Science.gov

Sample records for anti hiv-1 activity

  1. Anti-HIV-1 Activity of Flavonoid Myricetin on HIV-1 Infection in a Dual-Chamber In Vitro Model

    PubMed Central

    Pasetto, Silvana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2014-01-01

    HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01–100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research. PMID:25546350

  2. Anti-HIV-1 activity of eight monofloral Iranian honey types.

    PubMed

    Behbahani, Mandana

    2014-01-01

    Monofloral Iranian honeys from eight floral sources were analyzed to determine their anti-HIV-1 activities as well as their effects on lymphocyte proliferation. The Peripheral Blood Mononuclear Cells (PBMCs) used in this study were prepared from five healthy volunteers who were seronegative for HIV, HCV, HBV and TB. The anti-HIV-1 activity of eight different honeys was performed by quantitative polymerase chain reaction (PCR) assay and high pure viral nucleic acid kit. The results demonstrated that monofloral honeys from Petro selinum sativum, Nigella sativa, Citrus sinensis, Zataria multiflora, Citrus aurantium and Zizyphus mauritiana flowers had potent anti-HIV-1 activity with half maximal effective concentration (EC50) values of 37.5, 88, 70, 88, 105 and 5 µg/ml respectively. However, monofloral Iranian honeys from Astragalus gummifer and Chamaemelum nobile flowers had weak anti-HIV-1 activity. The frequency and intensity of CD4 expression on PBMCs increased in the presence of all honey types. CD19 marker were also increased after the treatment with monofloral honeys from Z. multiflora and N. sativa. The anti-HIV-1 agent in monofloral honeys from P. sativum, N. sativa, Z. multiflora and Z. mauritiana flowers was detected by spectroscopic analysis as methylglyoxal. Time of drug addition studies demonstrated that the inhibitory effect of methylglyoxal is higher on the late stage of HIV-1 infection. The result demonstrated that methylglyoxal isolated from monofloral honey types is a good candidate for preclinical evaluation of anti-HIV-1 therapies. PMID:25333699

  3. DNA Triplex-Based Complexes Display Anti-HIV-1-Cell Fusion Activity.

    PubMed

    Xu, Liang; Zhang, Tao; Xu, Xiaoyu; Chong, Huihui; Lai, Wenqing; Jiang, Xifeng; Wang, Chao; He, Yuxian; Liu, Keliang

    2015-08-01

    DNA triplexes with hydrophobic modifications were designed and evaluated for their activity as inhibitors of the cell fusion of human immunodeficiency virus type 1 (HIV-1). Triplex inhibitors displayed low micromolar activities in the cell-cell fusion assay and nanomolar activities in the anti-HIV-1 pseudovirus test. Helix structure and the presence of sufficient numbers of hydrophobic regions were essential for the antifusion activity. Results from native polyacrylamide gel electrophoresis and a fluorescent resonance energy transfer-based inhibitory assay indicated that these triplexes may interact with the primary pocket at the glycoprotein 41 (gp41) N-heptad repeat, thereby inhibiting formation of the HIV-1 gp41 6-helical bundle. Triplex-based complexes may represent a novel category of HIV-1 inhibitors in anti-HIV-1 drug discovery. PMID:26192705

  4. Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers.

    PubMed

    Rivero-Buceta, Eva; Carrero, Paula; Casanova, Elena; Doyagüez, Elisa G; Madrona, Andrés; Quesada, Ernesto; Peréz-Pérez, María Jesús; Mateos, Raquel; Bravo, Laura; Mathys, Leen; Noppen, Sam; Kiselev, Evgeny; Marchand, Christophe; Pommier, Yves; Liekens, Sandra; Balzarini, Jan; Camarasa, María José; San-Félix, Ana

    2015-12-01

    The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly α-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes α-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1. PMID:26540494

  5. Anti-HIV-1 Activity of Elafin Is More Potent than Its Precursor's, Trappin-2, in Genital Epithelial Cells

    PubMed Central

    Drannik, Anna G.; Nag, Kakon; Yao, Xiao-Dan; Henrick, Bethany M.; Jain, Sumiti; Ball, T. Blake; Plummer, Francis A.; Wachihi, Charles; Kimani, Joshua

    2012-01-01

    Cervicovaginal lavage fluid (CVL) is a natural source of anti-HIV-1 factors; however, molecular characterization of the anti-HIV-1 activity of CVL remains elusive. In this study, we confirmed that CVLs from HIV-1-resistant (HIV-R) compared to HIV-1-susceptible (HIV-S) commercial sex workers (CSWs) contain significantly larger amounts of serine antiprotease trappin-2 (Tr) and its processed form, elafin (E). We assessed anti-HIV-1 activity of CVLs of CSWs and recombinant E and Tr on genital epithelial cells (ECs) that possess (TZM-bl) or lack (HEC-1A) canonical HIV-1 receptors. Our results showed that immunodepletion of 30% of Tr/E from CVL accounted for up to 60% of total anti-HIV-1 activity of CVL. Knockdown of endogenous Tr/E in HEC-1A cells resulted in significantly increased shedding of infectious R5 and X4 HIV-1. Pretreatment of R5, but not X4 HIV-1, with either Tr or E led to inhibition of HIV-1 infection of TZM-bl cells. Interestingly, when either HIV-1 or cells lacking canonical HIV-1 receptors were pretreated with Tr or E, HIV-1 attachment and transcytosis were significantly reduced, and decreased attachment was not associated with altered expression of syndecan-1 or CXCR4. Determination of 50% inhibitory concentrations (IC50) of Tr and E anti-HIV-1 activity indicated that E is ∼130 times more potent than its precursor, Tr, despite their equipotent antiprotease activities. This study provides the first experimental evidence that (i) Tr and E are among the principal anti-HIV-1 molecules of CVL; (ii) Tr and E affect cell attachment and transcytosis of HIV-1; (iii) E is more efficient than Tr regarding anti-HIV-1 activity; and (iv) the anti-HIV-1 effect of Tr and E is contextual. PMID:22345469

  6. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii.

    PubMed

    Dinesh, Subramaniam; Menon, Thangam; Hanna, Luke E; Suresh, V; Sathuvan, M; Manikannan, M

    2016-01-01

    Sargassum swartzii, a marine brown algae with wide range of biological properties belongs to the family Sargassaceae. Bioactive fucoidan fractions (CFF, FF1 and FF2) were isolated from S. swartzii and characterized by linear gradient anion-exchange chromatography and FT-IR. The characterized fucoidan fractions contained mainly sugars, sulfate and uronic acid. In the present study, anti-HIV-1 property of the fucoidan fractions was investigated. Fraction FF2 was found to exhibit significant anti-HIV-1 activity at concentrations of 1.56 and 6.25 μg/ml as observed by >50% reduction in HIV-1 p24 antigen levels and reverse transcriptase activity. Fucoidan fractions have no cytotoxic effects on PBMCs at the concentration range of 1.56-1000 μg/ml. These results suggest that fucoidan fractions could have inhibitory activity against HIV and has potential as an anti-HIV-1 agent. PMID:26472515

  7. In vitro anti-HIV-1 activity of salicylidene acylhydrazide compounds.

    PubMed

    Forthal, Donald N; Phan, Tran B; Slepenkin, Anatoly V; Landucci, Gary; Chu, Hencelyn; Elofsson, Mikael; Peterson, Ellena

    2012-10-01

    Salicylidene acylhydrazide compounds have been shown to inhibit bacterial pathogens, including Chlamydia and Neisseria gonorrhoeae. If such compounds could also target HIV-1, their potential use as topical microbicides to prevent sexually transmitted infections would be considerable. In this study, the in vitro anti-HIV-1 activity, cytotoxicity and mechanism of action of several salicylidene acylhydrazides were determined. Inhibitory activity was assessed using TZM-bl cells and primary peripheral blood mononuclear cells (PBMCs) as targets for HIV-1 infection. Antiviral activity was measured against cell-free and cell-associated virus and in vaginal fluid and semen simulants. Since the antibacterial activity of salicylidene acylhydrazides is reversible by Fe(2+), the ability of Fe(2+) and other cations to reverse the anti-HIV-1 activity of the compounds was determined. Real-time PCR was also employed to determine the stage affected in the HIV-1 replication cycle. Four compounds with 50% inhibitory concentrations against HIV-1 of 1-7 μM were identified. In vitro toxicity varied but was generally limited. Activity was similar against three R5 clade B primary isolates and whether the target for virus replication was TZM-bl cells or PBMCs. Compounds inhibited cell-free and cell-associated virus and were active in vaginal fluid and semen simulants. Fe(2+), but not other cations, reversed the anti-HIV-1 effect. Finally, the inhibitory effect of the compounds occurred at a post-integration step. In conclusion, salicylidene acylhydrazides were identified with in vitro anti-HIV-1 activity in the micromolar range. The activity of these compounds against other sexually transmitted pathogens makes them potential candidates to formulate for use as a broad-spectrum topical genital microbicide. PMID:22819150

  8. Semi-synthesis of oxygenated dolabellane diterpenes with highly in vitro anti-HIV-1 activity.

    PubMed

    Pardo-Vargas, Alonso; Ramos, Freddy A; Cirne-Santos, Claudio Cesar; Stephens, Paulo Roberto; Paixão, Izabel Christina Palmer; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-09-15

    Research on dolabellane diterpenes of brown algae Dictyota spp. has shown that these diterpenoids have strong anti-HIV-1 activity, but there are not data about antiviral activity of dolabellane diterpenes isolated from octocorals, which are antipodes of those isolated from the brown algae. Dolabellanes 13-keto-1(R),11(S)-dolabella-3(E),7(E),12(18)-triene (1) and β-Araneosene (2) were isolated from the Caribbean octocoral Eunicea laciniata, and both showed low anti-HIV-1 activity and low toxicity. Since it was shown that oxygenated dolabellanes from algae have better anti-HIV-1 activity, in this work some derivatives of the main dolabellane of E. laciniata1 were obtained by epoxidation (3), epoxide opening (4), and allylic oxidation (5). The derivatives showed significant improvement in the anti-HIV-1potency (100-fold), being compounds 3 and 5 the most active ones. Their high antiviral activities, along with their low cytotoxicity, make them promissory antiviral compounds; and it is worth noting that the absolute configuration at the ring junction in the dolabellane skeleton does not seem to be determinant in the antiviral potency of these diterpeneoids. PMID:25176328

  9. The anti-HIV activity of ADS-J1 targets the HIV-1 gp120

    SciTech Connect

    Armand-Ugon, Mercedes; Clotet-Codina, Imma; Tintori, Cristina; Manetti, Fabrizio; Clotet, Bonaventura; Botta, Maurizio; Este, Jose A. . E-mail: jaeste@irsicaixa.es

    2005-12-05

    Recent data suggest that heparin sulfates may bind to a CD4 induced epitope in the HIV-1 gp120 that constitutes the coreceptor binding site. We have studied the mechanism of action of ADS-J1, a non-peptidic compound selected by docking analysis to interact with gp41 and to interfere with the formation of N-36/C-34 complexes in sandwich ELISA experiments. We show that ADS-J1 blocked the binding of wild-type HIV-1 NL4-3 strain to MT-4 cells but not virus-cell binding of a polyanion-resistant virus. However, ADS-J1 blocked the replication of polyanion-resistant, T-20- and C34-resistant HIV-1, suggesting a second mechanism of action. Development of resistance to ADS-J1 on the polyanion-resistant HIV-1 led to mutations in gp120 coreceptor binding site and not in gp41. Time of addition experiments confirmed that ADS-J1, but not polyanions such as dextran sulfate or AR177, worked at a step that mimics the activity of an HIV coreceptor antagonist but prior to gp41-dependent fusion. We conclude that ADS-J1 may bind to the HIV coreceptor binding site as its mechanism of anti-HIV activity.

  10. Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina)

    PubMed Central

    ZHANG, Xiao-Liang; SONG, Jia-Hao; PANG, Wei; ZHENG, Yong-Tang

    2016-01-01

    Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection. PMID:27469256

  11. Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina).

    PubMed

    Zhang, Xiao-Liang; Song, Jia-Hao; Pang, Wei; Zheng, Yong-Tang

    2016-07-18

    Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection. PMID:27469256

  12. A beta-galactose-specific lectin isolated from the marine worm Chaetopterus variopedatus possesses anti-HIV-1 activity.

    PubMed

    Wang, Jian-Hua; Kong, Jing; Li, Wei; Molchanova, Valentina; Chikalovets, Irina; Belogortseva, Natalia; Luk'yanov, Pavel; Zheng, Yong-Tang

    2006-01-01

    A 30 kDa beta-galactose-specific lectin named CVL was isolated from the polychaete marine worm Chaetopterus variopedatus (Annelida) and its anti-HIV-1 activity in vitro was determined. Results showed that CVL inhibited cytopathic effect induced by HIV-1 and the production of viral p24 antigen. The EC(50) values were 0.0043 and 0.057 microM, respectively. Time-of-addition analysis of anti-HIV-1 activity indicated its action was at the early stage of virus replication. CVL could blocked the cell-to-cell fusion process of HIV infected and uninfected cells with an EC(50) of 0.073 microM. The inhibition of HIV-1 entry into host cells was demonstrated by using fluorescence-based real-time quantify PCR. At CVL concentration of 0.33 microM and 0.07 microM, 86% and 21% virus attachment were blocked, respectively. The anti-HIV-1 action of CVL might relate to blockade of HIV-1 entry into cells. PMID:16316787

  13. Synthesis and anti-HIV-1 activity of N-hydroxy-N1-aminoguanidines.

    PubMed

    Doubell, P C; Oliver, D W

    1992-01-01

    The synthesis of 13 new Schiff bases of N-hydroxy-N1-aminoguanidines starting from thiosemicarbazide are reported. These new derivatives were for the first time tested against infection by the Human Immunodeficiency Virus Type 1 (HIV-1) using the human T-lymphocyte cell line. Four N-hydroxy-N1-aminoguanidines exhibited HIV-1 inhibition in the micromolar range. The most active compound, [1-(1'-chloro-2'-hydroxy-3'-methoxybenzylidene)amino]-3-hydroxy guanidine inhibited HIV-1 by 96% at 10 micrograms/ml concentration. All the derivatives exhibited substantial cytotoxicity at 320 micrograms/ml concentration. The results indicate that the activity against HIV-1 increases with increasing hydrophobicity and substituents with electron-donating properties. PMID:1586383

  14. Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity

    PubMed Central

    Aboye, Teshome L.; Ha, Helen; Majumber, Subhabrata; Christ, Frauke; Debyser, Zeger; Shekhtman, Alexander; Neamati, Nouri; Camarero, Julio A.

    2012-01-01

    Herein, we report for the first time the design and synthesis of a novel cyclotide able to efficiently inhibit HIV-1 viral replication by selectively targeting cytokine receptor CXCR4. This was accomplished by grafting a series of topologically modified CVX15 based peptides onto the loop 6 of cyclotide MCoTI-I. The most active compound produced in this study was a potent CXCR4 antagonist (EC50 ≈ 20 nM) and an efficient HIV-1 cell-entry blocker (EC50 ≈ 2 nM). This cyclotide also showed high stability in human serum thereby providing a promising lead compound for the design of a novel type of peptide-based anti-cancer and anti-HIV-1 therapeutics. PMID:23151033

  15. Diarylpyrimidine-dihydrobenzyloxopyrimidine hybrids: new, wide-spectrum anti-HIV-1 agents active at (sub)-nanomolar level.

    PubMed

    Rotili, Dante; Tarantino, Domenico; Artico, Marino; Nawrozkij, Maxim B; Gonzalez-Ortega, Emmanuel; Clotet, Bonaventura; Samuele, Alberta; Esté, José A; Maga, Giovanni; Mai, Antonello

    2011-04-28

    Here, we describe a novel small series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine peculiar structural features of diarylpyrimidines (DAPYs) and dihydro-alkoxy-benzyl-oxopyrimidines (DABOs). These DAPY-DABO hybrids (1-4) showed a characteristic SAR profile and a nanomolar anti-HIV-1 activity at both enzymatic and cellular level. In particular, the two compounds 4d and 2d, with a (sub)nanomolar activity against wild-type and clinically relevant HIV-1 mutant strains, were selected as lead compounds for next optimization studies. PMID:21438533

  16. Synthesis and in vitro anti-HIV-1 activity of a series of N-arylsulfonyl-3-propionylindoles.

    PubMed

    Che, Zhiping; Tian, Yuee; Hu, Zhenjie; Chen, Yingwu; Liu, Shengming; Chen, Genqiang

    2016-01-01

    Fifteen N-arylsulfonyl-3-propionylindoles (3a-o) were prepared and preliminarily evaluated as in vitro inhibitors of human immunodeficiency virus type-1 (HIV-1). Three compounds 3c, 3g and 3i exhibited potent anti-HIV-1 activity with effective concentration (EC(50)) values of 0.8, 4.0 and 1.2 μg/mL, and therapeutic index (TI) values of 11.7, 16.6 and 84.1, respectively. N-(m-Nitro)phenylsulfonyl-3-propionyl-6-methylindole (3i) exhibited the most promising and best activity against HIV-1 replication. The cytotoxicity of these compounds was assessed as well. PMID:27124676

  17. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    PubMed

    Dezzutti, Charlene S; Brown, Elizabeth R; Moncla, Bernard; Russo, Julie; Cost, Marilyn; Wang, Lin; Uranker, Kevin; Kunjara Na Ayudhya, Ratiya P; Pryke, Kara; Pickett, Jim; Leblanc, Marc-André; Rohan, Lisa C

    2012-01-01

    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm. PMID:23144863

  18. Is Wetter Better? An Evaluation of Over-the-Counter Personal Lubricants for Safety and Anti-HIV-1 Activity

    PubMed Central

    Dezzutti, Charlene S.; Brown, Elizabeth R.; Moncla, Bernard; Russo, Julie; Cost, Marilyn; Wang, Lin; Uranker, Kevin; Kunjara Na Ayudhya, Ratiya P.; Pryke, Kara; Pickett, Jim; LeBlanc, Marc-André; Rohan, Lisa C.

    2012-01-01

    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm. PMID:23144863

  19. Short Communication: Limited Anti-HIV-1 Activity of Maraviroc in Mucosal Tissues.

    PubMed

    Fletcher, Patricia; Herrera, Carolina; Armanasco, Naomi; Nuttall, Jeremy; Shattock, Robin J

    2016-04-01

    The potential of maraviroc (MVC), a small-molecule CCR5 antagonist, as a candidate to prevent HIV-1 sexual transmission by oral or topical dosing has not yet been completely established. Using relevant cellular and mucosal tissue explant models, we show partial antiviral activity of MVC when tested in multiple preclinical dosing strategies. PMID:26711323

  20. Structural Determinants for the Selective Anti-HIV-1 Activity of the All-β Alternative Conformer of XCL1

    PubMed Central

    Guzzo, Christina; Fox, Jamie C.; Miao, Huiyi; Volkman, Brian F.

    2015-01-01

    ABSTRACT HIV-1 replication is regulated in vivo by a complex network of cytokines and chemokines. XCL1/lymphotactin, a unique metamorphic chemokine, was recently identified as a broad-spectrum endogenous HIV-1 inhibitor that blocks viral entry via direct interaction with the gp120 envelope glycoprotein. HIV-1 inhibition by XCL1 requires access to the alternative all-β conformation, which interacts with glycosaminoglycans (GAGs) but not with the specific XCL1 receptor, XCR1. To investigate the structural determinants of the HIV-inhibitory function of XCL1, we performed a detailed structure-function analysis of a stabilized all-β variant, XCL1 W55D. Individual alanine substitutions of two basic residues within the 40s' loop, K42 and R43, abrogated the ability of XCL1 to bind to the viral envelope and block HIV-1 infection; moreover, a loss of HIV-inhibitory function, albeit less marked, was seen upon individual mutation of three additional basic residues: R18, R35, and K46. In contrast, mutation of K42 to arginine did not cause any loss of function, suggesting that the interaction with gp120 is primarily electrostatic in nature. Strikingly, four of these five residues cluster to form a large (∼350 Å2) positively charged surface in the all-β XCL1 conformation, whereas they are dissociated in the classic chemokine fold, which is inactive against HIV-1, providing a structural basis for the selective antiviral activity of the alternatively folded XCL1. Furthermore, we observed that changes to the N-terminal domain, which is proximal to the cluster of putative HIV-1 gp120-interacting residues, also affect the antiviral activity of XCL1. Interestingly, the complement of residues involved in HIV-1 blockade is partially overlapping, but distinct from those involved in the GAG-binding function of XCL1. These data identify key structural determinants of anti-HIV activity in XCL1, providing new templates for the development of HIV-1 entry inhibitors. IMPORTANCE The host

  1. Autoimmune anti-HIV-1gp120 antibody with antiidiotype-like activity in sera and immune complexes of HIV-1-related immunologic thrombocytopenia.

    PubMed Central

    Karpatkin, S; Nardi, M

    1992-01-01

    Autoimmune antiidiotype-like antibody (Ab2) directed against anti-HIV-1gp120 (Ab1) was found in high titer in the sera of 10 consecutive homosexual and 11 narcotic addict HIV-1-related immunologic thrombocytopenia (HIV-1-ITP) patients, was barely detectable in 10 nonthrombocytopenic HIV-1 sero-positive individuals, and was not detectable in 5 normal subjects by use of a solid-phase RIA. Reactivity of autologous Ab2 for Ab1 was 4-120-fold greater than Ab2 for homologous Ab1. Affinity-purified Ab2 did not block the binding of affinity-purified Ab1 to its HIV-1gp120 epitopes on immunoblot, indicating the absence of "internal image" antiidiotype. Both Ab1 and Ab2 are precipitable from sera with polyethylene glycol (PEG) and present in a macromolecular complex that is excluded by gel filtration on G200 and contains IgG, IgM, C3, and the anti-F(ab')2 antiidiotype-like complex. PEG-precipitable complexes bind to platelets in a saturation-dependent manner. Neither affinity-purified Ab1 nor Ab2 binds to platelets. However, the combination of Ab1 and Ab2 (preincubated for 2 h at 22 degrees C) binds to platelets in a saturation-dependent manner at an optimum ratio range of 10-20:1. Ab2 reactivity correlates with serum PEG-precipitable immune complex level (r = 0.91; P less than 0.001) and with thrombocytopenia (r = 0.89; P less than 0.001). We suggest that the anti-HIV-1gp120 antiidiotype-like complex contributes to the markedly elevated platelet Ig and C3 level of HIV-1-ITP patients and propose that this may contribute to their thrombocytopenia. Images PMID:1737832

  2. Functional advantage of educated KIR2DL1(+) natural killer cells for anti-HIV-1 antibody-dependent activation.

    PubMed

    Gooneratne, S L; Center, R J; Kent, S J; Parsons, M S

    2016-04-01

    Evidence from the RV144 HIV-1 vaccine trial implicates anti-HIV-1 antibody-dependent cellular cytotoxicity (ADCC) in vaccine-conferred protection from infection. Among effector cells that mediate ADCC are natural killer (NK) cells. The ability of NK cells to be activated in an antibody-dependent manner is reliant upon several factors. In general, NK cell-mediated antibody-dependent activation is most robust in terminally differentiated CD57(+) NK cells, as well as NK cells educated through ontological interactions between inhibitory killer immunoglobulin-like receptors (KIR) and their major histocompatibility complex class I [MHC-I or human leucocyte antigen (HLA-I)] ligands. With regard to anti-HIV-1 antibody-dependent NK cell activation, previous research has demonstrated that the epidemiologically relevant KIR3DL1/HLA-Bw4 receptor/ligand combination confers enhanced activation potential. In the present study we assessed the ability of the KIR2DL1/HLA-C2 receptor/ligand combination to confer enhanced activation upon direct stimulation with HLA-I-devoid target cells or antibody-dependent stimulation with HIV-1 gp140-pulsed CEM.NKr-CCR5 target cells in the presence of an anti-HIV-1 antibody source. Among donors carrying the HLA-C2 ligand for KIR2DL1, higher interferon (IFN)-γ production was observed within KIR2DL1(+) NK cells than in KIR2DL1(-) NK cells upon both direct and antibody-dependent stimulation. No differences in KIR2DL1(+) and KIR2DL1(-) NK cell activation were observed in HLA-C1 homozygous donors. Additionally, higher activation in KIR2DL1(+) than KIR2DL1(-) NK cells from HLA-C2 carrying donors was observed within less differentiated CD57(-) NK cells, demonstrating that the observed differences were due to education and not an overabundance of KIR2DL1(+) NK cells within differentiated CD57(+) NK cells. These observations are relevant for understanding the regulation of anti-HIV-1 antibody-dependent NK cell responses. PMID:26647083

  3. Aaptamine Derivatives with Antifungal and Anti-HIV-1 Activities from the South China Sea Sponge Aaptos aaptos

    PubMed Central

    Yu, Hao-Bing; Yang, Fan; Sun, Fan; Li, Jing; Jiao, Wei-Hua; Gan, Jian-Hong; Hu, Wen-Zhen; Lin, Hou-Wen

    2014-01-01

    Five new alkaloids of aaptamine family, compounds (1–5) and three known derivatives (6–8), have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated by spectroscopic analyses, as well as by comparison with the literature data. Compounds 1–2 are characterized with triazapyrene lactam skeleton, whereas compounds 4–5 share an imidazole-fused aaptamine moiety. These compounds were evaluated in antifungal and anti-HIV-1 assays. Compounds 3, 7, and 8 showed antifungal activity against six fungi, with MIC values in the range of 4 to 64 μg/mL. Compounds 7–8 exhibited anti-HIV-1 activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a concentration of 10 μM. PMID:25532563

  4. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca

    PubMed Central

    Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M.

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  5. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca.

    PubMed

    Behbahani, M; Sayedipour, S; Pourazar, A; Shanehsazzadeh, M

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments. PMID:26339261

  6. Anti-HIV-1 Activity of Elafin Depends on Its Nuclear Localization and Altered Innate Immune Activation in Female Genital Epithelial Cells

    PubMed Central

    Yao, Xiao-Dan; Henrick, Bethany M.; Ball, T. Blake; Plummer, Francis A.; Wachihi, Charles; Kimani, Joshua; Rosenthal, Kenneth L.

    2012-01-01

    Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1ADA, but not X4-HIV-1IIIB. Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered

  7. A New Neolignan, and the Cytotoxic and Anti-HIV-1 Activities of Constituents from the Roots of Dasymaschalon sootepense.

    PubMed

    Hongthong, Sakchai; Kuhakarn, Chutima; Jaipetch, Thaworn; Piyachaturawat, Pawinee; Jariyawat, Surawat; Suksen, Kanoknetr; Limthongkul, Jitra; Nuntasaen, Narong; Reutrakul, Vichai

    2016-06-01

    Bioassay-guided isolation from the ethyl acetate extract of Dasymaschalon sootepense roots led to the isolation of twelve compounds including a new dihydrobenzo-furan neolignan, (+)-(2S,3S)-2,3-dihydro-2-(3,4-dimethoxyphenyl)-3-methylbenzofuran-5-carbaldehyde (5), and eleven known compounds (1-4, and 6-12). The chemical structures and stereochemistry of all the isolated compounds were established by spectroscopic techniques. The known compounds 4 and 6 have been fully characterized spectroscopically, including their absolute configurations. Cytotoxic and anti-HIV-1 reverse transcriptase (RT) activities of compounds 1-3, 5 and 8-12 were determined. Among compounds screened, compounds 2, 3 and 10 displayed weak cytotoxic activity with ED50 values ranging from 9.6-47.5 μM and only compound 2 was found weakly active against HIV-1 RT with an IC50 value of 323.2 μM. PMID:27534123

  8. Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro.

    PubMed

    Behbahani, Mandana

    2014-11-01

    This study was carried out to check the efficacy of methanol seed extract of Avicenna marina and its column chromatographic fractions on Peripheral Blood Mono nuclear Cells (PBMCs) toxicity and HIV-1 replication. The anti-HIV-1 activities of crude methanol extract and its fractions were performed by use of real-time polymerase chain reaction (PCR) assay and HIV-1 p24 antigen kit. A time of drug addiction approach was also done to identify target of anti-HIV compound. The activity of the extracts on CD4, CD3, CD19 and CD45 expression in lymphocytes population was performed by use of flow cytometry. The most active anti-HIV agent was detected by spectroscopic analysis as 2'-O-(4-methoxycinnamoyl) mussaenosidic acid. The apparent effective concentrations for 50% virus replication (EC50) of methanol extract and iridoid glycoside were 45 and 0.1 μg/ml respectively. The iridoid glycoside also did not have any observable effect on the proportion of CD4, CD3, CD19 and CD45 cells or on the intensity of their expressions on PBMCs. In addition, the expression level of C-C chemokine receptor type 5 (CCR5) and chemokine receptor type 4 (CXCR4) on CD4(+) T cells were decreased in cells treated with this iridoid glycoside. The reduction of these two HIV coreceptors and the result of time of addition study demonstrated that this iridoid glycoside restricts HIV-1 replication on the early stage of HIV infection. PMID:25239814

  9. Preliminary crystallographic studies of an anti-HIV-1 protease antibody that inhibits enzyme activity.

    PubMed Central

    Lescar, J.; Stouracova, R.; Riottot, M. M.; Chitarra, V.; Brynda, J.; Fabry, M.; Horejsi, M.; Sedlacek, J.; Bentley, G. A.

    1996-01-01

    F11.2.32, a monoclonal antibody directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme. The antibody cross-reacts with peptides 36-46 and 36-57 from the protease. Crystals of the Fab have been obtained both in the free state and as complexes formed with the protease peptide fragments, 36-46 and 36-57. Diffraction data have been collected for the free and complexed forms of Fab F11.2.32 and preliminary models for the crystal structures were obtained by molecular replacement. PMID:8732768

  10. The C-Terminal Sequence of IFITM1 Regulates Its Anti-HIV-1 Activity

    PubMed Central

    Pan, Qinghua; Liu, Shan-Lu; Qiao, Wentao; Liang, Chen

    2015-01-01

    The interferon-inducible transmembrane (IFITM) proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1) strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3) is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117–125), which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117–125) mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117–125) to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117–125), mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization. PMID:25738301

  11. The Lupane-type Triterpene 30-Oxo-calenduladiol Is a CCR5 Antagonist with Anti-HIV-1 and Anti-chemotactic Activities*

    PubMed Central

    Barroso-González, Jonathan; El Jaber-Vazdekis, Nabil; García-Expósito, Laura; Machado, José-David; Zárate, Rafael; Ravelo, Ángel G.; Estévez-Braun, Ana; Valenzuela-Fernández, Agustín

    2009-01-01

    The existence of drug-resistant human immunodeficiency virus (HIV) viruses in patients receiving antiretroviral treatment urgently requires the characterization and development of new antiretroviral drugs designed to inhibit resistant viruses and to complement the existing antiretroviral strategies against AIDS. We assayed several natural or semi-synthetic lupane-type pentacyclic triterpenes in their ability to inhibit HIV-1 infection in permissive cells. We observed that the 30-oxo-calenduladiol triterpene, compound 1, specifically impaired R5-tropic HIV-1 envelope-mediated viral infection and cell fusion in permissive cells, without affecting X4-tropic virus. This lupane derivative competed for the binding of a specific anti-CCR5 monoclonal antibody or the natural CCL5 chemokine to the CCR5 viral coreceptor with high affinity. 30-Oxo-calenduladiol seems not to interact with the CD4 antigen, the main HIV receptor, or the CXCR4 viral coreceptor. Our results suggest that compound 1 is a specific CCR5 antagonist, because it binds to the CCR5 receptor without triggering cell signaling or receptor internalization, and inhibits RANTES (regulated on activation normal T cell expressed and secreted)-mediated CCR5 internalization, intracellular calcium mobilization, and cell chemotaxis. Furthermore, compound 1 appeared not to interact with β-chemokine receptors CCR1, CCR2b, CCR3, or CCR4. Thereby, the 30-oxo-calenduladiol-associated anti-HIV-1 activity against R5-tropic virus appears to rely on the selective occupancy of the CCR5 receptor to inhibit CCR5-mediated HIV-1 infection. Therefore, it is plausible that the chemical structure of 30-oxo-calenduladiol or other related dihydroxylated lupane-type triterpenes could represent a good model to develop more potent anti-HIV-1 molecules to inhibit viral infection by interfering with early fusion and entry steps in the HIV life cycle. PMID:19386595

  12. [HPLC enantioseparation, absolute configuration determination and anti-HIV-1 activity of (±)-F18 enantiomers].

    PubMed

    Zhang, Lei-lei; Xue, Hai; Li, Li; Lu, Xiao-fan; Chen, Zhi-wei; Lu, Gang

    2015-06-01

    Racemic (±)-F18 (10-chloromethyl-11-demethyl-12-oxo-calanolide A), an analog of nature product (+)-calanolide A, is a new anti-HIV-1 nonnucleoside reverse transcript inhibitor (NNRTI). A successful enantioseparation of (±)-F18 offering (R)-F18 and (S)-F18 was achieved by a chiral stationary phase prepared HPLC. Their absolute configurations were determined by measurement of their electronic circular dichroisms combined with modem quantum-chemical calculations. Further investigation revealed that (R)-F18 and (S)-F18 shared a similar anti-HIV activities, however, (R)-F18 was more potent than (S)-F18 against wild-type virus, K101E mutation and P225H mutation pseudoviruses. PMID:26521445

  13. Anti-HIV-1 activity of phlorotannin derivative 8,4‴-dieckol from Korean brown alga Ecklonia cava.

    PubMed

    Karadeniz, Fatih; Kang, Kyong-Hwa; Park, Jae W; Park, Sun-Joo; Kim, Se-Kwon

    2014-01-01

    8,4‴-dieckol is a natural product which has been isolated from brown alga, Ecklonia cava. This polyphenolic compound is a phlorotannin derivative with a broad range of bioactivities. Its inhibitory activity on human immunodeficiency virus type-1 (HIV-1) was tested and the results indicated that 8,4‴-dieckol inhibited HIV-1 induced syncytia formation, lytic effects, and viral p24 antigen production at noncytotoxic concentrations. Furthermore, it was found that 8,4‴-dieckol selectively inhibited the activity of HIV-1 reverse trancriptase (RT) enzyme with 91% inhibition ratio at the concentration of 50 μM. HIV-1 entry was also inhibited by 8,4‴-dieckol. According to data from this study, 8,4‴-dieckol is an effective compound against HIV-1 with high potential for further studies. These results suggest that it might be used as a drug candidate for the development of new generation therapeutic agents, although further studies on the mechanism of inhibition should be addressed. PMID:25229850

  14. Synthesis and Anti-HIV-1 Activity Evaluation for Novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione Derivatives.

    PubMed

    Liu, Guan-Nan; Luo, Rong-Hua; Zhou, Yu; Zhang, Xing-Jie; Li, Jian; Yang, Liu-Meng; Zheng, Yong-Tang; Liu, Hong

    2016-01-01

    The search for new molecular constructs that resemble the critical two-metal binding pharmacophore and the halo-substituted phenyl functionality required for HIV-1 integrase (IN) inhibition represents a vibrant area of research within drug discovery. As reported herein, we have modified our recently disclosed 1-[2-(4-fluorophenyl)ethyl]-pyrrole-2,5-dione scaffolds to design 35 novel compounds with improved biological activities against HIV-1. These new compounds show single-digit micromolar antiviral potencies against HIV-1 and low toxicity. Among of them, compound 9g and 15i had potent anti-HIV-1 activities (EC50 < 5 μM) and excellent therapeutic index (TI, CC50/EC50 > 100). These two compounds have potential as lead compounds for further optimization into clinical anti-HIV-1 agents. PMID:27617994

  15. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2.

    PubMed

    Ferreira, Victor H; Nazli, Aisha; Dizzell, Sara E; Mueller, Kristen; Kaushic, Charu

    2015-01-01

    Inflammation is a known mechanism that facilitates HIV acquisition and the spread of infection. In this study, we evaluated whether curcumin, a potent and safe anti-inflammatory compound, could be used to abrogate inflammatory processes that facilitate HIV-1 acquisition in the female genital tract (FGT) and contribute to HIV amplification. Primary, human genital epithelial cells (GECs) were pretreated with curcumin and exposed to HIV-1 or HIV glycoprotein 120 (gp120), both of which have been shown to disrupt epithelial tight junction proteins, including ZO-1 and occludin. Pre-treatment with curcumin prevented disruption of the mucosal barrier by maintaining ZO-1 and occludin expression and maintained trans-epithelial electric resistance across the genital epithelium. Curcumin pre-treatment also abrogated the gp120-mediated upregulation of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6, which mediate barrier disruption, as well as the chemokines IL-8, RANTES and interferon gamma-induced protein-10 (IP-10), which are capable of recruiting HIV target cells to the FGT. GECs treated with curcumin and exposed to the sexually transmitted co-infecting microbes HSV-1, HSV-2 and Neisseria gonorrhoeae were unable to elicit innate inflammatory responses that indirectly induced activation of the HIV promoter and curcumin blocked Toll-like receptor (TLR)-mediated induction of HIV replication in chronically infected T-cells. Finally, curcumin treatment resulted in significantly decreased HIV-1 and HSV-2 replication in chronically infected T-cells and primary GECs, respectively. All together, our results suggest that the use of anti-inflammatory compounds such as curcumin may offer a viable alternative for the prevention and/or control of HIV replication in the FGT. PMID:25856395

  16. Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β.

    PubMed

    Lai, Weihong; Huang, Li; Zhu, Lei; Ferrari, Guido; Chan, Cliburn; Li, Wei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2015-11-12

    HIV-1-latency-reversing agents, such as histone deacetylase inhibitors (HDACIs), were ineffective in reducing latent HIV-1 reservoirs ex vivo using CD4 cells from patients as a model. This deficiency poses a challenge to current pharmacological approaches for HIV-1 eradication. The results of this study indicated that gnidimacrin (GM) was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells in an ex vivo model using patients peripheral blood mononuclear cells. GM induced approximately 10-fold more HIV-1 production than the HDACI SAHA or romidepsin, which may be responsible for the effectiveness of GM in reducing latent HIV-1 levels. GM achieved these effects at low picomolar concentrations by selective activation of protein kinase C βI and βII. Notably, GM was able to reduce the frequency of HIV-1 latently infected cells at concentrations without global T cell activation or stimulating inflammatory cytokine production. GM merits further development as a clinical trial candidate for latent HIV-1 eradication. PMID:26509731

  17. Application of ant colony optimization in development of models for prediction of anti-HIV-1 activity of HEPT derivatives.

    PubMed

    Zare-Shahabadi, Vali; Abbasitabar, Fatemeh

    2010-09-01

    Quantitative structure-activity relationship models were derived for 107 analogs of 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio)thymine, a potent inhibitor of the HIV-1 reverse transcriptase. The activities of these compounds were investigated by means of multiple linear regression (MLR) technique. An ant colony optimization algorithm, called Memorized_ACS, was applied for selecting relevant descriptors and detecting outliers. This algorithm uses an external memory based upon knowledge incorporation from previous iterations. At first, the memory is empty, and then it is filled by running several ACS algorithms. In this respect, after each ACS run, the elite ant is stored in the memory and the process is continued to fill the memory. Here, pheromone updating is performed by all elite ants collected in the memory; this results in improvements in both exploration and exploitation behaviors of the ACS algorithm. The memory is then made empty and is filled again by performing several ACS algorithms using updated pheromone trails. This process is repeated for several iterations. At the end, the memory contains several top solutions for the problem. Number of appearance of each descriptor in the external memory is a good criterion for its importance. Finally, prediction is performed by the elitist ant, and interpretation is carried out by considering the importance of each descriptor. The best MLR model has a training error of 0.47 log (1/EC(50)) units (R(2) = 0.90) and a prediction error of 0.76 log (1/EC(50)) units (R(2) = 0.88). PMID:20575016

  18. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity.

    PubMed

    Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao; Scacalossi, Daniel; Belov, Dmitry S; Tikhonov, Artur A; Andreev, Ivan A; Altieri, Andrea; Kurkin, Alexander V; Kwong, Peter D; Debnath, Asim K

    2015-09-10

    Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates (IC50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS. PMID:26301736

  19. Selective non-nucleoside HIV-1 reverse transcriptase inhibitors. New 2,3-dihydrothiazolo[2,3-a]isoindol-5(9bH)-ones and related compounds with anti-HIV-1 activity.

    PubMed

    Mertens, A; Zilch, H; König, B; Schäfer, W; Poll, T; Kampe, W; Seidel, H; Leser, U; Leinert, H

    1993-08-20

    A series of substituted 2,3-dihydrothiazolo[2,3-a]isoindol-5(9bH)-ones and related compounds 1-73 were synthesized and evaluated for their ability to inhibit reverse transcriptase (RT) of the human immune deficiency virus 1 (HIV-1) and replication of HIV-1 in MT2 cells. The antiviral activity of these compounds depends on the stereoselective configuration of the substituent in position 9b. Structure-activity studies were done within these series of compounds to determine the optimum substituents for antiviral activity. The most potent inhibitors were found in the class of 2,3-dihydrothiazolo[2,3-a]isoindol-5(9bH)-ones bearing a phenyl ring system in position 9b optionally substituted with one or two methyl groups or a chlorine atom in position 8. The most active analogues (R)-(+)-1, (R)-(+)-6, (R)-(+)-13, (R)-(+)-26, and (R)-(+)-53 inhibit the HIV-1 RT with an IC50 between 16 and 300 nM and an IC50 between 10 and 392 nM in MT2 cells, respectively. PMID:7689109

  20. Rational design, synthesis, anti-HIV-1 RT and antimicrobial activity of novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one derivatives.

    PubMed

    Chander, Subhash; Wang, Ping; Ashok, Penta; Yang, Liu-Meng; Zheng, Yong-Tang; Murugesan, Sankaranarayanan

    2016-08-01

    In the present study, fifteen novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one (6a-o) derivatives were designed as inhibitor of HIV-1 RT using ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT strain. Among the tested compounds, four compounds (6a, 6b, 6j and 6o) exhibited significant inhibition of HIV-1 RT (IC50⩽10μg/ml). All synthesized compounds were also evaluated for anti-HIV-1 activity as well as cytotoxicity on T lymphocytes, in which compounds 6b and 6l exhibited significant anti-HIV activity (EC50 values 4.72 and 5.45μg/ml respectively) with good safety index. Four compounds (6a, 6b, 6j and 6o) found significantly active against HIV-1 RT in the in-vitro assay were in-silico evaluated against two mutant RT strains as well as one wild strain. Further, titled compounds were evaluated for in-vitro antibacterial (Escherichia coli, Pseudomonas putida, Staphylococcus aureus and Bacillus cereus) and antifungal (Candida albicans and Aspergillus niger) activities. PMID:27288643

  1. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides

    PubMed Central

    Rollenhagen, C; Lathrop, M J; Macura, S L; Doncel, G F; Asin, S N

    2014-01-01

    Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4+/CCR5+/CD38+ T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1. PMID:24496317

  2. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs.

    PubMed

    Alian, Akram; Griner, Sarah L; Chiang, Vicki; Tsiang, Manuel; Jones, Gregg; Birkus, Gabriel; Geleziunas, Romas; Leavitt, Andrew D; Stroud, Robert M

    2009-05-19

    HIV-1 integration into the host cell genome is a multistep process catalyzed by the virally-encoded integrase (IN) protein. In view of the difficulty of obtaining a stable DNA-bound IN at high concentration as required for structure determination, we selected IN-DNA complexes that form disulfide linkages between 5'-thiolated DNA and several single mutations to cysteine around the catalytic site of IN. Mild reducing conditions allowed for selection of the most thermodynamically-stable disulfide-linked species. The most stable complexes induce tetramer formation of IN, as happens during the physiological integration reaction, and are able to catalyze the strand transfer step of retroviral integration. One of these complexes also binds strand-transfer inhibitors of HIV antiviral drugs, making it uniquely valuable among the mutants of this set for understanding portions of the integration reaction. This novel complex may help define substrate interactions and delineate the mechanism of action of known integration inhibitors. PMID:19416821

  3. Syndecan-Fc Hybrid Molecule as a Potent In Vitro Microbicidal Anti-HIV-1 Agent▿

    PubMed Central

    Bobardt, Michael D.; Chatterji, Udayan; Schaffer, Lana; de Witte, Lot; Gallay, Philippe A.

    2010-01-01

    In the absence of a vaccine, there is an urgent need for the development of safe and effective topical microbicides to prevent the sexual transmission of human immunodeficiency virus type 1 (HIV-1). In this study, we proposed to develop a novel class of microbicides using syndecan as the antiviral agent. Specifically, we generated a soluble syndecan-Fc hybrid molecule by fusing the ectodomain of syndecan-1 to the Fc domain of a human IgG. We then tested the syndecan-Fc hybrid molecule for various in vitro microbicidal anti-HIV-1 properties. Remarkably, the syndecan-Fc hybrid molecule possesses multiple attractive microbicidal properties: (i) it blocks HIV-1 infection of primary targets including T cells, macrophages, and dendritic cells (DC); (ii) it exhibits a broad range of antiviral activity against primary HIV-1 isolates, multidrug resistant HIV-1 isolates, HIV-2, and simian immunodeficiency virus (SIV); (iii) it prevents transmigration of HIV-1 through human primary genital epithelial cells; (iv) it prevents HIV-1 transfer from dendritic cells to CD4+ T cells; (v) it is potent when added 2 h prior to addition of HIV-1 to target cells; (vi) it is potent at a low pH; (vii) it blocks HIV-1 infectivity when diluted in genital fluids; and (viii) it prevents herpes simplex virus infection. The heparan sulfate chains of the syndecan-Fc hybrid molecule are absolutely required for HIV-1 neutralization. Several lines of evidence suggest that the highly conserved Arg298 in the V3 region of gp120 serves as the locus for the syndecan-Fc hybrid molecule neutralization. In conclusion, this study suggests that the syndecan-Fc hybrid molecule represents the prototype of a new generation of microbicidal agents that may have promise for HIV-1 prevention. PMID:20439611

  4. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs

    PubMed Central

    Alian, Akram; Griner, Sarah L.; Chiang, Vicki; Tsiang, Manuel; Jones, Gregg; Birkus, Gabriel; Geleziunas, Romas; Leavitt, Andrew D.; Stroud, Robert M.

    2009-01-01

    HIV-1 integration into the host cell genome is a multistep process catalyzed by the virally-encoded integrase (IN) protein. In view of the difficulty of obtaining a stable DNA-bound IN at high concentration as required for structure determination, we selected IN–DNA complexes that form disulfide linkages between 5′-thiolated DNA and several single mutations to cysteine around the catalytic site of IN. Mild reducing conditions allowed for selection of the most thermodynamically-stable disulfide-linked species. The most stable complexes induce tetramer formation of IN, as happens during the physiological integration reaction, and are able to catalyze the strand transfer step of retroviral integration. One of these complexes also binds strand-transfer inhibitors of HIV antiviral drugs, making it uniquely valuable among the mutants of this set for understanding portions of the integration reaction. This novel complex may help define substrate interactions and delineate the mechanism of action of known integration inhibitors. PMID:19416821

  5. Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound

    PubMed Central

    Smith, Kahli A.; Lin, Xionghao; Bolshakov, Oleg; Griffin, James; Niu, Xiaomei; Kovalskyy, Dmytro; Ivanov, Andrey; Jerebtsova, Marina; Taylor, Robert E.; Akala, Emmanuel; Nekhai, Sergei

    2015-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of latent HIV-1 reservoirs in which the integrated HIV-1 provirus is transcriptionally inactive. Activation of HIV-1 transcription requires the viral Tat protein and host cell factors, including protein phosphatase-1 (PP1). We previously developed a library of small compounds that targeted PP1 and identified a compound, SMAPP1, which induced HIV-1 transcription. However, this compound has a limited bioavailability in vivo and may not be able to reach HIV-1-infected cells and induce HIV-1 transcription in patients. We packaged SMAPP1 in polymeric polyethylene glycol polymethyl methacrylate nanoparticles and analyzed its release and the effect on HIV-1 transcription in a cell culture. SMAPP1 was efficiently packaged in the nanoparticles and released during a 120-hr period. Treatment of the HIV-1-infected cells with the SMAPP1-loaded nanoparticles induced HIV-1 transcription. Thus, nanoparticles loaded with HIV-1-targeting compounds might be useful for future anti-HIV-1 therapeutics. PMID:26839837

  6. Synthesis, evaluation of anti-HIV-1 and anti-HCV activity of novel 2′,3′-dideoxy-2′,2′-difluoro-4′-azanucleosides

    PubMed Central

    Martínez-Montero, Saúl; Fernández, Susana; Sanghvi, Yogesh S.; Theodorakis, Emmanuel A.; Detorio, Mervi A.; Mcbrayer, Tamara R.; Whitaker, Tony; Schinazi, Raymond F.; Gotor, Vicente; Ferrero, Miguel

    2012-01-01

    A series of 2′,3′-dideoxy-2′,2′-difluoro-4′-azanucleosides of both pyrimidine and purine nucleobases were synthesized in an efficient manner starting from commercially available L-pyroglutamic acid via glycosylation of difluorinated pyrrolidine derivative 15. Several 4′-azanucleosides were prepared as a separable mixture of α- and β-anomers. The 6-chloropurine analogue was obtained as a mixture of N7 and N9 regioisomers and their structures were identified based on NOESY and HMBC spectral data. Among the 4′-azanucleosides tested as HIV-1 inhibitors in primary human lymphocytes, four compounds showed modest activity and the 5-fluorouracil analogue (18d) was found to be the most active compound (EC50 = 36.9 μM) in this series. None of the compounds synthesized in this study demonstrated anti-HCV activity. PMID:23085031

  7. Short Communication: Anti-HIV-1 Envelope Immunoglobulin Gs in Blood and Cervicovaginal Samples of Beninese Commercial Sex Workers

    PubMed Central

    Batraville, Laurie-Anne; Richard, Jonathan; Veillette, Maxime; Labbé, Annie-Claude; Alary, Michel; Guédou, Fernand; Kaufmann, Daniel E.; Poudrier, Johanne

    2014-01-01

    Abstract Characterization of the immune correlates of protection against HIV infection is crucial for the development of preventive strategies. This study examined HIV-1 envelope (Env) glycoproteins, specifically immunoglobulin G (IgG), in systemic and mucosal compartments of female Beninese commercial sex workers (CSWs). Samples of 23 HIV-1-positive and 20 highly exposed HIV-1-seronegative (HESN) CSWs were studied. HIV-1 Env-specific IgG detection in sera and cervicovaginal lavages (CVLs) from the study population was done by cell-based ELISA. The HIV neutralizing activity was evaluated with a neutralization assay. The HIV-1-specific antibody-dependent cellular cytotoxicity (ADCC) response of the cohort was measured with a FACS-based assay evaluating the ADCC-mediated elimination of gp120-coated target cells. No anti-HIV-1 Env-specific IgG neutralizing or ADCC activities were detected in samples from HESN CSWs. Samples from HIV-1-infected CSWs presented ADCC activity in both sera and CVLs. Anti-Env IgG from sera and CVLs from HIV-1-infected CSWs preferentially recognized Env in its CD4-bound conformation. HIV-1-infected CSWs have ADCC-mediating IgG that preferentially recognizes Env in its CD4-bound conformation at the mucosal site. PMID:25354025

  8. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges.

    PubMed

    Gautam, Rajeev; Nishimura, Yoshiaki; Pegu, Amarendra; Nason, Martha C; Klein, Florian; Gazumyan, Anna; Golijanin, Jovana; Buckler-White, Alicia; Sadjadpour, Reza; Wang, Keyun; Mankoff, Zachary; Schmidt, Stephen D; Lifson, Jeffrey D; Mascola, John R; Nussenzweig, Michel C; Martin, Malcolm A

    2016-05-01

    Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission. PMID:27120156

  9. Anti-phospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce β-chemokines

    PubMed Central

    Liao, Hua-Xin; Alam, S. Munir; Scearce, Richard M.; Plonk, M. Kelly; Kozink, Daniel M.; Drinker, Mark S.; Zhang, Ruijun; Xia, Shi-Mao; Sutherland, Laura L.; Tomaras, Georgia D.; Giles, Ian P.; Kappes, John C.; Ochsenbauer-Jambor, Christina; Edmonds, Tara G.; Soares, Melina; Barbero, Gustavo; Forthal, Donald N.; Landucci, Gary; Chang, Connie; King, Steven W.; Kavlie, Anita; Denny, Thomas N.; Hwang, Kwan-Ki; Chen, Pojen P.; Thorpe, Philip E.; Montefiori, David C.

    2010-01-01

    Traditional antibody-mediated neutralization of HIV-1 infection is thought to result from the binding of antibodies to virions, thus preventing virus entry. However, antibodies that broadly neutralize HIV-1 are rare and are not induced by current vaccines. We report that four human anti-phospholipid monoclonal antibodies (mAbs) (PGN632, P1, IS4, and CL1) inhibit HIV-1 CCR5-tropic (R5) primary isolate infection of peripheral blood mononuclear cells (PBMCs) with 80% inhibitory concentrations of <0.02 to ∼10 µg/ml. Anti-phospholipid mAbs inhibited PBMC HIV-1 infection in vitro by mechanisms involving binding to monocytes and triggering the release of MIP-1α and MIP-1β. The release of these β-chemokines explains both the specificity for R5 HIV-1 and the activity of these mAbs in PBMC cultures containing both primary lymphocytes and monocytes. PMID:20368576

  10. Anti-HIV-1 activity of salivary MUC5B and MUC7 mucins from HIV patients with different CD4 counts

    PubMed Central

    2010-01-01

    Background We have previously shown that MUC5B and MUC7 mucins from saliva of HIV negative individuals inhibit HIV-1 activity by 100% in an in vitro assay. The purpose of this subsequent study was to investigate whether MUC5B and MUC7 from saliva of HIV patients or with full blown AIDS had a similar inhibitory activity against the virus. Methods Salivary MUC5B and MUC7 from HIV patients with different CD4 counts (< 200, 200-400 and > 400) were incubated with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells). Cells were then cultured and viral replication was measured by a qualitative p24 antigen assay. The size, charge and immunoreactivity of mucins from HIV negative and positive individuals was also analysed by SDS-PAGE, Western blot and ELISA respectively. Results It was shown that irrespective of their CD4 counts both MUC5B and MUC7 from HIV patients, unlike the MUC5B and MUC7 from HIV negative individuals, did not inhibit HIV-1 activity. Size, charge and immunoreactivity differences between the mucins from HIV negative and positive individuals and among the mucins from HIV patients of different CD4 count was observed by SDS-PAGE, Western blot and ELISA. Conclusions Purified salivary mucins from HIV positive patients do not inhibit the AIDS virus in an in vitro assay. Although the reason for the inability of mucins from infected individuals to inhibit the virus is not known, it is likely that there is an alteration of the glycosylation pattern, and therefore of charge of mucin, in HIV positive patients. The ability to inhibit the virus by aggregation by sugar chains is thus diminished. PMID:20946627

  11. Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency.

    PubMed

    Bournazos, Stylianos; Gazumyan, Anna; Seaman, Michael S; Nussenzweig, Michel C; Ravetch, Jeffrey V

    2016-06-16

    Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) suppress viremia in animal models of HIV-1 and humans. To achieve potent activity without the emergence of viral escape mutants, co-administration of different bNAbs is necessary to target distinct epitopes essential for viral fitness. Here, we report the development of bispecific anti-Env neutralizing antibodies (biNAbs) with potent activity. Synergistic activity of biNAbs was achieved by combining an engineered hinge domain of IgG3 to increase Fab domain flexibility necessary for hetero-bivalent binding to the Env trimer while retaining the functional properties of the IgG1-Fc. Compared to unmodified biNAbs, hinge domain variants exhibited substantially improved neutralization activity, with particular combinations showing evidence of synergistic neutralization potency in vitro and enhanced in vivo therapeutic activity in HIV-1-infected humanized mice. These findings suggest innovative strategies for generating biNAbs with enhanced neutralization breadth and potency, representing ideal candidate molecules for the control of HIV-1 infection. PMID:27315478

  12. Broad activation of latent HIV-1 in vivo.

    PubMed

    Barton, Kirston; Hiener, Bonnie; Winckelmann, Anni; Rasmussen, Thomas Aagaard; Shao, Wei; Byth, Karen; Lanfear, Robert; Solomon, Ajantha; McMahon, James; Harrington, Sean; Buzon, Maria; Lichterfeld, Mathias; Denton, Paul W; Olesen, Rikke; Østergaard, Lars; Tolstrup, Martin; Lewin, Sharon R; Søgaard, Ole Schmeltz; Palmer, Sarah

    2016-01-01

    The 'shock and kill' approach to cure human immunodeficiency virus (HIV) includes transcriptional induction of latent HIV-1 proviruses using latency-reversing agents (LRAs) with targeted immunotherapy to purge infected cells. The administration of LRAs (panobinostat or vorinostat) to HIV-1-infected individuals on antiretroviral therapy induces a significant increase in cell-associated unspliced (CA-US) HIV-1 RNA from CD4(+) T cells. However, it is important to discern whether the increases in CA-US HIV-1 RNA are due to limited or broad activation of HIV-1 proviruses. Here we use single-genome sequencing to find that the RNA transcripts observed following LRA administration are genetically diverse, indicating activation of transcription from an extensive range of proviruses. Defective sequences are more frequently found in CA HIV-1 RNA than in HIV-1 DNA, which has implications for developing an accurate measure of HIV-1 reservoir size. Our findings provide insights into the effects of panobinostat and vorinostat as LRAs for latent HIV-1. PMID:27605062

  13. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    PubMed Central

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8+ T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8+ T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8+ T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8+ T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8+ T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8+ T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. PMID:25998390

  14. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  15. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities.

    PubMed

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  16. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    PubMed Central

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  17. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    SciTech Connect

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  18. Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection.

    PubMed

    Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M; Jolly, Clare

    2015-04-01

    HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments' influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies. PMID:25837979

  19. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase

    PubMed Central

    Sala, Marina; Spensiero, Antonia; Esposito, Francesca; Scala, Maria C.; Vernieri, Ermelinda; Bertamino, Alessia; Manfra, Michele; Carotenuto, Alfonso; Grieco, Paolo; Novellino, Ettore; Cadeddu, Marta; Tramontano, Enzo; Schols, Dominique; Campiglia, Pietro; Gomez-Monterrey, Isabel M.

    2016-01-01

    The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1–50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1. PMID:27375570

  20. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase.

    PubMed

    Sala, Marina; Spensiero, Antonia; Esposito, Francesca; Scala, Maria C; Vernieri, Ermelinda; Bertamino, Alessia; Manfra, Michele; Carotenuto, Alfonso; Grieco, Paolo; Novellino, Ettore; Cadeddu, Marta; Tramontano, Enzo; Schols, Dominique; Campiglia, Pietro; Gomez-Monterrey, Isabel M

    2016-01-01

    The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1-50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1. PMID:27375570

  1. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein.

    PubMed

    Zhang, J L; Sharma, P L; Crumpacker, C S

    2000-03-15

    Two HIV-1 proteins, Tat and NCp7 (NC), have zinc finger-like structures. NC is a virion protein and has been shown to accumulate in the nucleus 8 h postinfection. Since transcription factors with zinc fingers assist the transcriptional activity of both RNA polymerases II and III, we examined the effect of NC on HIV-1 LTR-directed gene expression. The HIV-1 NC binds to the HIV-1 LTR and results in a mobility shift in polyacrylamide gel electrophoresis. Competition assays with cold probes revealed that the binding of NC and formation of a DNA-protein complex could be prevented by the addition of excess unlabeled LTR self-probe, but not the HIV-1 V3 envelope gene. The DNase I footprint analysis showed that NC binds to six regions within HIV-1 LTR, four of which are near the transcription start site. The NC alone enhances LTR basal-level activity in RNA runoff experiments. When the general transcription factors (GTFs) were added in the assay, NC enhances NF-kappaB, Sp1, and TFIIB-induced HIV-1 LTR-directed RNA transcription. RNA transcription directed by the adenovirus major late promoter, however, is not significantly affected by NC in the cell-free system. Transient transfection of human T lymphocytes with the plasmids containing HIV-1 nc or gag showed enhancement of LTR-CAT activity. Moreover, transfection of HIV-1 provirus containing mutations in NC zinc-finger domains dramatically decreases the enhancement activity in human T cells, in which HIV-1 LTR is stably integrated into the cellular genome. These observations show that NC binds to HIV-1 LTR and cooperatively enhances GTFs and NF-kappaB induced HIV-1 LTR basal-level activity. NC may play the role of a nucleation protein, which binds to LTR and enhances basal-level transcription by recruiting cellular transcription factors to the HIV-1 promoter in competition with cellular promoters. PMID:10704334

  2. Testing anti-HIV activity of antiretroviral agents in vitro using flow cytometry analysis of CEM-GFP cells infected with transfection-derived HIV-1 NL4-3.

    PubMed

    Frezza, Caterina; Grelli, Sandro; Federico, Maurizio; Marino-Merlo, Francesca; Mastino, Antonio; Macchi, Beatrice

    2016-06-01

    An assay, specifically optimized to evaluate the anti-HIV activity of antiretrovirals by flow cytometry analysis, is described. As widely used anti-HIV agents, zidovudine (AZT), abacavir (ABC), 2',3'-dideoxyinosine (DDI), lamivudine (3TC), nevirapine (NVP), and efavirenz (EFV), and as drugs of recent approval raltegravir (RAL), etravirine (ETR), and rilpivirine (RPV), were utilized as reference drugs. HIV-1 NL4-3 virus was prepared by transfection of HEK293T cells with purified plasmid DNA and quantified by p24 antigen-capture assay. For infection, CEM-GFP cells were exposed to vehicle or to several concentrations of the drugs for 2 hr at 37 °C before HIV-1 NL4-3 was added to each sample. The adsorption was prolonged for 3 hr at 37 °C. After 72 hr of incubation, HIV-induced GFP expression in infected CEM-GFP cells was assessed by flow cytometry analysis and expressed as % positive cells. For comparison, p24 production in supernatants was assessed by a commercial ELISA kit. On the basis of IC50 values, the anti-HIV activity, as assayed by this method, was EFV > 3TC > AZT > NVP > DDI > ABC and ETR > RPV > RAL. The comparison between the IC50 values calculated through flow cytometry and p24 production revealed overlapping results, showing that the optimized protocol of CEM-GFP infection with HIV NL4-3 is a suitable method to perform quantitative, rapid and low-expensive screening tests to evaluate the in vitro effect of new candidate anti-HIV drugs. PMID:26519867

  3. Natural Plant Alkaloid (Emetine) Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity.

    PubMed

    Chaves Valadão, Ana Luiza; Abreu, Celina Monteiro; Dias, Juliana Zanatta; Arantes, Pablo; Verli, Hugo; Tanuri, Amilcar; de Aguiar, Renato Santana

    2015-01-01

    Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine's potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT) Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT) to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC) with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V). Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine. PMID:26111177

  4. Design, synthesis and anti-HIV-1 evaluation of hydrazide-based peptidomimetics as selective gelatinase inhibitors.

    PubMed

    Yang, Liang; Wang, Ping; Wu, Ji-Feng; Yang, Liu-Meng; Wang, Rui-Rui; Pang, Wei; Li, Yong-Gang; Shen, Yue-Mao; Zheng, Yong-Tang; Li, Xun

    2016-05-01

    As our ongoing work on research of gelatinase inhibitors, an array of hydrazide-containing peptidomimetic derivatives bearing quinoxalinone as well as spiro-heterocyclic backbones were designed, synthesized, and assayed for their in vitro enzymatic inhibitory effects. The results demonstrated that both the quinoxalinone (series I and II) and 1,4-dithia-7-azaspiro[4,4]nonane-based hydrazide peptidomimetics (series III) displayed remarkably selectivity towards gelatinase A as compared to APN, with IC50 values in the micromole range. Structure-activity relationships were herein briefly discussed. Given evidences have validated that gelatinase inhibition may be contributable to the therapy of HIV-1 infection, all the target compounds were also submitted to the preliminary in vitro anti-HIV-1 evaluation. It resulted that gelatinase inhibition really has positive correlation with anti-HIV-1 activity, especially compounds 4m and 7h, which gave enhanced gelatinase inhibition in comparison with the positive control LY52, and also decent anti-HIV-1 potencies. The FlexX docking results provided a straightforward insight into the binding pattern between inhibitors and gelatinase, as well as the selective inhibition towards gelatinase over APN. Collectively, our research encouraged potent gelatinase inhibitors might be used in the development of anti-HIV-1 agents. And else, compounds 4m and 7h might be promising candidates to be considered for further chemical optimization. PMID:27039251

  5. Antiviral activity of CYC202 in HIV-1-infected cells.

    PubMed

    Agbottah, Emmanuel; de La Fuente, Cynthia; Nekhai, Sergie; Barnett, Anna; Gianella-Borradori, Athos; Pumfery, Anne; Kashanchi, Fatah

    2005-01-28

    There are currently 40 million individuals in the world infected with human immunodeficiency virus (HIV). The introduction of highly active antiretroviral therapy (HAART) has led to a significant reduction in AIDS-related morbidity and mortality. Unfortunately, up to 25% of patients discontinue their initial HAART regimen. Current HIV-1 inhibitors target the fusion of the virus to the cell and two viral proteins, reverse transcriptase and protease. Here, we examined whether other targets, such as an activated transcription factor, could be targeted to block HIV-1 replication. We specifically asked whether we could target a cellular kinase needed for HIV-1 transcription using CYC202 (R-roscovitine), a pharmacological cyclin-dependent kinase inhibitor. We targeted the cdk2-cyclin E complex in HIV-1-infected cells because both cdk2 and cyclin E are nonessential during mammalian development and are likely replaced by other kinases. We found that CYC202 effectively inhibits wild type and resistant HIV-1 mutants in T-cells, monocytes, and peripheral blood mononuclear cells at a low IC(50) and sensitizes these cells to enhanced apoptosis resulting in a dramatic drop in viral titers. Interestingly, the effect of CYC202 is independent of cell cycle stage and more specific for the cdk2-cyclin E complex. Finally, we show that cdk2-cyclin E is loaded onto the HIV-1 genome in vivo and that CYC202 is able to inhibit the uploading of this cdk-cyclin complex onto HIV-1 DNA. Therefore, targeting cellular enzymes necessary for HIV-1 transcription, which are not needed for cell survival, is a compelling strategy to inhibit wild type and mutant HIV-1 strains. PMID:15531588

  6. Gelsolin activity controls efficient early HIV-1 infection

    PubMed Central

    2013-01-01

    Background HIV-1 entry into target lymphocytes requires the activity of actin adaptors that stabilize and reorganize cortical F-actin, like moesin and filamin-A. These alterations are necessary for the redistribution of CD4-CXCR4/CCR5 to one pole of the cell, a process that increases the probability of HIV-1 Envelope (Env)-CD4/co-receptor interactions and that generates the tension at the plasma membrane necessary to potentiate fusion pore formation, thereby favouring early HIV-1 infection. However, it remains unclear whether the dynamic processing of F-actin and the amount of cortical actin available during the initial virus-cell contact are required to such events. Results Here we show that gelsolin restructures cortical F-actin during HIV-1 Env-gp120-mediated signalling, without affecting cell-surface expression of receptors or viral co-receptor signalling. Remarkably, efficient HIV-1 Env-mediated membrane fusion and infection of permissive lymphocytes were impaired when gelsolin was either overexpressed or silenced, which led to a loss or gain of cortical actin, respectively. Indeed, HIV-1 Env-gp120-induced F-actin reorganization and viral receptor capping were impaired under these experimental conditions. Moreover, gelsolin knockdown promoted HIV-1 Env-gp120-mediated aberrant pseudopodia formation. These perturbed-actin events are responsible for the inhibition of early HIV-1 infection. Conclusions For the first time we provide evidence that through its severing of cortical actin, and by controlling the amount of actin available for reorganization during HIV-1 Env-mediated viral fusion, entry and infection, gelsolin can constitute a barrier that restricts HIV-1 infection of CD4+ lymphocytes in a pre-fusion step. These findings provide important insights into the complex molecular and actin-associated dynamics events that underlie early viral infection. Thus, we propose that gelsolin is a new factor that can limit HIV-1 infection acting at a pre-fusion step

  7. CRISPR-mediated Activation of Latent HIV-1 Expression.

    PubMed

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-03-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection. PMID:26607397

  8. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites.

    PubMed

    Singh, Sheo B; Jayasuriya, Hiranthi; Dewey, Raymond; Polishook, Jon D; Dombrowski, Anne W; Zink, Deborah L; Guan, Ziqiang; Collado, Javier; Platas, Gonzalo; Pelaez, Fernando; Felock, Peter J; Hazuda, Daria J

    2003-12-01

    HIV-1 integrase is a critical enzyme for replication of HIV, and its inhibition is one of the most promising new drug strategies for anti-retroviral therapy, with potentially significant advantages over existing therapies. In this report, a series of HIV-1 inhibitors isolated from the organic extract of fermentations from terrestrial fungi is described. These fungal species, belonging to a variety of genera, were collected from throughout the world following the strict guidelines of Rio Convention on Biodiversity. The polyketide- and terpenoid-derived inhibitors are represented by two naphthoquinones, a biphenyl and two triphenyls, a benzophenone, four aromatics with or without catechol units, a linear aliphatic terpenoid, a diterpenoid, and a sesterterpenoid. These compounds inhibited the coupled and strand-transfer reaction of HIV-1 integrase with an IC(50) value of 0.5-120 micro M. The bioassay-directed isolation, structure elucidation, and HIV-1 inhibitory activity of these compounds are described. PMID:14714192

  9. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation

    SciTech Connect

    Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei; Qu, Xiying; Wang, Xiaohui; Zeng, Hanxian; Chen, Huabiao; Zhu, Huanzhang

    2014-07-18

    Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alone or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.

  10. A synthetic heparan sulfate-mimetic peptide conjugated to a mini CD4 displays very high anti- HIV-1 activity independently of coreceptor usage.

    PubMed

    Connell, Bridgette Janine; Baleux, Françoise; Coic, Yves-Marie; Clayette, Pascal; Bonnaffé, David; Lortat-Jacob, Hugues

    2012-01-27

    The HIV-1 envelope gp120, which features both the virus receptor (CD4) and coreceptor (CCR5/CXCR4) binding sites, offers multiple sites for therapeutic intervention. However, the latter becomes exposed, thus vulnerable to inhibition, only transiently when the virus has already bound cellular CD4. To pierce this defense mechanism, we engineered a series of heparan sulfate mimicking tridecapeptides and showed that one of them target the gp120 coreceptor binding site with μM affinity. Covalently linked to a CD4-mimetic that binds to gp120 and renders the coreceptor binding domain available to be targeted, the conjugated tridecapeptide now displays nanomolar affinity for its target. Using solubilized coreceptors captured on top of sensorchip we show that it inhibits gp120 binding to both CCR5 and CXCR4 and in peripheral blood mononuclear cells broadly inhibits HIV-1 replication with an IC(50) of 1 nM. PMID:22284360

  11. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb.

    PubMed

    McGaughey, G B; Citron, M; Danzeisen, R C; Freidinger, R M; Garsky, V M; Hurni, W M; Joyce, J G; Liang, X; Miller, M; Shiver, J; Bogusky, M J

    2003-03-25

    The human immunodeficiency virus type I (HIV-1) transmembrane glycoprotein gp41 mediates viral entry through fusion of the target cellular and viral membranes. A segment of gp41 containing the sequence Glu-Leu-Asp-Lys-Trp-Ala has previously been identified as the epitope of the HIV-1 neutralizing human monoclonal antibody 2F5 (MAb 2F5). The 2F5 epitope is highly conserved among HIV-1 envelope glycoproteins. Antibodies directed at the 2F5 epitope have neutralizing effects on a broad range of laboratory-adapted HIV-1 variants and primary isolates. Recently, a crystal structure of the epitope bound to the Fab fragment of MAb 2F5 has shown that the 2F5 peptide adopts a beta-turn conformation [Pai, E. F., Klein, M. H., Chong, P., and Pedyczak, A. (2000) World Intellectual Property Organization Patent WO-00/61618]. We have designed cyclic peptides to adopt beta-turn conformations by the incorporation of a side-chain to side-chain lactam bridge between the i and i + 4 residues containing the Asp-Lys-Trp segment. Synthesis of extended, nonconstrained peptides encompassing the 2F5 epitope revealed that the 13 amino acid sequence, Glu-Leu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn, maximized MAb 2F5 binding. Constrained analogues of this sequence were explored to optimize 2F5 binding affinity. The solution conformations of the constrained peptides have been characterized by NMR spectroscopy and molecular modeling techniques. The results presented here demonstrate that both inclusion of the lactam constraint and extension of the 2F5 segment are necessary to elicit optimal antibody binding activity. The ability of these peptide immunogens to stimulate a high titer, peptide-specific immune response incapable of viral neutralization is discussed in regard to developing an HIV-1 vaccine designed to elicit a 2F5-like immune response. PMID:12641452

  12. Evaluation of anti-HIV-1 mutagenic nucleoside analogues.

    PubMed

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-01

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. PMID:25398876

  13. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  14. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  15. Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study.

    PubMed

    Chaniad, Prapaporn; Wattanapiromsakul, Chatchai; Pianwanit, Somsak; Tewtrakul, Supinya

    2016-06-01

    Context Dioscorea bulbifera L. (Dioscoreaceae) has been used in a traditional Thai longevity medicine preparation. Isolation of inhibitors from natural products is a potential source for continuous development of new HIV-1 integrase (IN) inhibitors. Objective The objective of this study is to isolate the compounds and evaluate their anti-HIV-1 IN activity, as well as to predict the potential interactions of the compounds with an IN. Materials and methods The ethyl acetate and water fractions (1-100 μg/mL) of Dioscorea bulbifera bulbils were isolated and tested for their anti-HIV-1 IN activity using the multiplate integration assay (MIA). The interactions of the active compounds with IN were investigated using a molecular docking method. Results and discussions The ethyl acetate and water fractions of Dioscorea bulbifera bulbils afforded seven compounds. Among these, allantoin (1), 2,4,3',5'-tetrahydroxybibenzyl (2), and 5,7,4'-trihydroxy-2-styrylchromone (5) were isolated for the first time from this plant. Myricetin (4) exhibited the most potent activity with an IC50 value of 3.15 μM, followed by 2,4,6,7-tetrahydroxy-9,10-dihydrophenanthrene (3, IC50 value= 14.20 μM), quercetin-3-O-β-d-glucopyranoside (6, IC50 value = 19.39 μM) and quercetin-3-O-β-d-galactopyranoside (7, IC50 value = 21.80 μM). Potential interactions of the active compounds (3, 4, 6, and 7) with the IN active site were additionally investigated. Compound 4 showed the best binding affinity to IN and formed strong interactions with various amino acid residues. These compounds interacted with Asp64, Thr66, His67, Glu92, Asp116, Gln148, Glu152, Asn155, and Lys159, which are involved in both the 3'-processing and strand transfer reactions of IN. In particular, galloyl, catechol, and sugar moieties were successful inhibitors for HIV-1 IN. PMID:26864337

  16. Structural requirements for potent anti-human immunodeficiency virus (HIV) and sperm-immobilizing activities of cyclohexenyl thiourea and urea non-nucleoside inhibitors of HIV-1 reverse transcriptase.

    PubMed

    D'Cruz, Osmond J; Venkatachalam, Taracad K; Mao, Chen; Qazi, Sanjive; Uckun, Fatih M

    2002-12-01

    The current pandemic of sexually transmitted human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) has created an urgent need for a new type of microbicide, one that is both a spermicide and a virucide. In a systematic effort to identify a non-detergent-type antiviral spermicide, we have rationally designed and synthesized a series of cyclohexenyl thiourea (CHET) nonnucleoside inhibitors (NNIs) of HIV-1 reverse transcriptase (RT) with sperm-immobilizing activity (SIA). To gain further insight into the structural requirements for the optimal activity of these dual-function NNIs, we compared the effects of thiazolyl, benzothiazolyl, and pyridyl ring substitutions and functionalization with electron-donating and electron-withdrawing groups as well as the importance of thiourea and urea moieties of 15 heterocyclic ring-substituted NNIs. RT activity and p24 antigen production in HIV-infected peripheral blood mononuclear cells were used as markers of viral replication. Computer-assisted sperm analysis was used for evaluating SIA of CHET compounds. The rabbit model was used for evaluation of in vivo mucosal toxicity and contraceptive activity of the lead NNIs. Three CHET-NNIs with a bromo, chloro, or methyl substitution at the 5 position of the pyridyl ring exhibited potent anti-HIV activity at nanomolar concentrations (IC(50) = 3-5 nM) and SIA at micromolar concentrations (EC(50) = 45-96 micro M). The dual-function CHET-NNIs were potent inhibitors of drug-resistant HIV-1 strains with genotypic and phenotypic NNI resistance. Upon substitution of the sulfur atom of the thiourea moiety with an oxygen atom, the most striking difference noted was a 38-fold reduction in time required for 50% sperm immobilization (T(1/2)). A quantitative structure-activity relationship (QSAR) analysis was used in deriving regression equations between 20 physicochemical properties and SIA of NNIs. QSAR analysis showed that the T(1/2) values positively correlated with

  17. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues

    PubMed Central

    Macura, Sherrill L.; Lathrop, Melissa J.; Gui, Jiang; Doncel, Gustavo F.; Rollenhagen, Christiane

    2016-01-01

    Objectives: The interferon-gamma–induced chemokine CXCL9 is expressed in a wide range of inflammatory conditions including those affecting the female genital tract. CXCL9 promotes immune cell recruitment, activation, and proliferation. The role of CXCL9 in modulating HIV-1 infection of cervicovaginal tissues, a main portal of viral entry, however, has not been established. We report a link between CXCL9 and HIV-1 replication in human cervical tissues and propose CXCL9 as a potential target to enhance the anti–HIV-1 activity of prophylactic antiretrovirals. Design: Using ex vivo infection of human cervical tissues as a model of mucosal HIV-1 acquisition, we described the effect of CXCL9 neutralization on HIV-1 gene expression and mucosal CD4+ T-cell activation. The anti-HIV-1 activity of tenofovir, the leading mucosal pre-exposure prophylactic microbicide, alone or in combination with CXCL9 neutralization was also studied. Methods: HIV-1 replication was evaluated by p24 ELISA. HIV-1 DNA and RNA, and CD4, CCR5, and CD38 transcription were evaluated by quantitative real-time polymerase chain reaction. Frequency of activated cervical CD4+ T cells was quantified using fluorescence-activated cell sorting. Results: Antibody blocking of CXCL9 reduced HIV-1 replication by decreasing mucosal CD4+ T-cell activation. CXCL9 neutralization in combination with suboptimal concentrations of tenofovir, possibly present in the cervicovaginal tissues of women using the drug inconsistently, demonstrated an earlier and greater decrease in HIV-1 replication compared with tissues treated with tenofovir alone. Conclusions: CXCL9 neutralization reduces HIV-1 replication and may be an effective target to enhance the efficacy of prophylactic antiretrovirals. PMID:26545124

  18. Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy

    PubMed Central

    Chugh, Pauline; Bradel-Tretheway, Birgit; Monteiro-Filho, Carlos MR; Planelles, Vicente; Maggirwar, Sanjay B; Dewhurst, Stephen; Kim, Baek

    2008-01-01

    Background Unlike CD4+ T cells, HIV-1 infected macrophages exhibit extended life span even upon stress, consistent with their in vivo role as long-lived HIV-1 reservoirs. Results Here, we demonstrate that PI3K/Akt inhibitors, including clinically available Miltefosine, dramatically reduced HIV-1 production from long-living virus-infected macrophages. These PI3K/Akt inhibitors hyper-sensitize infected macrophages to extracellular stresses that they are normally exposed to, and eventually lead to cell death of infected macrophages without harming uninfected cells. Based on the data from these Akt inhibitors, we were able to further investigate how HIV-1 infection utilizes the PI3K/Akt pathway to establish the cytoprotective effect of HIV-1 infection, which extends the lifespan of infected macrophages, a key viral reservoir. First, we found that HIV-1 infection activates the well characterized pro-survival PI3K/Akt pathway in primary human macrophages, as reflected by decreased PTEN protein expression and increased Akt kinase activity. Interestingly, the expression of HIV-1 or SIV Tat is sufficient to mediate this cytoprotective effect, which is dependent on the basic domain of Tat – a region that has previously been shown to bind p53. Next, we observed that this interaction appears to contribute to the downregulation of PTEN expression, since HIV-1 Tat was found to compete with PTEN for p53 binding; this is known to result in p53 destabilization, with a consequent reduction in PTEN protein production. Conclusion Since HIV-1 infected macrophages display highly elevated Akt activity, our results collectively show that PI3K/Akt inhibitors may be a novel therapy for interfering with the establishment of long-living HIV-1 infected reservoirs. PMID:18237430

  19. Internal-image anti-idiotype HIV-1gp120 antibody in human immunodeficiency virus 1 (HIV-1)-seropositive individuals with thrombocytopenia.

    PubMed Central

    Karpatkin, S; Nardi, M A; Kouri, Y H

    1992-01-01

    Anti-CD4 antibody was found in 30% of human immunodeficiency virus (HIV-1)-seropositive thrombocytopenic patients compared with 5% of nonthrombocytopenic seropositive patients (chi 2 = 21.7, P less than 0.001) and was shown by the following observations to contain internal-image anti-idiotype antibody (Ab2) directed against the antibody (Ab1) to gp120, the HIV-1 envelope glycoprotein that binds to CD4: (i) affinity-purified anti-CD4 (Ab2) bound to affinity-purified anti-HIV-1gp120 (Ab1) on solid-phase radioimmunoassay, and binding could be blocked by recombinant CD4 (rCD4) as well as recombinant gp120 (rgp120); (ii) F(ab')2 fragments of Ab1 inhibited the binding of Ab2 to rCD4; (iii) Ab2 inhibited the binding of Ab1 to HIV-1 beads; (iv) Ab2 inhibited the binding of Ab1 to gp120 on immunoblot; (v) Ab2 bound to the CD4 receptor on a CD4-bearing T-cell line, H9; (vi) Ab3 (anti-rgp120) could be produced in vivo by immunizing mice with Ab2, and binding of Ab3 to rgp120 could be blocked with rCD4; and (vii) three different Ab2 preparations bound to two different homologous Ab1 preparations. Ab1 or Ab2 alone did not bind to platelets, whereas the idiotype-anti-idiotype complex did bind to platelets in a concentration-dependent manner. Binding of the internal-image complex was 10-fold greater than that of a non-internal-image Ab1-Ab2 complex composed of anti-HIV-1gp120 and anti-anti-HIV-1gp120. Thus, patients with HIV-1 thrombocytopenia contain internal-image idiotype-anti-idiotype complexes that could be affecting CD4 cell number or function, inhibiting HIV-1 binding to CD4 cells or contributing to HIV-1 thrombocytopenia. Images PMID:1741404

  20. Varying modulation of HIV-1 LTR activity by Baf complexes.

    PubMed

    Van Duyne, Rachel; Guendel, Irene; Narayanan, Aarthi; Gregg, Edward; Shafagati, Nazly; Tyagi, Mudit; Easley, Rebecca; Klase, Zachary; Nekhai, Sergei; Kehn-Hall, Kylene; Kashanchi, Fatah

    2011-08-19

    The human immunodeficiency virus type 1 (HIV-1) long terminal repeat is present on both ends of the integrated viral genome and contains regulatory elements needed for transcriptional initiation and elongation. Post-integration, a highly ordered chromatin structure consisting of at least five nucleosomes, is found at the 5' long terminal repeat, the location and modification state of which control the state of active viral replication as well as silencing of the latent HIV-1 provirus. In this context, the chromatin remodeling field rapidly emerges as having a critical role in the control of viral gene expression. In the current study, we focused on unique Baf subunits that are common to the most highly recognized of chromatin remodeling proteins, the SWI/SNF (switching-defective-sucrose non-fermenting) complexes. We find that at least two Baf proteins, Baf53 and Baf170, are highly regulated in HIV-1-infected cells. Previously, studies have shown that the depletion of Baf53 in uninfected cells leads to the expansion of chromosomal territories and the decompaction of the chromatin. Baf53, in the presence of HIV-1 infection, co-elutes off of a chromatographic column as a different-sized complex when compared to uninfected cells and appears to be predominantly phosphorylated. The innate function of Baf53-containing complexes appears to be transcriptionally suppressive, in that knocking down Baf53 increases viral gene expression from cells both transiently and chronically infected with HIV-1. Additionally, cdk9/cyclin T in the presence of Tat is able to phosphorylate Baf53 in vitro, implying that this posttranslationally modified form relieves the suppressive effect and allows for viral transcription to proceed. PMID:21699904

  1. Structure based activity prediction of HIV-1 reverse transcriptase inhibitors.

    PubMed

    de Jonge, Marc R; Koymans, Lucien M H; Vinkers, H Maarten; Daeyaert, Frits F D; Heeres, Jan; Lewi, Paul J; Janssen, Paul A J

    2005-03-24

    We have developed a fast and robust computational method for prediction of antiviral activity in automated de novo design of HIV-1 reverse transcriptase inhibitors. This is a structure-based approach that uses a linear relation between activity and interaction energy with discrete orientation sampling and with localized interaction energy terms. The localization allows for the analysis of mutations of the protein target and for the separation of inhibition and a specific binding to the enzyme. We apply the method to the prediction of pIC(50) of HIV-1 reverse transcriptase inhibitors. The model predicts the activity of an arbitrary compound with a q(2) of 0.681 and an average absolute error of 0.66 log value, and it is fast enough to be used in high-throughput computational applications. PMID:15771460

  2. HIV-1-negative female sex workers sustain high cervical IFNɛ, low immune activation, and low expression of HIV-1-required host genes.

    PubMed

    Abdulhaqq, S A; Zorrilla, C; Kang, G; Yin, X; Tamayo, V; Seaton, K E; Joseph, J; Garced, S; Tomaras, G D; Linn, K A; Foulkes, A S; Azzoni, L; VerMilyea, M; Coutifaris, C; Kossenkov, A V; Showe, L; Kraiselburd, E N; Li, Q; Montaner, L J

    2016-07-01

    Sex workers practicing in high HIV endemic areas have been extensively targeted to test anti-HIV prophylactic strategies. We hypothesize that in women with high levels of genital exposure to semen changes in cervico-vaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity and immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers (FSWs; n=50), as compared with control women (CG; n=32). FSWs had low-to-absent HIV-1-specific immune responses with significantly lower CD38 expression on circulating CD4(+) or CD8(+) T-cells (both: P<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSWs also had increased levels of interferon-ɛ (IFNɛ) gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSWs was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervico-vaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in the absence of HIV-specific responses. PMID:26555708

  3. HIV-1 Negative Female Sex Workers Sustain High Cervical IFNε, Low Immune Activation and Low Expression of HIV-1 Required Host Genes

    PubMed Central

    Abdulhaqq, Shaheed A.; Zorrilla, Carmen; Kang, Guobin; Yin, Xiangfan; Tamayo, Vivian; Seaton, Kelly E.; Joseph, Jocelin; Garced, Sheyla; Tomaras, Georgia D.; Linn, Kristin A.; Foulkes, Andrea S.; Azzoni, Livio; VerMilyea, Matthew; Coutifaris, Christos; Kossenkov, Andrew V.; Showe, Louise; Kraiselburd, Edmundo N.; Li, Qingsheng; Montaner, Luis J.

    2015-01-01

    Sex workers within high HIV endemic areas are often a target population where anti-HIV prophylactic strategies are tested. We hypothesize that in women with high levels of genital exposure to semen changes in cervicovaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity, immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers [FSW] (n=50), as compared to control women [CG] (n=32). FSW had low to absent HIV-1 specific immune responses with significantly lower CD38 expression on circulating CD4+ or CD8+ T-Cells (both: p<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSW also had increased levels of Interferon-ε gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSW was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervicovaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in absence of HIV-specific responses. PMID:26555708

  4. Silibinin Inhibits HIV-1 Infection by Reducing Cellular Activation and Proliferation

    PubMed Central

    McClure, Janela; Lovelace, Erica S.; Elahi, Shokrollah; Maurice, Nicholas J.; Wagoner, Jessica; Dragavon, Joan; Mittler, John E.; Kraft, Zane; Stamatatos, Leonidis; Horton, Helen; De Rosa, Stephen C.; Coombs, Robert W.; Polyak, Stephen J.

    2012-01-01

    Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects. PMID:22848626

  5. Potent and Broad Anti-HIV-1 Activity Exhibited by a Glycosyl-Phosphatidylinositol-Anchored Peptide Derived from the CDR H3 of Broadly Neutralizing Antibody PG16▿†‡

    PubMed Central

    Liu, Lihong; Wen, Michael; Wang, Weiming; Wang, Shumei; Yang, Lifei; Liu, Yong; Qian, Mengran; Zhang, Linqi; Shao, Yiming; Kimata, Jason T.; Zhou, Paul

    2011-01-01

    PG9 and PG16 are two recently isolated quaternary-specific human monoclonal antibodies that neutralize 70 to 80% of circulating HIV-1 isolates. The crystal structure of PG16 shows that it contains an exceptionally long CDR H3 that forms a unique stable subdomain that towers above the antibody surface to confer fine specificity. To determine whether this unique architecture of CDR H3 itself is sufficient for epitope recognition and neutralization, we cloned CDR H3 subdomains derived from human monoclonal antibodies PG16, PG9, b12, E51, and AVF and genetically linked them to a glycosyl-phosphatidylinositol (GPI) attachment signal. Each fusion gene construct is expressed and targeted to lipid rafts of plasma membranes through a GPI anchor. Moreover, GPI-CDR H3(PG16, PG9, and E51), but not GPI-CDR H3(b12 and AVF), specifically neutralized multiple clades of HIV-1 isolates with a great degree of potency when expressed on the surface of transduced TZM-bl cells. Furthermore, GPI-anchored CDR H3(PG16), but not GPI-anchored CDR H3(AVF), specifically confers resistance to HIV-1 infection when expressed on the surface of transduced human CD4+ T cells. Finally, the CDR H3 mutations (Y100HF, D100IA, and G7) that were previously shown to compromise the neutralization activity of antibody PG16 also abolished the neutralization activity of GPI-CDR H3(PG16). Thus, we conclude that the CDR H3 subdomain of PG16 neutralizes HIV-1 when targeted to the lipid raft of the plasma membrane of HIV-1-susceptible cells and that GPI-CDR H3 can be an alternative approach for determining whether the CDR H3 of certain antibodies alone can exert epitope recognition and neutralization. PMID:21715497

  6. Insights into the mechanism of inhibition of CXCR4: identification of Piperidinylethanamine analogs as anti-HIV-1 inhibitors.

    PubMed

    Das, Debananda; Maeda, Kenji; Hayashi, Yasuhiro; Gavande, Navnath; Desai, Darshan V; Chang, Simon B; Ghosh, Arun K; Mitsuya, Hiroaki

    2015-04-01

    The cellular entry of HIV-1 into CD4(+) T cells requires ordered interactions of HIV-1 envelope glycoprotein with C-X-C chemokine receptor type 4 (CXCR4) receptors. However, such interactions, which should be critical for rational structure-based discovery of new CXCR4 inhibitors, remain poorly understood. Here we first determined the effects of amino acid substitutions in CXCR4 on HIV-1NL 4 - 3 glycoprotein-elicited fusion events using site-directed mutagenesis-based fusion assays and identified 11 potentially key amino acid substitutions, including D97A and E288A, which caused >30% reductions in fusion. We subsequently carried out a computational search of a screening library containing ∼604,000 compounds, in order to identify potential CXCR4 inhibitors. The computational search used the shape of IT1t, a known CXCR4 inhibitor, as a reference and employed various algorithms, including shape similarity, isomer generation, and docking against a CXCR4 crystal structure. Sixteen small molecules were identified for biological assays based on their high shape similarity to IT1t, and their putative binding modes formed hydrogen bond interactions with the amino acids identified above. Three compounds with piperidinylethanamine cores showed activity and were resynthesized. One molecule, designated CX6, was shown to significantly inhibit fusion elicited by X4 HIV-1NL 4 - 3 glycoprotein (50% inhibitory concentration [IC50], 1.9 μM), to inhibit Ca(2+) flux elicited by stromal cell-derived factor 1α (SDF-1α) (IC50, 92 nM), and to exert anti-HIV-1 activity (IC50, 1.5 μM). Structural modeling demonstrated that CX6 bound to CXCR4 through hydrogen bond interactions with Asp97 and Glu288. Our study suggests that targeting CXCR4 residues important for fusion elicited by HIV-1 envelope glycoprotein should be a useful and feasible approach to identifying novel CXCR4 inhibitors, and it provides important insights into the mechanism by which small-molecule CXCR4 inhibitors exert

  7. NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities

    PubMed Central

    Thammaporn, Ratsupa; Yagi-Utsumi, Maho; Yamaguchi, Takumi; Boonsri, Pornthip; Saparpakorn, Patchreenart; Choowongkomon, Kiattawee; Techasakul, Supanna; Kato, Koichi; Hannongbua, Supa

    2015-01-01

    Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is an important target for antiviral therapy against acquired immunodeficiency syndrome. However, the efficiency of available drugs is impaired most typically by drug-resistance mutations in this enzyme. In this study, we applied a nuclear magnetic resonance (NMR) spectroscopic technique to the characterization of the binding of HIV-1 RT to various non-nucleoside reverse transcriptase inhibitors (NNRTIs) with different activities, i.e., nevirapine, delavirdine, efavirenz, dapivirine, etravirine, and rilpivirine. 1H-13C heteronuclear single-quantum coherence (HSQC) spectral data of HIV-1 RT, in which the methionine methyl groups of the p66 subunit were selectively labeled with 13C, were collected in the presence and absence of these NNRTIs. We found that the methyl 13C chemical shifts of the M230 resonance of HIV-1 RT bound to these drugs exhibited a high correlation with their anti-HIV-1 RT activities. This methionine residue is located in proximity to the NNRTI-binding pocket but not directly involved in drug interactions and serves as a conformational probe, indicating that the open conformation of HIV-1 RT was more populated with NNRTIs with higher inhibitory activities. Thus, the NMR approach offers a useful tool to screen for novel NNRTIs in developing anti-HIV drugs. PMID:26510386

  8. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  9. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis

    PubMed Central

    Bell, Lucy C. K.; Pollara, Gabriele; Pascoe, Mellissa; Tomlinson, Gillian S.; Lehloenya, Rannakoe J.; Roe, Jennifer; Meldau, Richard; Miller, Robert F.; Ramsay, Alan; Chain, Benjamin M.; Dheda, Keertan; Noursadeghi, Mahdad

    2016-01-01

    Increased risk of tuberculosis (TB) associated with HIV-1 infection is primarily attributed to deficient T helper (Th)1 immune responses, but most people with active TB have robust Th1 responses, indicating that these are not sufficient to protect against disease. Recent findings suggest that favourable outcomes following Mycobacterium tuberculosis infection arise from finely balanced inflammatory and regulatory pathways, achieving pathogen control without immunopathology. We hypothesised that HIV-1 and antiretroviral therapy (ART) exert widespread changes to cell mediated immunity, which may compromise the optimal host protective response to TB and provide novel insights into the correlates of immune protection and pathogenesis. We sought to define these effects in patients with active TB by transcriptional profiling of tuberculin skin tests (TST) to make comprehensive molecular level assessments of in vivo human immune responses at the site of a standardised mycobacterial challenge. We showed that the TST transcriptome accurately reflects the molecular pathology at the site of human pulmonary TB, and used this approach to investigate immune dysregulation in HIV-1/TB co-infected patients with distinct clinical phenotypes associated with TST reactivity or anergy and unmasking TB immune reconstitution inflammatory syndrome (IRIS) after initiation of ART. HIV-1 infected patients with positive TSTs exhibited preserved Th1 responses but deficient immunoregulatory IL10-inducible responses. Those with clinically negative TSTs revealed profound anergy of innate as well as adaptive immune responses, except for preservation of type 1 interferon activity, implicated in impaired anti-mycobacterial immunity. Patients with unmasking TB IRIS showed recovery of Th1 immunity to normal levels, but exaggerated Th2-associated responses specifically. These mechanisms of immune dysregulation were localised to the tissue microenvironment and not evident in peripheral blood. TST

  10. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis.

    PubMed

    Bell, Lucy C K; Pollara, Gabriele; Pascoe, Mellissa; Tomlinson, Gillian S; Lehloenya, Rannakoe J; Roe, Jennifer; Meldau, Richard; Miller, Robert F; Ramsay, Alan; Chain, Benjamin M; Dheda, Keertan; Noursadeghi, Mahdad

    2016-03-01

    Increased risk of tuberculosis (TB) associated with HIV-1 infection is primarily attributed to deficient T helper (Th)1 immune responses, but most people with active TB have robust Th1 responses, indicating that these are not sufficient to protect against disease. Recent findings suggest that favourable outcomes following Mycobacterium tuberculosis infection arise from finely balanced inflammatory and regulatory pathways, achieving pathogen control without immunopathology. We hypothesised that HIV-1 and antiretroviral therapy (ART) exert widespread changes to cell mediated immunity, which may compromise the optimal host protective response to TB and provide novel insights into the correlates of immune protection and pathogenesis. We sought to define these effects in patients with active TB by transcriptional profiling of tuberculin skin tests (TST) to make comprehensive molecular level assessments of in vivo human immune responses at the site of a standardised mycobacterial challenge. We showed that the TST transcriptome accurately reflects the molecular pathology at the site of human pulmonary TB, and used this approach to investigate immune dysregulation in HIV-1/TB co-infected patients with distinct clinical phenotypes associated with TST reactivity or anergy and unmasking TB immune reconstitution inflammatory syndrome (IRIS) after initiation of ART. HIV-1 infected patients with positive TSTs exhibited preserved Th1 responses but deficient immunoregulatory IL10-inducible responses. Those with clinically negative TSTs revealed profound anergy of innate as well as adaptive immune responses, except for preservation of type 1 interferon activity, implicated in impaired anti-mycobacterial immunity. Patients with unmasking TB IRIS showed recovery of Th1 immunity to normal levels, but exaggerated Th2-associated responses specifically. These mechanisms of immune dysregulation were localised to the tissue microenvironment and not evident in peripheral blood. TST

  11. Screening of anti-HIV-1 inophyllums by HPLC-DAD of Calophyllum inophyllum leaf extracts from French Polynesia Islands.

    PubMed

    Laure, Frédéric; Raharivelomanana, Phila; Butaud, Jean-François; Bianchini, Jean-Pierre; Gaydou, Emile M

    2008-08-22

    Various pyranocoumarins, calophyllolide, inophyllums B, C, G(1), G(2) and P, from Calophyllum inophyllum (Clusiaceae) leaves of French Polynesia (Austral, Marquesas, Society and Tuamotu archipelagos) have been determined in 136 leaf extracts using a high pressure liquid chromatography-UV-diode array detection (HPLC-UV-DAD) technique. Results show a wide range in chemical composition within trees growing on eighteen islands. The use of multivariate statistical analyses (PCA) shows geographical distribution of inophyllums and indicate those rich in HIV-1 active (+)-inophyllums. Inophyllum B and P contents (0.0-39.0 and 0.0-21.8 mg kg(-1), respectively) confirm the chemodiversity of this species within the large area of French Polynesia. The study suggests the presence of interesting chemotypes which could be used as plant source for anti-HIV-1 drugs. PMID:18706320

  12. Comparison of three quantification methods for the TZM-bl pseudovirus assay for screening of anti-HIV-1 agents.

    PubMed

    Xing, Liying; Wang, Shunyi; Hu, Qin; Li, Jingtao; Zeng, Yi

    2016-07-01

    The TZM-bl pseudovirus assay is commonly used to evaluate the efficacy of neutralizing antibodies and small molecular inhibitors in HIV-1 research. Here, to determine the optimal measurement method for screening anti-HIV-1 inhibitors, we compared three measurement methods based on firefly luciferase and β-galactosidase activities. The 50% tissue culture infective doses (TCID50) of the pseudoviruses were determined using the luciferase, β-galactosidase colorimetric, and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) staining assays. Three commercial reverse-transcriptase inhibitors (azidothymidine, nevirapine, and lamivudine) were tested as reference drugs to compare the reproducibility, linear correlation, and half maximal inhibitory concentration (IC50) values determined using these methods. In the TCID50 assay, the sensitivity of β-galactosidase colorimetric assay was almost 562 times lower than that of the other two methods. Reproducible dose-response curves were obtained for the inhibitors with all methods; the IC50 values of the inhibitors were not significantly different. Linear regression analysis showed linear correlation between methods. Compared to the β-galactosidase colorimetric assay, the other two methods have the advantage of high sensitivity and are less affected by interference. In conclusion, the luciferase and X-gal staining assays, which can be applied either alone or combined, are recommended for anti-HIV-1 inhibitor screening. PMID:27016178

  13. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells.

    PubMed

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells. PMID:26184775

  14. Isolated HIV-1 core is active for reverse transcription.

    PubMed

    Warrilow, David; Stenzel, Deborah; Harrich, David

    2007-01-01

    Whether purified HIV-1 virion cores are capable of reverse transcription or require uncoating to be activated is currently controversial. To address this question we purified cores from a virus culture and tested for the ability to generate authentic reverse transcription products. A dense fraction (approximately 1.28 g/ml) prepared without detergent, possibly derived from disrupted virions, was found to naturally occur as a minor sub-fraction in our preparations. Core-like particles were identified in this active fraction by electron microscopy. We are the first to report the detection of authentic strong-stop, first-strand transfer and full-length minus strand products in this core fraction without requirement for an uncoating activity. PMID:17956635

  15. Synthesis and Inhibiting Activity of Some 4-Hydroxycoumarin Derivatives on HIV-1 Protease

    PubMed Central

    Stanchev, Stancho; Jensen, Frank; Hinkov, Anton; Atanasov, Vasil; Genova-Kalou, Petia; Argirova, Radka; Manolov, Ilia

    2011-01-01

    Six novel 4-hydroxycoumarin derivatives were rationally synthesized, verified, and characterized by molecular docking using crystal HIV-1 protease. Molecular docking studies predicted antiprotease activity of (7) and (10). The most significant functional groups, responsible for the interaction with HIV-1 protease by hydrogen bonds formation are pyran oxygen, atom, lactone carbonyl oxygen and one of the hydroxyl groups. The newly synthesized compounds were biologically tested in MT-4 cells for inhibiting HIV-1 replication, exploring the protection of cells from the cytopathic effect of HIV measured by cell survival in MTT test. One derivative −7 showed 76–78% inhibition of virus infectivity with IC50 = 0.01 nM, much less than the maximal nontoxic concentration (1 mM). Antiprotease activity of 7 in two different concentrations was detected to be 25%. Nevertheless, the results of study of (7) encourage using it as a pharmacophore for further synthesis and evaluation of anti-HIV activity. PMID:22389842

  16. The Presence and Anti-HIV-1 Function of Tenascin C in Breast Milk and Genital Fluids

    PubMed Central

    Jaeger, Frederick; McGuire, Erin; Fouda, Genevieve; Amos, Joshua; Barbas, Kimberly; Ohashi, Tomoo; Alam, S. Munir; Erickson, Harold; Permar, Sallie R.

    2016-01-01

    Tenascin-C (TNC) is a newly identified innate HIV-1-neutralizing protein present in breast milk, yet its presence and potential HIV-inhibitory function in other mucosal fluids is unknown. In this study, we identified TNC as a component of semen and cervical fluid of HIV-1-infected and uninfected individuals, although it is present at a significantly lower concentration and frequency compared to that of colostrum and mature breast milk, potentially due to genital fluid protease degradation. However, TNC was able to neutralize HIV-1 after exposure to low pH, suggesting that TNC could be active at low pH in the vaginal compartment. As mucosal fluids are complex and contain a number of proteins known to interact with the HIV-1 envelope, we further studied the relationship between the concentration of TNC and neutralizing activity in breast milk. The amount of TNC correlated only weakly with the overall innate HIV-1-neutralizing activity of breast milk of uninfected women and negatively correlated with neutralizing activity in milk of HIV-1 infected women, indicating that the amount of TNC in mucosal fluids is not adequate to impede HIV-1 transmission. Moreover, the presence of polyclonal IgG from milk of HIV-1 infected women, but not other HIV-1 envelope-binding milk proteins or monoclonal antibodies, blocked the neutralizing activity of TNC. Finally, as exogenous administration of TNC would be necessary for it to mediate measurable HIV-1 neutralizing activity in mucosal compartments, we established that recombinantly produced TNC has neutralizing activity against transmitted/founder HIV-1 strains that mimic that of purified TNC. Thus, we conclude that endogenous TNC concentration in mucosal fluids is likely inadequate to block HIV-1 transmission to uninfected individuals. PMID:27182834

  17. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction

    PubMed Central

    Ryoo, Jeongmin; Choi, Jongsu; Oh, Changhoon; Kim, Sungchul; Seo, Minji; Kim, Seokyoung; Seo, Daekwan; Kim, Jongkyu; White, Tommy E.; Brandariz-Nunez, Alberto; Diaz-Griffero, Felipe; Yun, Cheol-Heui; Hollenbaugh, Joseph A.; Kim, Baek; Baek, Daehyun

    2015-01-01

    The HIV-1 restriction factor SAMHD11,2 is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool3-5. However, the phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels6-8, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1, we identify SAMHD1 mutants that are RNase-positive but dNTPase-negative (SAMHD1D137N) or RNase-negative but dNTPase-positive (SAMHD1Q548A). The allosteric mutant SAMHD1D137N is able to restrict HIV-1 infection, whereas the AGS mutant SAMHD1Q548A is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of infection. SAMHD1 silencing in macrophages and CD4+ T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, the phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in vivo and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA. PMID:25038827

  18. Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity.

    PubMed

    Chander, Subhash; Ashok, Penta; Zheng, Yong-Tang; Wang, Ping; Raja, Krishnamohan S; Taneja, Akash; Murugesan, Sankaranarayanan

    2016-02-01

    Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) are vital class of drugs in treating HIV-1 infection, but drug resistance and toxicity drive the need for effective new inhibitors with potent antiviral activity, less toxicity and improved physicochemical properties. In the present study, twelve novel 1-(4-chlorophenyl)-2-(3,4-dihydroquinolin-1(2H)-yl)ethyl phenylcarbamate derivatives were designed as inhibitor of HIV-1 RT using the ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT. Among these, four compounds (6b, 6i, 6j and 6l) exhibited significant inhibition of HIV-1 RT (IC50 ⩽ 20 μM). Among four compounds, most active compounds 6b and 6j inhibited the RT activity with IC50 8.12 and 5.42 μM respectively. Docking studies of compounds 6b and 6j were performed against wild HIV-1 RT in order to predict their putative binding mode with selected target. Further, cytotoxicity and anti-HIV activity of compounds 6b and 6j were evaluated on T lymphocytes (C8166 cells). All the synthesized compounds were also evaluated for antifungal activity against Candida albicans and Aspergillus niger fungal strains. PMID:26717022

  19. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity.

    PubMed

    Huang, Yaoxing; Yu, Jian; Lanzi, Anastasia; Yao, Xin; Andrews, Chasity D; Tsai, Lily; Gajjar, Mili R; Sun, Ming; Seaman, Michael S; Padte, Neal N; Ho, David D

    2016-06-16

    While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 μg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1. PMID:27315479

  20. Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization

    PubMed Central

    2010-01-01

    Background HIV-1 in genital secretions may be opsonized by several molecules including complement components. Opsonized HIV-1 by complement enhances the infection of various mucosal target cells, such as dendritic cells (DC) and epithelial cells. Results We herein evaluated the effect of HIV-1 complement opsonization on microbicide candidates' activity, by using three in vitro mucosal models: CCR5-tropic HIV-1JR-CSF transcytosis through epithelial cells, HIV-1JR-CSF attachment on immature monocyte-derived dendritic cells (iMDDC), and infectivity of iMDDC by CCR5-tropic HIV-1BaL and CXCR4-tropic HIV-1NDK. A panel of 10 microbicide candidates [T20, CADA, lectines HHA & GNA, PVAS, human lactoferrin, and monoclonal antibodies IgG1B12, 12G5, 2G12 and 2F5], were investigated using cell-free unopsonized or opsonized HIV-1 by complements. Only HHA and PVAS were able to inhibit HIV trancytosis. Upon opsonization, transcytosis was affected only by HHA, HIV-1 adsorption on iMDDC by four molecules (lactoferrin, IgG1B12, IgG2G5, IgG2G12), and replication in iMDDC of HIV-1BaL by five molecules (lactoferrin, CADA, T20, IgG1B12, IgG2F5) and of HIV-1NDK by two molecules (lactoferrin, IgG12G5). Conclusion These observations demonstrate that HIV-1 opsonization by complements may modulate in vitro the efficiency of candidate microbicides to inhibit HIV-1 infection of mucosal target cells, as well as its crossing through mucosa. PMID:20546571

  1. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    SciTech Connect

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun Shen Xu Jiang Hualiang

    2008-10-10

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{l_brace}[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl{r_brace}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery.

  2. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  3. A study of the topoisomerase II activity in HIV-1 replication using the ferrocene derivatives as probes.

    PubMed

    Kondapi, Anand K; Satyanarayana, Nathamu; Saikrishna, A D

    2006-06-15

    Human Topoisomerase II is present in two isoforms, 170KDa alpha and 180KDa beta. Both the isoforms play a crucial role in maintenance of topological changes during DNA replication and recombination. It has been shown that Topoisomerase II activity is required for HIV-1 replication and the enzyme is phosphorylated during early time points of HIV-1 replication. In the present study, we have studied the molecular action of Topoisomerase II inhibitors, azalactone ferrocene (AzaFecp), Thiomorpholide amido methyl ferrocene (ThioFecp), and Ruthenium benzene amino pyridine (Ru(ben)Apy) on cell proliferation and also on various events of HIV-1 replication cycle. The Topoisomerase II beta over-expressing neuroblastoma cell line shows a higher sensitivity to these compounds compared to the Sup-T1 cell line. All the three Topoisomerase II inhibitors show significant anti-HIV activity at nanomolar concentrations against an Indian isolate of HIV-1(93IN101) in Sup-T1 cell line. An analysis of action of these compounds on proviral DNA synthesis at 5h of post-infection shows that they inhibit proviral DNA synthesis as well as the formation of pre-integration complexes completely. Further analysis, using polymerase chain reaction and western blot, showed that both the Topoisomerase II alpha and beta isoforms are present in the pre-integration complexes, suggesting their significant role in HIV-1 replication. PMID:16712776

  4. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors

    PubMed Central

    Gupta, Sachin; Termini, James M.; Issac, Biju; Guirado, Elizabeth; Stone, Geoffrey W.

    2016-01-01

    Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration. PMID:26849062

  5. ADAR1 is a Novel Multi Targeted Anti HIV-1 Cellular Protein

    PubMed Central

    Biswas, Nabanita; Wang, Tianyi; Ding, Ming; Tumne, Ashwin; Chen, Yue; Wang, Qingde; Gupta, Phalguni

    2011-01-01

    We examined the antiviral activity of ADAR1 against HIV-1. Our results indicated that ADAR1 in a transfection system inhibited production of viral proteins and infectious HIV-1 in various cell lines including 293T, HeLa, Jurkat T and primary CD4+ T cells, and was active against a number of X4 and R5 HIV-1 of different clades. Further analysis showed that ADAR1 inhibited viral protein synthesis without any effect on viral RNA synthesis. Mutational analysis showed that ADAR1 introduced most of the A-to-G mutations in the rev RNA, in the region of RNA encoding for Rev Response Element (RRE) binding domain and in env RNA. These mutations inhibited the binding of rev to the RRE and inhibited transport of primary transcripts like gag, pol and env from nucleus to cytoplasm resulting in inhibition of viral protein synthesis without any effect on viral RNA synthesis. Furthermore, ADAR1 induced mutations in the env gene inhibited viral infectivity. PMID:22104209

  6. Strategies for Eliciting HIV-1 Inhibitory Antibodies

    PubMed Central

    Tomaras, Georgia D.; Haynes, Barton F.

    2012-01-01

    Purpose of review Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. Recent Findings Heterologous prime-boost strategies can yield anti-HIV immune responses; although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4+ T cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B cell response. Summary In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission. PMID:20978384

  7. Regulatory T cells and chronic immune activation in human immunodeficiency virus 1 (HIV-1)-infected children

    PubMed Central

    Freguja, R; Gianesin, K; Mosconi, I; Zanchetta, M; Carmona, F; Rampon, O; Giaquinto, C; De Rossi, A

    2011-01-01

    The function of CD4+ T cells with regulatory activity (Tregs) is the down-regulation of immune responses. This suppressive activity may limit the magnitude of effector responses, resulting in failure to control human immunodeficiency virus 1 (HIV-1) infection, but may also suppress chronic immune activation, a characteristic feature of HIV-1 disease. We evaluated the correlation between viral load, immune activation and Tregs in HIV-1-infected children. Eighty-nine HIV-1-infected children (aged 6–14 years) were included in the study and analysed for HIV-1 plasmaviraemia, HIV-1 DNA load, CD4 and CD8 cell subsets. Treg cells [CD4+ CD25highCD127lowforkhead box P3 (FoxP3high)] and CD8-activated T cells (CD8+CD38+) were determined by flow cytometry. Results showed that the number of activated CD8+CD38+ T cells increased in relation to HIV-1 RNA plasmaviraemia (r = 0·403, P < 0·0001). The proportion of Tregs also correlated positively with HIV-1 plasmaviraemia (r = 0·323, P = 0·002), but correlated inversely with CD4+ cells (r = −0·312, P = 0·004), thus suggesting a selective expansion along with increased viraemia and CD4+ depletion. Interestingly, a positive correlation was found between the levels of Tregs and CD8+CD38+ T cells (r = 0·305, P = 0·005), and the percentage of Tregs tended to correlate with HIV-1 DNA load (r = 0·224, P = 0·062). Overall, these findings suggest that immune activation contributes to the expansion of Treg cells. In turn, the suppressive activity of Tregs may impair effector responses against HIV-1, but appears to be ineffective in limiting immune activation. PMID:21438872

  8. HIV-1 integration landscape during latent and active infection

    PubMed Central

    Cohn, Lillian; Silva, Israel T.; Oliveira, Thiago Y.; Rosales, Rafael A.; Parrish, Erica H.; Learn, Gerald H.; Hahn, Beatrice H.; Czartoski, Julie L.; McElrath, M. Juliana; Lehmann, Clara; Klein, Florian; Caskey, Marina; Walker, Bruce D.; Siliciano, Janet D.; Siliciano, Robert F.; Jankovic, Mila; Nussenzweig, Michel C.

    2015-01-01

    SUMMARY The barrier to curing HIV-1 is thought to reside primarily in CD4+ T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses, and that the replication competent reservoir is primarily found in CD4+ T cells that remain relatively quiescent. PMID:25635456

  9. Chromatin dynamics associated with HIV-1 Tat activated transcription

    PubMed Central

    Easley, Rebecca; Van Duyne, Rachel; Coley, Will; Guendel, Irene; Dadgar, Sherry; Kehn-Hall, Kylene; Kashanchi, Fatah

    2009-01-01

    Summary Chromatin remodeling is an essential event for HIV-1 transcription. Over the last two decades this field of research has come to the forefront, as silencing of the HIV-1 provirus through chromatin modifications has been linked to latency. Here, we focus on chromatin remodeling, especially in relation to the transactivator Tat, and review the most important and newly emerging studies that investigate remodeling mechanisms. We begin by discussing covalent modifications that can alter chromatin structure including acetylation, deacetylation, and methylation, as well as topics addressing the interplay between chromatin remodeling and splicing. Next, we focus on complexes that use the energy of ATP to remove or secure nucleosomes and can additionally act to control HIV-1 transcription. Finally, we cover recent literature on viral microRNAs which have been shown to alter chromatin structure by inducing methylation or even by remodeling nucleosomes. PMID:19716452

  10. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein

    PubMed Central

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisné, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55Gag, reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNALys3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  11. Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy

    PubMed Central

    Altmann, André; Rosen-Zvi, Michal; Prosperi, Mattia; Aharoni, Ehud; Neuvirth, Hani; Schülter, Eugen; Büch, Joachim; Struck, Daniel; Peres, Yardena; Incardona, Francesca; Sönnerborg, Anders; Kaiser, Rolf; Zazzi, Maurizio; Lengauer, Thomas

    2008-01-01

    Background Analysis of the viral genome for drug resistance mutations is state-of-the-art for guiding treatment selection for human immunodeficiency virus type 1 (HIV-1)-infected patients. These mutations alter the structure of viral target proteins and reduce or in the worst case completely inhibit the effect of antiretroviral compounds while maintaining the ability for effective replication. Modern anti-HIV-1 regimens comprise multiple drugs in order to prevent or at least delay the development of resistance mutations. However, commonly used HIV-1 genotype interpretation systems provide only classifications for single drugs. The EuResist initiative has collected data from about 18,500 patients to train three classifiers for predicting response to combination antiretroviral therapy, given the viral genotype and further information. In this work we compare different classifier fusion methods for combining the individual classifiers. Principal Findings The individual classifiers yielded similar performance, and all the combination approaches considered performed equally well. The gain in performance due to combining methods did not reach statistical significance compared to the single best individual classifier on the complete training set. However, on smaller training set sizes (200 to 1,600 instances compared to 2,700) the combination significantly outperformed the individual classifiers (p<0.01; paired one-sided Wilcoxon test). Together with a consistent reduction of the standard deviation compared to the individual prediction engines this shows a more robust behavior of the combined system. Moreover, using the combined system we were able to identify a class of therapy courses that led to a consistent underestimation (about 0.05 AUC) of the system performance. Discovery of these therapy courses is a further hint for the robustness of the combined system. Conclusion The combined EuResist prediction engine is freely available at http://engine.euresist.org. PMID

  12. First Membrane Proximal External Region-Specific Anti-HIV1 Broadly Neutralizing Monoclonal IgA1 Presenting Short CDRH3 and Low Somatic Mutations.

    PubMed

    Benjelloun, Fahd; Oruc, Zeliha; Thielens, Nicole; Verrier, Bernard; Champier, Gael; Vincent, Nadine; Rochereau, Nicolas; Girard, Alexandre; Jospin, Fabienne; Chanut, Blandine; Genin, Christian; Cogné, Michel; Paul, Stephane

    2016-09-01

    Mucosal HIV-1-specific IgA have been described as being able to neutralize HIV-1 and to block viral transcytosis. In serum and saliva, the anti-HIV IgA response is predominantly raised against the envelope of HIV-1. In this work, we describe the in vivo generation of gp41-specific IgA1 in humanized α1KI mice to produce chimeric IgA1. Mice were immunized with a conformational immunogenic gp41-transfected cell line. Among 2300 clones screened by immunofluorescence microscopy, six different gp41-specific IgA with strong recognition of gp41 were identified. Two of them have strong neutralizing activity against primary HIV-1 tier 1, 2, and 3 strains and present a low rate of somatic mutations and autoreactivity, unlike what was described for classical gp41-specific IgG. Epitopes were identified and located in the hepted repeat 2/membrane proximal external region. These Abs could be of interest in prophylactic treatment to block HIV-1 penetration in mucosa or in chronically infected patients in combination with antiretroviral therapy to reduce viral load and reservoir. PMID:27481846

  13. Polyclonal B-cell activation reveals antibodies against human immunodeficiency virus type 1 (HIV-1) in HIV-1-seronegative individuals.

    PubMed Central

    Jehuda-Cohen, T; Slade, B A; Powell, J D; Villinger, F; De, B; Folks, T M; McClure, H M; Sell, K W; Ahmed-Ansari, A

    1990-01-01

    Identification of human immunodeficiency virus type 1 (HIV-1)-infected individuals is of paramount importance for the control of the spread of AIDS worldwide. Currently, the vast majority of screening centers throughout the world rely on serological techniques. As such, clinically asymptomatic but HIV-infected, seronegative individuals are rarely identified. In this report we show that 18% (30/165) of seronegative individuals who were considered to be a unique cohort of patients at high risk for HIV infection had circulating B cells that, upon in vitro polyclonal activation with pokeweed mitogen, produced antibodies reactive with HIV. Furthermore, polymerase chain reaction analysis of DNA obtained from aliquots of the peripheral blood mononuclear cells from these seronegative but pokeweed mitogen assay-positive individuals tested revealed the presence of HIV-specific sequences in a significant number of samples. In addition, depletion of CD8+ T cells from peripheral blood mononuclear cells of HIV-1-seronegative individuals prior to in vitro culture with pokeweed mitogen resulted in increased sensitivity for detecting HIV-reactive antibodies. This assay has obvious epidemiological implications, especially in the case of high-risk groups, and also provides a simple technique to enhance detection of HIV-infected individuals. Of further interest is the determination of the mechanisms related to the lack of HIV-specific antibodies in the serum of these infected individuals. Images PMID:2111024

  14. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement.

    PubMed

    Shukair, S A; Allen, S A; Cianci, G C; Stieh, D J; Anderson, M R; Baig, S M; Gioia, C J; Spongberg, E J; Kauffman, S M; McRaven, M D; Lakougna, H Y; Hammond, C; Kiser, P F; Hope, T J

    2013-03-01

    Cervical and vaginal epithelia are primary barriers against HIV type I (HIV-1) entry during male-to-female transmission. Cervical mucus (CM) is produced by the endocervix and forms a layer locally as well as in the vaginal compartment in the form of cervicovaginal mucus (CVM). To study the potential barrier function of each mucus type during HIV-1 transmission, we quantified HIV-1 mobility in CM and CVM ex vivo using fluorescent microscopy. Virions and 200-nm PEGylated beads were digitally tracked and mean-squared displacement was calculated. The mobility of beads increased significantly in CVM compared with CM, consistent with the known decreased mucin concentration of CVM. Unexpectedly, HIV-1 diffusion was significantly hindered in the same CVM samples in which bead diffusion was unhindered. Inhibition of virus transport was envelope-independent. Our results reveal a previously unknown activity in CVM that is capable of impeding HIV-1 mobility to enhance mucosal barrier function. PMID:22990624

  15. Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms

    PubMed Central

    2014-01-01

    Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red

  16. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    PubMed Central

    Rom, Slava; Reichenbach, Nancy L.; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection. PMID:26379653

  17. Monitoring of the lactonase activity of paraoxonase-1 enzyme in HIV-1-infection

    PubMed Central

    Dias, Clara; Marinho, Aline; Morello, Judit; Almeida, Gabriela; Caixas, Umbelina; Soto, Karina; Monteiro, Emilia; Pereira, Sofia

    2014-01-01

    Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated enzyme known as a free radical scavenging system (1). PON-1 has three main activities, responsible for its antioxidant and anti-inflammatory potential: paraoxonase, arylesterase and lactonase (LACase), the latest to be discovered and pointed out to be its native activity (2). Among other physiological roles, the LACase might minimize the deleterious effects of hyperhomocysteinaemia in infection, by detoxifying the highly reactive metabolite homocysteine-thiolactone (HcyTL) (3),4. In the present work, we have developed and applied a method to quantify LACase activity and to explore the role of this enzyme in HIV-infection and virological response. The LACase activity was monitored in a cohort of HIV-1-infected patients, through the titration of 3-(o-hydroxyphenyl) propionic acid, formed upon the LACase-mediated hydrolysis of the substrate dihydrocoumarin. The study protocol was approved by the Ethics Committee of Centro Hospitalar de Lisboa Central and Hospital Prof. Doutor Fernando Fonseca. All patients gave their written informed consent and were adults with documented HIV-1-infection, regardless of combined antiretroviral therapy (cART) use. Naïve patients and patients who had received continuous antiretroviral treatment for more than one month were included. A total of 179 HIV-1-infected patients were included on this study (51% Men, 39% non-Caucasian, 45±13 years old). Patients with non-suppressed viraemia, either from the non-cART (n=89, 12±4 kU/L, p<0.01) or from the cART with detectable viral load (n=11, 10±5 kU/L, p<0.05) groups, had lower activity than the cART with suppressed viraemia (n=79, 15±7 kU/L) (Kruskal–Wallis test). Among naïve patients, higher viral load (> 31,500 cps/mL, Spearman r=−0.535, p=0.003) and lower CD4+ T-cells count (< 500 cell/mm3, Pearson r=0.326, p=0.024) were associated with the LACase activity. The present study suggests that lower LACase activity is

  18. MULTIPLE WAYS OF TARGETING APOBEC3/VIF INTERACTIONS FOR ANTI-HIV-1 DRUG DEVELOPMENT

    PubMed Central

    Smith, Jessica L.; Bu, Wei; Burdick, Ryan C.; Pathak, Vinay K.

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) infections and the resulting acquired immunodeficiency syndrome (AIDS) pandemic remain a global challenge in the absence of a protective vaccine and because of rapid selection of drug-resistant viral variants in response to all currently available antiviral therapies. Development of new and highly active antiviral agents would greatly facilitate effective clinical management of HIV-1 infections and delay the onset of AIDS. Recent advances in our understanding of intracellular immunity conferred by host cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F), and the mechanism by which the virally encoded Virion Infectivity Factor (Vif) protein induces their proteasomal degradation, provide fresh opportunities for the development of novel antiviral treatments. Interestingly, the interactions between Vif-A3G and Vif-A3F that overcome this host defense mechanism are structurally distinct, and provide two potential targets for antiviral drug development. This review provides an overview of the current knowledge of APOBEC3/Vif interactions and recent efforts to target these interactions for antiviral drug development. PMID:19837465

  19. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice.

    PubMed

    Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia; Kulp, Daniel W; Golijanin, Jovana; Sok, Devin; Freund, Natalia T; Gitlin, Alexander D; Oliveira, Thiago; Araki, Tatsuya; Lowe, Sarina; Chen, Spencer T; Heinemann, Jennifer; Yao, Kai-Hui; Georgeson, Erik; Saye-Francisco, Karen L; Gazumyan, Anna; Adachi, Yumiko; Kubitz, Michael; Burton, Dennis R; Schief, William R; Nussenzweig, Michel C

    2016-09-01

    A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors. PMID:27610569

  20. Antihuman Immunodeficiency Virus Type 1 (HIV-1) Activity of Rare Earth Metal Complexes of 4-Hydroxycoumarins in Cell Culture

    PubMed Central

    Manolov, Ilia; Raleva, Sevda; Genova, Petya; Savov, Alexey; Froloshka, Liliana; Dundarova, Daniela; Argirova, Radka

    2006-01-01

    The cerium Ce(III), lanthanum La(III), and neodymium Nd(III) complexes with 4-hydroxy-3-(3-oxo-1-phenylbutyl)-2H-1-benzopyran-2-one (warfarin) (W) and 3,3′-benzylidenebis[4-hydroxycoumarin] (1) were synthesized and studied for the first time for cytotoxicity (on MT-2 cells) and as anti-HIV agents under acute and chronic infection. The complexes were characterized by different physicochemical methods: mass spectrometry, 1H NMR, 13C NMR, and IR spectroscopy. The spectra of the complexes were interpreted on the basis of comparison with the spectrum of the free ligands. Anti-HIV effect of the complexes/ligands was measured in MT-2 cells by microtiter infection assay. Detection of endogenous reverse transcriptase (RT) activity and RT processivity by PCR indicative for proviral DNA synthesis demonstrated that anti-HIV activity has not been linked to early stages of viral replication. No effect on late steps of viral replication has been found using cells chronically producing HIV-1LAI virus. La(W) demonstrated anti-HIV activity (IC50=21.4 μM) close to maximal nontoxic concentration. Nd(W), Ce(1), and Nd(1) demonstrated limited anti-HIV potency, so none of the complexes seems appropriate to be used in clinic. Further targeting of HIV-1 inhibition by La(W) is under progress. PMID:17497016

  1. TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation.

    PubMed Central

    Bohjanen, P R; Liu, Y; Garcia-Blanco, M A

    1997-01-01

    The ability of the HIV-1 Tat protein to trans -activate HIV-1 transcription in vitro is specifically inhibited by a circular TAR RNA decoy. This inhibition is not overcome by adding an excess of Tat to the reaction but is partially overcome by adding Tat in combination with nuclear extract, suggesting that TAR RNA might function by interacting with a complex containing Tat and cellular factor(s). A cell-free transcription system involving immobilized DNA templates was used to further define the factor(s) that interact with TAR RNA. Preinitiation complexes formed in the presence or absence of Tat were purified on immobilized templates containing the HIV-1 promoter. After washing, nucleotides and radiolabelled UTP were added and transcription was measured. The presence of Tat during preinitiation complex formation resulted in an increase in the level of full-length HIV-1 transcripts. This Tat-activated increase in HIV-1 transcription was not inhibited by circular TAR decoys added during preinitiation complex formation but was inhibited by circular TAR decoys subsequently added during the transcription reaction. These results suggest that TAR decoys inhibit Tat-activated HIV-1 transcription after preinitiation complex formation, perhaps by interacting with components of transcription complexes. PMID:9358155

  2. Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    PubMed Central

    Bocanegra, Rebeca; Nevot, María; Doménech, Rosa; López, Inmaculada; Abián, Olga; Rodríguez-Huete, Alicia; Cavasotto, Claudio N.; Velázquez-Campoy, Adrián; Gómez, Javier; Martínez, Miguel Ángel; Neira, José Luis; Mateu, Mauricio G.

    2011-01-01

    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly

  3. AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines.

    PubMed Central

    Nuovo, G. J.; Alfieri, M. L.

    1996-01-01

    BACKGROUND: We recently showed that acquired immunodeficiency syndrome (AIDS) dementia is associated with activated infection of microglia, neurons, and astrocytes by HIV-1. However, it is doubtful whether infection per se is responsible for the dramatic symptoms associated with AIDS dementia. The purpose of this study was to determine the histologic distribution of messenger RNAs (mRNAs) of several cytokines that have been implicated in AIDS pathogenesis and to correlate this expression pattern with the in situ localization of polymerase chain reaction (PCR)-amplified HIV-1 nucleic acids in the central nervous system (CNS). MATERIALS AND METHODS: HIV-1 DNA was detected by PCR in situ hybridization. HIV-1 RNA and cytokine expression, including tumor necrosis factor alpha (TNF), inducible nitric oxide synthetase (iNOS), and macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta mRNA were detected by reverse transcriptase (RT) in situ PCR. RESULTS: Amplified viral DNA was detected in each of the seven HIV-1-positive cases and in none of the five negative controls. In people with AIDS dementia, many HIV-1 DNA-positive cells were detected in regions of the CNS that corresponded to clinical symptomatology. In AIDS patients with minimal CNS involvement, rare HIV-1-infected microglial cells were noted. Viral RNA was detected primarily in cases of AIDS dementia. TNF, iNOS, MIP-1 alpha and MIP-1 beta expression localized to tissues from AIDS dementia cases where HIV-1 infected cells were plentiful. Colocalization experiments showed that these cytokines were transcribed mostly by viral-negative cells. CONCLUSIONS: These results suggest that two key elements in AIDS dementia are massive productive viral infection, involving microglia, neurons, and astrocytes, and concomitant stimulation of cytokine transcription in the neighboring uninfected cells. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:8784788

  4. Association of Blood Biomarkers of Bone Turnover in HIV-1 Infected Individuals Receiving Anti-Retroviral Therapy (ART)

    PubMed Central

    Aziz, Najib; Butch, Anthony W; Quint, Joshua J; Detels, Roger

    2015-01-01

    Objective To evaluate the association of bone turnover biomarkers with blood levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase (TRAP), parathyroid hormone (PTH), and other blood markers in HIV-1 infected men receiving anti-retroviral therapy (ART). Advances in the treatment of HIV-1 infection have extended the life span of HIV-1 infected individuals. However, these advances may come at the price of metabolic side effects and bone disorders, including premature osteopenia, osteoporosis and osteonecrosis. Methods Analyses of Ostase BAP, osteocalcin, and TRAP in blood were measured in three groups of MACS participants: 35 HIV-1 infected men on ART (A); 35 HIV-1- infected men not on ART (B); and 34 HIV-1 uninfected men (C). Results The mean and standard deviation results for groups A, B, and C were 19.7 ± 6.56, 17.2 ± 3.96, and 16.9 ± 5.78 for ostase BAP; 7.9 ± 9.53, 8.5 ± 8.30, and 5.5 ± 1.65 for osteocalcin; and 3.9 ± 1.04, 3.1 ± 0.81, and 2.5 ± 0.59 for TRAP, respectively. Simple and multivariate analyses showed significant differences in mean TRAP and BAP concentrations between the three groups. In addition strong correlations between blood levels of Ostase BAP and TRAP (r=0.570, p=0.0004), and between blood levels of Ostase BAP and PTH (r=0.436, P=0.0098) for HIV-1 infected men on ART were observed. Conclusion New strategies for measurement of blood and urine biochemical markers of bone formation and resorption during bone turnover can be useful for clinical monitoring of treatment of HIV-1 infected patients. Recently developed methods for measuring serum levels of TRAP and Ostase BAP represent superior laboratory tools for assessing the hyperactivity of osteoclasts, osteoblasts and bone loss in HIV-1 infected individuals receiving ART. Measurements of TRAP and BAP as bone turnover biomarkers are economical and are important for monitoring bone metabolism during ART and

  5. Prothymosin-α Variants Elicit Anti-HIV-1 Response via TLR4 Dependent and Independent Pathways

    PubMed Central

    Gusella, G. Luca; Teixeira, Avelino; Aberg, Judith; Uversky, Vladimir N.; Mosoian, Arevik

    2016-01-01

    Background Prothymosin α (ProTα) (isoform 2: iso2) is a widely distributed, small acidic protein with intracellular and extracellular-associated functions. Recently, we identified two new ProTα variants with potent anti-HIV activity from CD8+ T cells and cervicovaginal lavage. The first is a splice variant of the ProTα gene known as isoB and the second is the product of ProTα pseudogene 7 (p7). Similarly to iso2, the anti-HIV activity of both variants is mediated by type I IFN. Here we tested whether the immunomodulatory activity of isoB and p7 are also TLR4 dependent and determined their kinetic of release in response to HIV-1 infection. Methods Type I, type III, TNF-α and IL-6 mRNA inducing activity was determined in macrophages from wild type and TLR4 knockout mice treated with recombinant ProTα variants. Supernatants from mock and HIV infected cells were analyzed by mass spectrometry in positive and negative modes for the presence of ProTα variants. In silico structural and functional analysis of ProTα variants were performed. Results We show that both isoB and p7 upregulate IFN-β, IFN-λ1, IL-6, TNF-α and RANTES mRNAs in primary human macrophages. The potent stimulation of IFN-β by the recombinant ProTα variants in human macrophages is dependent on the TLR4 pathway, whereas the induction of TNF-α and IL-6 may also occur independently of TLR4, suggesting the interaction of ProTα variants with other signaling molecules/receptors. In silico analyses confirmed that the novel isoB and p7 variants are intrinsically disordered proteins, which lack the NLS and mass spectrometry showed release of ProTα variants within minutes post HIV-1 infection. These features are consistent with the function of ProTα variants as damage associate molecular patterns (DAMPs). Conclusions Our findings indicate that ProTα variants strongly inhibit viral replication mainly, but not exclusively, through TLR4 signaling and that they are released within minutes of viral

  6. Selective induction of CTL ‘helper’ rather than killer activity by natural epitope variants promotes DC-mediated HIV-1 dissemination

    PubMed Central

    Mailliard, Robbie B.; Smith, Kellie N.; Fecek, Ronald J.; Rappocciolo, Giovanna; Nascimento, Eduardo J. M.; Marques, Ernesto T.; Watkins, Simon C.; Mullins, James I.; Rinaldo, Charles R.

    2013-01-01

    The ability of HIV-1 to rapidly accumulate mutations provides the virus with an effective means of escaping CD8+ cytotoxic T lymphocyte (CTL) responses. Here we describe how subtle alterations in CTL epitopes expressed by naturally occurring HIV-1 variants can result in an incomplete escape from CTL recognition, providing the virus with a selective advantage. Rather than paralyzing the CTL response, these epitope modifications selectively induce the CTL to produce pro-inflammatory cytokines in the absence of target killing. Importantly, instead of dampening the immune response through CTL elimination of variant antigen-expressing immature dendritic cells (iDC), a positive CTL-to-DC immune feedback loop dominates whereby the iDC differentiate into mature pro-inflammatory DC. Moreover, these CTL-programmed DC exhibit a superior capacity to mediate HIV-1 trans-infection of T cells. This discordant induction of CTL helper activity in the absence of killing likely contributes to the chronic immune activation associated with HIV-1 infection, and can be utilized by HIV-1 to promote viral dissemination and persistence. Our findings highlight the need to address the detrimental potential of eliciting dysfunctional cross-reactive memory CTL responses when designing and implementing anti-HIV-1 immunotherapies. PMID:23913962

  7. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK

    PubMed Central

    2014-01-01

    Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671

  8. Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs.

    PubMed

    Rawal, R K; Murugesan, V; Katti, S B

    2012-01-01

    In addition to the nucleoside reverse transcriptase inhibitors (NRTIs), protease inhibitors (PIs) and integrase inhibitors (INIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs) have contributed significantly in the treatment of HIV-1 infections. More than 60 structurally different classes of compounds have been identified as NNRTIs, which are specifically inhibiting HIV-1 reverse transcriptase (RT). Five NNRTIs (nevirapine, delavirdine, efavirenz, etravirine and rilpivirine) have been approved by US Food and Drug Administration (FDA) for clinical use. The NNRTIs bind with a specific 'pocket' site of HIV-1 RT (allosteric site) that is closely associated with the NRTI binding site. Due to mutations of the amino acid residues surrounding the NNRTI-binding site, NNRTIs are notorious for rapidly eliciting resistance. Though, the emergence of resistant HIV strains can be circumvented if the NNRTIs are used either alone or in combination with NRTIs (AZT, 3TC, ddI, ddC, TVD or d4T) and PIs (Indinavir, nelfinavir, saquinavir, ritonavir and lopinavir etc.) as shown by both a decrease in plasma HIV-1 RNA levels and increased CD4 T-cells. Here we are going to discuss recent advances in structure activity relationship studies on nevirapine, delavirdine, efavirenz, etravirine, rilpivirine and 4-thiazolidinones (privileged scaffold) HIV-1 NNRTIs. PMID:22998569

  9. Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1

    PubMed Central

    Agbottah, Emmanuel T; Traviss, Christine; McArdle, James; Karki, Sambhav; St Laurent, Georges C; Kumar, Ajit

    2007-01-01

    Background Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression. Results Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction in vitro. Analysis of the effect of NF90ctv-TAR RNA interaction in vivo showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene. Conclusion Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1. PMID:17565699

  10. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  11. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis.

    PubMed

    Yang, X W; Zhao, J; Cui, Y X; Liu, X H; Ma, C M; Hattori, M; Zhang, L H

    1999-11-01

    Eight bioactive triterpenoid saponins (1-8) were isolated from the seeds of Aesculus chinensis, four of which are novel compounds. The major saponins were identified as escin Ia (1), Ib (2), isoescin Ia (3) and Ib (4), while the new compounds were identified as 22alpha-tigloyl-28-acetylprotoaescigenin-3beta-O-¿beta -D-glucopyranos yl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVc, 5), 22alpha-angeloyl-28-acetylprotoaescigenin-3beta-O-¿bet a-D-glucopyrano syl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVd, 6), 28-tigloylprotoaescigenin-3beta-O-¿beta-D-glucopyranosyl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVe, 7), and 28-angeloylprotoaescigenin-3beta-O-¿beta-D-glucopyranosyl (1-2) ¿beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVf, 8). The structures were determined by chemical and spectroscopic methods. All the above compounds were evaluated for their inhibitory activity against HIV-1 protease. PMID:10579862

  12. A Nonfucosylated Variant of the anti-HIV-1 Monoclonal Antibody b12 Has Enhanced FcγRIIIa-Mediated Antiviral Activity In Vitro but Does Not Improve Protection against Mucosal SHIV Challenge in Macaques

    PubMed Central

    Moldt, Brian; Shibata-Koyama, Mami; Rakasz, Eva G.; Schultz, Niccole; Kanda, Yutaka; Dunlop, D. Cameron; Finstad, Samantha L.; Jin, Chenggang; Landucci, Gary; Alpert, Michael D.; Dugast, Anne-Sophie; Parren, Paul W. H. I.; Nimmerjahn, Falk; Evans, David T.; Alter, Galit; Forthal, Donald N.; Schmitz, Jörn E.; Iida, Shigeru; Poignard, Pascal; Watkins, David I.

    2012-01-01

    Eliciting neutralizing antibodies is thought to be a key activity of a vaccine against human immunodeficiency virus (HIV). However, a number of studies have suggested that in addition to neutralization, interaction of IgG with Fc gamma receptors (FcγR) may play an important role in antibody-mediated protection. We have previously obtained evidence that the protective activity of the broadly neutralizing human IgG1 anti-HIV monoclonal antibody (MAb) b12 in macaques is diminished in the absence of FcγR binding capacity. To investigate antibody-dependent cellular cytotoxicity (ADCC) as a contributor to FcγR-associated protection, we developed a nonfucosylated variant of b12 (NFb12). We showed that, compared to fully fucosylated (referred to as wild-type in the text) b12, NFb12 had higher affinity for human and rhesus macaque FcγRIIIa and was more efficient in inhibiting viral replication and more effective in killing HIV-infected cells in an ADCC assay. Despite these more potent in vitro antiviral activities, NFb12 did not enhance protection in vivo against repeated low-dose vaginal challenge in the simian-human immunodeficiency virus (SHIV)/macaque model compared to wild-type b12. No difference in protection, viral load, or infection susceptibility was observed between animals given NFb12 and those given fully fucosylated b12, indicating that FcγR-mediated activities distinct from FcγRIIIa-mediated ADCC may be important in the observed protection against SHIV challenge. PMID:22457527

  13. Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors

    PubMed Central

    Urano, Emiko; Ablan, Sherimay D.; Mandt, Rebecca; Pauly, Gary T.; Sigano, Dina M.; Schneider, Joel P.; Martin, David E.; Nitz, Theodore J.; Wild, Carl T.

    2015-01-01

    Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1. PMID:26482309

  14. Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-κB activity.

    PubMed

    Wolschendorf, Frank; Bosque, Alberto; Shishido, Takao; Duverger, Alexandra; Jones, Jennifer; Planelles, Vicente; Kutsch, Olaf

    2012-04-01

    Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation. PMID:22345467

  15. Kinase Control Prevents HIV-1 Reactivation in Spite of High Levels of Induced NF-κB Activity

    PubMed Central

    Wolschendorf, Frank; Bosque, Alberto; Shishido, Takao; Duverger, Alexandra; Jones, Jennifer; Planelles, Vicente

    2012-01-01

    Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation. PMID:22345467

  16. Brief Report: Macrophage Activation in HIV-2-Infected Patients Is Less Affected by Antiretroviral Treatment-sCD163 in HIV-1, HIV-2, and HIV-1/2 Dually Infected Patients.

    PubMed

    Hønge, Bo L; Andersen, Morten N; Jespersen, Sanne; Medina, Candida; Correira, Faustino G; Jakobsen, Martin R; Laursen, Alex; Erikstrup, Christian; Møller, Holger J; Wejse, Christian

    2016-07-01

    The course of disease among HIV-2, HIV-1, and HIV-1/2 dually infected patients is different. We investigated the macrophage activation marker soluble CD163 (sCD163) dynamics in 212 HIV-1, HIV-2, and HIV-1/2 dually infected patients. There were no differences in sCD163 levels at baseline or during follow-up without antiretroviral therapy (ART). At follow-up on ART, median sCD163 levels were decreased for HIV-1-infected patients (P < 0.001), but not among HIV-2 (P = 0.093) or HIV-1/2 dually infected patients (P = 0.145). The larger decrease in sCD163 levels among HIV-1-infected patients during ART may indicate an HIV type-dependent differential effect of ART on macrophage activation during HIV infection. PMID:26825178

  17. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1.

    PubMed

    Jacobson, Jeffrey M; Bosinger, Steven E; Kang, Minhee; Belaunzaran-Zamudio, Pablo; Matining, Roy M; Wilson, Cara C; Flexner, Charles; Clagett, Brian; Plants, Jill; Read, Sarah; Purdue, Lynette; Myers, Laurie; Boone, Linda; Tebas, Pablo; Kumar, Princy; Clifford, David; Douek, Daniel; Silvestri, Guido; Landay, Alan L; Lederman, Michael M

    2016-07-01

    Immune activation associated with HIV-1 infection contributes to morbidity and mortality. We studied whether chloroquine, through Toll-like receptor (TLR) antagonist properties, could reduce immune activation thought to be driven by TLR ligands, such as gut-derived bacterial elements and HIV-1 RNAs. AIDS Clinical Trials Group A5258 was a randomized, double-blind, placebo-controlled study in 33 HIV-1-infected participants off antiretroviral therapy (ART) and 37 participants on ART. Study participants in each cohort were randomized 1:1 to receive chloroquine 250 mg orally for the first 12 weeks then cross over to placebo for 12 weeks or placebo first and then chloroquine. Combining the periods of chloroquine use in both arms of the on-ART cohort yielded a modest reduction in the proportions of CD8 T cells co-expressing CD38 and DR (median decrease = 3.0%, p = .003). The effect on immune activation in the off-ART cohort was likely confounded by increased plasma HIV-1 RNA during chloroquine administration (median 0.29 log10 increase, p < .001). Transcriptional analyses in the off-ART cohort showed decreased expression of interferon-stimulated genes in 5 of 10 chloroquine-treated participants and modest decreases in CD38 and CCR5 RNAs in all chloroquine-treated participants. Chloroquine modestly reduced immune activation in ART-treated HIV-infected participants. Clinical Trials Registry Number: NCT00819390. PMID:26935044

  18. Replication of HIV-1 deleted Nef mutants in chronically immune activated human T cells.

    PubMed

    Shapira-Nahor, Orit; Maayan, Shlomo; Peden, Keith W C; Rabinowitz, Ruth; Schlesinger, Michael; Alian, Akram; Panet, Amos

    2002-11-10

    Lymphocytes (PBMC) obtained from blood of HIV-sera negative Ethiopian immigrants (ETH) were highly susceptible to HIV-1 infection in vitro with no need for stimulation by mitogens. As the HIV nef gene product has been shown to enhance viral replication in stimulated primary lymphocytes, we investigated in this work the role of Nef in viral replication in the ETH cells. Lymphocytes obtained from ETH individuals supported high replication of wild-type HIV-1 and low but significant replication level of the two deleted Nef mutants (encode truncated Nef proteins consisting only of either the first 35 or the first 86 amino acids of Nef). In contrast, no replication was observed in nonactivated cells obtained from non-ETH individuals. After activation of the PBMC from ETH individuals with PHA, replication of both wild-type strains and the two deleted Nef mutant viruses further increased. The CD4(+) T cells of ETH individuals exhibited elevated levels of the surface activation markers CD45RO and HLA-DR, compared with T cells derived from non-ETH group. Likewise, expression of the chemokine receptors CCR5 and CXCR4 on these cells was higher in the ETH group than in the non-ETH group. Replication of HIV-1 wild-type and the isogenic-deleted Nef mutants was significantly correlated with the proportion of ETH cells expressing CD45RO and the chemokine receptors. This study suggests that HIV-1 may respond differently to several activation states characteristic of T cells. One activation state, defined by chronically activated lymphocytes from ETH individuals, is permissive to the wild-type HIV-1 and, to a lesser degree, to the Nef mutants. Further activation of these cells by exogenous stimuli enhances replication of the virus. Our results support the notion that Nef enhances the basal level of T cell activation and consequently, viral replication. PMID:12482665

  19. Diagnosis of human immunodeficiency virus (HIV) infection: multicenter evaluation of a newly developed anti-HIV 1 and 2 enzyme immunoassay.

    PubMed Central

    Hess, G; Avillez, F; Lourenco, M H; D'Agostino, F; Cambie, G; Piot, P; Vercauteren, G; Michl, U; Melchior, W; Bayer, H

    1994-01-01

    A new anti-human immunodeficiency virus type 1 and 2 (anti-HIV 1 and 2) test is described. It uses recombinant p24 and peptides covering gp32, gp41, and gp120 to identify HIV-1 and HIV-2 infections. This test has been shown to be specific (99.5%) and sensitive (99.8%). In this respect, the assay was equal or superior to anti-HIV 1 and 2 tests run as references. The test was able to discriminate sera from patients with HIV infections from those from uninfected individuals with excellence; it also exerted high intra- and interassay precisions. The "modular" concept of the test allows the use of single components (gp32 or gp41) to separate between HIV-2 and HIV-1 infections, respectively. PMID:8150950

  20. Sulfonic acid polymers: Highly potent inhibition of HIV-1 and HIV-2 reverse transcriptase and antiviral activity

    SciTech Connect

    Mohan, P.; Verma, S.; Tan, G.T.; Wickramasinghe, A.; Pezzuto, J.M.; Huges, S.H.; Baba, M.

    1993-12-31

    In an extension of the authors` work in the sulfonic acid polymer area they have evaluated the reverse transcriptase (RT) inhibitory activity of several varying molecular weight aromatic and aliphatic derivatives. All the polymers possess anti-HIV activity at doses that are non-toxic to the host cells and act by inhibiting viral adsorption. In the RT assay, poly(4-styrenesulfonic acid) exhibited highly potent inhibition with IC{sub 50} values of 0.0008 {mu}M and 0.0007 {mu}M for HIV-1 and HIV-2 RT respectively. The discovery of the anti-RT potential of these derivatives provides the impetus to investigate additional intervention strategies that are coupled with the facilitated cellular penetration of these agents.

  1. Similarities in the HIV-1 and ASV Integrease Active Site Upon Metal Binding

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP; Briggs, J. M.

    2000-04-05

    The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg2+ ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.

  2. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia.

    PubMed

    Dillon, S M; Lee, E J; Kotter, C V; Austin, G L; Dong, Z; Hecht, D K; Gianella, S; Siewe, B; Smith, D M; Landay, A L; Robertson, C E; Frank, D N; Wilson, C C

    2014-07-01

    Human immunodeficiency virus-1 (HIV-1) infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T-cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T-cell activation, inflammation, and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1-infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared with uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1-infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation, and blood T-cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection. PMID:24399150

  3. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia

    PubMed Central

    Dillon, SM; Lee, EJ; Kotter, CV; Austin, GL; Dong, Z; Hecht, DK; Gianella, S; Siewe, B; Smith, DM; Landay, AL; Robertson, CE; Frank, DN; Wilson, CC

    2014-01-01

    HIV-1 infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T cell activation, inflammation and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1 infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared to uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1 infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation and blood T cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection. PMID:24399150

  4. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA.

    PubMed

    Narayanan, Aarthi; Iordanskiy, Sergey; Das, Ravi; Van Duyne, Rachel; Santos, Steven; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Dalby, Elizabeth; Iglesias-Ussel, Maria; Popratiloff, Anastas; Hakami, Ramin; Kehn-Hall, Kylene; Young, Mary; Subra, Caroline; Gilbert, Caroline; Bailey, Charles; Romerio, Fabio; Kashanchi, Fatah

    2013-07-01

    Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 10(4)-10(6) copies/ml TAR RNA in exosomes derived from infected culture supernatants and 10(3) copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS. PMID:23661700

  5. Triple Activity of Lamivudine Releasing Sulfonated Polymers against HIV-1.

    PubMed

    Danial, Maarten; Andersen, Anna H F; Zuwala, Kaja; Cosson, Steffen; Riber, Camilla Frich; Smith, Anton A A; Tolstrup, Martin; Moad, Graeme; Zelikin, Alexander N; Postma, Almar

    2016-07-01

    In this article a library of polymeric therapeutic agents against the human immunodeficiency virus (HIV) is presented. The library of statistical copolymers of varied molar mass was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The synthesized polymers comprise pendent hydroxyl and sulfonated side chains as well as the reverse transcriptase prodrug lamivudine (3TC) attached via a disulfide self-immolative linker. The glutathione mediated release of 3TC is demonstrated as well as the antiviral efficacy against HIV entry and polymerase activity. Although a high degree of polymer sulfonation is required for effective HIV entry inhibition, polymers with approximately ∼50% sulfonated monomer demonstrated potent kinase independent reverse transcriptase inhibition. In addition, the sulfonated polymers demonstrate activity against DNA-DNA polymerase, which suggests that these polymers may exhibit activity against a broad spectrum of viruses. In summary, the polymers described provide a triple-active arsenal against HIV with extracellular activity via entry inhibition and intracellular activity by kinase-dependent lamivudine-based and kinase-independent sulfonated polymer based inhibition. Since these sulfonated copolymers are easily formulated into gels, we envision them to be particularly suited for topical application to prevent the mucosal transmission of viruses, particularly HIV. PMID:27244595

  6. Prevalence and distribution of the GBV-C/HGV among HIV-1-infected patients under anti-retroviral therapy.

    PubMed

    Alcalde, Rosana; Nishiya, Anna; Casseb, Jorge; Inocêncio, Lilian; Fonseca, Luiz A M; Duarte, Alberto J S

    2010-08-01

    Infection with GB virus C (GBV-C) or hepatitis G virus (HGV) is highly prevalent among HIV/AIDS patients. GBV-C/HGV viremia has not been associated with liver disease and seems to slow HIV disease progression. To study the GBV-C/HGV genotypes prevalence among HIV/AIDS patients and its association with HIV viral load (VL) and CD4+ lymphocyte counts. From February 2003 to February 2004, we analyzed 210 HIV-1-infected subjects who were on anti-retroviral therapy (ART). For 63 of them a PCR-nested to the non-coding 5' (5'NCR) region of the GBV-C/HGV was done, and for 49 a DNA direct sequencing was done. A phylogenetic analysis was performed by PHYLIP program. 63 (30%) of the HIV-1-infected patients were co-infected with GBV-C/HGV. The phylogenetic analysis revealed the following genotypes (and respective relative frequencies): 1 (10%), 2a (41%), 2b (43%), and 3 (6%). Co-infected patients presented lower HIV-1 VL and higher T CD4+ lymphocyte cells counts as compared with patients negative for GBV-C/HGV sequences (log=4.52 vs. 4.71, p=0.036), and T CD4+ lymphocyte counts (cells/mm(3)=322.6 vs. 273.5, p=0.081, respectively). T CD4+ cells counts equal to, or higher than, 200/mm(3) were significantly more common among co-infected patients than among HIV-infected-only patients (p=0.042). The lowest T CD4+ cells counts were associated with genotype 1 and the highest with genotype 2b (p=0.05). The GBV-C/HGV infection prevalence was 30% among HIV-1-infected subjects, and was associated with lower VL and higher CD4+ lymphocyte counts. GBV-C/HGV genotype 2b may be associated with better immunological response. PMID:20420864

  7. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe crocata.

    PubMed

    Bicchi, Carlo; Rubiolo, Patrizia; Ballero, Mauro; Sanna, Cinzia; Matteodo, Maura; Esposito, Francesca; Zinzula, Luca; Tramontano, Enzo

    2009-10-01

    The essential oils of Ridolfia segetum (L.) Moris and Oenanthe crocata L. (Apiaceae), collected in Sardinia (Italy), have been assayed for two enzyme-associated activities of the HIV-1 reverse transcriptase (RT): RNA-dependent DNA polymerase (RDDP) activity and ribonuclease H (RNase H) activity. In biochemical assays, the essential oils inhibited HIV-1 RT RDDP activity in a dose-dependent manner, while they were inactive towards RNase H activity. Furthermore, the oils were cytotoxic towards K (562) cell replication. GC-MS analysis of the essential oils obtained by steam distillation of the aerial parts showed that the main components of R. segetum were alpha-phellandrene, alpha-terpinolene, beta-phellandrene, and dillapiol and those of O. crocata were sabinene, TRANS-beta-ocimene, CIS-beta-ocimene, and beta-pinene. PMID:19347799

  8. Association between active GB virus-C (hepatitis G) infection and HIV-1 disease in Uganda.

    PubMed

    Yirrell, D L; Wright, E; Shafer, L A; Campbell, E; Van der Paal, L; Kaleebu, P; Grosskurth, H; Whitworth, J A

    2007-04-01

    Although not linked to a disease, GB virus-C viraemia has been associated with an improved prognosis in HIV-1-co-infected individuals. Most studies have been conducted on men (men who have sex with men or injection drug users) infected with HIV-1 subtype B, whereas here we report on both male and female subjects from rural Uganda, predominantly infected via the heterosexual route with HIV-1 subtypes A and D. In a longitudinal study of 272 participants, 47 were GBV-C positive and 181 negative, as determined by reverse transcription-polymerase chain reaction, in both of two plasma samples taken a median of 5.0 years apart. The remainder either acquired (25) or cleared (19) infection. Multilevel regression analyses and Cox survival analyses revealed that participants chronically infected with GBV-C had a slower decline in CD4(+) T cells (P<0.001) and increased survival time (P=0.041) compared with GBV-C RNA-negative, HIV-positive adults. We show that the association between active GBV-C co-infection and improved survival of HIV-1-infected adults is not restricted to HIV subtype B, but is also observed in both males and females infected with HIV subtypes A and D. PMID:17509174

  9. Synthesis and Anti-HIV-1 Evaluation of Some Novel MC-1220 Analogs as Non-Nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Loksha, Yasser M; Pedersen, Erik B; Loddo, Roberta; La Colla, Paolo

    2016-05-01

    Some novel MC-1220 analogs were synthesized by condensation of 4,6-dichloro-N-methylpyrimidin-2-amine derivatives (1a,b and 15) and/or 4-chloro-6-methoxy-N,N,5-trimethylpyrimidin-2-amine (2a) with the sodium salt of 2,6-difluorophenylacetonitrile followed by treatment with aqueous sodium hydroxide in methanol, alkylation, reduction, halogenation, and/or acidic hydrolysis. All synthesized compounds were evaluated for their activity against HIV-1. The most active compound in this study was compound 7, which showed activity against HIV-1 comparable to that of MC-1220. The only difference in structure between compound 7 and MC-1220 is a fluoro atom instead of a CH3 group. PMID:26996241

  10. Activation domains of transcription factors mediate replication dependent transcription from a minimal HIV-1 promoter.

    PubMed Central

    Williams, R D; Lee, B A; Jackson, S P; Proudfoot, N J

    1996-01-01

    Transcription from a minimal HIV-1 promoter containing the three Sp1 binding sites and TATA box can be activated without Tat by template DNA replication. Here we show that this activation can also be mediated by recombinant GAL4 fusion proteins containing the activation domains of Sp1, VP16 or CTF (or by full-length GAL4) targeted to the HIV-1 promoter by replacing the Sp1 sites with five GAL4 binding sites. Thus Sp1 is not unique in its ability to mediate replication activated transcription, although the degree of processivity elicited by the different activators varied significantly from strongly processive (GAL4-VP16) to relatively non-processive (GAL4-Sp1 or -CTF). Processive GAL4-VP16-activated transcription, but not efficient initiation, required multiple GAL4 binding sites. In the presence of Tat, transcription with GAL4-SP1 and GAL4-CTF was further activated (principally at the level of processivity) but GAL4-VP16-potentiated transcription was only slightly stimulated. The Tat-dependent switch from non-processive to fully processive transcription was particularly marked for GAL4-Sp1, an effect which may be relevant to the selection of Sp1 binding sites by the HIV-1 promoter. PMID:8604293

  11. Effect of mimetic CDK9 inhibitors on HIV-1 activated transcription

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Jaworski, Elizabeth; Sampey, Gavin; Klase, Zachary; Chen, Hao; Zeng, Chen; Kovalskyy, Dmytro; el Kouni, Mahmoud H.; Lepene, Benjamin; Patanarut, Alexis; Nekhai, Sergei; Price, David H.; Kashanchi, Fatah

    2013-01-01

    Potent antiretroviral therapy (ART) has transformed HIV-1 infection into a chronic manageable disease; however drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study we utilized a combination of structure based analysis of Cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket which showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell based biological assays. Using these methods we obtained the first generation mimetic drugs and tested these compounds on HIV-1 LTR activated transcription. Using biological assays followed by similar in silico analysis to find a 2nd generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the 2nd generation mimetic against various viral isolates, and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2-/-γc-/- with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis. PMID:23247501

  12. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail.

    PubMed

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisne, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  13. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by B cell activation and RT-PCR cloning].

    PubMed

    Wang, Hui-Min; Xu, Ke; Yu, Shuang-Qing; Ding, Lin-Lin; Luo, Hai-Yan; Flinko, Robin; Lewis, George K; Feng, Xia; Shao, Ji-Rong; Guan, Yong-Jun; Zeng, Yi

    2012-06-01

    To obtain protective human monoclonal antibody from HIV-1 infected person, we adapted a technology for isolating antigen specific monoclonal antibody from human memory B cells through in vitro B cell activation coupled with RT-PCT and expression cloning. Human B cells were purified by negative sorting from PBMCs of HIV-1 infected individuals and memory B cells were further enriched using anti-CD27 microbeads. Two hundred memory B cells per well were cultured in 96-well round-bottom plates Env-specific antibodies in supernatants were with feeder cells in medium containing EBV and CpG. screened by ELISA after 1-2 weeks' culture. Cells from positive wells of Env-specific antibody were harvested and total RNA was isolated. Human VH and Vkappa or Vlambda genes were amplified by RT-PCR and cloned into IgG1 and kappa or lambda expressing vectors. Functional VH and Vkappa or Vlambda were identified by cotransfecting 293T cells with individual heavy chain and light chain clones followed by analysis of culture supernatants by ELISA for Env-specific antibodies. Finally, corresponding mAb was produced by transient transfection of 293T cells with the identified VH and Vkappa/lambda pair and purified by protein A affinity chromatography. Purified monocolonal antibodies were used for HIV-1 specific antibody-dependent cell-mediated cytotoxicity (ADCC) and neutralizing activity assay. Four monocolonal Env-specific antibodies were isolated from one HIV-1 subtype B' infected individual. Two of them showed strong ADCC activity and one showed weak neutralizing activity against HIV-1. Its further studies on their application in therapeutic or prophylactic vaccines against HIV-1 should be grounded. PMID:22978159

  14. Octanorcucurbitane and cucurbitane triterpenoids from the tubers of Hemsleya endecaphylla with HIV-1 inhibitory activity.

    PubMed

    Chen, Jian-Chao; Zhang, Gao-Hong; Zhang, Zhong-Quan; Qiu, Ming-Hua; Zheng, Yong-Tang; Yang, Liu-Meng; Yu, Kai-Bei

    2008-01-01

    Two new cucurbitacins, endecaphyllacins A (1) and B (2), together with six known analogues (3-8), were isolated from the tubers of Hemsleya endecaphylla. The structures of 1 and 2 were elucidated by NMR and MS spectroscopic analysis. The relative stereochemistry of 1 was determined by single-crystal X-ray diffraction. Compound 4 (cucurbitacin B) showed potent anti-HIV-1 in C8166 cells (EC=0.09 microg/mL) with a selectivity index of 16.7. PMID:18088099

  15. Short communication: T cell activation in HIV-1/herpes simplex virus-2-coinfected Kenyan women receiving valacyclovir.

    PubMed

    Roxby, Alison C; Liu, Amy Y; Drake, Alison L; Kiarie, James N; Richardson, Barbra; Lohman-Payne, Barbara L; John-Stewart, Grace C; Wald, Anna; De Rosa, Stephen; Farquhar, Carey

    2013-01-01

    Herpes simplex virus-2 (HSV-2) suppression with acyclovir or valacyclovir reduces HIV-1 viral RNA levels; one hypothesis is that HSV-2 suppression reduces immune activation. We measured T cell immune activation markers among women participating in a randomized placebo-controlled trial of valacyclovir to reduce HIV-1 RNA levels among pregnant women. Although valacyclovir was associated with lower HIV-1 RNA levels, the distribution of both CD4(+) and CD8(+) CD38(+)HLA-DR(+) T cells was not different among women taking valacyclovir when compared to women taking placebo. Further study is needed to understand the mechanism of HIV-1 RNA reduction following herpes suppression among those coinfected with HIV-1 and HSV-2. PMID:22852760

  16. A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies

    PubMed Central

    Ding, Shilei; Veillette, Maxime; Coutu, Mathieu; Prévost, Jérémie; Scharf, Louise; Bjorkman, Pamela J.; Ferrari, Guido; Robinson, James E.; Stürzel, Christina; Hahn, Beatrice H.; Sauter, Daniel; Kirchhoff, Frank; Lewis, George K.; Pazgier, Marzena

    2015-01-01

    Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals. PMID:26637462

  17. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  18. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera.

    PubMed

    Wang, Shou-Xian; Liu, Yu; Zhang, Guo-Qing; Zhao, Shuang; Xu, Feng; Geng, Xiao-Li; Wang, He-Xiang

    2012-01-01

    A novel serine protease, designated as cordysobin, was purified from dried fruiting bodies of the mushroom Cordyceps sobolifera. The isolation procedure utilized ion exchange chromatography on DEAE-cellulose and SP-Sepharose followed by gel filtration on Superdex 75. The protease did not adsorb on DEAE-cellulose but bound to SP-Sepharose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protease resolved as a single band with an apparent molecular mass of 31 kDa. Its optimal pH was 10.0, and the optimal temperature was 65°C. The protease displayed a K(m) value of 0.41 μM and 13.44 μM·min⁻¹ using Suc-Leu-Leu-Val-Tyr-MCA as substrate at pH 10.0 and 37°C. Protease activity was enhanced by the Fe²⁺ ion at low concentration range of 1.25-10 mM and was strongly inhibited by Hg²⁺ up to 1.25 mM. The protease was strongly inhibited by chymostatin and phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease. It manifested significant inhibitory activity toward HIV-1 reverse transcriptase (RT) with an IC₅₀ value of 8.2×10⁻³ μM, which is the highest anti-HIV-1 RT activity of reported mushroom proteins. PMID:22014786

  19. Multiple Protein Kinases via Activation of Transcription Factors NF-κB, AP-1 and C/EBP-δ Regulate the IL-6/IL-8 Production by HIV-1 Vpr in Astrocytes

    PubMed Central

    Gangwani, Mohitkumar R.; Kumar, Anil

    2015-01-01

    Neurocognitive impairments affect a substantial population of HIV-1 infected individuals despite the success of anti-retroviral therapy in controlling viral replication. Astrocytes are emerging as a crucial cell type that might be playing a very important role in the persistence of neuroinflammation seen in patients suffering from HIV-1 associated neurocognitive disorders. HIV-1 viral proteins including Vpr exert neurotoxicity through direct and indirect mechanisms. Induction of IL-8 in microglial cells has been shown as one of the indirect mechanism through which Vpr reduces neuronal survival. We show that HIV-1 Vpr induces IL-6 and IL-8 in astrocytes in a time-dependent manner. Additional experiments utilizing chemical inhibitors and siRNA revealed that HIV-1 Vpr activates transcription factors NF-κB, AP-1 and C/EBP-δ via upstream protein kinases PI3K/Akt, p38-MAPK and Jnk-MAPK leading to the induction of IL-6 and IL-8 in astrocytes. We demonstrate that one of the mechanism for neuroinflammation seen in HIV-1 infected individuals involves induction of IL-6 and IL-8 by Vpr in astrocytes. Understanding the molecular pathways involved in the HIV-1 neuroinflammation would be helpful in the design of adjunct therapy to ameliorate some of the symptoms associated with HIV-1 neuropathogenesis. PMID:26270987

  20. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1.

    PubMed

    Finley, Jahahreeh

    2016-08-01

    In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular

  1. Validation of a computed radiography device to monitor the HIV-1 RNase H activity

    NASA Astrophysics Data System (ADS)

    Esposito, F.; Fanti, V.; Marzeddu, R.; Randaccio, P.; Tramontano, E.; Zinzula, L.

    2009-08-01

    A commercially available computed radiography (CR) system for dental radiography was used to produce images from radiolabeled polyacrilamide gel electrophoresis (PAGE) assays. Typically, similar investigations require specific and expensive autoradiography devices. The CR unit was characterized in terms of sensitivity and fading by means of a 90Sr source that well simulates the experimental conditions, and then used for quantitative analyses of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) polymerase-independent ribonuclease H (RNase H) activity monitored by PAGE analysis. The results showed that the present methodology allows quantifying effectively the RNase H catalyses and that the obtained data are in good agreement with previous reference works. Finally, in order to further validate the present method in terms of relationship between enzyme activity, the rate of products formation and signal intensity, a PAGE analyses of the HIV-1 RNase H inhibition by the known diketo acid derivative RDS1643 was carried out.

  2. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope

    PubMed Central

    2005-01-01

    Cell entry of enveloped viruses requires a wide-fusion-pore mechanism, involving clustering of fusion-activated proteins and fluidization of the plasma membrane and viral envelope. In the present study, GL (glycyrrhizin) is reported to lower membrane fluidity, thus suppressing infection by HIV, influenza A virus and vesicular stomatitis virus, but not by poliovirus. GL-treated HIV-1 particles showed reduced infectivity. GL also inhibited cell-to-cell fusion induced by HIV-1 and HTLV-I (human T-cell leukaemia virus type I). However, when cells treated with 1 mg/ml GL were placed in GL-free medium, they showed increased susceptibility to HIV-1 infection and HTLV-I fusion due to enhancement of membrane fluidity. The membrane dependence of GL and GL removal experiments suggest that GL does affect the cell entry of viruses. HIVs with more gp120 were less dependent on temperature and less sensitive to GL treatment than those with less gp120, indicating that the existence of more gp120 molecules resulted in a higher probability of forming a cluster of fusion-activated proteins. PMID:16053446

  3. Cytotoxic, Cytostatic and HIV-1 PR Inhibitory Activities of the Soft Coral Litophyton arboreum

    PubMed Central

    Ellithey, Mona S.; Lall, Namrita; Hussein, Ahmed A.; Meyer, Debra

    2013-01-01

    Bioassay-guided fractionation using different chromatographic and spectroscopic techniques in the analysis of the Red Sea soft coral Litophyton arboreum led to the isolation of nine compounds; sarcophytol M (1), alismol (2), 24-methylcholesta-5,24(28)-diene-3β-ol (3), 10-O-methyl alismoxide (4), alismoxide (5), (S)-chimyl alcohol (6), 7β-acetoxy-24-methylcholesta-5-24(28)-diene-3,19-diol (7), erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8), and 24-methylcholesta-5,24(28)-diene-3β,7β,19-triol (9). Some of the isolated compounds demonstrated potent cytotoxic- and/or cytostatic activity against HeLa and U937 cancer cell lines and inhibitory activity against HIV-1 protease (PR). Compound 7 was strongly cytotoxic against HeLa cells (CC50 4.3 ± 0.75 µM), with selectivity index of SI 8.1, which was confirmed by real time cell electronic sensing (RT-CES). Compounds 2, 7, and 8 showed strong inhibitory activity against HIV-1 PR at IC50s of 7.20 ± 0.7, 4.85 ± 0.18, and 4.80 ± 0.92 µM respectively. In silico docking of most compounds presented comparable scores to that of acetyl pepstatin, a known HIV-1 PR inhibitor. Interestingly, compound 8 showed potent HIV-1 PR inhibitory activity in the absence of cytotoxicity against the cell lines used. In addition, compounds 2 and 5 demonstrated cytostatic action in HeLa cells, revealing potential use in virostatic cocktails. Taken together, data presented here suggest Litophyton arboreum to contain promising compounds for further investigation against the diseases mentioned. PMID:24336129

  4. Synergistic activity profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C

    SciTech Connect

    Ferir, Geoffrey; Palmer, Kenneth E.; Schols, Dominique

    2011-09-01

    Griffithsin (GRFT) is possibly the most potent anti-HIV peptide found in natural sources. Due to its potent and broad-spectrum antiviral activity and unique safety profile it has great potential as topical microbicide component. Here, we evaluated various combinations of GRFT against HIV-1 clade B and clade C isolates in primary peripheral blood mononuclear cells (PBMCs) and in CD4{sup +} MT-4 cells. In all combinations tested, GRFT showed synergistic activity profile with tenofovir, maraviroc and enfuvirtide based on the median effect principle with combination indices (CI) varying between 0.34 and 0.79 at the calculated EC{sub 95} level. Furthermore, the different glycosylation patterns on the viral envelope of clade B and clade C gp120 had no observable effect on the synergistic interactions. Overall, we can conclude that the evaluated two-drug combination increases their antiviral potency and supports further clinical investigations in pre-exposure prophylaxis for GRFT combinations in the context of HIV-1 clade C infection.

  5. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity.

    PubMed Central

    Rosé, J R; Babé, L M; Craik, C S

    1995-01-01

    The human immunodeficiency virus type 1 (HIV-1) protease is the enzyme required for processing of the Gag and Gag-Pol polyproteins to yield mature, infectious virions. Although the complete absence of proteolytic activity prevents maturation, the level of activity sufficient for maturation and subsequent infectivity has not been determined. Amino acid substitutions that reduce catalytic activity without affecting substrate recognition have been engineered into the active site of the HIV-1 protease. The catalytic efficiency (kcat) of the HIV-1 protease is decreased 4-fold when threonine 26 is replaced by serine (T26S) and approximately 50-fold when alanine 28 is replaced by serine (A28S). Genes containing these mutations were cloned into a proviral vector for analysis of their effects on virion maturation and infectivity. The results show that virions containing the T26S protease variant, in which only 25% of the protease is active, are very similar to wild-type virions, although slight reductions in infectivity are observed. Virions containing the A28S protease variant are not infectious, even though a limited amount of polyprotein processing does occur. There appears to be a linear correlation between the level of protease activity and particle infectivity. Our observations suggest that a threshold of protease activity exists between a 4-fold and 50-fold reduction, below which processing is insufficient to yield infectious particles. Our data also suggest that a reduction of protease activity by 50-fold or greater is sufficient to prevent the formation of infectious particles. PMID:7535864

  6. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  7. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  8. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

    PubMed

    Vela Ramirez, J E; Roychoudhury, R; Habte, H H; Cho, M W; Pohl, N L B; Narasimhan, B

    2014-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  9. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells

    PubMed Central

    Vela Ramirez, J.E.; Roychoudhury, R.; Habte, H.H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B.

    2015-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells, and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by dendritic cells. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and antigen presenting cells and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  10. Activation and lysis of human CD4 cells latently infected with HIV-1

    PubMed Central

    Pegu, Amarendra; Asokan, Mangaiarkarasi; Wu, Lan; Wang, Keyun; Hataye, Jason; Casazza, Joseph P.; Guo, Xiaoti; Shi, Wei; Georgiev, Ivelin; Zhou, Tongqing; Chen, Xuejun; O'Dell, Sijy; Todd, John-Paul; Kwong, Peter D.; Rao, Srinivas S.; Yang, Zhi-yong; Koup, Richard A.; Mascola, John R.; Nabel, Gary J.

    2015-01-01

    The treatment of AIDS with combination antiretroviral therapy (cART) remains lifelong largely because the virus persists in latent reservoirs. Elimination of latently infected cells could therefore reduce treatment duration and facilitate immune reconstitution. Here we report an approach to reduce the viral reservoir by activating dormant viral gene expression and directing T lymphocytes to lyse previously latent, HIV-1-infected cells. An immunomodulatory protein was created that combines the specificity of a HIV-1 broadly neutralizing antibody with that of an antibody to the CD3 component of the T-cell receptor. CD3 engagement by the protein can stimulate T-cell activation that induces proviral gene expression in latently infected T cells. It further stimulates CD8 T-cell effector function and redirects T cells to lyse these previously latent-infected cells through recognition of newly expressed Env. This immunomodulatory protein could potentially help to eliminate latently infected cells and deplete the viral reservoir in HIV-1-infected individuals. PMID:26485194

  11. The HIV-1 Tat Protein Has a Versatile Role in Activating Viral Transcription ▿

    PubMed Central

    Das, Atze T.; Harwig, Alex; Berkhout, Ben

    2011-01-01

    It is generally acknowledged that the Tat protein has a pivotal role in HIV-1 replication because it stimulates transcription from the viral long terminal repeat (LTR) promoter by binding to the TAR hairpin in the nascent RNA transcript. However, a multitude of additional Tat functions have been suggested. The importance of these functions is difficult to assess in replication studies with Tat-mutated HIV-1 variants because of the dominant negative effect on viral gene expression. We therefore used an HIV-1 construct that does not depend on the Tat-TAR interaction for transcription to reevaluate whether or not Tat has a second essential function in HIV-1 replication. This HIV-rtTA variant uses the incorporated Tet-On gene expression system for activation of transcription and replicates efficiently upon complete TAR deletion. Here we demonstrated that Tat inactivation does nevertheless severely inhibit replication. Upon long-term culturing, the Tat-minus HIV-rtTA variant acquired mutations in the U3 region that improved promoter activity and reestablished replication. We showed that in the absence of a functional TAR, Tat remains important for viral transcription via Sp1 sequence elements in the U3 promoter region. Substitution of these U3 sequences with nonrelated promoter elements created a virus that replicates efficiently without Tat in SupT1 T cells. These results indicate that Tat has a versatile role in transcription via TAR and U3 elements. The results also imply that Tat has no other essential function in viral replication in cultured T cells. PMID:21752913

  12. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    PubMed

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  13. APOBEC3G Inhibits HIV-1 RNA Elongation by Inactivating the Viral Trans-Activation Response Element

    PubMed Central

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-01-01

    Deamination of cytidine residues in viral DNA (vDNA) is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient HIV-1 replication. dC to dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here we demonstrate that A3G provides an additional layer of defence against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. Finally, we show that free ssDNA termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3′+5′ ends is sufficient for A3G deamination, identifying A3G as an efficient mutator, and that deamination of (−)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  14. Low SAMHD1 expression following T-cell activation and proliferation renders CD4+ T cells susceptible to HIV-1

    PubMed Central

    Ruffin, Nicolas; Brezar, Vedran; Ayinde, Diana; Lefebvre, Cécile; Wiesch, Julian Schulze Zur; van Lunzen, Jan; Bockhorn, Maximilian; Schwartz, Olivier; Hocini, Hakim; Lelievre, Jean-Daniel; Banchereau, Jacques; Levy, Yves; Seddiki, Nabila

    2015-01-01

    Objectives: HIV-1 replication depends on the state of cell activation and division. It is established that SAMHD1 restricts HIV-1 infection of resting CD4+ T cells. The modulation of SAMHD1 expression during T-cell activation and proliferation, however, remains unclear, as well as a role for SAMHD1 during HIV-1 pathogenesis. Methods: SAMHD1 expression was assessed in CD4+ T cells after their activation and in-vitro HIV-1 infection. We performed phenotype analyzes using flow cytometry on CD4+ T cells from peripheral blood and lymph nodes from cohorts of HIV-1-infected individuals under antiretroviral treatment or not, and controls. Results: We show that SAMHD1 expression decreased during CD4+ T-cell proliferation in association with an increased susceptibility to in-vitro HIV-1 infection. Additionally, circulating memory CD4+ T cells are enriched in cells with low levels of SAMHD1. These SAMHD1low cells are highly differentiated, exhibit a large proportion of Ki67+ cycling cells and are enriched in T-helper 17 cells. Importantly, memory SAMHD1low cells were depleted from peripheral blood of HIV-infected individuals. We also found that follicular helper T cells present in secondary lymphoid organs lacked the expression of SAMHD1, which was accompanied by a higher susceptibility to HIV-1 infection in vitro. Conclusion: We demonstrate that SAMHD1 expression is decreased during CD4+ T-cell activation and proliferation. Also, CD4+ T-cell subsets known to be more susceptible to HIV-1 infection, for example, T-helper 17 and follicular helper T cells, display lower levels of SAMHD1. These results pin point a role for SAMHD1 expression in HIV-1 infection and the concomitant depletion of CD4+ T cells. PMID:25715102

  15. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection

    PubMed Central

    Hickling, Stephen; Hurst, Jacob; Meyerowitz, Jodi; Willberg, Christian B.; Robinson, Nicola; Brown, Helen; Kinloch, Sabine; Babiker, Abdel; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Phillips, Rodney; Frater, John

    2016-01-01

    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches. PMID:27415828

  16. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection.

    PubMed

    Hoffmann, Matthias; Pantazis, Nikos; Martin, Genevieve E; Hickling, Stephen; Hurst, Jacob; Meyerowitz, Jodi; Willberg, Christian B; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Babiker, Abdel; Weber, Jonathan; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Phillips, Rodney; Frater, John

    2016-07-01

    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches. PMID:27415828

  17. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection

    PubMed Central

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-01-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca2+ influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4+ T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. PMID:27383627

  18. Immune-Based Approaches to the Prevention of Mother-to-child-Transmission of HIV-1: Active and Passive Immunization

    PubMed Central

    Lohman-Payne, Barb; Slyker, Jennifer; Rowland-Jones, Sarah L.

    2010-01-01

    Synopsis Despite more than two decades of research, an effective vaccine that can prevent HIV-1 infection in populations exposed to the virus remains elusive. In the pursuit of an HIV-1 vaccine, does prevention of exposure to maternal HIV-1 in utero, at birth or in early life through breast-milk require special consideration? In this article we will review what is known about the immune mechanisms of susceptibility and resistance to mother-to-child transmission (MTCT) of HIV-1 and will summarise studies that have used passive or active immunisation strategies to interrupt -MTCT of HIV-1. We will also describe potentially modifiable infectious co-factors that may enhance transmission and/or disease progression (especially in the developing world). Ultimately an effective prophylactic vaccine against HIV-1 infection will need to be deployed as part of the Extended Programme of Immunisation (EPI) recommended by the World Health Organisation (WHO) for use in developing countries, so it is important to understand how the infant immune system responds to HIV-1 antigens, both in natural infection and presented by candidate vaccines. PMID:21078451

  19. A continuous enzyme-coupled assay for triphosphohydrolase activity of HIV-1 restriction factor SAMHD1.

    PubMed

    Arnold, Laurence H; Kunzelmann, Simone; Webb, Martin R; Taylor, Ian A

    2015-01-01

    The development of deoxynucleoside triphosphate (dNTP)-based drugs requires a quantitative understanding of any inhibition, activation, or hydrolysis by off-target cellular enzymes. SAMHD1 is a regulatory dNTP-triphosphohydrolase that inhibits HIV-1 replication in human myeloid cells. We describe here an enzyme-coupled assay for quantifying the activation, inhibition, and hydrolysis of dNTPs, nucleotide analogues, and nucleotide analogue inhibitors by triphosphohydrolase enzymes. The assay facilitates mechanistic studies of triphosphohydrolase enzymes and the quantification of off-target effects of nucleotide-based antiviral and chemotherapeutic agents. PMID:25331707

  20. 1,6-Bis[(benzyloxy)methyl]uracil derivatives-Novel antivirals with activity against HIV-1 and influenza H1N1 virus.

    PubMed

    Geisman, Alexander N; Valuev-Elliston, Vladimir T; Ozerov, Alexander A; Khandazhinskaya, Anastasia L; Chizhov, Alexander O; Kochetkov, Sergey N; Pannecouque, Christophe; Naesens, Lieve; Seley-Radtke, Katherine L; Novikov, Mikhail S

    2016-06-01

    A series of 1,6-bis[(benzyloxy)methyl]uracil derivatives combining structural features of both diphenyl ether and pyridone types of NNRTIs were synthesized. Target compounds were found to inhibit HIV-1 reverse transcriptase at micro- and submicromolar levels of concentrations and exhibited anti-HIV-1 activity in MT-4 cell culture, demonstrating resistance profile similar to first generation NNRTIs. The synthesized compounds also showed profound activity against influenza virus (H1N1) in MDCK cell culture without detectable cytotoxicity. The lead compound of this assay appeared to exceed rimantadine, amantadine, ribavirin and oseltamivir carboxylate in activity. The mechanism of action of 1,6-bis[(benzyloxy)methyl]uracils against influenza virus is currently under investigation. PMID:27112451

  1. A simplified and less expensive strategy for confirming anti HIV-1 screening results in a diagnostic laboratory in Lubumbashi, Zaire.

    PubMed

    Laleman, G; Kambale, M; Van Kerckhoven, I; Kapila, N; Konde, M; Selemani, U; Piot, P; van der Groen, G

    1991-12-01

    The conventional algorithm for HIV testing based on the confirmation of all positive anti-HIV screening reactions by Western blot (WB) is too expensive for developing countries. We investigated the validity of confirming positive screening assay reactions by a second screening test, limiting the use of the supplemental assay to the discrepant test results (algorithm 3), or screening all sera with 2 different assays and retesting all discrepant results by a supplemental assay (algorithm 4) on a panel of 519 sera in a regional reference laboratory in Lubumbashi, Zaire. Combining the Vironostika anti-HTLV-III ELISA with HIV Chek 1 + 2 or Clonatec Rapid HIV 1/2 Ab on all samples and retesting the discrepant results in WB or a line immunoassay (INNO-LIA) (algorithm 4), yielded a sensitivity of 100% and specificities of 98.4% and 99.0% respectively, at costs of 7.3 US $ and 9.3 US $ per test, respectively, for a 40% prevalence of HIV antibody positive samples. The conventional algorithm scored a sensitivity of 97.1% and a specificity of 100% for 11.3 US $ per test. The testing strategy of combining HIV Chek 1 + 2 and Clonatec Rapid HIV 1/2 Ab, an interesting option for small isolated centra, had a 96.6% sensitivity, but yielded only a slightly better specificity of 99.0%, as compared to 97.8% for HIV Chek alone. The price of combining the two simple assays using algorithm 3 was 6.8 US $ per test, using algorithm 4 was 10.6 US $. HIV testing strategies based on ELISA and a simple HIV test are a valuable alternative for reference laboratories faced with a high prevalence of HIV positive samples. PMID:1789703

  2. Activities, crystal structures and molecular dynamics of dihydro-1H-isoindole derivatives, inhibitors of HIV-1 integrase

    PubMed Central

    Métifiot, Mathieu; Maddali, Kasthuraiah; Johnson, Barry C.; Hare, Stephen; Smith, Steven J.; Zhao, XueZhi; Marchand, Christophe; Burke, Terrence R.; Hughes, Stephen H.; Cherepanov, Peter; Pommier, Yves

    2013-01-01

    Based on a series of lactam and phthalimide derivatives that inhibit HIV-1 integrase, we developed a new derivative, XZ-259, with biochemical and antiviral activities comparable to raltegravir. We determined the crystal structures of XZ-259 and four other derivatives in complex with the prototype foamy virus intasome. The compounds bind at the integrase-Mg2+-DNA interface of the integrase active site. In biochemical and antiviral assays, XZ-259 inhibits raltegravir-resistant HIV-1 integrases harboring the Y143R mutation. Molecular modeling is also presented suggesting that XZ-259 can bind in the HIV-1 intasome with its dimethyl sulfonamide group adopting two opposite orientations. Molecular dynamics analyses of the HIV-1 intasome highlight the importance of the viral DNA in drug potency. PMID:23075516

  3. The HEPT Analogue WPR-6 Is Active against a Broad Spectrum of Nonnucleoside Reverse Transcriptase Drug-Resistant HIV-1 Strains of Different Serotypes.

    PubMed

    Xu, Weisi; Zhao, Jianxiong; Sun, Jianping; Yin, Qianqian; Wang, Yan; Jiao, Yang; Liu, Junyi; Jiang, Shibo; Shao, Yiming; Wang, Xiaowei; Ma, Liying

    2015-08-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are important components of the highly active antiretroviral therapy (HAART) used to treat human immunodeficiency type 1 virus (HIV-1). However, because of the emergence of drug resistance and the adverse effects of current anti-HIV drugs, it is essential to develop novel NNRTIs with an excellent safety profile, improved activity against NNRTI-resistant viruses, and enhanced activity against clinical isolates of different subtypes. Here, we have identified 1-[(benzyloxy)methyl]-6-(3,5-dimethylbenzyl)-5-iodopyrimidine-2,4(1H,3H)-dione (WPR-6), a novel NNRTI with a 50% effective concentration (EC50) of 2 to 4 nM against laboratory-adapted HIV-1 strain SF33 and an EC50 of 7 to 14 nM against nucleoside reverse transcriptase inhibitor-resistant HIV-1 strain 7391 with a therapeutic index of >1 × 10(4). A panel of five representative clinical virus isolates of different subtypes circulating predominantly in China was highly sensitive to WPR-6, with EC50s ranging from 1 to 6 nM. In addition, WPR-6 showed excellent antiviral potency against the most prevalent NNRTI-resistant viruses containing the K103N and Y181C mutations. To determine whether WPR-6 selects for novel resistant mutants, in vitro resistance selection was conducted with laboratory-adapted HIV-1 strain SF33 on MT-4 cells. The results demonstrated that V106I and Y188L were the two dominant NNRTI-associated resistance mutations detected in the breakthrough viruses. Taken together, these in vitro data indicate that WPR-6 has greater efficacy than the reference HEPT analogue TNK651 and the marketed drug nevirapine against HIV-1. However, to develop it as a new NNRTI, further improvement of its pharmacological properties is warranted. PMID:26055365

  4. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease.

    PubMed

    Pokorná, Jana; Heyda, Jan; Konvalinka, Jan

    2013-01-01

    Human immunodeficiency virus 1 protease (HIV-1 PR), an important therapeutic target for the treatment of AIDS, is one of the most well-studied enzymes. However, there is still much to learn about the regulation of the activity and inhibition of this key viral enzyme. Specifically, the mechanism of activation of HIV-1 PR from the viral polyprotein upon HIV maturation is still not understood. It has been suggested that external factors like pH or salt concentration might contribute to regulation of this crucial step in the viral life cycle. Recently, we analyzed the activity of HIV-1 PR in aqueous solutions of sodium and potassium chloride by experimental determination of enzyme kinetics and molecular dynamics simulations. We showed that the effect of salt concentration is cation-specific [Heyda et al., Phys. Chem. Chem. Phys., 2009 (11), 7599]. In this study, we extended this analysis for other alkali cations and found that the dependence of the initial velocity of peptide substrate hydrolysis on the nature of the cation follows the Hofmeister series, with the exception of caesium. Significantly higher catalytic efficiencies both in terms of substrate binding (K(M)) and turnover number (kcat) are observed in the presence of K+ compared to Na+ or Li+ at corresponding salt concentrations. Molecular dynamics simulations suggest that both lithium and sodium are attracted more strongly than potassium and caesium to the protein surface, mostly due to stronger interactions with carboxylate side chain groups of aspartates and glutamates. Furthermore, we observed a surprising decrease in the K(M) value for a specific substrate at very low salt concentration. The molecular mechanism of this phenomenon will be further analyzed. PMID:23795510

  5. GSK3β-Activation is a Point of Convergence for HIV-1 and Opiate-Mediated Interactive Neurotoxicity

    PubMed Central

    Masvekar, Ruturaj R.; El-Hage, Nazira; Hauser, Kurt F.; Knapp, Pamela E.

    2015-01-01

    Infection of the CNS with HIV-1 occurs rapidly after primary peripheral infection. HIV-1 can induce a wide range of neurological deficits, collectively known as HIV-1-associated neurocognitive disorders. Our previous work has shown that the selected neurotoxic effects induced by individual viral proteins, Tat and gp120, and by HIV+ supernatant are enhanced by co-exposure to morphine. This mimics co-morbid neurological effects observed in opiate-abusing HIV+ patients. Although there is a correlation between opiate drug abuse and progression of HIV-1-associated neurocognitive disorders, the mechanisms underlie interactions between HIV-1 and opiates remain obscure. Previous studies have shown that HIV-1 induces neurotoxic effects through abnormal activation of GSK3β. Interestingly, expression of GSK3β has shown to be elevated in brains of young opiate abusers indicating that GSK3β is also linked to neuropathology seen with opiate abusing patients. Thus, we hypothesize that GSK3β activation is a point of convergence for HIV- and opiate-mediated interactive neurotoxic effects. Neuronal cultures were treated with supernatant from HIV-1SF162-infected THP-1 cells, in the presence or absence of morphine and GSK3β inhibitors. Our results show that GSK3β inhibitors, including valproate and small molecule inhibitors, significantly reduce HIV-1-mediated neurotoxic outcomes, and also negate interactions with morphine that result in cell death, suggesting that GSK3β-activation is an important point of convergence and a potential therapeutic target for HIV- and opiate-mediated neurocognitive deficits. PMID:25616162

  6. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy

    PubMed Central

    West, Anthony P.; Scharf, Louise; Scheid, Johannes F.; Klein, Florian; Bjorkman, Pamela J.; Nussenzweig, Michel C.

    2014-01-01

    Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection. PMID:24529371

  7. Inhibition of reverse transcriptase activity increases stability of the HIV-1 core.

    PubMed

    Yang, Yang; Fricke, Thomas; Diaz-Griffero, Felipe

    2013-01-01

    Previous studies showed that HIV-1 reverse transcription occurs during or before uncoating, linking mechanistically reverse transcription with uncoating. Here we show that inhibition of reverse transcriptase (RT) during HIV-1 infection by pharmacologic or genetic means increased the stability of the HIV-1 core during infection. Interestingly, HIV-1 particles with increased core stability were resistant to the core-destabilizing effects of rhesus TRIM5α (TRIM5α(rh)). Collectively, this work implies that the surface of the HIV-1 core is dynamic and changes upon the ongoing processes within the core. PMID:23077298

  8. Systemic Immune Activation Profiles of HIV-1 Subtype C-Infected Children and Their Mothers

    PubMed Central

    Makhubele, Tinyiko G.; Steel, Helen C.; Anderson, Ronald; van Dyk, Gisela; Theron, Annette J.; Rossouw, Theresa M.

    2016-01-01

    Little is known about immune activation profiles of children infected with HIV-1 subtype C. The current study compared levels of selected circulating biomarkers of immune activation in HIV-1 subtype C-infected untreated mothers and their children with those of healthy controls. Multiplex bead array, ELISA, and immunonephelometric procedures were used to measure soluble CD14 (sCD14), beta-2 microglobulin (β2M), CRP, MIG, IP-10, and transforming growth factor beta 1 (TGF-β1). Levels of all 6 biomarkers were significantly elevated in the HIV-infected mothers and, with the exception of MIG, in their children (P < 0.01–P < 0.0001). The effects of antiretroviral therapy (ART) and maternal smoking on these biomarkers were also assessed. With the exception of TGF-β1, which was unchanged in the children 12 months after therapy, initiation of ART was accompanied by decreases in the other biomarkers. Regression analysis revealed that although most biomarkers were apparently unaffected by smoking, exposure of children to maternal smoking was associated with a significant increase in IP-10. These findings demonstrate that biomarkers of immune activation are elevated in HIV-infected children pre-ART and decline, with the exception of TGF-β1, after therapy. Although preliminary, elevation of IP-10 in smoke-exposed infants is consistent with a higher level of immune activation in this group. PMID:27019552

  9. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1

    PubMed Central

    Borges, Andrew Rosa; Ptak, Roger G; Wang, Yanping; Dimitrov, Antony S; Alam, S. Munir; Wieczorek, Lindsay; Bouma, Peter; Fouts, Timothy; Jiang, Shibo; Polonis, Victoria R; Haynes, Barton F; Quinnan, Gerald V; Montefiori, David C; Dimitrov, Dimiter S

    2010-01-01

    Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from group M (clades A–G) using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG1 b12, 2G12, 2F5 and 4e10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (t-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (pS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. these results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development. PMID:20305395

  10. Infection by HIV-1 blocked by binding of dextrin 2-sulphate to the cell surface of activated human peripheral blood mononuclear cells and cultured T-cells.

    PubMed Central

    Shaunak, S; Gooderham, N J; Edwards, R J; Payvandi, N; Javan, C M; Baggett, N; MacDermot, J; Weber, J N; Davies, D S

    1994-01-01

    1. Structural analogues of a sulphated polysaccharide, dextrin sulphate, were synthesized and tested for their ability to block infection by HIV-1. Using the T-cell lines, C8166 and HPB-ALL, and the laboratory adapted strains of HIV-1.MN, HIV-1.IIIb and HIV-1.RF, dextrin 2-sulphate (D2S) combined the best combination of high anti-HIV-1 activity (95% inhibitory concentration (IC95) = 230 nM) and low anticoagulant activity. It also blocked infection of activated peripheral blood mononuclear (PBMN) cells by five primary viral isolates at an IC95 of 230-3700 nM depending upon the primary viral isolate tested. 2. In saturation binding studies, [3H]-D2S bound to a cell surface protein on HPB-ALL cells in a specific and saturable manner with a Kd of 82 +/- 14 nM and a Bmax of 4.8 +/- 0.3 pmol/10(6) cells. It bound to other human T-cell lines in a similar manner. 3. There was very little binding of [3H]-D2S to freshly isolated PBMN cells (Bmax 0.18 +/- 0.03 pmol/10(6) cells) and these cells could not be infected by HIV-1. Culture of PBMN cells in lymphocyte growth medium (LGM) containing IL-2 did not significantly change the Bmax of [3H]-D2S. In contrast, PBMN cells which had been cultured with phytohaemagglutinin (PHA; 5 micrograms ml-1) for 72 h had a Bmax of [3H]-D2S binding of 7.2 +/- 0.1 pmol/10(6) cells and these cells could be infected by HIV-1. Removal of the PHA and further culture of the PBMN cells in LGM containing IL-2 resulted in a fall in the Bmax to 2.0 +/- 0.1 pmol/10(6) cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7812605

  11. Activation of Cannabinoid Type 2 Receptors Inhibits HIV-1 Envelope Glycoprotein gp120-Induced Synapse Loss

    PubMed Central

    Kim, Hee Jung; Shin, Angela H.

    2011-01-01

    HIV-1 infection of the central nervous system is associated with dendritic and synaptic damage that correlates with cognitive decline in patients with HIV-1-associated dementia (HAD). HAD is due in part to the release of viral proteins from infected cells. Because cannabinoids modulate neurotoxic and inflammatory processes, we investigated their effects on changes in synaptic connections induced by the HIV-1 envelope glycoprotein gp120. Morphology and synapses between cultured hippocampal neurons were visualized by confocal imaging of neurons expressing DsRed2 and postsynaptic density protein 95 fused to green fluorescent protein (PSD95-GFP). Twenty-four-hour treatment with gp120 IIIB decreased the number of PSD95-GFP puncta by 37 ± 4%. The decrease was concentration-dependent (EC50 = 153 ± 50 pM). Synapse loss preceded cell death as defined by retention of DsRed2 fluorescence gp120 activated CXCR4 on microglia to evoke interleukin-1β (IL-1β) release. Pharmacological studies determined that sequential activation of CXCR4, the IL-1β receptor, and the N-methyl-d-aspartate receptor was required. Expression of alternative reading frame polypeptide, which inhibits the ubiquitin ligase murine double minute 2, protected synapses, implicating the ubiquitin-proteasome pathway. Cannabimimetic drugs are of particular relevance to HAD because of their clinical and illicit use in patients with AIDS. The cannabinoid receptor full agonist [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt] (Win55,212-2) inhibited gp120-induced IL-1β production and synapse in a manner reversed by a cannabinoid type 2 receptor antagonist. In contrast, Win55,212-2 did not inhibit synapse loss elicited by exposure to the HIV-1 protein Tat. These results indicate that cannabinoids prevent the impairment of network function produced by gp120 and, thus, might have therapeutic potential in HAD. PMID:21670103

  12. Neisseria gonorrhoeae enhances HIV-1 infection of primary resting CD4+ T cells through TLR2 activation.

    PubMed

    Ding, Jian; Rapista, Aprille; Teleshova, Natalia; Mosoyan, Goar; Jarvis, Gary A; Klotman, Mary E; Chang, Theresa L

    2010-03-15

    Sexually transmitted infections increase the likelihood of HIV-1 transmission. We investigated the effect of Neisseria gonorrheae (gonococcus [GC]) exposure on HIV replication in primary resting CD4(+) T cells, a major HIV target cell during the early stage of sexual transmission of HIV. GC and TLR2 agonists, such as peptidylglycan (PGN), Pam(3)CSK(4), and Pam(3)C-Lip, a GC-derived synthetic lipopeptide, but not TLR4 agonists including LPS or GC lipooligosaccharide enhanced HIV-1 infection of primary resting CD4(+) T cells after viral entry. Pretreatment of CD4(+) cells with PGN also promoted HIV infection. Anti-TLR2 Abs abolished the HIV enhancing effect of GC and Pam(3)C-Lip, indicating that GC-mediated enhancement of HIV infection of resting CD4(+) T cells was through TLR2. IL-2 was required for TLR2-mediated HIV enhancement. PGN and GC induced cell surface expression of T cell activation markers and HIV coreceptors, CCR5 and CXCR4. The maximal postentry HIV enhancing effect was achieved when PGN was added immediately after viral exposure. Kinetic studies and analysis of HIV DNA products indicated that GC exposure and TLR2 activation enhanced HIV infection at the step of nuclear import. We conclude that GC enhanced HIV infection of primary resting CD4(+) T cells through TLR2 activation, which both increased the susceptibility of primary CD4(+) T cells to HIV infection as well as enhanced HIV-infected CD4(+) T cells at the early stage of HIV life cycle after entry. This study provides a molecular mechanism by which nonulcerative sexually transmitted infections mediate enhancement of HIV infection and has implication for HIV prevention and therapeutics. PMID:20147631

  13. Phenyl-1-Pyridin-2yl-Ethanone-Based Iron Chelators Increase IκB-α Expression, Modulate CDK2 and CDK9 Activities, and Inhibit HIV-1 Transcription

    PubMed Central

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash

    2014-01-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  14. Phenyl-1-Pyridin-2yl-ethanone-based iron chelators increase IκB-α expression, modulate CDK2 and CDK9 activities, and inhibit HIV-1 transcription.

    PubMed

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash; Nekhai, Sergei

    2014-11-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  15. Monocyte activation by circulating fibronectin fragments in HIV-1-infected patients.

    PubMed

    Trial, JoAnn; Rubio, Jose A; Birdsall, Holly H; Rodriguez-Barradas, Maria; Rossen, Roger D

    2004-08-01

    To identify signals that can alter leukocyte function in patients receiving highly active antiretroviral therapy (HAART), we analyzed single blood samples from 74 HIV-1-infected patients and additional blood was collected at 90-day intervals from 51 HIV-1-infected patients over a 516 +/- 172 (mean +/- SD) day interval. Despite the absence of circulating immune complexes and normalization of phagocytic function, compared with controls, the fraction of patients' monocytes expressing CD49e and CD62L was decreased and expression of CD11b and CD86 increased. Plasma from 63% of patients but none from normal controls contained 110-120 kDa fibronectin fragments (FNf). Presence of FNf did not reflect poor adherence to therapy. Addition of FNf to normal donor blood in vitro replicated changes in monocyte CD49e, CD62L, CD11b, and CD86 seen in vivo. FNf also induced monocytes to release a serine proteinase, nominally identified as proteinase-3, that hydrolyzed cell surface CD49e. alpha(1)-Antitrypsin blocked FNf-induced shedding of CD49e in a dose-dependent manner. Plasma with a normal frequency of CD49e(+) monocytes contained antiproteases that partially blocked FNf-induced monocyte CD49e shedding, whereas plasma from patients with a low frequency of CD49e(+) monocytes did not block this effect of FNf. Electrophoretic analyses of plasma from the latter group of patients suggested that a significant fraction of their alpha(1)-antitrypsin was tied up in high molecular mass complexes. These results suggest that monocyte behavior in HIV-1-infected patients may be influenced by FNf and the ratio of protease and antiproteases in the cells' microenvironment. PMID:15265957

  16. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    PubMed

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented. PMID:22728817

  17. HIV-1 Tat Protein Induces Production of Proinflammatory Cytokines by Human Dendritic Cells and Monocytes/Macrophages through Engagement of TLR4-MD2-CD14 Complex and Activation of NF-κB Pathway

    PubMed Central

    Leghmari, Kaoutar; Serrero, Manutea; Delobel, Pierre; Izopet, Jacques; BenMohamed, Lbachir; Bahraoui, Elmostafa

    2015-01-01

    We recently reported that the human immunodeficiency virus type-1 (HIV-1) Tat protein induced the expression of programmed death ligand-1 (PD-L1) on dendritic cells (DCs) through a TLR4 pathway. However, the underlying mechanisms by which HIV-1 Tat protein induces the abnormal hyper-activation of the immune system seen in HIV-1 infected patients remain to be fully elucidated. In the present study, we report that HIV-1 Tat protein induced the production of significant amounts of the pro-inflammatory IL-6 and IL-8 cytokines by DCs and monocytes from both healthy and HIV-1 infected patients. Such production was abrogated in the presence of anti-TLR4 blocking antibodies or soluble recombinant TLR4-MD2 as a decoy receptor, suggesting TLR4 was recruited by Tat protein. Tat-induced murine IL-6 and CXCL1/KC a functional homologue of human IL-8 was abolished in peritoneal macrophages derived from TLR4 KO but not from Wt mice, confirming the involvement of the TLR4 pathway. Furthermore, the recruitment of TLR4-MD2-CD14 complex by Tat protein was demonstrated by the activation of TLR4 downstream pathways including NF-κB and SOCS-1 and by down-modulation of cell surface TLR4 by endocytosis in dynamin and lipid-raft-dependent manners. Collectively, these findings demonstrate, for the first time, that HIV-1 Tat interacts with TLR4-MD2-CD14 complex and activates the NF-κB pathway, leading to overproduction of IL-6 and IL-8 pro-inflammatory cytokines by myeloid cells from both healthy and HIV-1 infected patients. This study reveals a novel mechanism by which HIV-1, via its early expressed Tat protein, hijacks the TLR4 pathway, hence establishing abnormal hyper-activation of the immune system. PMID:26090662

  18. Nucleic Acid Chaperone Activity of HIV-1 NC Proteins Investigated by Single Molecule DNA Stretching

    NASA Astrophysics Data System (ADS)

    Williams, Mark C.; Gorelick, Robert J.; Musier-Forsyth, Karin; Bloomfield, Victor A.

    2002-03-01

    HIV-1 Nucleocapsid Protein (NC) is a nucleic acid chaperone protein that is responsible for facilitating numerous nucleic acid rearrangements throughout the reverse transcription cycle of HIV-1. To understand the mechanism of NC’s chaperone function, we carried out single molecule DNA stretching studies in the presence of NC and mutant forms of NC. Using an optical tweezers instrument, we stretch single DNA molecules from the double-stranded helical state to the single-stranded (coil) state. Based on the observed cooperativity of DNA force-induced melting, we find that the fraction of melted base pairs at room temperature is increased dramatically in the presence of NC. Thus, upon NC binding, increased thermal fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations in order to find the lowest energy state. While NC destabilizes the double-stranded form of DNA, a mutant form of NC that lacks the zinc finger structures does not. DNA stretching experiments carried out in the presence of NC variants containing more subtle changes in the zinc finger structures were conducted to elucidate the contribution of each individual finger to NC’s chaperone activity, and these results will be reported.

  19. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication.

    PubMed

    Steinkasserer, A; Harrison, R; Billich, A; Hammerschmid, F; Werner, G; Wolff, B; Peichl, P; Palfi, G; Schnitzel, W; Mlynar, E

    1995-02-01

    SDZ NIM 811 is a cyclosporin A analog that is completely devoid of immunosuppressive capacity but exhibits potent and selective anti-human immunodeficiency virus type 1 (HIV-1) activity. The mechanism of action of SDZ NIM 811 is clearly different from those of all other anti-HIV agents described so far. In cell-free assays, it is not an inhibitor of reverse transcriptase, protease, integrase, and it does not interfere with Rev or Tat function. SDZ NIM 811 does not down-regulate CD4 or inhibit fusion between infected and uninfected, CD4-expressing cells. p24 production from chronically HIV-infected cells is not impaired either. To elucidate the mode of action of SDZ NIM 811, we performed DNA PCR analysis in HIV-1 IIIB-infected MT4 cells in one cycle of virus replication. The effects of SDZ NIM 811 on the kinetics of viral DNA synthesis, appearance of two-long terminal repeat circles (2-LTR circles), and integration of DNA were studied. SDZ NIM 811 inhibited 2-LTR circle formation in a concentration-dependent manner, which is indicative of nuclear localization of preintegration complexes. Half-maximal inhibition was achieved at 0.17 microgram/ml; this concentration is close to the 50% inhibitory concentrations (0.01 to 0.2 microgram/ml) for viral growth inhibition. As expected, integration of proviral DNA into cellular DNA was also inhibited by SDZ NIM 811. Analysis of the viral particles produced by SDZ NIM 811-treated, chronically infected cells revealed amounts of capsid proteins, reverse transcriptase activity, and viral RNA comparable to those of the untreated control. However, these particles showed a dose-dependent reduction in infectivity (50% inhibitory concentration of 0.028 microgram/ml) which indicates that the assembly process is also impaired by SDZ NIM 811. Gag proteins are postulated to play a role not only in assembly but also in early steps of viral replication, e.g., nuclear localization of the preintegration complex. Recently, it was reported that

  20. Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism

    PubMed Central

    Díaz, Laura; Martínez-Bonet, Marta; Sánchez, Javier; Fernández-Pineda, Alejandra; Jiménez, José Luis; Muñoz, Eduardo; Moreno, Santiago; Álvarez, Susana; Muñoz-Fernández, Mª Ángeles

    2015-01-01

    Multiple studies have shown that HIV-1 patients may develop virus reservoirs that impede eradication; these reservoirs include the central nervous system (CNS). Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. To broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as a latent HIV-1 activator. We used primary astrocytes, NHA cells, and astrocytoma cells U-87. Infected cells with HIV-1NL4.3 were treated with bryostatin alone or in combination with different inhibitors. HIV-1 production was quantified by using ELISA. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of the LTR promoter with the active NF-κB member p65/relA. To confirm the NF-κB role, Western blot and confocal microscopy were performed. Bryostatin reactivates latent viral infection in the NHA and U87 cells via activation of protein kinase C (PKC)-alpha and -delta, because the PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. No alteration in cell proliferation was found. Moreover, bryostatin strongly stimulated LTR transcription by activating the transcription factor NF-κB. Bryostatin could be a beneficial adjunct to the treatment of HIV-1 brain infection. PMID:26199173

  1. Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism.

    PubMed

    Díaz, Laura; Martínez-Bonet, Marta; Sánchez, Javier; Fernández-Pineda, Alejandra; Jiménez, José Luis; Muñoz, Eduardo; Moreno, Santiago; Álvarez, Susana; Muñoz-Fernández, Ma Ángeles

    2015-01-01

    Multiple studies have shown that HIV-1 patients may develop virus reservoirs that impede eradication; these reservoirs include the central nervous system (CNS). Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. To broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as a latent HIV-1 activator. We used primary astrocytes, NHA cells, and astrocytoma cells U-87. Infected cells with HIV-1(NL4.3) were treated with bryostatin alone or in combination with different inhibitors. HIV-1 production was quantified by using ELISA. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of the LTR promoter with the active NF-κB member p65/relA. To confirm the NF-κB role, Western blot and confocal microscopy were performed. Bryostatin reactivates latent viral infection in the NHA and U87 cells via activation of protein kinase C (PKC)-alpha and -delta, because the PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. No alteration in cell proliferation was found. Moreover, bryostatin strongly stimulated LTR transcription by activating the transcription factor NF-κB. Bryostatin could be a beneficial adjunct to the treatment of HIV-1 brain infection. PMID:26199173

  2. Single peptide and anti-idiotype based immunizations can broaden the antibody response against the variable V3 domain of HIV-1 in mice.

    PubMed

    Boudet, F; Keller, H; Kieny, M P; Thèze, J

    1995-05-01

    The third variable (V3) domain of the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 is a major target of neutralizing antibodies in infected persons and in experimental immunized animals. Given the high degree of sequence variability of V3, the humoral response toward this region is very type-specific. In the present study, we evaluated the potential of a single peptide and an anti-idiotypic antibody to broaden the anti-V3 antibody specificity in BALB/c mice. We show that a synthetic peptide derived from the V3 determinant of HIV-1 MN isolate (V3MN), when used as an immunogen, was able to induce an antibody response to multiple (up to six) HIV-1 strains. The extent of this cross-reactivity, which tended to enlarge as the injections increased, appeared to be inversely correlated with the binding affinity to V3MN peptide. These data thus present evidence that, despite its great sequence heterogeneity, the V3 loop encompasses conserved amino-acid positions and/or stretches which may be less immunogenic than their variable counterparts. We additionally demonstrate that a rabbit anti-idiotype (Ab2), recognizing a binding site related idiotype on a V3-specific mouse monoclonal antibody (Ab1), could mount a broadened humoral response (Ab3) in mice. Unlike nominal antibody Ab1 which strictly reacted with the European HIV-1 LAI isolate, elicited Ab3 recognized the two divergent HIV-1 strains SF2 and 1286, originating respectively from North America and Central Africa, in addition to LAI. The reasons accounting for this Ab2-induced enlargement of the V3 antibody response are discussed. Our findings suggest that single peptide and anti-idiotype based immunizations may provide viable approaches to overcome, at least in part, HIV epitope variability. PMID:7783749

  3. C/EBP- and Tat-mediated activation of the HIV-1 LTR in CD34+ hematopoietic progenitor cells.

    PubMed

    Quiterio, Shane; Grant, Christian; Hogan, Tricia H; Krebs, Fred C; Wigdahl, Brian

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of cells of the monocyte/macrophage lineage within the bone marrow and peripheral blood plays an important role in the pathologic events leading to the development of the acquired immune deficiency syndrome (AIDS) as well as HIV-1 dementia (HIVD). The TF-1 erythro-myeloid cell line is being utilized as a model cellular phenotype to examine HIV-1 infection of a hematopoietic progenitor cell population. Expression of TF-1 cell surface marker RNAs and proteins was characterized by RT-PCR and FACS, respectively, and compared to those of the well characterized U-937 monocytic cell line. Transcription factors in TF-1 and U-937 cells that have been shown to be important for sustaining the expression of HIV-1 LTR activity were also examined. TF-1 cells were shown to contain the transcription factors C/EBP, Sp1, and NF-kappaB. C/EBP- and Tat-mediated induction of the YU-2 LTR was examined. Relative C/EBP induction of the HIV-1 strain YU-2 LTR was greater in TF-1 cells than in U-937 cells. When the C/EBP sites I and II were mutated to sequences with a low relative affinity for C/EBP factors, there was a reduction of Tat-mediated trans-activation in TF-1 cells, but not in U-937 cells. These studies form the foundation for investigations into the relationship between HIV-1 infection of bone marrow and peripheral blood precursor cells of the monocyte/macrophage lineage and pathogenesis associated with HIV-1 infection of the immune and central nervous system (CNS). PMID:12642037

  4. ZNF10 inhibits HIV-1 LTR activity through interaction with NF-κB and Sp1 binding motifs.

    PubMed

    Nishitsuji, Hironori; Sawada, Leila; Sugiyama, Ryuichi; Takaku, Hiroshi

    2015-07-01

    Kruppel-associated box-containing zinc finger (KRAB-ZNF) genes constitute the single largest gene family of transcriptional repressors in the genomes of higher organisms. In this study, we isolated 52 cDNA clones of KRAB-ZFPs from U1 cell lines and screened them to identify which were capable of regulating HIV-1 gene expression. We identified 5 KRAB-ZFPs that suppressed ⩾50% of HIV-1 LTR. Of the 5 identified KRAB-ZFPs, the expression of ZNF10 significantly enhanced the transcriptional repression activity of the LTR compared with other ZNFs. In addition, the depletion of endogenous ZNF10 led to the activation of HIV-1 LTR. The repressor activity of ZNF10 was required for TRIM28, SETDB1 and HP1-gamma binding. These results indicate that ZNF10 could be involved in a potent intrinsic antiretroviral defense. PMID:26096782

  5. Anti-HIV activity of thiosemicarbazone and semicarbazone derivatives of (+/-)-3-menthone.

    PubMed

    Mishra, Vibha; Pandeya, S N; Pannecouque, Christophe; Witvrouw, Myriam; De Clercq, E

    2002-05-01

    A series of thiosemicarbazones and semicarbazone derivatives of (+/-)-3-menthone have been synthesized and their anti-HIV activity evaluated against HIV-1(III(B))and HIV-2 (ROD). The studies revealed that maximum protection is offered by chloro-substituted derivatives 2 and 7 against HIV-1 (III(B)) and HIV-2 (ROD). PMID:12210774

  6. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.

    PubMed

    Ojha, R P; Dhingra, M M; Sarma, M H; Myer, Y P; Setlik, R F; Shibata, M; Kazim, A L; Ornstein, R L; Rein, R; Turner, C J; Sarma, R H

    1997-10-01

    between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure. PMID:9399149

  7. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure.

  8. 5-Alkyl-6-benzyl-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones, a series of anti-HIV-1 agents of the dihydro-alkoxy-benzyl-oxopyrimidine family with peculiar structure-activity relationship profile.

    PubMed

    Nawrozkij, Maxim B; Rotili, Dante; Tarantino, Domenico; Botta, Giorgia; Eremiychuk, Alexandre S; Musmuca, Ira; Ragno, Rino; Samuele, Alberta; Zanoli, Samantha; Armand-Ugón, Mercedes; Clotet-Codina, Imma; Novakov, Ivan A; Orlinson, Boris S; Maga, Giovanni; Esté, José A; Artico, Marino; Mai, Antonello

    2008-08-14

    A series of dihydro-alkylthio-benzyl-oxopyrimidines (S-DABOs) bearing a 2-aryl-2-oxoethylsulfanyl chain at pyrimidine C2, an alkyl group at C5, and a 2,6-dichloro-, 2-chloro-6-fluoro-, and 2,6-difluoro-benzyl substitution at C6 (oxophenethyl- S-DABOs, 6-8) is here described. The new compounds showed low micromolar to low nanomolar (in one case subnanomolar) inhibitory activity against wt HIV-1. Against clinically relevant HIV-1 mutants (K103N, Y181C, and Y188L) as well as in enzyme (wt and K103N, Y181I, and L100I mutated RTs) assays, compounds carrying an ethyl/ iso-propyl group at C5 and a 2,6-dichloro-/2-chloro-6-fluoro-benzyl moiety at C6 were the most potent derivatives, also characterized by low fold resistance ratio. Interestingly, the structure-activity relationship (SAR) data drawn from this DABO series are more related to HEPT than to DABO derivatives. These findings were at least in part rationalized by the description of a fair superimposition between the 6-8 and TNK-651 (a HEPT analogue) binding modes in both WT and Y181C RTs. PMID:18630898

  9. The MSHA strain of Pseudomonas aeruginosa activated TLR pathway and enhanced HIV-1 DNA vaccine immunoreactivity.

    PubMed

    Hou, Jue; Liu, Yong; Liu, Ying; Shao, Yiming

    2012-01-01

    The mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) has been shown to trigger naïve immune responses through the activation of monocytes, macrophages, natural killer cells (NK cells) and antigen presenting cells (APCs). Based on the hypothesis that PA-MSHA activates natural immunity through the Toll-like receptor (TLR) pathway, we scanned several critical TLR pathway molecules in mouse splenocytes using high-throughput real-time QRT-PCR and co-stimulatory molecule in bone marrow-derived dendritic cells (BMDCs) following in vitro stimulation by PA-MSHA. PA-MSHA enabled activation of the TLR pathway mediated by NF-κB and JNK signaling in splenocytes, and the co-stimulatory molecule CD86 was up-regulated in BMDCs. We then assessed the adjuvant effect of PA-MSHA for HIV-1 DNA vaccines. In comparison to DNA inoculation alone, co-inoculation with low dosage of PA-MSHA enhanced specific immunoreactivity against HIV-1 Env in both cellular and humoral responses, and promoted antibody avidity maturation. However, high doses of adjuvant resulted in an immunosuppressive effect; a two- or three-inoculation regimen yielded low antibody responses and the two-inoculation regimen exhibited only a slight cellular immunity response. To our knowledge, this is the first report demonstrating the utility of PA-MSHA as an adjuvant to a DNA vaccine. Further research is needed to investigate the exact mechanisms through which PA-MSHA achieves its adjuvant effects on innate immune responses, especially on dendritic cells. PMID:23077664

  10. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    PubMed Central

    Matsunaga, Satoko; Masaoka, Takashi; Sawasaki, Tatsuya; Morishita, Ryo; Iwatani, Yasumasa; Tatsumi, Masashi; Endo, Yaeta; Yamamoto, Naoki; Sugiura, Wataru; Ryo, Akihide

    2015-01-01

    Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR). The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) in the presence or absence of clinically used protease inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1. PMID:26583013

  11. Neonatal intrahippocampal HIV-1 protein Tat1-86 injection: Neurobehavioral alterations in the absence of increased inflammatory cytokine activation

    PubMed Central

    Moran, Landhing M.; Fitting, Sylvia; Booze, Rosemarie M.; Webb, Katy M.; Mactutus, Charles F.

    2014-01-01

    Pediatric AIDS caused by human immunodeficiency virus type 1 (HIV-1) remains one of the leading worldwide causes of childhood morbidity and mortality. HIV-1 proteins, such as Tat and gp120, are believed to play a crucial role in the neurotoxicity of pediatric HIV-1 infection. Detrimental effects on development, behavior, and neuroanatomy follow neonatal exposure to the HIV-1 viral toxins Tat1-72 and gp120. The present study investigated the neurobehavioral effects induced by the HIV-1 neurotoxic protein Tat1-86, which encodes the first and second exons of the Tat protein. In addition, the potential effects of HIV-1 toxic proteins Tat1-86 and gp120 on inflammatory pathways were examined in neonatal brains. Vehicle, 25 μg Tat1-86 or 100 ng gp120 was injected into the hippocampus of male Sprague-Dawley pups on postnatal day 1 (PD1). Tat1-86 induced developmental neurotoxic effects, as witnessed by delays in eye opening, delays in early reflex development and alterations in prepulse inhibition (PPI) and between-session habituation of locomotor activity. Overall, the neurotoxic profile of Tat1-86 appeared more profound in the developing nervous system in vivo relative to that seen with the first exon encoded Tat1-72 (Fitting et al., 2008b), as noted on measures of eye opening, righting reflex, and PPI. Neither the direct PD1 CNS injection of the viral HIV-1 protein variant Tat1-86, nor the HIV-1 envelope protein gp120, at doses sufficient to induce neurotoxicity, necessarily induced significant expression of the inflammatory cytokine IL-1β or inflammatory factors NFκ-β and Iκ-β. The findings agree well with clinical observations that indicate delays in developmental milestones of pediatric HIV-1 patients, and suggest that activation of inflammatory pathways is not an obligatory response to viral protein-induced neurotoxicity that is detectable with behavioral assessments. Moreover, the amino acids encoded by the second tat exon may have unique actions on the

  12. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    PubMed

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART. PMID:26553869

  13. Enzymatic synthesis of acyclic nucleoside thiophosphonate diphosphates: effect of the α-phosphorus configuration on HIV-1 RT activity.

    PubMed

    Priet, Stéphane; Roux, Loic; Saez-Ayala, Magali; Ferron, François; Canard, Bruno; Alvarez, Karine

    2015-05-01

    The acyclic nucleosides thiophosphonates (9-[2-(thiophosphonomethoxy)ethyl]adenine (S-PMEA) and (R)-9-[2-(thiophosphonomethoxy)propyl]adenine (S-PMPA), exhibit antiviral activity against HIV-1, -2 and HBV. Their diphosphate forms S-PMEApp and S-PMPApp, synthesized as stereoisomeric mixture, are potent inhibitors of wild-type (WT) HIV-1 RT. Understanding HIV-1 RT stereoselectivity, however, awaits resolution of the diphosphate forms into defined stereoisomers. To this aim, thiophosphonate monophosphates S-PMEAp and S-PMPAp were synthesized and used in a stereocontrolled enzyme-catalyzed phosphoryl transfer reaction involving either nucleoside diphosphate kinase (NDPK) or creatine kinase (CK) to obtain thiophosphonate diphosphates as separated isomers. We then quantified substrate preference of recombinant WT HIV-1 RT toward pure stereoisomers using in vitro steady-state kinetic analyses. The crystal structure of a complex between Dictyostelium NDPK and S-PMPApp at 2.32Å allowed to determine the absolute configuration at the α-phosphorus atom in relation to the stereo-preference of studied enzymes. The RP isomer of S-PMPApp and S-PMEApp are the preferred substrate over SP for both NDPK and HIV-1 RT. PMID:25766862

  14. The Association of Human Cytomegalovirus with Biomarkers of Inflammation and Immune Activation in HIV-1-Infected Women.

    PubMed

    Lurain, Nell S; Hanson, Barbara A; Hotton, Anna L; Weber, Kathleen M; Cohen, Mardge H; Landay, Alan L

    2016-02-01

    Three groups of cytomegalovirus (CMV)-seropositive women (total n = 164) were selected from the Chicago Women's Interagency HIV-1 Study to investigate the association between CMV coinfection and immune activation: (1) HIV-1 viremic, (2) HIV-1 aviremic, and (3) HIV-1 uninfected. Quantitative measures of CMV serum IgG, CMV DNA, and serum biomarkers interleukin (IL)-6, soluble CD163 (sCD163), soluble CD14 (sCD14), and interferon gamma-induced protein (IP10) were obtained. Levels of CMV IgG and the serum biomarkers were significantly higher in the HIV-1 viremic group compared to the aviremic and uninfected groups (p < 0.001). No significant associations with CMV IgG levels were found for HIV-uninfected women. When each of the HIV-infected groups was analyzed, sCD14 levels in the viremic women were significantly associated with CMV IgG levels with p < 0.02 when adjusted for age, CD4 count, and HIV viral load. There was also a modest association (p = 0.036) with IL-6 from plasma and cervical vaginal lavage specimens both unadjusted and adjusted for CD4 count and HIV viral load. The association of CMV IgG level with sCD14 implicates the monocyte as a potential site for interaction of the two viruses, which eventually may lead to non-AIDS-defining pathological conditions. PMID:26422187

  15. Rev-RRE Functional Activity Differs Substantially Among Primary HIV-1 Isolates.

    PubMed

    Jackson, Patrick E; Tebit, Denis M; Rekosh, David; Hammarskjold, Marie-Louise

    2016-09-01

    The HIV-1 replication cycle requires the nucleocytoplasmic export of intron-containing viral RNAs, a process that is ordinarily restricted. HIV overcomes this by means of the viral Rev protein, which binds to an RNA secondary structure called the Rev response element (RRE) present in all unspliced or incompletely spliced viral RNA transcripts. The resulting mRNP complex is exported through interaction with cellular factors. The Rev-RRE binding interaction is increasingly understood to display remarkable structural plasticity, but little is known about how Rev-RRE sequence differences affect functional activity. To study this issue, we utilized a lentiviral vector assay in which vector titer is dependent on the activity of selected Rev-RRE pairs. We found that Rev-RRE functional activity varies significantly (up to 24-fold) between naturally occurring viral isolates. The activity differences of the Rev-RRE cognate pairs track closely with Rev, but not with RRE activity. This variation in Rev activity is not correlated with differences in Rev steady state protein levels. These data suggest that Rev sequence differences drive substantial variation in Rev-RRE functional activity between patients. Such variation may play a role in viral adaptation to different immune milieus within and between patients and may be significant in the establishment of latency. The identification of differences in Rev-RRE functional activity in naturally occurring isolates may also permit more efficient production of lentiviral vectors. PMID:27147495

  16. Structural and Thermodynamic Basis of Epitope Binding by Neutralizing and Nonneutralizing Forms of the Anti-HIV-1 Antibody 4E10

    PubMed Central

    Rujas, Edurne; Gulzar, Naveed; Morante, Koldo; Tsumoto, Kouhei; Scott, Jamie K.

    2015-01-01

    ABSTRACT The 4E10 antibody recognizes the membrane-proximal external region (MPER) of the HIV-1 Env glycoprotein gp41 transmembrane subunit, exhibiting one of the broadest neutralizing activities known to date. The neutralizing activity of 4E10 requires solvent-exposed hydrophobic residues at the apex of the complementarity-determining region (CDR) H3 loop, but the molecular basis for this requirement has not been clarified. Here, we report the cocrystal structures and the energetic parameters of binding of a peptide bearing the 4E10-epitope sequence (4E10ep) to nonneutralizing versions of the 4E10 Fab. Nonneutralizing Fabs were obtained by shortening and decreasing the hydrophobicity of the CDR-H3 loop (termed ΔLoop) or by substituting the two tryptophan residues of the CDR-H3 apex with Asp residues (termed WDWD), which also decreases hydrophobicity but preserves the length of the loop. The analysis was complemented by the first crystal structure of the 4E10 Fab in its ligand-free state. Collectively, the data ruled out major conformational changes of CDR-H3 at any stage during the binding process (equilibrium or transition state). Although these mutations did not impact the affinity of wild-type Fab for the 4E10ep in solution, the two nonneutralizing versions of 4E10 were deficient in binding to MPER inserted in the plasma membrane (mimicking the environment faced by the antibody in vivo). The conclusions of our structure-function analysis strengthen the idea that to exert effective neutralization, the hydrophobic apex of the solvent-exposed CDR-H3 loop must recognize an antigenic structure more complex than just the linear α-helical epitope and likely constrained by the viral membrane lipids. IMPORTANCE The broadly neutralizing anti-HIV-1 4E10 antibody blocks infection caused by nearly all viral strains and isolates examined thus far. However, 4E10 (or 4E10-like) antibodies are rarely found in HIV-1-infected individuals or elicited through vaccination

  17. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    PubMed Central

    Bialek, Julia K.; Dunay, Gábor A.; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C.

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5’ long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination. PMID:27341108

  18. Single DNA molecule stretching measures the activity of chemicals that target the HIV-1 nucleocapsid protein

    PubMed Central

    Cruceanu, Margareta; Stephen, Andrew G.; Beuning, Penny J.; Gorelick, Robert J.; Fisher, Robert J.; Williams, Mark C.

    2006-01-01

    We develop a biophysical method for investigating chemical compounds that target the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NCp7). We used an optical tweezers instrument to stretch single λ-DNA molecules through the helix-to-coil transition in the presence of NCp7 and various chemical compounds. The change in the helix-coil transition width induced by wild-type NCp7 and its zinc finger variants correlates with in vitro nucleic acid chaperone activity measurements and in vivo assays. The compound-NC interaction measured here reduces NCp7’s capability to alter the transition width. Purified compounds from the NCI Diversity set, 119889, 119911, and 119913 reduce the chaperone activity of 5 nM NC in aqueous solution at 10 nM, 25 nM, and 100 nM concentration, respectively. Similarly, gallein reduced the activity of 4 nM NC at 100 nM concentration. Further analysis allows us to dissect the impact of each compound on both sequence-specific and non-sequence-specific DNA binding of NC, two of the main components of NC’s nucleic acid chaperone activity. These results suggest that DNA stretching experiments can be used to screen chemical compounds targeting NC proteins, and to further explore the mechanisms by which these compounds interact with NC and alter its nucleic acid chaperone activity. PMID:17034752

  19. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune.

    PubMed

    Zhao, Yong-Chang; Zhang, Guo-Qing; Ng, Tzi-Bun; Wang, He-Xiang

    2011-10-01

    A 20-kDa ribonuclease (RNase) was purified from fresh fruiting bodies of cultured Schizophyllum commune mushrooms. The RNase was not adsorbed on Affi-gel blue gel but adsorbed on DEAE-cellulose and CM-cellulose. It exhibited maximal RNase activity at pH 6.0 and 70°C. It demonstrated the highest ribonucleolytic activity toward poly (U) (379.5 μ/mg), the second highest activity toward poly (C) (244.7 μ/mg), less activity toward poly (A) (167.4 μ/mg), and much weaker activity toward poly (G) (114.5 μ/mg). The RNase inhibited HIV-1 reverse transcriptase with an IC(50) of 65 μM. No effect on [(3)H-methyl]-thymidine uptake by lymphoma MBL2 cells and leukemia L1210 cells was observed at 100 μM concentration of the RNase. A comparison of RNases from S. commune and Volvariella volvacea revealed that they demonstrated some similarities in N-terminal amino acid sequence, optimum pH and polyhomoribonucleotide specificity. However, some differences in chromatographic behavior and molecular mass were observed. PMID:22068498

  20. Anti-HIV-1 nanotherapeutics: promises and challenges for the future

    PubMed Central

    Mahajan, Supriya D; Aalinkeel, Ravikumar; Law, Wing-Cheung; Reynolds, Jessica L; Nair, Bindukumar B; Sykes, Donald E; Yong, Ken-Tye; Roy, Indrajit; Prasad, Paras N; Schwartz, Stanley A

    2012-01-01

    The advent of highly active antiretroviral therapy (HAART) has significantly improved the prognosis for human immunodeficiency virus (HIV)-infected patients, however the adverse side effects associated with prolonged HAART therapy use continue. Although systemic viral load can be undetectable, the virus remains sequestered in anatomically privileged sites within the body. Nanotechnology-based delivery systems are being developed to target the virus within different tissue compartments and are being evaluated for their safety and efficacy. The current review outlines the various nanomaterials that are becoming increasingly used in biomedical applications by virtue of their robustness, safety, multimodality, and multifunctionality. Nanotechnology can revolutionize the field of HIV medicine by not only improving diagnosis, but also by improving delivery of antiretrovirals to targeted regions in the body and by significantly enhancing the efficacy of the currently available antiretroviral medications. PMID:23055735

  1. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation

    PubMed Central

    Henrick, Bethany M.; Yao, Xiao-Dan; Rosenthal, Kenneth Lee

    2015-01-01

    Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2) physically inhibited HIV-induced NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs) for cellular TLR2 heterodimers. These studies made use of primary human T cells and TZMbl cells stably transformed to express TLR2 (TZMbl-2). Our results demonstrated that cells expressing TLR2 showed significantly increased proviral DNA compared to cells lacking TLR2, and mechanistically this may be due to a TLR2-mediated increased CCR5 expression. Importantly, we show that HIV-1 structural proteins, p17, p24, and gp41, act as viral PAMPs signaling through TLR2 and its heterodimers leading to significantly increased immune activation via the NFκB signaling pathway. Using co-immunoprecipitation and a dot blot method, we demonstrated direct protein interactions between these viral PAMPs and TLR2, while only p17 and gp41 bound to TLR1. Specifically, TLR2/1 heterodimer recognized p17 and gp41, while p24 lead to immune activation through TLR2/6. These results were confirmed using TLR2/1 siRNA knock down assays which ablated p17 and gp41-induced cellular activation and through studies of HEK293 cells expressing selected TLRs. Interestingly, our results show in the absence of TLR6, p24 bound to TLR2 and blocked p17 and gp41-induced activation, thus providing a novel mechanism by which HIV-1 can manipulate innate sensing. Taken together, our results identified, for the first time, novel HIV-1 PAMPs that play a role in TLR2-mediated cellular activation and increased proviral DNA. These findings have important implications for our fundamental understanding of HIV-1 immune activation and pathogenesis, as well as HIV-1 vaccine development. PMID:26347747

  2. Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts

    PubMed Central

    Plank, Terra-Dawn M.; Whitehurst, James T.; Kieft, Jeffrey S.

    2013-01-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES’ function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES’ activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3′ nucleotides added by alternative splicing. PMID:23661682

  3. Cell type specificity and structural determinants of IRES activity from the 5' leaders of different HIV-1 transcripts.

    PubMed

    Plank, Terra-Dawn M; Whitehurst, James T; Kieft, Jeffrey S

    2013-07-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES' function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES' activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3' nucleotides added by alternative splicing. PMID:23661682

  4. HIV-1 TAR RNA-binding proteins control TAT activation of translation in Xenopus oocytes.

    PubMed

    Braddock, M; Powell, R; Blanchard, A D; Kingsman, A J; Kingsman, S M

    1993-01-01

    Human immunodeficiency virus (HIV-1) gene expression is activated by the viral TAT protein that interacts with an RNA sequence, TAR, located at the 5' end of all viral mRNAs. TAT functions primarily as a transcriptional activator in mammalian cells. However, in Xenopus oocytes TAT functions primarily as a translational activator. TAR is an RNA structure comprising a partially base-paired stem, a tripyrimidine bulge in the upper stem, and an unpaired six-nucleotide loop. In vitro, TAT binds directly to the bulge with no requirement for the loop. In vivo, however, mutations in the loop abolish TAT activation of transcription and translation, implying a requirement for TAR-binding cellular factors. We now provide genetic evidence for the presence of two TAR-specific cellular factors in Xenopus oocytes. These factors display independent and mutually exclusive interactions with either the loop or the bulge region of TAR. Furthermore, by using in vivo RNA competition assays we show that the cellular factors regulate the accessibility of the TAT binding site. The fact that Xenopus oocytes contain factors that specifically interact with a human viral RNA sequence might indicate that the TAT/TAR interaction is subverting a conserved pathway in the cell. PMID:8422967

  5. Poly(ethylene glycol) enclatherated pectin-mucin submicron matrices for intravaginal anti-HIV-1 drug delivery.

    PubMed

    Mashingaidze, Felix; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Maharaj, Vinesh; Buchmann, Eckhart; Pillay, Viness

    2016-04-30

    This paper explores the potential of polyethylene glycol enclatherated pectin-mucin (PEG-encl-PEC:MUC) submicron matrices (SMMs) as an intravaginal drug delivery system capable of delivering an anti-HIV-1 agent (zidovudine; AZT) over a prolonged duration. A three factor and three level (3(3)) Box-Behnken statistical design was employed to optimize the SMMs. Optimized PEG-encl-PEC:MUC SMMs prepared as a stable W/O emulsion (determined by the degree of reversible colloidal phenomena) were spherical with a mean particle size of 270.6±5.533nm and mean zeta potential of -34.4±0.539mV. The microencapsulation of AZT and the hydrogen bonding mediated shielding of AZT by SMMs was confirmed by Fourier Transform Infrared (FTIR) analysis. The thermochemical (differential scanning calorimetry and thermogravimetric analysis) data proposed that Ca(2+)-based macromolecular ionic crosslinking as well as the intermolecular interactions may be responsible for the thermal stability of the delivery system. The partially amorphous nature of drug-loaded SMMs, as confirmed by X-ray diffraction patterns, further strengthened the matricization of AZT into the pectin-mucin matrix. In vitro drug release studies from the SMMs showed approximately 91% zidovudine release in simulated vaginal fluid (SVF) and 94% in phosphate buffered saline (PBS) in 24h. The mean dissolution time (MDT) of zidovudine from the SMMs was 5.974h. The attainment of required dimensional structure and drug release profiles from SMMs highlights the potential of their inclusion into a secondary carrier system for extended and controlled intravaginal stay. PMID:26943973

  6. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    SciTech Connect

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-10-25

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.

  7. A novel small-molecule inhibitor of HIV-1 entry

    PubMed Central

    Heredia, Alonso; Latinovic, Olga S; Barbault, Florent; de Leeuw, Erik PH

    2015-01-01

    Background Antiretroviral therapy has transformed HIV-1 infection into a managed condition with near-normal life expectancy. However, a significant number of patients remain with limited therapeutic options due to HIV-1 resistance, side effects, or drug costs. Further, it is likely that current drugs will not retain efficacy, due to risks of side effects and transmitted resistance. Results We describe compound 5660386 (3-ethyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidene)-1-propen-1-yl]-1,3-benzothiazol-3-ium) as a novel inhibitor of HIV-1 entry. Compound 5660386 inhibits HIV-1 entry in cell lines and primary cells, binds to HIV-1 envelope protein, and inhibits the interaction of GP120 to CD4. Further, compound 5660386 showed a unique and broad-range activity against primary HIV-1 isolates from different subtypes and geographical areas. Conclusion Development of small-molecule entry inhibitors of HIV-1 such as 5660386 may lead to novel classes of anti-HIV-1 therapeutics. These inhibitors may be particularly effective against viruses resistant to current antiretroviral drugs and could have potential applications in both treatment and prevention. PMID:26491257

  8. Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA Decline during Latency-Reversing Treatment with Panobinostat

    PubMed Central

    Olesen, Rikke; Vigano, Selena; Rasmussen, Thomas A.; Søgaard, Ole S.; Ouyang, Zhengyu; Buzon, Maria; Bashirova, Arman; Carrington, Mary; Palmer, Sarah; Brinkmann, Christel R.; Yu, Xu G.; Østergaard, Lars; Tolstrup, Martin

    2015-01-01

    ABSTRACT The pharmaceutical reactivation of dormant HIV-1 proviruses by histone deacetylase inhibitors (HDACi) represents a possible strategy to reduce the reservoir of HIV-1-infected cells in individuals treated with suppressive combination antiretroviral therapy (cART). However, the effects of such latency-reversing agents on the viral reservoir size are likely to be influenced by host immune responses. Here, we analyzed the immune factors associated with changes in proviral HIV-1 DNA levels during treatment with the potent HDACi panobinostat in a human clinical trial involving 15 cART-treated HIV-1-infected patients. We observed that the magnitude, breadth, and cytokine secretion profile of HIV-1-specific CD8 T cell responses were unrelated to changes in HIV-1 DNA levels in CD4 T cells during panobinostat treatment. In contrast, the proportions of CD3− CD56+ total NK cells and CD16+ CD56dim NK cells were inversely correlated with HIV-1 DNA levels throughout the study, and changes in HIV-1 DNA levels during panobinostat treatment were negatively associated with the corresponding changes in CD69+ NK cells. Decreasing levels of HIV-1 DNA during latency-reversing treatment were also related to the proportions of plasmacytoid dendritic cells, to distinct expression patterns of interferon-stimulated genes, and to the expression of the IL28B CC genotype. Together, these data suggest that innate immune activity can critically modulate the effects of latency-reversing agents on the viral reservoir and may represent a target for future immunotherapeutic interventions in HIV-1 eradication studies. IMPORTANCE Currently available antiretroviral drugs are highly effective in suppressing HIV-1 replication, but the virus persists, despite treatment, in a latent form that does not actively express HIV-1 gene products. One approach to eliminate these cells, colloquially termed the “shock-and-kill” strategy, focuses on the use of latency-reversing agents that induce active

  9. Requirement for HIV-1 TAR sequences for Tat activation in rodent cells.

    PubMed

    Sutton, J A; Braddock, M; Kingsman, A J; Kingsman, S M

    1995-01-10

    HIV-1 gene expression is activated via an interaction between the virally encoded Tat protein and a target RNA, TAR. TAR is located at the immediate 5' end of all viral mRNAs and comprises a partially base-paired stem with a tripyrimidine bulge in the upper stem and a hexanucleotide loop. In vitro, Tat binds specifically to the bulge and upper stem region with no requirement for the loop. In contrast, when Tat activation is analyzed in primate cells, mutations in the loop abolish activation, suggesting a critical role for loop binding cellular factors. However, in rodent cells the reverse is true. Messages with a mutation in the TAR loop are activated whereas messages harboring a wild-type TAR sequence are not activated. By testing the effect of mutations in the bulge and stem in the context of mutation in the loop we now show that this loop-independent activation by Tat in rodent cells requires the critical bulge-stem sequences needed for Tat binding in vitro. These data suggest that in rodent cells, as in vitro, Tat does not require a loop binding cofactor. In rodent cells containing human chromosome 12 (CHO12), however, Tat activation is both bulge and loop dependent. It appears that rodent cells, but not CHO12 cells, are refractory to the normal Tat/TAR activation pathway not by virtue of lacking a loop binding cofactor, but rather by the presence of a loop binding inhibitor of either Tat binding or the activation process. PMID:7530399

  10. Blocking Type I Interferon Production: A New Therapeutic Option to Reduce the HIV-1-Induced Immune Activation

    PubMed Central

    Ries, Moritz; Pritschet, Kathrin; Schmidt, Barbara

    2012-01-01

    Highly active antiretroviral therapy has dramatically improved the morbidity and mortality of HIV-1-infected individuals. A total of 25 licensed drugs provide the basis for an optimized virus-suppressive treatment of nearly each subject. The promises of immune reconstitution and normal life expectancy, however, fall short for a number of patients, either through inadequate recovery of CD4+ T-cell counts or the occurrence of non-AIDS defining malignancies. In this respect, the prevalence of Epstein-Barr virus-associated Hodgkin lymphoma and human papillomavirus-related anal neoplasia is rising in aging HIV-1-infected individuals despite antiretroviral therapy. An important cause appears to be the HIV-1-induced chronic immune activation, propagated by inappropriate release of proinflammatory cytokines and type I interferons. This immune dysregulation can be reduced in vitro by inhibitors blocking the endosomal acidification. Recent data suggest that this concept is also of relevance in vivo, which opens the door for adjuvant immunomodulatory therapies in HIV-1 infection. PMID:22203858

  11. Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins

    PubMed Central

    Zhang, Si Min; Jejcic, Alenka; Tam, James P.; Vahlne, Anders

    2015-01-01

    The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during

  12. Neutralizing antibodies decrease the envelope fluidity of HIV-1

    SciTech Connect

    Harada, Shinji Monde, Kazuaki; Tanaka, Yuetsu; Kimura, Tetsuya; Maeda, Yosuke; Yusa, Keisuke

    2008-01-05

    For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 {sup o}C after viral adsorption at 25 {sup o}C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5{beta} and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46 antibody, LAT27, neutralized the molecule-carrying HIV-1{sub C-2(MT-2)}. The anti-V3 antibodies suppressed the fluidity of the HIV-1{sub C-2} envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1{sub C-2(MT-2)}, but not that of HIV-1{sub C-2}. Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.

  13. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    PubMed Central

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-01

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976

  14. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    SciTech Connect

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  15. Active replication of HIV-1 at the lymphoepithelial surface of the tonsil.

    PubMed Central

    Frankel, S. S.; Tenner-Racz, K.; Racz, P.; Wenig, B. M.; Hansen, C. H.; Heffner, D.; Nelson, A. M.; Pope, M.; Steinman, R. M.

    1997-01-01

    Cells that are infected with HIV-1 were visualized at the mucosal surface of the nasopharyngeal and palatine tonsils in 14 specimens from patients with CD4+ T-cell counts of 200 to 900/microliter and 2- to 10-year histories of HIV-1 infection. Most of the cells with intracellular HIV-1 protein were small but multinucleated. The majority of these syncytia could be double labeled for HIV-1 RNA and a dendritic cell marker S100. In the palatine tonsil, the infected cells were not found in the stratified squamous epithelium that is adjacent to the pharynx. Instead, the S100+ infected syncytia were localized to the surface of tonsil invaginations or crypts. This mucosa, termed lymphoepithelium, contains antigen-transporting M cells that lie above regions where S100+ dendritic cells are juxtaposed with CD4+ lymphocytes. Likewise, infected cells were found in lymphoepithelium and not respiratory epithelium of nasopharyngeal tonsils or adenoids. We propose that lymphoepithelia, the histological term that describes the specialized regions where antigens access mucosa-associated lymphoid tissue, are sites where HIV-1 replication can be enhanced in syncytia derived from dendritic cells. Images Figure 1 Figure 2 Figure 3 PMID:9212735

  16. Genetic variation of the HIV-1 integrase region in newly diagnosed anti-retroviral drug-naïve patients with HIV/AIDS in Korea.

    PubMed

    Kim, J-Y; Kim, E-J; Choi, J-Y; Kwon, O-K; Kim, G J; Choi, S Y; Kim, S S

    2011-08-01

    The survival time of HIV/AIDS patients in Korea has increased since HAART (highly active anti-retroviral therapy) was introduced. However, the occurrence of drug-resistant strains requires new anti-retroviral drugs, one of which, an integrase inhibitor (INI), was approved by the US Food and Drug Administration (FDA) in 2007. INIs have been used for therapy in many countries and are about to be employed in Korea. Therefore, it is important to identify basic mutant variants prior to the introduction of INIs in order to estimate their efficacy. To monitor potential drug-resistant INI mutations in Korean HIV/AIDS patients, the polymorphism of the int gene was investigated together with the pol gene using a genotypic assay for 75 randomly selected Korean HIV-1 patients newly diagnosed in 2007. The drug-resistant mutation sequences were analysed using the Stanford HIV DB and the International AIDS Society resistance testing-USA panel (IAS-USA). Seventy strains of Korean subtype B were compared with foreign subtype-B strains, and there were no significantly different variants of the int gene region in the study population. Major mutation sites in the integrase (E92Q, F121Y, G140A/S, Y143C/R, Q148H/R/K and N155H) were not detected, and only a few minor mutation sites (L74M, V151I, E157Q, V165I, I203M, S230N and D232N) were identified in 21 strains (28%). Resistance due to mutations in the pol gene was observed in a single strain (1.3%) resistant to protease inhibitors (PIs) and in four strains (5.3%) resistant to reverse transcriptase inhibitors (RTIs). In summary, this demonstrates that INIs will be susceptible to drug naïve HIV/AIDS patients in Korea. PMID:20946407

  17. Structure of HIV-1 Reverse Transcriptase with the Inhibitor -thujaplicinol Bound at the RNase H Active Site

    SciTech Connect

    Himmel, D.; Maegley, K; Pauly, T; Bauman, J; Das, K; Dharia, C; Clark, Jr., A; Ryan, K; Hickey, M; et al.

    2009-01-01

    Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, such as RNH, should be effective against all of the current drug-resistant variants. Here, we present 2.80 {angstrom} and 2.04 {angstrom} resolution crystal structures of an RNH inhibitor, {beta}-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. {beta}-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that {beta}-thujaplicinol is a slow-binding RNH inhibitor with noncompetitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate.

  18. Effector kinase coupling enables high-throughput screens for direct HIV-1 Nef antagonists with antiretroviral activity.

    PubMed

    Emert-Sedlak, Lori A; Narute, Purushottam; Shu, Sherry T; Poe, Jerrod A; Shi, Haibin; Yanamala, Naveena; Alvarado, John Jeff; Lazo, John S; Yeh, Joanne I; Johnston, Paul A; Smithgall, Thomas E

    2013-01-24

    HIV-1 Nef, a critical AIDS progression factor, represents an important target protein for antiretroviral drug discovery. Because Nef lacks intrinsic enzymatic activity, we developed an assay that couples Nef to the activation of Hck, a Src family member and Nef effector protein. Using this assay, we screened a large, diverse chemical library and identified small molecules that block Nef-dependent Hck activity with low micromolar potency. Of these, a diphenylpyrazolo compound demonstrated submicromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound binds directly to Nef via a pocket formed by the Nef dimerization interface and disrupts Nef dimerization in cells. Coupling of nonenzymatic viral accessory factors to host cell effector proteins amenable to high-throughput screening may represent a general strategy for the discovery of new antimicrobial agents. PMID:23352142

  19. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    PubMed Central

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  20. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1.

    PubMed

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M; Nyström, Sofia; Hinkula, Jorma; Larsson, Marie

    2015-08-15

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  1. Chemically Programmed Antibodies As HIV-1 Attachment Inhibitors

    PubMed Central

    2013-01-01

    Herein, we describe the design and application of two small-molecule anti-HIV compounds for the creation of chemically programmed antibodies. N-Acyl-β-lactam derivatives of two previously described molecules BMS-378806 and BMS-488043 that inhibit the interaction between HIV-1 gp120 and T-cells were synthesized and used to program the binding activity of aldolase antibody 38C2. Discovery of a successful linkage site to BMS-488043 allowed for the synthesis of chemically programmed antibodies with affinity for HIV-1 gp120 and potent HIV-1 neutralization activity. Derivation of a successful conjugation strategy for this family of HIV-1 entry inhibitors enables its application in chemically programmed antibodies and vaccines and may facilitate the development of novel bispecific antibodies and topical microbicides. PMID:23750312

  2. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex

    PubMed Central

    Saayman, Sheena M; Lazar, Daniel C; Scott, Tristan A; Hart, Jonathan R; Takahashi, Mayumi; Burnett, John C; Planelles, Vicente; Morris, Kevin V; Weinberg, Marc S

    2016-01-01

    HIV-1 provirus integration results in a persistent latently infected reservoir that is recalcitrant to combined antiretroviral therapy (cART) with lifelong treatment being the only option. The “shock and kill” strategy aims to eradicate latent HIV by reactivating proviral gene expression in the context of cART treatment. Gene-specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising single guide RNAs (sgRNAs) with a nuclease-deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64). We engineered this system to target 23 sites within the long terminal repeat promoter of HIV-1 and identified a “hotspot” for activation within the viral enhancer sequence. Activating sgRNAs transcriptionally modulated the latent proviral genome across multiple different in vitro latency cell models including T cells comprising a clonally integrated mCherry-IRES-Tat (LChIT) latency system. We detected consistent and effective activation of latent virus mediated by activator sgRNAs, whereas latency reversal agents produced variable activation responses. Transcriptomic analysis revealed dCas9-VP64/sgRNAs to be highly specific, while the well-characterized chemical activator TNFα induced widespread gene dysregulation. CRISPR-mediated gene activation represents a novel system which provides enhanced efficiency and specificity in a targeted latency reactivation strategy and represents a promising approach to a “functional cure” of HIV/AIDS. PMID:26581162

  3. The activity of candidate virucidal agents, low pH and genital secretions against HIV-1 in vitro.

    PubMed

    O'Connor, T J; Kinchington, D; Kangro, H O; Jeffries, D J

    1995-01-01

    The effect of low pH, normally present in the female genital tract, on HIV viability was examined. HIV is more acid stable than previously reported with no substantial reduction in infectivity occurring until pH levels are reduced below 4.5. The virucidal activity of 3 topical spermicides and chlorhexidine was assessed in vitro using previously established and newly modified assay systems. None of the agents tested had a selectivity index (SI) greater than 5.2. Semen and cervical secretions were assessed for their ability to inhibit HIV-1. While no virucidal effect was found in the latter, seminal fluid was found to have significant activity against HIV-1 and a SI of approximately 50. PMID:7548290

  4. HIV-1 Encephalopathy among Perinatally Infected Children: Neuropathogenesis and Response to Highly Active Antiretroviral Therapy

    ERIC Educational Resources Information Center

    Mitchell, Charles D.

    2006-01-01

    HIV-1 encephalopathy among perinatally infected children in the United States was initially defined by a classic triad of findings that included: (1) developmental delay, (2) secondary or acquired microcephaly, and (3) pyramidal tract neuromotor deficits. The most severe form of this disorder typically occurred among young children who developed…

  5. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin.

    PubMed

    Sowd, Gregory A; Serrao, Erik; Wang, Hao; Wang, Weifeng; Fadel, Hind J; Poeschla, Eric M; Engelman, Alan N

    2016-02-23

    Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies. PMID:26858452

  6. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice.

    PubMed

    McGuire, Andrew T; Gray, Matthew D; Dosenovic, Pia; Gitlin, Alexander D; Freund, Natalia T; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B; Glenn, Jolene; Seaman, Michael S; Schief, William R; Strong, Roland K; Nussenzweig, Michel C; Stamatatos, Leonidas

    2016-01-01

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype. PMID:26907590

  7. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice

    PubMed Central

    McGuire, Andrew T.; Gray, Matthew D.; Dosenovic, Pia; Gitlin, Alexander D.; Freund, Natalia T.; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B.; Glenn, Jolene; Seaman, Michael S.; Schief, William R.; Strong, Roland K.; Nussenzweig, Michel C.; Stamatatos, Leonidas

    2016-01-01

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype. PMID:26907590

  8. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1.

    PubMed

    Smith, Robert A; Raugi, Dana N; Wu, Vincent H; Leong, Sally S; Parker, Kate M; Oakes, Mariah K; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S

    2015-12-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486

  9. Influence of Drug Resistance Mutations on the Activity of HIV-1 Subtypes A and B Integrases: a Comparative Study

    PubMed Central

    Shadrina, O. A.; Zatsepin, T. S.; Agapkina, Yu. Yu.; Isaguliants, M. G.; Gottikh, M. B.

    2015-01-01

    Integration of human immunodeficiency virus (HIV-1) DNA into the genome of an infected cell is one of the key steps in the viral replication cycle. The viral enzyme integrase (IN), which catalyzes the integration, is an attractive target for the development of new antiviral drugs. However, the HIV-1 therapy often results in the IN gene mutations inducing viral resistance to integration inhibitors. To assess the impact of drug resistance mutations on the activity of IN of HIV-1 subtype A strain FSU-A, which is dominant in Russia, variants of the consensus IN of this subtype containing the primary resistance mutations G118R and Q148K and secondary compensatory substitutions E138K and G140S were prepared and characterized. Comparative study of these enzymes with the corresponding mutants of IN of HIV-1 subtype B strains HXB-2 was performed. The mutation Q148K almost equally reduced the activity of integrases of both subtypes. Its negative effect was partially compensated by the secondary mutations E138K and G140S. Primary substitution G118R had different influence on the activity of proteins of the subtypes A and B, and the compensatory effect of the secondary substitution E138K also depended on the viral subtype. Comparison of the mutants resistance to the known strand transfer inhibitors raltegravir and elvitegravir, and a new inhibitor XZ-259 (a dihydro-1H-isoindol derivative), showed that integrases of both subtypes with the Q148K mutation were insensitive to raltegravir and elvitegravir but were effectively inhibited by XZ-259. The substitution G118R slightly reduced the efficiency of IN inhibition by raltegravir and elvitegravir and caused no resistance to XZ_259. PMID:25927004

  10. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1

    PubMed Central

    Raugi, Dana N.; Wu, Vincent H.; Leong, Sally S.; Parker, Kate M.; Oakes, Mariah K.; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S.

    2015-01-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4′-ethynyl stavudine, or 4′-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486