.

    PubMed

    Huh, Jong-Hoon

    2015-12-01

    We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H. Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H, the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (f(c))]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (f(c)→∞); until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise. PMID:26764708

  13. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  14. The effects of road traffic noise on mental performance

    PubMed Central

    2013-01-01

    Background Noise is one of the more widespread pollutions of road transportation system, which can cause deterioration in performance. This experimental study was designed to assess the effect of road traffic noise on performance with regard to extra/introversion and sex of participants. The personality trait of extra/introversion has been remarked as relevant factor to mental performance. Results Thirty six (26 males and 10 females) medical sciences students of Tehran University participated in the study. The students were placed in an unechoing room and performed the Cognitrone test from Vienna Test System in quiet condition and under road traffic noise (71 dBA). The results of this study pointed out that noise increased the percentage of sum of correct answers but had no effect on the speed of performance. Furthermore this study showed that performance was enhanced in extroverts (P=0.001) but no significant difference was found in introverts (P ≤0.05). Conclusions The regression analysis revealed that extra/introversion was more important than sex to predict the performance parameters. PMID:23394722

  15. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  16. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  17. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States

    PubMed Central

    Xu, Lu; Guo, Hongyu; Boyd, Christopher M.; Klein, Mitchel; Bougiatioti, Aikaterini; Cerully, Kate M.; Hite, James R.; Kreisberg, Nathan M.; Knote, Christoph; Olson, Kevin; Koss, Abigail; Goldstein, Allen H.; Hering, Susanne V.; de Gouw, Joost; Baumann, Karsten; Lee, Shan-Hu; Nenes, Athanasios; Weber, Rodney J.; Ng, Nga Lee

    2015-01-01

    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations. PMID:25535345

  18. Effects of noise frequency on performance and annoyance for women and men

    NASA Technical Reports Server (NTRS)

    Key, K. F.; Payne, M. C., Jr.

    1981-01-01

    Effects of noise frequencies on both performance on a complex psychomotor task and annoyance were investigated for men (n = 30) and women (n = 30). Each subject performed a complex psychomotor task for 50 min in the presence of low-frequency noise, high-frequency noise, or ambient noise. Women and men learned the task at different rates. Little effect of noise was shown. Annoyance ratings were subsequently obtained from each subject for noises of various frequencies by the method of magnitude estimation. High-frequency noises were more annoying than low-frequency noises regardless of sex and immediate prior exposure to noise. Sex differences in annoyance did not occur. No direct relationship between learning to perform a complex task while exposed to noise and annoyance by that noise was demonstrated.

  19. Anthropogenic acidification effects in primeval forests in the Transcarpathian Mts., western Ukraine.

    PubMed

    Oulehle, F; Hleb, R; Houska, J; Samonil, P; Hofmeister, J; Hruska, J

    2010-01-15

    The precipitation chemistry, deposition, nutrient pools and composition of soils and soil water, as well as an estimate of historical deposition of sulphur (S) and inorganic nitrogen (N) for the period 1860-2008, were determined in primeval deciduous and coniferous forests at the sites Javornik and Pop Ivan, respectively. Measured S throughfall inputs of 10 kg ha(-1)year(-1) in 2008 were similar to those estimated for the period 1900-1950 at both sites. The highest estimated S inputs were in the 1980s. Measured bulk deposition of N in 2008 was lower at Pop Ivan (5.6 kg ha(-1)year(-1)) compared to Javornik (12 kg ha(-1)year(-1)). Significantly lower NO(3) deposition was both estimated and measured at Pop Ivan. Higher soil base cation concentrations were observed at well-buffered Javornik underlain by flysch (Ca pool of 2046 kg ha(-1) and base saturation of 29%) compared to Pop Ivan underlain by crystalline schist (Ca pool of 186 kg ha(-1) and base saturation of 6.5%). The soil pool of organic carbon (C) was higher at Pop Ivan (212 t ha(-1)) compared to Javornik (127 t ha(-1)). The C concentration was positively correlated with organic N in the soil (p<0.001) at both sites, but the mass average C/N ratio in the forest floor was lower at Javornik (22) than at Pop Ivan (26). High N leaching of 17 kg ha(-1)year(-1) at the 90 cm depth was measured in the soil water at Javornik, suggesting high mineralization and nitrification rates in old growth deciduous forests in the area. Despite relatively low Al concentrations in the soil water, a low soil water Bc/Al ratio (0.9) (Bc=Ca+Mg+K) was found in the upper mineral soil at Pop Ivan. This suggests that the spruce forest ecosystems in the area are vulnerable to anthropogenic acidification and to the adverse effects of Al on forest root systems. PMID:19914682

  20. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but feasible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, although a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The per capita MPI (PCMPI), which combines demographic and pollutants concentrations projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following the business as usual scenario, it is projected that air quality for the global average

  1. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-08-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global

  2. Clinical review: The impact of noise on patients' sleep and the effectiveness of noise reduction strategies in intensive care units

    PubMed Central

    Xie, Hui; Kang, Jian; Mills, Gary H

    2009-01-01

    Excessive noise is becoming a significant problem for intensive care units (ICUs). This paper first reviews the impact of noise on patients' sleep in ICUs. Five previous studies have demonstrated such impacts, whereas six other studies have shown other factors to be more important. Staff conversation and alarms are generally regarded as the most disturbing noises for patients' sleep in ICUs. Most research in this area has focused purely on noise level, but work has been very limited on the relationships between sleep quality and other acoustic parameters, including spectrum and reverberation time. Sound-absorbing treatment is a relatively effective noise reduction strategy, whereas sound masking appears to be the most effective technique for improving sleep. For future research, there should be close collaboration between medical researchers and acousticians. PMID:19344486

  3. Traffic noise reduces foraging efficiency in wild owls.

    PubMed

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D; Nakamura, Futoshi

    2016-01-01

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls' ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls' ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise. PMID:27537709

  4. Traffic noise reduces foraging efficiency in wild owls

    PubMed Central

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D.; Nakamura, Futoshi

    2016-01-01

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls’ ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls’ ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise. PMID:27537709

  5. Tumor promoting effects of cyanobacterial extracts are potentiated by anthropogenic contaminants--evidence from in vitro study.

    PubMed

    Nováková, Kateřina; Bláha, Luděk; Babica, Pavel

    2012-09-01

    Inhibition of gap junctional intercellular communication (GJIC) is affiliated with tumor promotion process and it has been employed as an in vitro biomarker for evaluation of tumor promoting effects of chemicals. In the present study we investigated combined effects of anthropogenic environmental contaminants 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) and fluoranthene, cyanotoxins microcystin-LR and cylindrospermopsin, and extracts of laboratory cultures of cyanobacteria Aphanizomenon gracile and Cylindrospermopsis raciborskii, on GJIC in the rat liver epithelial cell line WB-F344. Binary mixtures of PCB 153 with fluoranthene and the mixtures of the two cyanobacterial strains elicited simple additive effects on GJIC after 30 min exposure, whereas microcystin-LR and cylindrospermopsin neither inhibited GJIC nor altered effects of PCB 153 or fluoranthene. However, synergistic effects were observed in the cells exposed to binary mixtures of anthropogenic contaminants (PCB 153 or fluoranthene) and cyanobacterial extracts. The synergistic effects were especially pronounced after prolonged (6-24h) co-exposure to fluoranthene and A. gracile extract, when mixture caused nearly complete GJIC inhibition, while none of the individual components caused any downregulation of GJIC at the same concentration and exposure time. The effects of cyanobacterial extracts were independent of microcystin-LR or cylindrospermopsin, which were not detected in cyanobacterial biomass. It provides further evidence on the presence of unknown tumor promoting metabolites in cyanobacteria. Clear potentiation of the GJIC inhibition observed in the mixtures of two anthropogenic contaminants and cyanobacteria highlight the importance of combined toxic effects of chemicals in complex environmental mixtures. PMID:22572165

  6. Psycho-social effects of traffic noise exposure

    NASA Astrophysics Data System (ADS)

    Öhrström, E.

    1991-12-01

    In this paper a study of psycho-social effects of exposure to high levels of road traffic noise is presented. A questionnaire was constructed to evaluate not only annoyance reactions and sleep disturbance effects of noise, but also more long-term effects on psycho-social well-being (PSW). PSW was evaluated by 26 questions concerning depression, relaxation, activity, passivity, general well-being and social orientation. The postal questionnaire was answered by 151 persons in a quiet city area and 97 persons in an area exposed to an Leq level of 72 dB(A). The results showed that a higher proportion of those who lived in the noisy area in apartments with windows facing the street more often felt depressed. Those who had windows facing the courtyard, in the noisy area, however, were not more depressed that those who lived in the quiet area. Methodological difficulties in this type of study are also discussed in the paper.

  7. Effects of night time road traffic noise—an overview of laboratory and field studies on noise dose and subjective noise sensitivity

    NASA Astrophysics Data System (ADS)

    Öhrström, E.; Rylander, R.; Björkman, M.

    1988-12-01

    This paper presents an overview of research on sleep and noise at the Department of Environmental Hygiene, University of Gothenburg. Different methods were developed to study primary and after effects of night time road traffic noise on sleep. Three one-week laboratory experiments were undertaken to study the relevance of different noise descriptors— Leq, maximum peak noise level and number of events with high peak noise levels—for sleep disturbance effects. The noise exposure was either single noise evenys or a continuous, even road traffic noise. It was concluded that Leq was not related to sleep disturbance effects. Peak noise levels were significantly related to subjective sleep quality and body movements. Results from a third continuing study showed that there is a threshold for effects of the number of single noise events on sleep quality. Habituation to noise among subjects with differing noise sensitivity was studied in a two-week experiment. A significant noise effect on subjective sleep quality was found among sensitive subjects only. No habituation was seen for the negative influence of noise on sleep quality, mood and performance. Long-term effects of road traffic noise were also investigated in a field survey among 106 individuals. This study revealed the presence of a decrease in sleep quality as well as psycho-social effects on tiredness and mood, together with increased reports of headaches and nervous stomach. As in the laboratory study, sensitive individuals were more affected by noise than less sensitive individuals.

  8. Aircraft noise effects: An inter-disciplinary study of the effect of aircraft noise on man. Part 3: Supplementary analyses of the social-scientific portion of the study on aircraft noise conducted by the DFG

    NASA Technical Reports Server (NTRS)

    Schumer, R.

    1980-01-01

    Variables in a study of noise perception near the Munich-Reims airport are explained. The interactive effect of the stimulus (aircraft noise) and moderator (noise sensitivity) on the aircraft noise reaction (disturbance or annoyance) is considered. Methods employed to demonstrate that the moderator has a differencing effect on various stimulus levels are described. Results of the social-scientific portion of the aircraft noise project are compared with those of other survey studies on the problem of aircraft noise. Procedures for contrast group analysis and multiple classification analysis are examined with focus on some difficulties in their application.

  9. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multi-decadal strong and weak monsoon stages: Effects of aerosols on EASM

    DOE PAGESBeta

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-18

    Industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, and so the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. In order to further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950–1977) and weak (1978–2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosolmore » emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. Moreover, these results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.« less

  10. The effect of airplane noise on the inhabitants of areas near Okecie Airport in Warsaw

    NASA Technical Reports Server (NTRS)

    Koszarny, Z.; Maziarka, S.; Szata, W.

    1981-01-01

    The state of health and noise annoyance among persons living in areas near Okecie airport exposed to various intensities of noise was evaluated. Very high annoyance effects of airplane noise of intensities over 100 dB (A) were established. A connection between the airplane noise and certain ailments complained about by the inhabitants was demonstrated.

  11. Effect of noise spectra and a listening task upon passenger annoyance in a helicopter interior noise environment

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Leatherwood, J. D.

    1979-01-01

    The effects of helicopter interior noise on passenger annoyance were studied. Both reverie and listening situations were studied as well as the relative effectiveness of several descriptors (i.e., overall sound pressure level, A-weighted sound pressure level, and speech interference level) for quantifying annoyance response for these situations. The noise stimuli were based upon recordings of the interior noise of a civil helicopter research aircraft. These noises were presented at levels ranging from approximately 68 to 86 dB(A) with various gear clash tones selectively attenuated to give a range of spectra. Results indicated that annoyance during a listening condition is generally higher than annoyance during a reverie condition for corresponding interior noise environments. Attenuation of the planetary gear clash tone results in increases in listening performance but has negligible effect upon annoyance for a given noise level. The noise descriptor most effective for estimating annoyance response under conditions of reverie and listening situations is shown to be the A-weighted sound pressure level.

  12. Application of online-coupled WRF/Chem-MADRID in East Asia: Model evaluation and climatic effects of anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Xu-Yan; Zhang, Yang; Zhang, Qiang; He, Ke-Bin

    2016-01-01

    The online-coupled Weather Research and Forecasting model with Chemistry with the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (referred to as WRF/Chem-MADRID) is applied to simulate meteorological fields, air quality, and the direct and indirect effects of anthropogenic aerosols over East Asia in four months (January, April, July, and October) in 2008. Model evaluation against available surface and satellite measurements shows that despite some model biases, WRF/Chem-MADRID is able to reproduce reasonably well the spatial and seasonal variations of most meteorological fields and chemical concentrations. Large model biases for chemical concentrations are attributed to uncertainties in emissions and their spatial and vertical allocations, simulated meteorological fields, imperfectness of model representations of aerosol formation processes, uncertainties in the observations based on air pollution index, and the use of a coarse grid resolution. The results show that anthropogenic aerosols can reduce net shortwave flux at the surface by up to 40.5-57.2 W m-2, Temperature at 2-m by up to 0.5-0.8 °C, NO2 photolytic rates by up to 0.06-0.1 min-1 and the planetary boundary layer height by up to 83.6-130.4 m. Anthropogenic aerosols contribute to the number concentrations of aerosols by up to 6.2-8.6 × 104 cm-3 and the surface cloud concentration nuclei at a supersaturation of 0.5% by up to 1.0-1.6 × 104 cm-3. They increase the column cloud droplet number concentrations by up to 3.6-11.7 × 108 cm-2 and cloud optical thickness by up to 19.8-33.2. However, anthropogenic aerosols decrease daily precipitation in most areas by up to 3.9-18.6 mm during the 4 months. These results indicate the importance of anthropogenic aerosols in modulating regional climate changes in East Asia through aerosol direct and indirect effects, as well as the need to further improve the performance of online-coupled models.

  13. Laser phase noise effects on the dynamics of optomechanical resonators

    NASA Astrophysics Data System (ADS)

    Phelps, Gregory; Meystre, Pierre

    2011-05-01

    We present a theoretical analysis of the effects of laser phase noise on the sideband cooling of opto-mechanical oscillators, demonstrating how it limits the minimum occupation number of the phonon mode being cooled and how it modifies optical cooling rate and mechanical frequency shift of the mechanical element. We also comment on the effects of laser phase noise on coherent oscillations of the mechanical element in the blue detuned regime and on the back-action evasion detection method where an additional drive is used to prevent heating of one quadrature of motion of the oscillator. This work was supported by the US Office of Naval Research, the US National Science Foundation, the US Army Research Office and the DARPA ORCHID program through a grant from AFOSR.

  14. A Model for Shear Layer Effects on Engine Noise Radiation

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, F.; Pope, D. Stuart; Vatsa, V.

    2004-01-01

    Prediction of aircraft engine noise is an important aspect of addressing the issues of community noise and cabin noise control. The development of physics based methodologies for performing such predictions has been a focus of Computational Aeroacoustics (CAA). A recent example of code development in this area is the ducted fan noise propagation and radiation code CDUCT-LaRC. Included within the code is a duct radiation model that is based on the solution of FfowcsWilliams-Hawkings (FW-H) equation with a penetrable data surface. Testing of this equation for many acoustic problems has shown it to provide generally better results than the Kirchhoff formula for moving surfaces. Currently, the data surface is taken to be the inlet or exhaust plane for inlet or aft-fan cases, respectively. While this provides reasonable results in many situations, these choices of data surface location lead to a few limitations. For example, the shear layer between the bypass ow and external stream can refract the sound waves radiated to the far field. Radiation results can be improved by including this effect, as well as the rejection of the sound in the bypass region from the solid surface external to the bypass duct surrounding the core ow. This work describes the implementation, and possible approximation, of a shear layer boundary condition within CDUCT-LaRC. An example application also illustrates the improvements that this extension offers for predicting noise radiation from complex inlet and bypass duct geometries, thereby providing a means to evaluate external treatments in the vicinity of the bypass duct exhaust plane.

  15. Noise in Josepson effect mixers and the RSJ model

    NASA Technical Reports Server (NTRS)

    Schoelkopf, R.; Phillips, T.; Zmuidzinas, J.

    1992-01-01

    Josephson effect mixers have previously been observed to display 'excess' noise both in experiments with point contacts and in numerical simulations using the resistively shunted junction (RSJ) model. This excess noise causes the mixer noise temperature to be a factor of typically 20-100 times the physical temperature of the device. Previously, this excess was ascribed to conversion from unwanted sidebands of the local oscillator and Josephson frequencies and their harmonics. Our numerical modeling of the RSJ equations has led to a new understanding of the excess noise, which is simply due to the intrinsic Josephson oscillations of the device. In addition, we have extended the modeling to include the previously ignored case of finite device capacitance (i.e. RSJ capacitance parameter beta(sub c) does not equal 0, which is more realistic for lithographically defined Josephson such as shunted tunnel junctions or SNS bridges. For some cases, this yields an improvement of a factor of two in noise temperature from the zero capacitance models. We will discuss the device parameters which optimize the mixer performance for frequencies approaching the characteristic frequency of the device, which is given by the Josephson frequency at the I(sub c)R(sub n) voltage (nu = 2eI(sub c)R(sub n)/h). These modeling results predict good conversion efficiency and a noise temperature within a factor of a few of the physical temperature. Experiments are in progress to determine the accuracy of this modeling using a waveguide mixer at 100 GHz with optimized, resistively shunted Nb tunnel junctions. If the modeling results are valid, they are particularly encouraging for mixers in the submillimeter regime, given the possibility of obtaining non-hysteretic Josephson devices with I(sub c)R(sub n) products in excess of a millivolt, using for instance, high-T(sub c) SNS bridges. We discuss the modifications to the classical RSJ model which are necessary in the quantum regime (h nu greater

  16. Effect of vorticity distribution on the blades on fan noise

    NASA Astrophysics Data System (ADS)

    Koscso, Gabor

    Tests have been performed to determine the connection between noise emission of radial flow fans, impellers, with different inlet design, and vorticity distribution on the blades. An inlet cone protruding into the impeller was found to reduce significantly the radiated sound power level. Measurements showed that for the tested impellers about the duty point corresponding to maximum efficiency, vorticity distribution on the blades has little effect on the sound power level.

  17. The effect of system nonlinearities on system noise statistics

    NASA Technical Reports Server (NTRS)

    Robinson, L. H., Jr.

    1971-01-01

    The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.

  18. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting

  19. The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Brooks, B. J.; Hoffman, F. M.; Mills, R. T.; Erickson, D. J.; Blasing, T. J.

    2009-12-01

    A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO2 by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO2 flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO2 flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO2 seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO2 emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA‧ (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO2 concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO2 between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO2 seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO2 concentrations depend strongly on the natural sources and sinks of CO2, but also on the strength of local anthropogenic CO2 emissions and geographic position. This work further

  20. Effect of Free Jet on Refraction and Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III

    2005-01-01

    This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.

  1. Effect of anthropogenic activities on the water quality of Amala and Nyangores tributaries of River Mara in Kenya.

    PubMed

    Nyairo, Wilfrida Nyanduko; Owuor, Philip Okinda; Kengara, Fredrick Orori

    2015-11-01

    Mau Forest in the upper reaches of the Mara River basin has recently undergone increased forest destruction followed by human settlement and agricultural activities. These anthropogenic activities may be contributing nutrients and heavy metals, ultimately polluting the river water and eventually Lake Victoria water hence damaging these aquatic ecosystems. This study sought to establish the effect of anthropogenic activities and season on the water quality of the Amala and Nyangores tributaries of the River Mara in Kenya. Pristine springs in the Mau Forest were used as reference sites. Water samples were analyzed for pH, temperature, conductivity, nutrients, selected heavy metals, and selenium. The mean range of the parameters measured from sites along the tributaries was pH 5.44-7.48 and that for conductivity was 20-99 μS/cm while the mean range of nutrient levels (μg/L) was 80-443 (NO3--N), 21.7-82.7 (NH4+-N), 11.9-65.0 (soluble reactive phosphorous), and 51-490 (total phosphorous). The mean range for heavy metals and selenium (in μg/L) from sites along the tributaries were 6.56-37.6 (Cu), 0.26-4.97 (Cd), 13.9-213 (Zn), 0.35-3.14 (Cr), 0.19-5.53 (Mn), 1.90-9.62 (Pb), and 0.21-4.50 (Se). The results indicated a significant difference (p≤0.05) between the reference sites and the different sampling sites, indicating that anthropogenic activities were impacting the quality of water in the two tributaries. Although most of the parameters were within the WHO (2004), USEPA (2014) and NEMA (2006) acceptable limits for surface waters, they were above the permissible levels for domestic use. Moreover, the levels of nutrients, heavy metals, and selenium were significantly higher in the wet season than in the dry season, further indicating that anthropogenic activities are causing a disturbance in the aquatic system. Therefore, further anthropogenic activities should be checked and limited so as to conserve the ecosystem. PMID:26475171

  2. Effect of Anthropogenic Landscape Features on Population Genetic Differentiation of Przewalski's Gazelle: Main Role of Human Settlement

    PubMed Central

    Yang, Ji; Jiang, Zhigang; Zeng, Yan; Turghan, Mardan; Fang, Hongxia; Li, Chunwang

    2011-01-01

    Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii), which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [FST/(1−FST) and F′ST/(1−F′ST)] in Mantel tests. IBD (isolation by distance) was also inferred as a significant factor in Mantel tests when genetic distance was measured as FST/(1−FST). However, using partial Mantel tests, AICc calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species. PMID:21625459

  3. A review of crustacean sensitivity to high amplitude underwater noise: Data needs for effective risk assessment in relation to UK commercial species.

    PubMed

    Edmonds, Nathan J; Firmin, Christopher J; Goldsmith, Denise; Faulkner, Rebecca C; Wood, Daniel T

    2016-07-15

    High amplitude anthropogenic noise is associated with adverse impacts among a variety of organisms but detailed species-specific knowledge is lacking in relation to effects upon crustaceans. Brown crab (Cancer pagurus), European lobster (Homarus gammarus) and Norway lobster (Nephrops norvegicus) together represent the most valuable commercial fishery in the UK (Defra, 2014). Critical evaluation of literature reveals physiological sensitivity to underwater noise among N. norvegicus and closely related crustacean species, including juvenile stages. Current evidence supports physiological sensitivity to local, particle motion effects of sound production in particular. Derivation of correlative relationships between the introduction of high amplitude impulsive noise and crustacean distribution/abundance is hindered by the coarse resolution of available data at the present time. Future priorities for research are identified and argument for enhanced monitoring under current legislative frameworks outlined. PMID:27210557

  4. The Role of Negative Statements on the Subjective Effects of Traffic Noise

    NASA Astrophysics Data System (ADS)

    Nieves Vera, M.; Vila, J.; Godoy, J. F.

    1995-12-01

    This study assesses subjective effects of traffic noise and the mediator role that negative statements about the noise and about oneself play. Eighty-four students underwent two 15-minute presentations of high intensity traffic noise, with and without negative statements. The potential effect of the negative statements was enhanced by the use of instructions concerning the expectation of negative noise effects and the credibility of the statements in half the subjects. Level of anxiety, subjective noise aversion and time estimation of the noise were taken. The State Anxiety Inventory and the Profile of Mood States Questionnaire were used as pre- and post-tests. Noise increased anxiety levels, these levels being higher during the Statements condition than during the Noise alone condition. Instructions further increased the effects of these negative statements. Subjects did not adapt to noise. Scores in the questionnaires were significantly higher in the post-test than in the pre-test. Implications of these results are discussed.

  5. ASSESSING THE EFFECTS OF NATURAL AND ANTHROPOGENIC STRESSORS IN THE POTOMAC ESTUARY: IMPLICATIONS FOR LONG-TERM MONITORING

    EPA Science Inventory

    Ecological conditions in the Potomac Estuary are affected by a variety of natural and anthropogenic stressors. Natural climatic factors combined with anthropogenic activities affect fluxes of material through Potomac River watersheds and cause changes in ecological conditions in ...

  6. Effects of noise on the performance of a memory decision response task

    NASA Technical Reports Server (NTRS)

    Lawton, B. W.

    1972-01-01

    An investigation has been made to determine the effects of noise on human performance. Fourteen subjects performed a memory-decision-response task in relative quiet and while listening to tape recorded noises. Analysis of the data obtained indicates that performance was degraded in the presence of noise. Significant increases in problem solution times were found for impulsive noise conditions as compared with times found for the no-noise condition. Performance accuracy was also degraded. Significantly more error responses occurred at higher noise levels; a direct or positive relation was found between error responses and noise level experienced by the subjects.

  7. Effects of activity interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.; Powell, C. A.

    1981-01-01

    The effects of aircraft flyover noise on annoyance were compared for face to face conversation, reverie, and television viewing. Eighteen 5 minute sessions, each composed of three flyovers, were presented on each of 2 days to subjects in a simulated living room. Twelve pairs of females and 12 pairs of males were tested, once before and once after work. Flyovers varied in peak noise level from 53 to 83 dB, A weighted. On each day, subjects engaged in 18 sessions, six of conversation, six of television viewing, and six of reverie. The subjects completed subjective ratings of annoyance and acceptability following every session. Annoyance and unacceptability rating scores were significantly higher for the activity of television viewing compared to conversation or reverie. There was no difference between judgments during the latter two activities. No differences were found in the judgments when compared on the basis of "fatigue" (before/after work) or sex of the subject.

  8. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  9. The effects of spatial sampling on random noise for gyrokinetic PIC simulations in real space

    NASA Astrophysics Data System (ADS)

    Kiviniemi, T. P.; Sauerwein, U.

    2016-06-01

    We study the effects of cloud-in-cell sampling and gyroaveraging on random noise in real space (as opposed to the common Fourier space presentation), and show that together, these can reduce the noise by a factor of 3 compared to nearest grid point sampling without gyroaveraging. Hence an order of magnitude less test particles are needed for the given noise level. We derive equations for noise level as a function of Larmor radius and also investigate the effect of gyroaveraging on noise in local gradients. The effect of number of gyropoints on noise is also discussed.

  10. The effect of numbers of noise events on people's reactions to noise - An analysis of existing survey data

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1984-01-01

    Even though there are surveys in which annoyance decreases as the number of events increases above about 150 a day, the available evidence is not considered strong enough to reject the conventional assumption that reactions are related to the logarithm of the number of events. The data do not make it possible to reject the conventional assumption that the effects of the number of events and the peak noise level are additive. It is found that even when equivalent questionnaire items and definitions of noise events could be used, differences between the surveys' estimates of the effect of the number of events remained large. Three explanations are suggested for inconsistent estimates. The first has to do with errors in specifying the values of noise parameters, the second with the effects of unmeasured acoustical and area characteristics that are correlated with noise level or number, and the third with large sampling errors deriving from community differences in response to noise. It is concluded that significant advances in the knowledge about the effects of the number of noise events can be made only if surveys include large numbers of study areas.

  11. Effects of Colored Noise on Self-Propelled Particles in a Two-Dimensional Potential

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Li, Xuechao; Chen, Changzhao; Ma, Jianli

    2016-06-01

    The effects of colored noise on self-propelled particles in a two-dimensional potential are investigated. The resonance phenomenon was found as the the average velocity has a maximum value with increasing x direction noise intensity. The average velocity takes its maximal value as the parameters (the y direction noise intensity, the self-propelled angle noise intensity, and so on) take suitable values. The y direction noise and the self-propelled angle noise have great effects on the x direction particles transport. The y direction noise and the self-propelled angle noise cannot induce x direction particles transport in the absence of x direction noise. The ratchet effect should disappear when there is no coupling between the x direction potential and the y direction potential.

  12. Unconventional Impacts from Unconventional Hydropower Devices: The Environmental Effects of Noise, Electromagnetic Fields, and other Stressors

    NASA Astrophysics Data System (ADS)

    Bevelhimer, M.; Cada, G. F.

    2011-12-01

    Conventional dam-based hydropower production produces a variety of environmental stressors that have been debated and confronted for decades. In-current hydrokinetic devices present some of the same or analogous stressors (e.g., changes in sediment transport and deposition, interference with animal movements and migrations, and strike by rotor blades) and some potentially new stressors (e.g., noise during operation, emission of electromagnetic fields [EMF], and toxicity of paints, lubricants, and antifouling coatings). The types of hydrokinetic devices being proposed and tested are varied, as are the locations where they could be deployed, i.e., coastal, estuarine, and big rivers. Differences in hydrology, device type, and the affected aquatic community (marine, estuarine, and riverine) will likely result in a different suite of environmental concerns for each project. Studies are underway at the U.S. Department of Energy's national laboratories to characterize the level of exposure to these stressors and to measure environmental response where possible. In this presentation we present results of studies on EMF, noise, and benthic habitat alteration relevant to hydrokinetic device operation in large rivers. In laboratory studies we tested the behavioral response of a variety of fish and invertebrate organisms to exposure to DC and AC EMF. Our findings suggest that lake sturgeon may be susceptible to EMF like that emitted from underwater cables, but most other species tested are not. Based on recordings of various underwater noise sources, we will show how the spectral density of noises created by hydrokinetic devices compares to that from other anthropogenic sources and natural sources. We will also report the results of hydroacoustic surveys that show how sediments are redistributed behind pilings like those that could be used for mounting hydrokinetic devices. The potential effects of these stressors will be discussed in the context of possible fish population

  13. Effects of Attack and Uncontrollable Noise on Aggression

    ERIC Educational Resources Information Center

    Geen, Russell G.

    1978-01-01

    The past decade has been marked by mounting public concern over noise as a source of environmental pollution. Simultaneously, research has shown that noise is also a potent cause of physiological stress. This research relates noise to aggression concluding that noise facilitates aggression in subjects who have been instigated to aggress to the…

  14. The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2

    SciTech Connect

    Hoffman, Forrest M; Erickson III, David J; Blasing, T J

    2009-01-01

    A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO{sub 2} by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO{sub 2} flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO{sub 2} flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO{sub 2} seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO{sub 2} emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO{sub 2} concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO{sub 2} between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO{sub 2} seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO{sub 2} concentrations depend strongly on the natural sources and sinks of CO{sub 2}, but also on the strength of local anthropogenic

  15. Effects of Geometric Details on Slat Noise Generation and Propagation

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockard, David P.

    2009-01-01

    The relevance of geometric details to the generation and propagation of noise from leading-edge slats is considered. Typically, such details are omitted in computational simulations and model-scale experiments thereby creating ambiguities in comparisons with acoustic results from flight tests. The current study uses two-dimensional, computational simulations in conjunction with a Ffowcs Williams-Hawkings (FW-H) solver to investigate the effects of previously neglected slat "bulb" and "blade" seals on the local flow field and the associated acoustic radiation. The computations show that the presence of the "blade" seal at the cusp in the simulated geometry significantly changes the slat cove flow dynamics, reduces the amplitudes of the radiated sound, and to a lesser extent, alters the directivity beneath the airfoil. Furthermore, the computations suggest that a modest extension of the baseline "blade" seal further enhances the suppression of slat noise. As a side issue, the utility and equivalence of FW-H methodology for calculating far-field noise as opposed to a more direct approach is examined and demonstrated.

  16. Effects of Geometric Details on Slat Noise Generation and Propagation

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockhard, David P.

    2006-01-01

    The relevance of geometric details to the generation and propagation of noise from leading-edge slats is considered. Typically, such details are omitted in computational simulations and model-scale experiments thereby creating ambiguities in comparisons with acoustic results from flight tests. The current study uses two-dimensional, computational simulations in conjunction with a Ffowcs Williams-Hawkings (FW-H) solver to investigate the effects of previously neglected slat "bulb" and "blade" seals on the local flow field and the associated acoustic radiation. The computations clearly show that the presence of the "blade" seal at the cusp significantly changes the slat cove flow dynamics, reduces the amplitudes of the radiated sound, and to a lesser extent, alters the directivity beneath the airfoil. Furthermore, it is demonstrated that a modest extension of the baseline "blade" seal further enhances the suppression of slat noise. As a side issue, the utility and equivalence of FW-H methodology for calculating far-field noise as opposed to a more direct approach is examined and demonstrated.

  17. Noise monitoring and adverse health effects in residents in different functional areas of Luzhou, China.

    PubMed

    Han, Zhi-Xia; Lei, Zhang-Heng; Zhang, Chun-Lian; Xiong, Wei; Gan, Zhong-Lin; Hu, Ping; Zhang, Qing-Bi

    2015-03-01

    The purpose of the study was to investigate the noise pollution situation and the resulting adverse effect on residents' health in Luzhou, China, to provide data for noise pollution prevention policies and interventions. Four different functional areas (commercial, construction, residential, and transportation hub areas) were chosen to monitor noise level for 3 months. The survey was performed by questionnaire on the spot on randomly selected individuals; it collected data on the impact of noise on residents' health (quality of sleep, high blood pressure, subjective feeling of nervous system damage, and attention) as well as the knowledge of noise-induced health damage, the degree of adaptation to noise, and their solutions. The noise levels of residential, commercial, transportation, and construction areas exceeded the national standards (P < .001). Sleep quality, prevalence of hypertension, and attention in transportation hub areas were significantly different from those in the other 3 areas (P < .05); only 24.46% of people knew the health hazards associated with noise; 64.57% of residents have adapted to the current noise environment. Most of them have to close the doors and windows to reduce noise. The noise pollution situation in Luzhou, China, is serious, especially the traffic noise pollution. Residents pay less attention to it and adopt single measures to reduce the noise. We should work toward the prevention and control of traffic noise and improve the residents' awareness to reduce the adverse health effects of noise. PMID:25504115

  18. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  19. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  20. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE PAGESBeta

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  1. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE PAGESBeta

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore » US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  2. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  3. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  4. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  5. Acoustic background noise variation in Air Force platforms and its effect on noise removal algorithms

    NASA Astrophysics Data System (ADS)

    Lafollette, Philip A.

    1991-06-01

    In this study of short-term noise variation in Air Force platforms, we followed two avenues of investigation. First, we applied quantitative measures of variation to individual noise recordings, and compared the results across various aircraft. Some measures used were simple descriptive statistics, but we also measured attenuation obtained by spectral restoration (spectral subtraction), applied to the noise signal alone. The noise attenuation obtained for real aircraft environments was in most cases about the same as predicted theoretically for white Gaussian noise, but in some instances was considerably higher, especially in the presence of propeller noise. Second, we applied the nonparametric Mann-Whitney statistic to test the stationarity of power spectrum estimates on time scales of 200 to 800 ms. There was little or no evidence of nonstationarity in large jet or turboprop aircraft. In fighter aircraft and helicopters, there was some evidence of nonstationarity confined to more or less narrow frequency ranges. The nonstationarity found did not appear to limit the performance of special restoration algorithms. The noise recordings used were taken from the RADC/EEV database of field recordings made in the E-3A, E-4B, EC-135, E-130, P-3C, F-15, F-16, F-4, A-10, HH-53 and Tornado aircraft.

  6. Geomorphology of anthropogenic landscapes

    NASA Astrophysics Data System (ADS)

    Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    The construction of urban areas and the development of road networks leave a significant signature on the Earth surface, providing a geomorphological evidence to support the idea that humans are nowadays a geomorphic agent having deep effects on the morphological organization of the landscape. The reconstruction or identification of anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the Anthropocene. Following this research line, the present study tests the effectiveness of a recently published topographic index, the Slope Local Length of Autocorrelation (SLLAC, Sofia et al. 2014) to portrait anthropogenic geomorphology, focusing in particular on road network density, and urban complexity (UCI). At first, the research considers the increasing of anthropic structures and the resulting changes in the SLLAC and in two derived parameters (mean SLLAC per km2 and SLLAC roughness, or Surface Peak Curvature -Spc). As a second step, considering the SLLAC derived indices, the anthropogenic geomorphology is automatically depicted using a k-means clustering algorithm. In general, the increasing of road network density or of the UCI is positively correlated to the mean SLLAC per km2, while the Spc is negatively correlated to the increasing of the anthropic structures. Areas presenting different road network organization are effectively captured considering multiple combinations of the defined parameters. Landscapes with small scattered towns, and a network with long roads in a dendritic shape (with hierarchical branching) are characterized simultaneously by high mean SLLAC and low Spc. Large and complex urban areas served by rectilinear networks with numerous short straight lines and right angles, have either a maximized mean SLLAC or a minimized Spc or both. In all cases, the anthropogenic landscape identified by the procedure is comparable to the ones identified manually from orthophoto, with the

  7. Effects on sleep of noise from two proposed STOL aircraft

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Davis, J. E.

    1975-01-01

    Responses, both overt behavior and those measured by electroencephalograph, to noise by eight male subjects were studied for sixteen consecutive nights. Test stimuli were: (1) The simulated sideline noise of a short takeoff and landing aircraft with blown flaps; (2) the simulated sideline noise of a STOL aircraft of turbofan design; (3) the simulated takeoff noise of the blown flap STOL aircraft; and (4) a four second burst of simulated pink noise. Responses to each noise were tested at three noise intensities selected to represent levels expected indoors from operational aircraft. The results indicate that the blown flap STOL aircraft noise resulted in 8 to 10 percent fewer sleep disturbance responses than did the turbofan STOL aircraft when noises of comparable intensities from similar maneuvers were used.

  8. Effect of noise on Frequency-Resolved Optical Gating measurements of ultrashort pulses

    SciTech Connect

    Fittinghoff, D.N.; DeLong, K.W.; Ladera, C.L.; Trebino, R.

    1995-02-01

    We study the effects of noise in Frequency-Resolved Optical Gating measurements of ultrashort pulses. We quantify the measurement accuracy in the presence of additive, muliplicative, and quantization noise, and discuss filtering and pre-processing of the data.

  9. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish.

    PubMed

    Vasconcelos, Raquel O; Amorim, M Clara P; Ladich, Friedrich

    2007-06-01

    Underwater noise pollution is an increasing environmental problem which might affect communication, behaviour, fitness and consequently species' survival. The most common anthropogenic noises in aquatic habitats derive from shipping. In the present study we investigated the implications of noise pollution from a ship on the sound detectability, namely of conspecific vocalizations in the Lusitanian toadfish, Halobatrachus didactylus. Ambient and ferry-boat noises were recorded in the Tagus River estuary (Portugal), as well as toadfish sounds, and their sound pressure levels determined. Hearing sensitivities were measured under quiet lab conditions and in the presence of these masking noises at levels encountered in the field, using the auditory evoked potentials (AEP) recording technique. The Lusitanian toadfish is a hearing generalist, with best hearing sensitivity at low frequencies between 50 and 200 Hz (below 100 dB re. 1 microPa). Under ambient noise conditions, hearing was only slightly masked at lower frequencies. In the presence of ship noise, auditory thresholds increased considerably, by up to 36 dB, at most frequencies tested. This is mainly because the main energies of ferry-boat noise were within the most sensitive hearing range of this species. Comparisons between masked audiograms and sound spectra of the toadfish's mating and agonistic vocalizations revealed that ship noise decreased the ability to detect conspecific acoustic signals. This study provides the first evidence that fishes' auditory sensitivity can be impaired by ship noise and that acoustic communication, which is essential during agonistic encounters and mate attraction, might be restricted in coastal environments altered by human activity. PMID:17562883

  10. Supersonic jet noise - Its generation, prediction and effects on people and structures

    NASA Technical Reports Server (NTRS)

    Preisser, J. S.; Golub, R. A.; Seiner, J. M.; Powell, C. A.

    1990-01-01

    This paper presents the results of a study aimed at quantifying the effects of jet source noise reduction, increases in aircraft lift, and reduced aircraft thrust on the take-off noise associated with supersonic civil transports. Supersonic jet noise sources are first described, and their frequency and directivity dependence are defined. The study utilizes NASA's Aircraft Noise Prediction Program in a parametric study to weigh the relative benefits of several approaches to low noise. The baseline aircraft concept used in these predictions is the AST-205-1 powered by GE21/J11-B14A scaled engines. Noise assessment is presented in terms of effective perceived noise levels at the FAA's centerline and sideline measuring locations for current subsonic aircraft, and in terms of audiologically perceived sound of people and other indirect effects. The results show that significant noise benefit can be achieved through proper understanding and utilization of all available approaches.

  11. Long-term effects of noise reduction measures on noise annoyance and sleep disturbance: the Norwegian facade insulation study.

    PubMed

    Amundsen, Astrid H; Klæboe, Ronny; Aasvang, Gunn Marit

    2013-06-01

    The Norwegian facade insulation study includes one pre-intervention and two post-intervention surveys. The facade-insulating measures reduced indoor noise levels by 7 dB on average. Before the intervention, 43% of the respondents were highly annoyed by noise. Half a year after the intervention, the proportion of respondents who were highly annoyed by road traffic noise had been significantly reduced to 15%. The second post-intervention study (2 yr after the first post-intervention study) showed that the proportion of highly annoyed respondents had not changed since the first post-intervention study. The reduction in the respondents' self-reported sleep disturbances (due to traffic noise) also remained relatively stable from the first to the second post-intervention study. In the control group, there were no statistically significant differences in annoyance between the pre-intervention and the two post-intervention studies. Previous studies of traffic changes have reported that people "overreact" to noise changes. This study indicated that when considering a receiver measure, such as facade insulation, the effect of reducing indoor noise levels could be predicted from exposure-response curves based on previous studies. Thus no evidence of an "overreaction" was found. PMID:23742346

  12. Geochemical characterization of anthropogenic effects in coastal lagoons at the Northern Pacific coast of Mexico

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, A. C.; Mellado-Vazquez, P. G.; Bojorquez-Sanchez, S.; Páez-Osuna, F.

    2007-05-01

    Sinaloa is a coastal state located in the Gulf of California that is characterized by an economy mostly based on agroindustry, fisheries, aquaculture and tourism. It has been recognized that the coastal lagoons neighboring the most developed economic areas of Sinaloa state are showing signs of infilling and eutrophication that have been related with the dumping of untreated effluents from agriculture croplands, aquaculture facilities and human settlements. The environmental impact to the lagoons of Navachiste, Santa María, Ohuira, Ensenada del Pabellón, Chiricahueto, Ceuta y Estero de Urías has been evaluated through the assessment of time dependent changes in the 210Pb-derived sedimentation rates and the sediment concentrations of geochemical constituents such as organic matter, carbonates and nutrients (N and P). 210Pb geochronology has shown that accretion rates and nutrient fluxes in some lagoons have considerably increased due to the development of the agriculture activities in the region. For instance, in Ohuira lagoon, at the area adjacent to the culture fields of El Fuerte Valley, sediment accumulation has increased ~5 times with respect to the pre-anthropogenic conditions in less than 20 years (0.06 to 0.32 cm yr-1), while C, N and P fluxes (mg cm-2 yr-1) increased almost 10, 10 and 13 fold, respectively (4.0-37 for OC, 0.6-6.0 for N and 0.1-7.0 for P).

  13. Towards the detection and attribution of an anthropogenic effect on climate

    SciTech Connect

    Santer, B.D.; Taylor, K.E.; Penner, J.E.; Wigley, T.M.L.; Jones, P.D.; Cubasch, U.

    1995-01-01

    It has been hypothesized recently that cooling caused by anthropogenic sulfate aerosols may be obscuring a warming signal associated with changes in greenhouse gas concentrations. Here the authors use results from model experiments in which sulfate and carbon dioxide have been varied individually and in combination in order to determine whether the simulated surface temperature change patterns are increasingly evident in observed records of temperature change. They use centered [R(t)] and uncentered [C(t)] pattern correlation statistics in order to compare observed time-evolving surface temperature change patterns with the model-predicted equilibrium signal patterns. They show that in the case of temperature signals from the ``CO{sub 2}-only`` and ``sulfate-only`` experiments, the C(t) statistic essentially reduces to a measure of observed global-mean temperature changes, and cannot be used to uniquely attribute observed climate changes to a specific causal mechanism. For the signal from the experiment with combined CO{sub 2}/sulfate aerosol forcing, C(t) provides information on pattern congruence, but trends in C(t) are difficult to interpret without decomposing the statistic into pattern similarity and global-mean change components. They therefore focus on R(t), which is a more useful statistic for discriminating between forcing mechanisms with different pattern signatures but similar rates of global mean change.

  14. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  15. Teaching Doppler Effect with a passing noise source

    NASA Astrophysics Data System (ADS)

    Costa, Ivan F.; Mocellin, Alexandra

    2010-07-01

    The noise pitch variation of a passing noise source allows a low cost experimental approach to calculate speed and, for the first time, distance. We adjusted the recorded noise pitch variation to the Doppler shift equation for sound. We did this by taking into account the frequency delay due to the sound source displacement and performing a Fast Fourier Transform (FFT) of the noise signal using free software. This experimental method was successfully applied to aircraft and automobiles.

  16. The Effect of Cross Flow on Slat Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Choudhari, Meelan M.

    2010-01-01

    This paper continues the computational examination (AIAA Journal, Vol. 45, No. 9, 2007, pp. 2174-2186) of the unsteady flow within the slat cove region of a multi-element high-lift airfoil configuration. Two simulations have been performed to examine the effect of cross flow on the near-field fluctuations and far-field acoustics. The cross flow was imposed by changing the free-stream velocity vector and modifying the Reynolds number. The cross flow does appear to alter the dynamics in the cove region, but the impact on the noise seems to be more dependent on the flow conditions. However, separating out the true effects of the cross flow from those of the Mach and Reynolds number would require additional calculations to isolate those effects.

  17. Geometrical Effects in Noise Spectra of Superconducting Flux Qubits

    NASA Astrophysics Data System (ADS)

    Petukhov, Andre; Smelyanskiy, Vadim; Martinis, John

    We present theoretical study of geometrical effects related to spin diffusion in superconducting flux qubits. We adopt a model of a long superconducting wire surrounded by a thin oxide layer with spins distributed uniformly over cross-sectional area of the oxide layer. Using a continuous transformation from a round cylinder to a flat wire strip, we demonstrate that the noise spectral density tends to a power law S (ω) ~(ω / Γ) - s with s 3 / 4 , approaching s = 3 / 4 for very thin wires. The ω-s dependence is valid in a broad frequency range above ωΓ stretching up to four orders of magnitude in units of characteristic diffusion decay rate Γ ~ 1 -102 Hz. The effect is highly sensitive to a cross-sectional aspect ratio of a thin wire thus revealing its geometrical origin. We substantiate our findings by detailed comparison with available experimental data and conclude that 3 / 4 power law distinguishes spin diffusion flux noise from generic `` 1 / f '' family. Supported by the AFRL Information Directorate under Grant F4HBKC4162G001.

  18. Effects of luminance and spatial noise on interferometric contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Coletta, Nancy J.; Sharma, Vineeta

    1995-10-01

    Optical properties of the eye contribute to the reduced visibility of spatial patterns at low luminance. To study the limits of spatial vision when optical factors are minimized, we measured contrast-sensitivity functions (CSF's) for 543.5-nm laser interference fringes imaged directly on the retina. Measurements were made in the fovea at four luminance levels, ranging from 0.3 to 300 photopic trolands (Td). At each luminance the fraction of coherent light in the stimulus pattern was varied to assess the masking effects of laser speckle, which is visible as spatial noise in fields of coherent light. Compared with published CSF's obtained under natural viewing conditions, interferometric CSF's were similar in height but broader, with the range of visibility being extended to higher spatial frequencies. The masking effects of speckle were greatest at the highest luminance and were negligible at the lowest luminance. For low coherent fractions, contrast sensitivity improved over the entire luminance range at a rate consistent with a square-root law; with purely coherent light, sensitivity tended to level off at approximately 30 Td because of speckle masking. The results indicate that the optical quality of the eye reduces the spatial bandwidth of vision even at luminances near the foveal threshold. The change in interference fringe visibility with luminance is consistent with noise-limited behavior, and the masking

  19. Noise-induced transitions and resonant effects in nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich

  20. Shot noise effect on noise source and noise parameter of 10-nm-scale quasi-ballistic n-/p-type MOS devices

    NASA Astrophysics Data System (ADS)

    Jeon, Jongwook; Kang, Myounggon

    2016-05-01

    In this work, we investigated the noise source and noise parameters of a quasi-ballistic MOSFET at the high-frequency regime. We presented the shot noise properties in the measured drain current noise and its impact on the induced gate noise and the noise parameters of 10-nm-scale n-/p-type MOS (N/PMOS) devices for the first time. The measured noise sources and noise parameters were carefully analyzed with the shot and thermal noise models in all operation regions. On the basis of the results, new noise parameter models are proposed and the noise performance improvement in the quasi-ballistic regime is shown.

  1. An Effective, Economical Method of Reducing Environmental Noise in the Vivarium

    PubMed Central

    Young, Maggie T; French, Alan L; Clymer, Jeffrey W

    2011-01-01

    High levels of ambient noise can have detrimental effects on laboratory animal wellbeing and may affect experimental results. In addition, excessive noise can reduce technician comfort and performance. This study was performed to determine whether inexpensive, passive acoustic noise abatement measures could meaningfully reduce noise levels. Sound level measurements for various activities were obtained in the incoming processing room for pigs before and after installing gypsum acoustic paneling, covering metal-to-metal contact points with strips of adhesive-backed rubber, and replacing hard plastic wheels on transport carts with neoprene wheels. The modifications reduced the overall average noise level by 8.1 dB. Average noise levels for each activity were all less than 85 dB after the modifications. Average noise levels can be reduced effectively and economically with passive abatement methods. Intermittent spikes in noise are more difficult to control and may require attention to the individual activity. PMID:21838981

  2. An effective, economical method of reducing environmental noise in the vivarium.

    PubMed

    Young, Maggie T; French, Alan L; Clymer, Jeffrey W

    2011-07-01

    High levels of ambient noise can have detrimental effects on laboratory animal wellbeing and may affect experimental results. In addition, excessive noise can reduce technician comfort and performance. This study was performed to determine whether inexpensive, passive acoustic noise abatement measures could meaningfully reduce noise levels. Sound level measurements for various activities were obtained in the incoming processing room for pigs before and after installing gypsum acoustic paneling, covering metal-to-metal contact points with strips of adhesive-backed rubber, and replacing hard plastic wheels on transport carts with neoprene wheels. The modifications reduced the overall average noise level by 8.1 dB. Average noise levels for each activity were all less than 85 dB after the modifications. Average noise levels can be reduced effectively and economically with passive abatement methods. Intermittent spikes in noise are more difficult to control and may require attention to the individual activity. PMID:21838981

  3. An Evaluation of Noise Levels in College Welding Laboratories and Its Effect on Student Hearing.

    ERIC Educational Resources Information Center

    Pontynen, Burton Ahlstrom

    The purpose of this study was to determine what noise levels existed at selected work stations in college welding laboratories while students were working and whether this noise exposure had any effect on the hearing acuity of students. Audiometric tests were administered to an experimental group of welding students in the noise of a welding…

  4. [Fundamental and applied aspects of preventing the adverse effects of aviation noise].

    PubMed

    Zhdan'ko, I M; Zinkin, V N; Soldatov, S K; Bogomolov, A V; Sheshegov, P M

    2014-01-01

    In the article, aviation noise is discussed as a harmful physical factor with ecological, hygienic, clinical and social implications. Noise contributes to development of general and occupational pathologies, chronic diseases, and reduction of professional longevity. The present-day knowledge of aviation noise sources and dynamics, and effects on environment, population, and aviation personnel is overviewed, as well as strategies to prevent noise consequences, muffling techniques being the key ones. PMID:25365871

  5. Construction and application of a questionnaire for the social scientific investigation of environmental noise effects

    NASA Technical Reports Server (NTRS)

    Guski, R.; Wichmann, U.; Rohrmann, B.; Finke, H. O.

    1980-01-01

    A social psychological questionnair has been developed to study the effects of environmental noise and was applied to 636 people living in 19 different areas of Hamburg. The theoretical foundations and the statistical means employed in its development are described. Four main reactions to noise are isolated statistically, and it is determined that these are moderated by several intervening variables, chief of which are coping capacity for noise, the perceived dangerousness of the noise souce, other daily loads and the individual's liability.

  6. Cardiovascular effects of environmental noise: research in The Netherlands.

    PubMed

    Kempen, Elise van

    2011-01-01

    The impact of environmental noise on public health, in The Netherlands, is limited: Less than 1% of the myocardial infarction cases per year are attributable to long-term exposure to road traffic noise. Furthermore, although the Dutch noise policy is not directed to prevent cardiovascular disease due to noise exposure, health does play a role in Dutch noise policy. These are the main conclusions of a systematic review of Dutch observational studies, investigating the possible impact of road traffic and aircraft noise exposure on the cardiovascular system. Since 1970, 14 Dutch studies were published investigating the possible impact of road traffic and aircraft noise exposure on the cardiovascular system. Within these studies a large variety of outcomes were investigated, ranging from blood pressure changes to cardiovascular mortality. The results of the studies were not consistent and only weak associations were found. PMID:21537106

  7. Effect of diurnal cycle in anthropogenic emissions on the vertical profile of black carbon over the Indian region

    NASA Astrophysics Data System (ADS)

    Govardhan, G.; Nanjundiah, R. S.; Satheesh, S.

    2013-12-01

    South Asian region is considered to be a regional hot spot for natural as well as anthropogenic aerosols viz. mineral dust, black carbon (BC), organic matter and so on. Vehicular and industrial emissions, forest fires, biomass burning for agricultural purposes and cooking are the main sources for the carbonaceous aerosols over the region. On the other hand, seasonal wind patterns over the region are the mainly responsible for the abundance of the mineral dust. Climate impact of large aerosol abundance on the regional climate has been a topic of interest during the last decade. The anthropogenic aerosols over the region have a diurnal variation owing to their sources (vehicular and industrial emissions). In this study, we have analysed the effect of diurnal cycle in emissions on the overall meteorology and the aerosols' concentrations over the region. We have used the version 3.3 of the online chemistry transport model WRF-Chem for this study. The model simulations for control runs (No diurnal emission cycle for anthropogenic aerosols i.e. constant emissions) and sensitivity runs (diurnal cycle for anthropogenic aerosols) are done for the 3 selected months of 2011 viz. May, October and December. From the results it has been observed that, the monthly mean vertical profile of BC over the selected 18 stations (urban+semi-urban+rural) is significantly affected by the inclusion of the diurnal cycle in the emissions. The changes in BC mass concentration are more than 60% over a few of the selected stations. The effect of diurnal cycle in emissions on the vertical profile of BC is more prominent in May than in October and December. In May, the noteworthy changes in BC mass concentrations occur within 3-8 km. Additionally, the effect of the diurnal cycle in emissions is seen on the vertical profile of BC over the selected oceanic regions as well. The back trajectory analysis of our model data with HYSPLIT model indicates the changes in the overall wind directions

  8. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  9. The effect of fMRI (noise) on cognitive control.

    PubMed

    Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S; van den Wildenberg, Wery P M; Cellini, Cristiano

    2012-04-01

    Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control exerted. We found that participants were more effective in controlling episodic retrieval of previous stimulus-response bindings (Experiment 1), in switching to a new task (Experiment 2), and shielding a current goal from distracting response tendencies (Experiment 3) if they were exposed to challenging task situations, such as 70 dB echo planar imaging noise sampled from an fMRI scanner. These findings have considerable theoretical implications in questioning the widespread assumption that people are equally devoted to easy and more challenging tasks, and methodological implications in raising the possibility that experiments carried out in fMRI scanners or under otherwise challenging conditions systematically overestimate contributions from cognitive control processes. PMID:22201469

  10. From urban to national heat island: The effect of anthropogenic heat output on climate change in high population industrial countries

    NASA Astrophysics Data System (ADS)

    Murray, John; Heggie, Douglas

    2016-06-01

    The project presented here sought to determine whether changes in anthropogenic thermal emission can have a measurable effect on temperature at the national level, taking Japan and Great Britain as type examples. Using energy consumption as a proxy for thermal emission, strong correlations (mean r2 = 0.90 and 0.89, respectively) are found between national equivalent heat output (HO) and temperature above background levels Δt averaged over 5- to 8-yr periods between 1965 and 2013, as opposed to weaker correlations for CMIP5 model temperatures above background levels Δmt (mean r2 = 0.52 and 0.10). It is clear that the fluctuations in Δt are better explained by energy consumption than by present climate models, and that energy consumption can contribute to climate change at the national level on these timescales.

  11. Origin of microwave noise from an n-channel metal-oxide-semiconductor field effect transistor

    NASA Astrophysics Data System (ADS)

    Pantisano, Luigi; Cheung, K. P.

    2002-12-01

    The physics of noise is a complex subject. It is often difficult to clearly identify the physical origin of the observed noise. Electronic noise at microwave frequencies is technologically very important and has been extensively studied. While it is well known that many physical phenomena give rise to output current fluctuations (i.e., noise) in a metal-oxide-semiconductor field effect transistor (MOSFET), few physical phenomena have a time constant that can contribute in the microwave range. Current physical models of MOSFET microwave noise are all based on thermal agitation of electrons (thermal noise). However, what is the correct temperature (lattice or electron) to use in the noise calculation is an ongoing debate in the literature. All the modeling efforts have been using noise measured from pristine devices as a test for validity. In this work, we studied the n-MOSFET microwave noise as a function of electrical stress induced degradation. Our experiments thus introduced a new dimension in the noise behavior study. The results of our experiments cannot be explained by any of the current existing models. All existing models discounted flicker noise as being too small at microwave frequency. Our experimental results compel us to reexamine the validity of this common assumption. While we are not quite able to prove conclusively, our evidences are clearly leaning toward defect-induced fluctuation (flicker noise) as the origin of microwave noise in a n-MOSFET

  12. Effects of anthropogenic land-subsidence on river flood hazard: a case study in Ravenna, Italy

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio

    2015-04-01

    quantify alterations to the flooding hazard due to large and rapid differential land-subsidence, shedding some light on whether to consider anthropogenic land-subsidence among the relevant human-induced drivers of flood-risk change.

  13. Effects of Anthropogenic Emissions on the Nitrogen Cycle in the Desert Creosote Scrub Ecosystem

    NASA Astrophysics Data System (ADS)

    Scanlan, J.; Simunek, J.

    2009-12-01

    Wildfires are an ongoing threat to many ecosystems in Southern California. In some ecosystems, evidence suggests that high anthropogenic nitrogen deposition can increase susceptibility to fire by increasing the fuel loads and altering the plant species composition. Desert creosote scrub ecosystems are dominant throughout many low-elevation areas in the Mohave Desert and are among the ecosystems subjected to added deposition of nitrate and ammonium due to emissions from nearby agriculture and fossil fuel combustion. An understanding of how nitrogen flows through the desert creosote scrub ecosystem and of how the additional deposition affects this cycle is critical to determining how these ecosystems will change over time and assessing how the spread of fires can be mitigated. One high deposition and one low deposition desert creosote scrub site in Joshua Tree National Park have been studied for the past year in order to observe the flow of nitrogen through the soil and assess its connection to shifts in the vegetation. Extractable nitrate, extractable ammonium, and total nitrogen and carbon have been measured throughout 100cm soil profiles at each site in order to determine the fate and transport of the deposited nitrogen. Because the flow of water through the soil following the infrequent precipitation events is essential to the flow of nitrogen, dielectric water potential sensors have been installed throughout the top 70cm of soil in order to obtain hourly measurements of water potential. These measurements have been used in conjunction with weather and deposition data to model the flow of water and nitrogen through the soil using the hydrological model HYDRUS-1D. A geochemical model representing basic nitrogen reactions occurring in the soil has been started using PHREEQC coupled with HYDRUS-1D, but further modeling is necessary in order to accurately represent the complexity of the nitrogen cycle. After completion of an additional year of measurements and

  14. Weekly cycles of global fires—Associations with religion, wealth and culture, and insights into anthropogenic influences on global climate

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian; Tapper, Nigel

    2015-11-01

    One approach to quantifying anthropogenic influences on the environment and the consequences of those is to examine weekly cycles (WCs). No long-term natural process occurs on a WC so any such signal can be considered anthropogenic. There is much ongoing scientific debate as to whether regional-scale WCs exist above the statistical noise level, with most significant studies claiming that anthropogenic aerosols and their interaction with solar radiation and clouds (direct/indirect effect) is the controlling factor. A major source of anthropogenic aerosol, underrepresented in the literature, is active fire (AF) from anthropogenic burning for land clearance/management. WCs in AF have not been analyzed heretofore, and these can provide a mechanism for observed regional-scale WCs in several meteorological variables. We show that WCs in AFs are highly pronounced for many parts of the world, strongly influenced by the working week and particularly the day(s) of rest, associated with religious practices.

  15. Anthropogenic Effects on the Mixing State of Aerosols over Manaus during the Green Ocean Amazon (GoAmazon) Campaign

    NASA Astrophysics Data System (ADS)

    Fraund, M. W.; Pham, D.; Harder, T.; O'Brien, R.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2015-12-01

    state indices of aerosol samples collected at these two sites, due to anthropogenic emissions. The ultimate goal is to use the mixing state index as a parameter which enables changes in the composition of aerosols to be modeled with more certainty as well enabling a quantification of the anthropogenic effects on natural rainforest atmosphere.

  16. Objective Measures of Listening Effort: Effects of Background Noise and Noise Reduction

    ERIC Educational Resources Information Center

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-01-01

    Purpose: This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. Method: To address this, the hypothesis…

  17. The effect of the duration of jet aircraft flyover sounds on judged annoyance. [noise predictions and noise measurements of jet aircrafts and human reactions to the noise intensity

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1979-01-01

    The effect of the duration of jet aircraft flyover sounds on humans and the annoyance factor are examined. A nine point numerical category scaling technique is utilized for the study. Changes in the spectral characteristics of aircraft sounds caused by atmospheric attenuation are discussed. The effect of Doppler shifts using aircraft noises with minimal pure tone content is reported. The spectral content of sounds independent of duration and Doppler shift are examined by analysis of variance.

  18. Effects of anthropogenic sound on digging behavior, metabolism, Ca(2+)/Mg(2+) ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta.

    PubMed

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-01-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca(2+)/Mg(2+)-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams. PMID:27063002

  19. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-04-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca2+/Mg2+-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams.

  20. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+ ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta

    PubMed Central

    Peng, Chao; Zhao, Xinguo; Liu, Saixi; Shi, Wei; Han, Yu; Guo, Cheng; Jiang, Jingang; Wan, Haibo; Shen, Tiedong; Liu, Guangxu

    2016-01-01

    Anthropogenic sound has increased significantly in the past decade. However, only a few studies to date have investigated its effects on marine bivalves, with little known about the underlying physiological and molecular mechanisms. In the present study, the effects of different types, frequencies, and intensities of anthropogenic sounds on the digging behavior of razor clams (Sinonovacula constricta) were investigated. The results showed that variations in sound intensity induced deeper digging. Furthermore, anthropogenic sound exposure led to an alteration in the O:N ratios and the expression of ten metabolism-related genes from the glycolysis, fatty acid biosynthesis, tryptophan metabolism, and Tricarboxylic Acid Cycle (TCA cycle) pathways. Expression of all genes under investigation was induced upon exposure to anthropogenic sound at ~80 dB re 1 μPa and repressed at ~100 dB re 1 μPa sound. In addition, the activity of Ca2+/Mg2+-ATPase in the feet tissues, which is directly related to muscular contraction and subsequently to digging behavior, was also found to be affected by anthropogenic sound intensity. The findings suggest that sound may be perceived by bivalves as changes in the water particle motion and lead to the subsequent reactions detected in razor clams. PMID:27063002

  1. Effects of forward velocity on turbulent jet mixing noise

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  2. The combined effects of reverberation and noise on speech intelligibility by cochlear implant listeners

    PubMed Central

    Hazrati, Oldooz; Loizou, Philipos C.

    2013-01-01

    Objective The purpose of this study is to assess the individual effect of reverberation and noise, as well as their combined effect, on speech intelligibility by cochlear implant (CI) users. Design Sentence stimuli corrupted by reverberation, noise, and reverberation + noise are presented to 11 CI listeners for word identification. They are tested in two reverberation conditions (T60 = 0.6 s, 0.8 s), two noise conditions (SNR = 5 dB, 10 dB), and four reverberation + noise conditions. Study sample Eleven CI users participated. Results Results indicated that reverberation degrades speech intelligibility to a greater extent than additive noise (speech-shaped noise), at least for the SNR levels tested. The combined effects were greater than those introduced by either reverberation or noise alone. Conclusions The effect of reverberation on speech intelligibility by CI users was found to be larger than that by noise. The results from the present study highlight the importance of testing CI users in reverberant conditions, since testing in noise-alone conditions might underestimate the difficulties they experience in their daily lives where reverberation and noise often coexist. PMID:22356300

  3. Environmental Noise Pollution in the United States: Developing an Effective Public Health Response

    PubMed Central

    Hammer, Monica S.; Swinburn, Tracy K.

    2013-01-01

    Background: Tens of millions of Americans suffer from a range of adverse health outcomes due to noise exposure, including heart disease and hearing loss. Reducing environmental noise pollution is achievable and consistent with national prevention goals, yet there is no national plan to reduce environmental noise pollution. Objectives: We aimed to describe some of the most serious health effects associated with noise, summarize exposures from several highly prevalent noise sources based on published estimates as well as extrapolations made using these estimates, and lay out proven mechanisms and strategies to reduce noise by incorporating scientific insight and technological innovations into existing public health infrastructure. Discussion: We estimated that 104 million individuals had annual LEQ(24) levels > 70 dBA (equivalent to a continuous average exposure level of >70 dBA over 24 hr) in 2013 and were at risk of noise-induced hearing loss. Tens of millions more may be at risk of heart disease, and other noise-related health effects. Direct regulation, altering the informational environment, and altering the built environment are the least costly, most logistically feasible, and most effective noise reduction interventions. Conclusion: Significant public health benefit can be achieved by integrating interventions that reduce environmental noise levels and exposures into the federal public health agenda. Citation: Hammer MS, Swinburn TK, Neitzel RL. 2014. Environmental noise pollution in the United States: developing an effective public health response. Environ Health Perspect 122:115–119; http://dx.doi.org/10.1289/ehp.1307272 PMID:24311120

  4. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.

    2013-01-01

    An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best

  5. Short- and long-term changes in right whale calling behavior: the potential effects of noise on acoustic communication.

    PubMed

    Parks, Susan E; Clark, C W; Tyack, P L

    2007-12-01

    The impact of anthropogenic noise on marine mammals has been an area of increasing concern over the past two decades. Most low-frequency anthropogenic noise in the ocean comes from commercial shipping which has contributed to an increase in ocean background noise over the past 150 years. The long-term impacts of these changes on marine mammals are not well understood. This paper describes both short- and long-term behavioral changes in calls produced by the endangered North Atlantic right whale (Eubalaena glacialis) and South Atlantic right whale (Eubalaena australis) in the presence of increased low-frequency noise. Right whales produce calls with a higher average fundamental frequency and they call at a lower rate in high noise conditions, possibly in response to masking from low-frequency noise. The long-term changes have occurred within the known lifespan of individual whales, indicating that a behavioral change, rather than selective pressure, has resulted in the observed differences. This study provides evidence of a behavioral change in sound production of right whales that is correlated with increased noise levels and indicates that right whales may shift call frequency to compensate for increased band-limited background noise. PMID:18247780

  6. Effects of Noise in Symmetric Two-Species Competition

    NASA Astrophysics Data System (ADS)

    Vilar, José M. G.; Solé, Ricard V.

    1998-05-01

    We have analyzed the interplay between noise and periodic modulations in a classical Lotka-Volterra model of two-species competition. We have found that the consideration of noise changes drastically the behavior of the system and leads to new situations which have no counterpart in the deterministic case. Among others, noise is responsible for temporal oscillations, spatial patterns, and the enhancement of the response of the system via stochastic resonance.

  7. 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans

    NASA Astrophysics Data System (ADS)

    Swart, P. K.; Greer, L.; Rosenheim, B. E.; Moses, C. S.; Winter, A.; Dodge, R. E.; Helmle, K. P.

    2009-12-01

    New δ13C data are presented from ten coral skeletons collected from Florida and the Caribbean. These corals range from 96 to 200 years in age and were collected between 1976 and 2002. The change in the δ13C of the skeletons (Δδ13C/Δt) of these corals has been measured between 1900 and 1990 and have been compared with 26 other published coral records from the Atlantic, Pacific, and Indian Oceans. Together these data make possible a global comparison of Δδ13C/Δt changes in coral skeletons. Of the records, 78 % show a decrease in δ13C towards the modern day, statistically significant (p<0.05) in over 64 % of these records. This decrease is attributable to the addition of anthropogenically derived CO2 to the atmosphere (13C Suess effect). Between 1900 and 1990, the average Δδ13C/Δt in coral skeletons is approximately -0.01 ‰. In the Atlantic Ocean the magnitude of the Δδ13C/Δt since 1960 (-0.019+/-0.015‰/yr) is essentially the same as the decrease observed in the atmosphere and the oceans (-0.023 to -0.029‰/yr), while in the Pacific and Indian Oceans the rate is more variable and significantly reduced (-0.007 +/-0.013 ‰ /yr). These data strongly support the notion that (i) the δ13C of the atmosphere controls ambient δ13C of the dissolved inorganic carbon which in turn is reflected in coral skeletons, (ii) the rate of decline in the coral skeletons is higher in oceans with a greater anthropogenic CO2 inventory in the surface oceans, (iii) the rate of δ13C decline is accelerating.

  8. Effect of anthropogenic aerosol forcing on climate change in the North Pacific Ocean during the 20th Century

    NASA Astrophysics Data System (ADS)

    Abe, M.; Watanabe, S.; Kawamiya, M.; Nozawa, T.

    2014-12-01

    Reliable future projection by the climate or Earth system model is crucial for the issue on future climate change. For the reliable future projection, uncertainty of the aerosol effect on the climate change should be reduced, because the uncertainty has been large. Therefore, it is essential to understand the effect of anthropogenic aerosol forcing on climate change in the 20th century. In this study, we have assessed the effect by a comparison between the 20th century historical simulations (20C and piAero) with the aerosol forcing fluctuated realistically over time and fixed in the pre-industrial condition by MIROC-ESM. We focus on the climate change in the North Pacific Ocean (NPO) due to anthropogenic aerosol emitted from China in the late 20th century. In the comparison between the two simulations, there has been little difference in the global mean surface temperature (SAT) from 1851 to 1900. Then the difference appears and reaches to about 0.2 deg. C in 1950's. After 1960, the difference in SAT between the two experiments become large. For SST change in the NPO, small positive trend is found after 1900 in the piAero, but not found in the 20C. Thus, the SST difference in the NPO between the two experiments is significant after 1900. While the positive SST trend in the NPO has been large in the piAero after 1960, SST in the Central NPO shows the negative trend in the 20C. These enlarge SST difference between the two experiments. The negative SST trend in the Central NPO in the 20C is likely to be attributable to an increase of aerosol emission from China. The aerosol increase, which is also found in the NPO, makes solar insolation into the surface decrease mainly through the aerosol indirect effect. This effect decreases SST. Also, the effect is seen in the boreal spring and summer. However, the effect is not found in the piAero. The Pacific Decadal Oscillation (PDO), which is the principal natural variability in the NPO, has been investigated. Linear trend of

  9. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2016-01-01

    The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs. PMID:26611041

  10. Acoustic Communication in Fishes and Potential Effects of Noise.

    PubMed

    Mann, David A

    2016-01-01

    Many soniferous fishes such as cods and groupers are commercially important. Sounds are produced during courtship and spawning, and there is the potential for aquatic noise to interfere with critical behaviors and affect populations. There are few data on the response of wild populations of sound-producing fishes to acoustic noise. New motion and sound exposure fish tags could be used to assess the behavioral responses of large numbers of fish to noise exposure. Many factors, such as fishing mortality and environmental variability in prey supply, could also affect populations and potentially interact with the behavioral responses to noise. PMID:26611018

  11. Effects of prior exposure to office noise and music on aspects of working memory.

    PubMed

    Smith, Andrew; Waters, Beth; Jones, Hywel

    2010-01-01

    Previous research has suggested that prior exposure to noise reduces the effect of subsequent exposure due to habituation. Similarly, a number of studies have shown that exposure to Mozart's music leads to better subsequent spatial reasoning performance. Two studies were conducted to extend these findings. The first one examined whether habituation occurs to office noise (including speech) and, if so, how long it takes to develop. Thirty-six young adults participated in the first study which compared effects of office noise with quiet on the performance of a maths task. The study also examined the effects of prior exposure to the office noise on the subsequent effect of the noise. The results showed that performance was initially impaired by the office noise but that the effects of the noise were removed by 10 minutes of exposure between tasks. The second experiment attempted to replicate the "Mozart effect" which represents an improvement in spatial reasoning following listening to Mozart. The study also examined whether the Mozart effect could be explained by changes in mood. Twenty-four young adults participated in the study. The results replicated the Mozart effect and showed that it was not due to changes in mood. Overall, these results show that prior exposure to noise or music can influence aspects of working memory. Such effects need to be incorporated into models of effects of noise on cognition and attempts have to be made to eliminate alternative explanations rather than just describing changes that occur in specific contexts. PMID:20871178

  12. Specific vulnerability of face perception to noise: A similar effect in schizophrenia patients and healthy individuals

    PubMed Central

    Chen, Yue; McBain, Ryan; Norton, Daniel

    2014-01-01

    Face perception plays a foundational role in the social world. This perceptual ability is deficient in schizophrenia. A noise-filtering mechanism is essential for perceptual processing. It remains unclear as to whether a specific noise-filtering mechanism is implicated in the face perception problem or a general noise-filtering mechanism is involved which also mediates non-face visual perception problems associated with this psychiatric disorder. This study examined and compared the effects of external noise on the performance of face discrimination and car discrimination in schizophrenia patients (n=25) and healthy controls (n=27). Superimposing the external visual noise on face or car stimuli elevated perceptual thresholds (i.e. degraded performance levels) for both face and car discrimination. However, the effect of noise was significantly larger on face than on car discrimination, both in patients and controls. This pattern of results suggests specific vulnerability of face processing to noise in healthy individuals and those with schizophrenia. PMID:25500350

  13. Noise characteristics of the Fano effect and the Fano-Kondo effect in triple quantum dots.

    PubMed

    Tanamoto, T; Nishi, Y; Fujita, S

    2009-04-01

    We theoretically compare transport properties of the Fano-Kondo effect with those of the Fano effect, focusing on the effect of a two-level state in a triple quantum dot (QD) system. We analyze shot noise characteristics in the Fano-Kondo region at zero temperature, and discuss the effect of strong electronic correlation in QDs. We found that the modulation of the Fano dip is strongly affected by the on-site Coulomb interaction in QDs, and stronger Coulomb interaction (Fano-Kondo case) induces larger noise. PMID:21825341

  14. The Effects of Syntactic Complexity on Processing Sentences in Noise

    ERIC Educational Resources Information Center

    Carroll, Rebecca; Ruigendijk, Esther

    2013-01-01

    This paper discusses the influence of stationary (non-fluctuating) noise on processing and understanding of sentences, which vary in their syntactic complexity (with the factors canonicity, embedding, ambiguity). It presents data from two RT-studies with 44 participants testing processing of German sentences in silence and in noise. Results show a…

  15. The Effects of Noise Reduction on Social Behaviors.

    ERIC Educational Resources Information Center

    Carbone, Vincent J.; Duncan, Phillip K.

    1986-01-01

    The study found no relationship between improved social behavior in a group of juveniles residing at a county shelter care facility and decreased frequency and duration of disruptions above 85 decibels. Subjects did reduce noise levels when stereo listening was made contingent on reduced noise. (Author/DB)

  16. Effects of propeller rotation direction on airplane interior noise levels

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.; Daniels, E. F.

    1985-01-01

    Interior noise measurements for upsweeping and downsweeping movement of the propeller blade tips past the fuselage were made on a twin-engine airplane and on two simplified fuselage models. Changes in interior noise levels of as much as 8 dB reversal of propeller rotation direction were measured for some configurations and test conditions.

  17. Noise levels near streets, effectiveness and cost abatement measures

    NASA Technical Reports Server (NTRS)

    Lang, J.

    1980-01-01

    During the years 1975-1978, research was carried concerning the current noise levels near streets, the annoyance felt by the population, possible noise abatement measures for these streets, and the economic impact of such measures. The results of the research are summarized.

  18. Effects of furosemide on the hearing loss induced by impulse noise

    PubMed Central

    2011-01-01

    Background The permanent hearing loss following exposure to intense noise can be due either to mechanical structural damage (tearing) caused directly by the noise or to metabolic (biochemical) damage resulting from the elevated levels of free radicals released during transduction of the sound overstimulation. Drugs which depress active cochlear mechanics (e.g. furosemide and salicylic acid) or anti-oxidants (which counteract the free radicals) are effective in reducing the threshold shift (TS) following broadband continuous noise. This study was designed to determine whether furosemide can reduce the TS following exposure to impulse noise, similar to its action with continuous broadband noise. Methods Shortly after furosemide injection, mice were exposed to simulated M16 rifle impulse noise produced by different loudspeakers and amplifiers in different exposure settings and, in other experiments, also to actual M16 rifle shots. Results Depending on the paradigm, the simulated noises either did not produce a TS, or the TS was reduced by furosemide. The drug was not effective in reducing TS resulting from actual impulse noise. Conclusion Simulated M16 rifle impulse noise may not truly replicate the rapid rise time and very high intensity of actual rifle shots so that the TS following exposure to such noise can be reduced by these drugs. On the other hand, actual M16 impulse noise probably causes direct (frank) mechanical damage, which is not reduced by these drugs. PMID:21548982

  19. Effects of aircraft noise on human activities. Final report, 1 January 1980-31 March 1983

    SciTech Connect

    Arnoult, M.D.; Gilfillan, L.G.

    1983-03-01

    The effects of aircrft noise on human activities was investigated by developing a battery of tasks (1) representative of a range of human activities and (2) sensitive to the disruptive effects of noise. The noise used were recordings of jet aircraft and helicopter sounds at three lvels of loudness--60, 70, and 80 dB(A). Experiment 1 investigated 12 different cognitive tasks, along with two intelligibility tasks included to validate that the noises were being effective. Interference with intelligibility was essentially the same as found in the research literature, but only inconsistent effects were found on either accuracy or latency of performance on the cognitive tasks. When the tasks were grouped into four categories (Intelligibility, Matching, Verbal, and Arithmetic), reliable differences in rated annoyingness of the noises were related to the task category and to the type of noise (jet or helicopter).

  20. Effect of phase noise on the generation of stationary entanglement in cavity optomechanics

    SciTech Connect

    Abdi, M.; Barzanjeh, Sh.; Tombesi, P.; Vitali, D.

    2011-09-15

    We study the effect of laser phase noise on the generation of stationary entanglement between an intracavity optical mode and a mechanical resonator in a generic cavity optomechanical system. We show that one can realize robust stationary optomechanical entanglement even in the presence of non-negligible laser phase noise. We also show that the explicit form of the laser phase noise spectrum is relevant, and discuss its effect on both optomechanical entanglement and ground-state cooling of the mechanical resonator.

  1. Effect of angle of attack on rotor trailing-edge noise

    NASA Astrophysics Data System (ADS)

    Chou, S.-T.; George, A. R.

    1984-12-01

    Previous analyses of boundary layer trailing edge noise for large rotors have used zero blade angle of attack as input data. Attention is presently given to the important effects of blade angle of attack changes on rotor trailing edge noise in the case of a UH-1 helicopter. The primary effect is in the low to mid-frequency range, where noise level increases with angle of attack.

  2. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  3. Effect of multiplicative and additive noise on genetic transcriptional regulatory mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Mei; Xie, Hui-Zhang; Liu, Liang-Gang; Li, Zhi-Bing

    2009-02-01

    A multiplicative noise and an additive noise are introduced in the kinetic model of Smolen-Baxter-Byrne [P. Smolen, D.A. Baxter, J.H. Byrne, Amer. J. Physiol. Cell. Physiol. 274 (1998) 531], in which the expression of gene is controlled by protein concentration of transcriptional activator. The Fokker-Planck equation is solved and the steady-state probability distribution is obtained numerically. It is found that the multiplicative noise converts the bistability to monostability that can be regarded as a noise-induced transition. The additive noise reduces the transcription efficiency. The correlation between the multiplicative noise and the additive noise works as a genetic switch and regulates the gene transcription effectively.

  4. Effects of noise frequency on performance and annoyance. M.S. Thesis - Georgia Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Key, K. F.

    1979-01-01

    Using a complex psychomotor task performed for 50 minutes in the presence of low frequency noise, high frequency noise, or ambient noise, annoyance ratings were obtained for noises of various frequencies by the method of magnitude estimation. The results suggest that high frequency noise affects female performance to a greater extent than male performance. Contrasted to these performance effects, the sexes did not differ in their annoyance ratings. A monotonically increasing relationship between annoyance and noise frequency was found (except for a decrease in annoyance at 8,000 Hz). It is concluded that both performance and annoyance responses may need to be assessed in certain situations to adequately describe human reaction to noise.

  5. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    PubMed

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. PMID:26774191

  6. [Cytogenetic effects in Allium schoenoprasum growing on the anthropogenically contaminated soil].

    PubMed

    Belykh, E S; Maystrenko, T A

    2015-01-01

    Cytogenetic effects in Allium schoenoprasum meristematic root tip cells grown for a year on the territory contaminated with 235U, 238U and 232Th decay series radionuclides, heavy metals and As were studied. The area is characterized with different concentrations of chemical compounds in soil affecting a toxic element migration in biocoenosis. Analysis of the chromosome aberration spectrum showed an ambiguous cell response to soil contamination. Within the weighted absorbed dose range up to 1.2 Gy the higher the dose the aberrant cell frequency increase was shown. But further increase in the dose resulted in a genotoxic effect decrease due to high toxic effects of heavy metals and radionuclides in soil. This was registered as a mitotic index decrease that can provoke a chromosome aberration frequency underestimation and result in erroneous conclusions about genotoxic effects in A. schoenoprasum used as a bioindicator. PMID:25962271

  7. LONG-RANGE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ANTHROPOGENIC CONTAMINANTS AND THEIR POTENTIAL EFFECTS ON TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    Through the processes of atmospheric transport and deposition, many anthropogenic contaminants such as industrial organics, pesticides, and trace metals have become widely distributed around the globe. ue to the phenomenon of long-range atmospheric transport, even the most remote...

  8. English vowel identification in quiet and noise: effects of listeners' native language background

    PubMed Central

    Jin, Su-Hyun; Liu, Chang

    2014-01-01

    Purpose: To investigate the effect of listener's native language (L1) and the types of noise on English vowel identification in noise. Method: Identification of 12 English vowels was measured in quiet and in long-term speech-shaped noise and multi-talker babble (MTB) noise for English- (EN), Chinese- (CN) and Korean-native (KN) listeners at various signal-to-noise ratios (SNRs). Results: Compared to non-native listeners, EN listeners performed significantly better in quiet and in noise. Vowel identification in long-term speech-shaped noise and in MTB noise was similar between CN and KN listeners. This is different from our previous study in which KN listeners performed better than CN listeners in English sentence recognition in MTB noise. Discussion: Results from the current study suggest that depending on speech materials, the effect of non-native listeners' L1 on speech perception in noise may be different. That is, in the perception of speech materials with little linguistic cues like isolated vowels, the characteristics of non-native listener's native language may not play a significant role. On the other hand, in the perception of running speech in which listeners need to use more linguistic cues (e.g., acoustic-phonetic, semantic, and prosodic cues), the non-native listener's native language background might result in a different masking effect. PMID:25400538

  9. Research plan for establishing the effects of time varying noise exposures on community annoyance and acceptability

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1980-01-01

    The design of a community noise survey to determine the effects of time varying noise exposures in residential communities is presented. Complex physical and human variables involved in the health and welfare effects of environmental noise and the number-level tradeoffs and time of day penalties are among the factors considered. Emphasis is placed on community reactions where noise exposures are equal in day or evening but differ in the night time, and the effects of ambient noise on more intense aircraft noise exposures. Thirteen different times of day and types of operation situations with exposed populations up to 8-10 miles from the airport are identified. A detailed personal interview questionnaire as well as specific instructions to interviewers are included.

  10. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations

    PubMed Central

    2013-01-01

    Background Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and ‘capture’ (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. Results We found sex and age explained the most variance in body mass, condition and length (R2 from 0.48–0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R2 from 0.04–0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R2 from 0.01–0.08), while annual rate of landscape change explained additional variance in body length (R2 of 0.03). Human footprint and population density had no observed effect on body size. Conclusions These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual’s birth thus illustrating silver spoon

  11. Prediction of jet noise shielding with forward flight effects

    NASA Astrophysics Data System (ADS)

    Mayoral, Salvador

    Aircraft noise continues to be a major concern among airport-neighboring communities. A strong component of aircraft noise is the jet noise that is generated from the turbulent mixing between the jet exhaust and ambient medium. The hybrid wing body aircraft suppresses jet noise by mounting the engines over-the-wing so that the airframe may shield ground observers from jet noise sources. Subscale jet noise shielding measurements of a scaled-down turbofan nozzle and a model of the hybrid wing body planform are taken with two 12-microphone polar arrays. Chevrons and wedge-type fan flow deflectors are integrated into the baseline bypass ratio 10 (BPR10) nozzle to modify the mean flow and alter the noise source behavior. Acoustic results indicate that the baseline BPR10 nozzle produces a long noise source region that the airframe has difficulty shielding, even when the nozzle is translated two fan diameters upstream of its nominal position. The integration of either chevrons or fan flow deflectors into the nozzle is essential for jet noise shielding because they translate peak intensities upstream, closer to the fan exit plane. The numerical counterpart of this study transforms the system of equations governing the acoustic diffraction with forward flight into the wave equation. Two forward flight formulations are considered: uniform flow over slender body; and non-uniform potential flow at low Mach number. The wave equation is solved numerically in the frequency domain using the boundary element method. The equivalent jet noise source is modeled using the combination of a wavepacket and a monopole. The wavepacket is parameterized using the experimental far-field acoustic autospectra of the BPR10 jets and knowledge of their peak noise locations. It is shown that the noise source compacts with increasing Mach number and consequently there is an increase in shielding. An assessment of the error associated with the non-uniform formulation for forward flight shows that the

  12. Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect modelled by GEOS-Chem/APM

    NASA Astrophysics Data System (ADS)

    Yu, F.

    2013-05-01

    Atmospheric particles influence climate indirectly by acting as cloud condensation nuclei (CCN) that affect cloud properties (albedo, lifetime, etc.) and precipitation. The first aerosol indirect radiative forcing (FAIRF) (i.e., cloud albedo effect) constitutes the largest uncertainty among the various radiative forcings quantified by the latest IPCC assessment report (IPCC2007). In order to confidently interpret climate change over the past century and project future change, it is essential to reduce the FAIRF uncertainty. One of the large sources of the uncertainty is the poor knowledge of the number concentrations and spatial distributions of pre-industrial and present-day aerosols. All previous and recent FAIRF studies are based on global models with simplified chemistry and aerosol microphysics, which may lead to large uncertainties in predicted aerosol properties and FAIRF values. Here, we investigate the anthropogenic contribution to CCN and associated FAIRF using a state-of-the-art global chemical transport and aerosol model (GEOS-Chem/APM) that contains a number of advanced features (including size-resolved sectional particle microphysics, online comprehensive SOx-NOx-Ox-VOCs chemistry, consideration of nitrate and secondary organic aerosols, online aerosol-cloud-radiation calculation, usage of more accurate assimilated meteorology, etc.). As far as we know, this is the first time that a global model with full chemistry and size-resolved (sectional) particle microphysics is employed to study FAIRF. Key aerosol properties predicted by GEOS-Chem/APM for the present-day case have been evaluated against a large set of land-, ship-, aircraft-, and satellite- based aerosol measurements including total particle number concentrations, CCN concentrations, AODs, and vertical profiles of extinction coefficients. The GEOS-Chem/APM model, with its advanced features and ability to reproduce observed aerosol properties (including CCN) around the globe, is expected to

  13. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771

  14. Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics.

    PubMed

    Chen, Dingjiang; Huang, Hong; Hu, Minpeng; Dahlgren, Randy A

    2014-05-20

    This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures. PMID:24742334

  15. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI).

    PubMed

    Felipe-Sotelo, M; Edgar, M; Beattie, T; Warwick, P; Evans, N D M; Read, D

    2015-12-30

    The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH)2 solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2-4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH)2 (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca(2+). Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes. PMID:26253235

  16. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna.

    PubMed

    Ogonowski, Martin; Schür, Christoph; Jarsén, Åsa; Gorokhova, Elena

    2016-01-01

    Concerns are being raised that microplastic pollution can have detrimental effects on the feeding of aquatic invertebrates, including zooplankton. Both small plastic fragments (microplastics, MPs) produced by degradation of larger plastic waste (secondary MPs; SMPs) and microscopic plastic spheres used in cosmetic products and industry (primary MPs; PMPs) are ubiquitously present in the environment. However, despite the fact that most environmental MPs consist of weathered plastic debris with irregular shape and broad size distribution, experimental studies of organism responses to MP exposure have largely used uniformly sized spherical PMPs. Therefore, effects observed for PMPs in such experiments may not be representative for MP-effects in situ. Moreover, invertebrate filter-feeders are generally well adapted to the presence of refractory material in seston, which questions the potential of MPs at environmentally relevant concentrations to measurably affect digestion in these organisms. Here, we compared responses to MPs (PMPs and SMPs) and naturally occurring particles (kaolin clay) using the cladoceran Daphnia magna as a model organism. We manipulated food levels (0.4 and 9 μg C mL-1) and MP or kaolin contribution to the feeding suspension (<1 to 74%) and evaluated effects of MPs and kaolin on food uptake, growth, reproductive capacity of the daphnids, and maternal effects on offspring survival and feeding. Exposure to SMPs caused elevated mortality, increased inter-brood period and decreased reproduction albeit only at high MP levels in the feeding suspension (74% by particle count). No such effects were observed in either PMP or kaolin treatments. In daphnids exposed to any particle type at the low algal concentration, individual growth decreased by ~15%. By contrast, positive growth response to all particle types was observed at the high algal concentration with 17%, 54% and 40% increase for kaolin, PMP and SMP, respectively. When test particles comprised

  17. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna

    PubMed Central

    Schür, Christoph; Jarsén, Åsa; Gorokhova, Elena

    2016-01-01

    Concerns are being raised that microplastic pollution can have detrimental effects on the feeding of aquatic invertebrates, including zooplankton. Both small plastic fragments (microplastics, MPs) produced by degradation of larger plastic waste (secondary MPs; SMPs) and microscopic plastic spheres used in cosmetic products and industry (primary MPs; PMPs) are ubiquitously present in the environment. However, despite the fact that most environmental MPs consist of weathered plastic debris with irregular shape and broad size distribution, experimental studies of organism responses to MP exposure have largely used uniformly sized spherical PMPs. Therefore, effects observed for PMPs in such experiments may not be representative for MP-effects in situ. Moreover, invertebrate filter-feeders are generally well adapted to the presence of refractory material in seston, which questions the potential of MPs at environmentally relevant concentrations to measurably affect digestion in these organisms. Here, we compared responses to MPs (PMPs and SMPs) and naturally occurring particles (kaolin clay) using the cladoceran Daphnia magna as a model organism. We manipulated food levels (0.4 and 9 μg C mL-1) and MP or kaolin contribution to the feeding suspension (<1 to 74%) and evaluated effects of MPs and kaolin on food uptake, growth, reproductive capacity of the daphnids, and maternal effects on offspring survival and feeding. Exposure to SMPs caused elevated mortality, increased inter-brood period and decreased reproduction albeit only at high MP levels in the feeding suspension (74% by particle count). No such effects were observed in either PMP or kaolin treatments. In daphnids exposed to any particle type at the low algal concentration, individual growth decreased by ~15%. By contrast, positive growth response to all particle types was observed at the high algal concentration with 17%, 54% and 40% increase for kaolin, PMP and SMP, respectively. When test particles comprised

  18. Effects of street traffic noise in the night

    NASA Technical Reports Server (NTRS)

    Wehrli, B.; Nemecek, J.; Turrian, V.; Hoffman, R.; Wanner, H.

    1980-01-01

    The relationship between automobile traffic noise and the degree of disturbance experience experienced at night was explored through a random sample survey of 1600 individuals in rural and urban areas. The data obtained were used to establish threshold values.

  19. Effect of blunt trailing edge on rotor broadband noise

    NASA Technical Reports Server (NTRS)

    Chou, S.-T.; George, A. R.

    1986-01-01

    The production of high-frequency broadband noise by turbulent vortex shedding from rotor blades with blunt trailing edges is investigated analytically. The derivation of the governing equations, analogous to that of Kim and George (1982) for boundary-layer/trailing-edge noise, is explained, and numerical results are compared with the experimental data of Hubbard et al. (1981) and Lowson et al. (1972) in graphs. It is shown that vortex-shedding noise is a significant component of blunt-trailing-edge rotor broadband noise and that the analytical method employed gives reasonable predictions. The need for a better empirical expression for the normalized spectrum and for more measurements of surface pressure fluctuations near blunt trailing edges is indicated.

  20. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  1. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape

    PubMed Central

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.

    2015-01-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  2. Incorporating anthropogenic effects into trophic ecology: predator-prey interactions in a human-dominated landscape.

    PubMed

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G

    2015-09-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  3. The effects of environmental and classroom noise on the academic attainments of primary school children.

    PubMed

    Shield, Bridget M; Dockrell, Julie E

    2008-01-01

    While at school children are exposed to various types of noise including external, environmental noise and noise generated within the classroom. Previous research has shown that noise has detrimental effects upon children's performance at school, including reduced memory, motivation, and reading ability. In England and Wales, children's academic performance is assessed using standardized tests of literacy, mathematics, and science. A study has been conducted to examine the impact, if any, of chronic exposure to external and internal noise on the test results of children aged 7 and 11 in London (UK) primary schools. External noise was found to have a significant negative impact upon performance, the effect being greater for the older children. The analysis suggested that children are particularly affected by the noise of individual external events. Test scores were also affected by internal classroom noise, background levels being significantly related to test results. Negative relationships between performance and noise levels were maintained when the data were corrected for socio-economic factors relating to social deprivation, language, and special educational needs. Linear regression analysis has been used to estimate the maximum levels of external and internal noise which allow the schools surveyed to achieve required standards of literacy and numeracy. PMID:18177145

  4. Noise emitted from road, rail and air traffic and their effects on sleep

    NASA Astrophysics Data System (ADS)

    Griefahn, Barbara; Marks, Anke; Robens, Sibylle

    2006-08-01

    This study compared the effects of road, rail, and aircraft noise and tested the applicability of the equivalent noise level for the evaluation of sleep disturbances. Sixteen women and 16 men (19-28 years) slept during 3 consecutive weeks in the laboratory. Eight persons slept in quiet throughout. Twenty-four persons were exposed to road, rail, or aircraft noise with weekly permuted changes. Each week consisted of a random sequence of a quiet night (32 dBA) and 3 nights with equivalent noise levels of 39, 44, and 50 dBA and maximum levels of 50-62, 56-68, and 62-74 dBA, respectively. The polysomnogram was recorded during all nights, sleep quality was assessed and performance tests were completed in the morning. Subjectively evaluated sleep quality decreased and reaction time increased gradually with noise levels, whereas most physiological variables revealed the same reactions to both the lower and considerably stronger reactions to the highest noise load. Aircraft noise, rail and road traffic noise caused similar after-effects but physiological sleep parameters were most severely affected by rail noise. The equivalent noise level seems to be a suitable predictor for subjectively evaluated sleep quality but not for physiological sleep disturbances.

  5. Effects on Performance and Work Quality due to Low Frequency Ventilation Noise

    NASA Astrophysics Data System (ADS)

    Persson Waye, K.; Rylander, R.; Benton, S.; Leventhall, H. G.

    1997-08-01

    A pilot study was carried out to assess method evaluating effects of low frequency noise on performance. Of special interest was to study objective and subjective effects over time. Two ventilation noises were used, one of a predominantly mid frequency character and the other of a predominantly low frequency character. Both had an NC value of 35. For the study, 50 students were recruited and 30 selected on the basis of subjective reports of pressure on the eardrum after exposure to a low frequency noise. Of these, 14 randomly selected subjects aged 21 and 34 took part. The subjects performed three computerized cognitive tests in the mid frequency or the low frequency noise condition alternatively. Tests I and II were performed together with a secondary task.Questionnaires were used to evaluate subjective symptoms, effects on mood and estimated interference with the test results due to temperature, light and noise. The results showed that the subjective estimations of noise interference with performance were higher for the low frequency noise (p<0·05). The exposure to low frequency noise resulted in lower social orientation (p<0·05) (more disagreeable, less co-operative, helpful) and a tendency to lower pleasantness (p=0·07) (more bothered, less content) as compared to the mid frequency noise exposure. Data from test III may indicate that the response time during the last part of the test was longer in the low frequency noise exposure. The effects seemed to appear over time. The hypothesis that cognitive demands are less well coped with under the low frequency noise condition, needs to be further studied. The results further indicate that the NC curves do not fully assess the negative effects of low frequency noise on work performance.

  6. Health Effects Related to Wind Turbine Noise Exposure: A Systematic Review

    PubMed Central

    Schmidt, Jesper Hvass; Klokker, Mads

    2014-01-01

    Background Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise. Objective This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects. Data Sources A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources. Study Eligibility Criteria All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included. Results Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. Limitations Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed. Conclusions Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship. There appears, though, to be a tolerable level of around LAeq of 35 dB. Of the many other claimed health effects of wind turbine noise exposure reported in the literature, however, no conclusive evidence could be found

  7. Systematic studies of the effect of a bandpass filter on a Josephson-junction noise thermometer

    SciTech Connect

    Soulen, R.J. Jr. ); Fogle, W.E.; Colwell, J.H. )

    1991-03-01

    This paper present the results of an extensive study of the effect of a filter upon the performance of a resistive SQUID noise thermometer used to define an absolute temperature scale below 1 K. Agreement between the model for this effect and the experimental results indicated that the temperature scale defined by the noise thermometer is accurate to 0.1%.

  8. An effective noise-suppression technique for surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Willis, Mark; Haines, Seth S.; Batzle, Mike; Behura, Jyoti; Davidson, Michael

    2013-01-01

    The presence of strong surface-wave noise in surface microseismic data may decrease the utility of these data. We implement a technique, based on the distinct characteristics that microseismic signal and noise show in the τ‐p domain, to suppress surface-wave noise in microseismic data. Because most microseismic source mechanisms are deviatoric, preprocessing is necessary to correct for the nonuniform radiation pattern prior to transforming the data to the τ‐p domain. We employ a scanning approach, similar to semblance analysis, to test all possible double-couple orientations to determine an estimated orientation that best accounts for the polarity pattern of any microseismic events. We then correct the polarity of the data traces according to this pattern, prior to conducting signal-noise separation in the τ‐p domain. We apply our noise-suppression technique to two surface passive-seismic data sets from different acquisition surveys. The first data set includes a synthetic microseismic event added to field passive noise recorded by an areal receiver array distributed over a Barnett Formation reservoir undergoing hydraulic fracturing. The second data set is field microseismic data recorded by receivers arranged in a star-shaped array, over a Bakken Shale reservoir during a hydraulic-fracturing process. Our technique significantly improves the signal-to-noise ratios of the microseismic events and preserves the waveforms at the individual traces. We illustrate that the enhancement in signal-to-noise ratio also results in improved imaging of the microseismic hypocenter.

  9. EFFECTS OF INTERMITTENT EMISSION: NOISE INVENTORY FOR THE SCINTILLATING PULSAR B0834+06

    SciTech Connect

    Gwinn, C. R.; Johnson, M. D.; Smirnova, T. V.; Stinebring, D. R. E-mail: michaeltdh@physics.ucsb.edu E-mail: dan.stinebring@oberlin.edu

    2011-05-20

    We compare signal and noise for observations of the scintillating pulsar B0834+06, using very long baseline interferometry and a single-dish spectrometer. Comparisons between instruments and with models suggest that amplitude variations of the pulsar strongly affect the amount and distribution of self-noise. We show that noise follows a quadratic polynomial with flux density, in spectral observations. Constant coefficients, indicative of background noise, agree well with expectation; whereas second-order coefficients, indicative of self-noise, are {approx}3 times values expected for a pulsar with constant on-pulse flux density. We show that variations in flux density during the 10 s integration accounts for the discrepancy. In the secondary spectrum, {approx}97% of spectral power lies within the pulsar's typical scintillation bandwidth and timescale; an extended scintillation arc contains {approx}3%. For a pulsar with constant on-pulse flux density, noise in the dynamic spectrum will appear as a uniformly distributed background in the secondary spectrum. We find that this uniform noise background contains 95% of noise in the dynamic spectrum for interferometric observations; but only 35% of noise in the dynamic spectrum for single-dish observations. Receiver and sky dominate noise for our interferometric observations, whereas self-noise dominates for single-dish. We suggest that intermittent emission by the pulsar, on timescales <300 {mu}s, concentrates self-noise near the origin in the secondary spectrum, by correlating noise over the dynamic spectrum. We suggest that intermittency sets fundamental limits on pulsar astrometry or timing. Accounting of noise may provide means for detection of intermittent sources, when effects of propagation are unknown or impractical to invert.

  10. Effects of DNA replication on mRNA noise.

    PubMed

    Peterson, Joseph R; Cole, John A; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A

    2015-12-29

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript's half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories. PMID:26669443

  11. Effects of DNA replication on mRNA noise

    PubMed Central

    Peterson, Joseph R.; Cole, John A.; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A.

    2015-01-01

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript’s half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories. PMID:26669443

  12. Effect of Noise on DNA Sequencing via Transverse Electronic Transport

    PubMed Central

    Krems, Matt; Zwolak, Michael; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2009-01-01

    Abstract Previous theoretical studies have shown that measuring the transverse current across DNA strands while they translocate through a nanopore or channel may provide a statistically distinguishable signature of the DNA bases, and may thus allow for rapid DNA sequencing. However, fluctuations of the environment, such as ionic and DNA motion, introduce important scattering processes that may affect the viability of this approach to sequencing. To understand this issue, we have analyzed a simple model that captures the role of this complex environment in electronic dephasing and its ability to remove charge carriers from current-carrying states. We find that these effects do not strongly influence the current distributions due to the off-resonant nature of tunneling through the nucleotides—a result we expect to be a common feature of transport in molecular junctions. In particular, only large scattering strengths, as compared to the energetic gap between the molecular states and the Fermi level, significantly alter the form of the current distributions. Since this gap itself is quite large, the current distributions remain protected from this type of noise, further supporting the possibility of using transverse electronic transport measurements for DNA sequencing. PMID:19804730

  13. Reducing flicker noise in chemical vapor deposition graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Arnold, Heather N.; Sangwan, Vinod K.; Schmucker, Scott W.; Cress, Cory D.; Luck, Kyle A.; Friedman, Adam L.; Robinson, Jeremy T.; Marks, Tobin J.; Hersam, Mark C.

    2016-02-01

    Single-layer graphene derived from chemical vapor deposition (CVD) holds promise for scalable radio frequency (RF) electronic applications. However, prevalent low-frequency flicker noise (1/f noise) in CVD graphene field-effect transistors is often up-converted to higher frequencies, thus limiting RF device performance. Here, we achieve an order of magnitude reduction in 1/f noise in field-effect transistors based on CVD graphene transferred onto silicon oxide substrates by utilizing a processing protocol that avoids aqueous chemistry after graphene transfer. Correspondingly, the normalized noise spectral density (10-7-10-8 μm2 Hz-1) and noise amplitude (4 × 10-8-10-7) in these devices are comparable to those of exfoliated and suspended graphene. We attribute the reduction in 1/f noise to a decrease in the contribution of fluctuations in the scattering cross-sections of carriers arising from dynamic redistribution of interfacial disorder.

  14. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS

    NASA Astrophysics Data System (ADS)

    Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B.

    2010-08-01

    A simulative investigation of noise effects in wavelength modulation spectroscopy (WMS) and direct absorption diode laser absorption spectroscopy is presented. Special attention is paid to the impact of quantization noise of the analog-to-digital conversion (ADC) of the photodetector signal in the two detection schemes with the goal of estimating the necessary ADC resolution for each technique. With laser relative intensity noise (RIN), photodetector shot noise and thermal amplifier noise included, the strategies used for noise reduction in direct and wavelength modulation spectroscopy are compared by simulating two respective systems. Results show that because of the combined effects of dithering by RIN and signal averaging, the resolutions required for the direct absorption setup are only slightly higher than for the WMS setup. Only for small contributions of RIN an increase in resolution will significantly improve signal quality in the direct scheme.

  15. Effect of the temporal pattern of a given noise dose on TTS in guinea pigs.

    PubMed

    Buck, K; Dancer, A; Franke, R

    1984-10-01

    To show the effect of the temporal pattern of acoustic stimulation on TTS 15 min, guinea pigs were subjected to isoenergetic noises with the same spectrum. The exposures in a first experimental series were continuous noises and noise bursts. The continuous noise was presented with different durations and levels but always with the same energy. The noise burst stimulation consisted of a constant number of bursts with different interstimulus intervals. Both duration and repetition rate were shown to affect the TTS 15 min measured for these isoenergetic stimuli. A duration of 225 to 1800 s and a repetition rate of one per second produced the greatest TTS 15 min. In a second experimental series continuous noise and acoustic impulses with the same spectrum and 100-Hz repetition rate were presented at different levels. In this case the waveform of the stimulus (phase spectrum) was shown to have an effect on TTS 15 min. PMID:6501705

  16. Modeling of the anthropogenic heat flux and its effect on air quality over the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Xie, M.; Liao, J.; Wang, T.; Zhu, K.; Zhuang, B.; Han, Y.; Li, M.; Li, S.

    2015-11-01

    ppb in July. Chemical direct (the rising up of air temperature directly accelerate surface O3 formation) and indirect (the decrease in NOx at the ground results in the increase of surface O3) effects can play a significant role in O3 changes over this region. The meteorology and air pollution predictions in and around large urban areas are highly sensitive to the anthropogenic heat inputs, suggesting that AH should be considered in any climate and air quality assessment.

  17. The Effects of Anthropogenic Land Cover Change on Global and Regional Climate in the Preindustrial Holocene: A Review

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.

    2014-12-01

    The recent development of anthropogenic land cover change (ALCC) scenarios that cover all or part of the preindustrial Holocene (11,700 BP to ~AD 1850) has led to a number of modelling studies on the impacts of land cover change on climate, using both GCMs and regional climate models. Because most ALCC scenarios arrive at similar estimates of anthropogenic deforestation by the late preindustrial, most models agree that the net biogeophysical effect of ALCC by AD 1850 is regional cooling at mid- to high-latitudes and warming and drying over the tropics and subtropics. In particular, tropical deforestation appears to lead to local amplification of externally forced drought cycles, e.g., from ENSO. The spatial extent of these climate changes varies between models because the choice of ALCC scenario leads to large differences in the initial forcing. Those model studies that considered biogeochemical feedbacks show that the importance of preindustrial CO2 emissions ranges from being insignificant to larger than the global biogeophysical feedback, depending on assumptions made about potential natural atmospheric CO2 at the beginning of the Industrial Revolution. While the net magnitude of deforestation is similar among ALCC scenarios at AD 1850, the timing of deforestation varies widely, which, in addition to affecting the inferred importance of biogeochemical feedbacks, leads to large differences in the estimated importance of ALCC on climate earlier in the Holocene. For example, modelling experiments performed on Europe and the Mediterranean representing conditions at the peak of the Roman Empire or in Mesoamerica for the Classic Maya period show large differences in the estimated importance of the biogeophysical feedback to regional climate depending on the ALCC scenario used. The wide variety of results gained so far from ALCC and climate modelling experiments shows that the question of "how much did humans influence the state of the Earth System before the

  18. The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans

    NASA Astrophysics Data System (ADS)

    Swart, Peter K.; Greer, Lisa; Rosenheim, Brad E.; Moses, Chris S.; Waite, Amanda J.; Winter, A.; Dodge, Richard E.; Helmle, Kevin

    2010-03-01

    New δ13C data are presented from 10 coral skeletons collected from Florida and elsewhere in the Caribbean (Dominica, Dominican Republic, Puerto Rico, and Belize). These corals range from 96 to 200 years in age and were collected between 1976 and 2002. The change in the δ13C of the skeletons from these corals between 1900 and 1990 has been compared with 27 other published coral records from the Atlantic, Pacific, and Indian Oceans. The new data presented here make possible, for the first time, a global comparison of rates of change in the δ13C value of coral skeletons. Of these records, 64% show a statistically significant (p < 0.05) decrease in δ13C towards the modern day (23 out of 37). This decrease is attributable to the addition of anthropogenically derived CO2 (13C Suess effect) to the atmosphere. Between 1900 and 1990, the average rate of change of the δ13C in all the coral skeletons living under open oceanic conditions is approximately -0.01‰ yr-1. In the Atlantic Ocean the magnitude of the decrease since 1960,-0.019 yr-1 ±0.015‰, is essentially the same as the decrease in the δ13C of atmospheric CO2 and the δ13C of the oceanic dissolved inorganic carbon (-0.023 to -0.029‰ yr-1), while in the Pacific and Indian Oceans the rate is more variable and significantly reduced (-0.007‰ yr-1 ±0.013). These data strongly support the notion that (i) the δ13C of the atmosphere controls ambient δ13C of the dissolved inorganic carbon which in turn is reflected in the coral skeletons, (ii) the rate of decline in the coral skeletons is higher in oceans with a greater anthropogenic CO2 inventory in the surface oceans, (iii) the rate of δ13C decline is accelerating. Superimposed on these secular variations are controls on the δ13C in the skeleton governed by growth rate, insolation, and local water masses.

  19. Focus on quantum effects and noise in biomolecules

    NASA Astrophysics Data System (ADS)

    Fleming, G. R.; Huelga, S. F.; Plenio, M. B.

    2011-11-01

    The role of quantum mechanics in biological organisms has been a fundamental question of twentieth-century biology. It is only now, however, with modern experimental techniques, that it is possible to observe quantum mechanical effects in bio-molecular complexes directly. Indeed, recent experiments have provided evidence that quantum effects such as wave-like motion of excitonic energy flow, delocalization and entanglement can be seen even in complex and noisy biological environments (Engel et al 2007 Nature 446 782; Collini et al 2010 Nature 463 644; Panitchayangkoon et al 2010 Proc. Natl Acad. Sci. USA 107 12766). Motivated by these observations, theoretical work has highlighted the importance of an interplay between environmental noise and quantum coherence in such systems (Mohseni et al 2008 J. Chem. Phys. 129 174106; Plenio and Huelga 2008 New J. Phys. 10 113019; Olaya-Castro et al 2008 Phys. Rev. B 78 085115; Rebentrost et al 2009 New J. Phys. 11 033003; Caruso et al 2009 J. Chem. Phys. 131 105106; Ishizaki and Fleming 2009 J. Chem. Phys. 130 234111). All of this has led to a surge of interest in the exploration of quantum effects in biological systems in order to understand the possible relevance of non-trivial quantum features and to establish a potential link between quantum coherence and biological function. These studies include not only exciton transfer across light harvesting complexes, but also the avian compass (Ritz et al 2000 Biophys. J. 78 707), and the olfactory system (Turin 1996 Chem. Sens. 21 773; Chin et al 2010 New J. Phys. 12 065002). These examples show that the full understanding of the dynamics at bio-molecular length (10 Å) and timescales (sub picosecond) in noisy biological systems can uncover novel phenomena and concepts and hence present a fertile ground for truly multidisciplinary research.

  20. Speaking up: Killer whales (Orcinus orca) increase their call amplitude in response to vessel noise.

    PubMed

    Holt, Marla M; Noren, Dawn P; Veirs, Val; Emmons, Candice K; Veirs, Scott

    2009-01-01

    This study investigated the effects of anthropogenic sound exposure on the vocal behavior of free-ranging killer whales. Endangered Southern Resident killer whales inhabit areas including the urban coastal waters of Puget Sound near Seattle, WA, where anthropogenic sounds are ubiquitous, particularly those from motorized vessels. A calibrated recording system was used to measure killer whale call source levels and background noise levels (1-40 kHz). Results show that whales increased their call amplitude by 1 dB for every 1 dB increase in background noise levels. Furthermore, nearby vessel counts were positively correlated with these observed background noise levels. PMID:19173379

  1. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.

    2008-04-01

    Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convective clouds in the ECHAM5 general circulation model. This enables us to investigate whether more, and smaller cloud droplets suppress the warm rain formation in the lower parts of convective clouds and thus release more latent heat upon freezing, which would then result in more vigorous convection and more precipitation. In ECHAM5, including aerosol effects in large-scale and convective clouds (simulation ECHAM5-conv) reduces the sensitivity of the liquid water path increase with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulation ECHAM5-conv with increases in greenhouse gas and aerosol emissions since pre-industrial times, the geographical distribution of the changes in precipitation better matches the observed increase in precipitation than neglecting microphysics in convective clouds. In this simulation the convective precipitation increases the most suggesting that the convection has indeed become more vigorous.

  2. The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Zickfeld, Kirsten

    2015-09-01

    Artificial removal of CO2 from the atmosphere (also referred to as negative emissions) has been proposed as a means to restore the climate system to a desirable state, should the impacts of climate change become ‘dangerous’. Here we explore whether negative emissions are indeed effective in reversing climate change on human timescales, given the potentially counteracting effect of natural carbon sinks and the inertia of the climate system. We designed a range of CO2 emission scenarios, which follow a gradual transition to a zero-carbon energy system and entail implementation of various amounts of net-negative emissions at technologically plausible rates. These scenarios are used to force an Earth System Model of intermediate complexity. Results suggest that while it is possible to revert to a desired level of warming (e.g. 2 °C above pre-industrial) after different levels of overshoot, thermosteric sea level rise is not reversible for at least several centuries, even under assumption of large amounts of negative CO2 emissions. During the net-negative emission phase, artificial CO2 removal is opposed by CO2 outgassing from natural carbon sinks, with the efficiency of CO2 removal—here defined as the drop in atmospheric CO2 per unit negative emission—decreasing with the total amount of negative emissions.

  3. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  4. High Diversity and Abundance of Legionella spp. in a Pristine River and Impact of Seasonal and Anthropogenic Effects ▿ †

    PubMed Central

    Parthuisot, N.; West, N. J.; Lebaron, P.; Baudart, J.

    2010-01-01

    The diversity and dynamics of Legionella species along a French river watershed subject to different thermal and wastewater discharges during an annual cycle were assessed by 16S rRNA gene sequencing and by a fingerprint technique, single-strand conformation polymorphism. A high diversity of Legionella spp. was observed at all the sampling sites, and the dominant Legionella clusters identified were most closely related to uncultured bacteria. The monthly monitoring revealed that Legionella sp. diversity changes were linked only to season at the wastewater site whereas there was some evidence for anthropogenic effects on Legionella sp. diversity downstream of the thermal bath. Quantification of Legionella pneumophila and Legionella spp. by culture and quantitative PCR (qPCR) was performed. Whereas only L. pneumophila was quantified on culture media, the qPCR assay revealed that Legionella spp. were ubiquitous and abundant from the pristine source of the river to the downstream sampling sites. These results suggest that Legionella spp. may be present at significant concentrations in many more freshwater environments than previously thought, highlighting the need for further ecological studies and culturing efforts. PMID:20971864

  5. Effects of white noise on off-task behavior and academic responding for children with ADHD.

    PubMed

    Cook, Andrew; Bradley-Johnson, Sharon; Johnson, C Merle

    2014-01-01

    We evaluated the effects of white noise played through headphones on off-task behavior, percentage of items completed, and percentage of items completed correctly for 3 students with attention deficit hyperactivity disorder (ADHD). Headphones plus white noise were associated with decreases in off-task behavior relative to baseline and headphones-only (no white noise) control conditions. Little change in academic responding occurred across conditions for all participants. PMID:24114567

  6. The effects of ear protectors and hearing losses on sentence intelligibility in aircraft noise

    NASA Astrophysics Data System (ADS)

    Froehlich, G. R.

    1981-06-01

    Flight line personnel with hearing defects often complain that face-to-face speech communication in noise is considerably reduced when ear protectors are worn. Whether this could be confirmed or not was determined. An effective noise protecting flight helmet changes the flat aircraft cabin noise spectrum into a spectrum with predominance of lower frequencies. Whether the additional wearing of earplugs under the ear cups might improve speech perception was investigated.

  7. The vertical variation of nutrients in a sediment core of Delong Lake reveals the anthropogenic effect.

    PubMed

    Guan, Ying; Zang, Shuying; Xiao, Haifeng

    2014-05-01

    Phosphorus content and its species were studied for the core sediments of Delong Lake, using the SMT sequential extraction method, and then were correlated to the contents of total nitrogen and organic matter. According to (210)Pb and (137)Cs dating, the historical profiles of 33 cm core sediments were generated. The objective of this study was to understand how nutrients of lake sediments evolved in order to get insights into the effect of human activities on their sedimentary history. The nutrients contents in the core sediments slowly increased after 1957, showing the human activity influence the natural deposition of the lake sediment. From 1978 to 1985, various nutrients in the lake sediment rapid increased, showing that the human activities strengthened. From 2003 to now, most of nutrients in the sediment rapidly increased and significantly modified the natural deposition of the lake sediment. PMID:24468926

  8. Model analysis of the anthropogenic aerosol effect on clouds over East Asia

    SciTech Connect

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

    2012-01-16

    A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

  9. Effects of anthropogenic fragmentation and livestock grazing on western riparian bird communities

    USGS Publications Warehouse

    Tewksbury, J.J.; Black, A.E.; Nur, N.; Saab, V.A.; Logan, B.D.; Dobkin, D.S.

    2002-01-01

    Deciduous vegetation along streams and rivers provides breeding habitat to more bird species than any other plant community in the West, yet many riparian areas are heavily grazed by cattle and surrounded by increasingly developed landscapes. The combination of cattle grazing and landscape alteration (habitat loss and fragmentation) are thought to be critical factors affecting the richness and composition of breeding bird communities. Here, we examine the influence of land use and cattle grazing on deciduous riparian bird communities across seven riparian systems in five western states: Montana, Idaho, Nevada, Oregon and California. These riparian systems are embedded in landscapes ranging from nearly pristine to almost completely agricultural. We conducted landscape analysis at two spatial scales: local landscapes (all land within 500 m of each survey location) and regional landscapes (all land within 5 km of each survey location). Despite the large differences among riparian systems, we found a number of consistent effects of landscape change and grazing. Of the 87 species with at least 15 detections on two or more rivers, 44 species were less common in grazed sites, in heavily settled or agricultural landscapes, or in areas with little deciduous riparian habitat. The Veery (Catharus fuscescens), Song Sparrow (Melospiza melodia), Red-naped Sapsucker (Sphyrapicus nuchalis), Fox Sparrow (Passerella iliaca), and American Redstart (Setophaga ruticilla) were all less common under at least three of these conditions. In contrast, 33 species were significantly more common in one or more of these conditions. Sites surrounded by greater deciduous habitat had higher overall avian abundance and 22 species had significantly higher individual abundances in areas with more deciduous habitat. Yet, areas with more agriculture at the regional scale also had higher total avian abundance, due in large part to greater abundance of European Starling (Sturnus vulgaris), American Robin

  10. Effect of temporal and spectral noise features on gap detection behavior by calling green treefrogs.

    PubMed

    Höbel, Gerlinde

    2014-10-01

    Communication plays a central role in the behavioral ecology of many animals, yet the background noise generated by large breeding aggregations may impair effective communication. A common behavioral strategy to ameliorate noise interference is gap detection, where signalers display primarily during lulls in the background noise. When attempting gap detection, signalers have to deal with the fact that the spacing and duration of silent gaps is often unpredictable, and that noise varies in its spectral composition and may thus vary in the degree in which it impacts communication. I conducted playback experiments to examine how male treefrogs deal with the problem that refraining from calling while waiting for a gap to appear limits a male's ability to attract females, yet producing calls during noise also interferes with effective sexual communication. I found that the temporal structure of noise (i.e., duration of noise and silent gap segments) had a stronger effect on male calling behavior than the spectral composition. Males placed calls predominantly during silent gaps and avoided call production during short, but not long, noise segments. This suggests that male treefrogs use a calling strategy that maximizes the production of calls without interference, yet allows for calling to persist if lulls in the background noise are infrequent. PMID:25242723

  11. Control of Environmental Noise

    ERIC Educational Resources Information Center

    Jensen, Paul

    1973-01-01

    Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)

  12. Effects of noise radiated from convected ring sources in coaxial dual flow. Part 1: The noise from unheated jets

    NASA Technical Reports Server (NTRS)

    Dash, R.

    1982-01-01

    The effects of flight on sound radiated from embedded, uncorrelated ring sources convecting along the midst of the primary and the secondary streams of a coaxial dual flow which emerges from a moving nozzle into the ambience are studied. Cold jets are examined. The problem is posed as a double vortex-sheet flow model which involves deliberate suppression of inherent instabilities of the flow and is formulated, as a linear problem, in terms of the combined contributions of two independent uncorrelated quadrupole-type ring sources, the one convecting in the primary flow representing the sources generated due to the interaction at the primary/secondary interface and the other convecting in the secondary flow representing the sources generated due to the interaction at the secondary/ambient interface. The analysis shows that the effects of flight induce (1) amplication of noise in the forward quadrant, (2) reduction of noise in the aft quadrant and (3) absolutely no impact on radiation of noise at Theta = 90 deg to the jet axis.

  13. Little effect of natural noise on high-frequency hearing in frogs, Odorrana tormota.

    PubMed

    Liu, Jing; Yang, Han; Hu, Guang-Lei; Li, Shan; Xu, Zhi-Min; Qi, Zhi; Shen, Jun-Xian

    2015-10-01

    Ambient noise influences acoustic communication in animals. The concave-eared frogs (Odorrana tormota) produce high-frequency sound signals to avoid potential masking from noise. However, whether environmental noise has effect on the high-frequency hearing of frogs is largely unclear. By measuring the auditory evoked near-field potentials (AENFPs) from the torus semicircularis of the midbrain at frequencies 1-23 kHz in the presence of three noise levels, we found no significant difference in the peak-to-peak amplitude, threshold and latency of AENFP between low-level (35 dB SPL) background noise and mid-level (65 dB SPL) broadcast natural noise. For a natural noise level of 85 dB SPL, AENFP amplitude decreased and threshold and latency increased at frequencies 3-13 kHz. Spike counts evoked by stimuli at the best excitatory frequency under 85 dB SPL natural noise exposure were lower in 7-kHz CF neurons than in exposures to 35 and 65 dB SPL noise. However spike counts were similar for 14- and 20-kHz CF neurons at the three exposure levels. These findings indicate that environmental noise does not mask the responses of high-frequency tuned auditory neurons, and suggest that the acoustic communication system of O. tormota is efficiently adapted to noisy habitats. PMID:26260392

  14. Effects of noise and mental task performance upon changes in cerebral blood flow parameters

    PubMed Central

    Nowakowska-Kotas, Marta; Pokryszko-Dragan, Anna; Brodowski, Mirosław; Szydło, Mariusz; Podemski, Ryszard

    2015-01-01

    The objectives of this paper were to determine whether traffic noise influences the parameters of cerebral blood flow (CBF) measured by functional transcranial Doppler sonography (fTCD) during the performance of mental tasks, and to see whether impact of noise on CBF changes with age. The study comprised 36 healthy volunteers, 22 women and 14 men, aged 25-49 years. The fTCD was performed using a fixed 2-MHz probe, aiming for an evaluation of mean velocity (MFV) and the pulsatility index (PI) in the middle cerebral artery (MCA) on both sides. Subsequently, fTCD was monitored: At rest; during performance of the Paced Auditory Serial Addition Test (PASAT); during exposure to traffic noise; and during concomitant exposure to noise and PASAT performance. MFV and PI were compared for particular conditions and correlated with age. During exposure to noise, flow parameters did not change significantly. PASAT performance in silence increased MFV and decreased PI in MCA on both sides. During PASAT performance, on exposure to noise, MCV and PI changed significantly only in the left MCA. However, values of MFV were significantly lower during noise than in silence. Correlations with age were noted for velocities in the right MCA during PASAT performance in silence and for PI on both sides during PASAT performed in noise conditions. Noise impairs the CBF during mental tasks. A comparison of changes in CBF parameters correlated with age suggests that the involvement of the nondominant hemisphere in managing with noise effects increases with age. PMID:26572702

  15. Effect of wind on seismic exploration random noise on land: Modeling and analyzing

    NASA Astrophysics Data System (ADS)

    Li, Guanghui; Li, Yue; Yang, Baojun

    2015-08-01

    Random noise is a key factor which impacts the Signal Noise Ratio (SNR) of seismic records, and its interference without regularity makes seismic data process difficult. It is a first requirement for noise attenuation to know how random noise generated. Since the main effect of wind on seismic noise, we model wind-induced noise by wind induced vibration theory, aeroacoustics and wave equation, and analyze the influencing factors which cause the differences of noise in the desert in Tarim basin, the loess tableland in northern Shaanxi, the mountain land in Yunnan and the forest belt in north in China in this paper. There are wind speed, surface roughness, terrain, and vegetation. The greater the wind speed, the rougher the surface, the higher and the steeper the mountain, the more the vegetations and the thinner the branches and leaves of vegetations, the greater the amplitude and the frequency of wind-induced noise is. The simulated results explain the differences of wind induced noise in different areas. It lays a foundation for random noise attenuation both in data acquisition and data processing.

  16. [Effect of industrial noise on cardiac systolic cycle in exposed workers].

    PubMed

    Jovanović, J; Popović, V; Jovanović, M; Popović, A

    1991-01-01

    First the working conditions in the "Ratko Pavlović-Niteks" textile industry were studied and analysed. It was found that industrial noise was one of the dominant noci, grading from 81 to 105 dB (A). It belonged to the group of high-frequency continued noises. The highest noise was recorded in the section "Tkacnica" (101 +/- 3.9 dB). Then the carotide artery curve was recorded before and after work in 411 workers exposed to noise of different intensity. At the same time a control group of 153 workers was studied. They worked in a relatively calmer section (section of dress cutting and control of finished goods). In workers exposed to noise a significant decrease of Q-I sound, I-II sound, ICT, IPEP intervals and PEP/LVET was recorded. However, ILVET was insignificantly increased after the work in comparison with its level before work. These results suggested the existence of significant haemodymanic changes due to industrial noise. Values of these parameters were closely related to the general noise level at working place. The greatest changes were observed in workers working under the effect of the greatest noise (95-105 dB), and the smallest in those working in the smallest noisy areas (75-85 dB). Thus, the intensity of haemodynamic changes depended on the level of general noise atworking place. Therefore appropriate preventive measures should be applied in practice in order to reduce the level of general noise. PMID:17974374

  17. Effects of noise and mental task performance upon changes in cerebral blood flow parameters.

    PubMed

    Nowakowska-Kotas, Marta; Pokryszko-Dragan, Anna; Brodowski, Mirosław; Szydło, Mariusz; Podemski, Ryszard

    2015-01-01

    The objectives of this paper were to determine whether traffic noise influences the parameters of cerebral blood flow (CBF) measured by functional transcranial Doppler sonography (fTCD) during the performance of mental tasks, and to see whether impact of noise on CBF changes with age. The study comprised 36 healthy volunteers, 22 women and 14 men, aged 25-49 years. The fTCD was performed using a fixed 2-MHz probe, aiming for an evaluation of mean velocity (MFV) and the pulsatility index (PI) in the middle cerebral artery (MCA) on both sides. Subsequently, fTCD was monitored: At rest; during performance of the Paced Auditory Serial Addition Test (PASAT); during exposure to traffic noise; and during concomitant exposure to noise and PASAT performance. MFV and PI were compared for particular conditions and correlated with age. During exposure to noise, flow parameters did not change significantly. PASAT performance in silence increased MFV and decreased PI in MCA on both sides. During PASAT performance, on exposure to noise, MCV and PI changed significantly only in the left MCA. However, values of MFV were significantly lower during noise than in silence. Correlations with age were noted for velocities in the right MCA during PASAT performance in silence and for PI on both sides during PASAT performed in noise conditions. Noise impairs the CBF during mental tasks. A comparison of changes in CBF parameters correlated with age suggests that the involvement of the nondominant hemisphere in managing with noise effects increases with age. PMID:26572702

  18. Auditory effects of exposure to noise and solvents: a comparative study.

    PubMed

    Lobato, Diolen Conceição Barros; Lacerda, Adriana Bender Moreira De; Gonçalves, Cláudia Giglio De Oliveira; Coifman, Herton

    2014-04-01

    Introduction Industry workers are exposed to different environmental risk agents that, when combined, may potentiate risks to hearing. Objective To evaluate the effects of the combined exposure to noise and solvents on hearing in workers. Methods A transversal retrospective cohort study was performed through documentary analysis of an industry. The sample (n = 198) was divided into four groups: the noise group (NG), exposed only to noise; the noise and solvents group (NSG), exposed to noise and solvents; the noise control group and noise and solvents control group (CNS), no exposure. Results The NG showed 16.66% of cases suggestive of bilateral noise-induced hearing loss and NSG showed 5.26%. The NG and NSG had worse thresholds than their respective control groups. Females were less susceptible to noise than males; however, when simultaneously exposed to solvents, hearing was affected in a similar way, resulting in significant differences (p < 0.05). The 40- to 49-year-old age group was significantly worse (p < 0.05) in the auditory thresholds in the NSG compared with the CNS. Conclusion The results observed in this study indicate that simultaneous exposure to noise and solvents can damage the peripheral auditory system. PMID:25992079

  19. Auditory Effects of Exposure to Noise and Solvents: A Comparative Study

    PubMed Central

    Lobato, Diolen Conceição Barros; Lacerda, Adriana Bender Moreira De; Gonçalves, Cláudia Giglio De Oliveira; Coifman, Herton

    2013-01-01

    Introduction Industry workers are exposed to different environmental risk agents that, when combined, may potentiate risks to hearing. Objective To evaluate the effects of the combined exposure to noise and solvents on hearing in workers. Methods A transversal retrospective cohort study was performed through documentary analysis of an industry. The sample (n = 198) was divided into four groups: the noise group (NG), exposed only to noise; the noise and solvents group (NSG), exposed to noise and solvents; the noise control group and noise and solvents control group (CNS), no exposure. Results The NG showed 16.66% of cases suggestive of bilateral noise-induced hearing loss and NSG showed 5.26%. The NG and NSG had worse thresholds than their respective control groups. Females were less susceptible to noise than males; however, when simultaneously exposed to solvents, hearing was affected in a similar way, resulting in significant differences (p < 0.05). The 40- to 49-year-old age group was significantly worse (p < 0.05) in the auditory thresholds in the NSG compared with the CNS. Conclusion The results observed in this study indicate that simultaneous exposure to noise and solvents can damage the peripheral auditory system. PMID:25992079

  20. Anthropogenic climate change

    SciTech Connect

    Budyko, M.I.; Izreal, Yu.A.

    1991-01-01

    The climate modeling community would agree that the present generation of theoretical models cannot adequately answer important question about the climatic implications of increasing concentrations of CO[sub 2] and other greenhouse gases. Society, however, is presently deciding by its action, or inaction, the policies that will deal with the extent and results of our collective flatulence. In this situation, an engineering approach to estimating the developing pattern of anthropogenic climate change is appropriate. For example, Budyko has argued that, while scientists may have made great advances in modelling the flow around an airfoil, engineers make extensive use of empirical equations and measurements to design airplanes that fly. Budyko and Izreal have produced an encyclopedic treatise summarizing the results of Soviet researchers in applying empirical and semiempirical methods to estimating future climatic patterns, and some of their ensuring effects. These techniques consist mainly of statistical relationships derived from 1850-1950 network data and of patterns revealed by analysis of paleoclimatic data. An important part of the Soviet effort in anthropogenic climate-change studies is empirical techniques that represent independent verification of the results of theoretical climate models.

  1. The effect of natural and anthropogenic factors on sorption of copper in chernozem

    NASA Astrophysics Data System (ADS)

    Bauer, Tatiana; Minkina, Tatiana; Mandzhieva, Saglara; Pinskii, David; Linnik, Vitaly; Sushkova, Svetlana

    2016-04-01

    The aim of this work was to study the effect of the attendant anions and particle-size distribution on the adsorption of copper by ordinary chernozem. Solutions of HM nitrates, acetates, chlorides, and sulfates were used to study the effect of the chemical composition of added copper salts on the adsorption of copper by an ordinary chernozem. Samples of the soil sieved through a 1-mm sieve in the natural ionic form and soil fraction with different particle size (clay - the particle with size < 1μm and physical clay < 10 μm) were treated with solutions of the corresponding copper salts at a soil : solution ratio of 1:10. The concentrations of the initial copper solutions were 0.02, 0.05, 0.08, 0.1, 0.3, 0.5, and 1.0 mM/L. The range of Cu2+ concentrations in the studied system covers different geochemical situations corresponding to the actual levels of soil contamination with the metal under study. The suspensions were shaken for 1 h, left to stand for 24 h, and then filtered. The contents of the HM in the filtrates were determined by atomic absorption spectrometry (AAS). The contents of the adsorbed copper cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The isotherms of copper adsorption from the metal nitrate, chloride, and sulfate solutions have near linear shapes and, hence, can be satisfactorily described by a Henry or Freundlich equation: Cads = KH •Ceq.(1) Cads = KF •Ceqn,(2) where Cadsis the content of the adsorbed cations, mM/kg soil;Ceq is the concentration of copper in the equilibrium solution, mM/L; KH and KF denote the Henry and Freundlich adsorption coefficients, respectively, kg/L. The isotherm of Cu2+ adsorption by ordinary chernozem from acetate solutions is described by the Langmuir equation: Cads = C∞ÊLC / (1 + ÊLC), (3) where Cadsis the content of the adsorbed cations, mM/kg soil;C∞ is the maximum adsorption of the HM, mM/kg soil; ÊL is the affinity constant, L

  2. Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting

    NASA Astrophysics Data System (ADS)

    Boettcher, Steven; Merz, Christoph; Lischeid, Gunnar

    2015-04-01

    The water budget of many catchments has vastly changed throughout the last decades. Intensified land use and increased water withdrawal for drinking water production and irrigation are likely to intensify pressure on water resources. According to model predictions, changing rainfall intensity, duration and spatial distribution in conjunction with increasing temperatures will worsen the situation in the future. The current water resources management has to adapt to these negative developments and to account for competing demands and threats. Essential for successful management applications is the identification and the quantification of the cause-and-effect chains driving the hydrological behavior of a catchment on the scale of management. It needs to check direction and magnitude of intended effects of measures taken as well as to identify unintended side effects that interact with natural effects in heterogeneous environments (Wood et al., 1988; Bloschl and Sivapalan, 1995). Therefore, these tools have to be able to distinguish between natural and anthropogenic driven impacts, even in complex geological settings like the Pleistocene landscape of North-East Germany. This study presents an approach that utilizes monitoring data to detect and quantitatively describe the predominant processes or factors of an observed hydrological system. The multivariate data analysis involves a non-linear dimension reduction method called Isometric Feature Mapping (Isomap, Tenenbaum et al., 2000) to extract information about the causes for the observed dynamics. Ordination methods like Isomap are used to derive a meaningful low-dimensional representation of a complex, high-dimensional data set. The approach is based on the hypothesis, that the number of processes which explain the variance of the data is relative low although the intensity of the processes varies in time and space. Therefore, the results can be interpreted in reference to the effective hydrological processes which

  3. Effects of anthropogenic land-subsidence on inundation dynamics: the case study of Ravenna, Italy

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio

    2016-05-01

    Can differential land-subsidence significantly alter river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. The literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, although several geographical areas characterized by significant land-subsidence rates during the last 50 years experienced intensification in both inundation magnitude and frequency. We investigate the possible impact of a significant differential ground lowering on flood hazard over a 77 km2 area around the city of Ravenna, in Italy. The rate of land-subsidence in the study area, naturally in the order of a few mm year-1, dramatically increased up to 110 mm year-1 after World War II, primarily due to groundwater pumping and gas production platforms. The result was a cumulative drop that locally exceeds 1.5 m. Using a recent digital elevation model (res. 5 m) and literature data on land-subsidence, we constructed a ground elevation model over the study area in 1897 and we characterized either the current and the historical DEM with or without road embankments and land-reclamation channels in their current configuration. We then considered these four different topographic models and a two-dimensional hydrodynamic model to simulate and compare the inundation dynamics associated with a levee failure scenario along embankment system of the river Montone, which flows eastward in the southern portion of the study area. For each topographic model, we quantified the flood hazard in terms of maximum water depth (h) and we compared the actual effects on flood-hazard dynamics of differential land-subsidence relative to those associated with other man-made topographic alterations, which resulted to be much more significant.

  4. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  5. Effects of Angle of Attack and Velocity on Trailing Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2006-01-01

    Trailing edge (TE) noise measurements for a NACA 63-215 airfoil model are presented, providing benchmark experimental data for a cambered airfoil. The effects of flow Mach number and angle of attack of the airfoil model with different TE bluntnesses are shown. Far-field noise spectra and directivity are obtained using a directional microphone array. Standard and diagonal removal beamforming techniques are evaluated employing tailored weighting functions for quantitatively accounting for the distributed line character of TE noise. Diagonal removal processing is used for the primary database as it successfully removes noise contaminates. Some TE noise predictions are reported to help interpret the data, with respect to flow speed, angle of attack, and TE bluntness on spectral shape and peak levels. Important findings include the validation of a TE noise directivity function for different airfoil angles of attack and the demonstration of the importance of the directivity function s convective amplification terms.

  6. Effects of Angle of Attack and Velocity on Trailing Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2004-01-01

    Trailing edge (TE) noise measurements for a NACA 63-215 airfoil model are presented, providing benchmark experimental data for a cambered airfoil. The effects of flow Mach number and angle of attack of the airfoil model with different TE bluntnesses are shown. Far-field noise spectra and directivity are obtained using a directional microphone array. Standard and diagonal removal beamforming techniques are evaluated employing tailored weighting functions for quantitatively accounting for the distributed line character of TE noise. Diagonal removal processing is used for the primary database as it successfully removes noise contaminates. Some TE noise predictions are reported to help interpret the data, with respect to flow speed, angle of attack, and TE bluntness on spectral shape and peak levels. Important findings include the validation of a TE noise directivity function for different airfoil angles of attack and the demonstration of the importance of the directivity function s convective amplification terms.

  7. NIRSpec detectors: noise properties and the effect of signal dependent inter-pixel crosstalk

    NASA Astrophysics Data System (ADS)

    Giardino, Giovanna; Sirianni, Marco; Birkmann, Stephan M.; Rauscher, Bernard J.; Lindler, Don; Boeker, Torsten; Ferruit, Pierre; De Marchi, Guido; Stuhlinger, Martin; Jensen, Peter; Strada, Paolo

    2012-07-01

    NIRSpec (Near Infrared Spectrograph) is one of the four science instruments of the James Webb Space Telescope (JWST) and its focal plane consists of two HAWAII-2RG sensors operating in the wavelength range 0.6-5.0μm. As part of characterizing NIRSpec, we studied the noise properties of these detectors under dark and illuminated conditions. Under dark conditions, and as already known, 1/f noise in the detector system produces somewhat more noise than can be accounted for by a simple model that includes white read noise and shot noise on integrated charge. More surprisingly, at high flux, we observe significantly lower total noise levels than expected. We show this effect to be due to pixel-to-pixel correlations introduced by signal dependent inter-pixel crosstalk, with an inter-pixel coupling factor, α, that ranges from ~ 0.01 for zero signal to ~ 0.03 close to saturation.

  8. Effects of RF noise on the longitudinal emittance growth in Tevatron

    SciTech Connect

    James Steimel et al.

    2003-06-02

    Phase and amplitude noises in the Tevatron RF system and the intrabeam scattering (IBS) produce longitudinal emittance growth with consecutive particle loss from the RF buckets. That causes a decrease of the luminosity and an increase of the background in particle detectors during the store. The report presents experimental measurements of RF system noise and the effect on the longitudinal emittance growth. There is a satisfactory agreement between measured noise spectral densities and observed emittance growth. For high bunch intensities, IBS plays an important role and has been taken into account. The sources of noises and plans for further system improvements are discussed.

  9. Acoustical model and theory for predicting effects of environmental noise on people.

    PubMed

    Kryter, Karl D

    2009-06-01

    The Schultz [(1978). J. Acoust. Soc. Am. 64, 377-405]; Fidell et al. [(1991). J. Acoust. Soc. Am. 89, 221-233] and Finegold et al. [(1994). Noise Control Eng. 42, 25-30] curves present misleading research information regarding DENL/DENL levels of environmental noises from transportation vehicles and the impact of annoyance and associated adverse effects on people living in residential areas. The reasons are shown to be jointly due to (a) interpretations of early research data, (b) plotting of annoyance data for noise exposure from different types of transportation vehicles on a single set of coordinates, and (c) the assumption that the effective, as heard, levels of noise from different sources are proportional to day, night level (DNL)/day, evening night level (DENL) levels measured at a common-point outdoors. The subtraction of on-site attenuations from the measured outdoor levels of environmental noises used in the calculation of DNL/DENL provides new metrics, labeled EDNL/EDENL, for the calculation of the effective exposure levels of noises perceived as equaling annoying. Predictions of judged annoyance in residential areas from the noises of transportation vehicles are made with predicted errors of <1 dB EDNL/EDENL, compared to errors ranging from approximately 6 to approximately 14 dB by DNL/DENL. A joint neurological, physiological, and psychological theory, and an effective acoustical model for the prediction of public annoyance and related effects from exposures to environment noises are presented. PMID:19507953

  10. Effects of East Asian Short-lived Anthropogenic Air Pollutants on the Northern Hemispheric Air Quality and Climate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Horowitz, L. W.; Lau, N.; Fan, S.; Tao, S.; Mauzerall, D. L.; Levy, H.

    2012-12-01

    Short-lived anthropogenic pollutants (such as ozone and aerosols) not only degrade ambient air quality and influence human health, but also play an important role in scattering/absorbing atmospheric radiation and disturbing regional climate. Due to the rapid industrialization, anthropogenic emissions from East Asia (EA) have increased substantially during the past decades. At the same time, EA has experienced a changing climate in terms of surface temperature and precipitation. In order to understand to what extent that EA short-lived anthropogenic emissions could influence domestic and downwind air quality (e.g. surface O3 and PM2.5), and explore the potential linkage between hemispheric-scale climate perturbation and regional anthropogenic forcing, we simulate global climate and chemical compositions during 1981-2000 based on the coupled general circulation model CM3 for atmosphere (with interactive tropospheric and stratospheric chemistry), oceans, land and sea ice, recently developed at Geophysical Fluid Dynamics Laboratory (GFDL/NOAA). We also conduct a parallel sensitivity simulation which is identical to the base simulation but with all anthropogenic emissions over EA turned off. The difference between the base and sensitivity simulations represents the short-term response of the Northern Hemispheric climate system and atmospheric composition to the perturbation of regional anthropogenic forcing. We find that East Asian short-lived anthropogenic emissions exert significant adverse impacts on local air quality during 1981-2000, accounting for 10-30ppbV daily-averaged O3 over Eastern China in JJA. In particular, EA anthropogenic emissions elevate the summertime daily maximum 8-hour average ozone (MDA8 O3) by 30-40ppbV over the North China Plain, where the typical background MDA8 ozone ranges 30 to 45ppbV. In addition, the surface PM2.5 concentrations peak at the same season and over the same region, with a seasonal mean of 10-30ug/m3, mostly contributed from

  11. Effect of manganese and manganese plus noise on auditory function and cochlear structures.

    PubMed

    Muthaiah, Vijaya Prakash Krishnan; Chen, Guang-Di; Ding, Dalian; Salvi, Richard; Roth, Jerome A

    2016-07-01

    The degenerative actions of Mn caused by persistent exposure to high atmospheric levels not only provokes irreversible damage to the CNS with symptoms comparable to that of Parkinson's disease but also may have deleterious consequences to other organs including the auditory system. The putative deleterious consequences of prolonged Mn overexposure on hearing, however, is confounded by the fact that chronically-exposed individuals often work in high noise environments where noise by itself is known to cause hearing loss. Thus, the question as to whether Mn alone is actually ototoxic and whether exposure to Mn when combined with noise increases the risk of hearing loss and cochlear pathology has never been examined. To examine whether noise effects Mn ototoxicity, we exposed rats to a moderate dose of Mn (10mg MnCl2/liter water) alone, a high level of noise (octave band noise, 8-16kHz, presented at 90dB SPL for 8h/d) alone or the combination of Mn plus noise and measured the changes in auditory function and the cochlear histopathologies. Results of these studies, based on various measures of hearing including histological examination of cochlear tissue suggest that noise alone produced significant hearing deficits whereas semi-chronic exposure to moderate levels of Mn in drinking water for 90days either in the presence or absence of noise had, at best, only a minor effect on hearing. PMID:27235191

  12. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  13. Effects of post-transcriptional regulation on phenotypic noise in Escherichia coli

    PubMed Central

    Arbel-Goren, Rinat; Tal, Asaf; Friedlander, Tamar; Meshner, Shiri; Costantino, Nina; Court, Donald L.; Stavans, Joel

    2013-01-01

    Cell-to-cell variations in protein abundance, called noise, give rise to phenotypic variability between isogenic cells. Studies of noise have focused on stochasticity introduced at transcription, yet the effects of post-transcriptional regulatory processes on noise remain unknown. We study the effects of RyhB, a small-RNA of Escherichia coli produced on iron stress, on the phenotypic variability of two of its downregulated target proteins, using dual chromosomal fusions to fluorescent reporters and measurements in live individual cells. The total noise of each of the target proteins is remarkably constant over a wide range of RyhB production rates despite cells being in stress. In fact, coordinate downregulation of the two target proteins by RyhB reduces the correlation between their levels. Hence, an increase in phenotypic variability under stress is achieved by decoupling the expression of different target proteins in the same cell, rather than by an increase in the total noise of each. Extrinsic noise provides the dominant contribution to the total protein noise over the total range of RyhB production rates. Stochastic simulations reproduce qualitatively key features of our observations and show that a feed-forward loop formed by transcriptional extrinsic noise, an sRNA and its target genes exhibits strong noise filtration capabilities. PMID:23519613

  14. Josephson effect gain and noise in SIS mixers

    NASA Technical Reports Server (NTRS)

    Wengler, Michael J.; Dubash, Noshir B.; Pance, Gordana; Miller, Ronald E.

    1992-01-01

    Superconducting tunnel diode (SIS) mixers are used for radio astronomy from 100 to 500 GHz. They are being considered for NASA spaceborne astronomy at frequencies near 1000 GHz. Measurements of gain and noise in SIS mixers at 230 and 492 GHz are reported. Relatively high gain and noise associated with Josephson currents are measured that have not been previously reported. These measurements show that Josephson currents are increasingly important as operating frequencies are raised. The techniques used to make these measurements are discussed. Measurements made with hot and cold black-bodies are shown to be inaccurate at high frequencies.

  15. Noise Effects on the Complex Patterns of Abnormal Heartbeats

    SciTech Connect

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Ivanov, Plamen Ch.; Glass, Leon; Goldberger, Ary L.; Stanley, H. Eugene

    2001-08-06

    Patients at high risk for sudden death often exhibit complex heart rhythms in which abnormal heartbeats are interspersed with normal heartbeats. We analyze such a complex rhythm in a single patient over a 12-h period and show that the rhythm can be described by a theoretical model consisting of two interacting oscillators with stochastic elements. By varying the magnitude of the noise, we show that for an intermediate level of noise, the model gives best agreement with key statistical features of the dynamics.

  16. Single and Combined Effects of Air, Road, and Rail Traffic Noise on Sleep and Recuperation

    PubMed Central

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria

    2011-01-01

    Study Objective: Traffic noise disturbs sleep and may impair recuperation. There is limited information on single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Design: Repeated measures. Setting: Polysomnographic laboratory study. Participants: 72 healthy subjects, mean ± standard deviation 40 ± 13 years, range 18-71 years, 32 male. Interventions: Exposure to 40, 80, or 120 rail, road, and/or air traffic noise events. Measurement and Results: Subjects were investigated for 11 consecutive nights, which included 8 noise exposure nights and one noise-free control night. Noise effects on sleep structure and continuity were subtle, even in nights with combined exposure, most likely because of habituation and an increase in arousal thresholds both within and across nights. However, cardiac arousals did not habituate across nights. Noise exposure significantly affected subjective assessments of sleep quality and recuperation, whereas objective performance was unaffected, except for a small increase in mean PVT reaction time (+4 ms, adjusted P < 0.05). Road traffic noise led to the strongest changes in sleep structure and continuity, whereas subjective assessments of sleep were worse after nights with air and rail traffic noise exposure. In contrast to daytime annoyance, cortical arousal probabilities and cardiac responses were significantly lower for air than for road and rail traffic noise (all P < 0.0001). These differences were explained by sound pressure level rise time and high frequency (> 3 kHz) noise event components. Conclusions: Road, rail, and air traffic noise differentially affect objective and subjective assessments of sleep. Differences in the degree of noise-induced sleep fragmentation between traffic modes were explained by the specific spectral and temporal composition of noise events, indicating potential targets for active and passive noise control. Field studies are needed to validate our findings in a setting

  17. Effects of noise and task loading on a communication task loading on a communication task

    NASA Astrophysics Data System (ADS)

    Orrell, Dean H., II

    Previous research had shown the effect of noise on a single communication task. This research has been criticized as not being representative of a real world situation since subjects allocated all of their attention to only one task. In the present study, the effect of adding a loading task to a standard noise-communication paradigm was investigated. Subjects performed both a communication task (Modified Rhyme Test; House et al. 1965) and a short term memory task (Sternberg, 1969) in simulated levels of aircraft noise (95, 105 and 115 dB overall sound pressure level (OASPL)). Task loading was varied with Sternberg's task by requiring subjects to memorize one, four, or six alphanumeric characters. Simulated aircraft noise was varied between levels of 95, 105 and 115 dB OASPL using a pink noise source. Results show that the addition of Sternberg's task and little effect on the intelligibility of the communication task while response time for the communication task increased.

  18. Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides

    NASA Astrophysics Data System (ADS)

    He, Bing; Yan, Shu-Bin; Wang, Jing; Xiao, Min

    2015-05-01

    It is generally difficult to study the dynamical properties of a quantum system with both inherent quantum noises and nonperturbative nonlinearity. Due to the possibly drastic intensity increase of an input coherent light in gain-loss waveguide couplers with parity-time (PT ) symmetry, the Kerr effect from a nonlinearity added into the system can be greatly enhanced and is expected to create macroscopic entangled states of the output light fields with huge photon numbers. Meanwhile, quantum noises also coexist with the amplification and dissipation of the light fields. Under the interplay between the quantum noises and nonlinearity, the quantum dynamical behaviors of the systems become rather complicated. However, the important quantum noise effects have been mostly neglected in previous studies about nonlinear PT -symmetric systems. Here we present a solution to this nonperturbative quantum nonlinear problem, showing the real-time evolution of the system observables. The enhanced Kerr nonlinearity is found to give rise to a previously unknown decoherence effect that is irrelevant to the quantum noises and imposes a limit on the emergence of macroscopic nonclassicality. In contrast to what happens in linear systems, the quantum noises exert significant impact on the system dynamics and can create nonclassical light field states in conjunction with the enhanced Kerr nonlinearity. This study on the noise involved in quantum nonlinear dynamics of coupled gain-loss waveguides can help to better understand the quantum noise effects in many nonlinear systems.

  19. Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study

    ERIC Educational Resources Information Center

    Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru

    2006-01-01

    The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…

  20. Noise in remote-sensing systems - The effect on classification error

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.; Malaret, E.

    1986-01-01

    Several types of noise in remote-sensing systems are treated. The purpose is to provide enhanced understanding of the relationship of noise sources to both analysis results and sensor design. The context of optical sensors and spectral pattern recognition analysis methods is used to enable tractability for quantitative results. First, the concept of multispectral classification is reviewed. Next, stochastic models are discussed for both signals and noise, including thermal, shot and quantization noise along with atmospheric effects. A model enabling the study of the combined effect of these sources is presented, and a system performance index is defined. Theoretical results showing the interrelated effects of the noise sources on system performance are given. Results of simulations using the system model are presented for several values of system parameters, using some noise parameters of the Thematic Mapper scanner as an illustration. Results show the relative importance of each of the noise sources on system performance, including how sensor noise interacts with atmospheric effects to degrade accuracy.

  1. Effects of White Noise on Off-Task Behavior and Academic Responding for Children with ADHD

    ERIC Educational Resources Information Center

    Cook, Andrew; Bradley-Johnson, Sharon; Johnson, C. Merle

    2014-01-01

    We evaluated the effects of white noise played through headphones on off-task behavior, percentage of items completed, and percentage of items completed correctly for 3 students with attention deficit hyperactivity disorder (ADHD). Headphones plus white noise were associated with decreases in off-task behavior relative to baseline and…

  2. Effect of blade flutter and electrical loading on small wind turbine noise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  3. Psychological Effects of Classroom Noise in Early Childhood Teachers

    ERIC Educational Resources Information Center

    Grebennikov, Leonid; Wiggins, Mark

    2006-01-01

    The aim of this research was to examine the relationship between exposure to classroom noise and the psychological well-being of full-time teaching staff in 14 preschool settings located across Western Sydney. The participants comprised 25 teachers, each of whom was administered a range of instruments. The results indicated that 40% of teachers…

  4. Effects of Noise on Asymmetric Bidirectional Controlled Teleportation

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang

    2016-07-01

    We present a scheme for asymmetric bidirectional controlled teleportation via a six-qubit cluster state in noisy environments, which includes the phase-damping and amplitude-damping channels. We analytically derive the fidelities of the asymmetric bidirectional controlled teleportation process in these two noise channels. We show that the fidelities only depend on the initial state and the noisy rate.

  5. The Effect of fMRI (Noise) on Cognitive Control

    ERIC Educational Resources Information Center

    Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S.; van den Wildenberg, Wery P. M.; Cellini, Cristiano

    2012-01-01

    Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control…

  6. Hearing in young adults. Part II: The effects of recreational noise exposure

    PubMed Central

    Keppler, Hannah; Dhooge, Ingeborg; Vinck, Bart

    2015-01-01

    Great concern arises from recreational noise exposure, which might lead to noise-induced hearing loss in young adults. The objective of the current study was to evaluate the effects of recreational noise exposure on hearing function in young adults. A questionnaire concerning recreational noise exposures and an audiological test battery were completed by 163 subjects (aged 18-30 years). Based on the duration of exposure and self-estimated loudness of various leisure-time activities, the weekly and lifetime equivalent noise exposure were calculated. Subjects were categorized in groups with low, intermediate, and high recreational noise exposure based on these values. Hearing was evaluated using audiometry, transient-evoked otoacoustic emissions (TEOAEs), and distortion-product otoacoustic emissions (DPOAEs). Mean differences in hearing between groups with low, intermediate, and high recreational noise exposure were evaluated using one-way analysis of variance (ANOVA). There were no significant differences in hearing thresholds, TEOAE amplitudes, and DPOAE amplitudes between groups with low, intermediate, or high recreational noise exposure. Nevertheless, one-third of our subjects exceeded the weekly equivalent noise exposure for all activities of 75 dBA. Further, the highest equivalent sound pressure levels (SPLs) were calculated for the activities visiting nightclubs or pubs, attending concerts or festivals, and playing in a band or orchestra. Moreover, temporary tinnitus after recreational noise exposure was found in 86% of our subjects. There were no significant differences in hearing between groups with low, intermediate, and high recreational noise exposure. Nevertheless, a long-term assessment of young adults’ hearing in relation to recreational noise exposure is needed. PMID:26356366

  7. Hearing in young adults. Part II: The effects of recreational noise exposure.

    PubMed

    Keppler, Hannah; Dhooge, Ingeborg; Vinck, Bart

    2015-01-01

    Great concern arises from recreational noise exposure, which might lead to noise-induced hearing loss in young adults. The objective of the current study was to evaluate the effects of recreational noise exposure on hearing function in young adults. A questionnaire concerning recreational noise exposures and an audiological test battery were completed by 163 subjects (aged 18-30 years). Based on the duration of exposure and self-estimated loudness of various leisure-time activities, the weekly and lifetime equivalent noise exposure were calculated. Subjects were categorized in groups with low, intermediate, and high recreational noise exposure based on these values. Hearing was evaluated using audiometry, transient-evoked otoacoustic emissions (TEOAEs), and distortion-product otoacoustic emissions (DPOAEs). Mean differences in hearing between groups with low, intermediate, and high recreational noise exposure were evaluated using one-way analysis of variance (ANOVA). There were no significant differences in hearing thresholds, TEOAE amplitudes, and DPOAE amplitudes between groups with low, intermediate, or high recreational noise exposure. Nevertheless, one-third of our subjects exceeded the weekly equivalent noise exposure for all activities of 75 dBA. Further, the highest equivalent sound pressure levels (SPLs) were calculated for the activities visiting nightclubs or pubs, attending concerts or festivals, and playing in a band or orchestra. Moreover, temporary tinnitus after recreational noise exposure was found in 86% of our subjects. There were no significant differences in hearing between groups with low, intermediate, and high recreational noise exposure. Nevertheless, a long-term assessment of young adults' hearing in relation to recreational noise exposure is needed. PMID:26356366

  8. Microphone Handling Noise: Measurements of Perceptual Threshold and Effects on Audio Quality

    PubMed Central

    Kendrick, Paul; Jackson, Iain R.; Fazenda, Bruno M.; Cox, Trevor J.; Li, Francis F.

    2015-01-01

    A psychoacoustic experiment was carried out to test the effects of microphone handling noise on perceived audio quality. Handling noise is a problem affecting both amateurs using their smartphones and cameras, as well as professionals using separate microphones and digital recorders. The noises used for the tests were measured from a variety of devices, including smartphones, laptops and handheld microphones. The signal features that characterise these noises are analysed and presented. The sounds include various types of transient, impact noises created by tapping or knocking devices, as well as more sustained sounds caused by rubbing. During the perceptual tests, listeners auditioned speech podcasts and were asked to rate the degradation of any unwanted sounds they heard. A representative design test methodology was developed that tried to encourage everyday rather than analytical listening. Signal-to-noise ratio (SNR) of the handling noise events was shown to be the best predictor of quality degradation. Other factors such as noise type or background noise in the listening environment did not significantly affect quality ratings. Podcast, microphone type and reproduction equipment were found to be significant but only to a small extent. A model allowing the prediction of degradation from the SNR is presented. The SNR threshold at which 50% of subjects noticed handling noise was found to be 4.2 ± 0.6 dBA. The results from this work are important for the understanding of our perception of impact sound and resonant noises in recordings, and will inform the future development of an automated predictor of quality for handling noise. PMID:26473498

  9. Microphone Handling Noise: Measurements of Perceptual Threshold and Effects on Audio Quality.

    PubMed

    Kendrick, Paul; Jackson, Iain R; Fazenda, Bruno M; Cox, Trevor J; Li, Francis F

    2015-01-01

    A psychoacoustic experiment was carried out to test the effects of microphone handling noise on perceived audio quality. Handling noise is a problem affecting both amateurs using their smartphones and cameras, as well as professionals using separate microphones and digital recorders. The noises used for the tests were measured from a variety of devices, including smartphones, laptops and handheld microphones. The signal features that characterise these noises are analysed and presented. The sounds include various types of transient, impact noises created by tapping or knocking devices, as well as more sustained sounds caused by rubbing. During the perceptual tests, listeners auditioned speech podcasts and were asked to rate the degradation of any unwanted sounds they heard. A representative design test methodology was developed that tried to encourage everyday rather than analytical listening. Signal-to-noise ratio (SNR) of the handling noise events was shown to be the best predictor of quality degradation. Other factors such as noise type or background noise in the listening environment did not significantly affect quality ratings. Podcast, microphone type and reproduction equipment were found to be significant but only to a small extent. A model allowing the prediction of degradation from the SNR is presented. The SNR threshold at which 50% of subjects noticed handling noise was found to be 4.2 ± 0.6 dBA. The results from this work are important for the understanding of our perception of impact sound and resonant noises in recordings, and will inform the future development of an automated predictor of quality for handling noise. PMID:26473498

  10. The effects of instructions, incentive, and feedback on a community problem: dormitory noise1

    PubMed Central

    Meyers, Andrew W.; Artz, Lynn M.; Craighead, W. Edward

    1976-01-01

    A reinforcement system utilizing instructions, modelling, feedback, and group reinforcement was employed in an attempt to reduce disruptive noise on three university residence halls. A fourth hall received the same treatment program without the reinforcement component. Noise scores were determined by recording the number of discrete noise occurrences over a criterion decibel level. On all four residential floors, noise scores during treatment conditions were lower than initial and final baseline levels. Additionally, periods of noise reduction corresponded to the changing criterion multiple-baseline and reversal designs utilized. Pre- and posttreatment questionnaire responses from the three reinforcement floors paralleled changes in objective noise data. At posttreatment, residents reported less noise disturbance of study and sleep and more control over the noise situation and floor problems in general. These results indicated that a comprehensive behavior-modification treatment package was effective in reducing disruptive noise in university residence halls. Difficulties in data collection and anomalies in the data are discussed. Future directions for field-based behavior-modification research are outlined. PMID:16795531

  11. Focused Study on the Quiet Side Effect in Dwellings Highly Exposed to Road Traffic Noise

    PubMed Central

    Renterghem, Timothy Van; Botteldooren, Dick

    2012-01-01

    This study provides additional evidence for the positive effect of the presence of a quiet façade at a dwelling and aims at unraveling potential mechanisms. Locations with dominant road traffic noise and high Lden-levels at the most exposed façade were selected. Dwellings both with and without a quiet façade were deliberately sought out. Face-to-face questionnaires (N = 100) were taken to study the influence of the presence of a quiet side in relation to noise annoyance and sleep disturbance. As a direct effect, the absence of a quiet façade in the dwelling (approached as a front-back façade noise level difference smaller than 10 dBA) leads to an important increase of at least moderately annoyed people (odds-ratio adjusted for noise sensitivity equals 3.3). In an indirect way, a bedroom located at the quiet side leads to an even stronger reduction of the self-reported noise annoyance (odds-ratio equal to 10.6 when adjusted for noise sensitivity and front façade Lden). The quiet side effect seems to be especially applicable for noise sensitive persons. A bedroom located at the quiet side also reduces noise-induced sleep disturbances. On a loud side, bedroom windows are more often closed, however, conflicting with the preference of dwellers. PMID:23330222

  12. Effects of road traffic and aircraft noise upon children's academic attainments

    NASA Astrophysics Data System (ADS)

    Shield, Bridget; Dockrell, Julie; Vilatarsana, Gael

    2005-04-01

    The effects of environmental noise upon the academic performance of children aged 7 and 11 years in primary schools in London (UK) have been investigated. Noise surveys were carried out to measure levels of environmental noise during the school day outside 175 schools across London. The majority of the schools were in densely populated areas within 5 miles of central London, where road traffic was the dominant noise source. Thirty three of the schools were in a less densely populated area to the west of London near Heathrow Airport, and were subject to predominantly aircraft noise. The noise levels measured outside each school have been correlated with the results of standard tests in Reading, Writing, Mathematics, English, and Science, which are taken by all children aged 7 and 11 in England and Wales. Significant negative correlations were found between noise levels and many of the test scores, the correlations being stronger in the central London areas than in the schools around Heathrow. These results show that environmental noise has a detrimental effect upon childrens' academic performance, the effect remaining apparent when data were corrected for socio-economic factors such as social deprivation.

  13. Numerical investigation of nonlinear propagation distortion effects in helicopter rotor noise.

    PubMed

    Menounou, Penelope; Vitsas, Panagiotis A

    2009-10-01

    The effect of nonlinear propagation distortion on helicopter rotor noise is presented based on measured data for low-speed descent and numerical calculations that predict the noise level away from the helicopter with and without nonlinear effects. It is shown that for some frequency bands the difference between linear and nonlinear calculations can be as high as 7 dB. Blade vortex interaction (BVI) noise, the dominant noise contributor during descent, is mainly examined. It is shown that advancing side BVI noise is affected by nonlinear distortion, while retreating side BVI noise is not. Based on signal characteristics at source, two quantities are derived. The first quantity (termed polarity) is based on the pressure gradient of the source signal and can be used to determine whether a BVI signal will evolve as an advancing or a retreating side signal. The second quantity (termed weighted rise time) is a measure of the impulsiveness of the BVI signal and can be used to determine at which frequency nonlinear effects start to appear. Finally, polarity and weighted rise time are shown to be applicable in cases of BVI noise generated from different blade tips, as well as in cases of non-BVI noise. PMID:19813785

  14. General principles involved in the effect of noise on hearing and vocal communication in birds

    NASA Astrophysics Data System (ADS)

    Dooling, Robert J.; Dent, Michael L.

    2002-05-01

    Birds provide very useful models for understanding the effects of noise on hearing and acoustic communication. They are excellent subjects for laboratory studies of hearing in which signals and noise can be precisely defined and delivered and behavioral responses can be unambiguously interpreted. For this reason, a huge amount is already known about their hearing. Acoustic communication is critically important for most species of birds and some even acquire their communication signals through vocal learning. For this reason, a lot is already known about how birds perceive complex acoustic signals such as vocalizations. Drawing from both field and laboratory studies, we review what is known about the effects of noise on hearing and vocal communication in birds. This includes the effects of intense noise on the ear, the effects of background noise on the detection and discrimination of both simple sounds and complex vocalizations, and the spatial effects of signal detection in noise in the free-field. As a whole, these studies show that birds are resistant to damage and interference from noise and have developed a variety of strategies to effectively communicate.

  15. Supersonic and subsonic aircraft noise effects on animals: A literature survey

    NASA Astrophysics Data System (ADS)

    Kull, Robert C., Jr.; Fisher, Alan D.

    1986-12-01

    We searched the literature concerning the effects of supersonic and subsonic aircraft noise on animals. Our search revealed many review papers of prior research accomplished, but few actual research papers. Out of all the reviews, Dufour's work is the most comprehensive. Many of the papers are anecdotal in nature and add little to our scientific knowledge - strictly circumstantial evidence. The literature reveals few effects on animals due to sonic booms. The effects of subsonic noise, however, needs much more investigation. One of the biggest problems with the research in this area is the lack of controls, lack of standardized ways of recording data and evaluating behaviors, and the number of variables involved. Specific recommendations to fill some of the technological gaps include a sonic boom study on a ground-nesting shorebird, effects of subsonic aircraft noise on endangered species, long term physiological effects causing immunosuppression, and noise versus visual aircraft stimuli effects.

  16. Noise in the Sea and Its Impacts on Marine Organisms

    PubMed Central

    Peng, Chao; Zhao, Xinguo; Liu, Guangxu

    2015-01-01

    With the growing utilization and exploration of the ocean, anthropogenic noise increases significantly and gives rise to a new kind of pollution: noise pollution. In this review, the source and the characteristics of noise in the sea, the significance of sound to marine organisms, and the impacts of noise on marine organisms are summarized. In general, the studies about the impact of noise on marine organisms are mainly on adult fish and mammals, which account for more than 50% and 20% of all the cases reported. Studies showed that anthropogenic noise can cause auditory masking, leading to cochlear damage, changes in individual and social behavior, altered metabolisms, hampered population recruitment, and can subsequently affect the health and service functions of marine ecosystems. However, since different sampling methodologies and unstandarized measurements were used and the effects of noise on marine organisms are dependent on the characteristics of the species and noise investigated, it is difficult to compare the reported results. Moreover, the scarcity of studies carried out with other species and with larval or juvenile individuals severely constrains the present understanding of noise pollution. In addition, further studies are needed to reveal in detail the causes for the detected impacts. PMID:26437424

  17. Noise in the Sea and Its Impacts on Marine Organisms.

    PubMed

    Peng, Chao; Zhao, Xinguo; Liu, Guangxu

    2015-10-01

    With the growing utilization and exploration of the ocean, anthropogenic noise increases significantly and gives rise to a new kind of pollution: noise pollution. In this review, the source and the characteristics of noise in the sea, the significance of sound to marine organisms, and the impacts of noise on marine organisms are summarized. In general, the studies about the impact of noise on marine organisms are mainly on adult fish and mammals, which account for more than 50% and 20% of all the cases reported. Studies showed that anthropogenic noise can cause auditory masking, leading to cochlear damage, changes in individual and social behavior, altered metabolisms, hampered population recruitment, and can subsequently affect the health and service functions of marine ecosystems. However, since different sampling methodologies and unstandarized measurements were used and the effects of noise on marine organisms are dependent on the characteristics of the species and noise investigated, it is difficult to compare the reported results. Moreover, the scarcity of studies carried out with other species and with larval or juvenile individuals severely constrains the present understanding of noise pollution. In addition, further studies are needed to reveal in detail the causes for the detected impacts. PMID:26437424

  18. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  19. Using the effect of alcohol as a comparison to illustrate the detrimental effects of noise on performance.

    PubMed

    Molesworth, Brett R C; Burgess, Marion; Gunnell, Belinda

    2013-01-01

    The aim of the present research is to provide a user-friendly index of the relative impairment associated with noise in the aircraft cabin. As such, the relative effect of noise, at a level typical of an aircraft cabin was compared with varying levels of alcohol intoxication in the same subjects. Since the detrimental effect of noise is more pronounced on non-native speakers, both native English and non-native English speakers featured in the study. Noise cancelling headphones were also tested as a simple countermeasure to mitigate the effect of noise on performance. A total of 32 participants, half of which were non-native English speakers, completed a cued recall task in two alcohol conditions (blood alcohol concentration 0.05 and 0.10) and two audio conditions (audio played through the speaker and noise cancelling headphones). The results revealed that aircraft noise at 65 dB (A) negatively affected performance to a level comparable to alcohol intoxication of 0.10. The results also supported previous research that reflects positively on the benefits of noise cancelling headphones in reducing the effects of noise on performance especially for non-native English speakers. These findings provide for personnel involved in the aviation industry, a user-friendly index of the relative impairment associated with noise in the aircraft cabin as compared with the effects of alcohol. They also highlight the benefits of a simple countermeasure such as noise cancelling headphones in mitigating some of the detrimental effects of noise on performance. PMID:23955134

  20. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Xie, Zhenghui; Zhan, Chesheng; Qin, Peihua; Sun, Qin; Jia, Binghao; Xia, Jun

    2015-05-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the variables will approach the natural state and

  1. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, Northern China

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zou, J.; Qin, P.; Sun, Q.

    2014-12-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the land surface variables will approach the

  2. Effects of Nautical Traffic and Noise on Foraging Patterns of Mediterranean Damselfish (Chromis chromis)

    PubMed Central

    Bracciali, Claudia; Campobello, Daniela; Giacoma, Cristina; Sarà, Gianluca

    2012-01-01

    Chromis chromis is a key species in the Mediterranean marine coastal ecosystems where, in summer, recreational boating and its associated noise overlap. Anthropogenic noise could induce behavioural modifications in marine organisms, thereby affecting population dynamics. In the case of an important species for the ecosystem like C. chromis, this could rebound on the community structure. Here, we measured nautical traffic during the summer of 2007 in a Southern Mediterranean Marine Protected Area (MPA) and simultaneously the feeding behaviour of C. chromis was video-recorded, within both the no-take A-zone and the B-zone where recreational use is allowed. Feeding frequencies, escape reaction and school density were analysed. C. chromis specimens were also collected from 2007 to 2008 to evaluate their physiological state using the Body Condition Index as a proxy of feeding efficiency. The MPA was more exploited by nautical tourism during holidays than on weekdays, particularly in the middle of the day. Greater traffic volume corresponded with lower feeding frequencies. The escape reaction was longer in duration (>1 min) when boat passed nearby, while moored boats did not induce an escape response. We found no differences in density between schools in the A- and B-zones and worse body conditions among those individuals inhabiting the B-zone in one area only. Overall, our findings revealed a significant modification of the daily foraging habits of C. chromis due to boat noise, which was slightly buffered by no-take zones established within the MPA. PMID:22792375

  3. Noise estimation technique to reduce the effects of 1/f noise in Open Path Tunable Diode Laser Absorption Spectrometry (OP-TDLAS)

    NASA Astrophysics Data System (ADS)

    Mohammad, Israa L.; Anderson, Gary T.; Chen, Youhua

    2014-06-01

    Many techniques using high frequency modulation have been proposed to reduce the effects of 1/f noise in tunable diode-laser absorption spectroscopy (TDLAS). The instruments and devices used by these techniques are not suitable for space applications that require small, low mass and low power instrumentation. A new noise estimation technique has already been proposed and validated for two lasers to reduce the effect of 1/f noise at lower frequencies. This paper extends the noise estimation technique and applies it using one distribution feedback (DFB) laser diode. In this method a DFB laser diode is excited at two slightly different frequencies, giving two different harmonics that can be used to estimate the total noise in the measurement. Simulations and experimental results on ammonia gas validate that the 1/f noise is effectively reduced by the noise estimation technique using one laser. Outdoor experimental results indicate that the effect of 1/f noise is reduced to more than 1/4 its normal value.

  4. Underwater temporary threshold shift in pinnipeds: Effects of noise level and duration

    NASA Astrophysics Data System (ADS)

    Kastak, David; Southall, Brandon L.; Schusterman, Ronald J.; Kastak, Colleen Reichmuth

    2005-11-01

    Behavioral psychophysical techniques were used to evaluate the residual effects of underwater noise on the hearing sensitivity of three pinnipeds: a California sea lion (Zalophus californianus), a harbor seal (Phoca vitulina), and a northern elephant seal (Mirounga angustirostris). Temporary threshold shift (TTS), defined as the difference between auditory thresholds obtained before and after noise exposure, was assessed. The subjects were exposed to octave-band noise centered at 2500 Hz at two sound pressure levels: 80 and 95 dB SL (re: auditory threshold at 2500 Hz). Noise exposure durations were 22, 25, and 50 min. Threshold shifts were assessed at 2500 and 3530 Hz. Mean threshold shifts ranged from 2.9-12.2 dB. Full recovery of auditory sensitivity occurred within 24 h of noise exposure. Control sequences, comprising sham noise exposures, did not result in significant mean threshold shifts for any subject. Threshold shift magnitudes increased with increasing noise sound exposure level (SEL) for two of the three subjects. The results underscore the importance of including sound exposure metrics (incorporating sound pressure level and exposure duration) in order to fully assess the effects of noise on marine mammal hearing.

  5. The central tendency bias in color perception: effects of internal and external noise.

    PubMed

    Olkkonen, Maria; McCarthy, Patrice F; Allred, Sarah R

    2014-01-01

    Perceptual estimates can be biased by previously seen stimuli in delayed estimation tasks. These biases are often toward the mean of the whole stimulus set. Recently, we demonstrated such a central tendency bias in delayed color estimation. In the Bayesian framework of perceptual inference, perceptual biases arise when noisy sensory measurements are combined with prior information about the world. Here, we investigate this idea in color perception by manipulating stimulus range and stimulus noise while characterizing delayed color estimates. First, we manipulated the experimental prior for stimulus color by embedding stimuli in collections with different hue ranges. Stimulus range affected hue bias: Hue estimates were always biased toward the mean of the current set. Next, we studied the effect of internal and external noise on the amount of hue bias. Internal noise was manipulated by increasing the delay between the reference and test from 0.4 to 4 s. External noise was manipulated by increasing the amount of chromatic noise in the reference stimulus, while keeping the delay between the reference and test constant at 2 s. Both noise manipulations had a reliable effect on the strength of the central tendency bias. Furthermore, there was a tendency for a positive relationship between variability of the estimates and bias in both noise conditions. In conclusion, observers are able to learn an experimental hue prior, and the weight on the prior can be manipulated by introducing noise in the estimation process. PMID:25194017

  6. Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.

    2010-01-01

    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.

  7. Aircraft noise effects: An interdisciplinary study of the effects of aircraft noise on man. Part 1: Basic report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An area around the Munich-Riem airport was divided into 32 clusters of different noise exposure and subjects were drawn from each cluster for a social survey and for psychological, medical, and physiological testing. Extensive acoustical measurements were also carried out in each cluster. The results were then subjected to detailed statistical analysis.

  8. Aircraft noise effects: An interdisciplinary study of the effect of aircraft noise on man. Part 2: Appendix

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A survey used to obtain data of a sociological nature regarding subjects used in a study of aircraft noise perception and tolerance near the Munich-Reims airport is presented. Statistics compiled on occupational, physiological, and medical aspects of the subjects are tabulated.

  9. Effects of noise and electromagnetic fields on reproductive outcomes.

    PubMed Central

    Meyer, R E; Aldrich, T E; Easterly, C E

    1989-01-01

    Much public health research has been directed to studies of cancer risks due to chemical agents. Recently, increasing attention has been given to adverse reproductive outcomes as another, shorter-term biologic indicator of public health impact. Further, several low-level ubiquitous physical agents have been implicated recently as possibly affecting human health. These physical factors (noise and electromagnetic fields) represent difficult topics for research with epidemiologic study methods. This paper provides a brief review of the published data related to the risk of adverse reproductive outcomes and exposure to noise or electromagnetic fields. The discussion includes ideas for possible biologic mechanisms, considerations for exposure assessment, and suggestions for epidemiologic research. PMID:2667980

  10. Cardiopulmonary effects of high-impulse noise exposure.

    PubMed

    Dodd, K T; Mundie, T G; Lagutchik, M S; Morris, J R

    1997-10-01

    In high-energy impulse noise environments, the biomechanical coupling process between the external forces and the pathophysiology of cardiopulmonary injury is not well understood. A 12-in-diameter compressed air-driven shock tube with reflector plate was used to induce three levels of pulmonary contusion injury in a large animal model. Twenty-one anesthetized sheep were exposed to the various levels of impulse noise generated by the shock tube, with six additional sheep serving as a control group. Pathologic evaluations, performed 3 hours after exposure, showed pulmonary contusio