Science.gov

Sample records for anthropogenically enhanced global

  1. Engineering paradigms and anthropogenic global change

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2016-04-01

    This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative

  2. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration

    NASA Astrophysics Data System (ADS)

    Douville, H.; Ribes, A.; Decharme, B.; Alkama, R.; Sheffield, J.

    2013-01-01

    Global warming is expected to intensify the global hydrological cycle, with an increase of both evapotranspiration (EVT) and precipitation. Yet, the magnitude and spatial distribution of this global and annual mean response remains highly uncertain. Better constraining land EVT in twenty-first-century climate scenarios is critical for predicting changes in surface climate, including heatwaves and droughts, evaluating impacts on ecosystems and water resources, and designing adaptation policies. Continental scale EVT changes may already be underway, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual EVT and demonstrate that the latitudinal and decadal differentiation of recent EVT variations cannot be understood without invoking the anthropogenic radiative forcings. In the mid-latitudes, the emerging picture of enhanced EVT confirms the end of the dimming decades and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate.

  3. Global Climate Responses to Anthropogenic Groundwater Exploitation

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  4. Anthropogenic global warming threatens world cultural heritage

    NASA Astrophysics Data System (ADS)

    Cazenave, Anny

    2014-05-01

    Numerous cultural sites of the United Nations Educational, Scientific and Cultural Organization (UNESCO) world cultural Heritage are located in low-lying coastal regions. Because of anthropogenic global warming and induced sea level rise, many of these sites will be partially or totally flooded in the coming centuries/millennia. This is shown in a recent study by Marzeion and Levermann (2014 Environ. Res. Lett. 9 034001). Projecting future sea level rise and associated regional variability, these authors investigate which sites will be at risk. Because UNESCO cultural sites represent the common heritage of human beings and reflect the Earth and humanity history, they need to be protected for future generations.

  5. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    SciTech Connect

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; Piao, Shilong; Wang, Kaicun; Schwalm, Christopher R.; Tian, Hanqin; Mu, Mingquan; Arain, Altaf; Ciais, Philippe; Cook, Robert; Dai, Yongjiu; Hayes, Daniel; Huang, Maoyi; Huang, Suo; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; King, Anthony W.; Lei, Huimin; Lu, Chaoqun; Michalak, Anna M.; Parazoo, Nicholas; Peng, Changhui; Peng, Shushi; Poulter, Benjamin; Schaefer, Kevin; Jafarov, Elchin; Wang, Weile; Zeng, Ning; Zeng, Zhenzhong; Zhao, Fang; Zhu, Qiuan; Zhu, Zaichun

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  6. Global ocean storage of anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.

    2013-04-01

    The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of

  7. Global ocean storage of anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.; Sarmiento, J. L.

    2012-07-01

    The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data-assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on ocean forward models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 Pg C with an uncertainty of ±20%. This estimate includes a broad range of

  8. Mapping 1995 global anthropogenic emissions of mercury

    NASA Astrophysics Data System (ADS)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1°×1° latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg emissions and its three main chemical species: elemental gaseous Hg, divalent gaseous Hg, and particle-associated Hg are presented. The main emissions occur in southeast Asia (particularly in China), South Africa, Central and Eastern Europe, and the Eastern United States. These are the regions where coal combustion is the main source of electricity and heat production. Waste incineration adds to these emissions in the Eastern United States. Emissions of total Hg and its three species are quite similar in terms of their (global) spatial distributions. They reflect the worldwide distribution of coal consumption in large power plants, industrial burners, and small combustion units, such as residential and commercial furnaces.

  9. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE PAGESBeta

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; et al

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified globalmore » ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  10. Estimation of global anthropogenic dust aerosol using CALIOP satellite

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Liu, J.

    2014-12-01

    Anthropogenic dust aerosols are those produced by human activity, which mainly come from cropland, pasture, and urban in this paper. Because understanding of the emissions of anthropogenic dust is still very limited, a new technique for separating anthropogenic dust from natural dustusing CALIPSO dust and planetary boundary layer height retrievalsalong with a land use dataset is introduced. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 22.3% of the global continentaldust load. Of these anthropogenic dust aerosols, more than 52.5% come from semi-arid and semi-wet regions. On the whole, anthropogenic dust emissions from East China and India are higher than other regions.

  11. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. t includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and ...

  12. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  13. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FORM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  14. Investigating the Climatic Impacts of Globally Shifted Anthropogenic Emissions

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jiang, J. H.; Su, H.

    2014-12-01

    With a quasi-exponential growth in industrialization since the mid-1990s, Asia has undergone a dramatic increase in anthropogenic emissions of aerosol and precursor gases to the atmosphere. Meanwhile, such emissions have been stabilized or reduced over North America and Europe. This geographical shift of global emission sources could potentially perturb the regional and global climate due to impact of aerosols on cloud properties, precipitation, and large-scale circulation. We use an atmospheric general circulation model (AGCM) with different aerosol scenarios to investigate the radiative and microphysical effects of anthropogenic aerosols on the large-scale circulation and regional climate over the globe. We conduct experiments to simulate the continental shift of aerosol distribution by contrasting two simulations using 1970 and 2010 anthropogenic emission sources. We found the elevation of aerosol concentrations in East and South Asia results in regional surface temperature cooling of -0.10° to -0.17°C, respectively, due to the enhanced solar extinction by aerosols and cloud reflectivity. The reduction of the local aerosol loadings in Europe causes a significant warming of +0.4°C. However, despite recent decreasing in aerosol emission, North America shows a cooling of -0.13°C, likely caused by increasing of cloudiness under the influence of modulated general circulation. These aerosol induced temperature changes are consistent with the observed temperature trends from 1980 to 2013 in the reanalysis data. Our study also predicts weaker East/South Asia summer monsoons due to strong regional aerosol forcing. Moreover, the ascending motion in the northern tropics is found to be weakened by asymmetrical aerosol forcing, resulting in the cross-equatorial shift of Hadley Circulation.

  15. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  16. Response of air stagnation frequency to anthropogenically enhanced radiative forcing.

    PubMed

    Horton, Daniel E; Harshvardhan; Diffenbaugh, Noah S

    2012-01-01

    Stagnant atmospheric conditions can lead to hazardous air quality by allowing ozone and particulate matter to accumulate and persist in the near-surface environment. By changing atmospheric circulation and precipitation patterns, global warming could alter the meteorological factors that regulate air stagnation frequency. We analyze the response of the National Climatic Data Center (NCDC) Air Stagnation Index (ASI) to anthropogenically enhanced radiative forcing using global climate model projections of late-21(st) century climate change (SRES A1B scenario). Our results indicate that the atmospheric conditions over the highly populated, highly industrialized regions of the eastern United States, Mediterranean Europe, and eastern China are particularly sensitive to global warming, with the occurrence of stagnant conditions projected to increase 12-to-25% relative to late-20(th) century stagnation frequencies (3-18+ days/year). Changes in the position/strength of the polar jet, in the occurrence of light surface winds, and in the number of precipitation-free days all contribute to more frequent late-21(st) century air mass stagnation over these high-population regions. In addition, we find substantial inter-model spread in the simulated response of stagnation conditions over some regions using either native or bias corrected global climate model simulations, suggesting that changes in the atmospheric circulation and/or the distribution of precipitation represent important sources of uncertainty in the response of air quality to global warming. PMID:23284587

  17. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    SciTech Connect

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  18. Do anthropogenic aerosols enhance CO2 uptake by plants?

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2013-12-01

    Plant productivity (photosynthesis) is tightly connected to the supply of solar radiation and water and to surface temperature. Solar radiation reaching the Earth's surface and the water cycle are strongly modified by anthropogenic aerosols. Aerosols reduce the amount of global radiation and surface temperature, and they modify the partitioning between direct and diffuse radiation. Moreover, they modify cloud radiative properties and lifetime. These aerosols effects may influence Gross Primary Productivity (GPP): (1) by intensifying the diffuse-radiation fertilization effect (i.e. plant productivity is more efficient under diffuse light whose amount may increase due to aerosol loading); (2) by modifying water supply through suppression/enhancement of rainfall; (3) by reducing surface temperature. Among aerosol impacts on GPP, it is unclear if there exists a prevailing one, or if the prevailing impact varies across ecosystems. Feedbacks to GPP from the effects of biogenic secondary organic aerosol (BSOA) formed from vegetation reactive carbon emissions have not been investigated. Moreover, human-made pollution and biomass burning induce high ozone concentrations that simultaneously reduce plant productivity. We apply satellite observations and global model simulations to investigate the spatial pattern in the relationship between aerosols and plant productivity across different ecosystems, and whether plants control their diffuse radiation environment through the reactive carbon emissions. We quantify the correlation between MODIS GPP and: (1) fine-fraction Aerosol Optical Depth from MODIS (fAOD); (2) ozone levels in the middle troposphere from TES. The analysis of satellite data reveals strong positive correlation between GPP and fAOD in temperate and boreal ecosystems, and strong negative correlation in tropical ecosystems. The tropical ecosystem also presents strong negative correlation between GPP and O3. Simulations using Yale-E2 global carbon

  19. The GEIA global gridded inventory of anthropogenic VOCs

    SciTech Connect

    Benkovitz, C.M.; Berdowski, J.J.M.; Veldt, C.

    1995-04-01

    Modeling assessments of the atmospheric chemistry, air quality and climatic conditions of the past, present and future require as input inventories of emissions of the appropriate chemical species constructed on appropriate spatial and temporal scales. The task of the Global Emissions Inventories Activity (GEIA) of the International Global Atmospheric Chemistry Project (IGAC) is the production of global inventories suitable for a range of research applications. Current GEIA programs are generally based on addressing emissions by species; an international working group of interested participants cooperates in the work needed to compile each inventory. The work of the GEIA program addressing the compilation of a global inventory of anthropogenic emissions of Volatile Organic Compounds (VOCs) gridded with 1{degree} resolution is presented. Past studies were used to identify anthropogenic activities according to their contribution to global VOC emissions, based on results of these initial studies, activity and species groupings for emissions reporting have been selected. Current status of the work of the committee is discussed. Detailed information on available activity rates, emission factors, and speciation profiles for each defined sector is being compiled. Links to investigators working on the compilation of VOC emissions on a regional level have been established.

  20. Observational and modeling constraints on global anthropogenic enrichment of mercury.

    PubMed

    Amos, Helen M; Sonke, Jeroen E; Obrist, Daniel; Robins, Nicholas; Hagan, Nicole; Horowitz, Hannah M; Mason, Robert P; Witt, Melanie; Hedgecock, Ian M; Corbitt, Elizabeth S; Sunderland, Elsie M

    2015-04-01

    Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼ 5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling. PMID:25750991

  1. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. PMID:23914794

  2. Anthropogenic carbon dioxide source areas observed from space: assessment of regional enhancements and trends

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Heymann, J.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J. P.

    2012-12-01

    Urban areas, which are home to the majority of today's world population, are responsible for more than two-thirds of the global energy-related carbon dioxide emissions. Given the ongoing demographic growth and rising energy consumption in metropolitan regions particularly in the developing world, urban-based emissions are expected to further increase in the future. As a consequence, monitoring and independent verification of reported anthropogenic emissions is becoming more and more important. It is demonstrated using SCIAMACHY nadir measurements that anthropogenic CO2 emissions can be detected from space and that emission trends might be tracked using satellite observations. This is promising with regard to future satellite missions with high spatial resolution and wide swath imaging capability aiming at constraining anthropogenic emissions down to the point-source scale. By subtracting retrieved background values from those retrieved over urban areas we find significant CO2 enhancements for several anthropogenic source regions, namely 1.3 ± 0.7 ppm for the Rhine-Ruhr metropolitan region and the Benelux, 1.1 ± 0.5 ppm for the East Coast of the United States, and 2.4 ± 0.9 ppm for the Yangtze River Delta. The order of magnitude of the enhancements is in agreement with what is expected for anthropogenic CO2 signals. The larger standard deviation of the retrieved Yangtze River Delta enhancement is due to a distinct positive trend of 0.3 ± 0.2 ppm yr-1, which is quantitatively consistent with anthropogenic emissions from the Emission Database for Global Atmospheric Research (EDGAR) in terms of percentual increase per year. Potential contributions to the retrieved CO2 enhancement by several error sources, e.g. aerosols, albedo, and residual biospheric signals due to heterogeneous seasonal sampling, are discussed and can be ruled out to a large extent.

  3. Anthropogenic carbon dioxide source areas observed from space: assessment of regional enhancements and trends

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Heymann, J.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J. P.

    2013-03-01

    Urban areas, which are home to the majority of today's world population, are responsible for more than two-thirds of the global energy-related carbon dioxide emissions. Given the ongoing demographic growth and rising energy consumption in metropolitan regions particularly in the developing world, urban-based emissions are expected to further increase in the future. As a consequence, monitoring and independent verification of reported anthropogenic emissions is becoming more and more important. It is demonstrated using SCIAMACHY nadir measurements that anthropogenic CO2 emissions can be detected from space and that emission trends might be tracked using satellite observations. This is promising with regard to future satellite missions with high spatial resolution and wide swath imaging capability aiming at constraining anthropogenic emissions down to the point-source scale. By subtracting retrieved background values from those retrieved over urban areas we find significant CO2 enhancements for several anthropogenic source regions, namely 1.3 ± 0.7 ppm for the Rhine-Ruhr metropolitan region and the Benelux, 1.1 ± 0.5 ppm for the East Coast of the United States, and 2.4 ± 0.9 ppm for the Yangtze River Delta. The order of magnitude of the enhancements is in agreement with what is expected for anthropogenic CO2 signals. The larger standard deviation of the retrieved Yangtze River Delta enhancement is due to a distinct positive trend of 0.3 ± 0.2 ppm yr-1, which is quantitatively consistent with anthropogenic emissions from the Emission Database for Global Atmospheric Research (EDGAR) in terms of percentual increase per year. Potential contributions to the retrieved CO2 enhancement by several error sources, e.g. aerosols, albedo, and residual biospheric signals due to heterogeneous seasonal sampling, are discussed and can be ruled out to a large extent.

  4. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. PMID:25711504

  5. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    PubMed Central

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  6. Global Survey of Anthropogenic Neighborhood Threats to Conservation of Grass-Shrub and Forest Vegetation

    EPA Science Inventory

    The ecological functions of natural vegetation are threatened when it is subsumed in anthropogenic landscapes. We report the first comparative global survey of anthropogenic landscape threats to forest and grass-shrub vegetation. Using a global land-cover map derived from remote...

  7. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  8. The relationship between anthropogenic dust and population over global semi-arid regions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Zhang, Yanting; Xie, Yongkun; Liu, Jingjing

    2016-04-01

    Although anthropogenic dust has received more attention from the climate research community, its dominant role in the production process is still not identified. In this study, we analysed the relationship between anthropogenic dust and population density/change over global semi-arid regions and found that semi-arid regions are major source regions in producing anthropogenic dust. The results showed that the relationship between anthropogenic dust and population is more obvious in cropland than in other land cover types (crop mosaics, grassland, and urbanized regions) and that the production of anthropogenic dust increases as the population density grows to more than 90 persons km-2. Four selected semi-arid regions, namely East China, India, North America, and North Africa, were used to explore the relationship between anthropogenic dust production and regional population. The most significant relationship between anthropogenic dust and population occurred in an Indian semi-arid region that had a greater portion of cropland, and the high peak of anthropogenic dust probability appeared with 220 persons km-2 of population density and 60 persons km-2 of population change. These results suggest that the influence of population on production of anthropogenic dust in semi-arid regions is obvious in cropland regions. However, the impact does not always have a positive contribution to the production of anthropogenic dust, and overly excessive population will suppress the increase of anthropogenic dust. Moreover, radiative and climate effects of increasing anthropogenic dust need more investigation.

  9. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%. PMID:25123485

  10. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    PubMed

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  11. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution

    PubMed Central

    Zhang, Renyi; Wang, Lin; Khalizov, Alexei F.; Zhao, Jun; Zheng, Jun; McGraw, Robert L.; Molina, Luisa T.

    2009-01-01

    The molecular processes leading to formation of nanoparticles of blue haze over forested areas are highly complex and not fully understood. We show that the interaction between biogenic organic acids and sulfuric acid enhances nucleation and initial growth of those nanoparticles. With one cis-pinonic acid and three to five sulfuric acid molecules in the critical nucleus, the hydrophobic organic acid part enhances the stability and growth on the hydrophilic sulfuric acid counterpart. Dimers or heterodimers of biogenic organic acids alone are unfavorable for new particle formation and growth because of their hydrophobicity. Condensation of low-volatility organic acids is hindered on nano-sized particles, whereas ammonia contributes negligibly to particle growth in the size range of 3–30 nm. The results suggest that initial growth from the critical nucleus to the detectable size of 2–3 nm most likely occurs by condensation of sulfuric acid and water, implying that anthropogenic sulfur emissions (mainly from power plants) strongly influence formation of terrestrial biogenic particles and exert larger direct and indirect climate forcing than previously recognized. PMID:19815498

  12. A dynamic model for the global cycling of anthropogenic vanadium - article no. GB4021

    SciTech Connect

    Hope, B.K.

    2008-12-15

    Vanadium is a major trace metal in fossil fuels. Combustion of residual fuel oils and coal in industrialized economies is recognized as the major source of anthropogenic vanadium. A dynamic mass balance model assessed the influence of anthropogenic inputs on the global distribution and cycling of vanadium between 1700 and 2100 assuming different fossil fuel consumption and V production (mining) scenarios. Anthropogenic V sources were divided into fossil fuel combustion, industrial, and domestic (nonindustrial human activity). By 2050, inputs of anthropogenic V could comprise approximate to 75-85% of those to the atmosphere, approximate to 21-33% to ocean dissolved, approximate to 9-13% to ocean particulate, and approximate to 28-43% of inputs to land; with between approximate to 61-64% of all anthropogenic inputs attributable to fossil fuel combustion. Contributions from combustion and industrial sources, although dominant relative to contributions from domestic sources between 1900 and 2100, were estimated to peak between 2000 and 2050. Accumulation of anthropogenic V on land and in the ocean apparently occurs because natural removal processes are unable to cope with increasing amounts and rates of anthropogenic contributions. Impacts or hazards associated with anthropogenic inputs are unlikely to be discernible or significant on a global scale, but may be measurable and meaningful at smaller scales (coastal waters, continental shelves, and bays), in the locality of specific sources, or given an unfavorable exposure scenario.

  13. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    SciTech Connect

    Shilling, John E.; Zaveri, Rahul A.; Fast, Jerome D.; Kleinman, Lawrence I.; Alexander, M. L.; Canagaratna, Manjula R.; Fortner, Edward; Hubbe, John M.; Jayne, John T.; Sedlacek, Art; Setyan, Ari; Springston, S.; Worsnop, Douglas R.; Zhang, Qi

    2013-02-21

    The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.9 μg/m3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg/m3 and ΔOA/ΔCO ratios of 35 - 44 μg/m3ppmv. When biogenic and anthropogenic emissions mix, OA levels are dramatically enhanced with median OA concentrations of 11.4 μg/m3 and ΔOA/ΔCO ratios of 77 - 157 μg/m3ppmv. Taken together, our observations show that production of OA is enhanced when anthropogenic emissions from Sacramento mix with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the mechanistic explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust

  14. Global Change in Earth's Atmosphere: Natural and Anthropogenic Factors

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    To what extent is human activity, such as the emission of carbon dioxide and other 'greenhouse' gases, influencing Earth's atmosphere, compared with natural variations driven by, for example, the Sun or volcanoes? Why has Earth's surface warmed barely, if at all, in the last decade? Why is the atmosphere at just 20 km above the surface cooling instead of warming? When - and will - the ozone layer recover from its two-decade decline due to chlorofluorocarbon depletion? Natural and anthropogenic factors are changing Earth's atmosphere, each with distinct temporal, geographical and altitudinal signatures. Increasing greenhouse gases, for example, warm the surface but cool the stratosphere and upper atmosphere. Aerosols injected into the stratosphere during a volcanic eruption warm the stratosphere but cool the surface. Increases in the Sun's brightness warm Earth's atmosphere, throughout. This talk will quantify and compare a variety of natural and human influences on the Earth's atmosphere, extracted statistically from multiple datasets with the goal of understanding how and why Earth's atmosphere is changing. The extent to which responses to natural influences are presently masking or exacerbating ongoing responses to human activity is examined. Scenarios for future levels of anthropogenic gases and solar activity are then used to speculate how Earth's atmosphere might evolve in future decades, according to both statistical models of the databases and physical general circulation models.

  15. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    PubMed Central

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-01-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets. PMID:26150000

  16. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    NASA Astrophysics Data System (ADS)

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-07-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets.

  17. The Role of Anthropogenic-Induced Surface Temperature Change on Regional Enhanced Warming over East Asia

    NASA Astrophysics Data System (ADS)

    Guan, X.; Huang, J.; Guo, R.

    2014-12-01

    In this study, the long-term trend and decadal variability of surface air temperature (SAT) are studied by using observation data from 1901-2009. We found that the warming trends of the semi-arid regions are higher than other lands, which have increased 2.42°C as compared to the global annual mean temperature increase of 1.13°C over land. To investigate the causes of Enhanced Semi-Arid Warming (ESAW), we used an advanced dynamic-adjusted method proposed by Wallace et al. (2012) to analyse the contribution of dynamically-induced and anthropogenic-induced SAT changes to ESAW. In the process of dynamic adjustment, the temperature has been divided into two parts, one for the dynamic forcing induced temperature, and the other for the temperature associated with the build-up of greenhouse gases and the other various radiative forcing. The results show that the anthropogenic-warming peak over semi-arid region plays the main role in the ESAW. Such anthropogenic warming peak may be related to reduction of snow cover due to black carbon (BC) emission by fuels for winter residential heating. Besides the impact of BC in snow, the agricultural mulch creation, wind farms and other types of human activities may also make attribution to local SAT changes that need to be further studied.

  18. On the role of plant volatiles in anthropogenic global climate change

    NASA Astrophysics Data System (ADS)

    Unger, Nadine

    2014-12-01

    Biogenic volatile organic compound (BVOC) emissions from terrestrial ecosystems undergo rapid oxidation in the atmosphere that affects multiple warming and cooling climate pollutants. Since the preindustrial, BVOC-chemistry-climate interactions have been strongly influenced by anthropogenic changes in land cover, pollution emissions, and the physical climate state. Here, an Earth system model is applied to quantify the effects of BVOC emissions on the global radiation balance in the 1850s and 2000s including changes to tropospheric ozone, methane, and direct aerosol-radiation interactions. The net chemical forcing of global climate due to all known anthropogenic influences on BVOC emissions is -0.17 Wm-2 (cooling) that offsets the +0.10 Wm-2 (warming) due to anthropogenic VOC emissions from fossil fuel use and industry for this time period. BVOC emissions need to be included in assessments of anthropogenic radiative forcing.

  19. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report

    SciTech Connect

    Sarmiento, J.L.

    1994-07-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

  20. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  1. Anthropogenic effects on global riverine sediment and water discharge - a spatially explicit analysis

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A. J.; Syvitski, J. P.

    2013-12-01

    Changes in global riverine water discharge and suspended sediment flux over a 50-year period, 1960-2010 are studied, applying a new version of the WBMsed (WBMsed v.2.0) global hydrological water balance model. A new floodplain component is introduced to better represent water and sediment dynamics during periods of overbank discharge. Validated against data from 16 globally distributed stations, WBMsed v.2.0 simulation results show considerable improvement over the original model. Anthropogenic impact on sediment and water discharge is evaluated by comparing global scale simulations with and without human drivers and parameters (agricultural land use, water intake form aquifers and rivers, sediment trapping in reservoirs, and human-induced soil erosion). The results show that, on average, global riverine sediment flux is reduced by approximately 25% by anthropogenic activities (almost exclusively due to trapping in reservoirs) while water discharge is reduced by about 2%. These results correspond to previous analysis by other research groups. Substantial global and intra-basin variability is observed (see Figure 1) for the first time. In some regions an opposite anthropogenic effect on sediment and water discharge was predicted (e.g. west Mississippi Basin, Rio Grande River, Indian subcontinent). We discuss the western part of the Mississippi Basin as an example of this intriguing anthropogenic impact. Figure 1. Percent change between disturbed and pristine simulations (with and without human footprint respectively) for sediment flux (top) and water discharge (bottom).

  2. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Kosaka, Yu; Okumura, Yuko M.

    2016-01-01

    The Earth's energy budget for the past four decades can now be closed, and it supports anthropogenic greenhouse forcing as the cause for climate warming. However, closure depends on invoking an unrealistically large increase in aerosol cooling during the so-called global warming hiatus since the late 1990s (refs ,) that was due partly to tropical Pacific Ocean cooling. The difficulty with this closure lies in the assumption that the same climate feedback applies to both anthropogenic warming and natural cooling. Here we analyse climate model simulations with and without anthropogenic increases in greenhouse gas concentrations, and show that top-of-the-atmosphere radiation and global mean surface temperature are much less tightly coupled for natural decadal variability than for the greenhouse-gas-induced response, implying distinct climate feedback between anthropogenic warming and natural variability. In addition, we identify a phase difference between top-of-the-atmosphere radiation and global mean surface temperature such that ocean heat uptake tends to slow down during the surface warming hiatus. This result deviates from existing energy theory but we find that it is broadly consistent with observations. Our study highlights the importance of developing metrics that distinguish anthropogenic change from natural variations to attribute climate variability and to estimate climate sensitivity from observations.

  3. Divergent global precipitation changes induced by natural versus anthropogenic forcing.

    PubMed

    Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi

    2013-01-31

    As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes. PMID:23364744

  4. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006

    NASA Astrophysics Data System (ADS)

    Lean, Judith L.; Rind, David H.

    2008-09-01

    To distinguish between simultaneous natural and anthropogenic impacts on surface temperature, regionally as well as globally, we perform a robust multivariate analysis using the best available estimates of each together with the observed surface temperature record from 1889 to 2006. The results enable us to compare, for the first time from observations, the geographical distributions of responses to individual influences consistent with their global impacts. We find a response to solar forcing quite different from that reported in several papers published recently in this journal, and zonally averaged responses to both natural and anthropogenic forcings that differ distinctly from those indicated by the Intergovernmental Panel on Climate Change, whose conclusions depended on model simulations. Anthropogenic warming estimated directly from the historical observations is more pronounced between 45°S and 50°N than at higher latitudes whereas the model-simulated trends have minimum values in the tropics and increase steadily from 30 to 70°N.

  5. Global inventory of volatile organic compound emissions from anthropogenic sources. Final report, March 1988-September 1990

    SciTech Connect

    Watson, J.J.; Probert, J.A.; Piccot, S.D.

    1991-01-01

    The report describes a global inventory of anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. The inventory, one input to atmospheric chemistry models required to estimate the global atmospheric concentration of ozone, is part of an assessment of the potential environmental impacts associated with global climate change. Study results show total global anthropogenic emissions of about 121 million short tons of VOCs per year. The U.S. is the largest emitter with 21% of the total. Globally, fuelwood combustion and savanna burning are the largest sources, together accounting for over 35% of global VOC emissions. The approach used to develop the inventory involved: (1) identifying the major anthropogenic sources of VOC emissions in the U.S. and grouping them into categories; (2) developing emission factors by dividing the U.S. emissions by the amount of production or consumption of the related commodity in the U.S.; (3) multiplying the U.S. emission factors by production/consumption statistics for other countries to yield global VOC emission estimates; and (4) geographically distributing the emissions.

  6. GLOBAL METHANE EMISSIONS FROM MINOR ANTHROPOGENIC SOURCES AND BIOFUEL COMBUSTION IN RESIDENTIAL STOVES (JOURNAL)

    EPA Science Inventory

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...

  7. A global ocean inventory of anthropogenic mercury based on water column measurements.

    PubMed

    Lamborg, Carl H; Hammerschmidt, Chad R; Bowman, Katlin L; Swarr, Gretchen J; Munson, Kathleen M; Ohnemus, Daniel C; Lam, Phoebe J; Heimbürger, Lars-Eric; Rijkenberg, Micha J A; Saito, Mak A

    2014-08-01

    Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs. PMID:25100482

  8. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  9. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    SciTech Connect

    BENKOVITZ,C.M.

    2002-11-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO{sub x}, particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations.

  10. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-02-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions+re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  11. Global mercury emissions to the atmosphere from anthropogenic and natural sources

    NASA Astrophysics Data System (ADS)

    Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K.

    2010-07-01

    This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1), cement production (236 Mg yr-1), waste disposal (187 Mg yr-1) and caustic soda production (163 Mg yr-1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

  12. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    NASA Astrophysics Data System (ADS)

    Le Page, Y.; Morton, D.; Bond-Lamberty, B.; Pereira, J. M. C.; Hurtt, G.

    2015-02-01

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human-Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  13. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    SciTech Connect

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  14. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report

    SciTech Connect

    Joos, F.; Stocker, T.

    1996-11-01

    The major emphasis of our DOE funded research was to study the redistribution of anthropogenic carbon in the climate system and to constrain the global budgets of anthropogenic carbon and the carbon isotopes {sup 13}C and {sup 14}C for the historical period. We have continued the development of box models of the ocean carbon cycle (HILDA model) and the land biota. The coupled model (Bern model) was chosen as the reference model for scenario calculations and the calculations of global warming potential by the Intergovernmental Panel on Climate Change. These models were applied (1) to estimate the uptake of anthropogenic carbon by the ocean and the land biosphere for the last 200 years; (2) to investigate uncertainties in deconvolved fertilization fluxes into the land biota due to uncertainties in ice core CO{sub 2} data; (3) to study the relationship between future atmospheric CO{sub 2} levels and carbon emissions; (4) to investigate the budgets of bomb-produced radiocarbon and fossil {sup 13}C. We assessed the utility of bomb-produced and natural {sup 13}C observations to validate ocean models of anthropogenic CO{sub 2} uptake and tested the eddy diffusion parameterization of large-scale vertical transport in ocean box models. For this, vertical tracer transport in box-diffusion models and the 3-D ocean general circulation model from GFDL/Princeton was compared. We analyzed the distribution of the conservative property {Delta}C* to obtain a direct estimate based on marine measurements of the uptake of anthropogenic CO{sub 2} by the North Atlantic. We contribute to the missing sink debate by using atmospheric CO{sub 2} and {sup 13}C levels to disentangle the net carbon fluxes into the land biota and the ocean. A simplified representation for 4 different ocean models of anthropogenic CO{sub 2} uptake based on mixed-layer pulse response functions was developed.

  15. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  16. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  17. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    PubMed Central

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.

    2014-01-01

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  18. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water.

    PubMed

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2015-11-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater, calculate the resultant gray water footprints (GWFs), and relate the GWFs per river basin to runoff to calculate the N-related water pollution level (WPL) per catchment. The accumulated global GWF related to anthropogenic N loads in the period 2002-2010 was 13×10(12) m3/y. China contributed about 45% to the global total. Three quarters of the GWF related to N loads came from diffuse sources (agriculture), 23% from domestic point sources and 2% from industrial point sources. Among the crops, production of cereals had the largest contribution to the N-related GWF (18%), followed by vegetables (15%) and oil crops (11%). The river basins with WPL>1 (where the N load exceeds the basin's assimilation capacity), cover about 17% of the global land area, contribute about 9% of the global river discharge, and provide residence to 48% of the global population. PMID:26440220

  19. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.

    PubMed

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-02-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial. PMID:24567746

  20. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours

    PubMed Central

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-01-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial. PMID:24567746

  1. Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-10-01

    with observations. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple parameterizations. Our results suggest that the pollution enhancement of biogenic SOA could provide additional SOA, but does not however explain the concentrations or the spatial and temporal variations of measured SOA mass in the vicinity of Mexico City, which appears to be controlled by anthropogenic sources. The contribution of the biomass burning to the predicted SOA is less than 10% during the studied period.

  2. Assembling the Anthropocene: The global significance of anthropogenic sediment flux through the creation of artificial ground

    NASA Astrophysics Data System (ADS)

    Price, S.; Ford, J. R.; Waters, C. N.; Cooper, A. H.

    2012-12-01

    Deliberate, current and historical modification of the landscape and its subsurface by humans creates novel sediments and landforms in the form of artificial ground. The rate and magnitude of artificial ground created through the excavation, transport and deposition of mixtures of rock and soil has varied through time, but it is now significant on a global scale. It is estimated that the annual deliberate anthropogenic movement of rock and soil exceeds that of sediment transfer to the oceans by a factor of three (Douglas & Lawson 2001). In the UK alone, it is estimated that 66 530 M (Million) tonnes (ca. 40 km3) of material has been moved in response to mineral exploitation and processing over ca. 200 years (Price et al. 2011). This compares to an estimated global annual 57 000 M tonnes of material being moved deliberately by humans (Douglas & Lawson 2001). The scale of early mineral workings and land domestication for food production rapidly expanded as human population grew. Subsequent industrialisation, burning of fossil fuels and increased urbanisation in developed countries escalated the demand for diverse natural resources and the scale of land transformation. Mineral extraction and processing make up a significant proportion of the global anthropogenic sediment cycle. Mineral production offers a key indicator of the magnitude and rate of anthropogenic change and its impact on global sediment flux. Wastes from mineral production constitute 'hidden flows' when accounting for anthropogenic sediment flux (Douglas & Lawson 2001) but are often significant. The amount of waste produced during mineral exploitation often exceeds the amount of ore won by up to, and sometimes exceeding, a factor of 30. Using key commodity indicators, including coal and iron ore, distinct trends in the rates and volumes of mineral production are calculated and observed. The volume of production and associated hidden flows of anthropogenic sediments is observed to increase rapidly ca

  3. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE PAGESBeta

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  4. A Global inventory of volatile organic compound emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Piccot, Stephen D.; Watson, Joel J.; Jones, Julian W.

    1992-06-01

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic compound (VOC) emissions (excluding methane). Atmospheric chemistry models require, as one input, an emissions inventory of VOCs. Consequently, a global inventory of anthropogenic VOC emissions has been developed. The inventory includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds which possess different chemical reactivities in the atmosphere. The technical approach used to develop this inventory involved four major steps. The first step was to identify the major anthropogenic sources of VOC emissions in the United States and to group these sources into 28 general source groups. Source groups were developed to represent general categories such as "sources associated with oil and natural gas production" and more specific categories such as savanna buming. Emission factors for these source groups were then developed using different techniques and data bases. For example, emission factors for oil and natural gas production were estimated by dividing the United States' emissions from oil and gas production operations by the amount of oil and natural gas produced in the United States. Multiplication of these emission factors by production/consumption statistics for other countries yielded global VOC emission estimates for specific source groups within those countries. The final step in development of the VOC inventory was to distribute emissions into 10° by 10° grid cells using detailed maps of population and industrial activity. The results of this study show total global anthropogenic VOC emissions of

  5. Anthropogenic perturbation of the global carbon cycle as a result of agricultural carbon erosion and burial

    NASA Astrophysics Data System (ADS)

    Wang, Zhengang; Govers, Gerard; Kaplan, Jed; Hoffmann, Thomas; Doetterl, Sebastian; Six, Johan; Van Oost, Kristof

    2016-04-01

    Changes in terrestrial carbon storage exert a strong control over atmospheric CO2 concentrations but the underlying mechanisms are not fully constrained. Anthropogenic land cover change is considered to represent an important carbon loss mechanism, but current assessments do not consider the associated acceleration of carbon erosion and burial in sediments. We evaluated the role of anthropogenic soil erosion and the resulting carbon fluxes between land and atmosphere from the onset of agriculture to the present day. We show, here, that agricultural erosion induced a significant cumulative net uptake of 198±57 Pg carbon on terrestrial ecosystems. This erosion-induced soil carbon sink is estimated to have offset 74±21% of carbon emissions. Since 1850, erosion fluxes have increased 3-fold. As a result, the erosion and lateral transfer of organic carbon in relation to human activities is an important driver of the global carbon cycle at millennial timescales.

  6. Global Anthropogenic CO2 Emissions Through Vegetation Clearance for Agriculture During the Last 6000 Years

    NASA Astrophysics Data System (ADS)

    Hickler, T.; Olofsson, J.; Miller, P. A.; Sykes, M. T.

    2008-12-01

    The mechanisms underlying the development of atmospheric CO2 over the Holocene and the potential role of anthropogenic greenhouse gas forcing in pre-industrial times are still highly debated. We developed a global gridded data set of human land use for the last 6000 years, including permanent and shifting cultivation. The data set was mainly based on archaeological evidence on the global distribution of different types of human societies (empires and agricultural groups), the HYDE data base of land use since 1700, global population estimates, and assumptions concerning cultivation area per person. A dynamic global vegetation model (LPJ) was run with and without human land-use, and the difference in terrestrial carbon storage was assumed to represent the total anthropogenic carbon release to the atmosphere. Modeled total carbon release during the industrial period (A.D. 1850-1990) was 148 gigatons of carbon (GtC), of which 33 GtC originated from non-permanent agriculture. For pre-industrial times (4000 B.C. - A.D. 1850), the net carbon release was 79 GtC from permanent agriculture and 35 GtC from non-permanent agriculture. Modeled carbon release between 4000 and 0 B.C. was considerably lower than would be required for a substantial influence on the climate system. However, the extent of vegetation clearing before the year 1700 is highly uncertain. We suggest that various lines of evidence, and pollen analyses in particular, should be explored in order to test the hypothesis that many areas that were forested at the beginning of the industrial revolution had been cleared earlier. Even though the carbon storage in vegetation might have been restored in such areas, soil carbon storage could have been negatively affected. In summary, our results suggest that a substantial early anthropogenic impact on atmospheric CO2 is unlikely, but important uncertainties remain. We are currently addressing some of the uncertainties through a sensitivity analyses of the modeling

  7. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020

    NASA Astrophysics Data System (ADS)

    Pacyna, E. G.; Pacyna, J. M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P.

    2010-07-01

    This paper presents the 2005 global inventory of anthropogenic emissions to the atmosphere component of the work that was prepared by UNEP and AMAP as a contribution to the UNEP report Global Atmospheric Mercury Assessment: Sources, Emissions and Transport ( UNEP Chemicals Branch, 2008). It describes the methodology applied to compile emissions data on the two main components of the inventory - the 'by-product' emissions and the 'intentional use' emissions - and to geospatially distribute these emissions estimates to produce a gridded dataset for use by modelers, and the results of this work. It also presents some initial results of work to develop (simplified) scenario emissions inventories for 2020 that can be used to investigate the possible implications of actions to reduce mercury emissions at the global scale.

  8. Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica

    NASA Astrophysics Data System (ADS)

    Ludescher, Josef; Bunde, Armin; Franzke, Christian L. E.; Schellnhuber, Hans Joachim

    2016-01-01

    Previous estimates of the strength and the uncertainty of the observed Antarctic temperature trends assumed that the natural annual temperature fluctuations can be represented by an auto-regressive process of first order [AR(1)]. Here we find that this hypothesis is inadequate. We consider the longest observational temperature records in Antarctica and show that their variability is better represented by a long-term persistent process that has a propensity of large and enduring natural excursions from the mean. As a consequence, the statistical significance of the recent (presumably anthropogenic) Antarctic warming trend is lower than hitherto reported, while the uncertainty about its magnitude is enhanced. Indeed, all records except for one (Faraday/Vernadsky) fail to show a significant trend. When increasing the signal-to-noise ratio by considering appropriate averages of the local temperature series, we find that the warming trend is still not significant in East Antarctica and the Antarctic Peninsula. In West Antarctica, however, the significance of the trend is above 97.4 %, and its magnitude is between 0.08 and 0.96 °C per decade. We argue that the persistent temperature fluctuations not only have a larger impact on regional warming uncertainties than previously thought but also may provide a potential mechanism for understanding the transient weakening ("hiatus") of the regional and global temperature trends.

  9. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  10. Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis.

    PubMed

    Liu, Gang; Müller, Daniel B

    2013-10-15

    Material cycles have become increasingly coupled and interconnected in a globalizing era. While material flow analysis (MFA) has been widely used to characterize stocks and flows along technological life cycle within a specific geographical area, trade networks among individual cycles have remained largely unexplored. Here we developed a trade-linked multilevel MFA model to map the contemporary global journey of anthropogenic aluminum. We demonstrate that the anthropogenic aluminum cycle depends substantially on international trade of aluminum in all forms and becomes highly interconnected in nature. While the Southern hemisphere is the main primary resource supplier, aluminum production and consumption concentrate in the Northern hemisphere, where we also find the largest potential for recycling. The more developed countries tend to have a substantial and increasing presence throughout the stages after bauxite refining and possess highly consumption-based cycles, thus maintaining advantages both economically and environmentally. A small group of countries plays a key role in the global redistribution of aluminum and in the connectivity of the network, which may render some countries vulnerable to supply disruption. The model provides potential insights to inform government and industry policies in resource criticality, supply chain security, value chain management, and cross-boundary environmental impacts mitigation. PMID:24025046

  11. The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, S.; Vrekoussis, M.; Tsigaridis, K.; Wittrock, F.; Richter, A.; Brühl, C.; Volkamer, R.; Burrows, J. P.; Kanakidou, M.

    2008-08-01

    Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on volatile organic compounds (VOC) oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO) is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as CHOCHO precursors. The present study investigates the contribution of pollution to the CHOCHO levels by taking into account the secondary chemical formation of CHOCHO from precursors emitted from biogenic, anthropogenic and biomass burning sources. The impact of potential primary land emissions of CHOCHO is also investigated. A global 3-dimensional chemistry transport model of the troposphere (TM4-ECPL) able to simulate the gas phase chemistry coupled with all major aerosol components is used. The secondary anthropogenic contribution from fossil fuel and industrial VOCs emissions oxidation to the CHOCHO columns is found to reach 20 70% in the industrialized areas of the Northern Hemisphere and 3 20% in the tropics. This secondary CHOCHO source is on average three times larger than that from oxidation of VOCs from biomass burning sources. The chemical production of CHOCHO is calculated to equal to about 56 Tg y-1 with 70% being produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry and 2% from ethene and propene. CHOCHO is destroyed in the troposphere primarily by reaction with OH radicals (23%) and by photolysis (63%), but it is also removed from the atmosphere through wet (8%) and dry deposition (6%). Potential formation of secondary organic aerosol through CHOCHO losses on/in aerosols and clouds is neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean CHOCHO burden and lifetime in the model domain are estimated to be 0.02 Tg

  12. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  13. Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives.

    PubMed

    Marx, Samuel K; Rashid, Shaqer; Stromsoe, Nicola

    2016-06-01

    During the past two centuries metal loads in the Earth's atmosphere and ecosystems have increased significantly over pre-industrial levels. This has been associated with deleterious effects to ecosystem processes and human health. The magnitude of this toxic metal burden, as well as the spatial and temporal patterns of metal enrichment, is recorded in sedimentary archives across the globe. This paper presents a compilation of selected Pb contamination records from lakes (n = 10), peat mires (n = 10) and ice fields (n = 7) from Europe, North and South America, Asia, Australia and the Northern and Southern Hemisphere polar regions. These records quantify changes in Pb enrichment in remote from source environments. The presence of anthropogenic Pb in the environment has a long history, extending as far back as the early to mid-Holocene in North America, Europe and East Asia. However, results show that Pb contamination in the Earth's environment became globally ubiquitous at the beginning of the Second Industrial Revolution (c.1850-1890 CE), after which the magnitude of Pb contamination increased significantly. This date therefore serves as an effective global marker for the onset of the Anthropocene. Current global average Pb enrichment rates are between 6 and 35 times background, however Pb contamination loads are spatially variable. For example, they are >100 times background in Europe and North America and 5-15 times background in Antarctica. Despite a recent decline in Pb loads in some regions, most notably Europe and North America, anthropogenic Pb remains highly enriched and universally present in global ecosystems, while concentrations are increasing in some regions (Australia, Asia and parts of South America and Antarctica). There is, however, a paucity of Pb enrichment records outside of Europe, which limits assessments of global contamination. PMID:26924757

  14. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2001-01-01

    Global simulations of the composition of and direct forcing due to aerosols containing natural and/or anthropogenic sulfate, nitrate, chloride, carbonate, ammonium, sodium, calcium, magnesium, potassium, black carbon, organic matter, silica, ferrous oxide, and aluminum oxide were carried out. Chloride and natural sulfate were found to be the most important natural aerosol constituents in the atmosphere in terms of solar plus thermal-infrared forcing. Sea spray was the most important natural aerosol type, indicating that it should be accounted for in weather and climate calculations. Ammonium was found to have a positive direct forcing, since it reduces water uptake in sulfate-containing solutions; thus, anthropogenic ammonium contributes to global warming. The magnitudes of ammonium and nitrate forcing were smaller than those of chloride or sulfate forcing. When organics were divided into three groups with different assumed UV absorption characteristics, total aerosol direct forcing at the tropopause increased by about +0.03 to +0.05 W m-2 (direct forcing by organics remained negative), suggesting that UV absorption by organics is a nontrivial component of the global energy balance. Gypsum [CaSO4-2H2O], sal ammoniac [NH4Cl], halite [NaCl], halite, and nitrum [KNO3] were estimated to be the most common sulfate-, ammonium-, sodium-, chloride-, and nitrate-containing solid-phase aerosol constituents, respectively, in the global atmosphere. Solid formation in aerosols was found to increase total-aerosol direct forcing by +0.03 to +0.05 W m-2. Spatial and vertical forcing estimates, sensitivities of forcing to relative humidity and concentration, and estimates of global aerosol liquid water content are given. Modeled aerosol optical properties are compared with satellite and field measurements.

  15. A comprehensive global inventory of atmospheric Antimony emissions from anthropogenic activities, 1995-2010.

    PubMed

    Tian, Hezhong; Zhou, JunRui; Zhu, Chuanyong; Zhao, Dan; Gao, Jiajia; Hao, Jiming; He, Mengchang; Liu, Kaiyun; Wang, Kun; Hua, Shenbing

    2014-09-01

    Antimony (Sb) and its compounds are considered as global pollutants due to their health risks and long-range transport characteristics. A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities during the period of 1995-2010 has been developed with specific estimation methods based on the relevant data available for different continents and countries. Our results indicate that the global antimony emissions have increased to a peak at about 2232 t (t) in 2005 and then declined gradually. Global antimony emissions in 2010 are estimated at about 1904 t (uncertainty of a 95% confidence interval (CI): -30% ∼ 67%), with fuel combustion as the major source category. Asia and Europe account for about 57% and 24%, respectively, of the global total emissions, and China, the United States, and Japan rank as the top three emitting countries. Furthermore, global antimony emissions are distributed into gridded cells with a resolution of 1° × 1°. Regions with high Sb emissions are generally concentrated in the Southeastern Asia and Western Europe, while South Africa, economically developed regions in the eastern U.S., and Mexico are also responsible for the high antimony emission intensity. PMID:25110938

  16. Modeling anthropogenically-controled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-04-01

    A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10-11 cm3 molecule-1 s-1 reproduce the observed average SOA mass within 30% in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10-12 cm3 molecule-1 s-1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged pollution SOA/ΔCO ratios are rather consistent globally, this parameterization could be reasonably tested in and applied to other regions. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple

  17. Anthropogenic impacts on the global water cycle - a multi model approach.

    NASA Astrophysics Data System (ADS)

    Ludwig, F.; haddeland, I.; Biemans, H.; Clark, D.; Fransen, W.; Voss, F.; Floerke, M.; Heinke, J.; Hagemann, S.; Hanasakki, N.; Gerten, D.; Kabat, P.

    2012-04-01

    Humans activities have a large impact on the global water cycle. Through the building of dams and irrigation schemes large amounts of water are diverted from river systems. Through the emission of greenhouse gases causing global warming, also the rainfall and evaporation patterns are changed across the globe. It is, however, still difficult to quantify current and future impacts on the global water cycle due to limited data availability, model imperfections and large uncertainties in climate change projections. To partly overcome these limitations we used a multi-model approach to study anthropogenic impacts on the global water cycle. Four different global hydrological models (H08, VIC, WaterGAP and LPJml) were forced with an historical climate dataset (Watch Forcing Data) and bias corrected output of three different global climate models (Echam, IPSL and CNRM) using two emission scenarios (A2 and B1). In addition the LPJml model was also run with two different land use change scenarios. Combining the water availability simulations with the water demand scenarios developed within the Watch project we also analyzed current and future water scarcity. The analyses show that current human impacts and on the water cycle are especially high in Central Asia, parts of Europe, the Southwestern US and the Murray-Darling Basin in Australia. The model comparison of agricultural water use and demand showed that the differences in total global agricultural demand and water use were relatively smaller than the differences in simulated water availability. All models showed agricultural water extractions are high in South and East Asia in particular in Northern India and Pakistan and in Northeast China. The most important spatial differences between the different models was observed for Northern China where H08 showed much higher water demands than VIC. Future analyses showed that climate change impacts on the global water cycle are potentially high especially in the semi

  18. The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, S.; Vrekoussis, M.; Tsigaridis, K.; Wittrock, F.; Richter, A.; Brühl, C.; Volkamer, R.; Burrows, J. P.; Kanakidou, M.

    2008-01-01

    Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on VOC oxidation and secondary aerosol formation in the troposphere. Glyoxal is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as glyoxal precursors. The present study investigates the contribution of pollution emissions to the glyoxal levels by taking into account only the secondary chemical formation of glyoxal from precursors emitted from biogenic, anthropogenic and biomass burning sources. For this purpose, a global 3-dimensional chemistry transport model of the troposphere (TM4) able to simulate the gas phase chemistry coupled with all major aerosol components is used. The model results are compared with satellite observations of glyoxal columns over hot spot areas. According to TM4 model results, the anthropogenic contribution to the glyoxal columns is found to reach 70% in the industrialized areas of the northern hemisphere and up to 20% in the tropics. It is on average three times larger than the secondary production of glyoxal from biomass burning sources. The chemical production of glyoxal is calculated to equal about 56 Tg y-1 with 70% produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry, and 2% from ethene and propene. Glyoxal is destroyed by reactions mainly with OH radicals (22%) and by photolysis (65%), but it is also removed from the atmosphere through wet (11%) and dry deposition (6%). Secondary organic aerosol potential formation through glyoxal losses on/in aerosols and clouds was neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean glyoxal burden and lifetime in the model domain are estimated at 0.02 Tg and 3 h, respectively.

  19. The negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine

    NASA Astrophysics Data System (ADS)

    Cuevas, Carlos A.; Prados-Roman, Cristina; Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Saiz-Lopez, Alfonso

    2015-04-01

    Natural emissions of iodine compounds from the oceans efficiently destroy atmospheric ozone reducing its positive radiative forcing effects in the troposphere. Emissions of inorganic iodine have been experimentally shown to depend on the deposition to the oceans of tropospheric ozone, whose concentrations have significantly increased (40%) since 1850 as a result of human activities. In this work a chemistry-climate model is used to quantify the current ocean emissions of inorganic iodine and evaluate the impact that the anthropogenic increase of tropospheric ozone has had on the natural cycle of iodine in the marine environment since pre-industrial times. Our results indicate that the human driven enhancement of tropospheric ozone has doubled the oceanic inorganic iodine emissions following the reaction of ozone with iodide at the sea surface. The consequent build-up of atmospheric iodine, with maximum enhancements of up to 70% with respect to preindustrial times in continental pollution outflow regions, has in turn accelerated the ozone chemical loss over the oceans with strong spatial patterns. We suggest that this ocean-atmosphere interaction represents a negative geochemical feedback loop by which current ocean emissions of iodine act as a natural buffer for ozone pollution and its radiative forcing in the global marine environment. This feedback represents a potentially important link between climate change and tropospheric O3 since the oceanic emissions of iodine are not only linked to surface O3, but also to SST and wind speed and might also be linked to climatically driven changes in the state of the world oceans.

  20. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions.

    PubMed

    Boivin, Nicole L; Zeder, Melinda A; Fuller, Dorian Q; Crowther, Alison; Larson, Greger; Erlandson, Jon M; Denham, Tim; Petraglia, Michael D

    2016-06-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  1. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    PubMed Central

    Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.

    2016-01-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  2. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  3. Using scaling fluctuation analysis to quantify global and regional precipitation and to estimate anthropogenic effects

    NASA Astrophysics Data System (ADS)

    Elias, L.; Lovejoy, S.; de Lima, I. P.

    2013-12-01

    A basic problem in hydro-climatology is to measure trends at decadal and longer scales and to distinguish anthropogenic and natural variability in the precipitation record and to quantify both as functions of scale. The fundamental framework for understanding this problem has been clarified using scaling analyses of Haar fluctuations defined by the differences of the averages of the first and second halves of an interval. This technique has shown that at scales beyond about ten days, positive fluctuations in atmospheric variables - including rain - tend to be followed by (partially) cancelling negative ones. The converging regime is called 'macroweather'; however, at long enough time scales - if only from paleodata and because of the existence of ice ages - we know that macroweather gives way to climate variations where on the contrary, fluctuations increase once again with scale. Anthropogenic changes over the last century also increase the low frequency variability so that it is hard to disentangle them from natural variability. However, as long as we are still in the scaling macroweather regime the natural variability is dominant. For precipitation, this is true for scales at least up 20 - 40 yrs: we must search for anthropogenic influences only at longer scales. This explains why the usual approaches estimating precipitation trends using only 10 year segments are statistically significant. Similarly, the usual approach uses precipitation data on grids (e.g. the Global Historical Climate Network, GHCN at 5ox5o, from 1900) estimated from station precipitation series with much higher resolutions. From the space-time scaling properties of precipitation, this leads to a serious mismatch in scales; and can explain the large difference in monthly precipitation fluctuation amplitudes (a factor 2.228) for the GHCN estimates compared to the 20th Century Reanalysis (20CR, at 2ox2o, since 1871). We establish the global statistical framework of precipitation fluctuations

  4. Fingerprints of anthropogenic and natural variability in global-mean surface temperature

    SciTech Connect

    Wallace, J.M.; Zhang, Yuan

    1997-11-01

    This paper presents an analysis designed to detect greenhouse warming by distinguishing between temperature rises induced by increasing atmospheric concentrations of greenhouse gases and those induced by background variability that are present without changes in atmospheric composition. The strategy is based on the surface temperature field. At each observation time, the projection of the anomalous temperature field on the presumed anthropogenic fingerprint is removed in order to obtain a temperature deviation field; i.e., the temperature anomalies in the phase space orthogonal to the anthropogenic fingerprint, which are presumed to be entirely natural. The time series of the expansion coefficients of the fingerprint a(t) is then regressed on this temperature deviation field to identify the axis in the orthogonal phase space along which the variations are most strongly correlated, and an index n(t) of the temporal variations along that axis is generated. The index a(t) is then regressed upon n(t) and the resulting least squares fit is regarded as the component of a(t) that can be ascribed to natural causes. The analysis was performed for monthly global surface temperature anomaly fields for the period 1900-95. Results indicate that two well defined patterns of natural variability contribute to variations in global mean temperature: the synthetic cold ocean-warm land (COWL) pattern and the El Nino-Southern Oscillation (ENSO). In domains that include surface air temperature over Eurasia and North America, the COWL pattern tends to be dominant. The ENSO signature emerges as the pattern most strongly linearly correlated with global sea surface temperature and with tropospheric layer-averaged temperatures. 24 refs., 3 figs.

  5. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  6. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  7. Estimation of global and regional precipitation and anthropogenic climate change using scaling fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Bussy, Augustin; Lovejoy, Shaun; de Lima, Isabel

    2014-05-01

    A basic problem in hydro-climatology is to measure trends at decadal and longer scales and to distinguish anthropogenic and natural variability in the precipitation record and to quantify both as functions of scale. The fundamental framework for understanding this problem has been clarified using scaling analyses of Haar fluctuations defined by the differences of the averages of the first and second halves of an interval. This technique has shown that at scales beyond about ten days, positive fluctuations in atmospheric variables - including rain - tend to be followed by (partially) cancelling negative ones. The converging regime is called "macroweather"; however, at long enough time scales - if only from paleodata and because of the existence of ice ages - we know that macroweather gives way to climate variations where on the contrary, fluctuations increase once again with scale. Anthropogenic changes over the last century also increase the low frequency variability so that it is hard to disentangle them from natural variability. However, as long as we are still in the scaling macroweather regime the natural variability is dominant. For precipitation, this is true for scales at least up 20 - 40 yrs: we must search for anthropogenic influences only at longer scales. This explains why the usual approaches estimating precipitation trends using only 10 year segments are statistically significant. Similarly, the usual approach uses precipitation data on grids (e.g. the Global Historical Climate Network, GHCN at 5ºx5º, from 1900) estimated from station precipitation series with much higher resolutions. From the space-time scaling properties of precipitation, this leads to a serious mismatch in scales; and can explain the large difference in monthly precipitation fluctuation amplitudes (a factor 2.228) for the GHCN estimates compared to the 20th Century Reanalysis (20CR, at 2ºx2º, since 1871). We have recently shown that anthropogenic effects can be estimated by

  8. Evaluation of Global Anthropogenic Aerosol Indirect Effects in the GISS Model III

    NASA Astrophysics Data System (ADS)

    Chen, W.; Nenes, A.; Liao, H.; Adams, P. J.; Seinfeld, J. H.

    2008-12-01

    In this study the implementation of the aerosol indirect effect in the 23-layer Goddard Institute for Space Studies (GISS) Global Climate Middle Atmosphere Model III is described. Explicit dependence on cloud droplet number concentrations (Nc) is introduced in the calculations of cloud optical depths and autoconversion rates in liquid-phase stratiform clouds to account for both first and second indirect effects. To diagnose Nc, correlation with concentrations of aerosol soluble ions is developed separately for each model grid and in each month, to reflect seasonal and spatial variations in aerosol-cloud interactions. Based on estimates of pre-industrial, present-day (year 2000), and future (year 2100) concentrations of sulfate, nitrate, ammonium, sea salt, and organic aerosols from the fully coupled Caltech unified model, corresponding offline, monthly averaged Nc were derived and applied to equilibrium climate simulations. Modeled present-day global distributions of Nc, droplet size, cloud cover, and radiative balance are in good agreement with satellite-retrieved climatology. A global anthropogenic indirect forcing of -1.7 W m-2, with a decrease in mean droplet radius of 0.8 μm, and an increase in total liquid water path of 0.2 g cm-2, from pre-industrial to year 2000 is estimated. Future climate responses to aerosol direct and indirect effects are also analyzed and compared to previous studies that consider chemistry- aerosol-climate coupling, revealing the influences of this coupling on climate predictions.

  9. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Knutti, R.

    2015-06-01

    Climate change includes not only changes in mean climate but also in weather extremes. For a few prominent heatwaves and heavy precipitation events a human contribution to their occurrence has been demonstrated. Here we apply a similar framework but estimate what fraction of all globally occurring heavy precipitation and hot extremes is attributable to warming. We show that at the present-day warming of 0.85 °C about 18% of the moderate daily precipitation extremes over land are attributable to the observed temperature increase since pre-industrial times, which in turn primarily results from human influence. For 2 °C of warming the fraction of precipitation extremes attributable to human influence rises to about 40%. Likewise, today about 75% of the moderate daily hot extremes over land are attributable to warming. It is the most rare and extreme events for which the largest fraction is anthropogenic, and that contribution increases nonlinearly with further warming. The approach introduced here is robust owing to its global perspective, less sensitive to model biases than alternative methods and informative for mitigation policy, and thereby complementary to single-event attribution. Combined with information on vulnerability and exposure, it serves as a scientific basis for assessment of global risk from extreme weather, the discussion of mitigation targets, and liability considerations.

  10. Changes in US background ozone due to global anthropogenic emissions from 1970 to 2020

    NASA Astrophysics Data System (ADS)

    Nopmongcol, Uarporn; Jung, Jaegun; Kumar, Naresh; Yarwood, Greg

    2016-09-01

    Estimates of North American and US Background (NAB and USB) ozone (O3) are critical in setting and implementing the US National Ambient Air Quality Standards (NAAQS) and therefore influence population exposure to O3 across the US. NAB is defined as the O3 concentration in the absence of anthropogenic O3 precursor emissions from North America whereas USB excludes anthropogenic emissions inside the US alone. NAB and USB vary geographically and with time of year. Analyses of O3 trends at rural locations near the west coast suggest that background O3 is rising in response to increasing non-US emissions. As the O3 NAAQS is lowered, rising background O3 would make attaining the NAAQS more difficult. Most studies of changing US background O3 have inferred trends from observations whereas air quality management decisions tend to rely on models. Thus, it is important that the models used to develop O3 management strategies are able to represent the changes in background O3 in order to increase confidence that air quality management strategies will succeed. We focus on how changing global emissions influence USB rather than the effects of inter-annual meteorological variation or long-term climate change. We use a regional model (CAMx) nested within a global model (GEOS-Chem) to refine our grid resolution over high terrain in the western US and near US borders where USB tends to be higher. We determine USB from CAMx simulations that exclude US anthropogenic emissions. Over five decades, from 1970 to 2020, estimated USB for the annual fourth highest maximum daily 8-h average O3 (H4MDA8) in the western US increased from mostly in the range of 40-55 ppb to 45-60 ppb, but remained below 45 ppb in the eastern US. USB increases in the southwestern US are consistent with rising emissions in Asia and Mexico. USB decreases in the northeast US after 1990 follow declining Canadian emissions. Our results show that the USB increases both for the top 30 MDA8 days and the H4MDA8 (the former

  11. Artificial breakwaters as garbage bins: Structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats.

    PubMed

    Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin

    2016-07-01

    Coastal urban infrastructures are proliferating across the world, but knowledge about their emergent impacts is still limited. Here, we provide evidence that urban artificial reefs have a high potential to accumulate the diverse forms of litter originating from anthropogenic activities around cities. We test the hypothesis that the structural complexity of urban breakwaters, when compared with adjacent natural rocky intertidal habitats, is a driver of anthropogenic litter accumulation. We determined litter abundances at seven sites (cities) and estimated the structural complexity in both urban breakwaters and adjacent natural habitats from northern to central Chile, spanning a latitudinal gradient of ∼15° (18°S to 33°S). Anthropogenic litter density was significantly higher in coastal breakwaters when compared to natural habitats (∼15.1 items m(-2) on artificial reefs versus 7.4 items m(-2) in natural habitats) at all study sites, a pattern that was temporally persistent. Different litter categories were more abundant on the artificial reefs than in natural habitats, with local human population density and breakwater extension contributing to increase the probabilities of litter occurrence by ∼10%. In addition, structural complexity was about two-fold higher on artificial reefs, with anthropogenic litter density being highest at intermediate levels of structural complexity. Therefore, the spatial structure characteristic of artificial reefs seems to enhance anthropogenic litter accumulation, also leading to higher residence time and degradation potential. Our study highlights the interaction between coastal urban habitat modification by establishment of artificial reefs, and pollution. This emergent phenomenon is an important issue to be considered in future management plans and the engineering of coastal ecosystems. PMID:27149151

  12. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-01

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency. PMID:25884251

  13. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  14. Simulation of in-stream water quality on global scale under changing climate and anthropogenic conditions

    NASA Astrophysics Data System (ADS)

    Voss, Anja; Bärlund, Ilona; Punzet, Manuel; Williams, Richard; Teichert, Ellen; Malve, Olli; Voß, Frank

    2010-05-01

    Although catchment scale modelling of water and solute transport and transformations is a widely used technique to study pollution pathways and effects of natural changes, policies and mitigation measures there are only a few examples of global water quality modelling. This work will provide a description of the new continental-scale model of water quality WorldQual and the analysis of model simulations under changed climate and anthropogenic conditions with respect to changes in diffuse and point loading as well as surface water quality. BOD is used as an indicator of the level of organic pollution and its oxygen-depleting potential, and for the overall health of aquatic ecosystems. The first application of this new water quality model is to river systems of Europe. The model itself is being developed as part of the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The aim of the model is to determine chemical fluxes in different pathways combining analysis of water quantity with water quality. Simple equations, consistent with the availability of data on the continental scale, are used to simulate the response of in-stream BOD concentrations to diffuse and anthropogenic point loadings as well as flow dilution. Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse loadings come from scattered settlements, agricultural input (for instance livestock farming), and also from natural background sources. The model is tested against measured longitudinal gradients and time series data at specific river locations with different loading characteristics like the Thames that is driven by domestic loading and Ebro with relative high share of diffuse loading. With scenario studies the influence of climate and anthropogenic changes on European water resources shall be investigated with the following questions: 1. What percentage of river systems will have

  15. Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts.

    NASA Astrophysics Data System (ADS)

    Schlacher, Thomas A.; Lucrezi, Serena; Connolly, Rod M.; Peterson, Charles H.; Gilby, Ben L.; Maslo, Brooke; Olds, Andrew D.; Walker, Simon J.; Leon, Javier X.; Huijbers, Chantal M.; Weston, Michael A.; Turra, Alexander; Hyndes, Glenn A.; Holt, Rebecca A.; Schoeman, David S.

    2016-02-01

    Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures that on many shorelines require significant conservation and mitigation interventions. But these interventions require reliable data on the severity and frequency of adverse ecological impacts. Such evidence is often obtained by measuring the response of 'indicator species'. Ghost crabs are the largest invertebrates inhabiting tropical and subtropical sandy shores and are frequently used to assess human impacts on ocean beaches. Here we present the first global meta-analysis of these impacts, and analyse the design properties and metrics of studies using ghost-crabs in their assessment. This was complemented by a gap analysis to identify thematic areas of anthropogenic pressures on sandy beach ecosystems that are under-represented in the published literature. Our meta-analysis demonstrates a broad geographic reach, encompassing studies on shores of the Pacific, Indian, and Atlantic Oceans, as well as the South China Sea. It also reveals what are, arguably, two major limitations: i) the near-universal use of proxies (i.e. burrow counts to estimate abundance) at the cost of directly measuring biological traits and bio-markers in the organism itself; and ii) descriptive or correlative study designs that rarely extend beyond a simple 'compare and contrast approach', and hence fail to identify the mechanistic cause(s) of observed contrasts. Evidence for a historically narrow range of assessed pressures (i.e., chiefly urbanisation, vehicles, beach nourishment, and recreation) is juxtaposed with rich opportunities for the broader integration of ghost crabs as a model taxon in studies of disturbance and impact assessments on ocean beaches. Tangible advances will most likely occur where ghost crabs provide foci for experiments that test specific hypotheses associated with effects of chemical, light and acoustic pollution, as well as the consequences of climate change (e

  16. Role of natural and anthropogenic factors in global and regional climate transformations

    NASA Astrophysics Data System (ADS)

    Kovalenko, Vladimir A.; Zherebtsov, Gelii A.

    2003-04-01

    Presented is the evidence for the actual manifestation of solar variability in climatic characteristics of the Prebaikalye. This influence on surface air temperature was quantified. A high degree of correlation was established between the mean power of a solar activity cycle and the surface air temperature in the Prebaikalye, averaged over a solar cycle period. It is shown that the main meaningful air temperature variations in the region for the period 1881-1960 were caused by solar activity. The temperature variation amplitude for that period was 1°C. Since the 1960s until the present, with the influence of solar variability persisting, there has been an obvious forcing of another factor whose role was steadily increasing so that as recently as in the last decade it exceeded the contribution from solar variability. For the period 1960-1997, the temperature rise that was not associated with solar variability, was 1.7°C. This new factor is most likely to be the global variations of the thermal regime of the atmosphere that are caused by the anthropogenic factor. This assumption is in agreement with model calculations, pointing to the fact that the most significant manifestation of a global warming should be expected in inland regions of Eurasia. An analysis of the seasonal variations in ground temperature showed that the variations that are taking place to date are most clearly pronounced in the winter-spring period and are associated with a reduction of the stationary period of the Siberian anticyclone. This suggests that the mechanism responsible for the realization of variability factors of regional climate is the global atmospheric circulation rather than a local change of the energy balance of the atmosphere.

  17. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    PubMed Central

    Zhang, Yanxu; Jacob, Daniel J.; Horowitz, Hannah M.; Chen, Long; Amos, Helen M.; Krabbenhoft, David P.; Slemr, Franz; St. Louis, Vincent L.; Sunderland, Elsie M.

    2016-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y−1). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities. PMID:26729866

  18. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.

    PubMed

    Zhang, Yanxu; Jacob, Daniel J; Horowitz, Hannah M; Chen, Long; Amos, Helen M; Krabbenhoft, David P; Slemr, Franz; St Louis, Vincent L; Sunderland, Elsie M

    2016-01-19

    Observations of elemental mercury (Hg(0)) at sites in North America and Europe show large decreases (∼ 1-2% y(-1)) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y(-1)). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg(0)/Hg(II) speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg(0) emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg(0) concentrations and in Hg(II) wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities. PMID:26729866

  19. Natural and Anthropogenic Controls over Global Terrestrial N2O Emission Growth at a Century-Long Time Scale

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tian, H.; Kamaljit, K.; Zhang, B.

    2014-12-01

    The Atmospheric concentration of nitrous oxide (N2O) has increased by 20% relative to pre-industrial level. It has attracted growing attention since N2O has long life time and radiative forcing 265 times higher than CO2 at 100-year time horizon. Global N2O emission from terrestrial ecosystem is among the most important contributors to the increase of atmospheric N2O. However, compared to CO2- and CH4-related research, less intensive studies have been performed in assessing the spatiotemporal patterns of terrestrial N2O emission and attributing its changes to both natural and anthropogenic disturbances across the globe. Here we integrated gridded time-series data of climate variability, atmospheric CO2 concentration, nitrogen deposition, land use and land cover changes, and agricultural land management practices (i.e., synthetic nitrogen fertilizer use, manure application, and irrigation etc.) to a process-based land ecosystem model, DLEM, for answering the above questions. During 1900-2010, the inter-annual variation and long-term trend of terrestrial N2O emission driven by individual and combined environmental changes have been examined. Through this, we distinguished and quantified the relative contributions of changes in climate, atmospheric composition, and human activities to N2O emission growth at biome-, latitudinal, continental and global scales. The impacts of climate variability, and increasing nitrogen input, particularly nitrogen fertilizer use along with enhanced food production, have been paid special attention. Hot spots and hot time periods of global N2O emission are identified in this study. It provides clue for scientific community and policy makers to develop potential management strategies for mitigating atmospheric N2O increase and climate warming.

  20. Model sensitivity to MACC anthropogenic and biogenic emissions: Global simulations and evaluation for reactive gases

    NASA Astrophysics Data System (ADS)

    Stein, O.; Schultz, M. G.; Bouarar, I.; Clark, H.; Katragkou, E.; Leitao, J.; Heil, A.

    2012-04-01

    The EU projects MACC (Monitoring Atmospheric Composition and Climate, 2009-2011) and MACC-II (2011-2014) prepare for the operational Global Monitoring for Environment and Security (GMES) atmospheric core service which is envisaged to start in 2014. Besides global service lines for greenhouse gases and aerosols, emphasis is put also on global monitoring and forecasting of reactive gases. The MACC reanalysis and forecast simulations benefit from the multi-sensor approach for data assimilation of ozone, CO and NO2 observations. Currently the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) is coupled to the chemical transport model MOZART-3 to represent in detail the chemical conversion as well as major source and sink processes. A global emission inventory for reactive gases has been developed as part of the MACC project. Based upon the ACCMIP emissions for the year 2000 these emissions are extrapolated for years after 2000 with the Representative Concentration Pathway RCP8.5 scenario and extended for VOCs and several other species. This inventory composes the MACCity anthropogenic emission inventory (Granier et al. 2011). During the MACC project it became apparent that using the MACCity emissions in reanalysis simulations for recent years led to an underestimation of CO concentrations in the Northern Hemisphere when compared to independent observations. In order to give insight into the reasons for this behavior we conducted MOZART offline simulations for the year 2008 to test the sensitivity of the chemical transport model to the varying emissions. Therefore we ran MOZART with different sets of emissions: 1. MACCity emissions, 2. The GEMS/RETRO emission inventory, 3. MACCity emissions, but with increased traffic CO emissions. While using the emission inventory developed in the RETRO and GEMS projects gives quite reasonable tropospheric concentrations for the key species, the MACCity emissions are too low

  1. Global methane emissions from minor anthropogenic sources and biofuel combustion in residential stoves

    NASA Astrophysics Data System (ADS)

    Piccot, Stephen D.; Beck, Lee; Srinivasan, Sridhar; Kersteter, Sharon L.

    1996-10-01

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emissions are estimated for a wide variety of individual minor emissions sources on a country-specific basis. Emissions from biomass combustion in the residential sector are also examined. The minor sources examined include fuel combustion in furnaces, vehicles, aircraft, ship, rail systems, industrial waste treatment and combustion processes, various industrial manufacturing processes (e.g., chemical manufacturing), on-site residential waste burning, forest wildfires, and prescribed burning activities, oil refining, and the storage/distribution of oil-derived products, coke production, and charcoal production. Country-specific emissions associated with residential wood, charcoal, and dung combustion are also estimated. The total annual CH4 emissions from all sources examined here are estimated to be about 40 Tg. Almost half of this total is due to residential fossil fuel and biofuels combustion.

  2. Simulation Of Anthropogenic Climate Change Over The Mediterranean Region Using A Global Variable Resolution Model

    NASA Astrophysics Data System (ADS)

    Gibelin, A. L.; Déqué, M.

    Regional anthropogenic climate change over the Mediterranean region has been sim- ulated by the global spectral AGCM ARPEGE-Climat developed by Météo-France- CNRM. The variable resolution version of the model is used with a maximum horizontal reso- lution of 0.5 over the Mediterranean Sea. Two 30-year time-slice experiments, corre- sponding to 1960-1989 and 2070-2099, have been performed. Simulations are driven by IPCC-B2 scenario radiative forcing. Sea surface temperatures are prescribed from monthly observations for the present climate simulation, and from a blend of observa- tions and coupled simulations for the scenario. Present climate simulation has been compared with observations to validate the model. Then the impact on simulated temperature, precipitation and soil moisture to an in- crease of greenhouse gases concentrations has been analysed. The robustness of the response has been verified by comparing the forced model response to that of a cou- pled lower resolution simulation.

  3. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts.

    PubMed

    Yan, Zhengbing; Han, Wenxuan; Peñuelas, Josep; Sardans, Jordi; Elser, James J; Du, Enzai; Reich, Peter B; Fang, Jingyun

    2016-10-01

    Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well-assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems. PMID:27501082

  4. Mixing of Dust and NH3 Observed Globally over Anthropogenic Dust Sources

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Dubovik, O.; Hsu, N. C.; Van Damme, M.

    2012-01-01

    The global distribution of dust column burden derived from MODIS Deep Blue aerosol products is compared to NH3 column burden retrieved from IASI infrared spectra. We found similarities in their spatial distributions, in particular their hot spots are often collocated over croplands and to a lesser extent pastures. Globally, we found 22% of dust burden collocated with NH3, with only 1% difference between land-use databases. This confirms the importance of anthropogenic dust from agriculture. Regionally, the Indian subcontinent has the highest amount of dust mixed with NH3 (26 %), mostly over cropland and during the pre-monsoon season. North Africa represents 50% of total dust burden but accounts for only 4% of mixed dust, which is found over croplands and pastures in Sahel and the coastal region of the Mediterranean. In order to evaluate the radiative effect of this mixing on dust optical properties, we derive the mass extinction efficiency for various mixtures of dust and NH3, using AERONET sunphotometers data. We found that for dusty days the coarse mode mass extinction efficiency decreases from 0.62 to 0.48 square meters per gram as NH3 burden increases from 0 to 40 milligrams per square meter. The fine mode extinction efficiency, ranging from 4 to 16 square mters per gram, does not appear to depend on NH3 concentration or relative humidity but rather on mineralogical composition and mixing with other aerosols. Our results imply that a significant amount of dust is already mixed with ammonium salt before its long range transport. This in turn will affect dust lifetime, and its interactions with radiation and cloud properties

  5. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  6. Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-08-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  7. Impact of anthropogenic emissions from major population centers on global and regional aerosol budgets

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Tost, Holger; Lawrence, Mark

    2013-04-01

    In urban areas, in particular in major population centers (MPCs), anthropogenic pollutants can dominate over natural emissions and cause severe air quality problems. We used emission annihilation scenario simulations in the atmospheric chemistry global circulation model EMAC to study the individual and cumulative impact of four major aerosol species from MPCs on the global and regional aerosol budgets. Black carbon, particulate organic matter, sulphur dioxide (SO2), and nitrogen oxides (NOx) were used to represent emissions of primary aerosols and of precursors gases for secondary aerosols sulphate and nitrate, respectively. Moreover, feedbacks resulting from changed emissions on other atmospheric constituents were assessed and the linearity in the burden changes due to the emission changes was discussed. Aerosol sulphate showed the strongest decrease in the global budget and also the most widespread changes in the tropospheric column density, whereas the smallest global decrease with only local changes was found for particulate organic matter. The maximum reduction was found around the emission sources and in downwind regions. The primary emitted aerosols showed almost no feedback on other species. In contrast, many gas-aerosol equilibria were affected when the SO2 and NOx emissions were reduced. In the case with the reduced MPC-NOx emissions, many species participating in the NOx-ozone (O3) chemistry showed a response in their concentrations. In particular, ozone changed differently in extra-tropical and tropical cities, which is in accordance with findings of Butler and Lawrence (2009). Moreover, the oxidation capacity of the atmosphere was changed. The hydroxyl radical concentration changed similarly to O3, which lead to an increase in the tropospheric carbon monoxide concentration and to locally greater SO2 concentrations. Changes in the emissions for black carbon, particulate organic matter, and SO2 resulted in almost linear responses of the corresponding

  8. Weekly cycles of global fires—Associations with religion, wealth and culture, and insights into anthropogenic influences on global climate

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian; Tapper, Nigel

    2015-11-01

    One approach to quantifying anthropogenic influences on the environment and the consequences of those is to examine weekly cycles (WCs). No long-term natural process occurs on a WC so any such signal can be considered anthropogenic. There is much ongoing scientific debate as to whether regional-scale WCs exist above the statistical noise level, with most significant studies claiming that anthropogenic aerosols and their interaction with solar radiation and clouds (direct/indirect effect) is the controlling factor. A major source of anthropogenic aerosol, underrepresented in the literature, is active fire (AF) from anthropogenic burning for land clearance/management. WCs in AF have not been analyzed heretofore, and these can provide a mechanism for observed regional-scale WCs in several meteorological variables. We show that WCs in AFs are highly pronounced for many parts of the world, strongly influenced by the working week and particularly the day(s) of rest, associated with religious practices.

  9. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    SciTech Connect

    Erickson, D; Mills, R; Gregg, J; Blasing, T J; Hoffman, F; Andres, Robert Joseph; Devries, M; Zhu, Z; Kawa, S

    2008-01-01

    Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model atmospheric CO2 concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO2 in and near those regions where anthropogenic CO2 is released to the atmosphere. Local variations of 2-6 ppmv CO2 in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO2 emissions.

  10. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  11. Polychaete Richness and Abundance Enhanced in Anthropogenically Modified Estuaries Despite High Concentrations of Toxic Contaminants

    PubMed Central

    Dafforn, Katherine A.; Kelaher, Brendan P.; Simpson, Stuart L.; Coleman, Melinda A.; Hutchings, Pat A.; Clark, Graeme F.; Knott, Nathan A.; Doblin, Martina A.; Johnston, Emma L.

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic

  12. The Runaway Greenhouse - Towards a Quantitative Assessment of the Risk from Anthropogenic Global Change

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.

    2011-12-01

    The most extreme climate change that Earth could face is the "Runaway Greenhouse", which would cause extreme heating and make Earth's surface inhospitable to life. Could anthropogenic global change cause a runaway greenhouse, as has recently been suggested [J. Hansen, 'Storms of my Grandchildren', 2009]? Here I review the theory of the runaway greenhouse and present new, high accuracy line-by-line, calculations of the runaway greenhouse limits. It is a common misconception that the runaway greenhouse is simply a stronger version of the familiar water vapour positive feedback on climate. In fact, different physics characterises the runaway greenhouse: a warm and water vapour saturated atmosphere would be optically thick in the thermal infra-red region, and consequently there would be a fixed upper limit on the outgoing longwave radiation (OLR). In the classical theory originating from the planetary sciences, the runaway greenhouse is triggered when the net energy received from the evolving sun exceeds the limit on OLR (this happened to Venus in the past). The OLR limit is insensitive to carbon dioxide concentrations. Our new calculations put the OLR limit at 285Wm-2, less than the classical value of 310Wm-2 [J. Kasting, Icarus, 74, 472-494, 1988] but still in excess of the net solar absorption of 240Wm-2. This suggests that a runaway greenhouse is not likely. However, the limit on OLR is less than the total energy incident on Earth, 342Wm-2, so a reduction in planetary albedo could in fact trigger a runaway greenhouse. Our new calculations indicate that a hot moist atmosphere will absorb much more incoming solar radiation than previously thought, reducing albedo. How clouds will change is poorly understood, but the potential exists for a further reduction in albedo. Thus, whilst human actions causing a true runaway greenhouse seems unlikely, it cannot be entirely ruled out.

  13. Going Global: Utilizing Instructional Geocaching to Enhance Students' Global Competency

    ERIC Educational Resources Information Center

    Szolosi, Andrew

    2012-01-01

    Within contemporary society, technology has taken on an integral role in the way we come to know and understand the world. In recognition of that reality, an increasing number of educators have begun to utilize an emerging technology resource, GPS devices, and a GPS-based activity, geocaching, to help enhance students' global competency. The…

  14. Why do anthropogenic global warming skeptics have poorer scientific credentials than their opponents?

    NASA Astrophysics Data System (ADS)

    Rogers, N. L.

    2010-12-01

    A paper published in PNAS (1) analyzed the scientific credentials of two groups of activist scientists. The unconvinced by the evidence group included ~500 scientists and technologists who signed various public documents protesting against various aspects of programs to prevent or mitigate anthropogenic global warming. The convinced by the evidence group (~1200 persons) signed public appeals to implement programs to prevent or mitigate AGW. Scientific credentials were measured by publications and citations. The unspoken message of the paper is that we should have confidence in the canonical program of climate change as outlined by, for example, the IPCC, because those who support the program have better scientific credentials than those that don’t. One of the authors of the paper, James Prall, made available on his website lists of several thousand persons, mostly scientists and technologists, who are in one group or the other. The lists include considerable detail, such as publications, citations and education that relates to scientific qualifications. Using Prall’s lists and relevant anecdotal statements by prominent advocates on both sides of the issue I suggest an alternate reason for the disparity in scientific credentials. The PNAS paper in testing scientific credentials counted the number of publications and citations in the area of climate science. There is a certain circularity in using such a test because persons who are professionally employed as climate scientists will naturally have many publications and citations - that is their professional goal. Professional employment in climate science implies adherence to group standards and to some extent beliefs. To give an analogy, if you are a professional freudian psychoanalyst you can’t say that Freud is a crackpot and retain your professional standing. I’m not saying that climate scientists are crackpots, but that there is surely some sort of shared belief and value system whether or not it is

  15. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  16. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030

    EPA Science Inventory

    This report provides information on historical and projected estimates of emissions of non-CO2 greenhouse gases from anthropogenic sources. It includes over 20 individual source categories from the energy, industrial processes, agriculture, and waste sectors. It covers 92 countr...

  17. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers.

    PubMed

    Aronson, Myla F J; La Sorte, Frank A; Nilon, Charles H; Katti, Madhusudan; Goddard, Mark A; Lepczyk, Christopher A; Warren, Paige S; Williams, Nicholas S G; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; Macgregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pysek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-04-01

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km(2)) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education. PMID:24523278

  18. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers

    PubMed Central

    Aronson, Myla F. J.; La Sorte, Frank A.; Nilon, Charles H.; Katti, Madhusudan; Goddard, Mark A.; Lepczyk, Christopher A.; Warren, Paige S.; Williams, Nicholas S. G.; Cilliers, Sarel; Clarkson, Bruce; Dobbs, Cynnamon; Dolan, Rebecca; Hedblom, Marcus; Klotz, Stefan; Kooijmans, Jip Louwe; Kühn, Ingolf; MacGregor-Fors, Ian; McDonnell, Mark; Mörtberg, Ulla; Pyšek, Petr; Siebert, Stefan; Sushinsky, Jessica; Werner, Peter; Winter, Marten

    2014-01-01

    Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km2) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education. PMID:24523278

  19. The Impact of Anthropogenic Global Warming on the Wind Power Resource

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Barrie, D.

    2009-12-01

    The growing need for low-carbon emitting electricity sources has resulted in rapid growth in the wind power industry. The size and steadiness of the offshore wind resource has attracted growing investment in the planning of offshore wind turbine installations. Decisions about the location and character of wind farms should be made with an eye not only to present but also future wind resource, which may change as increasing carbon dioxide forces reductions in the poleward temperature gradient, and thus potentially in the mean tropospheric westerly winds. Analysis of the IPCC AR4 SRESa1b model projections shows a consistent pattern of enhanced wind power resource over the U.S. south central plains, and reduced wind power over the Atlantic. Over the crucial near-shore region, the multi-model ensemble mean shows reduced winds, but there is significant model disagreement here. In this presentation we diagnose the relative roles of mass rearrangement and momentum flux changes in driving surface wind changes in response to global warming. In addition, results from high-resolution downscaled projections of the North American Regional Climate Change Assessment Program (NARCCAP) are analyzed. Preliminary results show agreement with the large scale model projections at large scale. However, regional details show important deviations from the large scale patterns, including enhanced wind resource in the Gulf of Maine, and off the Delmarva Penninsula. Multimodel ensemble estimate of change in wind power resource (percentage change in monthly mean of cube of surface wind) from the decade 1990-2000 to the decade 2090-2100, across seven of the IPCC AR4 SRESA1B models runs (BCCR, CNRM, CSIRO, GFDL, MIROC (medium resolution), ECHAM2, and MRI). Models chosen are those which provided daily surface wind data on the WCRP CMIP3 data archive. Colors in indicate the mean percentage increase, while thatching indicates that this mean change exceeds the standard deviation among the model

  20. A GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic c...

  1. Anthropogenic Water Augmentation in Major American River Basins through Cloud Seeding to Enhance Snowpack

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.

    2009-04-01

    Recent rapid depletions of glaciers and intense droughts throughout the world have created a need to reexamine modern water augmentation technologies for enhancing snowpack in mountainous regions. Today's reliance on clean efficient hydroelectric power in the Alps from France to Hungary poses a critical need for sustainable snow packs and high elevation water supplies through out the year. Hence, the need to make natural cloud systems more efficient precipitators during the cold season through anthropogenic weather modification techniques. The Bureau of Reclamation, US Department of the Interior, has spent over 39M in research from 1963 to 1990 to develop the scientific basis for snowpack augmentation in the headwaters of the Colorado, American, and Columbia River Basins in the western United States, and through USAID in Morocco. This paper presents a brief summary of the research findings and shows that even during drought conditions potential exists for significant, cost-effective enhancement of water supplies. Examples of ground based propane and AgI seeding generators, cloud physics studies of supercooled cloud droplets and ice crystal characteristics that indicate seeding potential will be shown. Hypothetical analyses of seeding potential in 17 western states from Montana to California will be presented based on observed SNOTEL snow water equivalent measurements, elevation and observed winter precipitation. Early studies indicated from 5 to 20% increases in snow pack were possible, if winter storm systems were seeded effectively. If this potential was realized in drought conditions observed in 2003, over 1.08 million acre feet (1.33 x 10x9 m3) of additional water could be captured by seeding efficiently and effectively in just 10 storms. Results from recent projects sponsored by the National Science Foundation, NOAA, and the States of Wyoming, Utah and Nevada, and conducted by the National Center for Atmospheric Research will be discussed briefly. Examples of

  2. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    NASA Astrophysics Data System (ADS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  3. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.

    2007-10-01

    Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double moment cloud microphysics scheme developed for stratiform clouds to convective clouds in the ECHAM5 general circulation model. This increases the liquid water path in the tropics and reduces the sensitivity of the liquid water path with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulations in which greenhouse gases and aerosols emissions are increased since pre-industrial times, accounting for microphysics in convective clouds matches most closely the observed increase in precipitation. The total anthropogenic aerosol effect since pre-industrial time is slightly reduced from -1.6 to -1.9 W m-2 when microphysics are only included in stratiform clouds to -1.5 W m-2 when microphysics are included both in stratiform and convective clouds.

  4. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region

    USGS Publications Warehouse

    Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.

    2003-01-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.

  5. Terrestrial Water Storage Variations from a Global Land Surface Model Simulation with the Anthropogenic Impacts on Hydrology

    NASA Astrophysics Data System (ADS)

    Yeh, P. J.; Pokhrel, Y. N.; Koirala, S.

    2013-12-01

    Among global water cycle components, Terrestrial Water Storage (TWS) is one of the most difficult to estimate. In this study, basin-scale regional TWS variations simulated by a global-scale land surface model, after validating with GRACE data and observed streamflow, are used to investigate the dominant TWS components as well as the interactions among TWS components over some largest river basins. The analysis is based on an integrated water resources assessment modelling framework developed by incorporating human impact schemes (i.e., reservoir operation, irrigation, withdrawal, groundwater pumping, and environmental flow requirements) into a land surface model - the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO). MATSIRO simulates the majority of land hydrologic processes on a physical basis at the global 1° × 1° resolution. The terrestrial water storage (TWS) simulated consists of soil moisture, groundwater, river water, snow and ice, and the human impact components such as reservoir storage. The effects of irrigation and groundwater pumping on TWS variations are also considered in certain regions where their impacts are known to be significant (e.g. The High Plains Aquifer, US). Moreover, a comparison on the TWS components is made with the MATSIRO simulation without considering human impact. The difference between them is a direct measure on the extent to which human anthropogenic impacts affect regional hydrology.

  6. Global Genetic Differentiation in a Cosmopolitan Pest of Stored Beans: Effects of Geography, Host-Plant Usage and Anthropogenic Factors

    PubMed Central

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  7. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    PubMed

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  8. Anthropogenic and natural disturbances of carbon, nitrogen and water cycles and their global effects

    NASA Astrophysics Data System (ADS)

    Tian, H.; Melillo, J.; Virji, H.; Fu, C.; Dickinson, R.; Running, S.; Liu, J.; Wang, Q.; Reilly, J.

    2006-05-01

    Monsoon Asia includes the Indian sub-continent, Southeast Asia and East Asia. Monsoon Asia is home to more than one-half of the world population, but the total land area in this region is only about 16% of earth's land surface. This region is covered by a range of ecosystems from tropical forests in Southeast Asia to boreal forests in the northern Asia, and from temperate forests in Eastern Asia to deserts in western Asia and tundra in the Himalayan Mountains. These ecosystems account for about one fourth of the potential global terrestrial net primary productivity and for a similar fraction of the carbon stored in land ecosystems. The structure and functioning of these ecosystems are being affected by a complex set of multiple human-induced stresses including air pollution and land transformation. The unprecedented combination of economic and population growth has led to a dramatic land transformation and air pollution across monsoon Asia. The large-scale land transformation and air pollution have important implications for the cycles of carbon, nitrogen and water at regional and global scales. Clearly, monsoon Asia is of critical importance to the understanding of how changing climates and human impacts interact to influence the structure and functioning of ecosystems and the biosphere. In this study, we have reviewed recent advances in the understanding of human-induced changes in biogeochemical and hydrological cycles in Monsoon Asia, including the human-monsoon interactions and the linkage of Asian monsoon to global climate. Finally we have discussed gaps and limitations in existing information that need to be investigated in the future to improve our understanding of human/nature dynamics in monsoon Asia and its linkage to the Earth system.

  9. Global albedo change and radiative cooling from anthropogenic land-cover change, 1700 to 2005 based on MODIS, land-use harmonization and radiative kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread anthropogenic land-cover change over the last five centuries has influenced the global climate system through both biogeochemical and biophysical processes. Models indicate that warming from carbon emissions associated with land cover conversion have been partially offset if not outweigh...

  10. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions.

    PubMed

    Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Selin, Noelle E; Olivier, Jos G J; Guizzardi, Diego; Maas, Rob; Dentener, Frank

    2014-10-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1,287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg(0)) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg(2+)) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg(0), has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg(0) emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1°×0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The model can generally

  11. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951-2000

    USGS Publications Warehouse

    Milliman, John D.; Farnsworth, K.L.; Jones, P.D.; Xu, K.H.; Smith, L.C.

    2008-01-01

    During the last half of the 20th century, cumulative annual discharge from 137 representative rivers (watershed areas ranging from 0.3 to 6300 ?? 103??km2) to the global ocean remained constant, although annual discharge from about one-third of these rivers changed by more than 30%. Discharge trends for many rivers reflected mostly changes in precipitation, primarily in response to short- and longer-term atmospheric-oceanic signals; with the notable exception of the Parana, Mississippi, Niger and Cunene rivers, few of these "normal" rivers experienced significant changes in either discharge or precipitation. Cumulative discharge from many mid-latitude rivers, in contrast, decreased by 60%, reflecting in large part impacts due to damming, irrigation and interbasin water transfers. A number of high-latitude and high-altitude rivers experienced increased discharge despite generally declining precipitation. Poorly constrained meteorological and hydrological data do not seem to explain fully these "excess" rivers; changed seasonality in discharge, decreased storage and/or decreased evapotranspiration also may play important roles. ?? 2008 Elsevier B.V. All rights reserved.

  12. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination

    PubMed Central

    Chen, Cynthia; Sedwick, Peter N.; Sharma, Mukul

    2009-01-01

    Osmium is one of the rarer elements in seawater, with typical concentration of ≈10 × 10−15 g g−1 (5.3 × 10−14 mol kg−1). The osmium isotope composition (187Os/188Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (≈1.3) and mantle/cosmic dust (≈0.13). Here, we show that the 187Os/188Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (≈0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower 187Os/188Os ratio (≈0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts. PMID:19416862

  13. Enhancing Polyhedral Relaxations for Global Optimization

    ERIC Educational Resources Information Center

    Bao, Xiaowei

    2009-01-01

    During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…

  14. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    NASA Astrophysics Data System (ADS)

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development

  15. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  16. The Effects of Anthropogenic Land Cover Change on Global and Regional Climate in the Preindustrial Holocene: A Review

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.

    2014-12-01

    The recent development of anthropogenic land cover change (ALCC) scenarios that cover all or part of the preindustrial Holocene (11,700 BP to ~AD 1850) has led to a number of modelling studies on the impacts of land cover change on climate, using both GCMs and regional climate models. Because most ALCC scenarios arrive at similar estimates of anthropogenic deforestation by the late preindustrial, most models agree that the net biogeophysical effect of ALCC by AD 1850 is regional cooling at mid- to high-latitudes and warming and drying over the tropics and subtropics. In particular, tropical deforestation appears to lead to local amplification of externally forced drought cycles, e.g., from ENSO. The spatial extent of these climate changes varies between models because the choice of ALCC scenario leads to large differences in the initial forcing. Those model studies that considered biogeochemical feedbacks show that the importance of preindustrial CO2 emissions ranges from being insignificant to larger than the global biogeophysical feedback, depending on assumptions made about potential natural atmospheric CO2 at the beginning of the Industrial Revolution. While the net magnitude of deforestation is similar among ALCC scenarios at AD 1850, the timing of deforestation varies widely, which, in addition to affecting the inferred importance of biogeochemical feedbacks, leads to large differences in the estimated importance of ALCC on climate earlier in the Holocene. For example, modelling experiments performed on Europe and the Mediterranean representing conditions at the peak of the Roman Empire or in Mesoamerica for the Classic Maya period show large differences in the estimated importance of the biogeophysical feedback to regional climate depending on the ALCC scenario used. The wide variety of results gained so far from ALCC and climate modelling experiments shows that the question of "how much did humans influence the state of the Earth System before the

  17. Enhancing Global Understanding: A Call for Cooperation.

    ERIC Educational Resources Information Center

    Naylor, David T.

    Social studies education will improve if educators favoring global education and law-related education replace counterproductive competition with mutual respect and cooperation. As two of the many curricular approaches clamoring for a just share of elementary and secondary school social studies programs, global education and law-related education…

  18. Enhancing Student Collaboration in Global Virtual Teams

    ERIC Educational Resources Information Center

    Kohut, Gary F.

    2012-01-01

    With the growth in the global economy and the rapid development of communication and information technologies, global virtual teams are quickly becoming the norm in the workplace. Research indicates, however, that many students have little or no experience working in such teams. Students who learn through these experiences benefit from higher task…

  19. Anthropogenic Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerosols or airborne dust can originate from sources unrelated to anthropogenic activity but may also be initiated or exacerbated by anthropogenic actions. Anthropogenic dust refers to dust activity (emission and suppression) that is present due to human activity. Wind erosion in the U.S. is a sign...

  20. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Cristofanelli, P.; Fierli, F.; Marinoni, A.; Calzolari, F.; Duchi, R.; Burkhart, J.; Stohl, A.; Maione, M.; Arduini, J.; Bonasoni, P.

    2013-01-01

    This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007-June 2009, have been analyzed and correlated with the outputs of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB) and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC at ICO-OV were 54 ± 3 ppb, 122 ± 7 ppb and 213 ± 34 ng m-3 (mean ± expanded uncertainty with p < 95%), with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO. According to FLEXPART outputs, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracers only during specific transport events. We characterised in detail five "representative" events with respect to transport scales (i.e. global, regional and local), source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from -0.22 to 0.71) and BC/CO (from 2.69 to 29.83 ng m-3 ppb-1) were observed. CO contributions related with anthropogenic emissions (COant) contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May-September) for CO, 19% (in May-September) for O3 and 32% (in January-April) for BC. During May-September, the analysis of the correlation among CO, O3 and BC as a function of the COant indicated that ICO-OV was influenced by air-masses rich in anthropogenic pollution transported from the regional to the global

  1. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Cristofanelli, P.; Fierli, F.; Marinoni, A.; Duchi, R.; Burkhart, J.; Stohl, A.; Maione, M.; Arduini, J.; Bonasoni, P.

    2012-08-01

    This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007-June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB) and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC concentrations at ICO-OV were 54 ± 3 ppbv, 122 ± 7 ppbv and 213 ± 34 ng m-3 (mean ± expanded uncertainty with p<95%), with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO. According to FLEXPART output, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracer concentrations only during specific transport events. We characterised in detail five major events with respect to transport scales (i.e. global, regional and local), source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from -0.22 to 0.71) and BC/CO (from 2.69 to 29.83 ng m-3 ppbv-1) were observed. CO related with anthropogenic emissions (COant) contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May-September) for CO, 19% (in May-September) for O3 and 32% (in January-April) for BC. During May-September, the analysis of the correlation among CO, O3 and BC as a function of the COant indicated that ICO-OV was influenced by air-masses rich in anthropogenic pollution transported from the

  2. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Li, Mengmeng; Zhu, Tong; Zhang, Qiang; Zhang, Xiaoye

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³ and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  3. Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks

    NASA Astrophysics Data System (ADS)

    Cyronak, Tyler; Schulz, Kai G.; Santos, Isaac R.; Eyre, Bradley D.

    2014-08-01

    Physical uptake of anthropogenic CO2 is the dominant driver of ocean acidification (OA) in the open ocean. Due to expected decreases in calcification and increased dissolution of CaCO3 framework, coral reefs are thought to be highly susceptible to OA. However, biogeochemical processes can influence the pCO2 and pH of coastal ecosystems on diel and seasonal time scales, potentially modifying the long-term effects of increasing atmospheric CO2. By compiling data from the literature and removing the effects of short-term variability, we show that the average pCO2 of coral reefs throughout the globe has increased ~3.5-fold faster than in the open ocean over the past 20 years. This rapid increase in pCO2 has the potential to enhance the acidification and predicted effects of OA on coral reef ecosystems. A simple model demonstrates that potential drivers of elevated pCO2 include additional anthropogenic disturbances beyond increasing global atmospheric CO2 such as enhanced nutrient and organic matter inputs.

  4. Anthropogenic carbon dioxide source regions observed from space

    NASA Astrophysics Data System (ADS)

    Schneising, Oliver; Heymann, Jens; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Burrows, John P.

    2013-04-01

    Urban areas, which are home to the majority of today's world population, are responsible for more than two-thirds of the global energy-related carbon dioxide emissions. Given the ongoing demographic growth and rising energy consumption in metropolitan regions particularly in the developing world, urban-based emissions are expected to further increase in the future. As a consequence, monitoring and independent verification of reported anthropogenic emissions is becoming more and more important. It is demonstrated using CO2 column-averaged mole fraction data retrieved from the SCIAMACHY instrument onboard ENVISAT that anthropogenic CO2 emissions can be detected from space and that emission trends might be tracked using satellite observations. This is promising with regard to future satellite missions with high spatial resolution and wide swath imaging capability aiming at constraining anthropogenic emissions down to the point-source scale. By subtracting retrieved background values from those retrieved over urban areas the regional contrasts are quantified and significant CO2 enhancements are found for several anthropogenic source regions around the world. The order of magnitude of the enhancements is in agreement with what is expected for anthropogenic CO2 signals. The validity of the retrieved spatial enhancement patterns and of the temporal trends of the retrieved enhancements is assessed by comparison with anthropogenic emissions from the Emission Database for Global Atmospheric Research (EDGAR).

  5. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    SciTech Connect

    Granier, Claire; Bessagnet, Bertrand; Bond, Tami C.; D'Angiola, Ariela; Denier van der Gon, Hugo; Frost, G. J.; Heil, Angelika; Kaiser, Johannes W.; Kinne, Stefan; Klimont, Z.; Kloster, Jean; Lamarque, J.-F.; Liousse, Catherine; Masui, Toshihiko; Meleux, Frederik; Mieville, Aude; Ohara, Toshimasa; Raut, Jean-Christophe; Riahi, Keywan; Schultz, Martin; Smith, Steven J.; Thomson, Allison M.; van Aardenne, John; van der Werf, Guido R.; Van Vuuren, Detlef

    2011-08-08

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement in most years. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China where emissions in 1980 and 1990 need to be better defined. Emissions of CO need a better quantification in the USA for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burnt.

  6. A solar process to end anthropogenic global warming; STEP (Solar Thermal Electrochemical Photo) generation of energetic molecules

    NASA Astrophysics Data System (ADS)

    Licht, Stuart

    2010-02-01

    An alternate process to convert solar energy is derived which captures sunlight with conversion efficiency greater than that of photovoltaics. In this STEP process, rather than electrical generation, solar energy directly provides the chemical products needed by society. This original process is derived for the solar generation of energetically rich chemicals, including chlorine, metals, hydrogen and to proactively convert anthropogenic carbon dioxide generated in burning fossil fuels. The STEP process distinguishes radiation that is energy sufficient to drive photovoltaic charge transfer, and applies all excess energy to heat and decrease the energy of enodothermic electrolysis reactions. Energy sufficient, visible, sunlight drives photovoltaic charge transfer, and available heat, infrared sunlight, and excess visible sunlight, heats, and decreases the energy of, an electrolysis reaction. For example, from the STEP conversion theory, sunlight will recycle and remove carbon dioxide at 50% solar efficiency. Details at: ``STEP generation of energetic molecules,'' J. Phys. Chem., C, 113, 16283 (2009). )

  7. Top-down model estimates, bottom-up inventories, and future projections of global natural and anthropogenic emissions of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Kanter, D.

    2013-12-01

    Nitrous oxide (N2O) is the third most abundantly emitted greenhouse gas and the largest remaining emitted ozone depleting substance. It is a product of nitrifying and denitrifying bacteria in soils, sediments and water bodies. Humans began to disrupt the N cycle in the preindustrial era as they expanded agricultural land, used fire for land clearing and management, and cultivated leguminous crops that carry out biological N fixation. This disruption accelerated after the industrial revolution, especially as the use of synthetic N fertilizers became common after 1950. Here we present findings from a new United Nations Environment Programme report, in which we constrain estimates of the anthropogenic and natural emissions of N2O and consider scenarios for future emissions. Inventory-based estimates of natural emissions from terrestrial, marine and atmospheric sources range from 10 to 12 Tg N2O-N/yr. Similar values can be derived for global N2O emissions that were predominantly natural before the industrial revolution. While there was inter-decadal variability, there was little or no consistent trend in atmospheric N2O concentrations between 1730 and 1850, allowing us to assume near steady state. Assuming an atmospheric lifetime of 120 years, the 'top-down' estimate of pre-industrial emissions of 11 Tg N2O-N/yr is consistent with the bottom-up inventories for natural emissions, although the former includes some modest pre-industrial anthropogenic effects (probably <1 Tg N2O-N/yr). Assuming that the changes in atmospheric concentrations from 1850 to the present are entirely anthropogenic, the top-down methodology yields an estimate of 5.3 Tg N2O-N/yr (range 5.2 - 5.5) net anthropogenic emissions for the period 2000-2007. Based on a review of bottom-up inventories, we estimate total net anthropogenic N2O emissions of 6.0 Tg N2O-N/yr (5.4-8.4 Tg N2O-N/yr). Estimates (and ranges) by sector (in Tg N2O-N/yr) are: agriculture 4.1 Tg (3.8-6.8); biomass burning 0.7 (0

  8. Partnership to Enhance Diversity in Marine Geosciences: Holocene Climate and Anthropogenic Changes from Long Island Sound, NY

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Zheng, Y.; Kohfeld, K. E.; Marchese, P.; Cormier, M.; Warkentine, B.

    2005-12-01

    This project, sponsored by the National Science Foundation, Opportunities to Enhance Diversity in the Geosciences Division, will develop a program based on multidisciplinary investigations of Long Island Sound, as a vehicle to enhance diversity in geosciences. The program includes a curriculum centered on geosciences with a substantial field and laboratory component. Students will participate in a one-week oceanographic expedition to Long Island Sound aboard the R/V Cape Henlopen and in day trips using SUNY Maritime College's R/V Alexanderson. The goal is to illustrate the dominant physical processes in an urban coastal area by using a variety of oceanographic mapping techniques, such as multibeam bathymetric mapping, sediment and water sampling, and current profiling. The working hypothesis is that New York City students will be attracted to geosciences through an integrated field and research experience which familiarizes them with their own environment. Furthermore, they will be introduced to solving geoscience problems in a hands-on manner while receiving one-on-one mentoring in a supportive environment. Strong support exists from the City University of New York (CUNY) at the graduate level through MAGNET fellowships. At the undergraduate level, the geoscience curriculum fulfills a science requirement for completion of a BA in geosciences. Support also exists from the "Alliance for Minority Participation" (AMP), a program supported by the National Science Foundation and in which Queens College (QC) and CUNY participate, and the "Search for Education, Elevation, and Knowledge" (SEEK), a QC program designed to provide educational opportunities for academically motivated students who need substantial financial assistance to attend college. The main scientific objectives are 1) to evaluate the impact of anthropogenic activities through studies of the waters, plankton, and sediments and to propose measures for their remediation, and 2) to begin to assess long

  9. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report, September 15, 1993--September 14, 1997

    SciTech Connect

    Sarmiento, J.L.; Pacala, S.W.

    1998-06-01

    The primary accomplishment of this research was the development of an ocean biogeochemistry model for the carbon cycle, and the application of this model to studies of anthropogenic CO{sub 2} uptake and the global carbon cycle. The model has been used to study the oceanic uptake that would occur if future atmospheric CO{sub 2} were to be stabilized with the ocean circulation remaining constant. The authors also modeled how oceanic uptake would be affected by changes in ocean circulation that are predicted to occur due to global warming. The research resulted in 21 publications, and an additional 5 papers either in press or in preparation. The accomplishments of this research served as the foundation on which the Carbon Modeling Consortium was built. The CMC is a NOAA funded collaborative program involving principal investigators from various NOAA laboratories and universities. It has the goal of developing techniques to monitor the global carbon cycle on land as well as the ocean, and to predict its future course.

  10. Assessment of Climatic and Anthropogenic Impacts on the Global Carbon Cycle Constrained by Atmospheric Measurements and Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Keeling, Charles D.; Piper, Stephen C.

    2001-01-01

    This grant aimed to establish how the global carbon cycle has responded and will respond to global change. We proposed to use models to predict measurements of atmospheric CO2 concentration and C-13/C-12 isotopic ratio, and thereby to establish how sources and sinks of atmospheric CO2 have been influenced by climatic change and human activities. As the work progressed we developed strategies involving finding regional sources and sinks of atmospheric CO2 by an inverse approach, and studying their seasonal and interannual variability.

  11. Non-communicable diseases and global health governance: enhancing global processes to improve health development.

    PubMed

    Magnusson, Roger S

    2007-01-01

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy. PMID:17519005

  12. Non-communicable diseases and global health governance: enhancing global processes to improve health development

    PubMed Central

    Magnusson, Roger S

    2007-01-01

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy. PMID:17519005

  13. Impact of anthropogenic and climatic changes on biomass and diversity of the Central African forests, from local to global scale: original methods for new results

    NASA Astrophysics Data System (ADS)

    Mortier, Frédéric; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis; Picard, Nicolas; Rossi, Vivien

    2014-05-01

    Forests of the Congo Basin, the second most important remaining block of tropical moist forest in the world, are facing increasing anthropogenic pressure and climate change. Understanding the biomass and diversity dynamics under these pressures is one major challenge for African nations and international communities. This talk aims to present original methods to model, infer, and predict growth, biomass and diversity of Central African forests, as well as new results on the impacts of global change on those forests, at various scales. With respect to methods, we will present theoretical frameworks allowing (i) to model growth processes in species-rich ecosystems like tropical rain forests, (ii) to take into account uncertainties in biomass estimation. In terms of results, we will highlight at a local scale, how human activities as well as climatic variations would impact (i) the composition and diversity of forests, (ii) the dynamics of biomass and growth processes. At a global scale, we will demonstrate how environmental filtering controls the above ground biomass. The number of studies are currently increasing over the Congo Basin through several research projects led by our team (CoForTips, DynAfFor) and contributing to various international organization's programs (Cifor, FAO, Comifac, Ofac).

  14. Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, life-history traits and anthropogenic factors

    PubMed Central

    Asgharian, Hosseinali; Chang, Peter L.; Lysenkov, Sergey; Scobeyeva, Victoria A.; Reisen, William K.; Nuzhdin, Sergey V.

    2015-01-01

    We present the first genome-wide study of recent evolution in Culex pipiens species complex focusing on the genomic extent, functional targets and likely causes of global and local adaptations. We resequenced pooled samples of six populations of C. pipiens and two populations of the outgroup Culex torrentium. We used principal component analysis to systematically study differential natural selection across populations and developed a phylogenetic scanning method to analyse admixture without haplotype data. We found evidence for the prominent role of geographical distribution in shaping population structure and specifying patterns of genomic selection. Multiple adaptive events, involving genes implicated with autogeny, diapause and insecticide resistance were limited to specific populations. We estimate that about 5–20% of the genes (including several histone genes) and almost half of the annotated pathways were undergoing selective sweeps in each population. The high occurrence of sweeps in non-genic regions and in chromatin remodelling genes indicated the adaptive importance of gene expression changes. We hypothesize that global adaptive processes in the C. pipiens complex are potentially associated with South to North range expansion, requiring adjustments in chromatin conformation. Strong local signature of adaptation and emergence of hybrid bridge vectors necessitate genomic assessment of populations before specifying control agents. PMID:26085592

  15. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines.

    PubMed

    Rodolfo, Kelvin S; Siringan, Fernando P

    2006-03-01

    Land subsidence resulting from excessive extraction of groundwater is particularly acute in East Asian countries. Some Philippine government sectors have begun to recognise that the sea-level rise of one to three millimetres per year due to global warming is a cause of worsening floods around Manila Bay, but are oblivious to, or ignore, the principal reason: excessive groundwater extraction is lowering the land surface by several centimetres to more than a decimetre per year. Such ignorance allows the government to treat flooding as a lesser problem that can be mitigated through large infrastructural projects that are both ineffective and vulnerable to corruption. Money would be better spent on preventing the subsidence by reducing groundwater pumping and moderating population growth and land use, but these approaches are politically and psychologically unacceptable. Even if groundwater use is greatly reduced and enlightened land-use practices are initiated, natural deltaic subsidence and global sea-level rise will continue to aggravate flooding, although at substantially lower rates. PMID:16512865

  16. The Geophysical, Anthropogenic, and Social Dimensions of Delta Risk: Estimating Contemporary and Future Risks at the Global Scale

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J. P.; Foufoula-Georgiou, E.

    2015-12-01

    Deltas are highly sensitive to increasing risks arising from local humanactivities, land subsidence, regional water management, global sea-level rise,and climate extremes. We extended a delta risk framework to include the impactof relative sea-level rise on exposure to flood conditions. We apply thisframework to an integrated set of global environmental, geophysical, and socialindicators over 48 major deltas to quantify how delta flood risk due to extremeevents is changing over time. Although geophysical and relative sea-level risederived risks are distributed across all levels of economic development, wealthycountries effectively limit their present-day threat by gross domesticproduct-enabled infrastructure and coastal defense investments. However, wheninvestments do not address the long-term drivers of land subsidence and relativesea-level rise, overall risk can be very sensitive to changes in protectivecapability. For instance, we show how in an energy-constrained future scenario,such protections will probably prove to be unsustainable, raising relative risksby four to eight times in the Mississippi and Rhine deltas and by one-and-a-halfto four times in the Chao Phraya and Yangtze deltas. The current emphasis onshort-term solutions on the world's deltas will greatly constrain options fordesigning sustainable solutions in the long term.

  17. Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, life-history traits and anthropogenic factors.

    PubMed

    Asgharian, Hosseinali; Chang, Peter L; Lysenkov, Sergey; Scobeyeva, Victoria A; Reisen, William K; Nuzhdin, Sergey V

    2015-07-01

    We present the first genome-wide study of recent evolution in Culex pipiens species complex focusing on the genomic extent, functional targets and likely causes of global and local adaptations. We resequenced pooled samples of six populations of C. pipiens and two populations of the outgroup Culex torrentium. We used principal component analysis to systematically study differential natural selection across populations and developed a phylogenetic scanning method to analyse admixture without haplotype data. We found evidence for the prominent role of geographical distribution in shaping population structure and specifying patterns of genomic selection. Multiple adaptive events, involving genes implicated with autogeny, diapause and insecticide resistance were limited to specific populations. We estimate that about 5-20% of the genes (including several histone genes) and almost half of the annotated pathways were undergoing selective sweeps in each population. The high occurrence of sweeps in non-genic regions and in chromatin remodelling genes indicated the adaptive importance of gene expression changes. We hypothesize that global adaptive processes in the C. pipiens complex are potentially associated with South to North range expansion, requiring adjustments in chromatin conformation. Strong local signature of adaptation and emergence of hybrid bridge vectors necessitate genomic assessment of populations before specifying control agents. PMID:26085592

  18. Detecting anthropogenic footprints in sea level rise

    PubMed Central

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  19. Detecting anthropogenic footprints in sea level rise.

    PubMed

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-01-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin. PMID:26220773

  20. Detecting anthropogenic footprints in sea level rise

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Riva, Riccardo; Berk, Kevin; Jensen, Jürgen

    2015-07-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ~1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

  1. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature

    SciTech Connect

    Van Vuuren, Detlef; Bouwman, Lex; Smith, Steven J.; Dentener, Frank

    2011-09-17

    Most long-term scenarios of global N emissions are produced by Integrated Assessment Models in the context of climate change assessment. The scenarios indicate that N emissions are likely to increase in the next decades, followed by a stabilization or decline. Critical factors for future N emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport and power generation), air pollution control policy and climate policy. The new scenarios made for climate change assessment, the Representative Concentration Pathways - RCPs, are not representative of the range of possible N-emission projections. A more focused development of scenarios for air pollution may improve the relevance and quality of the scenarios.

  2. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants.

    PubMed

    Kallenborn, Roland; Halsall, Crispin; Dellong, Maud; Carlsson, Pernilla

    2012-11-01

    The effect of climate change on the global distribution and fate of persistent organic pollutants (POPs) is of growing interest to both scientists and policy makers alike. The impact of warmer temperatures and the resulting changes to earth system processes on chemical fate are, however, unclear, although there are a growing number of studies that are beginning to examine these impacts and changes in a quantitative way. In this review, we examine broad areas where changes are occurring or are likely to occur with regard to the environmental cycling and fate of chemical contaminants. For this purpose we are examining scientific information from long-term monitoring data with particular emphasis on the Arctic, to show apparent changes in chemical patterns and behaviour. In addition, we examine evidence of changing chemical processes for a number of environmental compartments and indirect effects of climate change on contaminant emissions and behaviour. We also recommend areas of research to address knowledge gaps. In general, our findings indicate that the indirect consequences of climate change (i.e. shifts in agriculture, resource exploitation opportunities, etc.) will have a more marked impact on contaminants distribution and fate than direct climate change. PMID:23014859

  3. 5-dim superconformal index with enhanced E n global symmetry

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Cheol; Kim, Sung-Soo; Lee, Kimyeong

    2012-10-01

    The five-dimensional {N}=1 supersymmetric gauge theory with Sp( N) gauge group and SO(2 N f ) flavor symmetry describes the physics on N D4-branes with N f D8-branes on top of a single O8 orientifold plane in Type I' theory. This theory is known to be superconformal at the strong coupling limit with the enhanced global symmetry {E_{{N_f +1}}} for N f ≤ 7. In this work we calculate the superconformal index on S 1 × S 4 for the Sp(1) gauge theory by the localization method and confirm such enhancement of the global symmetry at the superconformal limit for N f ≤ 5 to a few leading orders in the chemical potential. Both perturbative and (anti)instanton contributions are present in this calculation. For N f = 6, 7 cases some issues related the pole structure of the instanton calculation could not be resolved and here we could provide only some suggestive answer for the leading contributions to the index. For the Sp( N) case, similar issues related to the pole structure appear.

  4. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Wang, Z. F.; Li, J.; Tang, X.; Ge, B. Z.; Wu, X. L.; Wild, O.; Carmichael, G. R.

    2015-09-01

    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg - Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas- and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas- and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatiotemporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24 % in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62 % of surface mercury concentrations and deposition over China, respectively

  5. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  6. Global Wild Annual Lens Collection: A Potential Resource for Lentil Genetic Base Broadening and Yield Enhancement

    PubMed Central

    Singh, Mohar; Bisht, Ishwari Singh; Kumar, Sandeep; Dutta, Manoranjan; Bansal, Kailash Chander; Karale, Moreshwar; Sarker, Ashutosh; Amri, Ahmad; Kumar, Shiv; Datta, Swapan Kumar

    2014-01-01

    Crop wild relatives (CWRs) are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested. PMID:25254552

  7. Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement.

    PubMed

    Singh, Mohar; Bisht, Ishwari Singh; Kumar, Sandeep; Dutta, Manoranjan; Bansal, Kailash Chander; Karale, Moreshwar; Sarker, Ashutosh; Amri, Ahmad; Kumar, Shiv; Datta, Swapan Kumar

    2014-01-01

    Crop wild relatives (CWRs) are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested. PMID:25254552

  8. Past and Future of the Anthropogenic Biosphere

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2010-12-01

    Human populations and their use of land have now transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes). As anthromes have emerged as the dominant global forms of ecological pattern and process, human interactions with terrestrial ecosystems have become a key earth system process, determining the structure and functioning of the biosphere. This presentation explores Ester Boserup’s land use intensification theories as models for understanding the emergence and dynamics of anthromes and their ecological processes, including their biogeochemistry and community structure, from the mostly wild biosphere of the Holocene to the primarily anthropogenic biosphere of the present and future. Existing global models and data for human population growth and land use over the Holocene differ in their portrayal of the global transition to a mostly anthropogenic biosphere. Yet there is little doubt that human populations have continued to grow over the long term and that anthromes have been increasingly important global ecological systems for millennia. This is conclusive evidence that human interactions with ecosystems can be sustained over the long-term, albeit under conditions that may no longer be realizable by either Earth or human systems. The classic Malthusian paradigm, in which human population growth outstrips natural resources leading to population collapse is unsupported by historical observations at global scale. Boserupian intensification is the better model, providing a robust theoretical foundation in which socio-ecological systems evolve as human populations increase, towards increasingly efficient use of limiting natural resources and enhanced production of anthropogenic ecological services such as food. This is not a story of technical advance, but rather of the forced adoption of ever more energy-intensive technical solutions in support of ever increasing population demands. And it does explain historical changes in the biosphere

  9. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Wang, Z. F.; Li, J.; Tang, X.; Ge, B. Z.; Wu, X. L.; Wild, O.; Carmichael, G. R.

    2014-10-01

    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg) has been developed. In GNAQPMS-Hg, the gas and aqueous phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas and aqueous phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatial-temporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of two, and within a factor of five for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24% in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62% of surface mercury concentrations and deposition over China, respectively. Along the rim of the western Pacific, the contributions from Chinese

  10. Enhancement of Global Communication Skill at the School of Engineering

    NASA Astrophysics Data System (ADS)

    Morimura, Kumiko

    Globalization is one of the most important challenges for universities. Especially for the School of Engineering, it is crucial to foster researchers or engineers with broader perspective. International communication competency is essential for them in order to deal with other professionals from overseas. Center for Innovation in Engineering Education established in the School of Engineering at the University of Tokyo in 2005 started two programs for graduate and undergraduate students to enhance their international communication competency and to increase international competitiveness. ‘English for Scientists and Engineers A, B’ are for the graduate students to learn how to write papers in English and how to make good presentations. Special English Lessons are for the undergraduate students to have a chance to practice English conversation or prepare for TOEFL test. In this paper, the authors discuss the details of the programs, their purpose and the future tasks.

  11. Enhancing Global Competitiveness through Experiential Learning: Insights into Successful Programming

    ERIC Educational Resources Information Center

    Ghose, Nabarun

    2010-01-01

    International exposure of students is very essential in today's globalized world. Experiential learning, such as study abroad, plays a major role in developing global competencies in students, making them more marketable globally. This paper highlights one experiential activity that injects global competencies in students, thereby making them more…

  12. Global View of Io (Natural and False/Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Global view of Jupiter's volcanic moon Io obtained on 07 September, 1996 Universal Time using the near-infrared, green, and violet filters of the Solid State Imaging system aboard NASA/JPL's Galileo spacecraft. The top disk is intended to show the satellite in natural color, similar to what the human eye would see (but colors will vary with display devices), while the bottom disk shows enhanced color to highlight surface details. The reddest and blackest areas are closely associated with active volcanic regions and recent surface deposits. Io was imaged here against the clouds of Jupiter. North is to the top of the frames. The finest details that can discerned in these frames are about 4.9 km across.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  13. Using reconstructions of the global peat C balance over the Holocene to constrain the timing and magnitude of anthropogenic land use emissions

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Yu, Zicheng; Massa, Charly; Spahni, Renato; Prentice, Colin; Joos, Fortunat

    2016-04-01

    Major circumpolar peatlands of the northern hemisphere have established over the last 14 kyr, with the majority of peat C sequestered during the Holocene. Today, this C storage amounts to 500-600 GtC. In spite of this substantial impact on the C cycle, independent records of the total terrestrial C balance suggest a small long-term trend over the last 6 kyr. The advent of agriculture, associated land use change, and resulting cumulative CO2 emissions of 50-350 GtC have occurred during a period of continued C sequestration in peatlands. Relatively small variations in the total terrestrial C balance have thus been interpreted to indicate a coincidental timing and a similar magnitude of these compensating fluxes and to lend support for upper-end estimates of preindustrial land use emissions. Here, we test this hypothesis by combining observation-based reconstructions of the terrestrial C balance (ΔC) and peat storage (ΔCpeat) with new results from process-based global land C cycle models that hindcast peat C dynamics and CO2 emissions from anthropogenic land use change (ΔCLUC) following a set of contrasting land use reconstructions. Recent data compilations of peat C accumulation histories allow us to provide an improved temporal resolution of observation-based ΔCpeat. We assess the terrestrial C budget ΔC = ΔCpeat+ δ for different periods in the Holocene and in the last millennium and confront ΔCLUC with the budget residual δ. We find that the combination of ΔCpeat and ΔC and their temporal variations provide additional constraints on ΔCLUC estimates that have thus far not been taken into account. Between 11-7 kyr BP, ΔCpeat alone accounts for the majority of ΔC, incompatible with upper-end ΔCLUC estimates. Between 7-5 kyr BP and 5-2 kyr BP, the budget reveals a substantial land C source, but all model-based estimates of ΔCLUC fall short of explaining the magnitude of δ. ΔC reveals a relatively stable overall C balance during the last millennium

  14. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  15. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. PMID:17842894

  16. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  17. The new geospatial tools: global transparency enhancing safeguards verification

    SciTech Connect

    Pabian, Frank Vincent

    2010-09-16

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  18. Europa Global Views in Natural and Enhanced Colors

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This color composite view combines violet, green, and infrared images of Jupiter's intriguing moon, Europa, for a view of the moon in natural color (left) and in enhanced color designed to bring out subtle color differences in the surface (right). The bright white and bluish part of Europa's surface is composed mostly of water ice, with very few non-ice materials. In contrast, the brownish mottled regions on the right side of the image may be covered by hydrated salts and an unknown red component. The yellowish mottled terrain on the left side of the image is caused by some other unknown component. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.

    North is to the top of the picture and the sun fully illuminates the surface. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. The finest details that can be discerned are 25 kilometers across. The images in this global view were taken in June 1997 at a range of 1.25 million kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft, during its ninth orbit of Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2+ Repression Enhances Anthropogenic and Natural Substrate Degradation

    PubMed Central

    Salame, Tomer M.; Knop, Doriv; Levinson, Dana; Mabjeesh, Sameer J.; Yarden, Oded; Hadar, Yitzhak

    2012-01-01

    The versatile-peroxidase (VP) encoded by mnp4 is one of the nine members of the manganese-peroxidase (MnP) gene family that constitutes part of the ligninolytic system of the white-rot basidiomycete Pleurotus ostreatus (oyster mushroom). VP enzymes exhibit dual activity on a wide range of substrates. As Mn2+ supplement to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds and lignin, we examined the effect of Mn2+ on the expression profile of the MnP gene family. In P. ostreatus (monokaryon PC9), mnp4 was found to be the predominantly expressed mnp in Mn2+-deficient media, whereas strongly repressed (to approximately 1%) in Mn2+-supplemented media. Accordingly, in-vitro Mn2+-independent activity was found to be negligible. We tested whether release of mnp4 from Mn2+ repression alters the activity of the ligninolytic system. A transformant over-expressing mnp4 (designated OEmnp4) under the control of the β-tubulin promoter was produced. Now, despite the presence of Mn2+ in the medium, OEmnp4 produced mnp4 transcript as well as VP activity as early as 4 days after inoculation. The level of expression was constant throughout 10 days of incubation (about 0.4-fold relative to β-tubulin) and the activity was comparable to the typical activity of PC9 in Mn2+-deficient media. In-vivo decolorization of the azo dyes Orange II, Reactive Black 5, and Amaranth by OEmnp4 preceded that of PC9. OEmnp4 and PC9 were grown for 2 weeks under solid-state fermentation conditions on cotton stalks as a lignocellulosic substrate. [14C]-lignin mineralization, in-vitro dry matter digestibility, and neutral detergent fiber digestibility were found to be significantly higher (about 25%) in OEmnp4-fermented substrate, relative to PC9. We conclude that releasing Mn2+ suppression of VP4 by over-expression of the mnp4 gene in P. ostreatus improved its ligninolytic functionality. PMID:23285046

  20. Enhancing the Global Perspective of Middle School Students.

    ERIC Educational Resources Information Center

    Peters, Richard

    1990-01-01

    Provides eight lesson plans for grades five through eight designed to foster a global perspective and understanding of cultural and environmental diversity. Includes lesson objectives, suggested class activities, and teacher assessment suggestions. (RW)

  1. On the fate of anthropogenic nitrogen

    PubMed Central

    Schlesinger, William H.

    2009-01-01

    This article provides a synthesis of literature values to trace the fate of 150 Tg/yr anthropogenic nitrogen applied by humans to the Earth's land surface. Approximately 9 TgN/yr may be accumulating in the terrestrial biosphere in pools with residence times of ten to several hundred years. Enhanced fluvial transport of nitrogen in rivers and percolation to groundwater accounts for ≈35 and 15 TgN/yr, respectively. Greater denitrification in terrestrial soils and wetlands may account for the loss of ≈17 TgN/yr from the land surface, calculated by a compilation of data on the fraction of N2O emitted to the atmosphere and the current global rise of this gas in the atmosphere. A recent estimate of atmospheric transport of reactive nitrogen from land to sea (NOx and NHx) accounts for 48 TgN/yr. The total of these enhanced sinks, 124 TgN/yr, is less than the human-enhanced inputs to the land surface, indicating areas of needed additional attention to global nitrogen biogeochemistry. Policy makers should focus on increasing nitrogen-use efficiency in fertilization, reducing transport of reactive N to rivers and groundwater, and maximizing denitrification to its N2 endproduct. PMID:19118195

  2. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  3. Influence of Dynamic Land Use and Land Cover Change on Simulated Global Terrestrial Carbon and Nitrogen Cycles, Climate-carbon Cycle Feedbacks, and Interactions with Rising CO2 and Anthropogenic Nitrogen Deposition

    SciTech Connect

    Thornton, Peter E; Hoffman, Forrest M; Hurtt, George C

    2009-12-01

    Previous work has demonstrated the sensitivity of terrestrial net carbon exchange to disturbance history and land use patterns at the scale of individual sites or regions. Here we show the influence of land use and land cover dynamics over the historical period 1850-present on global-scale carbon, nutrient, water, and energy fluxes. We also explore the spatial and temporal details of interactions among land use and disturbance history, rising atmospheric carbon dioxide consentation, and increasing anthropogenic nitrogen deposition. Our simulations show that these interactions are significant, and that their importance grows over time, expressed as a fraction of the independent forcing terms. We conclude with an analysis of the influence of these interactions on the sign and magnitude of global climate-carbon cycle feedbacks.

  4. Three Methods of Enhancing Global Educational Awareness for Future Teachers

    ERIC Educational Resources Information Center

    Haapanen, Iris

    2013-01-01

    Teachers can echo the ethnic diversity of students in simulation trips to achieve an appreciation of globally indigenous education practices for future teachers. This article explores the three methods of achieving this, consisting of technology, acting out, and simulated trips, as they may be used by teachers to blend the more salient…

  5. Web-Based Exchange of Views Enhances "Global Studies"

    ERIC Educational Resources Information Center

    Ahamer, Gilbert; Kumpfmuller, Karl A.; Hohenwarter, Michaela

    2011-01-01

    Purpose: The aim of this article is to present the development-oriented Master's curriculum "Global Studies" (GS) at the University of Graz, Austria, as an example of interdisciplinary academic training with the purpose of fostering inter-"cultural" understanding. It aims to show that scientific disciplines can be understood as "cultures of…

  6. Hydrological model calibration for enhancing global flood forecast skill

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Beck, Hylke E.; Salamon, Peter; Thielen-del Pozo, Jutta

    2016-04-01

    Early warning systems play a key role in flood risk reduction, and their effectiveness is directly linked to streamflow forecast skill. The skill of a streamflow forecast is affected by several factors; among them are (i) model errors due to incomplete representation of physical processes and inaccurate parameterization, (ii) uncertainty in the model initial conditions, and (iii) errors in the meteorological forcing. In macro scale (continental or global) modeling, it is a common practice to use a priori parameter estimates over large river basins or wider regions, resulting in suboptimal streamflow estimations. The aim of this work is to improve flood forecast skill of the Global Flood Awareness System (GloFAS; www.globalfloods.eu), a grid-based forecasting system that produces flood forecast unto 30 days lead, through calibration of the distributed hydrological model parameters. We use a combination of in-situ and satellite-based streamflow data for automatic calibration using a multi-objective genetic algorithm. We will present the calibrated global parameter maps and report the forecast skill improvements achieved. Furthermore, we discuss current challenges and future opportunities with regard to global-scale early flood warning systems.

  7. Telecommunications: Working To Enhance Global Understanding and Peace Education.

    ERIC Educational Resources Information Center

    Schrum, Lynne M.

    This paper describes educational activities that make use of microcomputers and information networks to link elementary and secondary students electronically using telecommunications, i.e., communication across distances using personal computers, modems, telephone lines, and computer networks. Efforts to promote global understanding and awareness…

  8. Distance Learning Technology for Enhancing Pedagogy: The Global Connection.

    ERIC Educational Resources Information Center

    Smith, David E.

    1997-01-01

    The global connection is a business education project undertaken at three diverse institutions located in Denmark (Copenhagen Business School) and California (National University, Coastline Community College). The project incorporates video teleconferencing technology to provide six guest speakers for teaching purposes within one academic year…

  9. Anthropogenic forcings on the surficial osmium cycle.

    PubMed

    Rauch, Sebastien; Peucker-Ehrenbrink, Bernhard; Kylander, Malin E; Weiss, Dominik J; Martinez-Cortizas, Antonio; Heslop, David; Olid, Carolina; Mighall, Tim M; Hemond, Harold F

    2010-02-01

    Osmium is among the least abundant elements in the Earth's continental crust. Recent anthropogenic Os contamination of the environment from mining and smelting activities, automotive catalytic converter use, and hospital discharges has been documented. Here we present evidence for anthropogenic overprinting of the natural Os cycle using a ca. 7000-year record of atmospheric Os deposition and isotopic composition from an ombrotrophic peat bog in NW Spain. Preanthropogenic Os accumulation in this area is 0.10 +/- 0.04 ng m(-2) y(-1). The oldest strata showing human influence correspond to early metal mining and processing on the Iberian Peninsula (ca. 4700-2500 cal. BP). Elevated Os accumulation rates are found thereafter with a local maximum of 1.1 ng m(-2) y(-1) during the Roman occupation of the Iberian Peninsula (ca. 1930 cal. BP) and a further increase starting in 1750 AD with Os accumulation reaching 30 ng m(-2) y(-1) in the most recent samples. Osmium isotopic composition ((187)Os/(188)Os) indicates that recent elevated Os accumulation results from increased input of unradiogenic Os from industrial and automotive sources as well as from enhanced deposition of radiogenic Os through increased fossil fuel combustion and soil erosion. We posit that the rapid increase in catalyst-equipped vehicles, increased fossil fuel combustion, and changes in land-use make the changes observed in NW Spain globally relevant. PMID:19995091

  10. Enhanced global integration of closed contours in individuals with high levels of autistic-like traits.

    PubMed

    Almeida, Renita A; Dickinson, J Edwin; Maybery, Murray T; Badcock, Johanna C; Badcock, David R

    2014-10-01

    Individuals with autistic traits (measured with Autism-spectrum Quotient, AQ) often excel in detecting shapes hidden within complex structures (e.g. on the Embedded Figures Test, EFT). This facility has been attributed to either weaker global integration of scene elements or enhanced local processing, but 'local' and 'global' have various meanings in the literature. The function of specific global visual mechanisms involved in integrating contours, similar to EFT targets was examined. High AQ scorers produced enhanced performance on the EFT and an alternative Radial Frequency Search Task. Contrary to 'generic' interpretations of weaker global pooling, this group displayed stronger pooling of contour components that was correlated with search ability. This study therefore shows a global contour integration advantage in high AQ observers. PMID:25175114

  11. GenMin: An enhanced genetic algorithm for global optimization

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, I. E.

    2008-06-01

    A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the

  12. Global Change Master Directory enhances search for Earth science data

    NASA Astrophysics Data System (ADS)

    Olsen, Lola

    The Global Change Master Directory (GCMD) offers an on-line search and retrieval system for those interested in identifying Earth science data sets for educational and research needs. At the heart of the directory is a database of 3400 Earth science entries.It includes references to data held at many federal agencies, universities, and foreign countries. Content is updated and software is upgraded continuously by the GCMD staff. Earth science data set descriptions in the GCMD are written in the Directory Interchange Format (DIF). The DIF has gained interagency and international acceptance in documenting directory-level information for the Earth sciences. New fields have recently been added to bring the DIF into compliance with the Federal Geographic Data Committee's Content Standard for Digital Geospatial Metadata. These additional new fields allow more complete documentation for all data sets, including those held in Geographic Information Systems.

  13. An Enhanced Global Precipitation Measurement (GPM) Validation Network Prototype

    NASA Technical Reports Server (NTRS)

    Schwaller, Matthew R.; Morris, K. Robert

    2009-01-01

    A Validation Network (VN) prototype is currently underway that compares data from the Precipitation Radar (PR) instrument on NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of NASA's Global Precipitation Measurement (GPM) mission. GPM will carry a Dual-frequency Precipitation Radar instrument (DPR) with similar characteristics to the TRMM PR. The purpose of the VN is to identify and resolve significant discrepancies between the U.S. national network of ground radar (GR) observations and satellite observations. The ultimate goal of such comparisons is to understand and resolve the first order variability and bias of precipitation retrievals in different meteorological/hydrological regimes at large scales. This paper presents a description of, and results from, an improved algorithm for volume matching and comparison of PR and ground radar observations.

  14. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    PubMed

    Grandey, B S; Wang, C

    2015-01-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. PMID:26293204

  15. Enhanced marine sulphur emissions offset global warming and impact rainfall

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Wang, C.

    2015-08-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  16. Enhanced marine sulphur emissions offset global warming and impact rainfall

    PubMed Central

    Grandey, B. S.; Wang, C.

    2015-01-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. PMID:26293204

  17. The study to enhance the mask global CD uniformity by removing local CD variation

    NASA Astrophysics Data System (ADS)

    Choi, Yongkyoo; Kim, Munsik; Han, Oscar

    2007-03-01

    As pattern size is shrinking, required mask CD specification is tighter and its effect on wafer patterning is more severe. Recent study showed that the effect of mask local CD variation of mask on wafer is much smaller than that of global CD variation.[1] To enhance the device performance, wafer CD uniformity should be enhanced and controlled by mask global CD uniformity. Mask global CD uniformity usually can be enhanced by mask process and optimal fogging effect correction. To enhance the mask global CD uniformity on mask, resist process and FEC (Fogging Effect Correction), reliable CD measurement tool and methods are necessary. Recently, group CD using OCD(Spectroscopic Ellipsometer) or AIMS(Aerial Image Measurement and Simulation) or polynomial fitting method is introduced to represent global CD variation on mask.[2][3][4] These methods are removing local CD variation on mask. The local CD variation will be remained as residual CD after approximation. In this paper, local CD variation of mask and wafer is evaluated and 2 kinds of methods are used to measure CD on mask and wafer, and the correlation of global CD of mask and field CD of wafer are evaluated. And the repeatability of field to field CD uniformity of wafer is evaluated to correct the fields CD uniformity of wafer by controlling the selective changing of transmittance of mask or to feed back to mask process. Higher correlation between fields of wafer, more accurate correction can be possible.

  18. Enhanced global mathematical model for studying cerebral venous blood flow.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2014-10-17

    Here we extend the global, closed-loop, mathematical model for the cardiovascular system in Müller and Toro (2014) to account for fundamental mechanisms affecting cerebral venous haemodynamics: the interaction between intracranial pressure and cerebral vasculature and the Starling-resistor like behaviour of intracranial veins. Computational results are compared with flow measurements obtained from Magnetic Resonance Imaging (MRI), showing overall satisfactory agreement. The role played by each model component in shaping cerebral venous flow waveforms is investigated. Our results are discussed in light of current physiological concepts and model-driven considerations, indicating that the Starling-resistor like behaviour of intracranial veins at the point where they join dural sinuses is the leading mechanism. Moreover, we present preliminary results on the impact of neck vein strictures on cerebral venous hemodynamics. These results show that such anomalies cause a pressure increment in intracranial cerebral veins, even if the shielding effect of the Starling-resistor like behaviour of cerebral veins is taken into account. PMID:25169660

  19. EMISSIONS AND COST ESTIMATES FOR GLOBALLY SIGNIFICANT ANTHROPOGENIC COMBUSTION SOURCES OF NOX, N2O, CH4, CO AND CO2

    EPA Science Inventory

    The report discusses the development of emission factors for CO2, CO, CH4, NOx, and N2O for about 80 globally significant combustion sources in seven source categories: utility, industrial, fuel production, transportation, residential, commercial, and kilns/ovens/dryers. ecause o...

  20. Assessment of Anthropogenic and Climatic Impacts on the Global Carbon Cycle Using a 3-D Model Constrained by Isotopic Carbon Measurements and Remote Sensing of Vegetation

    NASA Technical Reports Server (NTRS)

    Keeling, Charles D.; Piper, S. C.

    1998-01-01

    Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.

  1. Coastal-ocean uptake of anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Bourgeois, Timothée; Orr, James C.; Resplandy, Laure; Terhaar, Jens; Ethé, Christian; Gehlen, Marion; Bopp, Laurent

    2016-07-01

    Anthropogenic changes in atmosphere-ocean and atmosphere-land CO2 fluxes have been quantified extensively, but few studies have addressed the connection between land and ocean. In this transition zone, the coastal ocean, spatial and temporal data coverage is inadequate to assess its global budget. Thus we use a global ocean biogeochemical model to assess the coastal ocean's global inventory of anthropogenic CO2 and its spatial variability. We used an intermediate resolution, eddying version of the NEMO-PISCES model (ORCA05), varying from 20 to 50 km horizontally, i.e. coarse enough to allow multiple century-scale simulations but finer than coarse-resolution models (˜ 200 km) to better resolve coastal bathymetry and complex coastal currents. Here we define the coastal zone as the continental shelf area, excluding the proximal zone. Evaluation of the simulated air-sea fluxes of total CO2 for 45 coastal regions gave a correlation coefficient R of 0.8 when compared to observation-based estimates. Simulated global uptake of anthropogenic carbon results averaged 2.3 Pg C yr-1 during the years 1993-2012, consistent with previous estimates. Yet only 0.1 Pg C yr-1 of that is absorbed by the global coastal ocean. That represents 4.5 % of the anthropogenic carbon uptake of the global ocean, less than the 7.5 % proportion of coastal-to-global-ocean surface areas. Coastal uptake is weakened due to a bottleneck in offshore transport, which is inadequate to reduce the mean anthropogenic carbon concentration of coastal waters to the mean level found in the open-ocean mixed layer.

  2. Tectonic earthquakes of anthropogenic origin

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    2016-03-01

    The enhancement of seismicity induced by industrial activity in Russia in the conditions of present-day anthropization is noted. In particular, the growth in the intensity and number of strong tectonic earthquakes with magnitudes M ≥ 3 (seismic energy 109 J) due to human activity is revealed. These man-made tectonic earthquakes have started to occur in the regions of the East European Platform which were previously aseismic. The development of such seismicity is noted in the areas of intense long-term mineral extraction due to the increasing production depth and extended mining and production. The mechanisms and generation conditions of man-made tectonic earthquakes in the anthropogenically disturbed medium with the changed geodynamical and fluid regime is discussed. The source zones of these shallow-focus tectonic earthquakes of anthropogenic origin are formed in the setting of stress state rearrangement under anthropogenic loading both near these zones and at a significant distance from them. This distance is determined by the tectonic structure of the rock mass and the character of its energy saturation, in particular, by the level of the formation pressure or pore pressure. These earthquakes occur at any time of the day, have a triggered character, and are frequently accompanied by catastrophic phenomena in the underground mines and on the surface due to the closeness to the source zones.

  3. Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East

    NASA Astrophysics Data System (ADS)

    Jiang, Zhe; Miyazaki, Kazuyuki; Worden, John R.; Liu, Jane J.; Jones, Dylan B. A.; Henze, Daven K.

    2016-05-01

    Significant progress has been made in identifying the influence of different processes and emissions on the summertime enhancements of free tropospheric ozone (O3) at northern midlatitude regions. However, the exact contribution of regional emissions, chemical and transport processes to these summertime enhancements is still not well quantified. Here we focus on quantifying the influence of regional emissions on the summertime O3 enhancements over the Middle East, using updated reactive nitrogen (NOx) emissions. We then use the adjoint of the GEOS-Chem model with these updated NOx emissions to show that the global total contribution of lightning NOx on middle free tropospheric O3 over the Middle East is about 2 times larger than that from global anthropogenic sources. The summertime middle free tropospheric O3 enhancement is primarily due to Asian NOx emissions, with approximately equivalent contributions from Asian anthropogenic activities and lightning. In the Middle Eastern lower free troposphere, lightning NOx from Europe and North America and anthropogenic NOx from Middle Eastern local emissions are the primary sources of O3. This work highlights the critical role of lightning NOx on northern midlatitude free tropospheric O3 and the important effect of the Asian summer monsoon on the export of Asian pollutants.

  4. Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Miyazaki, K.; Worden, J. R.; Liu, J. J.; Jones, D. B. A.; Henze, D. K.

    2015-12-01

    Significant progress has been made in identifying the influence of different processes and emissions on the summertime enhancements of free tropospheric ozone (O3) at northern mid-latitude regions. However, the exact contribution of regional emissions and chemical processing to these summertime enhancements is still not well quantified. Here we focus on quantifying the influence of regional emissions on the summertime O3 enhancements over the Middle East. We use updated reactive nitrogen (NOx) emissions from an ensemble Kalman Filter that assimilates satellite observations of nitrogen dioxide (NO2), O3, and carbon monoxide (CO) to provide an improved estimate of O3 precursor emissions. We then use the adjoint of the GEOS-Chem model with these updated NOx emissions to show that the global total contribution of lightning NOx on middle free tropospheric O3 over the Middle East is about three times larger than that from global anthropogenic sources. The summertime free tropospheric O3 enhancement is primarily due to Asian NOx emissions, with approximately equivalent contributions from Asian anthropogenic activities and lightning. In the Middle Eastern lower free troposphere, emissions from European and North American anthropogenic activities and from lightning NOx are the primary sources of O3. This work highlights the critical role of lightning NOx on northern mid-latitude free tropospheric O3 and the important effect of the Asian summer monsoon on the export of Asian pollutants.

  5. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  6. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.

    2015-04-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.

  7. The Oceanic Sink for Anthropogenic CO2

    SciTech Connect

    Sabine, Chris; Feely, R. A.; Gruber, N.; Key, Robert; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C. S.; Wallace, D.W.R.; Tilbrook, B.; Millero, F. J.; Peng, T.-H.; Kozyr, Alexander; Ono, Tsueno

    2004-01-01

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon. The oceanic sink accounts for ~48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  8. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.

    2015-10-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.

  9. Improved Global Soft Decision Incorporating Second-Order Conditional MAP in Speech Enhancement

    NASA Astrophysics Data System (ADS)

    Kum, Jong-Mo; Chang, Joon-Hyuk

    In this paper, we propose a novel method based on the second-order conditional maximum a posteriori (CMAP) to improve the performance of the global soft decision in speech enhancement. The conventional global soft decision scheme is found through investigation to have a disadvantage in that the global speech absence probability (GSAP) in that scheme is adjusted by a fixed parameter, which could be a restrictive assumption in the consecutive occurrences of speech frames. To address this problem, we devise a method to incorporate the second-order CMAP in determining the GSAP, which is clearly different from the previous approach in that not only current observation but also the speech activity decisions of the previous two frames are exploited. Performances of the proposed method are evaluated by a number of tests in various environments and show better results than previous work.

  10. Ozone recovery may enhance global warming in the 21st century

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Hu, Y.

    2010-12-01

    Observations show a stabilization or weak increasing of the stratospheric ozone layer since the late 1990s. Recent coupled chemistry-climate model simulations predicted that the stratospheric ozone layer will likely return to pre-1980 levels in the middle of the 21st century, as a result of the decline of ozone depleting substances under the 1987 Montreal Protocol. Since the ozone layer is an important component in determining stratospheric and tropospheric-surface energy balance, the recovery of the ozone layer may have significant impact on tropospheric-surface climate. Here, using multi-model ensemble results from both the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR4) models and coupled chemistry-climate models, we show that as ozone recovery is considered, the troposphere is warmed more than that without considering ozone recovery, suggesting an enhancement of tropospheric warming due to ozone recovery. It is found that the enhanced tropospheric warming is mostly significant in the upper troposphere, with global mean magnitudes of about 0.41 K for A1B scenario and about 0.2 K for A2 and B1 scenarios over the period of 2001-2050. We also find that relatively large enhanced warming occurs in the extratratropics and polar regions in summer and autumn in both hemispheres while the enhanced warming is stronger in the Northern Hemisphere than in the Southern Hemisphere. Enhanced warming is also found at the surface. The strongest enhancement of surface warming is located in the Arctic in boreal winter. The global annual mean enhancement of surface warming is about 0.16 K, 0.08 K and 0.13 K for A1B, A2, and B1 over 2001-2050, respectively.

  11. Enhancing the resolution of sea ice in a global ocean GCM

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; Kim, Joong-Tae

    Open water in sea ice, such as leads and polynyas, has a considerable impact on the long-term global deep-ocean properties and circulation. Its representation in ocean general circulation models (GCMs) that are designed for studies of the long-term thermohaline circulation, however, bears large uncertainties. Here, an attempt has been made to reduce such uncertainties by enhancing the resolution of the sea-ice component, while keeping the ocean component at coarse resolution to preserve the necessary efficiency of the GCM. In this study, the higher-resolved sea-ice component has been restricted to the Southern Ocean. Compared to the original model, the new version yields more detailed structures, such as a more detailed representation of coastal polynyas, a realistically sharp ice edge, and an overall enhanced lead fraction. The latter gives rise to a somewhat enhanced rate of Antarctic Bottom Water formation through enhanced near-boundary convection, which is reflected in slightly cooler and fresher global deep-ocean properties and a reduced Antarctic Circumpolar Current as a result of reduced open-ocean convection. Sensitivity studies reveal that it is not the overall enhanced lead fraction but rather the coastal katabatic winds that lead to this behaviour of the higher-resolution model. Artifacts resulting from the coarse-grid coastline were minimized in a separate model version where fine surface grid cells of fast ice were introduced following the fine-grid land/ice-shelf—sea-ice/ocean boundary of satellite-derived microwave data. This study represents an intermediate step toward resolving the sea-ice component of a global coarse-resolution ocean GCM on a scale of about 30 km.

  12. Geomorphology of anthropogenic landscapes

    NASA Astrophysics Data System (ADS)

    Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    The construction of urban areas and the development of road networks leave a significant signature on the Earth surface, providing a geomorphological evidence to support the idea that humans are nowadays a geomorphic agent having deep effects on the morphological organization of the landscape. The reconstruction or identification of anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the Anthropocene. Following this research line, the present study tests the effectiveness of a recently published topographic index, the Slope Local Length of Autocorrelation (SLLAC, Sofia et al. 2014) to portrait anthropogenic geomorphology, focusing in particular on road network density, and urban complexity (UCI). At first, the research considers the increasing of anthropic structures and the resulting changes in the SLLAC and in two derived parameters (mean SLLAC per km2 and SLLAC roughness, or Surface Peak Curvature -Spc). As a second step, considering the SLLAC derived indices, the anthropogenic geomorphology is automatically depicted using a k-means clustering algorithm. In general, the increasing of road network density or of the UCI is positively correlated to the mean SLLAC per km2, while the Spc is negatively correlated to the increasing of the anthropic structures. Areas presenting different road network organization are effectively captured considering multiple combinations of the defined parameters. Landscapes with small scattered towns, and a network with long roads in a dendritic shape (with hierarchical branching) are characterized simultaneously by high mean SLLAC and low Spc. Large and complex urban areas served by rectilinear networks with numerous short straight lines and right angles, have either a maximized mean SLLAC or a minimized Spc or both. In all cases, the anthropogenic landscape identified by the procedure is comparable to the ones identified manually from orthophoto, with the

  13. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  14. Histone Modifications at Human Enhancers Reflect Global Cell Type-Specific Gene Expression

    PubMed Central

    Heintzman, Nathaniel D.; Hon, Gary C.; Hawkins, R. David; Kheradpour, Pouya; Stark, Alexander; Harp, Lindsey F.; Ye, Zhen; Lee, Leonard K.; Stuart, Rhona K.; Ching, Christina W.; Ching, Keith A.; Antosiewicz, Jessica E.; Liu, Hui; Zhang, Xinmin; Green, Roland D.; Stewart, Ron; Thomson, James A.; Crawford, Gregory E.; Kellis, Manolis; Ren, Bing

    2010-01-01

    The human body is composed of diverse cell types with distinct functions. While it is known that lineage specification depends on cell specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1–3, the relative roles of these regulatory elements in this process is not clear. We have previously developed a chromatin immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers, and insulators in the human genome4–6. Here, we use the same approach to identify these elements in multiple cell types and investigated their roles in cell type-specific gene expression. We observed that chromatin state at promoters and CTCF-binding at insulators are largely invariant across diverse cell types. By contrast, enhancers are marked with highly cell type-specific histone modification patterns, strongly correlate to cell type-specific gene expression programs on a global scale, and are functionally active in a cell type-specific manner. Our results defined over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalog of human enhancers and highlighting the role of these elements in cell type-specific gene expression. PMID:19295514

  15. The nonlinear thermodynamics of meteors, noctilucent clouds, enhanced airglow and global atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Rajchl, J.

    1987-01-01

    Two types of fundamental topological junctions of elements are deduced from a nonlinear thermodynamical model. Using this scheme, the possibility of a causal relation between fireballs and faint meteors as nonlinear sources on the one hand, and noctilucent clouds (NC) and Hoffmeister's enhanced airglow (EA) as complementary formative processes in the middle atmosphere and ionosphere, on the other hand, is examined. The principal role of the global atmospheric circulation in this relation is demonstrated. Such circulation in the mesosphere appears to prevent the neutral dust dissipated by fireballs from becoming an efficient agent in NLC generation. In this case, the behavior of ionized material deposited by both the bright and faint meteors is more probably controlled, as shown from the annual variation of the E sub s layer by the darkness of lunar eclipses and the global circulation of the lower thermosphere. The role of fireballs and neutral dust might be more significant as a source of EA phenomenon.

  16. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  17. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    PubMed

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-01-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies. PMID:26608354

  18. The enhanced NOAA global land dataset from the advanced very high resolution radiometer

    SciTech Connect

    Gutman, G.; Tarpley, D.; Ignatov, A.

    1995-07-01

    Global mapped data of reflected radiation in the visible (0.63 {mu}m) and near-infrared (0.85 {mu}m) wavebands on the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration satellites have been collected as the global vegetation index (GVI) dataset since 1982. Its primary objective has been vegetation studies (hence its title) using the normalized difference vegetation index (NDVI) calculated from the visible and near-IR data. The second-generation GVI, which started in April 1985, has also included brightness temperatures in the thermal IR (11 and 12 {mu}m) and the associated observation-illumination geometry. This multiyear, multispectral, multisatellite dataset is a unique tool for global land studies. At the same time, it raises challenging remote sensing and data management problems with respect to uniformity in time, enhancement of signal-to-noise ratio, retrieval of geophysical parameters from satellite radiances, and large data volumes. The authors explored a four-level generic structure for processing AVHRR data-the first two levels being remote sensing oriented and the other two directed at environmental studies-and will describe the present status of each level. The uniformity of GVI data was improved by applying an updated calibration, and noise was reduced by applying a more accurate cloud-screening procedure. In addition to the enhanced weekly data (recalibrated with appended quality/cloud flags), the available land environmental products include monthly 0-15{degrees}-resolution global maps of top-of-the-atmosphere visible and near-IR reflectances, NDVI, brightness temperatures, and a precipitable water index for April 1985-September 1994. For the first time, a 5-yr monthly climatology (means and standard deviations) of each quantity was produced. These products show strong potential for detecting and analyzing large-scale spatial and seasonal land variability. 57 refs., 8 figs.

  19. The Global Nitrogen Story

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2001-05-01

    In the absence of human activities, biotic nitrogen fixation is the primary source of reactive N to the environment. Over the last few decades, human activity has surpassed natural terrestrial nitrogen fixation rates by energy production (fossil fuel combustion) and food production (Haber-Bosch based fertilizer production and crop cultivation). An amount equivalent to over half of the anthropogenic N fixed each year is emitted to the atmosphere or discharged to rivers, for dispersion to environmental systems. An unknown amount of this anthropogenic N is accumulating in the environment resulting in a enhanced greenhouse effect, acid deposition, photochemical smog, stratospheric ozone depletion and eutrophication of fresh and marine waters. This paper will assess the state of knowledge on the global N cycle and present a context in which to place the impacts of humans on nitrogen cycling at regional scales.

  20. Assessing the observed impact of anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Hansen, Gerrit; Stone, Dáithí

    2016-05-01

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.

  1. Geoheritage, Geodiversity and natural landscape enhanced and protected through anthropogenic activity: a case study using the Chaîne des Puys and Limagne Fault, Afar and Mexico City

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin; Hagos, Miruts; Guilbaud, Marie-Noelle

    2015-04-01

    The UNESCO World Heritage (WH) committee called in 2014 for all thematic geological and volcanological studies to be revised in light of a widening gap between current dogma and the progressive geoheritage science views. We discuss question of natural sites and anthropogenic activity. The Chaîne des Puys and Limagne fault UNESCO WH project is the basis of this presentation, but we also the Afar Region of Ethiopia and UNAM campus, Mexico City. It is now difficult to find any totally 'natural' (devoid of human influence) landscape. This very definition of natural ignores that humankind is a geological force, and humans are part of the natural process. The UNESCO WH guidelines recognise this in paragraph 90: 'it is recognized that no area is totally pristine and that all natural areas are in a dynamic state, and to some extent involve contact with people'. A geological landscape, may be large enough to accommodate human occupation without significantly changing landforms: this is the case of the Chaîne des Puys and Limagne fault. Human activity works in some ways to protect geological landscape: regulating vegetation and erosion. The aesthetic nature of humans may work to enhance the landscape's visibility by organisation of land use, and ceremonial use based on the sense of place. Humans also exercise economic activity such as quarrying and mining, which if uncontrolled can seriously modify a landscape. However, isolated works may not have an impact, or may even enhance the value of the site by uncovering geological features that would not naturally be seen. In the Chaîne des Puys only 0,3% of the land surface has been worked by artisanal methods and certain sites, like the Lemptégy volcano have been extracted with the view of enhancing the landscape's scientific value without detracting from the aesthetic. The site preserves its natural, scientific and aesthetic qualities, because of the human presence. The local population have always been and continue to be

  2. Modification of global precipitation data for enhanced hydrologic modeling of tropical montane watersheds

    NASA Astrophysics Data System (ADS)

    Strauch, Michael; Kumar, Rohini; Eisner, Stephanie; Mulligan, Mark; Reinhardt, Julia; Samaniego, Luis; Santini, William; Vetter, Tobias; Friesen, Jan

    2016-04-01

    Global gridded precipitation is an essential driving input for hydrologic models to simulate runoff dynamics in large river basins. However, the data often fail to adequately represent precipitation variability in mountainous regions due to orographic effects and sparse and highly uncertain gauge data. Water balance simulations in tropical montane regions covered by cloud forests are especially challenging because of the additional water input from cloud water interception. The ISI-MIP2 hydrologic model ensemble encountered these problems for Andean sub-basins of the Upper Amazon Basin, where all models significantly underestimated observed runoff. In this paper, we propose simple yet plausible ways to adjust global precipitation data provided by WFDEI, the WATCH Forcing Data methodology applied to ERA-Interim reanalysis, for tropical montane watersheds. The modifications were based on plausible reasoning and freely available tropics-wide data: (i) a high-resolution climatology of the Tropical Rainfall Measuring Mission (TRMM) and (ii) the percentage of tropical montane cloud forest cover. Using the modified precipitation data, runoff predictions significantly improved for all hydrologic models considered. The precipitation adjustment methods presented here have the potential to enhance other global precipitation products for hydrologic model applications in the Upper Amazon Basin as well as in other tropical montane watersheds.

  3. Anthropogenic climate change

    SciTech Connect

    Budyko, M.I.; Izreal, Yu.A.

    1991-01-01

    The climate modeling community would agree that the present generation of theoretical models cannot adequately answer important question about the climatic implications of increasing concentrations of CO[sub 2] and other greenhouse gases. Society, however, is presently deciding by its action, or inaction, the policies that will deal with the extent and results of our collective flatulence. In this situation, an engineering approach to estimating the developing pattern of anthropogenic climate change is appropriate. For example, Budyko has argued that, while scientists may have made great advances in modelling the flow around an airfoil, engineers make extensive use of empirical equations and measurements to design airplanes that fly. Budyko and Izreal have produced an encyclopedic treatise summarizing the results of Soviet researchers in applying empirical and semiempirical methods to estimating future climatic patterns, and some of their ensuring effects. These techniques consist mainly of statistical relationships derived from 1850-1950 network data and of patterns revealed by analysis of paleoclimatic data. An important part of the Soviet effort in anthropogenic climate-change studies is empirical techniques that represent independent verification of the results of theoretical climate models.

  4. Enhancing the Emotional Wellbeing of Perinatally HIV Infected Youth across Global Contexts

    PubMed Central

    Small, Latoya; Mercado, Micaela; Gopalan, Priya; Pardo, Gisselle; Ann Mellins, Claude; McKay, Mary McKernan

    2014-01-01

    Increased access to antiretroviral treatment worldwide makes it more possible for children diagnosed with HIV before their 15th birthday to age into adolescence and beyond. Many HIV+ youth navigate stressors including poverty and resource scarcity, which may converge to produce emotional distress. For over a decade, CHAMP (Collaborative HIV Prevention and Adolescent Mental Health Project) investigators partnered with youth, caregivers, providers and community stakeholders to address the health, mental health and risk taking behaviors of perinatally HIV-infected youth. This paper explores the mental health needs of aging cohorts of HIV+ youth, across three global contexts, New York (U.S.), Buenos Aires (Argentina), and KwaZulu-Natal (South Africa), to inform the development and implementation of combination HIV care and prevention supports for HIV+ youth. Methods Analysis of data pooled across three countries involving HIV+ early adolescents and their caregivers over time (baseline and three month follow-up) was conducted. Univariate and multivariate analyses were applied to data from standardized measures used across sites to identify mental health needs of youth participants. The impact of the site specific versions of a family-strengthening intervention, CHAMP+U.S., CHAMP+Argentina, CHAMP+SA, was also examined relative to a randomized standard of care (SOC) comparison condition. Results Analyses revealed mental health resilience in a large proportion of HIV+ youth, particularly behavioral functioning and overall mental health. Yet, significant numbers of caregivers across country contexts reported impaired child emotional and prosocial wellbeing. Significant site differences emerged at baseline. Involvement in the CHAMP+ Family Program was related to significant improvement in emotional wellbeing and a trend towards enhanced prosocial behavior relative to SOC across global sites. Conclusions Ongoing partnerships with youth, family and provider stakeholders across

  5. Anthropogenic sulfur dioxide emissions: 1850-2005

    SciTech Connect

    Smith, S. J.; Van Aardenne, J.; Klimont, Z.; Andres, Robert Joseph; Volke, A.; Delgado Arias, S

    2011-01-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5 grid by sector for use in coordinated climate model experiments.

  6. Anthropogenic Sulfur Dioxide Emissions: 1850-2005

    SciTech Connect

    Smith, Steven J.; van Aardenne, John; Klimont, Z.; Andres, Robert; Volke, April C.; Delgado Arias, Sabrina

    2011-01-02

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850 - 2005. A combination of mass balance and best available inventory data was used in order to achieve the most accurate estimate possible. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties of up to 30% were found. The largest contributors to uncertainty at present are emissions from China and international shipping.

  7. Anthropogenic transformation of the terrestrial biosphere.

    PubMed

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve. PMID:21282158

  8. Inadvertent Climate Modification Due to Anthropogenic Lead

    SciTech Connect

    Cziczo, Daniel J.; Stetzer, Olaf; Worringen, Annette; Ebert, Martin; Weinbruch, Stephan; Kamphus, M.; Gallavardin, S. J.; Curtius, J.; Borrmann, S.; Froyd, Karl D.; Mertes, S.; Mohler, Ottmar; Lohmann, U.

    2009-05-01

    The relationship between atmospheric particulate matter and the formation of clouds is among the most uncertain aspects of our current understanding of climate change1. One specific question that remains unanswered is how anthropogenic particulate emissions are affecting the nucleation of ice crystals. Satellites show ice clouds cover more than a third of the globe2 and models suggest that ice nucleation initiates the majority of terrestrial precipitation3. It is therefore not possible to adequately understand either climate change or the global water cycle without understanding ice nucleation. Here we show that lead-containing particles are among the most efficient ice nucleating substances commonly found in the atmosphere. Field observations were conducted with mass spectrometry and electron microscopy at two remote stations on different continents, far removed from local emissions. Laboratory studies within two cloud chambers using controlled experimental conditions support the field data. Because the dominate sources of particulate lead are anthropogenic emissions such as aviation fuel, power generation, smelting, and the re-suspension of residue from tetra-ethyl leaded gasoline4, it is likely that cloud formation and precipitation have been affected when compared to pre-industrial times. A global climate model comparing pre-industrial and anthropogenically perturbed conditions shows that lead-containing particles may be increasing the outgoing longwave radiation by 0.2 to 0.8 W m-2, thereby offsetting a portion of the warming attributed to greenhouse gases1.

  9. Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data

    NASA Astrophysics Data System (ADS)

    Ginoux, Paul; Garbuzov, Dmitri; Hsu, N. Christina

    2010-03-01

    Mineral dust interacts with radiation and impacts both the regional and global climate. The relative contribution of natural and anthropogenic dust sources, however, remains largely uncertain. Although human activities disturb soils and therefore enhance wind erosion, their contribution to global dust emission has never been directly evaluated because of a lack of data. The retrieval of aerosol properties over land, including deserts, using the Moderate Resolution Imaging Spectroradiometer Deep Blue algorithm makes the first direct characterization of the origin of individual sources possible. In order to separate freshly emitted dust from other aerosol types and aged dust particles, the spectral dependence of the single scattering albedo and the Angstrom wavelength exponent are used. Four years of data from the eastern part of West Africa, which includes one of the most active natural dust sources and the highest population density on the continent, are processed. Sources are identified on the basis of the persistence of significant aerosol optical depth from freshly emitted dust, and the origin is characterized as natural or anthropogenic on the basis of a land use data set. Our results indicate that although anthropogenic dust is observed less frequently and with lower optical depth than dust from natural sources in this particular region, it occupies a large area covering most of northern Nigeria and southern Chad, around Lake Chad. In addition, smaller anthropogenic sources are found as far south as 5° of latitude north, well outside the domain of most dust source inventories.

  10. Using support vector machine and dynamic parameter encoding to enhance global optimization

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Chen, X.; Liu, C.; Huang, K.

    2016-05-01

    This study presents an approach which combines support vector machine (SVM) and dynamic parameter encoding (DPE) to enhance the run-time performance of global optimization with time-consuming fitness function evaluations. SVMs are used as surrogate models to partly substitute for fitness evaluations. To reduce the computation time and guarantee correct convergence, this work proposes a novel strategy to adaptively adjust the number of fitness evaluations needed according to the approximate error of the surrogate model. Meanwhile, DPE is employed to compress the solution space, so that it not only accelerates the convergence but also decreases the approximate error. Numerical results of optimizing a few benchmark functions and an antenna in a practical application are presented, which verify the feasibility, efficiency and robustness of the proposed approach.

  11. The oceanic sink for anthropogenic CO2.

    PubMed

    Sabine, Christopher L; Feely, Richard A; Gruber, Nicolas; Key, Robert M; Lee, Kitack; Bullister, John L; Wanninkhof, Rik; Wong, C S; Wallace, Douglas W R; Tilbrook, Bronte; Millero, Frank J; Peng, Tsung-Hung; Kozyr, Alexander; Ono, Tsueno; Rios, Aida F

    2004-07-16

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential. PMID:15256665

  12. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.

    PubMed

    Ramcharitar, J U; Tan, E W; Fortune, E S

    2006-11-01

    Eigenmannia, a genus of weakly electric fish, exhibits a specialized behavior known as the jamming avoidance response (JAR). The JAR results in a categorical difference between Eigenmannia that are in groups of conspecifics and those that are alone. Fish in groups exhibit the JAR behavior and thereby experience ongoing, global synchronous 20- to 50-Hz electrosensory oscillations, whereas solitary fish do not. Although previous work has shown that these ongoing signals do not significantly degrade electrosensory behavior, these oscillations nevertheless elicit short-term synaptic depression in midbrain circuits. Because short-term synaptic depression can have profound effects on the transmission of information through synapses, we examined the differences in intracellularly recorded responses of midbrain neurons in awake, behaving fish to moving electrosensory images under electrosensory conditions that mimic solitary fish and fish in groups. In solitary conditions, moving objects elicited Gaussian or sinusoidal postsynaptic potentials (PSPs) that commonly exhibited preferential responses to a direction of motion. Surprisingly, when the same stimulus was presented in the presence of the global oscillations, directional selectivity was increased in all neurons tested. The magnitudes of the differences in PSP amplitude for preferred and nonpreferred directions were correlated with a measure of short-term synaptic depression in both conditions. The electrosensory consequences of the JAR appear to result in an enhancement of the representation of direction of motion in midbrain neurons. The data also support a role for short-term synaptic depression in the generation and modulation of directional responses. PMID:16790600

  13. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.

    PubMed

    Gao, Cuijuan; Wang, Zhikun; Liang, Quanfeng; Qi, Qingsheng

    2010-08-01

    Global transcription engineering was developed as a tool to reprogram gene transcription for eliciting new phenotypes important for technological applications (Science 2006, 314(5805):1565-1568). A recent report indicated that the beneficial growth advantage of yeast cells expressing the SPT15-300 mutation is the result of enhanced uptake and/or improved utilization of leucine and thus was seen only on defined media with low concentrations of leucine (Appl Environ Microbiol 2009, 75(19):6055-6061). Further investigation towards a leucine-prototrophic strain of industrial lager brewer's yeast indicated that integration one copy of SPT15-300 in SPT15 allele, however, did lead to an increased ethanol tolerance on complex rich medium at high gravity fermentation condition. Under brewing conditions, the SPT15-300 mutant produced 80.78 g/L ethanol from 200 g/L carbohydrates after 384 h, almost twice as much as that of the wild-type strain. The results convinced us that the effect of global regulator modification of yeast is at multi-genes level and is extremely complicated. PMID:20461507

  14. Anthropogenic Sulfate, Clouds, and Climate Forcing

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.

    1997-01-01

    This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions.

  15. Reconciling anthropogenic climate change with observed temperature 1998-2008.

    PubMed

    Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H

    2011-07-19

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects. PMID:21730180

  16. Reconciling anthropogenic climate change with observed temperature 1998–2008

    PubMed Central

    Kaufmann, Robert K.; Kauppi, Heikki; Mann, Michael L.; Stock, James H.

    2011-01-01

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects. PMID:21730180

  17. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  18. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  19. Dopaminergic enhancement of local food seeking is under global homeostatic control

    PubMed Central

    Beeler, Jeff A.; Frazier, Cristianne R.M.; Zhuang, Xiaoxi

    2011-01-01

    Recent work has implicated dopaminergic mechanisms in overeating and obesity with some researchers suggesting parallels between the dopamine dysregulation associated with addiction and an analogous dysregulation in obesity. The precise role of dopamine in mediating reward and reinforcement, however, remains controversial. In contrast to drugs of abuse, pursuit of a natural reward, such as food, is regulated by homeostatic processes that putatively maintain a stable energy balance keeping unrestrained consumption and reward pursuit in check. Understanding how the reward system is constrained by or escapes homeostatic regulation is a critical question. The widespread use of food restriction to motivate animal subjects in behavior paradigms precludes investigation of this relationship as the homeostatic system is locked into deficit mode. In the present study, we examine the role of dopamine in modulating adaptive feeding behavior in semi-naturalistic home cage paradigms where mice earn all their food from lever pressing. We compared consumption and meal patterning between hyperdopaminergic dopamine transporter knock-down mice (DATkd) with wild-type (WT) in two paradigms that introduce escalating costs for procuring food. We found that hyperdopaminergic mice exhibited similar demand elasticity, weight loss and energy balance in response to cost. However, the DATkd show clear differences in meal patterning. Consistent with expectations of enhanced motivation, elevated dopamine increased meal size and reduced intrameal cost sensitivity. Nonetheless, this did not alter overall energy balance. We conclude that elevated dopamine enhances incentive or willingness to work locally within meals without shifting energy balance, enhancing global food-seeking or generating an energy surplus. PMID:22118191

  20. Using message brokering and data mediation on earth science data to enhance global maritime situational awareness

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Alessandrini, A.; Greidanus, H.

    2016-04-01

    Maritime Situational Awareness is the understanding of anything associated with the maritime domain that could impact the security, safety, economy, or environment. The European Commission's Joint Research Centre (JRC) has developed an in-house data collection, data analysis and data visualiztion facility, known as the Blue Hub. The Blue Hub operates as a research and development platform for integrated maritime surveillance and maritime situational awareness. It has global coverage and has been applied, for example, to support counter-piracy around Africa, to investigate fishing activity and to monitor the growing ship traffic in the Arctic. In order to improve maritime awareness and support risk assessment, the JRC has started to integrate data from the marine and atmosheric science community. In particular the JRC is interested in using forecasts from operational ocean models and weather models. For the Blue Hub a new type of data server, called ERDDAP, that performs message brokering and data mediation has become an essential tool for the accessing of ocean forecast data as quickly as possible in easy to use formats. NOAA (National Oceanic and Atmospheric Administration of the USA) is making global oceanography and weather data available through the Environmental Research Division's Data Access Program (ERDDAP) data broker. ERDDAP provides RESTful machine to machine communication, data brokering and data mediation by converting data to a number of standard and developer friendly formats, including some Open Geospatial Consortium formats. In this paper, we demonstrate how data brokering and mediation is making complex scientific data accessible. We show how such data is being integrated into the Blue Hub system to enhance maritime situational awareness.

  1. Challenging, Eye-Opening, and Changing U.S. Teacher Training in Korea: Creating Experiences That Will Enhance Global Perspectives

    ERIC Educational Resources Information Center

    Oh, Kevin; Nussli, Natalie

    2014-01-01

    This case study explored the short-term international experience of pre-service teachers to create and enhance global perspectives. These teachers (n = 5), all female graduate students at a university in the U.S., were fully immersed in a foreign culture for three weeks while teaching English to primary and secondary students in Korea. Pre-,…

  2. Massive Sorghum Collection Genotyped with SSR Markers to Enhance Use of Global Genetic Resources

    PubMed Central

    Bouchet, Sophie; Chantereau, Jacques; Deu, Monique; Gardes, Laetitia; Noyer, Jean-Louis; Rami, Jean-François; Rivallan, Ronan; Li, Yu; Lu, Ping; Wang, Tianyu; Folkertsma, Rolf T.; Arnaud, Elizabeth; Upadhyaya, Hari D.; Glaszmann, Jean-Christophe; Hash, C. Thomas

    2013-01-01

    Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity. PMID:23565161

  3. Significant anthropogenic-induced changes of climate classes since 1950

    PubMed Central

    Chan, Duo; Wu, Qigang

    2015-01-01

    Anthropogenic forcings have contributed to global and regional warming in the last few decades and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate classes from gridded observed data and their uncertainties due to internal climate variability using control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950–2010, and significant changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged historical simulations forced by observed anthropogenic and natural, or natural only, forcing components, we find that these changes of climate types since 1950 cannot be explained as natural variations but are driven by anthropogenic factors. PMID:26316255

  4. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming

    NASA Astrophysics Data System (ADS)

    Kartika Lestari, R.; Watanabe, Masahiro; Imada, Yukiko; Shiogama, Hideo; Field, Robert D.; Takemura, Toshihiko; Kimoto, Masahide

    2014-10-01

    Uncontrolled biomass burning in Indonesia during drought periods damages the landscape, degrades regional air quality, and acts as a disproportionately large source of greenhouse gas emissions. The expansion of forest fires is mostly observed in October in Sumatra favored by persistent droughts during the dry season from June to November. The contribution of anthropogenic warming to the probability of severe droughts is not yet clear. Here, we show evidence that past events in Sumatra were exacerbated by anthropogenic warming and that they will become more frequent under a future emissions scenario. By conducting two sets of atmospheric general circulation model ensemble experiments driven by observed sea surface temperature for 1960-2011, one with and one without an anthropogenic warming component, we found that a recent weakening of the Walker circulation associated with tropical ocean warming increased the probability of severe droughts in Sumatra, despite increasing tropical-mean precipitation. A future increase in the frequency of droughts is then suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 model ensembles. Increasing precipitation to the north of the equator accompanies drier conditions over Indonesia, amplified by enhanced ocean surface warming in the central equatorial Pacific. The resultant precipitation decrease leads to a ˜25% increase in severe drought events from 1951-2000 to 2001-2050. Our results therefore indicate the global warming impact to a potential of wide-spreading forest fires over Indonesia, which requires mitigation policy for disaster prevention.

  5. An updated anthropogenic CO2 inventory in the Atlantic Ocean

    SciTech Connect

    Lee, K.; Choi, S.-D.; Park, G.-H.; Peng, T.-H.; Key, Robert; Sabine, Chris; Feely, R. A.; Bullister, J.L.; Millero, F. J.; Kozyr, Alexander

    2003-01-01

    This paper presents a comprehensive analysis of the basin-wide inventory of anthropogenic CO2 in the Atlantic Ocean based on high-quality inorganic carbon, alkalinity, chlorofluorocarbon, and nutrient data collected during the World Ocean Circulation Experiment (WOCE) Hydrographic Program, the Joint Global Ocean Flux Study (JGOFS), and the Ocean-Atmosphere Carbon Exchange Study (OACES) surveys of the Atlantic Ocean between 1990 and 1998. Anthropogenic CO2 was separated from the large pool of dissolved inorganic carbon using an extended version of the DC* method originally developed by Gruber et al. [1996]. The extension of the method includes the use of an optimum multiparameter analysis to determine the relative contributions from various source water types to the sample on an isopycnal surface. Total inventories of anthropogenic CO2 in the Atlantic Ocean are highest in the subtropical regions at 20 40, whereas anthropogenic CO2 penetrates the deepest in high-latitude regions (>40N). The deeper penetration at high northern latitudes is largely due to the formation of deep water that feeds the Deep Western Boundary Current, which transports anthropogenic CO2 into the interior. In contrast, waters south of 50S in the Southern Ocean contain little anthropogenic CO2. Analysis of the data collected during the 1990 1998 period yielded a total anthropogenic CO2 inventory of 28.4 4.7 Pg C in the North Atlantic (equator-70N) and of 18.5 3.9 Pg C in the South Atlantic (equator-70S). These estimated basin-wide inventories of anthropogenic CO2 are in good agreement with previous estimates obtained by Gruber [1998], after accounting for the difference in observational periods. Our calculation of the anthropogenic CO2 inventory in the Atlantic Ocean, in conjunction with the inventories calculated previously for the Indian Ocean [Sabine et al., 1999] and for the Pacific Ocean [Sabine et al., 2002], yields a global anthropogenic CO2 inventory of 112 17 Pg C that has accumulated

  6. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California. PMID:25733875

  7. Anthropogenic Warming Has Increased Drought Risk In California

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Swain, D. L.; Touma, D. E.

    2015-12-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ˜100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  8. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  9. Anthropogenic Aerosols and the Evolution of U.S. Droughts

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Cazavilan, E. J.

    2014-12-01

    Anthropogenic aerosols interact with solar radiation to influence regional to global climate. Trends in aerosol concentrations have impacted the evolution of surface air temperatures and the hydrological cycle over the last 150 years, but the magnitude of influence and any role in shaping extreme events remains uncertain. We use a general circulation model (GISS GCM ModelE) to study the impact of anthropogenic aerosols on the formation of two potential U.S. droughts. Two periods are analyzed, the 1930s Dust Bowl and the 1970s "missed drought". Each period realized ocean conditions ripe for the formation of central U.S. drought, but experienced differing composition and amounts of anthropogenic aerosol forcing. Simulations forced solely by observed sea surface temperature and sea ice distributions reveal drier and warmer conditions in the central U.S. (annual decreases of up to 0.5 mm/day and warming of 0.5°C). We find that anthropogenic aerosols of the 1930s, containing a significant warming component from U.S. black carbon, exacerbated the warm conditions (0.2°C) and provided slightly drier conditions. In contrast, anthropogenic aerosols of the 1970s, containing a large cooling component from U.S. sulfate, reduced annual precipitation deficits and lowered temperatures by up to 0.4°C. Our results showcase the importance of anthropogenic aerosol forcing in the evolution of U.S. droughts.

  10. Just do it! How performing an action enhances remembering in transient global amnesia.

    PubMed

    Hainselin, Mathieu; Quinette, Peggy; Juskenaite, Aurelija; Desgranges, Béatrice; Martinaud, Olivier; de La Sayette, Vincent; Hannequin, Didier; Viader, Fausto; Eustache, Francis

    2014-01-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by the sudden onset of a massive episodic memory deficit that spares other cognitive functions. As such, it provides a unique human amnesia model for testing the enactment effect (i.e., better memory for performed actions than for verbally encoded sentences). Our main aim was to test whether the enactment effect is preserved in TGA patients, both to have a better understanding and to test the robustness of this effect in a massive amnesia. Object-action pairs were encoded under four conditions: verbal, experimenter-performed, and two enacted conditions (self-performed and self-performed with choice). We tested object-action pair retrieval using cued recall (CR) and recognition tasks, and source memory using a free recall task. We also assessed binding, executive functions, short-term memory, episodic memory, anxiety and mood. We run correlations to control for their putative effects on memory for action. Data were collected from 24 patients, 16 of whom were examined during the acute phase and eight the day-after, as well as from 18 healthy controls. The memory performances of the patients in the acute phase improved for both (i) the CR score, between the verbal, experimenter-performed and self-performed with choice conditions, and (ii) the total recognition score, between the verbal condition and the two enacted conditions. Correlations were found between self-performed task (SPT) enhancement and both the binding and anxiety. In spite of their severely impaired episodic memory, patients with TGA benefit from the enactment effect. These results are discussed in relation to the role of motor components and episodic integration in memory for actions. We suggest that enactment effect can be used in clinical practice and rehabilitation, possible even for patients with a massive memory impairment. PMID:24268322

  11. Contemporary anthropogenic silver cycle: a multilevel analysis.

    PubMed

    Johnson, Jeremiah; Jirikowic, Julie; Bertram, Marlen; van Beers, D; Gordon, R B; Henderson, Kathryn; Klee, R J; Lanzano, Ted; Lifset, R; Oetjen, Lucia; Graedel, T E

    2005-06-15

    Anthropogenic cycling of silver in 1997 is presented using three discrete governmental units: 64 countries encompassing what we believe to be over 90% of global silver flows, 9 world regions, and the entire planet. Using material flow analysis (MFA) techniques, the country level cycles are aggregated to produce the regional cycles, which are used to form a "best estimate" global cycle. Interesting findings include the following: (1) several silver-mining countries export ore and concentrate but also import silver-containing semiproducts and products; (2) the level of development for a country, as indicated by the gross domestic product, is a fair indicator of silver use, but several significant outliers exist; (3) the countries with the greatest mine production include Mexico, the United States, Peru, and China, whereas the United States, Japan, India, Germany, and Italy lead in the fabrication and manufacture of products; (4) North America and Europe's use of silver products exceed that of other regions on a per capita basis; (5) global silver discards, including tailings and separation waste, totaled approximately 57% of the silver mined; (6) approximately 57% of the silver entering waste management globally is recycled; and (7) the amount of silver entering landfills globally is comparable to the amount found in tailings. The results of this MFA lay the basis for further analysis, which in turn can offer insight into natural resource policy, the characterization of environmental impact, and better resource management. PMID:16047806

  12. The biogeochemical cycling of elemental mercury: Anthropogenic influences

    SciTech Connect

    Mason, R.P.; Morel, F.M.M. ); Fitzgerald, W.F. )

    1994-08-01

    A review of the available information on global Hg cycling shows that the atmosphere and surface ocean are in rapid equilibrium; the evasion of Hg[sup 0] from the oceans is balanced by the total oceanic deposition of Hg(II) from the atmosphere. The mechanisms whereby reactive Hg species are reduced to volatile Hg[sup 0] in the oceans are poorly known, but reduction appears to be chiefly biological. The rapid equilibrium of the surface oceans and the atmosphere, coupled with the small Hg sedimentation in the oceans makes deposition on land the dominant sink for atmospheric Hg. About half of the anthropogenic emissions appear to enter the global atmospheric cycle while the other half is deposited locally, presumably due to the presence of reactive Hg in flue gases. The authors estimate that over the last century anthropogenic emissions have tripled the concentrations of Hg in the atmosphere and in the surface ocean. Thus, two-thirds of the present Hg fluxes (such as deposition on land and on the ocean) are directly or indirectly of anthropogenic origin. Elimination of the anthropogenic load in the ocean and atmosphere would take fifteen to twenty years after termination of all anthropogenic emissions.

  13. First report on Cretaceous paleoweathering rates in western Panthalassa: Evidence of global enhancement of continental weathering during OAE 2

    NASA Astrophysics Data System (ADS)

    Ohta, T.

    2013-12-01

    Mid-Cretaceous is characterized by intensified oceanic anoxia (Oceanic Anoxic Events: OAEs) that raised global deposition of organic black shales. Several models have been proposed to explain the cause of the OAEs in conjunction with Cretaceous global warmth, active volcanism, sea-level changes and others. For example, Weissert et al. (1998) proposed a mechanism called 'weathering hypothesis'. In this model, the cause of the OAEs is explained in a following chain reaction, (1) global warmth and increase in atmospheric CO2 enhanced weathering of continental crust, (2) enhanced land weathering led excessive influx of nutrients from continents to oceans, (3) eutrophication enhanced primary productivity, (4) the excessive primary producers consumed dissolved oceanic oxygen that finally led to the OAEs. Several studies, in fact, revealed a causal relation between enhanced weathering and OAEs in northern Tethys region. However, it is necessary to collect worldwide information to unravel the global response of weathering hypothesis as a cause of OAEs. For such reason, the present contribution conducted measurements of the degree of hinterland paleoweathering during OAEs in northern Japan, for the purpose to provide a first report on the relation between continental weathering and OAEs in open ocean, the western Panthalassa Ocean. Aptian to Campanian forearc basin mudstones (Yezo Group) were analyzed by XRF and the degree of hinterland weathering was evaluated by geochemical weathering index (W index; Ohta and Arai, 2007). The W values obtained for the Yezo Group are 30~50, which is equivalent to the W values of recent soils developed in temperate mid-latitude climate. The W values show a fluctuation pattern that is concordant with the Cretaceous paleotemperature changes. This match indicates that the change in paleotemperature governed the weathering rates of East Asian continental crust. In addition, hinterland weathering rates show instantaneous increase during the OAE

  14. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  15. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, Elliott; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, Joe; Hilton, Timothy W.

    2015-04-28

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one-third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. Furthermore, the source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  16. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling

    PubMed Central

    Schwartz, Stephen E.; Harshvardhan; Benkovitz, Carmen M.

    2002-01-01

    The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effect, but previous efforts to identify and quantify enhancement of cloud albedo caused by anthropogenic aerosols in satellite observations have been limited, largely because of strong dependence of albedo on cloud liquid water path (LWP), which is inherently highly variable. Here we examine satellite-derived cloud radiative properties over two 1-week episodes for which a chemical transport and transformation model indicates substantial influx of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North Atlantic. Despite absence of discernible dependence of optical depth or albedo on modeled sulfate loading, examination of the dependence of these quantities on LWP readily permits detection and quantification of increases correlated with sulfate loading, which are otherwise masked by variability of LWP, demonstrating brightening of clouds because of the Twomey effect on a synoptic scale. Median cloud-top spherical albedo was enhanced over these episodes, relative to the unperturbed base case for the same LWP distribution, by 0.02 to 0.15. PMID:11854481

  17. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  18. Effects of East Asian Short-lived Anthropogenic Air Pollutants on the Northern Hemispheric Air Quality and Climate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Horowitz, L. W.; Lau, N.; Fan, S.; Tao, S.; Mauzerall, D. L.; Levy, H.

    2012-12-01

    Short-lived anthropogenic pollutants (such as ozone and aerosols) not only degrade ambient air quality and influence human health, but also play an important role in scattering/absorbing atmospheric radiation and disturbing regional climate. Due to the rapid industrialization, anthropogenic emissions from East Asia (EA) have increased substantially during the past decades. At the same time, EA has experienced a changing climate in terms of surface temperature and precipitation. In order to understand to what extent that EA short-lived anthropogenic emissions could influence domestic and downwind air quality (e.g. surface O3 and PM2.5), and explore the potential linkage between hemispheric-scale climate perturbation and regional anthropogenic forcing, we simulate global climate and chemical compositions during 1981-2000 based on the coupled general circulation model CM3 for atmosphere (with interactive tropospheric and stratospheric chemistry), oceans, land and sea ice, recently developed at Geophysical Fluid Dynamics Laboratory (GFDL/NOAA). We also conduct a parallel sensitivity simulation which is identical to the base simulation but with all anthropogenic emissions over EA turned off. The difference between the base and sensitivity simulations represents the short-term response of the Northern Hemispheric climate system and atmospheric composition to the perturbation of regional anthropogenic forcing. We find that East Asian short-lived anthropogenic emissions exert significant adverse impacts on local air quality during 1981-2000, accounting for 10-30ppbV daily-averaged O3 over Eastern China in JJA. In particular, EA anthropogenic emissions elevate the summertime daily maximum 8-hour average ozone (MDA8 O3) by 30-40ppbV over the North China Plain, where the typical background MDA8 ozone ranges 30 to 45ppbV. In addition, the surface PM2.5 concentrations peak at the same season and over the same region, with a seasonal mean of 10-30ug/m3, mostly contributed from

  19. Anthropogenic Aerosol Dimming Over Oceans: A Regional Analysis

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2015-12-01

    The role of anthropogenic aerosols in shaping 20th century SSTs through alteration of surface solar radiation (SSR) is still subject to debate. Identifying and quantifying the relationship between aerosol-induced changes in SSR and the corresponding SST response is difficult due to the masking effect of numerous feedback mechanisms and general variability of the atmosphere-ocean system. We therefore analysed potential anthropogenic aerosol effects on SST with a cascade of experiments of increasing complexity: From atmosphere-only over mixed-layer ocean (MLO) experiments, to fully coupled transient ocean-atmosphere simulations, with and without greenhouse gases and / or aerosols, using the general circulation model ECHAM with explicit aerosol representation. We find anthropogenic aerosols to be crucial to obtain realistic SSR and SST patterns, although co-location of changes in individual variables (aerosol optical depth, SSR, SST) is weak. The effect of greenhouse gases and aerosols in the MLO simulations is essentially additive on global and regional scales, an assumption frequently made in the literature. With atmosphere-only simulations we identified regions most prone to anthropogenic aerosol dimming throughout the 20th century using a strict criterion. From MLO equilibria representative of different decades throughout the 20th century, we identified ocean regions, whose SSTs are most sensitive to changing anthropogenic aerosol emissions. The surface temperature response patterns in our MLO simulations are more sensitive towards the choice of prescribed deep-ocean heat flux if anthropogenic aerosols were included as compared to greenhouse gas only simulations. This implies that ocean dynamics might mask some of the response and cautions against the use of just one set of deep-ocean heat fluxes in MLO studies. Our results corroborate not only the relevance of anthropogenic aerosols for SST responses, but also highlight the complexity and non-locality of the

  20. Anthropogenic Elevation Change in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Prush, V. B.; Lohman, R. B.

    2013-12-01

    Over the past few decades, interferometric synthetic aperture radar (InSAR) has emerged as a valuable tool for studying crustal deformation signals. Its applications to studies of tectonic and non-tectonic sources are varied, including earthquakes and fault-related processes, volcanic deformation, vegetation structure, and anthropogenic signals. In addition to studies of crustal deformation, the sensitivity of interferometric phase to topography makes InSAR a superb tool for the generation of digital elevation models (DEMs). While much of the focus of InSAR research in recent years has been on deformation, changes in the elevation of the ground surface can be of great scientific or societal interest as well. Examples include elevation and volume change due to anthropogenic processes such as landfill and open-pit mining operations, and natural processes such as glacier thinning or terrain alteration resulting from effusive volcanic eruptions. Our study describes two elevation change signals observed in the Pacific Northwest that are of anthropogenic origin. Using the baseline-dependent nature of the topographic component of interferometric phase, we have determined a proxy for canopy height using coherent interferometric phase differences between adjacent logged and forested regions, as well as a means for determining estimates of the amount and time history of material displaced during mining operations at the Centralia Coal Mine in Centralia, Washington. Quantifying the amount of surface change due to anthropogenic activities is not only critical for tracking the altering landscape of the Pacific Northwest and reducing the observed error in interferograms attributable to elevation change. Deforestation is one of the most significant contributors to global carbon emissions, and quantifying changes in vegetation structure can assist in efforts to monitor and mitigate the effects of deforestation on climate change. Similarly, mining operations can have a lasting

  1. Decomposition of climate change effects on ocean natural and anthropogenic carbon uptake.

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Marinov, Irina; Palter, Jaime; Sarmiento, Jorge; Galbraith, Eric

    2013-04-01

    The ocean has been the only net sink of anthropogenic CO2 over the last 200 years, removing more than 30% of emitted anthropogenic carbon [Sabine et al., 2004]. The Southern Ocean accounts for up to half of this sink through the formation of various bottom, intermediate and mode water masses [Gruber et al., 2009]. Therefore, understanding the full range of global warming's possible consequences for the Earth system hinges on an understanding of the Southern Ocean's continued ability to serve as a carbon sink in the future. Many of the physical processes that are crucial to ocean carbon uptake and storage are expected to change under warming conditions, with consequences that are difficult to predict. The recent observed increase in the strength of the Southern Ocean Westerlies might enhance the anthropogenic carbon uptake through a more vigorous vertical mixing. However, this could also cause a decrease in natural carbon storage with a compensating effect. On the other hand, projected changes in buoyancy fluxes are expected to work in the opposite direction leading to a reduction of the vertical mixing. Finally, CO2 solubility at the sea surface will be affected by changes in temperature and salinity. We use a coupled atmosphere-ocean model (CM2Mc, Gallbraith et al., 2011) to perform a series of modeling experiments aimed to quantify the separate impact of these mechanisms on the various processes responsible for the functioning of the ocean carbon pumps. The experiments are based on the IPCC rcp8.5 scenario for the 21st century climate and consist in a combination of perturbations in which only one of the forcing factors is varying. This approach allows us to evaluate the relative importance of each process on the ability of the ocean to store carbon through the solubility and biological pumps. We also discuss the future climate projected changes in the relative importance of the Southern Ocean with respect to the global Ocean, for the total carbon uptake

  2. Real-life experience with personally familiar faces enhances discrimination based on global information

    PubMed Central

    Van Belle, Goedele

    2016-01-01

    Despite the agreement that experience with faces leads to more efficient processing, the underlying mechanisms remain largely unknown. Building on empirical evidence from unfamiliar face processing in healthy populations and neuropsychological patients, the present experiment tested the hypothesis that personal familiarity is associated with superior discrimination when identity information is derived based on global, as opposed to local facial information. Diagnosticity and availability of local and global information was manipulated through varied physical similarity and spatial resolution of morph faces created from personally familiar or unfamiliar faces. We found that discrimination of subtle changes between highly similar morph faces was unaffected by familiarity. Contrariwise, relatively more pronounced physical (i.e., identity) differences were more efficiently discriminated for personally familiar faces, indicating more efficient processing of global, as opposed to local facial information through real-life experience. PMID:26855852

  3. Anthropogenic impact on the Earth's hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wu, P.; Christidis, N.; Stott, P.; Chadwick, R.; Ingram, W.

    2013-12-01

    The global hydrological cycle is a key component of the Earth's climate system. A significant amount of the energy the Earth receives from the Sun is redistributed around the world through the hydrological cycle in the form of latent heat flux. Changes in the hydrological cycle have a direct impact on droughts, floods, water resources and ecosystem services. Observed land precipitation and global river discharges do not show an increasing trend as might be expected in a warming world. Here we show that this apparent discrepancy can be resolved when the effects of tropospheric aerosols are considered. Analyzing state-of-the-art climate model simulations, we find for the first time that there was a detectable weakening of the hydrological cycle between the 1950s and the 1980s attributable to increased anthropogenic aerosols, after which the hydrological cycle recovered due to increasing greenhouse gas concentrations. The net result of these two counter-acting effects is an insignificant trend in the global hydrological cycle, but the individual influence of each is substantial. Reductions in air pollution have already shown an intensification in the last two decades and further rapid increase in precipitation could be expected if the current trend continues.

  4. Anthropogenic perturbation of the carbon fluxes from land to ocean

    NASA Astrophysics Data System (ADS)

    Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; MacKenzie, Fred T.; Gruber, Nicolas; Janssens, Ivan A.; Laruelle, Goulven G.; Lauerwald, Ronny; Luyssaert, Sebastiaan; Andersson, Andreas J.; Arndt, Sandra; Arnosti, Carol; Borges, Alberto V.; Dale, Andrew W.; Gallego-Sala, Angela; Goddéris, Yves; Goossens, Nicolas; Hartmann, Jens; Heinze, Christoph; Ilyina, Tatiana; Joos, Fortunat; Larowe, Douglas E.; Leifeld, Jens; Meysman, Filip J. R.; Munhoven, Guy; Raymond, Peter A.; Spahni, Renato; Suntharalingam, Parvadha; Thullner, Martin

    2013-08-01

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

  5. Disruptions in precipitation cycles: Attribution to anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Tapiador, Francisco J.; Behrangi, Ali; Haddad, Ziad S.; Katsanos, Dimitris; Castro, Manuel

    2016-03-01

    Disruptions of the spatiotemporal distribution of surface precipitation that are induced by global warming may affect Earth's climate more significantly than changes in the total precipitation amount. Identifying such disruptions at global scales is not straightforward, as it requires disentangling a weak signal from comprehensive, gapless data in a 5-D configuration space whose dimensions are latitude, longitude, time, power, and period. Drawing on reliable, state-of-the-art climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments and using well-tested analytical methods, clear changes in the global precipitation cycles have been found for the simulated period 1862-2003. It has also been found that the disruptions may be attributable to anthropogenic forcing. The disruptions are relevant enough to envision significant changes in precipitation timing if human greenhouse gas emissions continue to accumulate in the future. It is noteworthy that the effects of anthropogenic forcings have been found not predominantly in the intra-annual cycles, i.e., in the short-term weather patterns that would be indicative of local effects, but rather in the interannual planetary long-term variability of the atmosphere. This suggests a global, distributed effect of the anthropogenic forcings on precipitation, which in turn is indicative of changes in the precipitation patterns linked with changes in the thermodynamics of the precipitation microphysics and to a lesser extent with the dynamical aspects of the precipitation processes.

  6. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2008-11-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 TgC y-1 for the period 2000 2005. These emissions resulted from the combustion of fossil fuels (260 TgC y-1) and land use change (240 TgC y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 TgC accounting for 3.7% of the global emissions. The 2000 2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 tC y-1 compared to the global average of 1.2 tC y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US of Gross Domestic Product (GDP) in Africa in 2005 was 187 gC/, close to the world average of 199 gC/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  7. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2009-03-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 Tg C y-1 for the period 2000-2005. These emissions resulted from the combustion of fossil fuels (260 Tg C y-1) and land use change (240 Tg C y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 Tg C accounting for 3.7% of the global emissions. The 2000-2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 t C y-1 compared to the global average of 1.2 t C y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US{} of Gross Domestic Product (GDP) in Africa was 187 g C/ in 2005, close to the world average of 199 g C/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  8. Estimating animal mortality from anthropogenic hazards

    EPA Science Inventory

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  9. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Zhang, Xinping; Zhai, Tianrui; Sander, Thomas; Chen, Limei; Klar, Peter J.

    2014-04-01

    Highly homogeneous surface-enhanced Raman scattering (SERS) substrates were produced on the centimeter scale by annealing solution-processed gold nanoparticles into plasmonic nanoislands. The average size and separation of the nanoislands are controlled by tuning the annealing temperature. SERS measurements yield a global enhancement factor as large as 107 over an area of 2 × 2 cm2 for samples annealed at temperatures ranging from 150 to 200 °C. Spectral ``mapping'' of the SERS signal shows a homogeneous distribution of hotspots with high contrast over the entire substrate. The relative standard deviation of the SERS signal is less than 5.4% over an area of 50 × 50 μm2. Theoretical simulations show strong dependence of the near-field electromagnetic enhancement on the size and the separation gap of the gold nanoislands. Both average gap size and average nanoisland size increase with an increase in annealing temperature. Intensive plasmonic coupling between the adjacent gold nanoislands leads to broadband resonance for samples annealed at 150 and 200 °C thus, the laser excitation within the spectrum of plasmon resonance at 633 or 785 nm produced significantly enhanced SERS for 4-mercaptopyridine molecules modified on the gold nanoislands.Highly homogeneous surface-enhanced Raman scattering (SERS) substrates were produced on the centimeter scale by annealing solution-processed gold nanoparticles into plasmonic nanoislands. The average size and separation of the nanoislands are controlled by tuning the annealing temperature. SERS measurements yield a global enhancement factor as large as 107 over an area of 2 × 2 cm2 for samples annealed at temperatures ranging from 150 to 200 °C. Spectral ``mapping'' of the SERS signal shows a homogeneous distribution of hotspots with high contrast over the entire substrate. The relative standard deviation of the SERS signal is less than 5.4% over an area of 50 × 50 μm2. Theoretical simulations show strong dependence of the

  10. Technology enhanced learning for occupational and environmental health nursing: a global imperative.

    PubMed

    Olson, D K; Cohn, S; Carlson, V

    2000-04-01

    One strategy for decreasing the barriers to higher education and for increasing the competency and performance of the occupational and environmental health nurse in the information age is technology enhanced learning. Technology enhanced learning encompasses a variety of technologies employed in teaching and learning activities of presentation, interaction, and transmission to on campus and distant students. Web based learning is growing faster than any other instructional technology, offering students convenience and a wealth of information. PMID:11111417

  11. Research on enhancing the utilization of digital multispectral data and geographic information systems in global habitability studies

    NASA Technical Reports Server (NTRS)

    Martinko, Edward A.; Merchant, James W.

    1988-01-01

    During 1986 to 1987, the Kansas Applied Remote Sensing (KARS) Program continued to build upon long-term research efforts oriented towards enhancement and development of technologies for using remote sensing in the inventory and evaluation of land use and renewable resources (both natural and agricultural). These research efforts directly addressed needs and objectives of NASA's Land-Related Global Habitability Program as well as needs of and interests of public agencies and private firms. The KARS Program placed particular emphasis on two major areas: development of intelligent algorithms to improve automated classification of digital multispectral data; and integrating and merging digital multispectral data with ancillary data in spatial modes.

  12. Emergence of heat extremes attributable to anthropogenic influences

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Black, Mitchell T.; Min, Seung-Ki; Fischer, Erich M.; Mitchell, Daniel M.; Harrington, Luke J.; Perkins-Kirkpatrick, Sarah E.

    2016-04-01

    Climate scientists have demonstrated that a substantial fraction of the probability of numerous recent extreme events may be attributed to human-induced climate change. However, it is likely that for temperature extremes occurring over previous decades a fraction of their probability was attributable to anthropogenic influences. We identify the first record-breaking warm summers and years for which a discernible contribution can be attributed to human influence. We find a significant human contribution to the probability of record-breaking global temperature events as early as the 1930s. Since then, all the last 16 record-breaking hot years globally had an anthropogenic contribution to their probability of occurrence. Aerosol-induced cooling delays the timing of a significant human contribution to record-breaking events in some regions. Without human-induced climate change recent hot summers and years would be very unlikely to have occurred.

  13. Strengthening the evidence-policy interface for patient safety: enhancing global health through hospital partnerships

    PubMed Central

    2013-01-01

    Strengthening the evidence-policy interface is a well-recognized health system challenge in both the developed and developing world. Brokerage inherent in hospital-to-hospital partnerships can boost relationships between “evidence” and “policy” communities and move developing countries towards evidence based patient safety policy. In particular, we use the experience of a global hospital partnership programme focused on patient safety in the African Region to explore how hospital partnerships can be instrumental in advancing responsive decision-making, and the translation of patient safety evidence into health policy and planning. A co-developed approach to evidence-policy strengthening with seven components is described, with reflections from early implementation. This rapidly expanding field of enquiry is ripe for shared learning across continents, in keeping with the principles and spirit of health systems development in a globalized world. PMID:24131652

  14. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  15. An enhanced model of land water and energy for global hydrologic and earth-system studies

    USGS Publications Warehouse

    Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean

    2014-01-01

    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  16. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds.

    PubMed

    Latham, John; Rasch, Philip; Chen, Chih-Chieh; Kettles, Laura; Gadian, Alan; Gettelman, Andrew; Morrison, Hugh; Bower, Keith; Choularton, Tom

    2008-11-13

    An assessment is made herein of the proposal that controlled global cooling sufficient to balance global warming resulting from increasing atmospheric CO2 concentrations might be achieved by seeding low-level, extensive maritime clouds with seawater particles that act as cloud condensation nuclei, thereby activating new droplets and increasing cloud albedo (and possibly longevity). This paper focuses on scientific and meteorological aspects of the scheme. Associated technological issues are addressed in a companion paper. Analytical calculations, cloud modelling and (particularly) GCM computations suggest that, if outstanding questions are satisfactorily resolved, the controllable, globally averaged negative forcing resulting from deployment of this scheme might be sufficient to balance the positive forcing associated with a doubling of CO2 concentration. This statement is supported quantitatively by recent observational evidence from three disparate sources. We conclude that this technique could thus be adequate to hold the Earth's temperature constant for many decades. More work--especially assessments of possible meteorological and climatological ramifications--is required on several components of the scheme, which possesses the advantages that (i) it is ecologically benign--the only raw materials being wind and seawater, (ii) the degree of cooling could be controlled, and (iii) if unforeseen adverse effects occur, the system could be immediately switched off, with the forcing returning to normal within a few days (although the response would take a much longer time). PMID:18757272

  17. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.; Shi, Z.

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1-2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05-0.07 Tg Fe yr-1 in the preindustrial era to 0.11-0.12 Tg Fe yr-1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC) regions of the ocean, the modeled Fe

  18. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.; Shi, Z.

    2015-08-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we, for the first time, interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. We firstly examined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). We then constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water, by using acidity as a master variable. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1-2 orders of magnitude lower Fe solubility in North African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05-0.07 Tg Fe yr-1 in preindustrial era to 0.11-0.12 Tg Fe yr-1 in present days, due to air pollution. Over the High Nitrate Low Chlorophyll (HNLC) regions of the ocean, the modeled Fe solubility remains low for

  19. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli.

    PubMed

    Tatarko, M; Romeo, T

    2001-07-01

    Genetic engineering of microbes for commercial metabolite production traditionally has sought to alter the levels and/or intrinsic activities of key enzymes in relevant biosynthetic pathway(s). Microorganisms exploit similar strategies for flux control, but also coordinate flux through sets of related pathways by using global regulatory circuits. We have engineered a global regulatory system of Escherichia coli, Csr (carbon storage regulator), to increase precursor for aromatic amino acid biosynthesis. Disruption of csrA increases gluconeogenesis, decreases glycolysis, and thus elevates phosphoenolpyruvate, a limiting precursor of aromatics. A strain in which the aromatic (shikimate) pathway had been optimized produced twofold more phenylalanine when csrA was disrupted. Overexpression of tktA (transketolase) to increase the other precursor, erythrose-4-phosphate, yielded approximately 1.4-fold enhancement, while both changes were additive. These effects of csrA were not mediated by increasing the regulatory enzymes of phenylalanine biosynthesis. This study introduces the concept of "global metabolic engineering" for second-generation strain improvement. PMID:11375660

  20. Where have all the people gone? Enhancing global conservation using night lights and social media.

    PubMed

    Levin, Noam; Kark, Salit; Crandall, David

    2015-12-01

    Conservation prioritization at large scales is complex, combining biological, environmental, and social factors. While conservation scientists now more often aim to incorporate human-related factors, a critical yet unquantified challenge remains: to identify which areas people use for recreation outside urban centers. To address this gap in applied ecology and conservation, we developed a novel approach for quantifying human presence beyond populated areas by combining social media "big data" and remote sensing tools. We used data from the Flickr photo-sharing website as a surrogate for identifying spatial variation in visitation globally, and complemented this estimate with spatially explicit information on stable night lights between 2004 and 2012, used as a proxy for identifying urban and industrial centers. Natural and seminatural areas attracting visitors were defined as areas both highly photographed and non-lit. The number of Flickr photographers within protected areas was found to be a reliable surrogate for estimating visitor numbers as confirmed by local authority censuses (r = 0.8). Half of all visitors' photos taken in protected areas originated from under 1% of all protected areas on Earth (250 of -27 000). The most photographed protected areas globally included Yosemite and Yellowstone National Parks (USA), and the Lake and Peak Districts (UK). Factors explaining the spatial variation in protected areas Flickr photo coverage included their type (e.g., UNESCO World Heritage sites have higher visitation) and accessibility to roads and trails. Using this approach, we identified photography hotspots, which draw many visitors and are also unlit (i.e., are located outside urban centers), but currently remain largely unprotected, such as Brazil's Pantanal and Bolivia's Salar de Uyuni. The integrated big data approach developed here demonstrates the benefits of combining remote sensing sources and novel geo-tagged and crowd-sourced information from social

  1. Reducing risk and enhancing education: U.S. medical students on global health electives.

    PubMed

    Reid, Michael J A; Biller, Nancy; Lyon, Sarah M; Reilly, John P; Merlin, Jessica; Dacso, Matthew; Friedman, Harvey M

    2014-12-01

    This study assessed the impact of several interventions, including predeparture simulation training and procedure logs, on incidence needlestick injuries (NSIs) among U.S. medical students on global health (GH) elective in Botswana. Review of NSI incident reports before and after introduction of these interventions demonstrated a reduction in the number of splash and body fluid exposures (n = 5 [6%] vs n = 21 [23%]; P < .001), respectively. Simple predeparture training is highly effective in reducing NSIs among students participating in GH electives. PMID:25465263

  2. Understanding the regional anthropogenic signature in weakening of the south Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    TP, S.

    2014-12-01

    The evidence from observation shows that South Asia underwent a widespread drying from the last five to six decades during the summer. The underlying reasons are unclear, whether this trend is due to natural or anthropogenic activities. Using a state-of-the-art global variable resolution climate model with high-resolution zooming over South-Asia, we decomposed the regional factors responsible for the weakening of monsoon circulation and rainfall. To address this issue we conducted several long simulations from 1886 to 2095, with and without anthropogenic forcing. The simulation provides key information about the regional responses to changes in south Asian summer monsoon, which leads to the decline in mean monsoon, and enhancement in the occurrence of localized extreme precipitation events in a warming climate. Further the 21st century climate projection using the same high-resolution model indicates persistent decrease of monsoonal rains due to land-atmosphere feedbacks in a warming environment. This would have severe impacts on agriculture, water resources and ecosystem over South Asia.

  3. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Abdullah, Mohd Nor Syahrir Bin

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that child-centred, 5E learning cycle-based climate change activities would have over more traditional teacher-centred activities on Malaysian Year 5 primary students (11 years). A quasi-experimental design involving a treatment (n = 55) and a group representing typical teaching method (n = 60) was used to measure the effectiveness of these activities on (a) increasing children's knowledge about global warming; (b) changing their attitudes to be more favourable towards the environment and (c) identify the relationship between knowledge and attitude that exist in this study. Statistically significant differences in favour of the treatment group were detected for both knowledge and environmental attitudes. Non-significant relationship was identified between knowledge and attitude in this study. Interviews with randomly selected students from treatment and comparison groups further underscore these findings. Implications are discussed.

  4. Enhancing Student International Awareness and Global Competency through Compact International Experience Courses

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Schubert, Thomas

    2013-11-01

    Short-term, study-abroad, elective engineering courses were developed in order to raise the international awareness and global competency of engineering students. These Compact International Experience (CIE) courses were taught in response to a strong student desire for engineering study abroad courses and an effort by the home institution to internationalize its curriculum. An assessment of repeat offerings of two three-semester-unit courses on Topics in Fluid Mechanics and Advanced Electronic Circuit Design in a three-week time frame in France and Australia was performed. The goals of the two CIE courses are an effective teaching of their respective technical content as well as a student understanding of the cultural environment and the impact of engineering solutions from a global and societal viewpoint. In the repeat offerings, increased interaction with local industry was an additional goal. The CIE courses were assessed through surveys completed at the beginning and end of the courses, weekly student reflection papers, course evaluations, and formalized instructor observations. Based on the assessment performed, the two CIE courses have been found to be a valuable approach in the delivery of engineering technical electives combined with an international experience.

  5. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    SciTech Connect

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto; Tsui, Kwok; Zhuang, Jie; Yang, Bai

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes. To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.

  6. Ecology of estuaries: Anthropogenic effects

    SciTech Connect

    Kennish, M.J.

    1992-01-01

    Estuaries and near-shore oceanic water are subjected to a multitude of human wastes. The principal objective of this book is to examine anthropogenic effects on estuaries, and it focuses primarily on contaminants in coastal systems. Covered within various chapters are the following topics: waste disposal strategies; definition and classification of pollutants (including organic loading, oil pollution, polynuclear aromatic hydrocarbons; chlorinated hydrocarbons; heavy metals; radionuclides) biological impacts; waste management; impacts of power plants; dredging and spoil disposal; case studies, primarily Chesapeake Bay. The book serves as a text and as a reference.

  7. Enhanced Global Marine Denitrification Records the Initiation of the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Altabet, M. A.; Higginson, M. J.

    2003-12-01

    Denitrification is the predominant global loss term for combined nitrogen and can exert a major control on its oceanic inventory, as well as global productivity and atmospheric CO2. It typically occurs in organic-rich continental margin sediments and in intermediate waters within intense oxygen-minimum zones when bacteria utilize NO3- as an electron acceptor and in doing so convert it primarily to N2 gas. Denitrification strongly fractionates nitrogen isotopes, leaving the remaining NO3- enriched in δ 15N. A paleoceanographic record for denitrification intensity is created when δ 15N-enriched NO3- is transported to surface waters, consumed by phytoplankton, transported downward with organic matter and preserved in the sediments. When there is good to excellent preservation of organic matter at the sea floor due to either suboxic bottom water and/or high sediment accumulation rates, sediment δ 15N faithfully records the δ 15N of sinking organic matter. Marine water-column denitrification is principally concentrated in three areas: the Arabian Sea, the Eastern Tropical North Pacific and Eastern Tropical South Pacific. The advent of well-dated, high-resolution records of sedimentary δ 15N generated by us from each of these regions now facilitates comparison of the relative timing of their large changes in denitrification since the last glacial maximum ( ˜25 Ka). By assigning a hypothetical equal contribution to global marine denitrification from well-constrained records from each region, we have calculated a marine denitrification composite (MDC) record which strongly resembles the Taylor Dome ice core Antarctic CO2 record. Such early and coincidental changes in δ 15N and CO2 prompt us to hypothesize that changes in the inventory of marine nitrate caused by increased denitrification subsequently altered global marine carbon sequestration, especially in the vast oligotrophic regions of the oceans, at a time of concurrent reductions in atmospheric dust inventory

  8. External control of 20th century temperature by natural and anthropogenic forcings.

    PubMed

    Stott, P A; Tett, S F; Jones, G S; Allen, M R; Mitchell, J F; Jenkins, G J

    2000-12-15

    A comparison of observations with simulations of a coupled ocean-atmosphere general circulation model shows that both natural and anthropogenic factors have contributed significantly to 20th century temperature changes. The model successfully simulates global mean and large-scale land temperature variations, indicating that the climate response on these scales is strongly influenced by external factors. More than 80% of observed multidecadal-scale global mean temperature variations and more than 60% of 10- to 50-year land temperature variations are due to changes in external forcings. Anthropogenic global warming under a standard emissions scenario is predicted to continue at a rate similar to that observed in recent decades. PMID:11118145

  9. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  10. Anthropogenic radionuclides in the environment

    SciTech Connect

    Hu, Q; Weng, J; Wang, J

    2007-11-15

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview of anthropogenic radionuclide contamination in the environment, as well as the salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current development that contribute to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) commercial fuel reprocessing; (5) geological repository of high-level nuclear wastes, and (6) nuclear accidents. Then, we summarize the geochemical behavior for radionuclides {sup 99}Tc, {sup 129}I, and {sup 237}Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment. Biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.

  11. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Bower, Keith; Choularton, Tom; Latham, John; Sahraei, Jalil; Salter, Stephen

    2006-11-01

    A simplified version of the model of marine stratocumulus clouds developed by Bower, Jones and Choularton [Bower, K.N., Jones, A., and Choularton, T.W., 1999. A modeling study of aerosol processing by stratocumulus clouds and its impact on GCM parameterisations of cloud and aerosol. Atmospheric Research, Vol. 50, Nos. 3-4, The Great Dun Fell Experiment, 1995-special issue, 317-344.] was used to examine the sensitivity of the albedo-enhancement global warming mitigation scheme proposed by Latham [Latham, J., 1990. Control of global warming? Nature 347, 339-340; Latham, J., 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Letters (doi:10.1006/Asle.2002.0048).] to the cloud and environmental aerosol characteristics, as well as those of the seawater aerosol of salt-mass ms and number concentration Δ N, which-under the scheme-are advertently introduced into the clouds. Values of albedo-change Δ A and droplet number concentration Nd were calculated for a wide range of values of ms, Δ N, updraught speed W, cloud thickness Δ Z and cloud-base temperature TB: for three measured aerosol spectra, corresponding to ambient air of negligible, moderate and high levels of pollution. Our choices of parameter value ranges were determined by the extent of their applicability to the mitigation scheme, whose current formulation is still somewhat preliminary, thus rendering unwarranted in this study the utilisation of refinements incorporated into other stratocumulus models. In agreement with earlier studies: (1) Δ A was found to be very sensitive to Δ N and (within certain constraints) insensitive to changes in ms, W, Δ Z and TB; (2) Δ A was greatest for clouds formed in pure air and least for highly polluted air. In many situations considered to be within the ambit of the mitigation scheme, the calculated Δ A values exceeded those estimated by earlier workers as being necessary to produce a

  12. Continental anthropogenic primary particle number emissions

    NASA Astrophysics Data System (ADS)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  13. CLIMATE VARIABILITY, ANTHROPOGENIC CHANGE, AND CONSEQUENCES IN THE MID-ATLANTIC

    EPA Science Inventory

    When compared to the preceding millennium, the rate of temperature change over the past century strongly suggests that we are in a period of rapid global climate change. Globally, continued anthropogenic increases in concentrations of atmospheric greenhouse gases probably will re...

  14. Chemical oceanography. Increasing anthropogenic nitrogen in the North Pacific Ocean.

    PubMed

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M; Bullister, John L; Yang, Simon; Kim, Tae-Wook

    2014-11-28

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited. PMID:25430767

  15. Increasing anthropogenic nitrogen in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M.; Bullister, John L.; Yang, Simon; Kim, Tae-Wook

    2014-11-01

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (∼0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.

  16. Global change: Geographical approaches (A Review)*

    PubMed Central

    Kotlyakov, V. M.; Mather, J. R.; Sdasyuk, G. V.; White, G. F.

    1988-01-01

    The International Geosphere Biosphere Program sponsored by the International Council of Scientific Unions is directing attention to geophysical and biological change as influenced by human modifications in global energy and mass exchanges. Geographers in the Soviet Union and the United States have joined in critical appraisal of their experience in studying environmental change. This initial report is on some promising approaches, such as the reconstruction of earlier landscape processes, modeling of the dynamics of present-day landscapes, analysis of causes and consequences of anthropogenic changes in specified regions, appraisal of social response to change, and enhanced geographic information systems supported by detailed site studies. PMID:16593971

  17. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  18. Global Equity and Resource Sustainability: the Central Roles of Conservation and Enhanced Efficiency

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.

    2002-05-01

    The terrestrial biosphere arose at approximately 3.5 Ga, and since the early Archean, evolving life has maintained a dynamic equilibrium with solar energy and resources derived from the lithosphere, hydrosphere and atmosphere. This well-integrated system persisted after the emergence of Homo sapiens while we remained in a hunter/gatherer mode. Beginning about 10,000 years ago, settled agriculture allowed for division of labor, and the rise of civilization. World population now exceeds six billion individuals, and is growing at about ninety million annually. By about 2050, demographic estimates put our numbers at 9-10 billion. Approximately 85 percent of humanity now reside in the Developing Nations. Most people desire the increased standard of living now confined to the Industrialized Nations (due largely to exploitation of the planet). The present distribution of wealth is grossly inequitable and politically destabilizing. But can all people be afforded reasonably comfortable lives without destroying planetary habitability? Of the Earth's net primary biological production, humans control about a third, and our share is increasing. The impact on the environment is largely adverse, resulting in heightened air and water pollution, accelerated loss of biodiversity, ecosystem services, topsoil, fisheries, tropical rain forests, and in global warming + sea-level rise. Implications for human welfare and for viability of the web of life are ominous. Modern societies are sustained by the extraction of energy, water, and other Earth materials far beyond renewal rates, limiting future global carrying capacity. Island communities (e. g., Easter Island, Haiti, Madagascar) provide sobering examples of the fate of cultures that overexploit their environments. The biological carrying capacity of the planet is unknown but finite, hence humanity eventually must reach a managed steady state involving efficient, universal resource recovery and world-wide conservation, while

  19. MO-E-18C-05: Global Health Catalyst: A Novel Platform for Enhancing Access to Medical Physics Education and Research Excellence (AMPERE)

    SciTech Connect

    Ngwa, W; Moreau, M; Asana, L

    2014-06-15

    Purpose: To develop a platform for catalyzing collaborative global Cancer Care Education and Research (CaRE), with a prime focus on enhancing Access to Medical Physics Education and Research Excellence (AMPERE) Methods: An analysis of over 50 global health collaborations between partners in the U.S. and low and middle income countries (LMIC) in Africa was carried out to assess the models of collaborations in Education and Research and relative success. A survey was carried out with questions including: the nature of the collaboration, how it was initiated, impact of culture and other factors, and recommendations for catalyzing/enhancing such collaborations. An online platform called Global Health Catalyst was developed for enhancing AMPERE. Results: The analysis yielded three main models for global health collaborations with survey providing key recommendations on how to enhance such collaborations. Based on this, the platform was developed, and customized to allow Medical Physicists and other Radiation oncology (RadOnc) professionals interested in participating in Global health to readily do so e.g. teach an online course module, participate in training Medical Physicists or other RadOnc health professionals in LMIC, co-mentor students, residents or postdocs, etc. The growing list of features on the platform also include: a feature to enable people to easily find each other, form teams, operate more effectively as partners from different disciplines, institutions, nations and cultural backgrounds, share tools and technologies, obtain seed funding to develop curricula and/or embark upon new areas of investigation, and participate in humanitarian outreach: remote treatment planning assistance, and participation in virtual Chart Rounds, etc. Conclusion: The developed Global Health Catalyst platform could enable any Medical Physicist or RadoOnc professional interested in global health to readily participate in the Education/training of next generation Rad

  20. A Strong U.S. Nuclear Enterprise Enhances Global Nuclear Proliferation Management

    SciTech Connect

    Buckner, M.R.

    2001-01-29

    Nuclear policy in the U.S. has evolved over the last five decades as a result of reactions to certain defining events in the evolution of global nuclear technology. These events generally involved either safety issues or concerns about the potential proliferation of nuclear weapons. A world unthreatened by nuclear weapons proliferation is a vision that U.S. policy has strived for since the early years of the atomic age. The U.S. approach to stemming the spread of nuclear weapons has undergone three significant changes over the last fifty-plus years. The McMahon Act of 1946 proscribed dissemination of U. S. nuclear technology overseas for any purpose, whether for weapons or peaceful uses. This approach was superseded by the Atomic Energy Act, stimulated by the Atoms for Peace Initiative (1), which provided for the sharing of substantial scope of nuclear technology for peaceful purposes with countries willing to forego nuclear weapons development. In the decades that followed, the Treaty on the Nonproliferation of Nuclear Weapons (NPT) was signed by 187 nations and the International Atomic Energy Agency (IAEA) was formed to monitor adherence to the Treaty and assist in technology transfer. This international initiative was instrumental in limiting the emergence of new States with nuclear weapons capabilities to a few as compared to the more than fifty that was projected in the early 50's.

  1. Trends of anthropogenic mercury emissions from 1970-2008 using the global EDGARv4 database: the role of increasing emission mitigation by the energy sector and the chlor-alkali industry

    NASA Astrophysics Data System (ADS)

    Muntean, M.; Janssens-Maenhout, G.; Olivier, J. G.; Guizzardi, D.; Dentener, F. J.

    2012-12-01

    The Emission Database for Global Atmospheric Research (EDGAR) describes time-series of emissions of man-made greenhouse gases and short-lived atmospheric pollutants from 1970-2008. EDGARv4 is continuously updated to respond to needs of both the scientific community and environmental policy makers. Mercury, a toxic pollutant with bioaccumulation properties, is included in the forthcoming EDGARv4.3 release, thereby enriching the spectrum of multi-pollutant sources. Three different forms of mercury have been distinguished: gaseous elemental mercury (Hg0), divalent mercury compounds (Hg2+) and particulate associated mercury (Hg-P). A complete inventory of mercury emission sources has been developed at country level using the EDGAR technology-based methodology together with international activity statistics, technology-specific abatement measures, and emission factors from EMEP/EEA (2009), USEPA AP 42 and the scientific literature. A comparison of the EDGAR mercury emission data to the widely used UNEP inventory shows consistent emissions across most sectors compared for the year 2005. The different shares of mercury emissions by region and by sector will be presented with special emphasis on the region-specific mercury emission mitigation potential. We provide a comprehensive ex-post analysis of the mitigation of mercury emissions by respectively end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry between 1970 and 2008. Given the local scale impacts of mercury, we have paid special attention to the spatial distribution of emissions. The default EDGAR Population proxy data was only used to distribute emissions from the residential and solid waste incineration sectors. Other sectors use point source data of power plants, industrial plants, gold and mercury mines. The 2008 mercury emission distribution will be presented, which shows emissions hot-spots on a 0.1°x0.1°resolution gridmap.

  2. Attributing physical and biological impacts to anthropogenic climate change.

    PubMed

    Rosenzweig, Cynthia; Karoly, David; Vicarelli, Marta; Neofotis, Peter; Wu, Qigang; Casassa, Gino; Menzel, Annette; Root, Terry L; Estrella, Nicole; Seguin, Bernard; Tryjanowski, Piotr; Liu, Chunzhen; Rawlins, Samuel; Imeson, Anton

    2008-05-15

    Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents. PMID:18480817

  3. Anthropogenic water vapor emissions in Tokyo

    NASA Astrophysics Data System (ADS)

    Moriwaki, Ryo; Kanda, Manabu; Senoo, Hiroshi; Hagishima, Aya; Kinouchi, Tsuyoshi

    2008-11-01

    Temporal and spatial variations in anthropogenic water vapor (AWV) emissions and anthropogenic heat (AH) in Tokyo were estimated using data from a geographic information system (GIS) and an energy-consumption database. The maximum value of AWV exceeded 500 W m-2 in summer in central Tokyo. Estimations of AWV were validated with field-measured data. The estimated and measured data agreed well, indicating that anthropogenic sources such as district cooling systems release large amounts of water vapor into the atmosphere.

  4. Microbial DNA records historical delivery of anthropogenic mercury

    PubMed Central

    Poulain, Alexandre J; Aris-Brosou, Stéphane; Blais, Jules M; Brazeau, Michelle; Keller, Wendel (Bill); Paterson, Andrew M

    2015-01-01

    Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions. PMID:26057844

  5. Upper-tropospheric moistening in response to anthropogenic warming.

    PubMed

    Chung, Eui-Seok; Soden, Brian; Sohn, B J; Shi, Lei

    2014-08-12

    Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean-atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period 1979-2005 cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change. PMID:25071183

  6. Microbial DNA records historical delivery of anthropogenic mercury.

    PubMed

    Poulain, Alexandre J; Aris-Brosou, Stéphane; Blais, Jules M; Brazeau, Michelle; Keller, Wendel Bill; Paterson, Andrew M

    2015-12-01

    Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions. PMID:26057844

  7. Early emergence in a butterfly causally linked to anthropogenic warming.

    PubMed

    Kearney, Michael R; Briscoe, Natalie J; Karoly, David J; Porter, Warren P; Norgate, Melanie; Sunnucks, Paul

    2010-10-23

    There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted -1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity. PMID:20236964

  8. Upper-tropospheric moistening in response to anthropogenic warming

    PubMed Central

    Chung, Eui-Seok; Soden, Brian; Sohn, B. J.; Shi, Lei

    2014-01-01

    Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean–atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period 1979–2005 cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change. PMID:25071183

  9. Anthropogenic lead dynamics in the terrestrial and marine environment.

    PubMed

    Reuer, Matthew K; Weiss, Dominik J

    2002-12-15

    Human activities have greatly altered the natural geochemical cycles of several heavy metals, most notably lead derived from leaded-petrol and metal-smelting emissions. This inadvertent geochemical tracer experiment poses two challenges: understanding how anthropogenic lead affects human health and the environment, and quantifying its time-dependent distribution within terrestrial and marine systems. Accurate assessment of the latter relies on well-constrained historical and modern lead fluxes from proxy records and direct observations, lead source estimates from stable lead isotopes, and transport rate estimates from radionuclides. Numerous studies support the global-scale atmospheric lead fluxes principally derived from anthropogenic activities, the short lead residence time in the atmosphere and surface ocean, and the predominance of North American and European lead emissions. Emerging observations and models are currently addressing the time-dependent evolution of this reactive tracer in the atmosphere and oceans. PMID:12626272

  10. Intensity and Development Forecasts of Tropical Cyclones by the JMA High-Resolution Global NWP Model: Impacts of Resolution Enhancement

    NASA Astrophysics Data System (ADS)

    Komori, T.; Kitagawa, H.

    2007-12-01

    It is widely considered that a spatial resolution of numerical weather prediction (NWP) model plays an important role for forecasting severe weather events such as tropical cyclones (TCs) and heavy rainfall. Under the KAKUSHIN project (funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology), the Japan Meteorological Agency (JMA) has developed a new Global Spectral Model (GSM) with a high horizontal resolution of about 20km and 60 vertical layers (hereafter called g20km GSMh), which is utilized to evaluate severe weather events in future climate. The 20km GSM will be operational in November 2007 replacing the current GSM with a horizontal resolution of about 60km and 40 vertical layers (hereafter called g60km GSMh). In the present study, we investigate how a model resolution impacts on TC forecasts because this resolution enhancement aims to improve the model's ability to forecast severe weather. Due to the more realistic model topography in higher horizontal resolution, the 20km GSM can give more accurate forecasts of orographic precipitation than the 60km GSM, especially over the area range of heavy precipitation. According to the statistically verified results, the enhancement of horizontal and vertical resolution appears to fairly improve the accuracy of TC intensity forecasts. However, for TC track forecasts, it may be more important to accurately represent large-scale environmental contexts surrounding the TC than to resolve the TC structure itself. In order to clarify resolution impacts on the TC intensity prediction, we categorize the TC intensity forecasts into three stages (development stage, maturation stage and dissipation stage). The results show that the effectiveness of the resolution enhancement is bigger in the development stage and relatively small in the maturation and dissipation stages. For the maturation and dissipation stages, improvement of physical processes seems to be more important than the resolution

  11. The physical environment and health-enhancing activity during the school commute: global positioning system, geographical information systems and accelerometry.

    PubMed

    McMinn, David; Oreskovic, Nicolas M; Aitkenhead, Matt J; Johnston, Derek W; Murtagh, Shemane; Rowe, David A

    2014-05-01

    Active school travel is in decline. An understanding of the potential determinants of health-enhancing physical activity during the school commute may help to inform interventions aimed at reversing these trends. The purpose of this study was to identify the physical environmental factors associated with health-enhancing physical activity during the school commute. Data were collected in 2009 on 166 children commuting home from school in Scotland. Data on location and physical activity were measured using global positioning systems (GPS) and accelerometers, and mapped using geographical information systems (GIS). Multi-level logistic regression models accounting for repeated observations within participants were used to test for associations between each land-use category (road/track/path, other man-made, greenspace, other natural) and moderate-to-vigorous physical activity (MVPA). Thirty-nine children provided 2,782 matched data points. Over one third (37.1%) of children's school commute time was spent in MVPA. Children commuted approximately equal amounts of time via natural and man-made land-uses (50.2% and 49.8% respectively). Commuting via road/track/path was associated with increased likelihood of MVPA (Exp(B)=1.23, P <0.05), but this association was not seen for commuting via other manmade land-uses. No association was noted between greenspace use and MVPA, but travelling via other natural land-uses was associated with lower odds of MVPA (Exp(B)=0.32, P <0.05). Children spend equal amounts of time commuting to school via man-made and natural land-uses, yet man-made transportation route infrastructure appears to provide greater opportunities for achieving health-enhancing physical activity levels. PMID:24893034

  12. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, J. E.; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, J. A.; Hilton, Timothy W.

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  13. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    DOE PAGESBeta

    Campbell, J. E.; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, J. A.; Hilton, Timothy W.

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a currentmore » anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.« less

  14. Two-Dimensional Numerical Modeling of Anthropogenic Beach Berm Erosion

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Schubert, J.; Gallien, T.; Sanders, B. F.

    2014-12-01

    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) temporarily enhance the ability of beaches to withstand overtopping and thus guard against coastal flooding. However, the combination of a rising tide, storm surge, and/or waves may erode anthropogenic berms in a matter of hours or less and cause flooding [1]. Accurate forecasts of coastal flooding therefore demand the ability to predict where and when berms fail and the volume of water that overtops into defended coastal lowlands. Here, a two-dimensional numerical model of swash zone waves and erosion is examined as a tool for predicting the erosion of anthropogenic beach berms. The 2D model is known as a Debris Flow Model (DFM) because it tightly couples flow and sediment transport within an approximate Riemann solver and is able to resolve shocks in fluid/sediment interface [2]. The DFM also includes a two dimensional avalanching scheme to account for gravity-driven slumping of steep slopes. The performance of the DFM is examined with field-scale anthropogenic berm erosion data collected at Newport Beach, California. Results show that the DFM can be applied in the swash zone to resolve wave-by-wave flow and sediment transport. Results also show that it is possible to calibrate the model for a particular event, and then predict erosion for another event, but predictions are sensitive to model parameters, such as erosion and avalanching. References: [1] Jochen E. Schubert, Timu W. Gallien, Morteza Shakeri Majd, and Brett F. Sanders. Terrestrial laser scanning of anthropogenic beach berm erosion and overtopping. Journal of Coastal Research In-Press, 2014. [2] Morteza Shakeri Majd and Brett F. Sanders. The LHLLC scheme for Two-Layer and Two-Phase transcritical flows over a mobile bed with avalanching, wetting and drying. Advances in Water Resources, 64, 16-31, 2014.

  15. Evolution of Bacillus subtilis to enhanced hypobaric growth: global alterations in gene expression

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne; Robles-Martinez, Jose; Rivas-Castillo, Andrea; Schuerger, Andrew

    Much astrobiology research is concerned with defining the environmental limits for life in the universe. Because Mars currently is the primary target for life detection missions, it is important to understand how terrestrial microbes might survive, proliferate, and evolve in martian envi-ronments. This issue is relevant in three distinct but related contexts: (i) testing panspermia hypotheses [1], (ii) mitigating the forward contamination of Mars [2], and (iii) understanding the molecular mechanisms leading to microbial growth in extreme extraterrestrial environments [3]. Prime candidates for Earth-to-Mars transfer include bacteria of the genus Bacillus, spores of which are significant contaminants of Mars-bound spacecraft and which are considered good candidates for lithopanspermia [1-4]. It is thus relevant to assess the potential for such microbes to survive and proliferate in the martian environment. The martian atmosphere poses a significant barrier to growth of terrestrial microbes, due to its low pressure (1-10 mbar; average 7 mbar) and anoxic (˜95% CO2) composition. In an earlier study [5] we showed that low pressures approaching those found on the surface of Mars exhibited an inhibitory effect on the germination and vegetative growth of several Bacillus spp. isolated from spacecraft or their assembly facilities. Even in an Earth-like 80%N2/20%O2 atmosphere, growth of B. subtilis cells was nearly completely inhibited at pressures below 35 mbar, well above the highest pressure on the martian surface [5]. The purpose of the present investigation was to use low pressure as a selective agent to test the hypothesis that a terrestrial microorganism, Bacillus subtilis, could evolve the ability for enhanced growth under hypobaric conditions approaching those of Mars. B. subtilis wild-type strains WN624 (SpcR) and WN628 (CmR) have been described previously [6] and were used as ancestral strains. Strains were propagated in LB liquid medium containing the appropriate

  16. Benchmarking Collaborative Inter and Intra-agency Enhancements to a Decision Support System for Global Crop Production Assessments

    NASA Astrophysics Data System (ADS)

    Hutchinson, C. F.; van Leeuwen, W.; Doorn, B.; Drake, S.; Haithcoat, T.; Kaupp, V.; Likholetov, V.; Sheffner, E.; Tralli, D.

    2008-12-01

    The Office of Global Analysis/ International Production Assessment Branch (IGA/IPA; formerly the Production Estimates and Crop Assessment Division (PECAD)), of the United States Department of Agriculture - Foreign Agricultural Service (USDA-FAS) has been assimilates data and information products from the National Aeronautics and Space Administration (NASA) into its operational decision support system (DSS). The intent is to improve monthly estimates of global production of selected agricultural commodities that are provided to the World Agricultural Outlook Board (WAOB). This research builds on the intermittent collaboration between USDA and NASA in remote sensing of agriculture since 1974. The goal of the research was to develop an approach to measure changes in system performance after the assimilation of NASA products. An important first step was to develop a baseline characterization of the DSS, the working environment and its constraints including the identification of issues and potential solutions. Both qualitative and quantitative information were gathered to benchmark IGA/IPA's DSS using data from questionnaires and interviews. An interactive risk management tool developed for NASA mission architecture design (DDP - Defect Detection and Prevention) was used to evaluate the effectiveness of various Mitigation options against potential Risks, with quantified attainment of Objectives being the most important benchmarking indicator to examine the effectiveness of the assimilation of NASA products into IGA/IPA's DSS. The collaborative benchmarking activities provided not only feedback about the benefits of DSS enhancement to USDA/FAS and NASA, but facilitated communication among DSS users, developers, and USDA management that helped to suggest future avenues for system development as well as improved intra- and interagency collaboration. From this research emerged a model for benchmarking DSSs that (1) promotes continuity and synergy within and between agencies

  17. Anthropogenic Hg in the ocean: Trajectories of change and implications for exposure in the United States

    NASA Astrophysics Data System (ADS)

    Amos, H. M.; Corbitt, E. S.; Bullard, K. T.; Sunderland, E. M.

    2014-12-01

    Humans have been releasing mercury (Hg) to the environment for millenia through activities such as mining and fuel combustion. The result has been an enrichment of the ocean, atmosphere, and terrestrial ecosystems. Consumption of marine fish contaminated with methylmercury (MeHg) is the primary route of exposure in many populations globally. We present an updated analysis of sources of MeHg exposures in the United States that shows the majority (>70%) is from oceanic fish rather than coastal species. Using a fully coupled biogeochemical box model we also estimate Hg accumulation across major ocean basins and show anthropogenic enrichment is highest in the North Atlantic Ocean and lowest in the deep Pacific Ocean. Our results for contemporary ocean concentrations are consistent with recent data from the Pacific, Atlantic, Indian and Southern Oceans measured as part of the CLIVAR repeat hydrography program. Our estimates of natural (i.e., pre-anthropogenic) seawater Hg concentrations are lower than suggested by other studies, implying a greater anthropogenic perturbation in the ocean. Our work suggests total accumulation of anthropogenic Hg in the global oceans is greater than recently derived based on anthropogenic CO2. We compare modeled seawater concentrations since 1980 to observations over this period to evaluate evidence for changes in recent decades and then investigate potential impacts of changing global emissions. To do this, we use a range of historical and future anthropogenic Hg emission inventories. Our previous work using the box model indicates burial of Hg at ocean margins is the single largest global sink of anthropogenic Hg. We will discuss how the magnitude and permanence of this sink affects estimates of enrichment and time scales of recovery in all geochemical Hg reservoirs. Governing time scales of response in each ocean basin are diagnosed using eigenanalysis and discussed in the context of changes in human MeHg exposure resulting from

  18. Recent changes in anthropogenic reactive nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin

    2014-05-01

    Significant anthropogenic perturbations of the nitrogen cycle are the result of rapid population growth, with mounting need for food and energy production. The increase of reactive nitrogen compounds (such as NOx, HNO3, NH3, and N2O) has a significant impact on human health, environment, and climate. NOx emissions contribute to O3 chemistry, aerosol formation and acidic precipitation. Ammonia is a notable atmospheric pollutant that may deteriorate ecosystems and contribute to respiratory problems. It reacts with acidic gases to form aerosols or is deposited back to ecosystems. The application of fertilizers accounts for most of the N2O production, adding to greenhouse gas emissions. We analyze the change of some reactive nitrogen compounds based on observations, in eastern United States. Results show that the control of NOx and SO2 emissions over the last decades caused a significant decrease of acidic deposition. The nitrate deposition is highest in eastern US, while the ammonium ion concentration is highest in central US regions. Overall, the inorganic nitrogen wet deposition from nitrate and ammonium is enhanced in central, and eastern US. Research shows that sensitive ecosystems in northeastern regions exhibit a slow recovery from the accumulated effects of acidic deposition. Given the growing demand for nitrogen in agriculture and industry, we discuss possible pathways to reduce the impact of excess reactive nitrogen on the environment.

  19. Anthropogenic Triggering of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor ``foreshocks'', since the induction may occur with a delay up to several years.

  20. Anthropogenic triggering of large earthquakes.

    PubMed

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years. PMID:25156190

  1. Anthropogenic Triggering of Large Earthquakes

    PubMed Central

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1–10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor “foreshocks”, since the induction may occur with a delay up to several years. PMID:25156190

  2. How anthropogenic noise affects foraging.

    PubMed

    Luo, Jinhong; Siemers, Björn M; Koselj, Klemen

    2015-09-01

    The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered. PMID:26046451

  3. Optimizing Land and Water Use at the Local Level to Enhance Global Food Security through Virtual Resources Trade in the World

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhang, X.; Zhu, T.

    2014-12-01

    Global food security is constrained by local and regional land and water availability, as well as other agricultural input limitations and inappropriate national and global regulations. In a theoretical context, this study assumes that optimal water and land uses in local food production to maximize food security and social welfare at the global level can be driven by global trade. It follows the context of "virtual resources trade", i.e., utilizing international trade of agricultural commodities to reduce dependency on local resources, and achieves land and water savings in the world. An optimization model based on the partial equilibrium of agriculture is developed for the analysis, including local commodity production and land and water resources constraints, demand by country, and global food market. Through the model, the marginal values (MVs) of social welfare for water and land at the level of so-called food production units (i.e., sub-basins with similar agricultural production conditions) are derived and mapped in the world. In this personation, we will introduce the model structure, explain the meaning of MVs at the local level and their distribution around the world, and discuss the policy implications for global communities to enhance global food security. In particular, we will examine the economic values of water and land under different world targets of food security (e.g., number of malnourished population or children in a future year). In addition, we will also discuss the opportunities on data to improve such global modeling exercises.

  4. Biogenic and anthropogenic trace gases in the atmosphere

    NASA Technical Reports Server (NTRS)

    Brasseur, G. P.; Prinn, R. G.

    1992-01-01

    This paper illustrates the importance of biogenic and anthropogenic trace gases for the global environment and for the climate system. The paper briefly reviews the currently available estimates of sources and strengths of the biogenic and anthropogenic gases on the global scale. One of the major concerns for the global environment is the rapid increase in the concentration of long-lived trace gases such as CO2, CH4, N2O and the chlorofluorocarbons. The trend in the carbon dioxide concentration, as a result of fossil-fuel burning, is of the order of 0.4 percent per year, and this trend is related to the CO2 uptake by the ocean and by terrestrial ecosystems, which are likely to be modified if the planet warms up in the forthcoming decades. The concentrations of methane and nitrous oxide are increasing by 0.9 and 0.25 percent per year, respectively. In the case of the most widely used chlorofluorocarbons, trends as large as 10 percent per year or more are being measured.

  5. Impact of increased anthropogenic atmospheric nitrogen deposition on ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Gruber, Nicolas

    2015-04-01

    In the last century, the strong increase in anthropogenic emissions and agricultural activities brought about a tripling in atmospheric nitrogen deposition (AND) rates to oceans. There is growing evidence for a strong fingerprint of increased AND on aquatic systems. Increases in excess N over P (N*) have been attributed to the growing anthropogenically sourced N-deposition in the North western Pacific (Kim et al. 2011) and the North Pacific (Kim et al. 2014). In this study, we use the ocean component of the global earth system model CESM and forced it with transient atmospheric nitrogen deposition from 1850 to 2000 (Lamarque et al. 2013) to study the impact of increased N-deposition on ocean biogeochemistry. We simulate detectable signals in N* in the northern hemisphere as well as a complex pattern of increases and decreases in ocean productivity, with the former causing an expansion of oxygen minimum zones and an increase in water column denitrification. The increase in AND also reduces the ecological niches for N2-fixers, causing a substantial decrease in global ocean N-fixation. Despite this increase in N-loss by denitrification and decrease in N-gain by N-fixation, the increase in AND has put the global marine N-budget severely out of balance ( 10 TgN.yr-1). Finally, we extend our simulation to 2100 using the RCP 8.5 emission scenario to find that these changes will probably grow in the future.

  6. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Balkanski, Yves; Bopp, Laurent; Aumont, Olivier; Boucher, Olivier; Ciais, Philippe; Gehlen, Marion; Peñuelas, Josep; Ethé, Christian; Hauglustaine, Didier; Li, Bengang; Liu, Junfeng; Zhou, Feng; Tao, Shu

    2015-12-01

    Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from -15.2 ± 1.8 to -13.3 ± 1.6 Pg C yr-1 °C-1 in global stratified oceans during 1948-2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.

  7. Natural and anthropogenic climate changes

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D. ); Li, K.; Wang, S. . Inst. of Geography)

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO[sub 2]-doubled global and regional climates; and studies of desertification in the United States and China.

  8. Handling time-expensive global optimization problems through the surrogate-enhanced evolutionary annealing-simplex algorithm

    NASA Astrophysics Data System (ADS)

    Tsoukalas, Ioannis; Kossieris, Panagiotis; Efstratiadis, Andreas; Makropoulos, Christos

    2015-04-01

    In water resources optimization problems, the calculation of the objective function usually presumes to first run a simulation model and then evaluate its outputs. In several cases, however, long simulation times may pose significant barriers to the optimization procedure. Often, to obtain a solution within a reasonable time, the user has to substantially restrict the allowable number of function evaluations, thus terminating the search much earlier than required by the problem's complexity. A promising novel strategy to address these shortcomings is the use of surrogate modelling techniques within global optimization algorithms. Here we introduce the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modelling with the effectiveness and efficiency of the EAS method. The algorithm combines three different optimization approaches (evolutionary search, simulated annealing and the downhill simplex search scheme), in which key decisions are partially guided by numerical approximations of the objective function. The performance of the proposed algorithm is benchmarked against other surrogate-assisted algorithms, in both theoretical and practical applications (i.e. test functions and hydrological calibration problems, respectively), within a limited budget of trials (from 100 to 1000). Results reveal the significant potential of using SE-EAS in challenging optimization problems, involving time-consuming simulations.

  9. Therapist Competence in Global Mental Health: Development of the Enhancing Assessment of Common Therapeutic Factors (ENACT) Rating Scale

    PubMed Central

    Kohrt, Brandon A.; Jordans, Mark J.D.; Rai, Sauharda; Shrestha, Pragya; Luitel, Nagendra P.; Ramaiya, Megan; Singla, Daisy; Patel, Vikram

    2015-01-01

    Lack of reliable and valid measures of therapist competence is a barrier to dissemination and implementation of psychological treatments in global mental health. We developed the ENhancing Assessment of Common Therapeutic factors (ENACT) rating scale for training and supervision across settings varied by culture and access to mental health resources. We employed a four-step process in Nepal: (1) Item generation: We extracted 1,081 items (grouped into 104 domains) from 56 existing tools; role-plays with Nepali therapists generated 11 additional domains. (2) Item relevance: From the 115 domains, Nepali therapists selected 49 domains of therapeutic importance and high comprehensibility. (3) Item utility: We piloted the ENACT scale through rating role-play videotapes, patient session transcripts, and live observations of primary care workers in trainings for psychological treatments and the Mental Health Gap Action Programme (mhGAP). (4) Inter-rater reliability was acceptable for experts (intraclass correlation coefficient, ICC(2,7)=0.88 (95% confidence interval (CI) 0.81—0.93), N=7) and non-specialists (ICC(1,3)=0.67 (95% CI 0.60—0.73), N=34). In sum, the ENACT scale is an 18-item assessment for common factors in psychological treatments, including task-sharing initiatives with non-specialists across cultural settings. Further research is needed to evaluate applications for therapy quality and association with patient outcomes. PMID:25847276

  10. Enhanced Endothelin-1 Mediated Vasoconstriction of the Ophthalmic Artery May Exacerbate Retinal Damage after Transient Global Cerebral Ischemia in Rat

    PubMed Central

    Blixt, Frank W.; Johansson, Sara Ellinor; Johnson, Leif; Haanes, Kristian Agmund; Warfvinge, Karin; Edvinsson, Lars

    2016-01-01

    Cerebral vasculature is often the target of stroke studies. However, the vasculature supplying the eye might also be affected by ischemia. The aim of the present study was to investigate if the transient global cerebral ischemia (GCI) enhances vascular effect of endothelin-1 (ET-1) and 5-hydroxytryptamine/serotonin (5-HT) on the ophthalmic artery in rats, leading to delayed retinal damage. This was preformed using myography on the ophthalmic artery, coupled with immunohistochemistry and electroretinogram (ERG) to assess the ischemic consequences on the retina. Results showed a significant increase of ET-1 mediated vasoconstriction at 48 hours post ischemia. The retina did not exhibit any morphological changes throughout the study. However, we found an increase of GFAP and vimentin expression at 72 hours and 7 days after ischemia, indicating Müller cell mediated gliosis. ERG revealed significantly decreased function at 72 hours, but recovered almost completely after 7 days. In conclusion, we propose that the increased contractile response via ET-1 receptors in the ophthalmic artery after 48 hours may elicit negative retinal consequences due to a second ischemic period. This may exacerbate retinal damage after ischemia as illustrated by the decreased retinal function and Müller cell activation. The ophthalmic artery and ET-1 mediated vasoconstriction may be a valid and novel therapeutic target after longer periods of ischemic insults. PMID:27322388

  11. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  12. Development of a national anthropogenic heating database with an extrapolation for international cities

    NASA Astrophysics Data System (ADS)

    Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.

    2015-10-01

    Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential

  13. Dimming over the Oceans: Transient Anthropogenic Aerosol Plumes in the 20th Century

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2015-04-01

    Anthropogenic aerosols reduce incoming surface solar radiation (SSR), but the magnitude of this effect for reducing sea surface temperature (SST) is still debated. Using simulations from the global climate model ECHAM5 with the Hamburg Aerosol Module (HAM) and prescribed SSTs, we quantify anthropogenic aerosol dimming over sea surfaces by comparing ensembles, which only differ in anthropogenic aerosol emissions. We isolate the anthropogenic aerosol effect on SSR with sufficiently large ensemble sizes to provide statistically significant results. The following simulation results are obtained: Dimming plumes extend from their source regions with clear seasonality. The latter is predominantly shaped by atmospheric circulation, while interdecadal changes follow the gradual increase in anthropogenic aerosol emissions. Comparing the 1990s with the 1870s, on average, 9.4% (clearsky SSR) or 15.4% (allsky SSR) of the entire ocean surface was affected by anthropogenic aerosol dimming larger than -4 W m-2 (annual mean). Comparing the same time periods, global average anthropogenic dimming over oceans is -2.3 W m-2and -3.4 W m-2 for clearsky and allsky SSR, respectively. Surface dimming is hemispherically asymmetrical with stronger Northern Hemispheric dimming by 2.3 W m-2 and 4.5 W m-2 for clearsky and allsky SSR, respectively. Zonal average clearsky dimming reaches its maximum (5.5 W m-2 ) near the Equator. Allsky dimming peaks at 40° N (-8 W m-2 ) and is regionally larger than clearsky dimming. Regionally, surface dimming can go beyond -20 W m-2 (clearsky) and -40 W m-2 (allsky). Results are a contribution towards better quantifying spatially heterogeneous and time-dependent anthropogenic dimming effects on SSTs.

  14. Dimming over the oceans: Transient anthropogenic aerosol plumes in the twentieth century

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2015-04-01

    Anthropogenic aerosols reduce incoming surface solar radiation (SSR), but the magnitude of this effect for reducing sea surface temperatures (SST) is still debated. Using simulations from the global climate model ECHAM5 with the Hamburg Aerosol Module and prescribed SSTs, we quantify anthropogenic aerosol dimming over sea surfaces by comparing ensembles, which only differ in anthropogenic aerosol emissions. We isolate the anthropogenic aerosol effect on SSR with sufficiently large ensemble sizes to provide statistically significant results. The following simulation results are obtained: Dimming plumes extend from their source regions with clear seasonality. The latter is predominantly shaped by atmospheric circulation, while interdecadal changes follow the gradual increase in anthropogenic aerosol emissions. Comparing the 1990s with the 1870s, on average, 9.4% (clear-sky SSR) or 15.4% (all-sky SSR) of the entire ocean surface was affected by anthropogenic aerosol dimming larger than -4 Wm-2 (decadal mean). Comparing the same time periods, global average anthropogenic dimming over oceans is -2.3 Wm-2 and -3.4 Wm-2 for clear-sky and all-sky SSR, respectively. Surface dimming is hemispherically asymmetrical with stronger Northern Hemispheric dimming by 2.3 Wm-2 and 4.5 Wm-2 for clear-sky and all-sky SSR, respectively. Zonal average clear-sky dimming reaches its maximum (-5.5 Wm-2) near the equator. All-sky dimming peaks at 40°N (-8 Wm-2) and is regionally larger than clear-sky dimming. Regionally, surface dimming can reach values up to 9.5 Wm-2 (clear-sky) and 25 Wm-2 (all-sky). Results are a contribution toward better quantifying spatially heterogeneous and time-dependent anthropogenic dimming effects on SSTs.

  15. Anthropogenic mercury emissions in China

    NASA Astrophysics Data System (ADS)

    Streets, David G.; Hao, Jiming; Wu, Ye; Jiang, Jingkun; Chan, Melissa; Tian, Hezhong; Feng, Xinbin

    An inventory of mercury emissions from anthropogenic activities in China is compiled for the year 1999 from official statistical data. We estimate that China's emissions were 536 (±236) t of total mercury. This value includes open biomass burning, but does not include natural sources or re-emission of previously deposited mercury. Approximately 45% of the Hg comes from non-ferrous metals smelting, 38% from coal combustion, and 17% from miscellaneous activities, of which battery and fluorescent lamp production and cement production are the largest. Emissions are heaviest in Liaoning and Guangdong Provinces, where extensive smelting occurs, and in Guizhou Province, where there is much small-scale combustion of high-Hg coal without emission control devices. Emissions are gridded at 30×30 min spatial resolution. We estimate that 56% of the Hg in China is released as Hg 0, 32% as Hg 2+, and 12% as Hg p. Particulate mercury emissions are high in China due to heavy burning of coal in residential and small industrial settings without PM controls. Emissions of Hg 2+ from coal-fired power plants are high due to the absence of flue-gas desulfurization units, which tend to dissolve the soluble divalent mercury. Metals smelting operations favor the production of elemental mercury. Much of the Hg is released from small-scale activities in rather remote areas, and therefore the activity levels are quite uncertain. Also, emissions test data for Chinese sources are lacking, causing uncertainties in Hg emission factors and removal efficiencies. Overall, we calculate an uncertainty level of ±44% (95% confidence interval) in the estimate of total emissions. We recommend field testing of coal combustors and smelters in China to improve the accuracy of these estimates.

  16. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects

    SciTech Connect

    Zavala, J.; Casteel, C.; DeLucia, E.; Berenbaum, M.

    2008-04-01

    Elevated levels of atmospheric carbon dioxide (CO{sub 2}), a consequence of anthropogenic global change, can profoundly affect the interactions between crop plants and insect pests and may promote yet another form of global change: the rapid establishment of invasive species. Elevated CO{sub 2} increased the susceptibility of soybean plants grown under field conditions to the invasive Japanese beetle (Popillia japonica) and to a variant of western corn rootworm (Diabrotica virgifera virgifera) resistant to crop rotation by down-regulating gene expression related to defense signaling [lipoxygenase 7 (lox7), lipoxygenase 8 (lox8), and 1-aminocyclopropane-1-carboxylate synthase (acc-s)]. The down-regulation of these genes, in turn, reduced the production of cysteine proteinase inhibitors (CystPIs), which are specific deterrents to coleopteran herbivores. Beetle herbivory increased CystPI activity to a greater degree in plants grown under ambient than under elevated CO{sub 2}. Gut cysteine proteinase activity was higher in beetles consuming foliage of soybeans grown under elevated CO{sub 2} than in beetles consuming soybeans grown in ambient CO{sub 2}, consistent with enhanced growth and development of these beetles on plants grown in elevated CO{sub 2}. These findings suggest that predicted increases in soybean productivity under projected elevated CO{sub 2} levels may be reduced by increased susceptibility to invasive crop pests.

  17. Adulterated and Counterfeit Male Enhancement Nutraceuticals and Dietary Supplements Pose a Real Threat to the Management of Erectile Dysfunction: A Global Perspective.

    PubMed

    ElAmrawy, Fatema; ElAgouri, Ghada; Elnoweam, Ola; Aboelazayem, Samar; Farouk, ElMohanad; Nounou, Mohamed I

    2016-11-01

    Erectile dysfunction prevalence globally is noticeably high. This is accompanied by an increase in the use of nutraceuticals for male enhancement. However, the global market is invaded by counterfeit and adulterated nutraceuticals claimed to be of natural origin sold with a therapeutic claim. The objective of this article is to review male enhancement nutraceuticals worldwide with respect to claim, adulterants, and safety. The definition of such products is variable across countries. Thus, the registration procedures differ as well. This facilitates the manipulation of the process, which leads to widespread adulterated and counterfeit products without control. The tele-advertisement and Internet pharmacies aided the widespread sale of male enhancement nutraceuticals, unfortunately, the spurious ones. Finally, based on literature, most of these products were found to be adulterated with active pharmaceutical ingredients (API) and mislabeled as being natural. These products represent a major health hazard for consumers due to lack of clear regulations. PMID:26913542

  18. The Anthropogenic Era Began Thousands of Years Ago

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2003-12-01

    The anthropogenic era is generally thought to have begun about 150 years ago when the industrial revolution began producing CO2 and CH4 at rates sufficient to alter atmospheric compositions. The hypothesis proposed here is that anthropogenic emissions first altered atmospheric gas concentrations (and climate) thousands of years ago. This hypothesis rests on three arguments: (1) Cyclic variations in CO2 and CH4 driven by Earth-orbital changes during the last 400,000 years predict decreases of both gases throughout the Holocene, but CO2 began an anomalous increase near 8000 years ago and CH4 about 5000 years ago. (2) Published explanations attributing these Holocene gas increases to natural forcing can be rejected based on available paleoclimatic evidence. (3) Archeological, cultural, historical, and geologic sources provide viable explanations tied to anthropogenic changes that emerged from early agriculture in Eurasia, including forest clearance after 8000 years ago and lowland irrigation for rice farming by 5000 years ago. Prior to the industrial era, these emissions caused a mean-annual warming effect of ~0.8oC globally and 1.5-2oC at high latitudes. The early-anthropogenic warming counteracted most of a natural cooling that would otherwise have occurred, and it may have prevented a glaciation in northeastern Canada predicted by two kinds of climatic models. CO2 decreases as large as 10 ppm during the last 1000 years cannot be explained by solar-volcanic forcing without violating constraints imposed by reconstructions of northern hemisphere temperature. The CO2 decreases can be explained by bubonic plague pandemics that the caused widespread abandonment of western Eurasian farms documented in historical records. Rapid regrowth of forests on millions of abandoned farms could have sequestered enough carbon to explain the observed CO2 decreases. Plague-driven CO2 decreases were a significant causal factor in the cooler temperatures of the Little Ice Age from 1300 to

  19. CO2 Biogenic vs Anthropogenic Sectoral Contribution for INFLUX

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, I.; Prasad, K.; Hu, H.; Whetstone, J. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Davis, K. J.; Turnbull, J. C.; Karion, A.; Sweeney, C.; Brewer, A.; Hardesty, M.; Cambaliza, M. O. L.; Shepson, P. B.; Patarasuk, R.; Gurney, K. R.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. This project is an experimental test bed which is intended to establish reliable methods for quantifying and validating GHG emissions independently of the inventory methods typically used for Measurement, Reporting and Verification (MRV) of pollution sources. Analyzing the contribution of different source types or sectors is a fundamental step in order to achieve an accuracy level desired for such MRV applications. This is especially challenging when attempting to determine anthropogenic emissions during the growing season since biological GHG fluxes reach a maximum at this time. To this end, the Weather Research and Forecasting Model (WRF-ARW) version 3.5.1 was used along with a modified version of the Green House Gases chemistry module for simulating the CO2 mole fraction transport during September and October 2013. Sectoral anthropogenic CO2 emissions were obtained from Hestia 2012 and from Vulcan 2002 beyond the spatial coverage of Hestia. Biogenic CO2 emissions were simulated by using an augmented version of the "Vegetation Photosynthesis and Respiration Model" (VPRM) included in WRF-CHEM. An implementation of the unconstrained nonlinear global optimization method of Nelder and Mead was employed to find the optimum values for the VPRM parameters for each vegetation category by using data from Ameriflux eddy covariance flux towers. Here we present a preliminary assessment of the relative contribution of biological vs sectoral anthropogenic CO2 fluxes on the INFLUX measurements network. The simulations are compared to tower and aircraft measurements that include trace gases with the capacity to distinguish observationally anthropogenic and biogenic CO2 sources and sinks. In addition, an evaluation of the sensitivity of the sectoral attribution to meteorological

  20. Anthropogenic heavy metal signatures for the fast growing urban area of Natal (NE-Brazil)

    NASA Astrophysics Data System (ADS)

    Sindern, S.; Lima, R. F. S.; Schwarzbauer, J.; Petta, R. A.

    2007-04-01

    In this study the effect of anthropogenic discharges on the heavy metal content in the Potengi Jundiai river system near the fast growing city of Natal, NE-Brazil, is investigated. Due to the multiple anthropogenic source character without any predominating anthropogenic heavy metal discharge the area of Natal may serve as a characteristic place for the study of the impact of the fast growing Brazilian cities on the environment. In general the sediments of the Rio Potengi Jundiai river system in the studied area are not severely polluted. However, close to waste water drain pipes a characteristic anthropogenic heavy metal signature is visible in enhanced Zn, Pb, Cu and Cd values relative to reference elements such as Al and Fe. Sources are domestic and animal waste, combustion products and hydrocarbons. These heavy metals are probably mainly bound to organic matter. The elements Sn, Hg and Ag in part also belong to the anthropogenic heavy metal signature. The elements Cr, Ni and V are characteristic of weathering heavy minerals in crystalline rocks exposed in the catchment area of the river system and are not significantly added from anthropogenic sources. These heavy metals are most likely predominantly bound to oxides and represent the pristine geogenic background of the system. They can thus be used as reference elements to monitor incipient accumulation of Zn, Pb, Cu and Cd due to anthropogenic input. The element characteristics found here match with those found in other fast growing urban areas such as the Sao Paulo metropolitan area.

  1. Global Composite

    Atmospheric Science Data Center

    2013-04-19

    article title:  MISR Global Images See the Light of Day     View Larger Image ... than its nadir counterpart due to enhanced reflection of light by atmospheric particulates. MISR data are processed at the ...

  2. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010.

    PubMed

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-05-01

    Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  3. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-05-01

    Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  4. Interannual Variations and Trends in Global Land Surface Phenology Derived from Enhanced Vegetation Index During 1982-2010

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-01-01

    Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  5. Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Carslaw, K. S.; Romakkaniemi, S.

    2010-05-01

    Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC) vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels), transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20%) and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed) increases CDNC on average by 45-163%, but median concentrations are still below the 375 cm-3 assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1-2% in the seeded regions and sulphuric acid vapour by 64-68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in the real environment so that

  6. Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Carslaw, K. S.; Romakkaniemi, S.

    2010-01-01

    Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC) vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels), transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20%) and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed) increases CDNC on average by 45-163%, but median concentrations are still below the 375 cm-3 assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1-2% in the seeded regions and sulphuric acid vapour by 64-68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in the real environment so that

  7. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    SciTech Connect

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

  8. ERα propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells

    PubMed Central

    Lv, Jinghuan; Ding, Haijian; Zhang, Xin A.; Shao, Lipei; Yang, Nan; Cheng, He; Sun, Luan; Zhu, Dongliang; Yang, Yin; Li, Andi; Han, Xiao; Sun, Yujie

    2016-01-01

    Drug-induced aberrant DNA methylation is the first identified epigenetic marker involved in chemotherapy resistance. Understanding how the aberrant DNA methylation is acquired would impact cancer treatment in theory and practice. In this study we systematically investigated whether and how ERα propelled aberrant global DNA hypermethylation in the context of breast cancer drug resistance. Our data demonstrated that anticancer drug paclitaxel (PTX) augmented ERα binding to the DNMT1 and DNMT3b promoters to activate DNMT1 and DNMT3b genes, enhancing the PTX resistance of breast cancer cells. In support of these observations, estrogen enhanced multi-drug resistance of breast cancer cells by up-regulation of DNMT1 and DNMT3b genes. Nevertheless, the aberrant global DNA hypermethylation was dominantly induced by ERα-activated-DNMT1, since DNMT1 over-expression significantly increased global DNA methylation and DNMT1 knockdown reversed the ERα-induced global DNA methylation. Altering DNMT3b expression had no detectable effect on global DNA methylation. Consistently, the expression level of DNMT1 was positively correlated with ERα in 78 breast cancer tissue samples shown by our immunohistochemistry (IHC) analysis and negatively correlated with relapse-free survival (RFS) and distance metastasis-free survival (DMFS) of ERα-positive breast cancer patients. This study provides a new perspective for understanding the mechanism underlying drug-resistance-facilitating aberrant DNA methylation in breast cancer and other estrogen dependent tumors. PMID:26980709

  9. Late Holocene climate: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.; Fuller, D. Q.; Kutzbach, J. E.; Tzedakis, P. C.; Kaplan, J. O.; Ellis, E. C.; Vavrus, S. J.; Roberts, C. N.; Fyfe, R.; He, F.; Lemmen, C.; Woodbridge, J.

    2016-03-01

    For more than a decade, scientists have argued about the warmth of the current interglaciation. Was the warmth of the preindustrial late Holocene natural in origin, the result of orbital changes that had not yet driven the system into a new glacial state? Or was it in considerable degree the result of humans intervening in the climate system through greenhouse gas emissions from early agriculture? Here we summarize new evidence that moves this debate forward by testing both hypotheses. By comparing late Holocene responses to those that occurred during previous interglaciations (in section 2), we assess whether the late Holocene responses look different (and thus anthropogenic) or similar (and thus natural). This comparison reveals anomalous (anthropogenic) signals. In section 3, we review paleoecological and archaeological syntheses that provide ground truth evidence on early anthropogenic releases of greenhouse gases. The available data document large early anthropogenic emissions consistent with the anthropogenic ice core anomalies, but more information is needed to constrain their size. A final section compares natural and anthropogenic interpretations of the δ13C trend in ice core CO2.

  10. Sensitivity of global wildfire occurrences to various factors in the context of global change

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Wu, Shiliang; Kaplan, Jed O.

    2015-11-01

    The occurrence of wildfires is very sensitive to fire meteorology, vegetation type and coverage. We investigate the potential impacts of global change (including changes in climate, land use/land cover, and population density) on wildfire frequencies over the period of 2000-2050. We account for the impacts associated with the changes in fire meteorology (such as temperature, precipitation, and relative humidity), vegetation density, as well as lightning and anthropogenic ignitions. Fire frequencies under the 2050 conditions are projected to increase by approximately 27% globally relative to the 2000 levels. Significant increases in fire occurrence are calculated over the Amazon area, Australia and Central Russia, while Southeast Africa shows a large decreasing trend due to significant increases in land use and population. Changes in fire meteorology driven by 2000-2050 climate change are found to increase the global annual total fires by around 19%. Modest increases (∼4%) in fire frequency at tropical regions are calculated in response to climate-driven changes in lightning activities, relative to the present-day levels. Changes in land cover by 2050 driven by climate change and increasing CO2 fertilization are expected to increase the global wildfire occurrences by 15% relative to the 2000 conditions while the 2000-2050 anthropogenic land use changes show little effects on global wildfire frequency. The 2000-2050 changes in global population are projected to reduce the total wildfires by about 7%. In general, changes in future fire meteorology plays the most important role in enhancing the future global wildfires, followed by land cover, lightning activities and land use while changes in population density exhibits the opposite effects during the period of 2000-2050.

  11. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  12. Mixing of anthropogenic dust and carbonaceous aerosols in seasonal snow on snow albedo reduction in 2014 China survey

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Huang, Jianping; Pu, Wei

    2016-04-01

    Anthropogenic dusts produced from the affected by human activities derived from the industrial areas and carbonaceous aerosols (black carbon and organic carbon) deposited into snow or ice core via wet and dry deposition play key roles to the regional and global climate. Recently, a China survey was performed to measure the concentrations of insoluble light-absorbing particles (ILAP) in seasonal snow across northern China in January and February of 2014. The results indicate that the higher concentration of NO3- and SO42- and heavy metals of Zn, Pb, Cd, Ni, and Cu are likely to be attributed to enhanced local industrial emissions due to human activities. The emissions from fossil fuel combustion and biomass burning are likely to be important for the chemical elements in the seasonal snow with long-range transport, while medium enrichment factors of Mg, Ca, and Al were predominantly associated with soil dust, which is the most important natural source. There are large ranges of the BC and AD in seasonal snow over northeast China because of the anthropogenic emissions, which are caused by human activities. In addition, although the values of the snow albedo by model simulations are little higher in the visible to near-infrared wavelength than that during the China survey, the surface snow albedo by field campaign measurements have good agreement with the model simulations in the visible wavelength.

  13. Microbial copper reduction method to scavenge anthropogenic radioiodine

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeop; Lee, Ji Young; Min, Je Ho; Kim, Seung Soo; Baik, Min Hoon; Chung, Sang Yong; Lee, Minhee; Lee, Yongjae

    2016-06-01

    Unexpected reactor accidents and radioisotope production and consumption have led to a continuous increase in the global-scale contamination of radionuclides. In particular, anthropogenic radioiodine has become critical due to its highly volatile mobilization and recycling in global environments, resulting in widespread, negative impact on nature. We report a novel biostimulant method to effectively scavenge radioiodine that exhibits remarkable selectivity for the highly difficult-to-capture radioiodine of >500-fold over other anions, even under circumneutral pH. We discovered a useful mechanism by which microbially reducible copper (i.e., Cu2+ to Cu+) acts as a strong binder for iodide-iodide anions to form a crystalline halide salt of CuI that is highly insoluble in wastewater. The biocatalytic crystallization of radioiodine is a promising way to remove radioiodine in a great capacity with robust growth momentum, further ensuring its long-term stability through nuclear I‑ fixation via microcrystal formation.

  14. Microbial copper reduction method to scavenge anthropogenic radioiodine

    PubMed Central

    Lee, Seung Yeop; Lee, Ji Young; Min, Je Ho; Kim, Seung Soo; Baik, Min Hoon; Chung, Sang Yong; Lee, Minhee; Lee, Yongjae

    2016-01-01

    Unexpected reactor accidents and radioisotope production and consumption have led to a continuous increase in the global-scale contamination of radionuclides. In particular, anthropogenic radioiodine has become critical due to its highly volatile mobilization and recycling in global environments, resulting in widespread, negative impact on nature. We report a novel biostimulant method to effectively scavenge radioiodine that exhibits remarkable selectivity for the highly difficult-to-capture radioiodine of >500-fold over other anions, even under circumneutral pH. We discovered a useful mechanism by which microbially reducible copper (i.e., Cu2+ to Cu+) acts as a strong binder for iodide-iodide anions to form a crystalline halide salt of CuI that is highly insoluble in wastewater. The biocatalytic crystallization of radioiodine is a promising way to remove radioiodine in a great capacity with robust growth momentum, further ensuring its long-term stability through nuclear I− fixation via microcrystal formation. PMID:27311370

  15. Microbial copper reduction method to scavenge anthropogenic radioiodine.

    PubMed

    Lee, Seung Yeop; Lee, Ji Young; Min, Je Ho; Kim, Seung Soo; Baik, Min Hoon; Chung, Sang Yong; Lee, Minhee; Lee, Yongjae

    2016-01-01

    Unexpected reactor accidents and radioisotope production and consumption have led to a continuous increase in the global-scale contamination of radionuclides. In particular, anthropogenic radioiodine has become critical due to its highly volatile mobilization and recycling in global environments, resulting in widespread, negative impact on nature. We report a novel biostimulant method to effectively scavenge radioiodine that exhibits remarkable selectivity for the highly difficult-to-capture radioiodine of >500-fold over other anions, even under circumneutral pH. We discovered a useful mechanism by which microbially reducible copper (i.e., Cu(2+) to Cu(+)) acts as a strong binder for iodide-iodide anions to form a crystalline halide salt of CuI that is highly insoluble in wastewater. The biocatalytic crystallization of radioiodine is a promising way to remove radioiodine in a great capacity with robust growth momentum, further ensuring its long-term stability through nuclear I(-) fixation via microcrystal formation. PMID:27311370

  16. Long-term sea level trends: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.

    2014-08-01

    Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. We question whether the sea level changes (SLC) over the past century were natural in origin. SLC exhibit power law long-term correlations. By estimating Hurst exponent through Detrended Fluctuation Analysis and by applying statistics of Lennartz and Bunde, we search the lower bounds of statistically significant external sea level trends in longest tidal records worldwide. We provide statistical evidences that the observed SLC, at global and regional scales, is beyond its natural internal variability. The minimum anthropogenic sea level trend (MASLT) contributes to the observed sea level rise more than 50% in New York, Baltimore, San Diego, Marseille, and Mumbai. A MASLT is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century.

  17. [The level of DNA damage and DNA reparation rate in cells of earthworms sampled from natural populations for numerous generations inhabited territories with anthropogenically enhanced levels of radionuclides in soil].

    PubMed

    Kaneva, A V; Belykh, E S; Maystrenko, T A; Shadrin, D M; Pylina, Ya I; Velegzhaninov, I O

    2015-01-01

    Low doses of ionizing radiation and chemical toxic agent effects on biological systems on different organization levels have been studied by numerous researchers. But there is a clear lack of experimental data that allow one to reveal molecular and cellular adaptations of plants and animals from natural populations to adverse effects of environmental factors. The present study was aimed to assess genotoxic effects in earthworms Aporrectodea caliginosa Savigny and Lumbricus rubellus Hoffmeister sampled from the populations that during numerous generations inhabited the territories with a technogeneously enhanced content of natural origin radionuclides and heavy metals in soil. The levels ofthe DNA damage detected with alkaline and neutral versions of Comet-assay in invertebrates from contaminated territories were established not to differ from the spontaneous level found in the animals from the reference population. At the same time the rate of the DNA damage reparation induced in A. caliginosa sampled from the contaminated sites with additional acute γ-irradiation (4 Gy) was found to be considerably higher as compared with earthworms from the reference population. PMID:25962273

  18. Fate and Effects of Anthropogenic Chemicals in Mangrove Ecosystems: A Review

    EPA Science Inventory

    The role of anthropogenic chemicals in the decline of plant-dominated, fringe ecosystems such as mangroves is important to understand. Mangrove global coverage has been reduced approximately 50% in recent years and the presence of toxic chemicals may be a contributing factor. T...

  19. Improved representation of stratocumulus clouds and the anthropogenic aerosol effect

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna; Frontoso, Grazia M.

    2014-05-01

    Stratocumulus clouds are important for future climate predictions as they have a strong cooling effect and the feedback of low clouds is believed to be a major cause of the model spread in climate sensitivity. Stratocumulus clouds are difficult to represent in a general circulation model because of their small vertical extent. Stratocumulus regions are also areas of a strong anthropogenic aerosol effect. Simulations of the anthropogenic aerosol effect can be expected to depend on the representation of stratocumulus clouds in climate models. We address the representation of several of the physical processes that have to be accounted for when modeling stratocumuli in the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM2 (Zhang et al., 2012). As a 'long tail' stability function can lead to excessive mixing at high stabilities we replaced it with a 'sharp' stability function. The stratocumulus cloud cover and liquid water path increase, similar to previous studies, with the 'sharp' stability function in ECHAM6-HAM2. We also study the impact of increased vertical resolution in the lower troposphere in ECHAM6-HAM2 on stratocumulus clouds. First results show improvements for the cloud height and thickness with increased vertical resolution. To simulate a realistic mixing state and size of particles released by evaporation of clouds and precipitation we include aerosol processing in stratiform clouds. First results from multi-year simulations show that using a 'sharp' stability function decreases the anthropogenic aerosol effect from -1.5 W/m2 to -1.2 W/m2 and in-cloud aerosol processing to -0.8 W/m2. This strong decrease is due to an increase in the background aerosol load. Increased vertical resolution doesn't seem to affect the anthropogenic aerosol effect in the global average. Further results on the impact of changing the vertical resolution, a different stability function and in-cloud aerosol processing in ECHAM6-HAM2 on the

  20. A Modeling Comparison of Mercury Deposition from Current Anthropogenic Mercury Emission Inventories.

    PubMed

    Simone, Francesco De; Gencarelli, Christian N; Hedgecock, Ian M; Pirrone, Nicola

    2016-05-17

    Human activities have altered the biogeochemical cycle of mercury (Hg) since precolonial times, and anthropogenic activities will continue to perturb the natural cycle of Hg. Current estimates suggest the atmospheric burden is three to five times greater than precolonial times. Hg in the upper ocean is estimated to have doubled over the same period. The Minamata convention seeks to reduce the impact human activities have on Hg releases to the environment. A number of the Articles in the Convention concern the development of detailed inventories for Hg emissions and releases. Using the global Hg chemical transport model, ECHMERIT, the influence of the anthropogenic emission inventory (AMAP/UNEP, EDGAR, STREETS) on global Hg deposition patterns has been investigated. The results suggest that anthropogenic Hg emissions contribute 20-25% to present-day Hg deposition, and roughly two-thirds of primary anthropogenic Hg is deposited to the world's oceans. Anthropogenic Hg deposition is significant in the North Pacific, Mediterranean and Arctic. The results indicate immediate reductions in Hg emissions would produce benefits in the short term, as well as in the long term. The most impacted regions would be suitable to assess changes in Hg deposition resulting from implementation of the Minamata convention. PMID:27120197

  1. The Impact of Biogenic and Anthropogenic Atmospheric Aerosol on Climate in Egypt

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Zakey, A.; Steiner, A. L.; Shokr, M. E.; El-Raey, M.; Ahmed, Y.; Al-Hadidi, A.; Zakey, A.

    2014-12-01

    Aerosols are indicators of air quality as they reduce visibility and adversely affect public health. Aerosol optical depth (AOD) is a measure of the radiation extinction due to interaction of radiation with aerosol particles in the atmosphere. Using this optical measure of atmospheric aerosols we explore the seasonal and annual patterns of aerosols from both anthropogenic and biogenic sources over Egypt. Here, we use an integrated environment-climate-aerosol model in conjunction with inversion technique to identify the aerosol particle size distribution over different locations in Egypt. The online-integrated Environment-Climate-Aerosol model (EnvClimA), which is based on the International Center for Theoretical Physics Regional Climate Model (ICTP-RegCM), is used to study the emission of different aerosols and their impact on climate parameters for a long-term base line simulation run over Egypt and North Africa. The global emission inventory is downscaled and remapping them over Egypt using local factors such as population, traffic and industrial activities to identify the sources of anthropogenic and biogenic emission from local emission over Egypt. The results indicated that the dominant natural aerosols over Egypt are dust emissions that frequently occur during the transitional seasons (Spring and Autumn). From the local observation we identify the number of dust and sand storm occurrences over Egypt. The Multiangle Imaging SpectroRadiometer (MISR) is used to identify the optical characterizations of different types of aerosols over Egypt. Modeled aerosol optical depth and MISR observed (at 555 nm) are compared from March 2000 through November 2013. The results identify that the MISR AOD captures the maximum peaks of AOD in March/April that coincide with the Khamasin dust storms. However, peaks in May are either due to photochemical reactions or anthropogenic activities. Note: This presentation is for a Partnerships for Enhanced Engagement in Research (PEER

  2. ON THE FLARE-INDUCED SEISMICITY IN THE ACTIVE REGION NOAA 10930 AND RELATED ENHANCEMENT OF GLOBAL WAVES IN THE SUN

    SciTech Connect

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; Garcia, R. A. E-mail: pvk@prl.res.in E-mail: tiwari@mps.mpg.de

    2011-12-10

    A major flare (of class X3.4) occurred on 2006 December 13 in the active region NOAA 10930. This flare event has remained interesting to solar researchers for studies related to particle acceleration during the flare process and the reconfiguration of magnetic fields as well as fine-scale features in the active region. The energy released during flares is also known to induce acoustic oscillations in the Sun. Here, we analyze the line-of-sight velocity patterns in this active region during the X3.4 flare using the Dopplergrams obtained by the Global Oscillation Network Group (GONG) instrument. We have also analyzed the disk-integrated velocity observations of the Sun obtained by the Global Oscillation at Low Frequency (GOLF) instrument on board the Solar and Heliospheric Observatory spacecraft as well as full-disk collapsed velocity signals from GONG observations during this flare to study any possible connection between the flare-related changes seen in the local and global velocity oscillations in the Sun. We apply wavelet transform to the time series of the localized velocity oscillations as well as the global velocity oscillations in the Sun spanning the flare event. The line-of-sight velocity shows significant enhancement in some localized regions of the penumbra of this active region during the flare. The affected region is seen to be away from the locations of the flare ribbons and the hard X-ray footpoints. The sudden enhancement of this velocity seems to be caused by the Lorentz force driven by the 'magnetic jerk' in the localized penumbral region. Application of wavelet analysis to these flare-induced localized seismic signals shows significant enhancement in the high-frequency domain (5 <{nu} < 8 mHz) and a feeble enhancement in the p-mode oscillations (2 <{nu} < 5 mHz) during the flare. On the other hand, the wavelet analysis of GOLF velocity data and the full-disk collapsed GONG velocity data spanning the flare event indicates significant post

  3. Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Trenbath, K. L.

    2011-12-01

    Scientists and educators strive to improve climate literacy throughout society, whether through communication of research findings or though classroom teaching. Despite these efforts, climate change misconceptions exist in students and the general public. When educators present evidence that contradicts misconceptions, students may begin to struggle with their inaccurate ideas and perhaps transition towards a scientifically-accepted understanding. These transitions, called conceptual change, can occur in college climate change courses. The purpose of this presentation is to describe college students' ideas of natural and anthropogenic climate change and the way these ideas change throughout a climate change course. This presentation is based on five case studies of undergraduate students in a large lecture-hall course dedicated to climate change. Each case study student represents a different level of climate change understanding at the beginning of the semester. These case studies and subsequent cross-case analyses result from a qualitative research study using interviews, field notes, artifact analysis, coding and categorization, and research memos. The cases show shifts in all five students' ideas of natural and anthropogenic climate change. During the first month of class, the three lower achieving students expressed uncertainty about the increase in average global temperatures due to anthropogenic climate change. At the end of the semester, these students explained that warming from climate change is natural, yet the rate of this warming is increasing due to human activities. Two of the lower achieving students constructed definitions of climate change different than the definition used by the professor in the classroom. These students solidified the idea that the term "climate change" describes the change that results from natural forcings only, while the term "global warming" describes change in the climate that results from human-caused forcings. Their

  4. Anthropogenic noise affects behavior across sensory modalities.

    PubMed

    Kunc, Hansjoerg P; Lyons, Gillian N; Sigwart, Julia D; McLaughlin, Kirsty E; Houghton, Jonathan D R

    2014-10-01

    Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species using acoustic signals (i.e., species relying on signals that use the same sensory modality as anthropogenic noise). Yet many species use other sensory modalities, such as visual and olfactory signals, to communicate. However, we have only little understanding of whether changes in the acoustic environment affect species that use sensory modalities other than acoustic signals. We studied the impact of anthropogenic noise on the common cuttlefish Sepia officinalis, which uses highly complex visual signals. We showed that cuttlefish adjusted their visual displays by changing their color more frequently during a playback of anthropogenic noise, compared with before and after the playback. Our results provide experimental evidence that anthropogenic noise has a marked effect on the behavior of species that are not reliant on acoustic communication. Thus, interference in one sensory channel, in this case the acoustic one, affects signaling in other sensory channels. By considering sensory channels in isolation, we risk overlooking the broader implications of environmental changes for the behavior of animals. PMID:25226190

  5. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands.

  6. The effects of global change upon United States air quality

    NASA Astrophysics Data System (ADS)

    Gonzalez-Abraham, R.; Chung, S. H.; Avise, J.; Lamb, B.; Salathé, E. P., Jr.; Nolte, C. G.; Loughlin, D.; Guenther, A.; Wiedinmyer, C.; Duhl, T.; Zhang, Y.; Streets, D. G.

    2015-11-01

    increases in temperature, enhanced biogenic emissions and changes in land use. The model predicts an average increase of 1-6 ppb in DM8O due to projected increase in global emissions of ozone precursors. The effects of these factors are only partially offset by reductions in DM8O associated with decreasing US anthropogenic emissions. Increases in PM2.5 levels between 4 and 10 μg m-3 in the Northeast, Southeast, Midwest and South regions are mostly a result of increase in primary anthropogenic particulate matter (PM), enhanced biogenic emissions and land use changes. Changes in boundary conditions shift the composition but do not alter overall simulated PM2.5 mass concentrations.

  7. Isolating the anthropogenic component of Arctic warming

    SciTech Connect

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; Klett, James D.; Humlum, Ole; Wyatt, Marcia; Dubey, Manvendra K.

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. We apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variability from the observed temperature. We find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Furthermore, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.

  8. Isolating the anthropogenic component of Arctic warming

    DOE PAGESBeta

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; Klett, James D.; Humlum, Ole; Wyatt, Marcia; Dubey, Manvendra K.

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. We apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variability frommore » the observed temperature. We find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Furthermore, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less

  9. Global change and mercury cycling: challenges for implementing a global mercury treaty.

    PubMed

    Selin, Noelle E

    2014-06-01

    The Minamata Convention aims to protect human health and the environment from anthropogenic emissions and releases of mercury. In the present study, the provisions of the Minamata Convention are examined to assess their influence on global biogeochemical cycling of Hg. Although the convention's scope covers all major categories of atmospheric emissions, the degree to which it will affect future emissions trajectories remains unclear. A box model analysis shows that future global biogeochemical cycling under projected technological provisions would result mainly in avoided increases and that estimated differences in atmospheric concentrations resulting from policies would be on the order of 1% to 2% per year. Present experience suggests that scientific knowledge is not currently sufficient to attribute causes to changes of this magnitude. Enhancements to capacity to measure the effectiveness of the Minamata Convention are suggested, including both measurement and modeling. PMID:24038450

  10. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals

    PubMed Central

    Erdoğan, Sinem B.; Tong, Yunjie; Hocke, Lia M.; Lindsey, Kimberly P.; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, “dynamic global signal regression” (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional “static” global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps. PMID:27445751

  11. Detecting and attributing nonlinear anthropogenic regional warming in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Jones, Roger N.

    2012-02-01

    Nonlinear anthropogenic warming is detected and attributed as a series of step changes in observed and simulated climate for southeastern Australia (SEA). A stationary period of 1910-1967 and non-stationary period of 1968-2010 was established using statistically significant step-changes (pH0 < 0.01) in the relationship between observed minimum (Tmin) and maximum (Tmax) temperature (0.6°C in 1968) and Tmax and rainfall (P; 0.7°C in 1997). Regressions between these pairings during stationary conditions were used to determine how Tmin and Tmax would have evolved under non-stationary conditions. Assuming these relationships remain constant, the resulting residuals were attributed to anthropogenic regional warming. This warming was initiated as step changes in 1968 forTmin (0.7°C) and 1973 for Tmax (0.5°C), coinciding with step changes in zonal (24-44°S) and southern hemisphere mean air temperatures (Tav). A step change in 1997 in Tmax (0.8°C) coincided with a statistically significant step change in global mean air temperature of 0.3°C. This analysis was repeated using regionally averaged output from eleven climate model simulations. Regional warming in all models commenced with step changes in Tmin ranging from 0.4 to 0.7°C between 1964 and 2003. Tmax underwent step changes ranging from 0.7 to 1.1°C simultaneously or within several decades. Further step changes, combined with rising trends, were simulated under increasing radiative forcing to 2100. This highlights limitations in the current use of the signal-to-noise model that considers anthropogenic climate change as a monotonic curve. The identification of multiple step changes in a changing climate provides important information for planning adaptation.

  12. A tiered observational system for anthropogenic methane emissions

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  13. Notes on global climate and ocean currents

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.

    2012-02-01

    The problems related to the role of both natural and anthropogenic factors in global climate change are considered. The role of ocean circulation in the Earth's global thermodynamic processes is qualitatively analyzed. The balances of greenhouse gases in the atmosphere and in the ocean and the effect of anthropogenic factors are analyzed. The requirements for new-generation models of the Earth's climate are formulated.

  14. Simulated Transport and Mixing of Anthropogenic and Biogenic Aerosol and Their Entrainment into Clouds during the Goamazon Campaign

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Shrivastava, M. B.; Fan, J.; Berg, L. K.; Chand, D.; Fortner, E.; Mei, F.; Pekour, M. S.; Shilling, J. E.; Springston, S. R.; Tomlinson, J. M.; Wang, J.

    2014-12-01

    Several recent studies have suggested that anthropogenic emissions enhance the production of biogenic secondary organic aerosol (SOA). Because Manaus, Brazil is an isolated large city within the Amazon rainforest, measurements collected within and outside of the downwind urban plume during the 2014 Green Ocean Amazon (GoAmazon) campaign (supported by the U.S. Department of Energy's Atmospheric Radiation and Measurement program) will provide valuable information needed by regional and global models to evaluate parameterizations of SOA. The isolated urban plume should also provide distinct patterns of mixing with biogenic emissions and eliminate complications of multiple anthropogenic sources found in most other regions of the world. The objective of this study is to evaluate the performance of preliminary simulations of the transport, mixing, and chemical evolution of the Manaus urban plume from the chemistry version of the Weather Research and Forecasting model (WRF-Chem) using the available surface and aircraft measurements collected during the first intensive observation period (IOP) of GoAmazon. Simulations are performed using both a 10 km or 2 km grid spacing as well as a newly developed treatment that couples a sectional aerosol model and its parameterization of SOA using a volatility basis set approach with resolved clouds and a sub-grid scale cloud parameterization. Since the first IOP of GoAmazon was conducted during the wet season, shallow and deep convection were observed on most days and likely impacts the transport and vertical mixing of the Manaus plume. Therefore, we are using the available field campaign cloud measurements to evaluate the impact of sub-grid scale clouds on the horizontal and vertical distribution of aerosols. Satellite data is also used to assess the regional variability in simulated clouds and precipitation. Analyses of the simulations during the first IOP will be presented. Simulations with and without anthropogenic emissions will

  15. Can anthropogenic aerosol concentrations effect the snowfall rate?

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-04-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE.ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. Borys et al. (2000) proposed that anthropogenically-induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud due to its higher cloud droplet number concentration. Instead the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shut-down of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a 10-fold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates. We will also perform climate model simulations to estimate the importance of this effect globally.

  16. Revised budget for the oceanic uptake of anthropogenic carbon dioxide

    USGS Publications Warehouse

    Sarmiento, J.L.; Sundquist, E.T.

    1992-01-01

    TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.

  17. Anthropogenic cycles of the elements: a critical review.

    PubMed

    Chen, Wei-Qiang; Graedel, T E

    2012-08-21

    A cycle is the quantitative characterization of the flows of a specific material into, within, and from a given system. An anthropogenic elemental cycle can be static (for a point in time) or dynamic (over a time interval). The about 350 publications collected for this review contain a total of 1074 individual cycle determinations, 989 static and 85 dynamic, for 59 elements; more than 90% of the publications have appeared since 2000. The cycles are of varying quality and completeness, with about 80% at country- or territory-level, addressing 45 elements, and 5% at global-level, addressing 30 elements. Despite their limitations, cycles have often been successful in revealing otherwise unknown information. Most of the elements for which no cycles exist are radioactively unstable or are used rarely and in small amounts. For a variety of reasons, the anthropogenic cycles of only perhaps a dozen elements are well characterized. For all the others, with cycles limited or nonexistent, our knowledge of types of uses, lifetimes in those uses, international trade, losses to the environment, and rates of recycling is quite limited, thereby making attempts to evaluate resource sustainability particularly problematic. PMID:22803614

  18. Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Arblaster, Julie M.; Tebaldi, Claudia

    2007-10-01

    Observations averaged over the U.S. for the second half of the 20th century have shown a decrease of frost days, an increase in growing season length, an increase in the number of warm nights, and an increase in heat wave intensity. For the first three, a nine member multi-model ensemble shows similar changes over the U.S. in 20th century experiments that combine anthropogenic and natural forcings, though the relative contributions of each are unclear. Here we show results from two global coupled climate models run with anthropogenic and natural forcings separately. Averaged over the continental U.S., they show that the observed changes in the four temperature extremes are accounted for with anthropogenic forcings, but not with natural forcings (even though there are some differences in the details of the forcings). This indicates that most of the changes in temperature extremes over the U.S. are likely due to human activity.

  19. Acid lakes from natural and anthropogenic causes

    SciTech Connect

    Patrick, R.; Binetti, V.P.; Halterman, S.G.

    1981-01-30

    Lakes may be acid because of natural ecological conditions or because of anthropogenic activities. Apparently there has been a recent increase in acidity of many lakes in the northeastern United States. Factors that may be contributing to this increase include the use by utilities of precipitators, sulfur scrubbers, and tall stacks; the use of petroleum; and methods of combustion of fossil fuels.

  20. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  1. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves.

    PubMed

    Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José

    2016-05-10

    Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity. PMID:27071122

  2. Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan.

    PubMed

    Moreno, Teresa; Kojima, Tomoko; Querol, Xavier; Alastuey, Andrés; Amato, Fulvio; Gibbons, Wes

    2012-05-01

    The eastward transport of aerosols exported from mainland Asia strongly influences air quality in the Japanese archipelago. The bulk of the inhalable particulate matter (PM(10)) in these intrusions comprises either natural, desert-derived minerals (mostly supermicron silicates) or anthropogenic pollutants (mostly submicron sulphates), in various states of mixing. We analyse PM(10) collected in Kumamoto, SW Japan, during three contrasting types of aerosol intrusions, the first being dominated by desert PM which became increasingly mixed with anthropogenic components as time progressed, the second being a relatively minor event mixing fine, distal desert PM with anthropogenic materials, and the third being dominated by anthropogenic pollutants. Whereas the chemistry of the natural mineral component is characterised by "crustal" elements (Si, Al, Fe, Mg, K, Li, P, Sc, V, Rb, Sr, Zr, Th, lanthanoids), the anthropogenic component is rich in secondary inorganic compounds and more toxic metallic elements (NH(4)(+), SO(4)(2-), As, Pb, Cd, Cu, Zn, Sn, Bi, Sb, and Ge). Some desert-dust (Kosa) intrusions are more calcareous than others, implicating geologically different source areas, and contain enhanced levels of NO(3)(-), probably as supermicron Ca(NO(3))(2) particles produced by chemical reaction between NOx pollutants (mostly from industry and traffic) and carbonate during atmospheric transport. The overall trace element chemistry of aerosol intrusions into Kumamoto shows low V/Rb, low NO(3)(-)/SO(4)(2-), enhanced As levels, and unfractionated La/Ce values, which are all consistent with anthropogenic sources including coal emissions rather than those derived from the refining and combustion of oil fractionates. Geographically dispersed, residual sulphatic plumes of this nature mix with local traffic (revealed by OC and EC concentrations) and industrial emissions and dissipate only slowly, due to the dominance of submicron accumulation mode PM which is atmospherically

  3. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  4. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  5. An estimate of anthropogenic carbon into the north east Atlantic between Scotland and Iceland

    NASA Astrophysics Data System (ADS)

    Rerolle, V. M. C.; Esposito, M.; Hartman, S. E.; Hydes, D. J.; Achterberg, E. P.

    2012-04-01

    The uptake of anthropogenic CO2 by the oceans since the industrial revolution is considered to have considerably buffered atmospheric CO2 increases and thereby slow global climate change. However, the CO2 uptake is reducing the ocean's capacity to absorb future atmospheric CO2 which may lead to more pronounced climate forcings. We investigated the accumulation of anthropogenic carbon in the Atlantic Ocean on a section between Scotland and Iceland, as part of the UK climate monitoring strategy. This part of the North Atlantic represents an important carbon sink and hence plays a key role in moderating the climate. Repeat sampling on this section known as the "Extended Ellet Line -EEL" has be carried out on three recent cruises in 2009, 2010 and 2011 for work on the carbonate system. The most detailed dissolved inorganic carbon and alkalinity measurements from RRS Discovery cruise D365 in 2011 are used to determine the distribution of anthropogenic carbon along the EEL section. Two different approaches are used to estimate the anthropogenic carbon concentration: a back calculation technique (ΔC*) and the extended multiple linear regression method with data from the CARINA dataset. The aim is to describe the anthropogenic carbon distribution for the region by comparing the two methods of calculation approaches and relate it to the water masses. The impacts of large-scale atmospheric forcings such as the North Atlantic Oscillation and the Atlantic Multidecadal Variability on the carbon uptake rate are also considered.

  6. Condition-dependent physiological and behavioural responses to anthropogenic noise.

    PubMed

    Purser, Julia; Bruintjes, Rick; Simpson, Stephen D; Radford, Andrew N

    2016-03-01

    Anthropogenic (man-made) noise, a global pollutant of international concern, is known to affect the physiology and behaviour of a range of organisms. However, experimental studies have tended to focus on trait means; intra-population variation in responses are likely, but have rarely been explored. Here we use established experimental methods to demonstrate a condition-dependent effect of additional noise. We show that juvenile European eels (Anguilla anguilla) in good condition do not respond differently to playbacks of ambient coastal noise and coastal noise with passing ships. By contrast, the additional noise of ship passes caused an increase in ventilation rate and a decrease in startling to a looming predatory stimulus in poor condition eels. Intra-population variation in responses to noise has important implications both for population dynamics and the planning of mitigation measures. PMID:26686756

  7. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. PMID:25883357

  8. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild grass Brachypodium distachyon (Brachypodium) has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of microRNAs (miRNAs), molecules known to be a key for eukaryotic gene regulation, has been limited in Brachypodium to studies examining a few sa...

  9. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  10. Enhancing Research Capacity for Global Health: Evaluation of a Distance-Based Program for International Study Coordinators

    ERIC Educational Resources Information Center

    Wilson, Lynda Law; Rice, Marti; Jones, Carolynn T.; Joiner, Cynthia; LaBorde, Jennifer; McCall, Kimberly; Jester, Penelope M.; Carter, Sheree C.; Boone, Chrissy; Onwuzuligbo, Uzoma; Koneru, Alaya

    2013-01-01

    Introduction: Due to the increasing number of clinical trials conducted globally, there is a need for quality continuing education for health professionals in clinical research manager (CRM) roles. This article describes the development, implementation, and evaluation of a distance-based continuing education program for CRMs working outside the…

  11. Anthropogenic greenhouse gas contribution to UK autumn flood risk

    NASA Astrophysics Data System (ADS)

    Pall, Pardeep; Aina, Tolu; Stone, Dáithí; Stott, Peter; Nozawa, Toru; Hilberts, Arno; Lohmann, Dag; Allen, Myles

    2010-05-01

    Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing[1]. Yet climate models typically used for studying the attribution problem do not resolve weather at scales causing damage[2]. Here we present the first multi-step study that attributes increasing risk of a damaging regional weather-related event to global anthropogenic greenhouse gas emissions. The event was the UK flooding of October and November 2000, occurring during the wettest autumn in England & Wales since records began in 1766[3] and inundating several river catchments[4]. Nearly 10,000 properties were flooded and transport services and power supplies severely disrupted, with insured losses estimated at £1.3bn[5,6]. Though the floods were deemed a ‘wake up call' to the impacts of climate change[7], anthropogenic drivers cannot be blamed for this individual event: but they could be blamed for changing its risk[8,9]. Indeed, typically quoted thermodynamic arguments do suggest increased probability of precipitation extremes under anthropogenic warming[10]. But these arguments are too simple[11,12,13] to fully account for the complex weather[4,14] associated with the flooding. Instead we use a Probabilistic Event Attribution framework, to rigorously estimate the contribution of anthropogenic greenhouse gas emissions to England & Wales Autumn 2000 flood risk. This involves comparing an unprecedented number of daily river runoff realisations for the region, under Autumn 2000 scenarios both with and without the emissions. These realisations are produced using publicly volunteered distributed computing power to generate several thousand seasonal forecast resolution climate model simulations[15,16] that are then fed into a precipitation-runoff model[17,18]. Autumn 2000 flooding is characterised by realisations exceeding the highest daily river runoff for that period, derived from the observational-based ERA-40 re-anaylsis[19]. We find that our

  12. Detect signals of interdecadal climate variations from an enhanced suite of reconstructed precipitation products since 1850 using the historical station data from Global Historical Climatology Network and the dynamical patterns derived from Global Precipitation Climatology Project

    NASA Astrophysics Data System (ADS)

    Shen, S. S.

    2015-12-01

    This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and

  13. Atmospheric verification of anthropogenic CO2 emission trends

    NASA Astrophysics Data System (ADS)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  14. Global temperatures and the global warming ``debate''

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2009-04-01

    Many ordinary citizens listen to pronouncements on talk radio casting doubt on anthropogenic global warming. Some op-ed columnists likewise cast doubts, and are read by credulous citizens. For example, on 8 March 2009, the Boston Globe published a column by Jeff Jacoby, ``Where's global warming?'' According to Jacoby, ``But it isn't such hints of a planetary warming trend that have been piling up in profusion lately. Just the opposite.'' He goes on to write, ``the science of climate change is not nearly as important as the religion of climate change,'' and blamed Al Gore for getting his mistaken views accepted. George Will at the Washington Post also expressed denial. As a result, 44% of U.S. voters, according to the January 19 2009 Rasmussen Report, blame long-term planetary trends for global warming, not human beings. Is there global cooling, as skeptics claim? We examine the temperature record.

  15. Global sea level linked to global temperature

    PubMed Central

    Vermeer, Martin; Rahmstorf, Stefan

    2009-01-01

    We propose a simple relationship linking global sea-level variations on time scales of decades to centuries to global mean temperature. This relationship is tested on synthetic data from a global climate model for the past millennium and the next century. When applied to observed data of sea level and temperature for 1880–2000, and taking into account known anthropogenic hydrologic contributions to sea level, the correlation is >0.99, explaining 98% of the variance. For future global temperature scenarios of the Intergovernmental Panel on Climate Change's Fourth Assessment Report, the relationship projects a sea-level rise ranging from 75 to 190 cm for the period 1990–2100. PMID:19995972

  16. Anthropogenic Osmium in Airborne Particles from Woods Hole, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Sen, I. S.; Geboy, N.

    2012-12-01

    The global geochemical cycle of osmium has been significantly disturbed by the introduction of automobile exhaust catalysts to convert noxious gas emissions into more benign forms. Anthropogenic osmium has been reported in rainwater, snow, and in the urban airborne particles from around the world to reveal global-scale osmium pollution [1, 2]. In this study, we report on the platinum group element (PGE) concentrations and osmium isotope ratios of airborne particles (PM10) collected in Woods Hole, a small coastal town in Massachusetts to better understand inputs of anthropogenic osmium to rural environments. We further investigate the use of osmium isotopes to track sources of airborne particles and support source apportionment studies on a continental scale. The samples used in this study were collected at Woods Hole Oceanographic Institution over one year (2008-2009). From this collection twelve samples for which the backward air mass trajectories have been determined were selected for osmium isotope analyses. Our results show that the osmium and platinum concentrations are an order of magnitude lower when compared to downtown Boston [2]. The average Os, Pt and Ir concentrations are 0.006±0.012, 0.019±0.023, and 0.685±0.634 pg m-3, respectively. The 187Os/188Os of the aerosols range from 0.275 to 0.788. As continental crust is radiogenic (187Os/188Os >1) and PGE ore bodies generally have unradiogenic 187Os/188Os (~0.2), the unradiogenic 187Os/188Os signature of the aerosols indicates anthropogenic contributions. With 95% of the total osmium mobilization on land being attributed to human activities [3], it is clear that human imprint on airborne particles is not restricted to urban centers with high traffic flows, but also affects rural environments. Aerosol particles that have backward air mass trajectories from the Southwest, the densely populated and industrialized Eastern seaboard, are characterized by unradiogenic osmium, while air masses from the North

  17. Attributing Human Mortality During Extreme Heat Waves to Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B. P.; Frumhoff, P. C.; Bowery, A.; Allen, M. R.

    2015-12-01

    Climate change is the biggest global health threat of the 21st century (Costello et al, 2009; Watts et al, 2015). Perhaps one of the clearest examples of this is the summer heat wave of 2003, which saw up to seventy thousand excess deaths across Europe (Robine et al, 2007). The extreme temperatures are now thought to be significantly enhanced due to anthropogenic climate change (Stott et al, 2004; Christidis et al, 2015). Here, we consider not only the Europe-wide temperature response of the heat wave, but the localised response using a high-resolution regional model simulating 2003 climate conditions thousands of times. For the first time, by employing end-to-end attribution, we attribute changes in mortality to the increased radiative forcing from climate change, with a specific focus on London and Paris. We show that in both cities, a sizable proportion of the excess mortality can be attributed to human emissions. With European heat waves projected to increase into the future, these results provide a worrying reality for what may lie ahead. Christidis, Nikolaos, Gareth S. Jones, and Peter A. Stott. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change (2014). Costello, Anthony, et al. "Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission." The Lancet 373.9676 (2009): 1693-1733. Stott, Peter A., Dáithí A. Stone, and Myles R. Allen. "Human contribution to the European heatwave of 2003." Nature 432.7017 (2004): 610-614 Watts, N., et al. "Health and climate change: policy responses to protect public health." Lancet. 2015.

  18. Aerosol Size Distribution Response to Anthropogenically Driven Historical Changes in Biogenic Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; D'Andrea, S.; Acosta Navarro, J. C.; Farina, S.; Scott, C.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.

    2014-12-01

    Emissions of biological volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. A recent model reconstruction of BVOC emissions over the past millennium predicted the changes in the three dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstruction predicted that in global averages isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show both increases and decreases in certain regions due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. We use these modeled estimates of these three dominant BVOC classes' emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation and global aerosol size distributions using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000. This change in N80 was predominantly driven by a shift towards crop/grazing land that produces less BVOC than the natural vegetation. Similar sensitivities to year 1000 vs. year 2000 BVOC emissions exist when anthropogenic emissions are turned off. This large decrease in N80 could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  19. A Physically-Based Estimate of Radiative Forcing by Anthropogenic Sulfate Aerosol

    SciTech Connect

    Ghan, Steven J.); Easter, Richard C.); Chapman, Elaine G.); Abdul-Razzak, Hayder; Zhang, Yang ); Leung, Ruby ); Laulainen, Nels S.); Saylor, Rick D.); Zaveri, Rahul A.)

    2001-04-01

    Estimates of direct and indirect radiative forcing by anthropogenic sulfate aerosols from an integrated global aerosol and climate modeling system are presented. A detailed global tropospheric chemistry and aerosol model that predicts concentrations of oxidants as well as aerosols and aerosol precursors, is coupled to a general circulation model that predicts both cloud water mass and cloud droplet number. Both number and mass of several externally-mixed aerosol size modes are predicted, with internal mixing assumed for the different aerosol components within each mode. Predicted aerosol species include sulfate, organic and black carbon, soil dust, and sea salt. The models use physically-based treatments of aerosol radiative properties (including dependence on relative humidity) and aerosol activation as cloud condensation nuclei. Parallel simulations with and without anthropogenic sulfate aerosol are performed for a global domain. The global and annual mean direct and indirect radiative forcing due to anthropogenic sulfate are estimated to be -0.3 to -0.5 and -1.5 to -3.0 W m-2, respectively. The radiative forcing is sensitive to the model's horizontal resolution, the use of predicted vs. analyzed relative humidity, the prediction vs. diagnosis of aerosol number and droplet number, and the parameterization of droplet collision/coalescence. About half of the indirect radiative forcing is due to changes in droplet radius and half to increased cloud liquid water.

  20. Research and Development in the Anthropogenic Cryosphere

    NASA Astrophysics Data System (ADS)

    de Jong, C.; Luthe, T.; Hohenwallne, D.

    2009-04-01

    Much of todays cryosphere research is oriented towards the polar regions and is strongly supported by large associations and funding. On the other hand, funding and institutional support is still limited for mountains. In Europe, mountain research is mainly funded through Alpine Space Interregs, FP7, ESF and COST. However, there is growing global change pressure on mountain regions, particularly in the more fragile, higher altitudes such as between 1000 - 3200 m in the Alps. Although these zones are comparable to the Arctic in terms of climatic and physiographic conditions, they are not in terms of human pressures and atmospheric pollution released from surrounding agglomerations. A re-orientation of research into more applied projects that tackle present day problems is necessary. Not only is climate change rapidly changing the face of mountains, socio-economic multipliers are also acting fast. New problems such as conflicts over natural resources are evolving at a rapid rate, requiring research funding and projects to respond at according rates if timely and efficient solutions are to be proposed. Other problems include contamination of high altitude lakes and ecosystems through atmospheric precipitation of persistent organic pollutants and concentration of radio-active substances. The rapid melt of glacier ice is also releasing pollutants that have been captured for many decades. Many of the present day problems develop due to a miscomprehension of the cryosphere. Short-term economical reasoning outweighs the long-term ecological impacts that could be very counter-productive at the long term. Both the glaciological, snow, permafrost, geomorphological, ecological, hydrological and atmospheric conditions are increasingly heavily modified by human impacts. The effects include the alteration of the ice cover (by artificial covering of glaciers), production of artificial snow cover, snow and ground compaction, erosion, landsliding, change in vegetation cover and

  1. Hidden Markov models for estimating animal mortality from anthropogenic hazards

    EPA Science Inventory

    Carcasses searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. ...

  2. Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring, 2010

    NASA Astrophysics Data System (ADS)

    Newman, S.; Jeong, S.; Fischer, M. L.; Xu, X.; Haman, C. L.; Lefer, B.; Alvarez, S.; Rappenglueck, B.; Kort, E. A.; Andrews, A. E.; Peischl, J.; Gurney, K. R.; Miller, C. E.; Yung, Y. L.

    2012-02-01

    Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin. During CalNex-LA, local fossil fuel combustion contributed up to ~50 % of the observed CO2 enhancement overnight, and ~100 % during midday. This suggests midday column observations over LA, such as those made by satellites relying on reflected sunlight, can be used to track anthropogenic emissions.

  3. Anthropogenic Aerosols and the Dust Bowl

    NASA Astrophysics Data System (ADS)

    Cazavilan, E. J.; Leibensperger, E. M.

    2014-12-01

    We use a general circulation model (GISS GCM ModelE) to study the impact of anthropogenic aerosols on the 1930s Dust Bowl. The Dust Bowl was primarily forced by anomalous sea surface temperatures, but may have been partially shaped by the large amounts of black carbon emitted at that time. A simulation using observed 1932-1938 sea surface temperature and sea ice distributions reveal drier and warmer conditions in the central U.S. Adding the influence of 1930s anthropogenic aerosols exacerbates the drying and warm conditions (0.2 °C increase over mid-west continental US, and a decrease of -0.1 mm/day of precipitation). We find that these changes are concurrent with a weakening and shift of the Bermuda High.

  4. Quantifying the Anthropogenic Footprint in Eastern China

    PubMed Central

    Meng, Chunlei; Dou, Youjun

    2016-01-01

    Urban heat island (UHI) is one of the most focuses in urban climate study. The parameterization of the anthropogenic heat (AH) is crucial important in UHI study, but universal method to parameterize the spatial pattern of the AH is lacking now. This paper uses the NOAA DMSP/OLS nighttime light data to parameterize the spatial pattern of the AH. Two experiments were designed and performed to quantify the influences of the AH to land surface temperature (LST) in eastern China and 24 big cities. The annual mean heating caused by AH is up to 1 K in eastern China. This paper uses the relative LST differences rather than the absolute LST differences between the control run and contrast run of common land model (CoLM) to find the drivers. The heating effect of the anthropogenic footprint has less influence on relatively warm and wet cities. PMID:27067132

  5. Quantifying the Anthropogenic Footprint in Eastern China.

    PubMed

    Meng, Chunlei; Dou, Youjun

    2016-01-01

    Urban heat island (UHI) is one of the most focuses in urban climate study. The parameterization of the anthropogenic heat (AH) is crucial important in UHI study, but universal method to parameterize the spatial pattern of the AH is lacking now. This paper uses the NOAA DMSP/OLS nighttime light data to parameterize the spatial pattern of the AH. Two experiments were designed and performed to quantify the influences of the AH to land surface temperature (LST) in eastern China and 24 big cities. The annual mean heating caused by AH is up to 1 K in eastern China. This paper uses the relative LST differences rather than the absolute LST differences between the control run and contrast run of common land model (CoLM) to find the drivers. The heating effect of the anthropogenic footprint has less influence on relatively warm and wet cities. PMID:27067132

  6. Quantifying the Anthropogenic Footprint in Eastern China

    NASA Astrophysics Data System (ADS)

    Meng, Chunlei; Dou, Youjun

    2016-04-01

    Urban heat island (UHI) is one of the most focuses in urban climate study. The parameterization of the anthropogenic heat (AH) is crucial important in UHI study, but universal method to parameterize the spatial pattern of the AH is lacking now. This paper uses the NOAA DMSP/OLS nighttime light data to parameterize the spatial pattern of the AH. Two experiments were designed and performed to quantify the influences of the AH to land surface temperature (LST) in eastern China and 24 big cities. The annual mean heating caused by AH is up to 1 K in eastern China. This paper uses the relative LST differences rather than the absolute LST differences between the control run and contrast run of common land model (CoLM) to find the drivers. The heating effect of the anthropogenic footprint has less influence on relatively warm and wet cities.

  7. The topographic signature of anthropogenic geomorphic processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.

    2014-12-01

    Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth

  8. Photochemical reactions of anthropogenic chemicals in seawater

    SciTech Connect

    Toole, A.P.; Crosby, D.G. )

    1988-09-01

    Sunlight-driven, photochemical reactions can be a major degradative force for anthropogenic organic compounds in the aquatic environment. Chlorinated phenols, various classes of pesticides, and polycyclic aromatic hydrocarbons are among some examples of the compounds shown to be degraded by sunlight. Most environmental photochemistry has been studied in fresh water, despite the fact that the oceans cover more than 70% of the earths surface and receive large inputs of anthropogenic chemicals via atmospheric transport, runoff, and coastal outfalls. This fact, along with increasing pressure for ocean waste disposal as land options dwindle, present a need for information on the photochemical reactions of anthropogenic organic chemicals in seawater. Several probable seawater pollutants were selected as probes for studying photochemical reactions including, 2-nitrotoluene, 4-nitrotoluene, styrene, 4,5-dichloroguaiacol, 4,5,6-trichloroguaiacol and tetrachloroguaiacol. Dilute solutions of each probe were prepared in buffered (pH 8), distilled water (DW), synthetic seawater (SSW) and natural seawater (NSW), then irradiated in a temperature-controlled photoreactor fitted with a General Electric F40BL fluorescent lamp to simulate sunlight. Samples were taken at regular intervals, concentrated using solid phase extraction techniques and analyzed by gas chromatography. Photolysis rates were determined assuming first, or pseudo-first, order kinetics. Photoproducts were identified by gas chromatography;mass spectrometry and confirmed by comparison to standards when available. By determining rates in DW containing selected components of SSW, at SSW concentrations, the inorganic compounds mediating the photochemical reactions in seawater could be determined.

  9. Anthropogenic Emission Inventories for SAFARI 2000

    NASA Astrophysics Data System (ADS)

    Fleming, G.; van der Merwe, M.

    2001-12-01

    Surface emission inventories are required as input into atmospheric transport models and other investigations forming part of SAFARI 2000. We have generated an anthropogenic emissions inventory for continental Africa south of the equator. It covers the period 1999 to 2001 with a monthly temporal resolution and a 20km spatial resolution. The anthropogenic inventory covers emissions of CH4, CO2, CO, SO2, VOC (volatile organic carbons), NOx and N2O from the energy sector, mines, transport, industries and other major emitting sectors, in all major emitting countries south of the equator. The baseline country total emissions data were taken from the 1990 IPCC Greenhouse Gas Inventory Country Summaries. Emissions reported for 1990 were extrapolated to the SAFARI 2000 study period, temporally distributed by month and spatially disaggregated according to sector-specific driver surfaces. This anthropogenic emissions inventory together with others developed during SAFARI 2000, namely those for soil, vegetation, domestic biomass combustion and fire constitute a comprehensive new emissions inventory.

  10. Blue whales respond to anthropogenic noise.

    PubMed

    Melcón, Mariana L; Cummins, Amanda J; Kerosky, Sara M; Roche, Lauren K; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood. PMID:22393434

  11. A new global approach using a network of piezoelectric elements and energy redistribution for enhanced vibration damping of smart structure

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Guyomar, Daniel; Richard, Claude

    2013-04-01

    A new global approach for improved vibration damping of smart structure, based on global energy redistribution by means of a network of piezoelectric elements is proposed. It is basically using semi-active Synchronized Switch Damping technique. SSD technique relies on a cumulative build-up of the voltage resulting from the continuous switching and it was shown that the performance is strongly related to this voltage. The increase of the piezoelectric voltage results in improvement of the damping performance. External voltage sources or improved switching sequences were previously designed to increase this voltage in the case of single piezoelectric element structure configurations. This paper deals with extended structure with many embedded piezoelectric elements. The proposed strategy consist of using an electric network made with non-linear component and switches in order to set up and control a low-loss energy transfer from source piezoelements extracting the vibration energy of the structure and oriented toward a given piezoelement in order to increase its operative energy for improving a given mode damping. This paper presents simulation of a clamped plate with four piezoelectric elements implemented in the Matlab/SimulinkTM environment and SimscapeTM library. The various simulation cases show the relationship between the damping performance on a given targeted mode and the established power flow. SSDD and SSDT are two proposed original networks. Performances are compared to the SSDI baseline. A damping increase of 18dB can be obtained even with a weakly coupled piezoelectric element in the multi-sine excitation case. This result proves the importance of new global non-linear multi-actuator strategies for improved vibration damping of extended smart structure.

  12. Increasing Anthropogenic Emissions in China Offset Air Quality Policy Efforts in Western United States: A Satellite and Modelling Perspective

    NASA Astrophysics Data System (ADS)

    Boersma, F. F.; Verstraeten, W. W.; Williams, J. E.; Neu, J. L.; Bowman, K. W.; Worden, J.

    2014-12-01

    Tropospheric ozone is an important greenhouse gas and a global air pollutant originating from photo-chemical oxidation of ozone precursors in the presence of NOX. Eastern Asia has the fastest growing anthropogenic emissions in the world, possibly affecting both the pollution in the local troposphere as well as in the trans-Pacific region. Local measurements over Asia show that tropospheric ozone has increased by 1 to 3% per year since the start of the millennium. This increase is often invoked to explain positive ozone trends observed in western United States, but to date there is no unambiguous evidence showing that enhanced Asian pollution is responsible for these trends. Here we interpret satellite measurements of tropospheric ozone and its precursor nitrate dioxide from the Aura Tropospheric Emission Spectrometer (TES) and Ozone Monitoring Instrument (OMI) using the TM5 global chemistry-transport model to directly show that tropospheric ozone over China has increased by ~10% from 2005-2010 in response to both a ~15% rise in Chinese emissions and an increased downward ozone transport from the stratosphere. What is more, we demonstrate that Chinese export of ozone and its precursors have offset one-third of the reduction in free tropospheric ozone over the western United States that should have occurred during 2005-2010 via emissions reductions associated with air quality policies in the United States. The issue of export and long-range transport of pollution from other countries indicates that global efforts may be required to address both the global as well as the regional air quality and climate change.

  13. Anthropogenic features and hillslope processes interaction

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Sofia, Giulia

    2016-04-01

    Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of

  14. Possible Influence of Anthropogenic Aerosols on Cirrus Clouds and Anthropogenic Forcing

    SciTech Connect

    Penner, Joyce E.; Chen, Yang; Wang, Minghuai; Liu, Xiaohong

    2009-02-03

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth’s area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We find that fossil fuel and biomass burning soot aerosols exert a radiative forcing of -0.68 to 0.01 Wm-2 while anthropogenic sulfate aerosols exert a forcing of -0.01 to 0.18 Wm-2. Our calculations show that the sign of the forcing by aircraft soot depends on the model configuration and can be both positive or negative, ranging from -0.16 to 0.02 Wm-2. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  15. Toward a treaty on safety and cost-effectiveness of pharmaceuticals and medical devices: enhancing an endangered global public good

    PubMed Central

    Faunce, Thomas Alured

    2006-01-01

    • Expert evaluations of the safety, efficacy and cost-effectiveness of pharmaceutical and medical devices, prior to marketing approval or reimbursement listing, collectively represent a globally important public good. The scientific processes involved play a major role in protecting the public from product risks such as unintended or adverse events, sub-standard production and unnecessary burdens on individual and governmental healthcare budgets. • Most States now have an increasing policy interest in this area, though institutional arrangements, particularly in the area of cost-effectiveness analysis of medical devices, are not uniformly advanced and are fragile in the face of opposing multinational industry pressure to recoup investment and maintain profit margins. • This paper examines the possibility, in this context, of States commencing negotiations toward bilateral trade agreement provisions, and ultimately perhaps a multilateral Treaty, on safety, efficacy and cost-effectiveness analysis of pharmaceuticals and medical devices. Such obligations may robustly facilitate a conceptually interlinked, but endangered, global public good, without compromising the capacity of intellectual property laws to facilitate local product innovations. PMID:16569240

  16. Global MHD simulation of the magnetospheric response to large and sudden enhancement of the solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Kataoka, R.; Den, M.; Tanaka, T.; Nagatsuma, T.; Fujita, S.

    2013-12-01

    A large and sudden enhancement of the dynamic pressure in the solar wind generates a geomagnetic sudden commencement (SC). The magnetic field variation of SC at auroral latitudes shows a bipolar change which consists of preliminary impulse (PI) and main impulse (MI). Fujita et al. [2003a, 2003b] reproduced the PI/MI magnetic field variation using a magnetosphere-ionosphere coupling simulation and clarified the fundamental mechanisms. Interestingly, Araki et al. [1997] reported an anomalously large-amplitude SC of more than 200 nT with an unusually spiky waveform at low latitude, which occurred when the magnetopause was pushed inside geostationary orbit. Such a super SC is the target of this study. We investigate the large-amplitude SC at auroral latitudes when a large solar wind dynamic pressure impinges on the magnetosphere using a newly developed magnetosphere-ionosphere coupling simulation which has advanced robustness. We simulate two SC events of dynamic pressure enhancement of 16 times larger than the standard value, caused by the density enhancement and velocity enhancement, respectively. As an initial result of the comparison with the SC events, it is found that magnetic field variation of PI/MI is larger and sharper in the case of velocity rise than the case of density rise. It is therefore suggested that high-speed solar wind may be needed to create large and sharp SC. It is also found that a magnetic field variation similar to so-called Psc appears after PI/MI only in the case of velocity rise. When the high-speed solar wind impinges on magnetosphere, vortices are repeatedly formed at the equatorial magnetopause, probably due to the K-H instability. It seems that the high pressure of the vortices play an essential role as a current generator to drive the field-aligned currents and the magnetic field oscillation. In this presentation, we discuss the mechanisms of super SC in more detail, combining the other interesting simulation results.

  17. Panwapa: Global Kids, Global Connections

    ERIC Educational Resources Information Center

    Berson, Ilene R.; Berson, Michael J.

    2009-01-01

    Panwapa, created by the Sesame Street Workshop of PBS, is an example of an initiative on the Internet designed to enhance students' learning by exposing them to global communities. Panwapa means "Here on Earth" in Tshiluba, a Bantu language spoken in the Democratic Republic of Congo. At the Panwapa website, www.panwapa.org, children aged four to…

  18. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  19. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times

    NASA Astrophysics Data System (ADS)

    Wang, Yuhang; Jacob, Daniel J.

    1998-12-01

    A global three-dimensional model of tropospheric chemistry is used to investigate the changes in tropospheric O3 and OH since preindustrial times as a result of fuel combustion and industry, biomass burning, and growth in atmospheric CH4. Model results indicate a 63% increase of the global tropospheric O3 burden from preindustrial times to present (80% and 50% in the northern and southern hemispheres, respectively). Anthropogenic emissions of NOx and of CO and hydrocarbons make comparable contributions to the global O3 increase (60% and 40% respectively), even though the local rate of tropospheric O3 production is generally NOχ limited. The rise in O3 production parallels closely the rise in the emissions of CO and hydrocarbon because the O3 yield per mole of CO or hydrocarbon oxidized has remained constant at 0.7-0.8 mol/mol since preindustrial times. In contrast, the O3 production efficiency per mole of NOχ emitted has decreased globally by a factor of 2. We find a 9% decrease in the global mean OH concentration (mass-weighted) since preindustrial times. A linear relationship is found in the model between the global mean OH concentration and the SN/SC3/2 ratio, where SN and SC are the sources of NOχ and of CO and hydrocarbons, respectively. The relative constancy of the global mean OH concentration since preindustrial times reflects the conservation of the SN/SC3/2 ratio despite large increases in both SN and SC. Comparisons of model results with reconstructed nineteenth century observations of O3 at continental sites indicate a systematic overestimate of about 5 ppbv. Correcting this overestimate would require either a large missing chemical sink for O3 or a downward revision of the natural NOχ source from lightning (3 Tg N yr-1 in our model). The nineteenth century observations of O3 over France show no vertical gradient between the boundary layer and the free troposphere, which is inconsistent with our current understanding of tropospheric O3. The model

  20. The Mechanisms of Natural Variability and its Interaction with Anthropogenic Climate Change Final Report

    SciTech Connect

    Vallis, Geoffrey K.

    2015-02-01

    The project had two main components. The first concerns estimating the climate sensitivity in the presence of forcing uncertainty and natural variability. Climate sensitivity is the increase in the average surface temperature for a given increase in greenhouse gases, for example a doubling of carbon dioxide. We have provided new, probabilistic estimates of climate sensitivity using a simple climate model an the observed warming in the 20th century, in conjunction with ideas in data assimilation and parameter estimation developed in the engineering community. The estimates combine the uncertainty in the anthropogenic aerosols with the uncertainty arising because of natural variability. The second component concerns how the atmospheric circulation itself might change with anthropogenic global warming. We have shown that GCMs robustly predict an increase in the length scale of eddies, and we have also explored the dynamical mechanisms whereby there might be a shift in the latitude of the jet stream associated with anthropogenic warming. Such shifts in the jet might cause large changes in regional climate, potentially larger than the globally-averaged signal itself. We have also shown that the tropopause robustly increases in height with global warming, and that the Hadley Cell expands, and that the expansion of the Hadley Cell is correlated with the polewards movement of the mid-latitude jet.

  1. CLANIMAE: Climatic and Anthropogenic Impacts on African Ecosystems

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; André, L.; Mahy, G.; Cocquyt, C.; Plisnier, P.-D.; Gelorini, V.; Rumes, B.; Lebrun, J.; Bock, L.; Marchant, R.

    2009-04-01

    Global studies of historical land use focusing on the large-scale landscape change that can potentially affect global climate (via effects on surface albedo, aerosols, and the carbon cycle) have concluded that the impact of pre-colonial East African cultures on regional ecosystems was limited, due to very low mean population density. This contrasts with the paradigm in East African archaeology and paleoecology that the onset of anthropogenic deforestation started at least 2500 years ago, following the introduction of iron metallurgy by Bantu immigrants. This conflict highlights the present lack of real data on historical climate-environment-human interactions in East Africa, which are eminently relevant to sustainable natural resource management and biodiversity conservation in a future of continued population growth and global climate change. CLANIMAE responds to the urgent need of a correct long-term perspective to today's climate-environment-human interactions in East Africa, by reconstructing simultaneously the histories of past climate change and of vegetation and water-quality changes over the last 2500 years, through multi-disciplinary analysis of dated lake-sediment records. The climate reconstructions integrate information on biological, geochemical and sedimentological indicators of past changes in the water balance of the study lakes, which cover the climatological gradient from (sub-)humid western Uganda to semi-arid eastern Kenya. Reconstruction of past terrestrial vegetation dynamics is based on analyses of fossil plant pollen and phytoliths, plus the fossil spores of fungi associated with the excrements of large domestic animals as indicators of lake use by pastoralists. The evolution of water quality through time is reconstructed using silicon isotopes in diatom algae as proxy indicator for past phytoplankton productivity, and paleoecological analyses of fossil diatoms and aquatic macrophytes, following calibration of diatom and macrophyte species

  2. Mineralogical and Anthropogenic Controls of Stream Water Chemistry in Salted Watersheds

    NASA Astrophysics Data System (ADS)

    Sun, H.; Alexander, J.; Gove, B.; Chakowski, N.; Husch, J.

    2013-12-01

    Analyses of major cation and anion concentrations in stream water and soil solutions from two salted (regular applications of winter road deicing salt) watersheds located in the northeastern United States indicate that both mineralogical and anthropogenic factors are important in controlling water chemistry. The relatively stable concentrations of calcium and magnesium, as well as their possible weathering paths identified by mass-balance models, indicate that the weathering of feldspars and the dissolution of carbonates are the primary sources for these two cations in the small, salted Centennial Lake Watershed (CLW, 1.95 km 2). However, the relatively stable and lower concentrations of sodium and chloride in soil solutions, and their fluctuating and higher concentrations in stream water from the CLW, indicate that road deicing salt is the primary source for these ions in stream water. Furthermore, positive correlations between calcium and sulfur concentrations and magnesium and sulfur concentrations in soil solutions, as well as positive correlations between sulfur and iron concentrations in soil compositions, indicate that both the dissolution of gypsum and the oxidation of pyrite into hematite are the primary sources of sulfate in the CLW. Analyses of water chemistry from the related and much larger Delaware River Watershed (DRW, 17560 km 2) show that sodium and chloride concentrations have increased steadily due to the regular application of winter deicing salt over the 68 years for which data are available. The more rapid increase of stream water chloride concentrations, relative to the increase in sodium, also results in the steady decline of Na+/Cl-molar ratios in the DRW over that time. In addition, the reduction of sulfate and increase of bicarbonate concentration since 1980 in DRW stream water may be attributed to the decline of sulfate levels in atmospheric deposition resulting from enhanced national and state environmental regulations and a shift in

  3. Natural and anthropogenic change in the morphology and connectivity of tidal channels of southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Goodbred, S. L., Jr.; Wallace Auerbach, L.; Ahmed, K. R.; Small, C.; Sams, S. E.

    2014-12-01

    Over the last century, land use changes in the Ganges-Brahmaputra tidal delta have transformed >5000 km2 of intertidal mangrove forest to densely inhabited, agricultural islands that have been embanked to protect against tides and storm surges (i.e., polders). More recently, the conversion of rice paddies to profitable shrimp aquaculture has become increasingly widespread. Recent field studies documented that poldering in southwest Bangladesh has resulted in an elevation deficit relative to that of the natural mangrove forests and mean high water (MHW). The offset is a function of lost sedimentation, enhanced compaction, and an effective rise in MHW from tidal amplification. The morphologic adjustment of the tidal channel network to these perturbations, however, has gone largely undocumented. One effect has been the shoaling of many channels due to decreases in fluvial discharge and tidal prism. We document a previously unrecognized anthropogenic component: the widespread closure of large conduit tidal channels for land reclamation and shrimp farming. GIS analysis of historical Landsat and Google Earth imagery within six 1000 km2 study areas reveals that the tidal network in the natural Sundarbans mangrove forest has remained relatively constant since the 1970s, while significant changes are observed in human-modified areas. Construction of the original embankments removed >1000 km of primary tidal creeks, and >80 km2 of land has been reclaimed outside of polders through the closure of formerly active tidal channels (decrease in mean channel width from 256±91 m to 25±10 m). Tidal restriction by large sluice gates is prevalent, favoring local channel siltation. Furthermore, severing the intertidal platform and large conduit channels from the tidal network has had serious repercussions, such as increased lateral migration and straightening of the remaining channels. Where banklines have eroded, the adjacent embankments appear to be more vulnerable to failure, as

  4. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  5. Detecting anthropogenic footprints in sea level rise: the role of complex colored noise

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Jensen, Jürgen

    2015-04-01

    While there is scientific consensus that global mean sea level (MSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Uncovering the anthropogenic contribution requires profound knowledge about the persistence of natural MSL variations. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we statistically estimate the upper bounds of naturally forced centennial MSL trends on the basis of two separate components: a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Resting on a combination of spectral analyses of tide gauge records, ocean reanalysis data and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate, the persistence of natural volumetric changes is underestimated. If each component is assessed separately, natural centennial trends are locally up to ~0.5 mm/yr larger than in case of an integrated assessment. This implies that external trends in MSL rise related to anthropogenic forcing might be generally overestimated. By applying our approach to the outputs of a centennial ocean reanalysis (SODA), we estimate maximum natural trends in the order of 1 mm/yr for the global average. This value is larger than previous estimates, but consistent with recent paleo evidence from periods in which the anthropogenic contribution was absent. Comparing our estimate to the observed 20th century MSL rise of 1.7 mm/yr suggests a minimum external contribution of at least 0.7 mm/yr. We conclude that an accurate detection of anthropogenic footprints in MSL rise requires a more careful assessment of the persistence of intrinsic natural variability.

  6. Asian anthropogenic dust and its climate effect (Invited)

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.

    2013-12-01

    Anthropogenic dust originates mainly from areas of localized human disturbance, such as traffic-on-roads, agricultural fields, grazing, military installations, construction sites, and off-road vehicle areas. To understand historical and possible future changes in dust emissions, the percentage of atmospheric dust load originating from anthropogenic source and its distribution must be quantified. CALIPSO lidar, which shoots a laser into the atmosphere, provides new insight into the detection of anthropogenic dust emission. Here, we present the distribution of Asian anthropogenic dust emissions and its relation to human activity by using CALIPSO lidar measurements. We found that the local anthropogenic dust aerosols account for significant portion of the total dust burden in the atmosphere. The anthropogenic dust emissions mainly occur over the heavy human activity and poor ecosystem region, such as semi-arid region. The impact of Asian anthropogenic dust on regional climate will also be discussed in this talk.

  7. Anthropogenic emissions of methane in the United States.

    PubMed

    Miller, Scot M; Wofsy, Steven C; Michalak, Anna M; Kort, Eric A; Andrews, Arlyn E; Biraud, Sebastien C; Dlugokencky, Edward J; Eluszkiewicz, Janusz; Fischer, Marc L; Janssens-Maenhout, Greet; Miller, Ben R; Miller, John B; Montzka, Stephen A; Nehrkorn, Thomas; Sweeney, Colm

    2013-12-10

    This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane-propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA's recent decision to downscale its estimate of national natural gas emissions by 25-30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories. PMID:24277804

  8. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Harrington, Luke J.; Frame, David J.; Fischer, Erich M.; Hawkins, Ed; Joshi, Manoj; Jones, Chris D.

    2016-05-01

    Understanding how the emergence of the anthropogenic warming signal from the noise of internal variability translates to changes in extreme event occurrence is of crucial societal importance. By utilising simulations of cumulative carbon dioxide (CO2) emissions and temperature changes from eleven earth system models, we demonstrate that the inherently lower internal variability found at tropical latitudes results in large increases in the frequency of extreme daily temperatures (exceedances of the 99.9th percentile derived from pre-industrial climate simulations) occurring much earlier than for mid-to-high latitude regions. Most of the world’s poorest people live at low latitudes, when considering 2010 GDP-PPP per capita; conversely the wealthiest population quintile disproportionately inhabit more variable mid-latitude climates. Consequently, the fraction of the global population in the lowest socio-economic quintile is exposed to substantially more frequent daily temperature extremes after much lower increases in both mean global warming and cumulative CO2 emissions.

  9. Modeled impact of anthropogenic land cover change on climate

    USGS Publications Warehouse

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  10. Detecting and Quantifying the Anthropogenic Influence on Extremes

    NASA Astrophysics Data System (ADS)

    Zwiers, F. W.

    2015-12-01

    The body of evidence indicating a human contribution to observed climate change has continued to strengthen as indicated by the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). This includes an accumulating body of evidence suggesting that temperature and precipitation extremes have both changed in response to human influences on the climate. The research on temperature extremes is well established, with recent work indicating that temperature extremes have continued to warm over land despite the global warming "hiatus", and that anthropogenic forcing has substantially increased the odds of extreme warm years and summers, both globally and regionally. The evidence on precipitation extremes is less well established, although there is increasingly strong evidence that human influence is detectable in observations at the largest scales that are resolvable in available international compilations of daily precipitation records. In contrast, assessments of historical and projected changes in the terrestrial branch of the hydrological cycle and storminess remain cautious, due to data limitations, uncertainty in process understanding, modelling, and in the case of terrestrial hydrological impacts, the highly heterogeneous nature of the impacted systems. Despite uncertainties and limitations in knowledge, observed and projected changes in the simple temperature and precipitation indicators in which we have greatest confidence provide strong evidence that adaptation is required now, and that further adaptation will be required in the future.

  11. Global Earth Observation System of Systems (GEOSS): Initial Actions to Enhance Data Sharing to Meet Societal Needs

    NASA Astrophysics Data System (ADS)

    Adang, T.

    2006-05-01

    Over 60 nations and 50 participating organizations are working to make the Global Earth Observation System of Systems (GEOSS) a reality. The U.S. contribution to GEOSS is the Integrated Earth Observation System (IEOS), with a vision of enabling a healthy public, economy and planet through an integrated, comprehensive, and sustained Earth observation system. The international Group on Earth Observations (GEO) and the U.S. Group on Earth Observations have developed strategic plans for both GEOSS and IEOS, respectively, and are now working the first phases of implementation. Many of these initial actions are data architecture related and are being addressed by architecture and data working groups from both organizations - the GEO Architecture and Data Committee and the USGEO Architecture and Data Management Working Group. NOAA has actively participated in both architecture groups and has taken internal action to better support GEOSS and IEOS implementation by establishing the Global Earth Observation Integrated Data Environment (GEO IDE). GEO IDE provides a "system of systems" framework for effective and efficient integration of NOAA's many quasi-independent systems, which individually address diverse mandates in such areas resource management, weather forecasting, safe navigation, disaster response, and coastal mapping among others. GEO IDE will have a services oriented architecture, allowing NOAA Line Offices to retain a high level of independence in many of their data management decisions, and encouraging innovation in pursuit of their missions. Through GEO IDE, NOAA partners (both internal and external) will participate in a well-ordered, standards-based data and information infrastructure that will allow users to easily locate, acquire, integrate and utilize NOAA data and information. This paper describes the initial progress being made by GEO and USGEO architecture and data working groups, a status report on GEO IDE development within NOAA, and an assessment of

  12. Farmer responses to multiple stresses in the face of global change: Assessing five case studies to enhance adaptation

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Feola, G.; Lerner, A. M.; Jain, M.; Montefrio, M.

    2013-12-01

    The global challenge of sustaining agricultural livelihoods and yields in the face of growing populations and increasing climate change is the topic of intense research. The role of on-the-ground decision-making by individual farmers actually producing food, fuel, and fiber is often studied in individual cases to determine its environmental, economic, and social effects. However, there are few efforts to link across studies in a way that provides opportunities to better understand empirical farmer behavior, design effective policies, and be able to aggregate from case studies to a broader scale. Here we synthesize existing literature to identify four general factors affecting farmer decision-making: local technical and socio-cultural contexts; actors and institutions involved in decision-making; multiple stressors at broader scales; and the temporal gradient of decision-making. We use these factors to compare five cases that illustrate agricultural decision-making and its impacts: cotton and castor farming in Gujarat, India; swidden cultivation of upland rice in the Philippines; potato cultivation in Andean Colombia; winegrowing in Northern California; and maize production in peri-urban central Mexico. These cases span a geographic and economic range of production systems, but we find that we are able to make valid comparisons and draw lessons common across all cases by using the four factors as an organizing principle. We also find that our understanding of why farmers make the decisions they do changes if we neglect to examine even one of the four general factors guiding decision-making. This suggests that these four factors are important to understanding farmer decision-making, and can be used to guide the design and interpretation of future studies, as well as be the subject of further research in and of themselves to promote an agricultural system that is resilient to climate and other global environmental changes.

  13. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon

    PubMed Central

    2013-01-01

    Background The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon. Results B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. Conclusions B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants. PMID:24367943

  14. Enhancing Global Land Surface Hydrology Estimates from the NASA MERRA Reanalysis Using Precipitation Observations and Model Parameter Adjustments

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally

    2011-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.

  15. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    USGS Publications Warehouse

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-01-01

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same

  16. Microbial Mechanisms Enhancing Soil C Storage

    SciTech Connect

    Zak, Donald

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C

  17. One dimensional modeling of anthropogenic beach berm erosion

    NASA Astrophysics Data System (ADS)

    Shakeri Majd, M.; Sanders, B. F.

    2013-12-01

    Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) are in use internationally to guard against beach overtopping and consequent coastal flooding. Berms can be constructed on a seasonal basis or in anticipation of a hazardous event, e.g., when a storm is expected to arrive coincident with an astronomical high tide. In either case, a common approach is to scrape sand from the foreshore with heavy equipment and deposit it on the crest of the natural beach dune, thus providing added protection from the possibility of wave overtopping. Given the potential for higher sea levels globally and more extreme storm events, anthropogenic berms will surely be tested to their limits and will ultimately fail, causing flooding. A better understanding of the conditions under which these berms fail is therefore needed to support coastal flood risk management. An experimental campaign in Newport Beach, California was conducted to document the dynamic erosion of prototype beach berms under a rising tide and mild to moderate wave conditions. Terrestrial laser scanning (TLS) of the berm produced a digital model of how the berm shape evolved over time. Here, a numerical model of swash zone hydromorphodynamics based on shallow-water flow physics is presented to evaluate whether and to what extent the timing and degree of berm erosion and overtopping can be predicted from first principles. The model tightly couples flow and sediment transport within an approximate Riemann solver, and thus is of the Godunov-type variety of finite volume schemes. Additionally, the model includes an avalanching scheme to account for non-hydrodynamic slumping down the angle of repose. Results indicate that it is possible to calibrate the model for a particular event, and then successfully predict erosion for another event, but due to parameter sensitivities, it is unlikely that the model can be applied at a site without calibration (true prediction).

  18. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia

    PubMed Central

    Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.

    2016-01-01

    Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986

  19. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia.

    PubMed

    Roman, Lauren; Schuyler, Qamar A; Hardesty, Britta Denise; Townsend, Kathy A

    2016-01-01

    Anthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia's avifauna. PMID:27574986

  20. From blue to black: Anthropogenic forcing of carbon and nitrogen influx to mangrove-lined estuaries in the South China Sea.

    PubMed

    Lee, S Y

    2016-08-30

    Southeast Asia is the global centre of mangrove development but human activities have dramatically reduced mangrove area in the region. An analysis is made of the shift in carbon and nitrogen influxes into the South China Sea (SCS) resulting from three anthropogenic nutrient sources: domestic sewage discharge, fertilizer use in rice agriculture and environmental loss from mariculture, between 1997 and 2010. Anthropogenic C and N influxes were, respectively, 1.81× and 1.43× those in 1997, with coastal aquaculture contributing most to the increase. In contrast, fringing mangroves provided ~44% of the C but only ~3% of the N from anthropogenic sources in 2010. In 1997, influx from mangroves was 113% and 6% of anthropogenic influx for C and N, respectively. This dominance by relatively labile anthropogenic nutrients over mangrove sources would change nearshore trophodynamics, with negative implications for the resilience of mangroves and nutrient-intolerant systems such as corals. PMID:26781456

  1. Attribution of irreversible loss to anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  2. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    SciTech Connect

    Nemesure, S.; Wagener, R.; Schwartz, S.E.

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  3. Impacts of anthropogenic activities on climate change in arid and semiarid areas based on CMIP5 models

    NASA Astrophysics Data System (ADS)

    Zhao, T.; LI, C.

    2014-12-01

    Based on all (ALL) forcing and single-forcing runs from CMIP5 (Coupled Model Intercomparison Project Phase 5) simulations, the present paper examines the anthropogenic influence of greenhouse gases (GHG), anthropogenic aerosols (AA), land use (LU) and combined anthropogenic (Ant) effects on climate change in global arid and semiarid regions. Significant warming is a robust feature over the global land as a response to Ant and GHG forcings, and the warming rate from the latter forcing is two to three times that of ALL forcing results over the past 60 years. AA produces remarkable cooling over the global land surface, whereas LU leads to slight cooling in most arid and semiarid areas. GHG- and Ant-driven increases of precipitation are found in most land areas, especially in arid and semiarid regions. AA and LU produce substantial variation of precipitation over various areas, and current uncertainties are relatively great in AA and LU forcing runs. Ensemble Empirical Mode Decomposition (EEMD) is used to analyze temporal scales of annual temperature and precipitation. The results show that interdecadal and multidecadal variations of temperature and precipitation are attributable to combined natural and anthropogenic forcings in most arid and semiarid regions, where AA dominates variations of both temperature and precipitation on multidecadal timescales. Both GHG and LU have positive effects on multidecadal changes of precipitation over arid and semiarid regions globally. However, the latter significantly prevents multidecadal changes of temperature over arid and semiarid regions of Australia.

  4. Our Changing Planet: The FY 1993 US Global Change Research Program. A report by the Committee on Earth and Environmental Sciences, a supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The U.S. Global Change Reasearch Program (USGCRP) was established as a Presidential initiative in the FY-1990 Budget to help develop sound national and international policies related to global environmental issues, particularly global climate change. The USGCRP is implemented through a priority-driven scientific research agenda that is designed to be integrated, comprehensive, and multidisciplinary. It is designed explicitly to address scientific uncertainties in such areas as climate change, ozone depletion, changes in terrestrial and marine productivity, global water and energy cycles, sea level changes, the impact of global changes on human health and activities, and the impact of anthropogenic activities on the Earth system. The USGCRP addresses three parallel but interconnected streams of activity: documenting global change (observations); enhancing understanding of key processes (process research); and predicting global and regional environmental change (integrated modeling and prediction).

  5. Mitigation potential and costs for global agricultural greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities are a substantial contributor to global greenhouse gas (GHG) emissions, accounting for about 58% of the world’s anthropogenic non-carbon dioxide GHG emissions and 14% of all anthropogenic GHG emissions, and agriculture is often viewed as a potential source of relatively low-c...

  6. Iron isotopes in the Seine River (France): Natural versus anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Chen, Jiu-Bin; Busigny, Vincent; Gaillardet, Jérôme; Louvat, Pascale; Wang, Yi-Na

    2014-03-01

    The determination of fluxes and isotope compositions of Fe transported from continents to the ocean is essential for understanding global surface Fe cycle and its effect on oceanic biological productivity. Contrasting to non-polluted rivers, Fe isotope composition in rivers strongly affected by human activities is poorly constrained. In this contribution, we present the first Fe isotope data in suspended particulate matter (SPM) and dissolved load of the human-impacted Seine River (France). Iron concentrations and isotope compositions, together with major and trace element concentrations, were measured for two sample sets: (1) a geographic transect along the river from headwater to estuary, and (2) a temporal series of samples collected in Paris from 2004 to 2007. In the Seine River, Fe is mostly carried by SPM (average 99% of the total Fe) rather than dissolved load. The high Fe enrichment factor (1.40, relative to natural fluvial pre-historical and headwater sediments) and strong correlation between SPM Fe and Zn concentrations (r2 = 0.70, n = 30) demonstrate a strong anthropogenic Fe input. The Fe isotope compositions in SPM show a very small range (δ56Fe from -0.05‰ to 0.09‰) in spite of the large variations of Fe concentrations (from 1.78 to 4.17 wt.%) and are comparable to anthropogenic samples, suggesting that anthropogenic sources have similar Fe isotope composition to that of the natural background. In contrast, larger variations of Fe isotope compositions observed in the dissolved load (from -0.60‰ to 0.06‰) than that of SPM may provide a more promising means for tracing anthropogenic contributions to natural river systems. The δ56Fe and δ66Zn values of the dissolved loads are positively correlated (r2 = 0.62, n = 8), indicating a mixing between anthropogenic and natural end-members, enriched in light and heavy Fe isotopes respectively. Correlation between dissolved δ56Fe and DOC/Fe ratio (i.e. dissolved organic carbon/dissolved Fe

  7. The importance of invertebrates when considering the impacts of anthropogenic noise

    PubMed Central

    Morley, Erica L.; Jones, Gareth; Radford, Andrew N.

    2014-01-01

    Anthropogenic noise is now recognized as a major global pollutant. Rapidly burgeoning research has identified impacts on individual behaviour and physiology through to community disruption. To date, however, there has been an almost exclusive focus on vertebrates. Not only does their central role in food webs and in fulfilling ecosystem services make imperative our understanding of how invertebrates are impacted by all aspects of environmental change, but also many of their inherent characteristics provide opportunities to overcome common issues with the current anthropogenic noise literature. Here, we begin by explaining why invertebrates are likely to be affected by anthropogenic noise, briefly reviewing their capacity for hearing and providing evidence that they are capable of evolutionary adaptation and behavioural plasticity in response to natural noise sources. We then discuss the importance of quantifying accurately and fully both auditory ability and noise content, emphasizing considerations of direct relevance to how invertebrates detect sounds. We showcase how studying invertebrates can help with the behavioural bias in the literature, the difficulties in drawing strong, ecologically valid conclusions and the need for studies on fitness impacts. Finally, we suggest avenues of future research using invertebrates that would advance our understanding of the impact of anthropogenic noise. PMID:24335986

  8. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    PubMed

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  9. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  10. Research on enhancing the utilization of digital multispectral data and geographic information systems in global habitability studies

    NASA Technical Reports Server (NTRS)

    Martinko, E. A.; Merchant, J. W.

    1986-01-01

    The University of Kansas Applied Remote Sensing (KARS) program is engaged in a continuing long term research and development effort designed to reveal and facilitate new applications of remote sensing technology for decision makers in governmental agencies and private firms. Some objectives of the program follows. The development of new modes of analyzing multispectral scanner, aerial camera, thermal scanner, and radar data, singly or in concert in order to more effectively use these systems. Merge data derived from remote sensing with data derived from conventional sources in geographic information systems to facilitate better environmental planning. Stimulation of the application of the products of remote sensing systems to problems of resource management and environmental quality now being addressed in NASA's Global Habitability directive. The application of remote sensing techniques and analysis and geographic information systems technology to the solution of significant concerns of state and local officials and private industry. The guidance, assistance and stimulation of faculty, staff and students in the utilization of information from the Earth Resources Satellite (LANDSAT) and Aircraft Programs of NASA in research, education, and public service activities carried at the University of Kansas.

  11. What We Can Say About the Roles of Natural and Anthropogenic Aerosols in Climate Change

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    2016-07-01

    Although particles from natural sources dominate the globally averaged aerosol load, it is widely understood that human activity has added significantly to the atmospheric aerosol inventory in many regions. Anthropogenic contributions include pollution particles from industrial activity, transportation, cook-stoves, and other combustion sources, smoke from agricultural fires and those wildfires that result from land-management practices, soil and mineral dust mobilized in regions where overgrazing, severe tilling, or overuse of surface water resources have occurred, and biogenic particles from vegetation planted and maintained by the populance. The history of human influence is complex - in the 18th and 19th centuries agricultural burning tended to dominate the anthropogenic component in most places, whereas more recently, fossil fuel combustion leads the human contribution is many areas. However, identifying and quantifying the anthropogenic aerosol component on global scales is a challenging endeavor at present. Most estimates of the anthropogenic component come from aerosol transport models that are initialized with aerosol and precursor-gas source locations, emission strengths, and injection heights. The aerosol is then advected based on meteorological modeling, possibly modified chemically or physically, and removed by parameterized wet or dry deposition processes. Aerosol effects on clouds are also represented in some climate models, but with even greater uncertainty than the direct aerosol effects on Earth's radiation balance. Even for present conditions, aerosol source inventories are deduced from whatever constraints can be found, along with much creativity and many assumptions. Aerosol amount (i.e., aerosol optical depth) is routinely measured globally from space, but observational constraints on the anthropogenic component require some knowledge of the aerosol type as well, a much more difficult quantity to derive. As large-swath, multi-spectral, single

  12. Mixed-layer ocean responses to anthropogenic aerosol dimming from 1870 to 2000

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2016-01-01

    It is debated to what extent surface solar radiation (SSR) changes through varying anthropogenic aerosol emissions since industrialization affected surface temperatures (tsurf). We use mixed-layer ocean experiments with the general circulation model ECHAM6.1 and explicit aerosols (HAM2.2) to identify regions where this effect is discernible. For each decade from 1870 to 2000 we derive three equilibria: anthropogenic aerosol emissions and greenhouse gas concentrations at the respective decade's levels (ALL), either aerosols or greenhouse gases fixed at year 1850 levels (GHG and AERO). We duplicated parts of the experiments with different prescribed divergence of ocean heat transport (Q_ALL, Q_AERO, and Q_GHG). Comparing year 2000 with year 1870 equilibria, we find global average cooling of -1.4 K for AERO and warming of 1.4 K for GHG. ALL and Q_ALL warm by 0.6 K and 0.4 K, respectively. The way divergence of ocean heat transport is prescribed thus matters. Pattern correlations of year 2000 tsurf responses in ALL with the sum of AERO and GHG are higher (0.88) than with Q_ALL (0.71) confirming additivity of global patterns, but not of global means. The imprint of anthropogenic aerosols on tsurf response patterns in ALL is distinct, thus potentially detectable. Over the decades, ocean fractions affected by either changing aerosol optical depth or all-sky SSR vary in concert, supporting linkage between anthropogenic aerosols and all-sky SSR. SSR changes and tsurf responses are marginally collocated. Oceanic regions with strongest tsurf response to aerosol-induced SSR changes are the northern midlatitudes and North Pacific with tsurf sensitivities up to -0.7 K W m-2 SSR change.

  13. Mixed-layer ocean responses to anthropogenic aerosol dimming from 1870 to 2000

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated, to what extent anthropogenic aerosol-induced changes in surface solar radiation (SSR) since industrialization affected surface temperatures (tsurf). We use mixed-layer ocean (MLO) experiments with the general circulation model ECHAM6.1 and explicit aerosols (HAM2.2) to identify regions where this effect is discernible. For each decade from 1870 to 2000 we derive three equilibria: anthropogenic aerosol emissions and greenhouse gas concentrations at the respective decade's levels (ALL), either aerosols or greenhouse gases fixed at year 1850 levels (GHG and AERO). We duplicated parts of the experiments with different prescribed divergence of ocean heat transport (Q_ALL, Q_AERO, Q_GHG). Comparing year 2000 with year 1870 equilibria, we find global average cooling of -1.4K for AERO, and warming of 1.4K for GHG. ALL and Q_ALL warm by 0.6K and 0.4K, respectively. The way divergence of ocean heat transport is prescribed thus matters. Pattern correlations of year 2000 tsurf responses in ALL with the sum of AERO and GHG are higher (0.88) than with Q_ALL (0.71) confirming additivity of global patterns, but not of global means. The imprint of anthropogenic aerosols on tsurf response patterns in ALL is distinct, thus potentially detectable. Over the decades, ocean fractions affected by either changing aerosol optical depth or all-sky SSR vary in concert, supporting linkage between anthropogenic aerosols and all-sky SSR. SSR changes and tsurf responses are marginally collocated. Oceanic regions with strongest tsurf response to aerosol-induced SSR changes are the northern mid-latitudes and North Pacific with tsurf sensitivities up to -0.7K per Wm-2 SSR change. Results presented have been published under the same title in the Journal of Geophysical Research, Volume 121, DOI 10.1002/2015JD024070.

  14. Anthropogenic carbon in the East Greenland Current

    NASA Astrophysics Data System (ADS)

    Jutterström, Sara; Jeansson, Emil

    2008-07-01

    Sections of dissolved inorganic anthropogenic carbon ( CTanthro) based on 2002 data in the East Greenland Current (EGC) are presented. The CTanthro has been estimated using a model based on optimum multiparameter analysis with predefined source water types. Values of CTanthro have been assigned to the source water types through age estimations based on the transit time distribution (TTD) technique. The validity of this approach is discussed and compared to other methods. The results indicated that the EGC had rather high levels of CTanthro in the whole water column, and the anthropogenic signal of the different source areas were detected along the southward transit. We estimated an annual transport of CTanthro with the Denmark Strait overflow ( σθ > 27.8 kg m -3) of ∼0.036 ± 0.005 Gt C y -1. The mean CTanthro concentration in this density range was ∼30 μmol kg -1. The main contribution was from Atlantic derived waters, the Polar Intermediate Water and the Greenland Sea Arctic Intermediate Water.

  15. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion

    PubMed Central

    Loupe, J M; Miller, P J; Bonner, B P; Maggi, E C; Vijayaraghavan, J; Crabtree, J S; Taylor, C M; Zabaleta, J; Hollenbach, A D

    2016-01-01

    Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression. PMID:27454080

  16. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion.

    PubMed

    Loupe, J M; Miller, P J; Bonner, B P; Maggi, E C; Vijayaraghavan, J; Crabtree, J S; Taylor, C M; Zabaleta, J; Hollenbach, A D

    2016-01-01

    Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the e