Science.gov

Sample records for anti-inflammatory treatment strategies

  1. Anti-inflammatory strategies in the treatment of schizophrenia.

    PubMed

    Andrade, Chittaranjan

    2016-01-01

    Schizophrenia is a major mental illness with a lifetime prevalence of about 1%. Antipsychotic drugs, with a primary mechanism of action that involves dopamine receptor blockade, are the mainstay in the treatment of the disorder. However, despite optimum antipsychotic treatment, few patients return to pre-morbid levels; the treatment deficit includes refractory positive symptoms, negative symptoms, mood impairments, cognitive impairments, social impairments, and/or a variety of medication-related adverse effects, including extrapyramidal symptoms, metabolic disturbances, hyperprolactinemia, and others. To address these, antipsychotic treatment has been augmented with psychosocial interventions, cognitive rehabilitation, different kinds of electrical and magnetic brain stimulation, and a large range of drugs from the neuropsychiatric as well as, surprise, the general medical pharmacopeia. The pleomorphic pathophysiology of schizophrenia includes abnormalities in immunological and inflammatory pathways, and so it is not surprising that anti-inflammatory drugs have also been trialed as augmentation agents in schizophrenia. This article critically examines the outcomes after augmentation with conventional anti-inflammatory interventions; results from randomized controlled trials do not encourage the use of either aspirin (1000 mg/day) or celecoxib (400 mg/day), both of which have been studied for this indication during the past decade and a half. PMID:26427750

  2. Anti-inflammatory treatment.

    PubMed

    Fistarol, Susanna K; Itin, Peter H

    2011-01-01

    Inflammatory mucosal disorders are treated conventionally with potent or superpotent topical corticosteroids. For more than 20 years, topical cyclosporine has been used in the management of oral mucous membrane affections. Recently other topically applied calcineurin inhibitors, namely tacrolimus and pimecrolimus, expanded the armamentarium for the treatment of inflammatory mucosal diseases. This chapter places its main emphasis on the efficacy and safety of topical calcineurin inhibitors in the management of different oral and genital conditions, including anogenital lichen sclerosus (LS), oral and genital lichen planus, plasma cell balanitis and vulvitis, mucous membrane pemphigoid and pemphigus vulgaris, all conditions having usually a protracted course, requiring long-lasting treatment. There is current evidence for the effectiveness of both pimecrolimus and tacrolimus in the topical treatment of inflammatory oral mucosal diseases and genital dermatoses, especially oral lichen planus and genital LS. PMID:21325840

  3. Psoriatic arthritis: treatment strategies using anti-inflammatory drugs and classical DMARDs.

    PubMed

    Lubrano, E; Scarpa, R

    2012-01-01

    Psoriatic Arthritis (PsA) is a chronic inflammatory disease typically characterized by arthritis and psoriasis variably associated with other extra-articular manifestations. PsA has been considered a milder and less disabling disease compared with rheumatoid arthritis (RA), even if some studies showed that PsA had joint erosions and damage. In addition, about 20-40% of PsA patients have axial skeleton involvement that may lead to functional limitation and deformity. The treatment of PsA ranged from initial treatment with non-steroidal anti-inflammatory drugs (NSAIDs) to one or more disease-modifying anti-rheumatic agents (DMARDs) for the suppression of inflammation in patients with recalcitrant peripheral joint disease. In clinical practice, the most widely used DMARDs are methotrexate (level of evidence B), sulfasalazine (level of evidence A), leflunomide (level of evidence A), and ciclosporin (level of evidence B). However, the efficacy of these agents in inhibiting joint erosions has not been assessed in controlled studies. Finally, the effectiveness of DMARDs in treating enthesitis and dactylitis is controversial. The present paper revised the evidence-based results on treatment with "conventional" therapy for PsA. The revision was based on all the subsets of the diseases, namely the various manifestations of the articular involvement (peripheral, axial, enthesitis, dactylitis) as well as the skin and nail involvement. PMID:22690387

  4. Clinical Features, Diagnosis, and Treatment Strategies of Gastrointestinal Diaphragm Disease Associated with Nonsteroidal Anti-Inflammatory Drugs

    PubMed Central

    Wang, Yan-Zhi; Sun, Gang; Cai, Feng-Chun; Yang, Yun-Sheng

    2016-01-01

    Background. To demonstrate the clinical features, diagnosis, and treatment of nonsteroidal anti-inflammatory drug- (NSAID-) induced diaphragm disease (DD). Methods. A literature search between January 1973 and August 2015 was undertaken. The clinical data of patients with NSAID-induced DD were recorded and analyzed. Results. 159 patients were included. The ratio of male to female was 1 : 2.3; the mean age was 65 ± 11 years. The most common clinical manifestations were gastrointestinal bleeding and obstruction. 121 (84%) patients took traditional NSAIDs. The durations of NSAIDs use ranged from 2 to 300 months. A majority (59.7%) of DD were seen in the small bowel, were seen secondly in the colon (30.2%), and were mainly located in the ileum (57.9%) and right colon (91.7%), respectively. 80% of patients had multiple diaphragms. 41.5% of small bowel DD were diagnosed preoperatively by capsule endoscopy and/or double-balloon enteroscopy, 52.1% at laparotomy. Nearly 75% of patients underwent surgery, endoscopic balloon dilation was performed in 22 patients, and NSAIDs were withdrawn in 53 patients. Conclusions. NSAID-induced DD is relatively rare. The small bowel is most commonly involved. Preoperative diagnosis of small bowel DD is relatively difficult. Discontinuation of the NSAIDs is recommended, surgical resection is the main treatment presently, and endoscopic balloon dilation should be considered as an alternative therapy. PMID:27118967

  5. Glycosaminoglycan analogs as a novel anti-inflammatory strategy

    PubMed Central

    Severin, India C.; Soares, Adriano; Hantson, Jennifer; Teixeira, Mauro; Sachs, Daniela; Valognes, Delphine; Scheer, Alexander; Schwarz, Matthias K.; Wells, Timothy N. C.; Proudfoot, Amanda E. I.; Shaw, Jeffrey

    2012-01-01

    Heparin, a glycosaminoglycan (GAG), has both anti-inflammatory and anti-coagulant properties. The clinical use of heparin against inflammation, however, has been limited by concerns about increased bleeding. While the anti-coagulant activity of heparin is well understood, its anti-inflammatory properties are less so. Heparin is known to bind to certain cytokines, including chemokines, small proteins which mediate inflammation through their control of leukocyte migration and activation. Molecules which can interrupt the chemokine-GAG interaction without inhibiting coagulation could therefore, represent a new class of anti-inflammatory agents. In the present study, two approaches were undertaken, both focusing on the heparin-chemokine relationship. In the first, a structure based strategy was used: after an initial screening of potential small molecule binders using protein NMR on a target chemokine, binding molecules were optimized through structure-based design. In the second approach, commercially available short oligosaccharides were polysulfated. In vitro, these molecules prevented chemokine-GAG binding and chemokine receptor activation without disrupting coagulation. However, in vivo, these compounds caused variable results in a murine peritoneal recruitment assay, with a general increase of cell recruitment. In more disease specific models, such as antigen-induced arthritis and delayed-type hypersensitivity, an overall decrease in inflammation was noted, suggesting that the primary anti-inflammatory effect may also involve factors beyond the chemokine system. PMID:23087686

  6. Anti-Inflammatory Strategies in Cartilage Repair

    PubMed Central

    Zhang, Ying; Pizzute, Tyler

    2014-01-01

    Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions. PMID:24846478

  7. Proteasome inhibition: a new anti-inflammatory strategy.

    PubMed

    Elliott, Peter J; Zollner, Thomas Matthias; Boehncke, Wolf-Henning

    2003-04-01

    The ubiquitin-proteasome pathway has a central role in the selective degradation of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in the control of inflammatory processes, cell cycle regulation, and gene expression. Consequently proteasome inhibition is a potential treatment option for cancer and inflammatory conditions. Thus far, proof of principle has been obtained from studies in numerous animal models for a variety of human diseases including cancer, reperfusion injury, and inflammatory conditions such as rheumatoid arthritis, asthma, multiple sclerosis, and psoriasis. Two proteasome inhibitors, each representing a unique chemical class, are currently under clinical evaluation. Velcade (PS-341) is currently being evaluated in multiple phase II clinical trials for several solid tumor indications and has just entered a phase III trial for multiple myeloma. PS-519, representing another class of inhibitors, focuses on the inflammatory events following ischemia and reperfusion injury. Since proteasome inhibitors exhibit anti-inflammatory and antiproliferative effects, diseases characterized by both of these processes simultaneously, as is the case in rheumatoid arthritis or psoriasis, might also represent clinical opportunities for such drugs. PMID:12700891

  8. Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications.

    PubMed

    Pollack, Rena M; Donath, Marc Y; LeRoith, Derek; Leibowitz, Gil

    2016-08-01

    The association between hyperglycemia and inflammation and vascular complications in diabetes is now well established. Antidiabetes drugs may alleviate inflammation by reducing hyperglycemia; however, the anti-inflammatory effects of these medications are inconsistent and it is unknown whether their beneficial metabolic effects are mediated via modulation of chronic inflammation. Recent data suggest that immunomodulatory treatments may have beneficial effects on glycemia, β-cell function, and insulin resistance. However, the mechanisms underlying their beneficial metabolic effects are not always clear, and there are concerns regarding the specificity, safety, and efficacy of immune-based therapies. Herein, we review the anti-inflammatory and metabolic effects of current antidiabetes drugs and of anti-inflammatory therapies that were studied in patients with type 2 diabetes. We discuss the potential benefit of using anti-inflammatory treatments in diabetes and important issues that should be addressed prior to implementation of such therapeutic approaches. PMID:27440839

  9. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus.

    PubMed

    Li, Zheng; Geng, Ya-Na; Jiang, Jian-Dong; Kong, Wei-Jia

    2014-01-01

    Oxidative stress and inflammation are proved to be critical for the pathogenesis of diabetes mellitus. Berberine (BBR) is a natural compound isolated from plants such as Coptis chinensis and Hydrastis canadensis and with multiple pharmacological activities. Recent studies showed that BBR had antioxidant and anti-inflammatory activities, which contributed in part to its efficacy against diabetes mellitus. In this review, we summarized the antioxidant and anti-inflammatory activities of BBR as well as their molecular basis. The antioxidant and anti-inflammatory activities of BBR were noted with changes in oxidative stress markers, antioxidant enzymes, and proinflammatory cytokines after BBR administration in diabetic animals. BBR inhibited oxidative stress and inflammation in a variety of tissues including liver, adipose tissue, kidney and pancreas. Mechanisms of the antioxidant and anti-inflammatory activities of BBR were complex, which involved multiple cellular kinases and signaling pathways, such as AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid-2-related factor-2 (Nrf2) pathway, and nuclear factor- κ B (NF- κ B) pathway. Detailed mechanisms and pathways for the antioxidant and anti-inflammatory activities of BBR still need further investigation. Clarification of these issues could help to understand the pharmacology of BBR in the treatment of diabetes mellitus and promote the development of antidiabetic natural products. PMID:24669227

  10. Antioxidant and Anti-Inflammatory Activities of Berberine in the Treatment of Diabetes Mellitus

    PubMed Central

    Geng, Ya-Na; Kong, Wei-Jia

    2014-01-01

    Oxidative stress and inflammation are proved to be critical for the pathogenesis of diabetes mellitus. Berberine (BBR) is a natural compound isolated from plants such as Coptis chinensis and Hydrastis canadensis and with multiple pharmacological activities. Recent studies showed that BBR had antioxidant and anti-inflammatory activities, which contributed in part to its efficacy against diabetes mellitus. In this review, we summarized the antioxidant and anti-inflammatory activities of BBR as well as their molecular basis. The antioxidant and anti-inflammatory activities of BBR were noted with changes in oxidative stress markers, antioxidant enzymes, and proinflammatory cytokines after BBR administration in diabetic animals. BBR inhibited oxidative stress and inflammation in a variety of tissues including liver, adipose tissue, kidney and pancreas. Mechanisms of the antioxidant and anti-inflammatory activities of BBR were complex, which involved multiple cellular kinases and signaling pathways, such as AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid-2-related factor-2 (Nrf2) pathway, and nuclear factor-κB (NF-κB) pathway. Detailed mechanisms and pathways for the antioxidant and anti-inflammatory activities of BBR still need further investigation. Clarification of these issues could help to understand the pharmacology of BBR in the treatment of diabetes mellitus and promote the development of antidiabetic natural products. PMID:24669227

  11. Inflammatory Kinetics and Efficacy of Anti-inflammatory Treatments on Human Nucleus Pulposus Cells

    PubMed Central

    Walter, Benjamin A; Purmessur, Devina; Likhitpanichkul, Morakot; Weinberg, Alan; Cho, Samuel K.; Qureshi, Sheeraz A.; Hecht, Andrew C.; Iatridis, James C.

    2015-01-01

    Study Design Human nucleus pulposus (NP) cell culture study investigating response to tumor necrosis factor-α (TNFα), effectiveness of clinically available anti-inflammatory drugs, and interactions between pro-inflammatory cytokines. Objective To characterize the kinetic response of pro-inflammatory cytokines released by human NP cells to TNFα stimulation and the effectiveness of multiple anti-inflammatories with 3 sub-studies: Timecourse, Same-time blocking, Delayed blocking. Summary of Background Data Chronic inflammation is a key component of painful intervertebral disc (IVD) degeneration. Improved efficacy of anti-inflammatories requires better understanding of how quickly NP cells produce pro-inflammatory cytokines and which pro-inflammatory mediators are most therapeutically advantageous to target. Methods Degenerated human NP cells (n=10) were cultured in alginate with or without TNFα (10ng/mL). Cells were incubated with one of four anti-inflammatories (anti-IL-6 receptor/atlizumab, IL-1 receptor anatagonist, anti-TNFα/infliximab and sodium pentosan polysulfate/PPS) in two blocking-studies designed to determine how intervention timing influences drug efficacy. Cell viability, protein and gene expression for IL-1β, IL-6 & IL-8 were assessed. Results Timecourse: TNFα substantially increased the amount of IL-6, IL-8 & IL-1β, with IL-1β and IL-8 reaching equilibrium within ~72 hours (IL-1β: 111±40pg/mL, IL-8: 8478±957pg/mL), and IL-6 not reaching steady state after 144 hours (1570±435 pg/mL). Anti-TNFα treatment was most effective at reducing the expression of all cytokines measured when added at the same time as TNFα stimulation. Similar trends were observed when drugs were added 72 hours after TNFα stimulation, however, no anti-inflammatories significantly reduced cytokine levels compared to TNF control. Conclusion IL-1β, IL-6 and IL-8 were expressed at different rates and magnitudes suggesting different roles for these cytokines in disease

  12. Sulphonamides as anti-inflammatory agents: old drugs for new therapeutic strategies in neutrophilic inflammation?

    PubMed

    Ottonello, L; Dapino, P; Scirocco, M C; Balbi, A; Bevilacqua, M; Dallegri, F

    1995-03-01

    1. It is well known that neutrophils act as mediators of tissue injury in a variety of inflammatory diseases. Their histotoxic activity is presently thought to involve proteinases and oxidants, primarily hypochlorous acid (HOCl). This oxidant is also capable of inactivating the specific inhibitor of neutrophil elastase (alpha 1-antitrypsin), thereby favouring digestion of the connective matrix. 2. In the present work, we found that sulphanilamide and some sulphanilamide-related anti-inflammatory drugs such as dapsone, nimesulide and sulphapyridine reduce the availability of HOCl in the extracellular microenvironment of activated neutrophils and prevent the inactivation of alpha 1-antitrypsin by these cells in a dose-dependent manner. The ability of each drug to prevent alpha 1-antitrypsin from inactivation by neutrophils correlates significantly with its capacity to reduce the recovery of HOCl from neutrophils. Five other non-steroidal anti-inflammatory drugs were completely ineffective. 3. Therefore, sulphanilamide-related drugs, i.e. dapsone, nimesulide and sulphapyridine, have the potential to reduce the bioavailability of neutrophil-derived HOCl and, in turn, to favour the alpha 1-antitrypsin-dependent control of neutrophil elastolytic activity. These drugs appear as a well-defined group of agents which are particularly prone to attenuate neutrophil histotoxicity. They can also be viewed as a previously unrecognized starting point for the development of new compounds in order to plan rational therapeutic strategies for controlling tissue injury during neutrophilic inflammation. PMID:7736703

  13. Treatment of non-steroidal anti-inflammatory drug induced enteropathy.

    PubMed Central

    Bjarnason, I; Hopkinson, N; Zanelli, G; Prouse, P; Smethurst, P; Gumpel, J M; Levi, A J

    1990-01-01

    Non-steroidal anti-inflammatory drug induced small intestinal inflammation may have an adverse effect on the joints of patients with rheumatoid arthritis. We therefore assessed small intestinal and joint inflammation in patients with rheumatoid arthritis before and after three to nine months' treatment with sulphasalazine (n = 40) and other second line drugs (n = 20), while keeping the dosage of non-steroidal anti-inflammatory drug at the same level. Sulphasalazine significantly decreased the mean (SD) faecal excretion of 111indium labelled leucocytes from 2.39 (2.22)% to 1.33 (1.13)% (normal less than 1%, p less than 0.01) and improved the joint inflammation as assessed by a variety of parameters. There was no significant correlation between the effects of sulphasalazine treatment on the intestine and the joints. Treatment with other second line drugs had no significant effect on the faecal excretion of 111indium (1.58 (1.04)% and 1.86 (1.51)%, respectively) but improved joint inflammation significantly. The lack of correlation between the intestinal and joint inflammation and their response to treatment suggests that the two are not causally related. PMID:1973396

  14. Anti-inflammatory Effect of Mesenchymal Stromal Cell Transplantation and Quercetin Treatment in a Rat Model of Experimental Cerebral Ischemia.

    PubMed

    Zhang, Lan-Lan; Zhang, Hong-Tian; Cai, Ying-Qian; Han, Yan-Jiang; Yao, Fang; Yuan, Zhao-Hu; Wu, Bing-Yi

    2016-10-01

    Here, we have investigated the synergistic effect of quercetin administration and transplantation of human umbilical cord mesenchymal stromal cells (HUMSCs) following middle cerebral artery occlusion in rat. Combining quercetin treatment with delayed transplantation of HUMSCs after local cerebral ischemia significantly (i) improved neurological functional recovery; (ii) reduced proinflammatory cytokines (interleukin(IL)-1β and IL-6), increased anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor-β1), and reduced ED-1 positive areas; (iii) inhibited cell apoptosis (caspase-3 expression); and (iv) improved the survival rate of HUMSCs in the injury site. Altogether, our results demonstrate that combined HUMSC transplantation and quercetin treatment is a potential strategy for reducing secondary damage and promoting functional recovery following cerebral ischemia. PMID:27008429

  15. Anti-inflammatory glycosylated flavonoids as therapeutic agents for treatment of diabetes-impaired wounds.

    PubMed

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet; Serna-Saldívar, Sergio O

    2015-01-01

    Diabetes is a chronic disease that affects more than 387 million people worldwide. About 20% of patients diagnosed with diabetes develop diabetic foot ulcerations (DFU). Standard treatment of DFU includes wound debridement, infection control, revascularization and, in general, the acceleration of the healing process. Topical ointments containing flavonoids exert beneficial effects in wound healing process. Flavonoids increase the migration and proliferation of fibroblasts and collagen synthesis. Furthermore, most flavonoids exert antibacterial and astringent activities that help in infection control. Additionally, flavonoids possess antioxidant and anti-inflammatory activities reducing the reactive oxygen species and modulating the inflammatory pathways, respectively. Bioactivity of flavonoids can vary according to source, chemical structure and glycosylation pattern. In summary, topical application of flavonoids reduces epithelialization and wound closure time of DFU in diabetic patients. PMID:26088354

  16. Reverse kinetics of angiopoietin-2 and endotoxins in acute pyelonephritis: Implications for anti-inflammatory treatment?

    PubMed

    Safioleas, Konstantinos; Giamarellos-Bourboulis, Evangelos J; Carrer, Dionyssia-Pinelopi; Pistiki, Aikaterini; Sabracos, Lambros; Deliveliotis, Charalambos; Chrisofos, Michael

    2016-05-01

    Based on former studies showing an antagonism between angiopoietin-2 (Ang-2) and bacterial endotoxins (LPS), we investigated the role of Ang-2 as immunomodulatory treatment. At first, kinetics of circulating LPS in Gram-negative pyelonephritis developing after urinary obstruction was studied. Serum LPS, interleukin (IL)-6 and Ang-2 were measured in 25 patients with acute pyelonephritis and sepsis before and after removal of the obstruction performed either with insertion of a pigtail catheter (n=12) or percutaneous drainage (n=13). At a second stage, Ang-2 was given as anti-inflammatory treatment in 40 rabbits one hour after induction of acute pyelonephritis by ligation of the ureter at the level of pelvo-ureteral junction and upstream bacterial inoculation. Survival was recorded; blood mononuclear cells were isolated and stimulated for the production of tumour necrosis factor-alpha (TNFα). The decrease in circulating LPS was significantly greater among patients undergoing drainage than pigtail insertion. This was accompanied by reciprocal changes of Ang-2 and IL-6. Treatment with Ang-2 prolonged survival from Escherichia coli pyelonephritis despite high levels of circulating LPS. When Ang-2 was given as treatment of Pseudomonas aeruginosa pyelonephritis, sepsis-induced decrease of TNFα production by circulating mononuclear cells was reversed without an effect on tissue bacterial overgrowth. It is concluded that Ang-2 and LPS follow reverse kinetics in acute pyelonephritis. When given as experimental treatment, Ang-2 prolongs survival through an effect on mononuclear cells. PMID:26844659

  17. Nonsteroidal Anti-Inflammatory Drugs in the Treatment of Retinal Diseases.

    PubMed

    Rodrigues, Eduardo Büchele; Farah, Michel Eid; Bottós, Juliana Mantovani; Bom Aggio, Fabio

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of drugs in medicine and ophthalmology. Several NSAIDs have been commercially available for many years: diclofenac, flurbiprofen, indomethacin, ketorolac and suprofen. The purpose of this chapter is to review the clinical use of earlier and newer pharmacologic agents of the NSAID class. NSAIDs may have a modulating effect on ocular inflammation and pain through the prevention of prostaglandin synthesis via cyclooxygenase inhibition. Newer-generation NSAIDs have emerged in recent years for the treatment of ocular pain and inflammation. Nepafenac ophthalmic suspension 0.1% is a new topical NSAID prodrug that has been approved by the Food and Drug Administration for the treatment of pain and inflammation after cataract surgery. Preliminary data suggest nepafenac may also provide unique efficacy in the posterior segment, since its corneal permeability characteristics are superior to those of other NSAIDs. Nevanac, diclofenac, ketorolac and bromfenac are some notable NSAID candidates which should be investigated intravitreally or topically for retinal pharmacotherapy. In addition, for intraocular surgery, NSAIDs can help to prevent intraoperative miosis, reduce ocular pain, decrease postoperative inflammation and prevent cystoid macular edema. Retinal, choroidal and vitreous diseases may be the target of future nepafenac studies, either as monotherapy or as combination treatments. PMID:26502088

  18. Anti-inflammatory polymer electrodes for glial scar treatment: bringing the conceptual idea to future results

    PubMed Central

    Asplund, Maria; Boehler, Christian; Stieglitz, Thomas

    2014-01-01

    Conducting polymer films offer a convenient route for the functionalization of implantable microelectrodes without compromising their performance as excellent recording units. A micron thick coating, deposited on the surface of a regular metallic electrode, can elute anti-inflammatory drugs for the treatment of glial scarring as well as growth factors for the support of surrounding neurons. Electro-activation of the polymer drives the release of the substance and should ideally provide a reliable method for controlling quantity and timing of release. Driving signals in the form of a constant potential (CP), a slow redox sweep or a fast pulse are all represented in literature. Few studies present such release in vivo from actual recording and stimulating microelectronic devices. It is essential to bridge the gap between studies based on release in vitro, and the intended application, which would mean release into living and highly delicate tissue. In the biological setting, signals are limited both by available electronics and by the biological safety. Driving signals must not be harmful to tissue and also not activate the tissue in an uncontrolled manner. This review aims at shedding more light on how to select appropriate driving parameters for the polymer electrodes for the in vivo setting. It brings together information regarding activation thresholds for neurons, as well as injury thresholds, and puts this into context with what is known about efficient driving of release from conducting polymer films. PMID:24860493

  19. An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report

    PubMed Central

    2014-01-01

    Background The Anti-Inflammatory Diet (IBD-AID) is a nutritional regimen for inflammatory bowel disease (IBD) that restricts the intake of certain carbohydrates, includes the ingestion of pre- and probiotic foods, and modifies dietary fatty acids to demonstrate the potential of an adjunct dietary therapy for the treatment of IBD. Methods Forty patients with IBD were consecutively offered the IBD-AID to help treat their disease, and were retrospectively reviewed. Medical records of 11 of those patients underwent further review to determine changes in the Harvey Bradshaw Index (HBI) or Modified Truelove and Witts Severity Index (MTLWSI), before and after the diet. Results Of the 40 patients with IBD, 13 patients chose not to attempt the diet (33%). Twenty-four patients had either a good or very good response after reaching compliance (60%), and 3 patients’ results were mixed (7%). Of those 11 adult patients who underwent further medical record review, 8 with CD, and 3 with UC, the age range was 19–70 years, and they followed the diet for 4 or more weeks. After following the IBD-AID, all (100%) patients were able to discontinue at least one of their prior IBD medications, and all patients had symptom reduction including bowel frequency. The mean baseline HBI was 11 (range 1–20), and the mean follow-up score was 1.5 (range 0–3). The mean baseline MTLWSI was 7 (range 6–8), and the mean follow-up score was 0. The average decrease in the HBI was 9.5 and the average decrease in the MTLWSI was 7. Conclusion This case series indicates potential for the IBD-AID as an adjunct dietary therapy for the treatment of IBD. A randomized clinical trial is warranted. PMID:24428901

  20. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

    PubMed Central

    Farney, Jaymelynn K.; Mamedova, Laman K.; Coetzee, Johann F.; KuKanich, Butch; Sordillo, Lorraine M.; Stoakes, Sara K.; Minton, J. Ernest; Hollis, Larry C.

    2013-01-01

    Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation. PMID:23678026

  1. Use of non-steroidal anti-inflammatory drugs in the treatment of pain in cancer

    PubMed Central

    Ventafridda, V.; Fochi, C.; De Conno, D.; Sganzerla, E.

    1980-01-01

    1 Prostaglandins may precipitate or exacerbate pain and they may be produced by several tumours. 2 Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostaglandin synthesis and may also inhibit bone metastases and enhance immune responses. 3 NSAIDs alone or in association with narcotics or psychotropics may not only afford the best pain relief in neoplastic disease, but also modify the progress of the tumour. 4 The effect of NSAIDs on the gastrointestinal tract is generally adverse. PMID:7002189

  2. [Anti-inflammatory effect and tachyphylaxis of systemic and combined systemic-topical treatment with corticosteroids in the pyrexal erythema test].

    PubMed

    Stengel, R; Stricker, R; Schöpf, E

    1984-12-01

    On account of clinical experience as well as experimental findings, we noticed subsiding anti-inflammatory and antiproliferative effects of topical corticosteroids after regularly repeated application. Following four-day's oral therapy with methylprednisolone 40 mg daily, the pyrexal erythema test did not reveal any decrease of anti-inflammatory effect in six volunteers. The efficacy of this therapy was similar to that of occlusive topical therapy with 0.25% desoxymethasone ointment. The anti-inflammatory effect of systemic steroid treatment could even be slightly increased by additional topical steroid therapy. PMID:6523960

  3. Regular Physical Exercise as a Strategy to Improve Antioxidant and Anti-Inflammatory Status: Benefits in Type 2 Diabetes Mellitus

    PubMed Central

    Teixeira de Lemos, Edite; Oliveira, Jorge; Páscoa Pinheiro, João; Reis, Flávio

    2012-01-01

    Over the last 30 years the combination of both a sedentary lifestyle and excessive food availability has led to a significant increase in the prevalence of obesity and aggravation of rates of metabolic syndrome and type 2 diabetes mellitus (T2DM). Several lines of scientific evidence have been demonstrating that a low level of physical activity and decreased daily energy expenditure leads to the accumulation of visceral fat and, consequently, the activation of the oxidative stress/inflammation cascade, which underlies the development of insulin resistant T2DM and evolution of micro, and macrovascular complications. This paper focuses on the pathophysiological pathways associated with the involvement of oxidative stress and inflammation in the development of T2DM and the impact of regular physical exercise (training) as a natural antioxidant and anti-inflammatory strategy to prevent evolution of T2DM and its serious complications. PMID:22928086

  4. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    PubMed

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (p<0.05). Removal efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. PMID:24370698

  5. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  6. [The experience with the topical application of non-steroidal anti-inflammatory agents for the treatment of otitis media].

    PubMed

    Razvozzhaev, A A; Starodumova, T A; Nemstsveridze, E Ia

    2012-01-01

    The objective of the present study was to estimate the therapeutic efficacy and safety of the topically applied otinum ear drops. The authors present the results of the combined treatment of acute catarrhal otitis in the children with the use of choline salicilate (otinum). The study included 50 patients randomized into two identical groups. The children of group 1 received systemic therapy supplemented by the topical application of otinum, those in group 2 were prescribed a 3% alcoholic solution of boric acid. The study has demonstrated a significantly more pronounced positive dynamics of clinical conditions in the patients of group 1 compared with those of the control group. The total duration of therapy in the first group was 37.5% shorter than in the second. The results of the study confirmed the strong anti-inflammatory and analgesic action of choline salicilate. The pain was relieved within 7 minutes on the average after the application of this agent. It is concluded that otinum can be recommended for the introduction into combined therapy of acute catarrhal otitis media as an efficacious anti-inflammatory and analgetic drug. PMID:22810643

  7. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    PubMed Central

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    neuroprotection of brain tissue through anti-inflammatory and anti-apoptotic effects in a mouse model of SWI. These results suggest a new strategy for promoting neuronal survival and function after CED to improve long-term patient outcome. PMID:27445818

  8. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties

    PubMed Central

    Goldklang, Monica P.; Perez-Zoghbi, Jose F.; Trischler, Jordis; Nkyimbeng, Takwi; Zakharov, Sergey I.; Shiomi, Takayuki; Zelonina, Tina; Marks, Andrew R.; D'Armiento, Jeanine M.; Marx, Steven O.

    2013-01-01

    Large conductance voltage- and calcium-activated potassium (BK) channels are highly expressed in airway smooth muscle (ASM). Utilizing the ovalbumin (OVA) and house dust mite (HDM) models of asthma in C57BL/6 mice, we demonstrate that systemic administration of the BK channel agonist rottlerin (5 μg/g) during the challenge period reduced methacholine-induced airway hyperreactivity (AHR) in OVA- and HDM-sensitized mice (47% decrease in peak airway resistance in OVA-asthma animals, P<0.01; 54% decrease in HDM-asthma animals, P<0.01) with a 35–40% reduction in inflammatory cells and 20–35% reduction in Th2 cytokines in bronchoalveolar lavage fluid. Intravenous rottlerin (5 μg/g) reduced AHR within 5 min in the OVA-asthma mice by 45% (P<0.01). With the use of an ex vivo lung slice technique, rottlerin relaxed acetylcholine-stimulated murine airway lumen area to 87 ± 4% of the precontracted area (P<0.01 vs. DMSO control). Rottlerin increased BK channel activity in human ASM cells (V50 shifted by 73.5±13.5 and 71.8±14.6 mV in control and asthmatic cells, respectively, both P<0.05 as compared with pretreatment) and reduced the frequency of acetylcholine-induced Ca2+ oscillations in murine ex vivo lung slices. These findings suggest that rottlerin, with both anti-inflammatory and ASM relaxation properties, may have benefit in treating asthma.—Goldklang, M. P., Perez-Zoghbi, J. F., Trischler, J., Nkyimbeng, T., Zakharov, S. I., Shiomi, T., Zelonina, T., Marks, A. R., D'Armiento, J. M., Marx, S. O. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties. PMID:23995289

  9. A strategy to discover decoy chemokine ligands with an anti-inflammatory activity

    PubMed Central

    Abboud, Dayana; Daubeuf, François; Do, Quoc Tuan; Utard, Valérie; Villa, Pascal; Haiech, Jacques; Bonnet, Dominique; Hibert, Marcel; Bernard, Philippe; Galzi, Jean-Luc; Frossard, Nelly

    2015-01-01

    Excessive signaling by chemokines has been associated with chronic inflammation or cancer, thus attracting substantial attention as promising therapeutic targets. Inspired by chemokine-clearing molecules shaped by pathogens to escape the immune system, we designed a generic screening assay to discover chemokine neutralizing molecules (neutraligands) and unambiguously distinguish them from molecules that block the receptor (receptor antagonists). This assay, called TRIC-r, combines time-resolved intracellular calcium recordings with pre-incubation of bioactive compounds either with the chemokine or the receptor-expressing cells. We describe here the identification of high affinity neutraligands of CCL17 and CCL22, two chemokines involved in the Th2-type of lung inflammation. The decoy molecules inhibit in vitro CCL17- or CCL22-induced intracellular calcium responses, CCR4 endocytosis and human T cell migration. In vivo, they inhibit inflammation in a murine model of asthma, in particular the recruitment of eosinophils, dendritic cells and CD4+T cells. Altogether, we developed a successful strategy to discover as new class of pharmacological tools to potently control cell chemotaxis in vitro and in vivo. PMID:26442456

  10. Selection of non-steroidal anti-inflammatory drug and treatment regimen for sulfur mustard-induced cutaneous lesions.

    PubMed

    Plahovinsak, Jennifer L; Buccellato, Matthew A; Reid, Frances M; Graham, John S

    2016-09-01

    The inflammatory process plays an important role in sulfur mustard (HD) injury and HD pathogenesis, suggesting that anti-inflammatory treatments applied as soon as possible following HD injury may reduce tissue damage and accelerate healing. This study used the HD dermal weanling swine model to investigate the efficacy of two non-steroidal anti-inflammatory drugs, capsaicin and diclofenac, when applied in combination with the steroid, clobetasol. The therapeutic regimen was also investigated with respect to initiation of treatment post-exposure, frequency and duration. Yorkshire-cross pigs were randomly assigned to experimental groups, corresponding to all combinations of treatment (capsaicin with clobetasol or diclofenac with clobetasol), onset time (1, 2 or 4 h post-exposure), treatment duration (1, 3 or 5 days) and frequency of applications (2, 3 or 4 per day). For each animal, two sites on the ventral abdomen were exposed to 400 μL of neat HD for 8 min to achieve superficial dermal (SD) lesions and two sites were exposed to 400 μL neat HD for 30 min to achieve deep dermal (DD) lesions. Each treatment regimen was tested against a SD and a DD injury. Untreated SD and DD lesion sites served as within-animal controls. Assessments, up to one week post-challenge, included digital photographs, clinical assessments (lesion size measurements and modified Draize scoring), transepidermal water loss (TEWL), reflectance colorimetry and histopathologic evaluations that included an estimate for depth of injury and wound healing parameters. Diclofenac plus clobetasol treatment resulted in significant reductions in lesion contracture and modified Draize scores, increased barrier function (decreased TEWL), and increased healing as determined by histopathology for both SD and DD injury when compared with untreated sites and sites treated with capsaicin plus clobetasol. An increased duration of treatment from 1 to 5 days was most commonly associated with decreased

  11. Treatment of persistent mating-induced endometritis in mares with the non-steroid anti-inflammatory drug vedaprofen.

    PubMed

    Rojer, H; Aurich, C

    2010-12-01

    Recently, successful treatment of mares with a history of persistent mating-induced endometritis (PMIE) with dexamethasone has been reported. As systemic treatment of horses with glucocorticoids should be handled with caution, we tested the hypothesis that treatment with the non-steroid anti-inflammatory drug (NSAID) vedaprofen, an inhibitor of cyclooxygenase-2, may have comparative, positive effects on fertility. Barren mares with a history of repeated PMIE were treated with vedaprofen (n = 8; initially 2 mg/kg bodyweight followed by 1 mg/kg orally twice daily) from 1 day before the first insemination to 1 day after ovulation or left untreated (n = 9). All mares received oxytocin (20 I.E. s.c.) thrice daily. Uterine swabs were collected for bacteriology and cytology. The day after ovulation, fluid accumulation was detected in three control mares and four treated mares (n.s.). The percentage of neutrophils in uterine cytology was significantly increased in comparison to the day before ovulation irrespective of treatment. Pregnancy was confirmed in two of nine mares in the control group and seven of eight mares in the treatment group (p < 0.05). NSAIDs may positively affect fertility in mares with a history of PMIE. PMID:20074320

  12. Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile.

    PubMed

    Heemskerk, Mattijs M; Dharuri, Harish K; van den Berg, Sjoerd A A; Jónasdóttir, Hulda S; Kloos, Dick-Paul; Giera, Martin; van Dijk, Ko Willems; van Harmelen, Vanessa

    2014-12-01

    Prolonged niacin treatment elicits beneficial effects on the plasma lipid and lipoprotein profile that is associated with a protective CVD risk profile. Acute niacin treatment inhibits nonesterified fatty acid release from adipocytes and stimulates prostaglandin release from skin Langerhans cells, but the acute effects diminish upon prolonged treatment, while the beneficial effects remain. To gain insight in the prolonged effects of niacin on lipid metabolism in adipocytes, we used a mouse model with a human-like lipoprotein metabolism and drug response [female APOE*3-Leiden.CETP (apoE3 Leiden cholesteryl ester transfer protein) mice] treated with and without niacin for 15 weeks. The gene expression profile of gonadal white adipose tissue (gWAT) from niacin-treated mice showed an upregulation of the "biosynthesis of unsaturated fatty acids" pathway, which was corroborated by quantitative PCR and analysis of the FA ratios in gWAT. Also, adipocytes from niacin-treated mice secreted more of the PUFA DHA ex vivo. This resulted in an increased DHA/arachidonic acid (AA) ratio in the adipocyte FA secretion profile and in plasma of niacin-treated mice. Interestingly, the DHA metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-diHDPA) was increased in plasma of niacin-treated mice. Both an increased DHA/AA ratio and increased 19,20-diHDPA are indicative for an anti-inflammatory profile and may indirectly contribute to the atheroprotective lipid and lipoprotein profile associated with prolonged niacin treatment. PMID:25320342

  13. Treatment of acute soft tissue trauma with a topical non-steroidal anti-inflammatory drug (biphenylacetic acid 3% gel).

    PubMed

    Lee, E H; Lee, P Y; Ngai, A T; Chiu, E H

    1991-08-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to be effective in the treatment of acute soft tissue injuries. However, taken orally, NSAIDs have a definite incidence of gastro-intestinal toxicity. Since acute soft tissue trauma is normally localised, use of a topical NSAID may eliminate this undesirable side-effect. This study was designed to evaluate the efficacy and safety of a topical NSAID, biphenylacetic acid 3% gel (Traxam) in the treatment of soft tissue trauma. Thirty-two patients (22 males and 10 females) with acute soft tissue trauma were enrolled at the Department of Orthopaedic Surgery, National University Hospital, Singapore from 7 June 1988 to 28 March 1989. Each patient was treated for a period of one week with bipenylacetic acid 3% gel (Traxam), 60 mg three times a day. Statistically significant improvement was found in pain, swelling and functional impairment in all patients assessed at day 3 and day 7 after the injury. The speed of recovery was enhanced. The medication was found to be well tolerated and safe. PMID:1776001

  14. PPARγ Agonists as an Anti-Inflammatory Treatment Inhibiting Rotavirus Infection of Small Intestinal Villi

    PubMed Central

    Gómez, Dory; Muñoz, Natalia; Guerrero, Rafael; Acosta, Orlando; Guerrero, Carlos A.

    2016-01-01

    Rotavirus infection has been reported to induce an inflammatory response in the host cell accompanied by the increased expression or activation of some cellular molecules including ROS, NF-κB, and COX-2. PPARγ stimulation and N-acetylcysteine (NAC) treatment have been found to interfere with viral infections including rotavirus infection. Small intestinal villi isolated from in vivo infected mice with rotavirus ECwt were analyzed for the percentage of ECwt-infected cells, the presence of rotavirus antigens, and infectious virion yield following treatment with pioglitazone. Isolated villi were also infected in vitro and treated with PPARγ agonists (PGZ, TZD, RGZ, DHA, and ALA), all-trans retinoic acid (ATRA), and NAC. After treatments, the expression of cellular proteins including PPARγ, NF-κB, PDI, Hsc70, and COX-2 was analyzed using immunochemistry, ELISA, immunofluorescence, and Western blotting. The results showed that rotavirus infection led to an increased accumulation of the cellular proteins studied and ROS. The virus infection-induced accumulation of the cellular proteins studied and ROS was reduced upon pioglitazone treatment, causing also a concomitant reduction of the infectious virion yield. We hypothesized that rotavirus infection is benefiting from the induction of a host cell proinflammatory response and that the interference of the inflammatory pathways involved leads to decreased infection. PMID:27382365

  15. Targeting anti-inflammatory treatment can ameliorate injury-induced neuropathic pain.

    PubMed

    Iwatsuki, Katsuyuki; Arai, Tetsuya; Ota, Hideyuki; Kato, Shuichi; Natsume, Tadahiro; Kurimoto, Shigeru; Yamamoto, Michiro; Hirata, Hitoshi

    2013-01-01

    Tumor necrosis factor-α plays important roles in immune system development, immune response regulation, and T-cell-mediated tissue injury. The present study assessed the net value of anti-tumor necrosis factor-α treatment in terms of functional recovery and inhibition of hypersensitivity after peripheral nerve crush injury. We created a right sciatic nerve crush injury model using a Sugita aneurysm clip. Animals were separated into 3 groups: the first group received only a skin incision; the second group received nerve crush injury and intraperitoneal vehicle injection; and the third group received nerve crush injury and intraperitoneal etanercept (6 mg/kg). Etanercept treatment improved recovery of motor nerve conduction velocity, muscle weight loss, and sciatic functional index. Plantar thermal and von Frey mechanical withdrawal thresholds recovered faster in the etanercept group than in the control group. On day 7 after crush injury, the numbers of ED-1-positive cells in crushed nerves of the control and etanercept groups were increased compared to that in the sham-treated group. After 21 days, ED-1-positive cells had nearly disappeared from the etanercept group. Etanercept reduced expression of interleukin-6 and monocyte chemotactic and activating factor-1 at the crushed sciatic nerve. These findings demonstrate the utility of etanercept, in terms of both enhancing functional recovery and suppressing hypersensitivity after nerve crush. Etanercept does not impede the onset or progression of Wallerian degeneration, but optimizes the involvement of macrophages and the secretion of inflammatory mediators. PMID:23469058

  16. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch

    PubMed Central

    Lionberger, David R; Brennan, Michael J

    2010-01-01

    The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP) in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac, and DETP in patients with acute soft tissue injuries was included. Relevant literature was identified on MEDLINE using the search terms topical NSAIDs, diclofenac, diclofenac epolamine, acute pain, sports injury, soft tissue injury, strain, sprain, and contusion, and from citations in retrieved articles covering the years 1978–2008. Review of published, randomized clinical trials and meta-analyses shows that topical NSAIDs are significantly more effective than placebo in relieving acute pain; the pooled average relative benefit was 1.7 (95% confidence interval, 1.5–1.9). In a limited number of comparisons, topical and oral NSAIDs provided comparable pain relief, but the use of topical agents produced lower plasma drug concentrations and fewer systemic adverse events (AEs). The physical–chemical properties of diclofenac epolamine make it well suited for topical use. In patients with acute soft tissue injuries treated with DETP, clinical data report an analgesic benefit within hours of the first application, and significant pain relief relative to placebo within 3 days. Moreover, DETP displayed tolerability comparable with placebo; the most common AEs were pruritus and other application site reactions. Review of published literature suggests that DETP is generally safe and well tolerated, clinically efficacious, and a rational treatment option for patients experiencing acute pain associated with strains, sprains, and contusions, and other localized painful conditions. PMID:21197326

  17. Non-Steroidal Anti-Inflammatory Drugs and Aspirin Therapy for the Treatment of Acute and Recurrent Idiopathic Pericarditis

    PubMed Central

    Schwier, Nicholas; Tran, Nicole

    2016-01-01

    Aspirin (ASA) and non-steroidal anti-inflammatory drugs (NSAIDs) are a mainstay of therapy for the treatment of idiopathic pericarditis (IP). A comprehensive review consisting of pertinent clinical literature, pharmacokinetic, and pharmacodynamic considerations, has not been released in recent years. This review will facilitate the clinician’s understanding of pharmacotherapeutic considerations for using ASA/NSAIDs to treat IP. Data were compiled using clinical literature consisting of case reports, cohort data, retrospective and prospective studies, and manufacturer package inserts. ASA, ibuprofen, indometacin, and ketorolac relatively have the most evidence in the treatment of IP, provide symptomatic relief of IP, and should be tapered accordingly. ASA is the drug of choice in patients with coronary artery disease (CAD), heart failure (HF), or renal disease, but should be avoided in patients with asthma and nasal polyps, who are naïve to ASA therapy. Ibuprofen is an inexpensive and relatively accessible option in patients who do not have concomitant CAD, HF, or renal disease. Indometacin is not available over-the-counter in the USA, and has a relatively higher incidence of central nervous system (CNS) adverse effects. Ketorolac is an intravenous option; however, clinicians must be mindful of the maximum dose that can be administered. While ASA/NSAIDs do not ameliorate the disease process of IP, they are part of first-line therapy (along with colchicine), for preventing recurrence of IP. ASA/NSAID choice should be dictated by comorbid conditions, tolerability, and adverse effects. Additionally, the clinician should be mindful of considerations such as tapering, high-sensitivity CRP monitoring, bleeding risk, and contraindications to ASA/NSAID therapy. PMID:27023565

  18. Non-Steroidal Anti-Inflammatory Drugs and Aspirin Therapy for the Treatment of Acute and Recurrent Idiopathic Pericarditis.

    PubMed

    Schwier, Nicholas; Tran, Nicole

    2016-01-01

    Aspirin (ASA) and non-steroidal anti-inflammatory drugs (NSAIDs) are a mainstay of therapy for the treatment of idiopathic pericarditis (IP). A comprehensive review consisting of pertinent clinical literature, pharmacokinetic, and pharmacodynamic considerations, has not been released in recent years. This review will facilitate the clinician's understanding of pharmacotherapeutic considerations for using ASA/NSAIDs to treat IP. Data were compiled using clinical literature consisting of case reports, cohort data, retrospective and prospective studies, and manufacturer package inserts. ASA, ibuprofen, indometacin, and ketorolac relatively have the most evidence in the treatment of IP, provide symptomatic relief of IP, and should be tapered accordingly. ASA is the drug of choice in patients with coronary artery disease (CAD), heart failure (HF), or renal disease, but should be avoided in patients with asthma and nasal polyps, who are naïve to ASA therapy. Ibuprofen is an inexpensive and relatively accessible option in patients who do not have concomitant CAD, HF, or renal disease. Indometacin is not available over-the-counter in the USA, and has a relatively higher incidence of central nervous system (CNS) adverse effects. Ketorolac is an intravenous option; however, clinicians must be mindful of the maximum dose that can be administered. While ASA/NSAIDs do not ameliorate the disease process of IP, they are part of first-line therapy (along with colchicine), for preventing recurrence of IP. ASA/NSAID choice should be dictated by comorbid conditions, tolerability, and adverse effects. Additionally, the clinician should be mindful of considerations such as tapering, high-sensitivity CRP monitoring, bleeding risk, and contraindications to ASA/NSAID therapy. PMID:27023565

  19. [Cheek perforation of dental origin and the effect of anti-inflammatory drug treatment during self-medication. Apropos of a case].

    PubMed

    Kouame, P; Souaga, K; Amantchi, D

    1999-06-01

    Complications of dental caries not treated and mal-treated are frequent in Africa (cellulitis, osteitis, etc...). Patients consult late due to effective automedication with anti-inflammatory agents but the continuing pathological process leading to fistulae, perforation and persistent pain are finally the reasons of consultation. We present a case of a young Ivorian student of 22 years we have received after one year of erratic treatment with a right jaw perforation. PMID:11372091

  20. Synthesis and biological evaluation of a novel class of curcumin analogs as anti-inflammatory agents for prevention and treatment of sepsis in mouse model.

    PubMed

    Zhao, Chengguang; Zhang, Yali; Zou, Peng; Wang, Jian; He, Wenfei; Shi, Dengjian; Li, Huameng; Liang, Guang; Yang, Shulin

    2015-01-01

    A novel class of asymmetric mono-carbonyl analogs of curcumin (AMACs) were synthesized and screened for anti-inflammatory activity. These analogs are chemically stable as characterized by UV absorption spectra. In vitro, compounds 3f, 3m, 4b, and 4d markedly inhibited lipopolysaccharide (LPS)-induced expression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6 in a dose-dependent manner, with IC50 values in low micromolar range. In vivo, compound 3f demonstrated potent preventive and therapeutic effects on LPS-induced sepsis in mouse model. Compound 3f downregulated the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 MAPK and suppressed IκBα degradation, which suggests that the possible anti-inflammatory mechanism of compound 3f may be through downregulating nuclear factor kappa binding (NF-κB) and ERK pathways. Also, we solved the crystal structure of compound 3e to confirm the asymmetrical structure. The quantitative structure-activity relationship analysis reveals that the electron-withdrawing substituents on aromatic ring of lead structures could improve activity. These active AMACs represent a new class of anti-inflammatory agents with improved stability, bioavailability, and potency compared to curcumin. Our results suggest that 3f may be further developed as a potential agent for prevention and treatment of sepsis or other inflammation-related diseases. PMID:25834403

  1. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents.

    PubMed

    Urbanska, Aleksandra Malgorzata; Zhang, Xiaoying; Prakash, Satya

    2015-07-01

    Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions

  2. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease.

    PubMed

    Pisanu, Augusta; Lecca, Daniela; Mulas, Giovanna; Wardas, Jadwiga; Simbula, Gabriella; Spiga, Saturnino; Carta, Anna R

    2014-11-01

    Neuroinflammatory changes play a pivotal role in the progression of Parkinson's disease (PD) pathogenesis. Recent findings have suggested that activated microglia may polarize similarly to peripheral macrophages in the central nervous system (CNS), assuming a pro-inflammatory M1 phenotype or the alternative anti-inflammatory M2 phenotype via cytokine production. A skewed M1 activation over M2 has been related to disease progression in Alzheimer disease, and modulation of microglia polarization may be a therapeutic target for neuroprotection. By using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-probenecid (MPTPp) mouse model of progressive PD, we investigated dynamic changes in the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and anti-inflammatory cytokines, such as transforming growth factor (TGF)-β and IL-10, within Iba-1-positive cells in the substantia nigra compacta (SNc). In addition, to further characterize changes in the M2 phenotype, we measured CD206 in microglia. Moreover, in order to target microglia polarization, we evaluated the effect of the peroxisome-proliferator-activated receptor (PPAR)-γ agonist rosiglitazone, which has been shown to exert neuroprotective effects on nigral dopaminergic neurons in PD models, and acts as a modulator of cytokine production and phenotype in peripheral macrophages. Chronic treatment with MPTPp induced a progressive degeneration of SNc neurons. The neurotoxin treatment was associated with a gradual increase in both TNF-α and IL-1β colocalization with Iba-1-positive cells, suggesting an increase in pro-inflammatory microglia. In contrast, TGF-β colocalization was reduced by the neurotoxin treatment, while IL-10 was mostly unchanged. Administration of rosiglitazone during the full duration of MPTPp treatment reverted both TNF-α and IL-1β colocalization with Iba-1 to control levels. Moreover, rosiglitazone induced an increase in TGF-β and IL-10

  3. Anti-inflammatory Activity.

    PubMed

    2016-01-01

    Inflammation is the body's first response to infection or injury and is critical for both innate and adaptive immunity. It can be considered as part of the complex biological response of vascular tissues to harmful stimuli such as pathogens, damaged cells, or irritants. The search for natural compounds and phytoconstituents that are able to interfere with these mechanisms by preventing a prolonged inflammation could be useful for human health. Here, the anti-inflammatory properties of plant-based drugs are put together with both in vitro and acute (carrageenan, egg albumin and croton oil) and chronic (cotton pellet) in vivo models. PMID:26939273

  4. Multicenter Orthopaedic Outcome Network Early Anti-inflammatory Treatment in Patients with Acute ACL Tear” (MOON-AAA) Clinical Trial

    PubMed Central

    Lattermann, Christian; Proffitt, Mary; Huston, Laura J.; Gammon, Lee; Johnson, Darren L.; Kraus, Virginia B.; Spindler, Kurt P.

    2016-01-01

    Objectives: We present the early results from the “Multicenter Orthopaedic Outcome Network Early Anti-inflammatory Treatment in Patients with Acute ACL Tear and Painful Effusions” (MOON-AAA) clinical trial (figure 1). This trial allows for a well controlled prospective cohort of patients with isolated ACL injury at risk for OA. We compared the effect of a single versus a repeated dosage of Kenalog within the first two weeks after ACL injury and its effect on chondral degradation in the first 4 weeks prior to surgical reconstruction of the ACL. Methods: 49 patients with isolated ACL tears were enrolled. Knee joints were aspirated and patients received an injection with 40 mg Kenalog either within 4 days, 10 days, both time points or not at all (saline injection control). Serum, synovial fluid and urine were collected at 3 time points. Permutated block randomization, triple blinding, independent monitoring and standardized x-ray was performed to comply with GCP standards. Patient reported outcomes were collected at 6 time points up to 6 months post-ACL reconstruction(IKDC, KOOS and Marx activity level). A standardized synovial fluid biomarker panel was analyzed according to OARSI guidelines. Statistical analysis were performed using SAS mixed models analysis. Results: Serum analysis shows significant change after injury. Chondrodegradatory markers such as CTX-II, MMP-1 and MMP-3 as well as COMP indicate a progressive destruction of chondral matrix and collagen breakdown . There is a dramatic (250%) increase of CTX-II in the first 4 weeks. Matrix proteins such as MMP-1 and 3 as well as COMP show an initial increase and then a steep decline (see figure 1). Inflammatory markers (IL-1 alpha, IL-1beta, IRAP) show a decline from the time of injury. IL-1 alpha, however shows a dramatic uptake after week 2. This longitudinal data confirms a dramatic onset of early osteoarthritic biomarker profiles immediately after ACL injury as measured in synovial fluid

  5. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  6. [Role of anti-inflammatory drugs in the treatment of acute coronary syndromes. From athero-inflammation to athero-thrombosis].

    PubMed

    Altman, Raúl; Scazziota, Alejandra

    2003-01-01

    Coronary thrombosis is the most important cause of morbidity and mortality and the most severe manifestation of atherosclerosis. Knowledge of the pathophysiology of atheroma formation and the causes of atheroma accidents have allowed the development of new therapeutic measures for reducing thrombotic events after a coronary episode. Treating the thrombosis after plaque rupture is useful, but a late measure once coronary flow is disturbed. Therefore, treatment at an earlier stage, which we call athero-inflammation, a central event in atheroma progression leading to atherothrombosis, seems wise. There is evidence of an inflammatory component in the pathogenesis of atheroma rupture in acute coronary events. Earlier studies of anti-inflammatory medication have not demonstrated a reduction in thrombotic complications after an acute coronary episode. However, there are pathophysiological arguments and clinical findings that suggest that it would be advisable to include anti-inflammatory medications, especially those that inhibit preferentially COX-2, in the therapeutic arsenal for this pathology. We postulated that blocking athero-inflammation could prevent thrombosis. A pilot study was carried out in 120 patients with acute coronary syndrome without ST-segment elevation in which 60 patients were treated with meloxicam, a preferential COX-2 inhibitor. All patients received heparin and aspirin. During the stay in the coronary care unit, as well as after 90 days, meloxicam lowered composite outcomes (myocardial infarction, death and revascularization procedures) compared with the control group. These results and available pathophysiological and clinical evidence support the hypothesis of potential benefits of non-steroidal anti-inflammatory drugs with preferential inhibitory activity on COX-2 in patients with acute coronary syndromes. More trials are needed to confirm their preventive effect. PMID:12549993

  7. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain.

    PubMed

    Younger, Jarred; Parkitny, Luke; McLain, David

    2014-04-01

    Low-dose naltrexone (LDN) has been demonstrated to reduce symptom severity in conditions such as fibromyalgia, Crohn's disease, multiple sclerosis, and complex regional pain syndrome. We review the evidence that LDN may operate as a novel anti-inflammatory agent in the central nervous system, via action on microglial cells. These effects may be unique to low dosages of naltrexone and appear to be entirely independent from naltrexone's better-known activity on opioid receptors. As a daily oral therapy, LDN is inexpensive and well-tolerated. Despite initial promise of efficacy, the use of LDN for chronic disorders is still highly experimental. Published trials have low sample sizes, and few replications have been performed. We cover the typical usage of LDN in clinical trials, caveats to using the medication, and recommendations for future research and clinical work. LDN may represent one of the first glial cell modulators to be used for the management of chronic pain disorders. PMID:24526250

  8. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  9. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  10. The Effect of Transient Local Anti-inflammatory Treatment on the Survival of Pig Retinal Progenitor Cell Allotransplants

    PubMed Central

    Abud, Murilo; Baranov, Petr; Hicks, Caroline; Patel, Sara; Lieppman, Burke; Regatieri, Caio; Sinden, John; Isaac, David; Avila, Marcos; Young, Michael

    2015-01-01

    Purpose The development of photoreceptor replacement therapy for retinal degenerative disorders requires the identification of the optimal cell source and immunosuppressive regimen in a large animal model. Allotransplants are not acutely rejected in swine subretinal space, although it is not known if survival can be improved with immunosuppression. Here we investigated the survival and integration of expanded pig retinal progenitor cells (pRPCs) in normal recipients with and without transient anti-inflammatory suppression. Methods pRPCs were derived from the neural retina of E60 GFP transgenic pigs, expanded for six passages, characterized, and transplanted into the subretinal space of 12 pigs. Six recipients received a single intravitreal injection of rapamycin and dexamethasone. Results pRPCs expressed the photoreceptor development genes Sox2, Pax6, Lhx2, Crx, Nrl, and Recoverin in vitro. Transplanted cells were identified in 9 out of 12 recipients 4 weeks after the injection. pRPCs integrated primarily into the photoreceptor inner segment layer and outer nuclear layer with single cells present in the inner nuclear layer. Donor cells remained recoverin-positive and acquired rhodopsin. We did not observe any signs of graft proliferation. The immunosuppression did not affect the survival or distribution of grafts. No macrophage infiltration or loss of retinal structure was observed in either group. Conclusions Local immunosuppression with rapamycin and dexamethasone does not improve the outcome of pRPC allotransplantation into the subretinal space. Translational Relevance Survival and integration of pRPC together with the lack of graft proliferation suggests that allogeneic RPC transplantation without transient immunosuppression is a favorable approach for photoreceptor cell replacement. PMID:26425402

  11. Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury.

    PubMed

    Chen, Wenbo; Ge, Xiangting; Xu, Fengli; Zhang, Yali; Liu, Zhiguo; Pan, Jialing; Song, Jiao; Dai, Yuanrong; Zhou, Jianmin; Feng, Jianpeng; Liang, Guang

    2015-08-01

    Acute lung injury (ALI) is a major cause of acute respiratory failure in critically-ill patients. It has been reported that both resveratrol and chalcone derivatives could ameliorate lung injury induced by inflammation. A series of paralleled Aza resveratrol-chalcone compounds (5a-5m, 6a-6i) were designed, synthesized and screened for anti-inflammatory activity. A majority showed potent inhibition on the IL-6 and TNF-α expression-stimulated by LPS in macrophages, of which compound 6b is the most potent analog by inhibition of LPS-induced IL-6 release in a dose-dependent manner. Moreover, 6b exhibited protection against LPS-induced acute lung injury in vivo. These results offer further insight into the use of Aza resveratrol-chalcone compounds for the treatment of inflammatory diseases, and the use of compound 6b as a lead compound for the development of anti-ALI agents. PMID:26048788

  12. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation.

    PubMed

    Planagumà, A; Domènech, T; Pont, M; Calama, E; García-González, V; López, R; Aulí, M; López, M; Fonquerna, S; Ramos, I; de Alba, J; Nueda, A; Prats, N; Segarra, V; Miralpeix, M; Lehner, M D

    2015-10-01

    Neutrophil infiltration and activation in the lung are important pathophysiological features in COPD, severe asthma and bronchiectasis mostly mediated by CXCL8 and CXCL1 via CXCR1 and CXCR2. No thorough study to date has been performed to compare the anti-inflammatory effect profile of dual CXCR1/2 vs. selective CXCR2 antagonists in relevant human neutrophil assays and pulmonary inflammation models. Dual CXCR1/2 (SCH527123, diaminocyclobutandione-1) and selective CXCR2 (SB265610, thiopyrimidine-1) antagonist activity and receptor residence time were determined by [(35)S]GTPγS binding in human (h)- and guinea pig (gp)-CXCR1 and CXCR2 overexpressing membranes. h-neutrophil chemotaxis, degranulation and ROS production were established using CXCL8 or CXCL1 to evaluate dual CXCR1/2- or selective CXCR2-dependent activities. LPS-induced lung inflammation in gp was selected to assess in vivo potency. Dual CXCR1/2 antagonists blocked both CXCL8 and CXCL1-induced h-neutrophil functions and [(35)S]GTPγS binding. In contrary, selective CXCR2 antagonists displayed significantly reduced potency in CXCL8 -mediated h-neutrophil responses despite being active in CXCR2 assays. Upon LPS challenge in gp, administration of SCH527123 inhibited the increase of neutrophils in BALF, modestly reduced blood neutrophils and induced minor neutrophil accumulation in bone marrow. Differentiation of CXCR1/2 vs. CXCR2 antagonists could not be extended to in vivo due to differences in CXCR1 receptor homology between h and gp. Dual CXCR1/2 therapy may represent a promising anti-inflammatory treatment for respiratory diseases reducing more effectively neutrophil migration and activation in the lung than a CXCR2 selective treatment. However, the in vivo confirmation of this claim is still missing due to species differences in CXCR1. PMID:26271598

  13. Pre- or post-treatment with ethanol and ethyl pyruvate results in distinct anti-inflammatory responses of human lung epithelial cells triggered by interleukin-6.

    PubMed

    Relja, Borna; Omid, Nina; Schaible, Alexander; Perl, Mario; Meier, Simon; Oppermann, Elsie; Lehnert, Mark; Marzi, Ingo

    2015-08-01

    Increased local and systemic levels of interleukin (IL)-6 are associated with inflammatory processes, including neutrophil infiltration of the alveolar space, resulting in lung injury. Our previous study demonstrated the beneficial anti-inflammatory effects of acute exposure to ethanol (EtOH) in an acute in vivo model of inflammation. However, due to its side-effects, EtOH is not used clinically. In the present study, the effects of EtOH and ethyl pyruvate (EtP) as an alternative anti-inflammatory drug prior to and following application of an IL-6 stimulus on cultured A549 lung epithelial cells were compared, and it was hypothesized that treatment with EtOH and EtP reduces the inflammatory potential of the A549 cells. Time- and dose-dependent release of IL-8 from the A549 cells was observed following stimulation with IL-6. The release of IL-8 from the A549 cells was assessed following treatment with EtP (2.5-10 mM), sodium pyruvate (NaP; 10 mM) or EtOH (85-170 mM) for 1, 24 or 72 h, prior to and following IL-6 stimulation. The adhesion capacities of neutrophils to the treated A549 cells, and the expression levels of cluster of differentiation (CD)54 by the epithelial cells were measured. Treatment of the A549 cells with either EtOH or EtP significantly reduced the IL-6-induced release of IL-8. This effect was observed in the pre- and post-stimulatory conditions, which is of therapeutic importance. Similar data was revealed regarding the IL-6-induced neutrophil adhesion to the treated A549 cells, in which pre- and post-treatment with EtOH or EtP decreased the adhesion capacity, however, the results were dependent on the duration of incubation. Incubation durations of 1 and 24 h decreased the adhesion rates of neutrophils to the stimulated A549 cells, however, the reduction was only significant at 72 h post-treatment. The expression of CD54 was reduced only following treatment for 24 h with either EtOH or EtP, prior to IL-6 stimulation. Therefore, EtOH and Et

  14. Treatment of radiculopathies: a study of efficacy and tollerability of paravertebral oxygen-ozone injections compared with pharmacological anti-inflammatory treatment.

    PubMed

    Melchionda, D; Milillo, P; Manente, G; Stoppino, L; Macarini, L

    2012-01-01

    The study was performed to evaluate the effectiveness of lumbar paravertebral injections of a gas mixture of Oxygen and Ozone in patients with lumbar radiculopathies caused by L4-L5 or L5-S1 disk herniations compared to a pharmacological therapy based on non-steroidal anti-inflammatory drugs. Lumbar radiculopathy caused by disc herniation is widely spread. Many therapeutic options are available before steering patients to the surgery. Low back pain and sciatica represent some of the most frequent causes of antinflammatory-analgesic drugs overuse. Recent findings have shown that medical Ozone can be used in the treatment of radicular syndrome caused by herniated intervertebral discs. Although widely spread, there are insufficient published data supporting the effectiveness of this approach in clinical practice. We studied 38 affected patients with acute L5 or S1 radicolopathy. The patients were randomly divided in two groups: A) 20 patients treated with lumbar paravertebral injections of Oxygen and Ozone; B) 18 patients treated pharmacologically with antinflammatory-analgesic drugs. All patients underwent a clinical and neurological examination at baseline (T1) and after 1 (T2), 2 (T3), 4 weeks (T4) and after 3 (T5) and 6 months (T6). An MRI and EMG examination were performed at baseline and after 6 months. The intensity of pain and the outcome of treatments were evaluated in all patients with the Visual Analogue Scale and with the Oswestry Disability Index. We found a reduction of pain and discomfort soon after one week with oxygen-ozone injections compared with pharmacological treatment, but this difference of response became statistically significant after two weeks (50 percent vs 16.6 percent) and is confirmed after 3 and 6 months, when 80 percent of patients treated with injections turned out pain free compared with half of the patients treated pharmacologically. No statistical difference were found in MRI and EMG examinations. No adverse effects were found in

  15. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  16. Natural products and anti-inflammatory activity.

    PubMed

    Yuan, Gaofeng; Wahlqvist, Mark L; He, Guoqing; Yang, Min; Li, Duo

    2006-01-01

    The aim of this review paper was to summarise some commonly available natural products and their anti-inflammatory activity. We have collected data from MEDLINE, Current Contents and scientific journals, which included 92 publications. There are numerous natural products detailed in this literature; however we have summarized a few of the most commonly available and potent ones. In this paper, the natural products with anti-inflammatory activity including curcumin, parthenolide, cucurbitacins, 1,8-cineole, pseudopterosins, lyprinol, bromelain, flavonoids, saponins, marine sponge natural products and Boswellia serrata gum resin were reviewed. Natural products play a significant role in human health in relation to the prevention and treatment of inflammatory conditions. Further studies are being conducted to investigate the mechanism of action, metabolism, safety and long term side effect of these natural products, as well as interactions between these natural products with food and drug components. PMID:16672197

  17. The Anti-Inflammatory Activity of a Novel Fused-Cyclopentenone Phosphonate and Its Potential in the Local Treatment of Experimental Colitis

    PubMed Central

    Shifrin, Helena; Harel, Efrat; Nadler-Milbauer, Mirela; Weinstock, Marta; Srebnik, Morris

    2015-01-01

    A novel fused-cyclopentenone phosphonate compound, namely, diethyl 3-nonyl-5-oxo-3,5,6,6a-tetrahydro-1H-cyclopenta[c]furan-4-ylphosphonate (P-5), was prepared and tested in vitro (LPS-activated macrophages) for its cytotoxicity and anti-inflammatory activity and in vivo (DNBS induced rat model) for its potential to ameliorate induced colitis. Specifically, the competence of P-5 to reduce TNFα, IL-6, INFγ, MCP-1, IL-1α, MIP-1α, and RANTES in LPS-activated macrophages was measured. Experimental colitis was quantified in the rat model, macroscopically and by measuring the activity of tissue MPO and iNOS and levels of TNFα and IL-1β. It was found that P-5 decreased the levels of TNFα and the tested proinflammatory cytokines and chemokines in LPS-activated macrophages. In the colitis-induced rat model, P-5 was effective locally in reducing mucosal inflammation. This activity was equal to the activity of local treatment with 5-aminosalicylic acid. It is speculated that P-5 may be used for the local treatment of IBD (e.g., with the aid of colon-specific drug platforms). Its mode of action involves inhibition of the phosphorylation of MAPK ERK but not of p38 and had no effect on IκBα. PMID:25949237

  18. Morinda citrifolia (Noni) as an Anti-Inflammatory Treatment in Women with Primary Dysmenorrhoea: A Randomised Double-Blind Placebo-Controlled Trial.

    PubMed

    Fletcher, H M; Dawkins, J; Rattray, C; Wharfe, G; Reid, M; Gordon-Strachan, G

    2013-01-01

    Introduction. Noni (Morinda citrifolia) has been used for many years as an anti-inflammatory agent. We tested the efficacy of Noni in women with dysmenorrhea. Method. We did a prospective randomized double-blind placebo-controlled trial in 100 university students of 18 years and older over three menstrual cycles. Patients were invited to participate and randomly assigned to receive 400 mg Noni capsules or placebo. They were assessed for baseline demographic variables such as age, parity, and BMI. They were also assessed before and after treatment, for pain, menstrual blood loss, and laboratory variables: ESR, hemoglobin, and packed cell volume. Results. Of the 1027 women screened, 100 eligible women were randomized. Of the women completing the study, 42 women were randomized to Noni and 38 to placebo. There were no significant differences in any of the variables at randomization. There were also no significant differences in mean bleeding score or pain score at randomization. Both bleeding and pain scores gradually improved in both groups as the women were observed over three menstrual cycles; however, the improvement was not significantly different in the Noni group when compared to the controls. Conclusion. Noni did not show a reduction in menstrual pain or bleeding when compared to placebo. PMID:23431314

  19. Removal and seasonal variability of selected analgesics/anti-inflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant.

    PubMed

    Golovko, Oksana; Kumar, Vimal; Fedorova, Ganna; Randak, Tomas; Grabic, Roman

    2014-06-01

    Seasonal removal efficiency of 16 pharmaceuticals and personal care products was monitored in a wastewater treatment plant in České Budějovice, Czech Republic, over a period of 1 year (total amount of samples, n = 272). The studied compounds included four UV filters, three analgesics/anti-inflammatory drugs and nine anti-hypertensive/cardiovascular drugs. In most cases, elimination of the substances was incomplete, and overall removal rates varied strongly from -38 to 100%. Therefore, it was difficult to establish a general trend for each therapeutic group. Based on the removal efficiencies (REs) over the year, three groups of target compounds were observed. A few compounds (benzophenon-1, valsartan, isradipine and furosemide) were not fully removed, but their REs were greater than 50%. The second group of analytes, consisting of 2-phenylbenzimidazole-5-sulfonic acid, tramadol, sotalol, metoprolol, atenolol and diclofenac, showed a very low RE (lower than 50%). The third group of compounds showed extremely variable RE (benzophenon-3 and benzophenon-4, codeine, verapamil, diltiazem and bisoprolol). There were significant seasonal trends in the observed REs, with reduced efficiencies in colder months. PMID:24599656

  20. The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant.

    PubMed

    Brozinski, Jenny-Maria; Lahti, Marja; Meierjohann, Axel; Oikari, Aimo; Kronberg, Leif

    2013-01-01

    Pharmaceutical residues are ubiquitous in rivers, lakes, and at coastal waters affected by discharges from municipal wastewater treatment plants. In this study, the presence of 17 different pharmaceuticals and six different phase I metabolites was determined in the bile of two wild fish species, bream (Abramis brama) and roach (Rutilus rutilus). The fish were caught from a lake that receives treated municipal wastewater via a small river. Prior to analyses, the bile content was enzymatically hydrolyzed to convert the glucuronide metabolites into the original pharmaceuticals or phase I metabolites. The solid phase extracts of hydrolyzates were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The anti-inflammatory drug naproxen could be detected in all the six bream and roach bile samples. Diclofenac was found in five of the bream and roach samples, while ibuprofen was detected in three bream and two roach samples. The observed bile concentrations of diclofenac, naproxen, and ibuprofen in bream ranged from 6 to 95 ng mL(-1), 6 to 32 ng mL(-1), and 16 to 34 ng mL(-1), respectively. The corresponding values in roach samples ranged from 44 to 148 ng mL(-1), 11 to 103 ng mL(-1) and 15 to 26 ng mL(-1), respectively. None of the other studied compounds could be detected. The study shows that pharmaceuticals originating from wastewater treatment plant effluents can be traced to the bile of wild bream and roach living in a lake where diclofenac, naproxen, and ibuprofen are present as pollutants. PMID:23186122

  1. Embryo transfer induces a subclinical endometritis in recipient mares which can be prevented by treatment with non-steroid anti-inflammatory drugs.

    PubMed

    Koblischke, P; Kindahl, H; Budik, S; Aurich, J; Palm, F; Walter, I; Kolodziejek, J; Nowotny, N; Hoppen, H-O; Aurich, C

    2008-10-15

    We tested the hypothesis that subclinical endometritis occurs after embryo transfer (ET) in the horse. Recipient mares were treated with meclofenamic acid (M) or flunixin meglumin (F) after ET or were left untreated (n=9 per group). Embryos were re-collected 4 days after transfer. Endometrial biopsies were taken for histology and analysis of cyclooxygenase-2 (COX-2) by immunohistochemistry and for PCR. Bacteriological swabs were collected from the uterus and lavage fluid of donor and recipient mares. Progesterone and prostaglandin F(2alpha) release was analysed in recipient mares after ET. Four days after ET, four embryos were recovered from group M and three from group F and untreated mares, each. The number of polymorph nuclear neutrophils was reduced in treated mares (p<0.05). Expression of mRNA for inflammatory cytokines did not differ between groups. In group M, expression of endometrial prostaglandin-E-synthase was higher than in group F (p<0.05). Three out of nine control mares underwent preterm luteolysis (p<0.05 vs. treatment groups), prostaglandin release (p<0.05) and the number of COX-2 positive cells (p<0.01) were significantly higher than in treated mares. Only few bacteriological swabs were positive. In conclusion, treatment of embryo recipient mares with non-steroid anti-inflammatory drugs inhibits the inflammatory response of the endometrium after ET. Meclofenamic acid may have advantages in comparison to flunixin meglumin due to a different influence on prostaglandin synthesis that may not result in inhibition of embryonic mobility. PMID:18657311

  2. Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the suppression of inflammation and pain. However, the analgesic properties of NSAIDs are also associated with significant negative side effects, most notably in the gastrointestinal (GI) tract. Increasingly, evi...

  3. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.

    PubMed

    Broeren, Mathijs G A; de Vries, Marieke; Bennink, Miranda B; Arntz, Onno J; Blom, Arjen B; Koenders, Marije I; van Lent, Peter L E M; van der Kraan, Peter M; van den Berg, Wim B; van de Loo, Fons A J

    2016-03-01

    Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1β. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA. PMID:26711533

  4. Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs.

    PubMed

    Silver, Kristopher; Desormaux, Alejandra; Freeman, Lisa C; Lillich, James D

    2012-08-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the suppression of inflammation and pain. However, the analgesic properties of NSAIDs are also associated with significant negative side effects, most notably in the gastrointestinal (GI) tract. Increasingly, evidence indicates that the ulcerogenic properties of some NSAIDs are not exclusively the result of inhibition of cyclooxygenase isoforms in the GI tract, and other mechanisms, including inhibition of cell migration and epithelial restitution, are being explored. Recently, microarray analysis was used to identify potential novel targets of NSAID activity in intestinal epithelial cells. Treated cells exhibited significant reductions in the gene expression of pleiotrophin (PTN), a cytokine and growth factor known to participate in angiogenesis and bone growth. This report aimed to confirm the microarray results reported previously, and to measure protein expression of PTN in intestinal epithelial cells. Furthermore, we also examined the effects of exogenous PTN on cell migration in the presence and absence of either NSAIDs with variable ulcerogenic potential or PTN-specific siRNA. Our results demonstrated that indomethacin and NS-398, two NSAIDs with ulcerogenic potential significantly decrease both gene and protein expressions of PTN in IEC-6 cells and protein expression in IEC-6-Cdx2 cells. Additionally, cell migration experiments with PTN siRNA showed that PTN is an important mediator of IEC-6 cell migration, and addition of exogenous PTN partially restores the deficits in cell migration caused by treatment with indomethacin and NS-398. Finally, measurement of PTN protein expression in the GI tract of horses treated with phenylbutazone showed that PTN expression is reduced by NSAIDs in vivo. Our results show that PTN is an important mediator of cell migration in IEC-6 cells, and PTN is a potential target through which NSAIDs may inhibit cell migration, epithelial

  5. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation.

    PubMed

    Gharib, B; Hanna, S; Abdallahi, O M; Lepidi, H; Gardette, B; De Reggi, M

    2001-08-01

    Molecular hydrogen reacts with the hydroxyl radical, a highly cytotoxic species produced in inflamed tissues. It has been suggested therefore to use gaseous hydrogen in a new anti-inflammatory strategy. We tested this idea, with the aid of the equipment and skills of COMEX SA in Marseille, a group who experiments with oxygen-hydrogen breathing mixtures for professional deep-sea diving. The model used was schistosomiasis-associated chronic liver inflammation. Infected animals stayed 2 weeks in an hyperbaric chamber in a normal atmosphere supplemented with 0.7 MPa hydrogen. The treatment had significant protective effects towards liver injury, namely decreased fibrosis, improvement of hemodynamics, increased NOSII activity, increased antioxidant enzyme activity, decreased lipid peroxide levels and decreased circulating TNF-alpha levels. Under the same conditions, helium exerted also some protective effects, indicating that hydroxyl radical scavenging is not the only protective mechanism. These findings indicate that the proposed anti-inflammatory strategy deserves further attention. PMID:11510417

  6. Extended nitric oxide analysis may improve personalized anti-inflammatory treatment in asthmatic children with intermediate F(E)NO50.

    PubMed

    Thornadtsson, A; Neerincx, A H; Högman, M; Hugen, C; Sintnicolaas, C; Harren, F J M; Merkus, P J F M; Cristescu, S M

    2015-12-01

    Exhaled nitric oxide (F(E)NO) is elevated in asthma, and a clinical practice guideline has been published with recommendations for anti-inflammatory treatment. It summarizes that a F(E)NO at an expiratory flow rate of 50 ml s(-1) (F(E)NO50) above 35 ppb in children indicates eosinophilic inflammation, and the most likely response is to use inhaled corticosteroids. Intermediate F(E)NO50 between 20-35 ppb should be interpreted cautiously. The aim of the study was to investigate this guideline in a small group of asthmatic children. Thirty-seven asthmatic children; 23 boys and 14 girls, visited the outpatient clinic, and provided exhaled breath samples for offline NO measurement. These samples were analysed with chemiluminescence techniques. Three flow rates, namely 16, 90 and 230 ml s(-1) were used for the extended NO analysis (Högman-Meriläinen algorithm, HMA) to estimate the alveolar concentration (C(A)NO), diffusion rate of the airway wall (D(aw)NO) and airway wall content (C(aw)NO). For accuracy of the HMA, the estimated value of F(E)NO at 50 ml s(-1) (F(E)NO50) was compared with measured F(E)NO50. In nine children the difference was more than 5 ppb and the data were therefore excluded. Five children with F(E)NO50 <20 ppb had no known allergy and their F(E)NO50 geometrical mean (25th; 75th percentile) was 11 (10;14) and CawNO was 32 (20;43) ppb. Ten children with F(E)NO50  >  35 ppb had an allergy and had F(E)NO50 of 56 (47;60) ppb and C(aw)NO of 140 (121;172) ppb. Thirteen children with allergies, with intermediate F(E)NO50, had F(E)NO50 of 27 (25;30) ppb with a wide range of C(aw)NO. In five of these children, values were comparable to healthy children, 44 (43;50) ppb while eight children had elevated C(aw)NO values of 108 (95;129) ppb. Our data indicate the clinical potential use of extended NO analysis to determine the personal target value of F(E)NO50 for monitoring the treatment outcome. Furthermore, for children with intermediate F(E)NO50

  7. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    lipoperoxidation (8-isoprostane) proved discriminant between treatments, with antioxidant and anti-inflammatory effects the main determinants of the erdosteine multifactorial properties. In addition, antitussive effects may be regarded as related to its anti-inflammatory properties via the improvement of mucociliary clearance and the reduction of chemokines from epithelial cells. Finally, a sort of "sensitization" of 2-adrenoceptors can also be speculated due to the same mechanisms of action; if confirmed by further controlled studies, this particular property would suggest a novel therapeutic role of erdosteine in COPD. PMID:18185958

  8. Efficacy of anti-inflammatory or antibiotic treatment in patients with non-complicated acute bronchitis and discoloured sputum: randomised placebo controlled trial

    PubMed Central

    Moragas, Ana; Bayona, Carolina; Morros, Rosa; Pera, Helena; Plana-Ripoll, Oleguer; Cots, Josep M; Miravitlles, Marc

    2013-01-01

    Objective To evaluate the efficacy of oral anti-inflammatory or antibiotic treatment compared with placebo in the resolution of cough in patients with uncomplicated acute bronchitis and discoloured sputum. Design Multicentre, parallel, single blinded placebo controlled, randomised clinical trial. Setting Nine primary care centres in Spain. Participants Adults aged 18 to 70 presenting symptoms associated with respiratory tract infection of less than one week’s duration, with cough as the predominant symptom, the presence of discoloured sputum, and at least one other symptom of lower respiratory tract infection (dyspnoea, wheezing, chest discomfort, or chest pain). Interventions Patients were randomised to receive either ibuprofen 600 mg three times daily, amoxicillin-clavulanic acid 500 mg/125 mg three times daily, or placebo three times daily for 10 days. The duration of symptoms was measured with a diary card. Main outcome measure Number of days with frequent cough after the randomisation visit. Results 416 participants were randomised (136 to ibuprofen, 137 to antibiotic, and 143 to placebo) and 390 returned their symptom diaries fully completed. The median number of days with frequent cough was slightly lower among patients assigned to ibuprofen (9 days, 95% confidence interval 8 to 10 days) compared with those receiving amoxicillin-clavulanic acid (11 days, 10 to 12 days) or placebo (11 days, 8 to 14 days), albeit without statistically significant differences. Neither amoxicillin-clavulanic acid nor ibuprofen increased the probability of cough resolution (hazard ratio 1.03, 95% confidence interval 0.78 to 1.35 and 1.23, 0.93 to 1.61, respectively) compared with placebo. Adverse events were observed in 27 patients, and were more common in the antibiotic arm (12%) than ibuprofen or placebo arms (5% and 3%, respectively; P<0.01). Conclusion No significant differences were observed in the number of days with cough between patients with uncomplicated acute

  9. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology

    PubMed Central

    Galvez-Llompart, María; Zanni, Riccardo; García-Domenech, Ramón

    2011-01-01

    One of the main pharmacological problems today in the treatment of chronic inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side effects. The natural products offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Computer-aided drug design has proved to be a very useful tool for discovering new drugs and, specifically, Molecular Topology has become a good technique for such a goal. A topological-mathematical model, obtained by linear discriminant analysis, has been developed for the search of new anti-inflammatory natural compounds. An external validation obtained with the remaining compounds (those not used in building up the model), has been carried out. Finally, a virtual screening on natural products was performed and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been previously described as anti-inflammatory in the literature. This can be seen as a plus in the model validation and as a reinforcement of the role of Molecular Topology as an efficient tool for the discovery of new anti-inflammatory natural compounds. PMID:22272145

  10. Anti-inflammatory and analgesic effects of Daphne retusa Hemsl.

    PubMed

    Hu, Xiaojia; Jin, Huizi; Xu, Wenzheng; Zhang, Wei; Liu, Xiaohua; Yan, Shikai; Chen, Ming; Li, Jianqiang; Zhang, Wei-dong

    2008-10-30

    Daphne retusa Hemsl. belongs to the genus Daphne, a member of Thymelaeaceae family. The barks and stems of Daphne retusa are used as a folkloric medicine 'Zhu Shi Ma' in Western China because of its effects of detumescence and acesodyne. In this paper, we investigate the anti-inflammatory and analgesic effects of the 75% ethanol extract of the stems and barks of Daphne retusa and different fractions partitioned with petroleum ether, methylene chloride, ethyl acetate and n-butanol, respectively. The anti-inflammatory effects were evaluated using xylene-induced ear oedema in mice and carrageenan-induced paw oedema in rats, while the acetic acid-induced writhing test and hot-plate test as models for evaluating the centrally and peripherally analgesic activity. The results showed the plant has significant anti-inflammatory and analgesic effects (P<0.05-0.01). Meanwhile, the result of the acute toxicity test at which the MTD was above 5g/kg indicates that the plant extract is relatively safe in, and/or non-toxic to, mice. The findings of these experimental animal studies indicate that the Daphne retusa ethanol extract possesses anti-inflammatory and analgesic properties, and thus provide pharmacological support to folkloric, ethnomedical uses of 'Zhu shima' in the treatment and/of management of anti-inflammatory and painful conditions in China. PMID:18692124

  11. Review of Anti-Inflammatory Herbal Medicines.

    PubMed

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  12. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  13. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia.

    PubMed

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan; Ahmad, Siti Aqlima

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453

  14. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    PubMed Central

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453

  15. Animal Models as Tools to Investigate Antidiabetic and Anti-Inflammatory Plants

    PubMed Central

    Eddouks, Mohamed; Chattopadhyay, Debprasad; Zeggwagh, Naoufel Ali

    2012-01-01

    Plants have been historically used for diabetes treatment and related anti-inflammatory activity throughout the world; few of them have been validated by scientific criteria. Recently, a large diversity of animal models has been developed for better understanding the pathogenesis of diabetes mellitus and its underlying inflammatory mechanism and new drugs have been introduced in the market to treat this disease. The aim of this work is to review the available animal models of diabetes and anti-inflammatory activity along with some in vitro models which have been used as tools to investigate the mechanism of action of drugs with potential antidiabetic properties and related anti-inflammatory mechanism. At present, the rigorous procedures for evaluation of conventional antidiabetic medicines have rarely been applied to test raw plant materials used as traditional treatments for diabetes; and natural products, mainly derived from plants, have been tested in chemically induced diabetes model. This paper contributes to design new strategies for the development of novel antidiabetic drugs and its related inflammatory activity in order to treat this serious condition which represents a global public health problem. PMID:22899950

  16. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng

    PubMed Central

    Ravikumar, V.R.; Dhanamani, M.; Sudhamani, T.

    2009-01-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  17. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng.

    PubMed

    Ravikumar, V R; Dhanamani, M; Sudhamani, T

    2009-04-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  18. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review.

    PubMed

    Sadowska, A M; Manuel-Y-Keenoy, B; De Backer, W A

    2007-01-01

    In order to develop efficient therapeutic regimes for chronic obstructive pulmonary disease (COPD), N-acetylcysteine (NAC) has been tested as a medication which can suppress various pathogenic processes in this disease. Besides its well-known and efficient mucolytic action, NAC meets these needs by virtue of its antioxidant and anti-inflammatory modes of action. NAC is a thiol compound which by providing sulfhydryl groups, can act both as a precursor of reduced glutathione and as a direct ROS scavenger, hence regulating the redox status in the cells. In this way it can interfere with several signaling pathways that play a role in regulating apoptosis, angiogenesis, cell growth and arrest and inflammatory response. Overall, the antioxidant effects of NAC are well documented in in vivo and in vitro studies. It successfully inhibits oxidative stress at both high and low concentrations, under acute (in vitro) and chronic administration (in vivo). With regard to its anti-inflammatory action, in contrast, the effects of NAC differ in vivo and in vitro and are highly dose-dependent. In the in vitro settings anti-inflammatory effects are seen at high but not at low concentrations. On the other hand, some long-term effectiveness is reported in several in vivo studies even at low dosages. Increasing the dose seems to improve NAC bioavailability and may also consolidate some of its effects. In this way, the effects that are observed in the clinical and in vivo studies do not always reflect the success of the in vitro experiments. Furthermore, the results obtained with healthy volunteers do not always provide incontrovertible proof of its usefulness in COPD especially when number of exacerbations and changes in lung function are chosen as the primary outcomes. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives, because of their multiple molecular modes of action, remain promising

  19. Pharmacological treatment of spondyloarthritis: exploring the effectiveness of nonsteroidal anti-inflammatory drugs, traditional disease-modifying antirheumatic drugs and biological therapies

    PubMed Central

    Caso, Francesco; Costa, Luisa; Del Puente, Antonio; Di Minno, Matteo Nicola Dario; Lupoli, Gelsy; Scarpa, Raffaele; Peluso, Rosario

    2015-01-01

    Spondyloarthritis represents a heterogeneous group of articular inflammatory diseases that share common genetic, clinical and radiological features. The therapy target of spondyloarthritis relies mainly in improving patients’ quality of life, controlling articular inflammation, preventing the structural joints damage and preserving the functional abilities, autonomy and social participation of patients. Among these, traditional disease-modifying antirheumatic drugs have been demonstrated to be effective in the management of peripheral arthritis; moreover, in the last decade, biological therapies have improved the approach to spondyloarthritis. In patients with axial spondyloarthritis, tumor necrosis factor α inhibitors are currently the only effective therapy in patients for whom conventional therapy with nonsteroidal anti-inflammatory drugs has failed. The aim of this review is to summarize the current experience and evidence about the pharmacological approach in spondyloarthritis patients. PMID:26568809

  20. Anti-inflammatory and immunomodulatory properties of 2-amino-3H-phenoxazin-3-one.

    PubMed

    Kohno, Keizo; Miyake, Masaki; Sano, Osamu; Tanaka-Kataoka, Mari; Yamamoto, Shigeto; Koya-Miyata, Satomi; Arai, Norie; Fujii, Mitsukiyo; Watanabe, Hikaru; Ushio, Shimpei; Iwaki, Kanso; Fukuda, Shigeharu

    2008-10-01

    Accumulating evidence suggests that nitric oxide (NO) and prostaglandin E(2) (PGE(2)) are involved in the pathogenesis of various chronic inflammatory diseases and cancer. During the course of a screening program to identify natural anti-inflammatory substances, we isolated the compound 2-amino-3H-phenoxazin-3-one (APO) from an extract of the edible brown mushroom Agaricus bisporus IMBACH. APO inhibited NO production by mouse peritoneal macrophages in response to the pro-inflammatory stimuli lipopolysaccharide (LPS) and interferon (IFN)-gamma (LPS/IFN-gamma) at low concentrations (IC(50)=1.5 microM) through reduced inducible NO synthase protein expression. PGE(2) production by LPS/IFN-gamma-stimulated macrophages was inhibited by APO at much lower concentrations (IC(50)=0.27 microM) than those required for the inhibition of NO production. Mechanistic analysis showed that APO inhibited both cyclooxygenase (COX)-1 and COX-2 enzyme activities with almost equal selectivity. Secretion of NO and the pro-inflammatory cytokine IL-6 by IFN-gamma-activated RAW264.7 cells, a murine macrophage-like cell line, was also dose-dependently reduced by APO. Furthermore, APO increased the secretion of the anti-inflammatory cytokine IL-4 by antigen-stimulated T cells and promoted the polarization of CD4(+) Th cells toward the anti-inflammatory Th2 phenotype at equimolar concentrations that inhibited NO production. Our results suggested that APO induced polarization toward the Th2 subset, at least in part through the down-regulation of IL-12 production. Thus, APO appears to have potent anti-inflammatory and immunoregulatory properties that may provide a promising therapeutic strategy for the treatment of T cell-mediated inflammatory autoimmune diseases as well as for bacteria-induced chronic-inflammatory diseases. PMID:18827359

  1. The present status of anti-inflammatory agents in dermatology.

    PubMed

    Stüttgen, G

    1988-01-01

    Many classes of drugs exert anti-inflammatory activity through mechanisms which affect all or part of the inflammatory process. Some of these agents are beneficial in the practice of dermatology, while others, such as penicillamine, mast cell blockers and serotonin antagonists, find little or no application. Corticosteroids, for example, are nonspecific in their anti-inflammatory effects and remain a mainstay of therapy, despite their side effect profile. Other drugs, such as the non-steroidal anti-inflammatory agents or gold, can be used in the treatment of diseases associated with rheumatic or autoimmune states. Moreover, antihistamines play an important role in the control of itching, but are mainly indicated in controlling non-dermatological allergic sequelae. Interestingly, chloroquine and dapsone, which were originally developed for use in malaria prophylaxis and leprosy, respectively, have value in treating a wide range of dermatological conditions via mechanisms which include the inhibition of P-450 isoenzymes. In diseases characterised by disturbed cornification (e.g. psoriasis pustulosa), retinoids are of particular value. These drugs are thought to act by inhibition of collagenases, proteases and granulocyte migration. Undoubtedly, further investigation of drug classes such as oxygen radical controllers and immunomodulators will clarify their mechanisms and establish their therapeutic usefulness among the anti-inflammatory agents now available for dermatological use. PMID:3076131

  2. Pharmacology in rehabilitation: nonsteroidal anti-inflammatory agents.

    PubMed

    Biederman, Ross E

    2005-06-01

    Nonsteroidal anti-inflammatory agents (NSAIDs) are the most commonly encountered over-the-counter (OTC) and prescription medications in physical therapy practice. Worldwide, over 73000000 prescriptions for nonsteroidal agents are written yearly. NSAIDs produce a wide range of beneficial effects to the physical therapy patient, enhancing the outcome of treatment. Helpful effects of NSAIDs include analgesia, antipyretic, anti-inflammatory, and antithrombotic properties. However, NSAIDs are also associated with frequent and significant side effects that are deleterious to treatment outcome, including delay in soft tissue and bone healing, renal and liver toxicity, hemorrhagic events, gastric irritation and ulceration, and central nervous system effects. Understanding of the pharmacological properties of these drugs, exemplified by aspirin, and the individual pharmacokinetics of specific preparations will help the therapist to screen patients for potential side effects, develop more effective plans of care, and, where allowed, effectively and safely prescribe NSAIDs. PMID:16001907

  3. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    PubMed Central

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  4. Antibiotic and anti-inflammatory therapies for cystic fibrosis.

    PubMed

    Chmiel, James F; Konstan, Michael W; Elborn, J Stuart

    2013-10-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  5. Anti-inflammatory effects of glaucocalyxin B in microglia cells.

    PubMed

    Gan, Ping; Zhang, Li; Chen, Yanke; Zhang, Yu; Zhang, Fali; Zhou, Xiang; Zhang, Xiaohu; Gao, Bo; Zhen, Xuechu; Zhang, Jian; Zheng, Long Tai

    2015-05-01

    Over-activated microglia is involved in various kinds of neurodegenerative process including Parkinson, Alzheimer and HIV dementia. Suppression of microglial over activation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory and neuroprotective effects of the ent-kauranoid diterpenoids, which were isolated from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, were investigated in cultured microglia cells. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in the lipopolysaccharide (LPS)-activated microglia cells. In addition, GLB inhibited activation of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and generation of reactive oxygen species (ROS) in LPS-activated microglia cells. Furthermore, GLB strongly induced the expression of heme oxygenase (HO)-1 in BV-2 microglia cells. Finally, GLB exhibited neuroprotective effect by preventing over-activated microglia induced neurotoxicity in a microglia/neuron co-culture model. Taken together, the present study demonstrated that the GLB possesses anti-nueroinflammatory activity, and might serve as a potential therapeutic agent for treating neuroinflammatory diseases. PMID:26003084

  6. The Anti-Inflammatory Actions of Exercise Training

    PubMed Central

    Flynn, Michael G.; McFarlin, Brian K.; Markofski, Melissa M.

    2014-01-01

    The list of diseases with a known inflammatory etiology is growing. Cardiovascular disease, osteoporosis, diabetes, geriatric cachexia, and Alzheimer’s disease have all been shown to be linked to or exacerbated by aberrantly regulated inflammatory processes. Nevertheless, there is mounting evidence that those who are physically active, or who become physically active, have a reduction in biomarkers associated with chronic inflammation. There was strong early consensus that exercise-induced reductions in inflammation were explained by body mass index or body fatness, but recent studies provide support for the contention that exercise has body fat–independent anti-inflammatory effects. With few exceptions, the anti-inflammatory effects of exercise appear to occur regardless of age or the presence of chronic diseases. What remains unclear are the mechanisms by which exercise training induces these anti-inflammatory effects, but there are several intriguing possibilities, including release of endogenous products, such as heat shock proteins; selective reduction of visceral adipose tissue mass or reducing infiltration of adipocytes by macrophages; shift in immune cell phenotype; cross-tolerizing effects; or exercise-induced shifts in accessory proteins of toll-like receptor signaling. However, future research endeavors are likely to uncover additional potential mechanisms, and it could be some time before functional mechanisms are made clear. In summary, the potential anti-inflammatory influences of exercise training may provide a low-cost, readily available, and effective treatment for low-grade systemic inflammation and could contribute significantly to the positive effects of exercise training on chronic disease. PMID:25431545

  7. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.

    PubMed

    Riça, Ingred G; Netto, Chaquip D; Rennó, Magdalena N; Abreu, Paula A; Costa, Paulo R R; da Silva, Alcides J M; Cavalcante, Moisés C M

    2016-09-15

    Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding. PMID:27492193

  8. Anti-inflammatory activities of selected synthetic homoisoflavanones.

    PubMed

    Shaikh, Mahidansha M; Kruger, Hendrik G; Bodenstein, Johannes; Smith, Peter; du Toit, Karen

    2012-01-01

    Four homoisoflavanones of the 3-benzylidene-4-chromanone type, some of which were previously isolated from Caesalpinia pulcherrima, were synthesised to determine their anti-inflammatory activity and cytotoxicity. A range of four different homoisoflavanones (compounds 4a-4d) were synthesised from the corresponding substituted phenols. ¹H- and ¹³C-NMR data together with high-resolution mass spectroscopy data were employed to elucidate the structures. Anti-inflammatory activity was determined in mice with acute croton oil-induced auricular dermatitis. In vitro cytotoxicity was tested against a Chinese hamster ovarian cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Compound 4a exhibited a tendency to inhibit oedema in a dose-dependent manner after 3 and 6 h of treatment. Compounds 4b-4d also inhibited oedema, although a clear dose-response relationship was not observed. Compounds 4a-4c were found to be less cytotoxic than compound 4d. Compound 4b was the least cytotoxic. Compounds 4a-4d exhibited anti-inflammatory activity and varying levels of cytotoxicity. PMID:21950651

  9. Anti-inflammatory activity and composition of Senecio salignus Kunth.

    PubMed

    González, Cuauhtemoc Pérez; Vega, Roberto Serrano; González-Chávez, Marco; Sánchez, Miguel Angel Zavala; Gutiérrez, Salud Pérez

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  10. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  11. Anti-inflammatory activity of cationic lipids.

    PubMed

    Filion, M C; Phillips, N C

    1997-10-01

    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  12. Baicalein exhibits anti-inflammatory effects via inhibition of NF-κB transactivation.

    PubMed

    Patwardhan, Raghavendra S; Sharma, Deepak; Thoh, Maikho; Checker, Rahul; Sandur, Santosh K

    2016-05-15

    NF-κB is a crucial mediator of inflammatory and immune responses and a number of phytochemicals that can suppress this immune-regulatory transcription factor are known to have promising anti-inflammatory potential. However, we report that inducer of pro-inflammatory transcription factor NF-κB functions as an anti-inflammatory agent. Our findings reveal that a plant derived flavonoid baicalein could suppress mitogen induced T cell activation, proliferation and cytokine secretion. Treatment of CD4+ T cells with baicalein prior to transfer in to lymphopenic allogenic host significantly suppressed graft versus host disease. Interestingly, addition of baicalein to murine splenic lymphocytes induced DNA binding of NF-κB but did not suppress Concanavalin A induced NF-κB. Since baicalein did not inhibit NF-κB binding to DNA, we hypothesized that baicalein may be suppressing NF-κB trans-activation. Thioredoxin system is implicated in the regulation of NF-κB trans-activation potential and therefore inhibition of thioredoxin system may be responsible for suppression of NF-κB dependent genes. Baicalein not only inhibited TrxR activity in cell free system but also suppressed mitogen induced thioredoxin activity in the nuclear compartment of lymphocytes. Similar to baicalein, pharmacological inhibitors of thioredoxin system also could suppress mitogen induced T cell proliferation without inhibiting DNA binding of NF-κB. Further, activation of cellular thioredoxin system by the use of pharmacological activator or over-expression of thioredoxin could abrogate the anti-inflammatory action of baicalein. We propose a novel strategy using baicalein to limit NF-κB dependent inflammatory responses via inhibition of thioredoxin system. PMID:27019135

  13. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation

    PubMed Central

    Macedo, E.M.A.; Santos, W.C.; Sousa, B.P.; Lopes, E.M.; Piauilino, C.A.; Cunha, F.V.M.; Sousa, D.P.; Oliveira, F.A.; Almeida, F.R.C.

    2016-01-01

    Pharmacological treatment of inflammatory pain is usually done by administration of non-steroidal anti-inflammatory drugs (NSAIDs). These drugs present high efficacy, although side effects are common, especially gastrointestinal lesions. One of the pharmacological strategies to minimize such effects is the combination of drugs and natural products with synergistic analgesic effect. The monoterpene terpinolene (TPL) is a chemical constituent of essential oils present in many plant species, which have pharmacological activities, such as analgesic and anti-inflammatory. The association of ineffective doses of TPL and diclofenac (DCF) (3.125 and 1.25 mg/kg po, respectively) presented antinociceptive and anti-inflammatory effects in the acute (0, 1, 2, 3, 4, 5 and 6 h, after treatment) and chronic (10 days) inflammatory hyperalgesia induced by Freund's complete adjuvant (CFA) in the right hind paw of female Wistar rats (170-230 g, n=6-8). The mechanical hyperalgesia was assessed by the Randall Selitto paw pressure test, which determines the paw withdrawal thresholds. The development of edema was quantified by measuring the volume of the hind paw by plethismography. The TPL/DCF association reduced neutrophils, macrophages and lymphocytes in the histological analysis of the paw, following a standard staining protocol with hematoxylin and eosin and the counts were performed with the aid of optical microscopy after chronic oral administration of these drugs. Moreover, the TPL/DCF association did not induce macroscopic gastric lesions. A possible mechanism of action of the analgesic effect is the involvement of 5-HT2A serotonin receptors, because ketanserin completely reversed the antinociceptive effect of the TPL/DCF association. These results suggest that the TPL/DCF association had a synergistic anti-inflammatory and analgesic effect without causing apparent gastric injury, and that the serotonergic system may be involved in the antinociceptive effect of this association

  14. Modulation of glioma risk and progression by dietary nutrients and anti-inflammatory agents

    PubMed Central

    Kyritsis, Athanassios P.; Bondy, Melissa L.; Levin, Victor A.

    2011-01-01

    Gliomas are tumors of glial origin formed in the central nervous system and exhibit profound morphological and genetic heterogeneity. The etiology of this heterogeneity involves an interaction between genetic alterations and environmental risk factors. Scientific evidence suggests that certain natural dietary components, such as phytoestrogens, flavonoids, polyunsaturated fatty acids and vitamins may exert a protective effect against gliomas by changing the nature of the interaction between genetics and environment. Similarly, certain anti-inflammatory drugs and dietary modifications, such as methionine restriction and the adoption of low-calorie or ketogenic diets, may take advantage of glioma and normal glial cells’ differential requirements for glucose, methionine, and ketone bodies and may therefore be effective as part of preventive or treatment strategies for gliomas. Treatment trials of glioma patients and chemoprevention trials of individuals with a known genetic predisposition to glioma using the most promising of these agents, such as the anti-inflammatory drugs curcumin and gamma-linolenic acid, are needed to validate or refute these agents’ putative role in gliomas. PMID:21302177

  15. Anti-inflammatory and immunosuppressive drugs and reproduction

    PubMed Central

    Østensen, Monika; Khamashta, Munther; Lockshin, Michael; Parke, Ann; Brucato, Antonio; Carp, Howard; Doria, Andrea; Rai, Raj; Meroni, Pierluigi; Cetin, Irene; Derksen, Ronald; Branch, Ware; Motta, Mario; Gordon, Caroline; Ruiz-Irastorza, Guillermo; Spinillo, Arsenio; Friedman, Deborah; Cimaz, Rolando; Czeizel, Andrew; Piette, Jean Charles; Cervera, Ricard; Levy, Roger A; Clementi, Maurizio; De Carolis, Sara; Petri, Michelle; Shoenfeld, Yehuda; Faden, David; Valesini, Guido; Tincani, Angela

    2006-01-01

    Rheumatic diseases in women of childbearing years may necessitate drug treatment during a pregnancy, to control maternal disease activity and to ensure a successful pregnancy outcome. This survey is based on a consensus workshop of international experts discussing effects of anti-inflammatory, immunosuppressive and biological drugs during pregnancy and lactation. In addition, effects of these drugs on male and female fertility and possible long-term effects on infants exposed to drugs antenatally are discussed where data were available. Recommendations for drug treatment during pregnancy and lactation are given. PMID:16712713

  16. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Kameli, Abdelkrim; Ferhat, Mohamed Amine; Saidi, Fairouz; Mekarnia, Maamar

    2013-01-01

    Background Since the available anti-inflammatory drugs exert an extensive variety of side effects, the search for new anti-inflammatory agents has been a priority of pharmaceutical industries. Aims The aim of the present study was to assess the anti-inflammatory activities of the essential oil of rose geranium (RGEO). Methods The chemical composition of the RGEO was investigated by gas chromatography. The major components were citronellol (29.13%), geraniol (12.62%), and citronellyl formate (8.06%). In the carrageenan-induced paw edema, five different groups were established and RGEO was administered orally in three different doses. Results RGEO (100 mg/kg) was able to significantly reduce the paw edema with a comparable effect to that observed with diclofenac, the positive control. In addition, RGEO showed a potent anti-inflammatory activity by topical treatment in the method of croton oil-induced ear edema. When the dose was 5 or 10 µl of RGEO per ear, the inflammation was reduced by 73 and 88%, respectively. This is the first report to demonstrate a significant anti-inflammatory activity of Algerian RGEO. In addition, histological analysis confirmed that RGEO inhibited the inflammatory responses in the skin. Conclusion Our results indicate that RGEO may have significant potential for the development of novel anti-inflammatory drugs with improved safety profile. PMID:24103319

  17. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype

    PubMed Central

    Birrell, Mark A; Maher, Sarah A; Dekkak, Bilel; Jones, Victoria; Wong, Sissie; Brook, Peter; Belvisi, Maria G

    2015-01-01

    Background Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway. Current treatment options (long acting β-adrenoceptor agonists and glucocorticosteroids) are not optimal as they are only effective in certain patient groups and safety concerns exist regarding both compound classes. Therefore, novel bronchodilator and anti-inflammatory strategies are being pursued. Prostaglandin E2 (PGE2) is an arachidonic acid-derived eicosanoid produced by the lung which acts on four different G-protein coupled receptors (EP1–4) to cause an array of beneficial and deleterious effects. The aim of this study was to identify the EP receptor mediating the anti-inflammatory actions of PGE2 in the lung using a range of cell-based assays and in vivo models. Methods and results It was demonstrated in three distinct model systems (innate stimulus, lipopolysaccharide (LPS); allergic response, ovalbumin (OVA); inhaled pollutant, cigarette smoke) that mice missing functional EP4 (Ptger4−/−) receptors had higher levels of airway inflammation, suggesting that endogenous PGE2 was suppressing inflammation via EP4 receptor activation. Cell-based assay systems (murine and human monocytes/alveolar macrophages) demonstrated that PGE2 inhibited cytokine release from LPS-stimulated cells and that this was mimicked by an EP4 (but not EP1–3) receptor agonist and inhibited by an EP4 receptor antagonist. The anti-inflammatory effect occurred at the transcriptional level and was via the adenylyl cyclase/cAMP/ cAMP-dependent protein kinase (PKA) axis. Conclusion This study demonstrates that EP4 receptor activation is responsible for the anti-inflammatory activity of PGE2 in a range of disease relevant models and, as such, could represent a novel therapeutic target for chronic airway inflammatory conditions. PMID:25939749

  18. The new nonsteroidal anti-inflammatory drugs.

    PubMed

    Scherbel, A L; Wilke, W S

    1981-10-01

    Most physicians regard to newer short-acting anti-inflammatory drugs as a substitute for aspirin because they are less toxic. Although these drugs cannot induce remissions of rheumatoid arthritis, they do afford symptomatic relief and exert both a moderate algesic and anti-inflammatory effect in conditions like osteoarthritis, gout, pseudogout, and a variety of musculoskeletal syndromes. The many adverse reactions and toxic effects associated with these drugs are probably related to the inhibition of prostaglandin synthetase, which in turn reduces the biosynthesis of prostaglandins in widespread areas of the body. Thus limited in number, these compounds cannot play an effective role in the body's defense mechanisms. Researchers postulate that this failure accounts for the gastrointestinal and renal lesions--as well as other, as yet unexplained toxic manifestations--noted in patients taking these drugs. For safety's sake, the newer anti-inflammatory drugs should be used with large doses of aspirin, other agents that inhibit prostaglandin synthetase, or drugs that are potentially nephro-toxic. PMID:6974117

  19. Anti-inflammatory properties of cryptolepine.

    PubMed

    Olajide, Olumayokun A; Ajayi, Abayomi M; Wright, Colin W

    2009-10-01

    Cryptolepine is the major alkaloid of the West African shrub, Cryptolepis sanguinolenta. Cryptolepine has been shown to inhibit nitric oxide production, and DNA binding of Nuclear Factor-kappa B following inflammatory stimuli in vitro. In order to validate the anti-inflammatory property of this compound in vivo, we investigated its effects on a number of animal models of inflammation. Cryptolepine (10-40 mg/kg i.p.) produced significant dose-dependent inhibition of the carrageenan-induced rat paw oedema, and carrageenan-induced pleurisy in rats. These effects were compared with those of the non-steroidal anti-inflammatory drug indomethacin (10 mg/kg). At doses of 10-40 mg/kg i.p., cryptolepine inhibited lipopolysaccharide (LPS)-induced microvascular permeability in mice in a dose-related fashion. Oral administration of up to 40 mg/kg of the compound for four consecutive days did not induce gastric lesion formation in rats. Analgesic activity was also exhibited by cryptolepine through a dose-related (10-40 mg/kg i.p.) inhibition of writhing induced by i.p. administration of acetic acid in mice. The results of this study reveal that cryptolepine possesses in vivo anti-inflammatory activity. PMID:19288476

  20. Anti-inflammatory effects of systemic anti-tumour necrosis factor α treatment in human/murine SCID arthritis

    PubMed Central

    Schadlich, H.; Ermann, J.; Biskop, M.; Falk, W.; Sperling, F.; Jungel, A.; Lehmann, J.; Emmrich, F.; Sack, U.

    1999-01-01

    OBJECTIVES—To evaluate in vivo the contribution of tumour necrosis factor α (TNFα) to the chimeric transfer model of human rheumatoid arthritis synovial membrane into SCID mice (hu/mu SCID arthritis), systemic anti-TNFα treatment was performed and the clinical, serological, and histopathological effects of this treatment assessed.
METHODS—Animals were treated with the rat-antimouse TNFα monoclonal antibody V1q, starting on day 1 after hu/mu engraftment, twice weekly for 12 weeks. Joint swelling, serum concentrations of human and murine interleukin 6 (IL6), and serum amyloid P (SAP) were measured. Histopathological and immunohistochemical analyses of the joints were also performed at the end of treatment.
RESULTS—Neutralisation of murine TNFα induced the following effects: (a) reduction of extent and duration of the acute arthritis phase, with significant reduction of joint swelling at two weeks; (b) decrease of murine SAP concentrations after the first antibody administration; and (c) increase of murine IL6 in the serum. At the end of treatment, there was a significant reduction of the inflammatory infiltration in the engrafted joints. Because of the mild degree of joint erosion, no treatment effects could be demonstrated on the destructive process.
CONCLUSION—In the lymphocyte independent hu/mu SCID arthritis, anti-TNFα treatment reduces local and systemic signs of inflammation.

 PMID:10381487

  1. [Anti-inflammatory mechanism of qingfei xiaoyan wan studied with network pharmacology].

    PubMed

    Cheng, Bin-Feng; Hou, Yuan-Yuan; Jiang, Min; Zhao, Zhen-Ying; Dong, Lin-Yi; Bai, Gang

    2013-05-01

    This study aims to clarify out the anti-inflammatory mechanism of Qingfei Xiaoyan Wan. Chemical constituents of Qingfei Xiaoyan Wan identified by UPLC Q-TOF, were submit to Molinspiration, PharmMapper and KEGG bioinformatics softwares for predicting their absorption parameters, target proteins and related pathways respectively; and the gene chip and real time-PCR were carried out to investigate the expression of inflammatory genes on lung tissue of guinea pigs or human bronchial epithelial cell lines. The predicted results showed that 19 of the 24 absorbable constituents affected at 9 inflammation-related pathways through 11 protein targets; Qingfei Xiaoyan Wan treatment can significantly reduce the infiltration of cytokines through ERK1 gene and 5 inflammatory pathways (Focal adhesion, Fc epsilon RI, Toll-like receptors, NK cell-mediated cytotoxic, and ERK/MAPK). The results of real time-PCR further confirmed that the anti-inflammatory effects of Qingfei Xiaoyan Wan were due to active ingredients such as arctigenin, cholic acid and sinapic acid intervened focal adhesion, Fc epsilon RI signaling and ERK/MAPK pathways. The novel approach of 'drug-target-pathway' will present an effective strategy for the study of traditional Chinese medicines. PMID:23888691

  2. [Appropriate prescription, adherence and safety of non-steroidal anti-inflammatory drugs].

    PubMed

    Sostres, Carlos; Lanas, Ángel

    2016-03-18

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the most numerous category of drugs sharing the same mechanism of action and therapeutic activities (anti-inflammatory, analgesic and anti-pyretic). Despite having similar efficacy for pain relieve, the different available NSAIDs show variability in its safety profile. The risk of gastrointestinal and cardiovascular complications varies depending on the dose of NSAID and also the presence of different risk factors. It is necessary, therefore, an individualized case assessment before establishing the indication of the best NSAID for each patient, taking account of the best gastroprotection strategy. Improved prescription and enhanced treatment adherence are central objectives to reduce NSAID-related complications. A recent consensus of the Spanish Association of Gastroenterology and the Spanish societies of Cardiology and Rheumatology intends to promote the rational use of NSAIDs according to new recent studies. This review provides additional aspects to facilitate the optimal decision-making process in the routine use of these drugs in clinical practice. PMID:26724872

  3. Molecules of natural origin, semi-synthesis and synthesis with anti-inflammatory and anticancer utilities.

    PubMed

    Lourenço, A M; Ferreira, L M; Branco, P S

    2012-01-01

    The development of new drugs that can be valuable for the evolution of diseases' treatment is a goal for different areas of research, namely natural products chemistry, molecular biology and biochemistry, pharmacology, medicinal chemistry, synthetic organic chemistry and analytical chemistry. Nature is the main source of compounds for pharmaceutical purposes, either by providing the natural organic chemical compounds of interest or as a source of inspiration for the design of new drugs. The known anti-inflammatory and anticancer agents belong to a great diversity of structural skeletons since inflammatory and cancer processes involve many different biological targets. Their origins extend to plants, fungi, bacteria, and marine organisms, besides those produced by semi-synthesis and total synthesis. The tasks of the organic chemist are the screening, the structure assignment, and the semi and total syntheses of active molecules. Herein the screening and assignment of new active structures is addressed, together with other aspects, namely the improvements, both in availability and in effectiveness of action that can be achieved from new derivatives by synthetic or semi-synthetic strategies. Some aspects of drug delivery of anti-inflammatory and anticancer agents are considered. The bibliography presented is far from being exhaustive due to the prodigious number of published works. Instead, the most significant contributions in the scope of this review are described. The active compounds are organised by their biosynthetic origins as terpenoids; macrolides, polyketides and ansamycins; phenolics; alkaloids; peptides; glycoconjugates; other compounds, and food compounds. PMID:22632756

  4. Anti-Inflammatory and Antinociceptive Activities of Bufalin in Rodents

    PubMed Central

    Huang, Yang; Yin, Junqiang; Lin, Wenqian

    2014-01-01

    The aims of this study were to evaluate the anti-inflammatory and analgesic effects of bufalin, a major component of “Chan-su.” We used a carrageenan-induced paw edema model to assess the anti-inflammatory activity of this compound, and Western blot analysis detected NF-κB signaling during this effect. The antinociceptive activities were evaluated by acetic acid-induced writhing, formalin, and hot-plate tests; open-field test investigated effects on the central nervous system. Our data showed that bufalin (0.3 and 0.6 mg/kg, i.p.) potently decreased carrageenan-induced paw edema. Bufalin down regulated the expression levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) during these treatments. Further studies demonstrated that bufalin significantly inhibited the activation of NF-κB signaling. Bufalin also reduced acetic acid-induced writhing and the licking time in the formalin test and increased hot-plate reaction latencies. Naloxone pretreatment (2 mg/kg, i.p.) in the early phases of the formalin test and hot-plate test significantly attenuated the bufalin-induced antinociception effects, which suggests the involvement of the opioid system. A reduction in locomotion was not observed in the open-field test after bufalin administration. Taken together, bufalin treatment resulted in in vivo anti-inflammatory and analgesic effects, and bufalin may be a novel, potential drug for the treatment of inflammatory diseases. PMID:24719521

  5. Comparison of a narcotic (oxicone) and a non-narcotic anti-inflammatory analgesic (indoprofen) in the treatment of renal colic.

    PubMed

    Persson, N H; Bergqvist, D; Melander, A; Zederfelt, B

    1985-01-01

    Intravenous indoprofen (400 mg), a cyclooxygenase inhibitor, was compared with intramuscular oxicodone hydrochloride (= oxicone 10 mg), a narcotic analgesic agent, in regard to efficacy and side effects in the treatment of renal colic. Oxicone was combined with papaverine (20 mg). Patients were randomized to either treatment, and the drugs were given in double-dummy fashion, i.e. one injection of active drug plus one placebo injection. Pain intensity before and after treatment was registered by the patient (visual analog scale) and by a nurse, who also registered side effects. Oxicone was given to 46 patients and indoprofen to 48. The groups did not differ in body weight, age, sex distribution, or pretreatment intensity of pain. More patients required additional treatment in the oxicone than in the indoprofen group (19 v. 10). At 2-5 min after injection, pain reduction was greater with indoprofen, and more patients in this group had pain relief after 3-5 hours. Side effects were less frequent with indoprofen than with oxicone (1 v. 20 patients), in particular from the central nervous system. This difference probably was related to indoprofen's slow and poor penetration of the blood-brain barrier. The study affirmed that non-narcotic cyclooxygenase inhibitors can replace narcotic analgesics for acute pain alleviation in renal colic. Indoprofen seems to be a useful alternative, with low risk of central nervous side effects. PMID:3890435

  6. Anti-inflammatory activity of Abutilon indicum extract.

    PubMed

    Tripathi, Priyanka; Chauhan, N S; Patel, J R

    2012-01-01

    Abutilon indicum Linn. had been broadly used for its reported biological activities in indigenous system of medicine. The ethanolic extract of the whole plant of A. indicum Linn. was evaluated for its anti-inflammatory activity at doses 250, 500 and 750 mg kg⁻¹ using the carrageenan-induced paw oedema in healthy Wistar albino rats. Results of in vivo activity led to the conclusion that the ethanolic extract of A. indicum showed predominantly significant activity in a dose-dependent manner, which is comparable to the reference standard ibuprofen. The results prove the traditional use of plant in the treatment of inflammation. PMID:21999427

  7. Natural anti-inflammatory agents for pain relief

    PubMed Central

    Maroon, Joseph C.; Bost, Jeffrey W.; Maroon, Adara

    2010-01-01

    The use of both over-the-counter and prescription nonsteroidal medications is frequently recommended in a typical neurosurgical practice. But persistent long-term use safety concerns must be considered when prescribing these medications for chronic and degenerative pain conditions. This article is a literature review of the biochemical pathways of inflammatory pain, the potentially serious side effects of nonsteroidal drugs and commonly used and clinically studied natural alternative anti-inflammatory supplements. Although nonsteroidal medications can be effective, herbs and dietary supplements may offer a safer, and often an effective, alternative treatment for pain relief, especially for long-term use. PMID:21206541

  8. Studies on antibacterial, anti-inflammatory and antioxidant activity of herbal remedies used in the treatment of benign prostatic hyperplasia and prostatitis.

    PubMed

    Steenkamp, V; Gouws, M C; Gulumian, M; Elgorashi, E E; van Staden, J

    2006-01-01

    Crude water and ethanolic extracts of five herbal remedies reported in the literature for traditional treatment of benign prostatic hyperplasia (BPH) and/or prostatitis were investigated for their effect on hydroxyl scavenging activity, antibacterial activity and their ability to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2) catalysed prostaglandin biosynthesis. Both the water and ethanol extracts of Hypoxis hemerocallidea and Epilobium parviflorum inhibited the growth of Escherichia coli. All 10 extracts scavenged the hydroxyl radical but with various potencies (32-93%). Ethanolic extracts were the most active in inhibiting COX-1 catalysed prostaglandin biosynthesis. The ethanolic extract of Epilobium parviflorum showed inhibitory effects on both the COX-1 and -2 catalysed prostaglandin biosynthesis, inhibited growth of Escherichia coli and exerted antioxidant activity. Although these results support the traditional use of Epilobium parviflorum for treatment of prostatitis and BPH, further investigation is required, for this promising plant. PMID:16122891

  9. Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Hammaker, Deepa; Kochetkova, Irina; Khlebnikov, Andrei I.; Lyakhov, Sergey A.; Firestein, Gary S.

    2015-01-01

    c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1β in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S–treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II–specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II–specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3+CD4+CD25+ regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis. PMID:25784649

  10. Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor.

    PubMed

    Schepetkin, Igor A; Kirpotina, Liliya N; Hammaker, Deepa; Kochetkova, Irina; Khlebnikov, Andrei I; Lyakhov, Sergey A; Firestein, Gary S; Quinn, Mark T

    2015-06-01

    c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1β in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S-treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II-specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II-specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3(+)CD4(+)CD25(+) regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis. PMID:25784649

  11. Anti-inflammatory effects of combined treatment with acetyl salicylic acid and atorvastatin in haemodialysis patients affected by Normal Weight Obese syndrome.

    PubMed

    Di Renzo, Laura; Noce, Annalisa; De Angelis, Sandro; Miani, Natascia; Di Daniele, Nicola; Tozzo, Carmela; De Lorenzo, Antonino

    2008-02-01

    Low-grade inflammation is a common feature of chronic kidney disease (CKD) and persistent systemic inflammation is thought to be a strong predictor of cardiovascular events. Inflammation plays a role in determining the serum albumin levels in haemodialysis patients (HD) independently of the nutritional status. Increased cardiovascular mortality in CKD has been associated with the increased incidence of obesity in uremic patients. Ingenbleek suggested a prognostic inflammation and nutritional index (PINI), based on serum albumin, pre-albumin, C-reactive protein, and alpha1 acid glycoprotein, to identify and to follow up acutely ill patients at risk of major complications. The aims of the present study were: to verify the incidence of Normal Weight Obese (NWO) syndrome; to evaluate by PINI the effect of 8 weeks acetyl salicylic (100 mg/die) and atorvastatin (10 mg/die) combined treatment on chronic inflammation in 52 selected HD patients. Laboratory evaluation, anthropometric and body composition measurements were detected. At baseline the 56.25% of non-obese, the 84.21% of pre-obese-obese, and the 41.17% of NWO women showed PINI values >1 (normal status PINI<1). After the pharmacological treatment, high significant (P<0.001) reduction in lipid profile, an elevated increase of HDL levels, and a significant reduction of inflammatory markers were obtained. Firstly, our results showed that ASA and atorvastatin combined treatment was effective in reducing inflammatory status in HD patients independently of body composition: at the end of the study only 7.49% of the patients exhibited PINI>1. Further studies will be necessary to understand the causes of inflammation in non-responder patients. PMID:18262432

  12. Newer antiatherosclerosis treatment strategies

    PubMed Central

    Aggarwal, Amitesh; Singh, Safal

    2011-01-01

    Atherosclerosis has been a target of much clinical and molecular research. As a result of this extensive research, it is amply clear that atherogenesis is a multifactorial process involving an interplay of metabolic, immune and inflammatory mechanisms. Antiatherosclerotic strategies are today aiming for a multipronged approach targeting each arm of this multifactorial process. The newer agents under development can be divided into three broad categories: anti-inflammatory agents, modulators of intermediary metabolism and antiatherosclerosis vaccines. Potential targets for anti-inflammatory agents include inhibition of conversion of low-density lipoprotein (LDL) to oxidised LDL, blocking or downregulation of cell adhesion molecules, chemokine modulation and macrophage receptor blockade. Beyond inhibition of plaque formation, efforts are also ongoing to develop agents which stabilise the plaque by increasing its fibrous content and inhibiting its disruption. So far as research in the sphere of intermediary metabolism is concerned, the focus is now primarily on raising high-density lipoprotein and promoting reverse cholesterol transport; potential targets include cholesteryl ester transfer protein, liver X-receptor, lecithin cholesterol acyltransferase and high-density lipoprotein mimetics. Acyl-coenzymeA: cholesterol acyltransferase is another enzyme whose selective and differential inhibition is under active investigation. The concept of immunisation against a non-communicable disease such as atherosclerosis is still in its nascent stages. However, with increasing evidence to suggest the role of antigen-specific T-cell-mediated immunity in atherogenesis, this approach is potentially promising. Possible antigens under evaluation include oxidised LDL and its subparticles, heat-shock proteins and cholesteryl ester transfer protein. With cardiovascular disease being the single leading cause of death worldwide, the development of a safe and successful antiatherosclerosis

  13. Lipoxins exert antiangiogenic and anti-inflammatory effects on Kaposi's sarcoma cells.

    PubMed

    Marginean, Alexandru; Sharma-Walia, Neelam

    2015-08-01

    Lipoxin A4 (LXA4) is an endogenously produced host molecule with anti-inflammatory resolution effects. Previous studies demonstrated it to be involved in anti-vascular endothelial growth factor (VEGF)-mediated angiogenesis and in a possible anticancer role via interaction with its receptor, lipoxin A 4 receptor (ALXR). Here, we examined the effects of LXA4 and its epimer 15-epi-LXA4 in inhibiting proinflammatory and angiogenic functions in a human Kaposi's sarcoma tumor-derived cell line (KS-IMM). KS-IMM cells expressed increased levels of inflammatory cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LO) pathway enzymes when compared with human microvascular dermal endothelial cells (HMVEC-d). KS-IMM cells secreted high levels of prostaglandin E2 (PGE2) and chemotactic leukotriene B4 (LTB4). Treatment with LXA4 or 15-epi-LXA4 effectively reduced the levels of COX-2, 5-LO proteins, and secretion of PGE2 and LTB4 in KS-IMM cells. LXA4 or 15-epi-LXA4 treatment also decreased secretion of proinflammatory interleukin 6 (IL-6) and IL-8 cytokines but induced the secretion of anti-inflammatory IL-10. LXA4 treatment reduced the phosphorylation of VEGF receptor (VEGFR) and ephrin family receptor tyrosine kinases. LXA4 treatment effectively induced dephosphorylation of multiple cellular kinases such as Focal Adhesion Kinase, Protein kinase B, nuclear factor kappa-light-chain-enhancer of activated B cells, and Extracellular signal-regulated kinases (ERK)1/2, and reduced angiogenic factor VEGF-C secretion in KS cells. LX treatment drastically induced the Src-homology 2 domain-containing phosphatase tyrosine (Y542) phosphatase and reduced VEGFR-2 phosphorylation at sites Y1059, Y1175, and Y1212. Treatment of KS-IMM cells with LXA4 resulted in selective localization of VEGFR-2 in nonlipid raft (non-LR) and ALXR to LR fractions. These results demonstrated that LXA4 or 15-epi-LXA4 induce anti-inflammatory and antiangiogenic effects in KS cells and suggest that treatment with LXs is

  14. Novel Composite Efficacy Measure To Demonstrate the Rationale and Efficacy of Combination Antiviral–Anti-Inflammatory Treatment for Recurrent Herpes Simplex Labialis

    PubMed Central

    Levin, Myron J.; Tyring, Stephen K.; Spruance, Spotswood L.

    2014-01-01

    Historically, the primary target for research and treatment of recurrent herpes simplex labialis (HSL) has been limited to inhibiting herpes simplex virus (HSV) replication. Antiviral monotherapy, however, has proven only marginally effective in curtailing the duration and severity of recurrent lesions. Recently, the role of inflammation in the progression and resolution of recurrences has been identified as an additional target. This was evaluated in a randomized study comparing combination topical 5% acyclovir-1% hydrocortisone cream (AHC) with 5% acyclovir alone (AC; in the AHC vehicle) and the vehicle. The efficacy of each topical therapy was evaluated for cumulative lesion size—a novel composite efficacy endpoint incorporating episode duration, lesion area, and proportion of nonulcerative lesions. In that study, cumulative lesion area was significantly decreased with AHC compared with AC (25% decrease; P < 0.05) and the vehicle (50% decrease; P < 0.0001). As research continues in this arena, cumulative lesion area should be included as a measure of efficacy in clinical trials of recurrent HSL therapies. PMID:24342632

  15. Anti-inflammatory activity of Euphorbia aegyptiaca extract in rats

    PubMed Central

    Abo-dola, Marium A.; Lutfi, Mohamed F.

    2016-01-01

    Background There were no studies on the anti-inflammatory activity of Euphorbia aegyptiaca, though it is commonly used by Sudanese herbalists in the treatment of rheumatoid arthritis. Objectives To determine phytochemical constituents of Euphorbia aegyptiaca To investigate the anti-inflammatory activity of Euphorbia aegyptiaca in rats. Methodology Plant material was extracted by ethanol and phytochemical screening was done according to standard methods. The thickness of Albino rats’ paws were measured before injection of 0.1 ml of 1% formalin in the sub planter region and then, 1, 2, 3, 4 and 24 hours after oral dose of ethanolic extract of Euphorbia aegyptiaca at a rate of 400mg/kg, 800mg/kg, indomethacin (5mg/kg) and normal saline (5ml/kg). Edema inhibition percentage (EI%) and mean paw thickness (MPT) were measured in the different groups and compared using appropriate statistical methods. Results The phytochemical screening revealed the presence of saponins, cumarins, flavonoids, tannins, sterols, triterpenes, and absence of alkaloids, anthraquinones glycosides and cyanogenic glycosides. The mean of EI% of rats treated with indomethacin at a dose of 5 mg/kg over different time intervals (64.0%) was significantly lower compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (75.0%, P< 0.001), but higher compared to rats treated at higher dose of 400 mg/kg (57.4%, P< 0.001). In contrast, MPT of rats treated with indomethacin at a dose of 5 mg/kg (6.5±1.1 mm) was significantly higher compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (6.1±.7 mm, P< 0.001) as well as 400 mg/kg (5.9±.5, P< 0.001). Conclusion Euphorbia aegyptiaca ethanolic extract has a sustained dose-dependent anti-inflammatory activity. PMID:27004059

  16. Antinociceptive and anti-inflammatory potential of Rhododendron arboreum bark.

    PubMed

    Nisar, Muhammad; Ali, Sajid; Muhammad, Naveed; Gillani, Syed N; Shah, Muhmmad R; Khan, Haroon; Maione, Francesco

    2016-07-01

    Rhododendron arboreum Smith. (Ericaceae), an evergreen small tree, is one of the 1000 species that belongs to genus Rhododendron distributed worldwide. In folk medicine, as various parts of this plant exhibit medicinal properties, it is used in the treatment of different ailments.The present study was designed to evaluate the potential anti-inflammatory and antinociceptive effects of methanolic extract of R. arboreum bark, followed by activity-guided fractionation of n-hexane, n-butanol, chloroform, ethyl acetate and aqueous fractions.The ethyl acetate fraction (200 mg/kg i.p.) showed the maximum analgesic effect (82%) in acetic acid-induced writhing, followed, to a less extent, by crude extract and chloroform fraction both at a dose of 200 mg/kg i.p. (65.09% and 67.89%, respectively). In carrageenan-induced mouse paw oedema, the crude extract and its related fractions displayed in a dose-dependent manner (50-200 mg/kg i.p.) an anti-inflammatory activity for all time-courses (1-5 hrs). For the active extract/fractions (200 mg/kg i.p.), the maximum effect was observed 5 h after carrageenan injection. These evidences were also supported by in vitro lipoxygenase inhibitory properties. In conclusion, R. arboreum crude methanolic extract and its fractions exhibited anti-inflammatory and antinociceptive effects. For these reasons, this plant could be a promising source of new compounds for the management of pain and inflammatory diseases. PMID:25501256

  17. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine.

    PubMed

    Caiaffo, Vitor; Oliveira, Belisa D R; de Sá, Fabrício B; Evêncio Neto, Joaquim

    2016-06-01

    Fluoxetine is a selective serotonin uptake inhibitor that has been widely used to determine the neurotransmission of serotonin in the central nervous system. This substance has emerged as the drug of choice for the treatment of depression due to is safer profile, fewer side effects, and greater tolerability. Studies have found the following important functions of fluoxetine related to the central nervous system: neuroprotection; anti-inflammatory properties similar to standard drugs for the treatment of inflammatory conditions; antioxidant properties, contributing to its therapeutic action and an important intracellular mechanism underlying the protective pharmacological effects seen in clinical practice in the treatment of different stress-related adverse health conditions; and antiapoptotic properties, with greater neuron survival and a reduction in apoptosis mediators as well as oxidative substances, such as superoxide dismutase and hydrogen peroxide. The aim of this study was to perform a review of the literature on the important role of fluoxetine in anti-inflammatory, cell survival, and neuron trophicity mechanisms (antiapoptotic properties) as well as its role regarding enzymes of the antioxidant defense system. PMID:27433341

  18. Chloroformic and Methanolic Extracts of Olea europaea L. Leaves Present Anti-Inflammatory and Analgesic Activities

    PubMed Central

    Chebbi Mahjoub, R; Khemiss, M.; Dhidah, M.; Dellaï, A.; Bouraoui, A.; Khemiss, F.

    2011-01-01

    Olea europaea L. is used in traditional medicine in the Mediterranean areas. Its natural products are used in the treatment of different disorders, like fighting fever and some infectious diseases such as malaria, the treatment of arrhythmia, and relief of intestinal spasms. The aim of the current study is to investigate the possible anti-inflammatory and anatinociceptive effects of methanol and chloroformic extracts prepared from leaves of Olea europaea L. The anti-inflammatory and antinociceptive effects of the different extracts of Olea europaea leaves were assessed after intraperitoneal administration into rats and mice, using the carrageenan-induced paw edema model in rats to test the anti-inflammatory effect and the acetic acid-induced writhing in mice to test the analgesic effect. The chloroformic and methanolic leaves extracts, studied at the doses of 50, 100, and 200 mg/kg (Body Weight: BW), exhibited significant dose-dependent anti-inflammatory and analgesic activities. Based on the results obtained, it can be concluded that Olea europaea leaves extracts have anti-inflammatory and antinociceptive effects. PMID:22084717

  19. Analgesic and anti-inflammatory activities of bupropion in animal models

    PubMed Central

    Hajhashemi, V.; Khanjani, P.

    2014-01-01

    Antidepressants are widely used for the treatment of various neuropathic pain conditions in humans. Recent studies have demonstrated that bupropion is effective for the treatment of neuropathic pain. Also antidepressants like bupropion showed anti-inflammatory properties. So in the present study, the analgesic and anti-inflammatory effects of bupropion in mice and rat were investigated. The acetic acid, formalin and hot plate tests were used in male mice to assess analgesic activity. For evaluation of anti-inflammatory effect, carrageenan-induced rat paw edema and croton oil-induced ear edema were used. Bupropion was administered at the doses of 10, 20 and 40 mg/kg (i.p.). Bupropion at a dose of 40 mg/kg significantly reduced acetic acid-induced abdominal writhes and also was effective in suppression of formalin-induced behavior and showed significant analgesia in hot plate test. While 40 mg/kg bupropion showed considerable anti-inflammatory response in carrageenan test, but no effect was observed in croton oil-induced ear edema. The results showed that bupropion has analgesic and anti-inflammatory effects in animal models and further studies are needed to find out its mechanism of action. PMID:25657796

  20. Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages.

    PubMed

    Gunawardena, Dhanushka; Bennett, Louise; Shanmugam, Kirubakaran; King, Kerryn; Williams, Roderick; Zabaras, Dimitrios; Head, Richard; Ooi, Lezanne; Gyengesi, Erika; Münch, Gerald

    2014-04-01

    Inflammation is a well-known contributing factor to many age-related chronic diseases. One of the possible strategies to suppress inflammation is the employment of functional foods with anti-inflammatory properties. Edible mushrooms are attracting more and more attention as functional foods since they are rich in bioactive compounds, but their anti-inflammatory properties and the effect of food processing steps on this activity has not been systematically investigated. In the present study, White Button and Honey Brown (both Agaricus bisporus), Shiitake (Lentinus edodes), Enoki (Flammulina velutipes) and Oyster mushroom (Pleurotus ostreatus) preparations were tested for their anti-inflammatory activity in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) activated murine RAW 264.7 macrophages. Potent anti-inflammatory activity (IC₅₀<0.1 mg/ml), measured as inhibition of NO production, could be detected in all raw mushroom preparations, but only raw Oyster (IC₅₀=0.035 mg/ml), Shiitake (IC₅₀=0.047 mg/ml) and Enoki mushrooms (IC₅₀=0.099 mg/ml) showed also potent inhibition of TNF-α production. When the anti-inflammatory activity was followed through two food-processing steps, which involved ultrasonication and heating, a significant portion of the anti-inflammatory activity was lost suggesting that the anti-inflammatory compounds might be susceptible to heating or prone to evaporation. PMID:24262531

  1. Topical anti-inflammatory activity of Solanum corymbiflorum leaves.

    PubMed

    Piana, Mariana; Camponogara, Camila; Boligon, Aline Augusti; Machado, Michel Mansur; de Brum, Thiele Faccim; Oliveira, Sara Marchesan; de Freitas Bauermann, Liliane

    2016-02-17

    Solanum corymbiflorum is popularly known as "baga-de-veado" and its leaves are applied on inflamed legs, scabies, tick bite, boils, mastitis, low back pain and otitis. The aim of this study was evaluate anti-inflammatory in vivo activity and relate this activity with antioxidant compounds present in the extract of S. corymbiflorum leaves. The extract from S. corymbiflorum leaves topically applied was able to reduce the croton oil-induced ear edema and myeloperoxidase (MPO) activity with maximum inhibition of 87±3% and 45±7%, rescpectively in the dose of 1mg/ear. Similar results were found for positive control dexamethasone, which presented inhibitions of ear edema and MPO activity of 89±3% and 50±3%, respectively in a dose of 0.1mg/ear. These findings are due, at least in part, the presence of polyphenols (195.28mg GAE/g) and flavonoids, as chlorogenic acid (59.27mg/g), rutin (12.72mg/g), rosmarinic acid, caffeic acid and gallic acid found by high performance liquid chromatography (HPLC) analysis. This species showed potencial antioxidant by 1,1-diphenyl-2-picrylhydrazyl (DPPH), and carbonyl groups in proteins methods which may be related with the presence of this compounds. This species possess anti-inflammatory activity confirming their popular use for the local treatment of skin inflammatory disorders. PMID:26721215

  2. Actions and toxicity of nonsteroidal anti-inflammatory drugs.

    PubMed

    Simon, L S

    1996-05-01

    Use of nonsteroidal anti-inflammatory drugs (NSAIDs) continues to be an important therapeutic intervention throughout the world for patients with pain and inflammation. The six major classes of NSAIDs (including the salicylates) bear the common property of inhibiting cyclooxygenase, the enzyme that catalyzes the synthesis of cyclic endoperoxides from arachidonic acid to yield prostaglandins. Anecdotal evidence has accumulated that the nonacetylated salicylates are as efficacious as the other NSAIDs, but there have been few controlled trials demonstrating that they are reasonable anti-inflammatory agents. This paper discusses the newest of the available clinical observations that nonacetylated salicylates are as efficacious as one of the newer NSAIDs in patients with rheumatoid arthritis. Because the nonacetylated salicylates are weak prostaglandin inhibitors, several other non-prostaglandin mediated mechanisms of action for the NSAIDs have been postulated and are described in this paper. In addition to papers describing NSAID effects on cartilage, this year several interesting papers described further effects of tenidap, a novel NSAID presently in development. Other papers reviewed attempts to develop NSAIDs with less severe gastrointestinal effects. Some reports discuss the use of topical NSAIDs, which are not clearly better than oral preparations. Data are also reviewed demonstrating that misoprostol effectively decreased significant poor gastrointestinal outcomes in patients who were treated with this NSAID for 6 months. New treatment regimens for decreasing misoprostol-induced toxicity are also reviewed. Finally, the effects of NSAID prophylaxis in preventing heterotopic bone formation in patients with osteoarthritis who undergo hip replacement surgery are noted. PMID:8796974

  3. Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties

    PubMed Central

    Yoon, Joo-Heon

    2005-01-01

    There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process. PMID:16259055

  4. Anti-inflammatory effects of fangchinoline and tetrandrine.

    PubMed

    Choi, H S; Kim, H S; Min, K R; Kim, Y; Lim, H K; Chang, Y K; Chung, M W

    2000-02-01

    Fangchinoline and tetrandrine are the major alkaloids from Stephania tetrandrae S. Moore which has been used traditionally for the treatment of inflammatory diseases in oriental countries including Korea. Both fangchinoline and tetrandrine showed anti-inflammatory effects on mouse ear edema induced by croton oil. In addition, the effects of fangchinoline and tetrandrine on cyclooxygenase, murine interleukin-5 (mIL-5) and human interleukin-6 (hIL-6) were examined in vitro to investigate the anti-inflammatory action mechanisms. One hundred micromolar of fangchinoline showed 35% of inhibition on cyclooxygenase, but the same concentration of tetrandrine did not show any inhibition. On the other hand, 12.5 microM of tetrandrine exhibited 95% of inhibition on mIL-5 activity, while fangchinoline did not show any effects. However, 4 microM of fangchinoline and 6 microM of tetrandrine showed 63 and 86% of inhibitions on hIL-6 activity, respectively. These results suggest that biochemical mechanisms of fangchinoline and tetrandrine on anti-inflammation are significantly different even though they are similar in chemical structure. PMID:10687873

  5. Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Tang, Jun

    Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.

  6. Anti-inflammatory activity of extracts from Conyza canadensis.

    PubMed

    Lenfeld, J; Motl, O; Trka, A

    1986-04-01

    The petroleum ether and ethanolic extract from the epigean part of Conyza canadensis exhibits a significant anti-inflammatory effect on rats with a carrageenin and formalin oedema. Eight sesquiterpenic hydrocarbons with the highest anti-inflammatory activity were found in the petroleum ether fraction (beta-santalene, beta-himachalene, cuparene, alpha-curcumene, gamma-cadinene and three other unidentified hydrocarbons). Of these substances, beta-himachalene was further studied and its anti-inflammatory activity was demonstrated. PMID:3725873

  7. Sesquiterpenes from Essential Oils and Anti-Inflammatory Activity.

    PubMed

    da Silveira e Sá, Rita de Cássia; Andrade, Luciana Nalone; de Sousa, Damião Pergentino

    2015-10-01

    This review is aimed at presenting relevant information on the therapeutic potential of essential oil sesquiterpenes with anti-inflammatory activity. The data reviewed provide a basis for seeking new anti-inflammatory drugs from natural products that do not exhibit the undesirable side effects often displayed by anti-inflammatory drugs. In this review the experimental models, possible mechanisms of action, and chemical structures of 12 sesquiterpenes are presented. PMID:26669122

  8. Systems Pharmacology Dissection of the Anti-Inflammatory Mechanism for the Medicinal Herb Folium Eriobotryae

    PubMed Central

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-01

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035

  9. Systems pharmacology dissection of the anti-inflammatory mechanism for the medicinal herb Folium eriobotryae.

    PubMed

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-01

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035

  10. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages.

    PubMed

    Zhang, Yuanyuan; Liu, Chuan; Dong, Bin; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-04-01

    Surfactin is primarily produced by Bacillus natto TK-1 and is one of the most powerful biosurfactants. It consists of a heptapeptide interlinked with a β-hydroxy fatty acid. Because of its special structure, surfactin shows broad biological effects, including anti-tumour, anti-microbial and anti-mycoplasma activities. It also has potential anti-inflammatory activity; however, the anti-inflammatory mechanism of surfactin has not been explored. In this study, we investigated the anti-inflammatory mechanism of surfactin in lipopolysaccharide (LPS)-stimulated macrophages. Surfactin exhibited an anti-inflammatory effect without cytotoxicity at certain concentrations, and the lipopolysaccharide (LPS)-stimulated cells appeared normal after surfactin treatment. Surfactin significantly inhibited the increased expression of IFN-γ, IL-6, iNOS and nitric oxide (NO). TLR4 is the critical receptor for LPS; therefore, the TLR4 signal transduction pathway is the primary pathway that mediates LPS-induced inflammation. The results show that surfactin downregulated the LPS-induced TLR4 protein expression of macrophages and indicated that the surfactin-mediated signal pathway was involved in with TLR4. The subsequent studies demonstrated that surfactin exhibited anti-inflammatory effects by attenuating the activation of nuclear factor-κB (NF-κB), which is involved in the nuclear factor-κB (NF-κB) cell signalling pathways. These results suggest that surfactin may be a new therapeutic agent for inflammation. PMID:25331175

  11. Synthesis, characterization, and anti-inflammatory activity of diclofenac-bound cotton fibers.

    PubMed

    Cassano, Roberta; Trombino, Sonia; Ferrarelli, Teresa; Barone, Eugenio; Arena, Vincenzo; Mancuso, Cesare; Picci, Nevio

    2010-07-12

    In the present work, we report on the synthesis of cellulose cotton fibers covalently linked to diclofenac moieties and the evaluation of the anti-inflammatory activity of this new biomaterial. In spite of recent progress in experimental and clinical medicine, the problem of chronic wounds treatment is still debated. In fact, conventional methods are based on the use of ointment-soaked bandages, but several physical and biological factors contribute to making the efficacy of this method quite low. For this reason, we developed the idea to using modified cotton gauzes to prevent inflammation during wound healing. In this light, diclofenac, a nonsteroidal anti-inflammatory drug, was covalently linked to the cellulose backbone of hydrophilic cotton fibers by a heterogeneous synthesis to produce a functionalized biopolymer with a satisfactory degree of substitution and anti-inflammatory activity. Diclofenac was directly linked to fiber microfibril hydroxylic groups using THF with thionyl chloride. The obtained biopolymer was characterized by infrared spectroscopy (FT-IR) to confirm ester linkages. Finally, the anti-inflammatory activity was evaluated in a well-established in vivo model. The results suggested that these biomaterials possess an excellent anti-inflammatory activity in vivo, so they can be efficiently employed in biomedical fields for chronic wound management to ensure a valid protection against inflammation. PMID:20536117

  12. [Drug delivery strategies for targeted treatment of inflammatory bowel disease].

    PubMed

    Lautenschläger, C; Schmidt, C; Lange, K; Stallmach, A

    2015-03-01

    Inflammatory bowel disease (IBD) is a frequently occurring disease in young people, which is characterized by chronic inflammation of the gastrointestinal tract. The therapy of IBD is dominated by the administration of anti-inflammatory and immunosuppressive agents, which suppress the intestinal inflammatory burden and improve the disease-related symptoms. Present treatment strategies are characterized by a limited therapeutical efficacy and the occurrence of adverse drug reactions. The development of novel disease-targeted drug delivery strategies is preferable for a more effective therapy and thus demonstrates the potential to address unmet medical needs. This review gives an overview about drug delivery strategies for the treatment of IBD. Therefore, established intestine-targeting strategies for a selective drug release into the diseased part of the gastrointestinal tract will be presented, including prodrugs, and dosage forms with pH-/time-dependent drug release. Furthermore future-oriented disease-targeting strategies for a selective drug release into the intestinal inflammation will be described, including micro-/nanosized synthetic and biologic drug carriers. This novel therapeutic approach may enable a more effective anti-inflammatory treatment of IBD with reduced risks of adverse reactions. PMID:25723326

  13. A Comparison of Efficacy and Safety of Non-steroidal Anti-inflammatory Drugs versus Acetaminophen in the Treatment of Episodic Tension-type Headache: A Meta-analysis of Randomized Placebo-controlled Trial Studies

    PubMed Central

    Yoon, Yeo Jung; Kim, Ju Heon; Hwang, In Hong; Kim, Mi Ra

    2012-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen are widely used in the treatment of tension headache. The objective of this study was to evaluate and compare the efficacy and safety of single doses of acetaminophen and NSAIDs using meta-analysis of randomized placebo-controlled trial studies. Methods We searched MEDLINE, EMBASE, CINAHL, Cochrane, KMbase, KoreaMed, RiCH, National Assembly Library, Riss4u, and DBPIA for studies released through 27th July 2010. Two authors independently extracted the data. To assess the risk of bias, the Cochrane Collaborations risk of bias tool was used. Review Manager 5.0 was used for statistics. Results We identified 6 studies. The relative benefit of the NSAIDs group compared to the acetaminophen group for participants with at least 50% pain relief was 1.18 (95% confidence interval [CI], 0.99 to 1.39; I2 = 85%). We did subgroup analysis based on allocation concealment versus non-allocation concealment, and low-dose NSAIDs versus high-dose NSAIDs. The relative benefit of the low-dose NSAIDs subgroup to the acetaminophen group was 0.98 (95% CI, 0.91 to 1.06; I2 = 0%). However, the heterogeneity of other subgroup analysis was not settled. The relative risk for using rescue medication of the NSAIDs group compared to the acetaminophen group was 0.84 (95% CI, 0.64 to 1.12; I2 = 47%). The relative risk for adverse events was 1.31(95% CI, 0.96 to 1.80; I2 = 0%). Conclusion In this meta-analysis, there was no difference between low-dose NSAIDs and acetaminophen in the efficacy of the treatment for tension type headache. The results suggested that high-dose NSAIDs have more effect but also have more adverse events. The balance of benefit and harm needs to be considered when using high-dose NSAIDs for tension headache. PMID:23115700

  14. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control

    PubMed Central

    Lee, Young-Sun; Jun, Hee-Sook

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action. PMID:27110066

  15. 3-Aminothiophene-2-acylhydrazones: non-toxic, analgesic and anti-inflammatory lead-candidates.

    PubMed

    da Silva, Yolanda Karla Cupertino; Reyes, Christian Tadeo Moreno; Rivera, Gildardo; Alves, Marina Amaral; Barreiro, Eliezer J; Moreira, Magna Suzana Alexandre; Lima, Lídia Moreira

    2014-01-01

    Different chemotypes are described as anti-inflammatory. Among them the N-acylhydrazones (NAH) are highlighted by their privileged structure nature, being present in several anti-inflammatory drug-candidates. In this paper a series of functionalized 3-aminothiophene-2-acylhydrazone derivatives 5a-i were designed, synthesized and bioassayed. These new derivatives showed great anti-inflammatory and analgesic potency and efficacy. Compounds 5a and 5d stand out in this respect, and were also active in CFA-induced arthritis in rats. After daily treatment for seven days with 5a and 5d (50 µmol/Kg), by oral administration, these compounds were not renal or hepatotoxic nor immunosuppressive. Compounds 5a and 5d also displayed good drug-scores and low risk toxicity calculated in silico using the program OSIRIS Property Explorer. PMID:24955640

  16. Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L.

    PubMed Central

    Kim, Wan-Su; Choi, Woo Jin; Lee, Sunwoo; Kim, Woo Joong; Lee, Dong Chae; Sohn, Uy Dong; Shin, Hyoung-Shik

    2015-01-01

    The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases. PMID:25605993

  17. Self-assembling polymeric nanoparticles for enhanced intra-articular anti-inflammatory protein delivery

    NASA Astrophysics Data System (ADS)

    Whitmire, Rachel Elisabeth

    Osteoarthritis (OA) affects 26 million Americans, or approximately 14% of the adult population. The incidence of OA is predicted to dramatically increase in the next 20 years as the US grows older and the rate of obesity continues to increase. There are currently no clinical interventions that cure OA. Current biomaterial delivery systems exhibit several limitations. First, most drug-delivery particles are hydrophobic, which is not optimal for hydrophilic protein encapsulation. Second, hydrophobic particles, such as PLGA, could cause wear damage to the already-fragile OA cartilage structure. Additionally, these particles usually suffer from non-specific protein adsorption, which causes increased phagocytosis and can lead to increased inflammation. New therapies that increase the effectiveness of OA treatments or reverse OA disease progression will greatly decrease the economic costs and individual pain associated with this disease. The goal of this thesis was to develop a new drug-delivering material to deliver anti-inflammatory protein for treating OA. Our central hypothesis for this work is that a controlled release/presentation system will more effectively deliver anti-inflammatory protein therapies to the OA joint. The primary goal of this work was to synthesize a block copolymer that could self-assemble into injectable, sub-micron-scale particles and would allow an anti-inflammatory protein, IL-1ra, to be tethered to its surface for efficient protein delivery. The block copolymer incorporated an oligo-ethylene monomer for tissue compatibility and non-fouling behavior, a 4-nitrophenol group for efficient protein tethering, and cyclohexyl methacrylate, a hydrophobic monomer, for particle stability. We engineered the copolymer and tested it in both in vitro culture experiments and an in vivo model to evaluate protein retention in the knee joint. The rationale for this project was that the rational design and synthesis of a new drug- and protein

  18. ω3-PUFAs Exert Anti-Inflammatory Activity in Visceral Adipocytes from Colorectal Cancer Patients

    PubMed Central

    D’Archivio, Massimo; Scazzocchio, Beatrice; Giammarioli, Stefania; Fiani, Maria L.; Varì, Rosaria; Santangelo, Carmela; Veneziani, Augusto; Iacovelli, Annunziata; Giovannini, Claudio; Gessani, Sandra; Masella, Roberta

    2013-01-01

    Objective The aim of this study was to correlate specific fatty acid profiles of visceral white adipose tissue (WAT) with inflammatory signatures potentially associated with colorectal cancer (CRC). Methods Human adipocytes were isolated from biopsies of visceral WAT from 24 subjects subdivided in four groups: normal-weight (BMI 22.0-24.9 Kg/m2) and over-weight/obese (BMI 26.0-40.0 Kg/m2), affected or not by CRC. To define whether obesity and/or CRC affect the inflammatory status of WAT, the activation of the pro-inflammatory STAT3 and the anti-inflammatory PPARγ transcription factors as well as the expression of adiponectin were analyzed by immunoblotting in adipocytes isolated from each group of subjects. Furthermore, to evaluate whether differences in inflammatory WAT environment correlate with specific fatty acid profiles, gas-chromatographic analysis was carried out on WAT collected from all subject categories. Finally, the effect of the ω3 docosahexaenoic acid treatment on the balance between pro- and anti-inflammatory factors in adipocytes was also evaluated. Results We provide the first evidence for the existence of a pro-inflammatory environment in WAT of CRC patients, as assessed by the up-regulation of STAT3, and the concomitant decrease of PPARγ and adiponectin with respect to healthy subjects. WAT inflammatory status was independent of obesity degree but correlated with a decreased ω3-/ω6-polyunsaturated fatty acid ratio. These observations suggested that qualitative changes, other than quantitative ones, in WAT fatty acid may influence tissue dysfunctions potentially linked to inflammatory conditions. This hypothesis was further supported by the finding that adipocyte treatment with docosahexaenoic acid restored the equilibrium between STAT3 and PPARγ. Conclusion Our results suggest that adipocyte dysfunctions occur in CRC patients creating a pro-inflammatory environment that might influence cancer development. Furthermore, the protective

  19. Corneal reepithelialization and anti-inflammatory agents.

    PubMed Central

    Srinivasan, B D

    1982-01-01

    These studies have demonstrated that nonsteroidal anti-inflammatory agents (cyclooxygenase and lipoxygenase inhibitors) can inhibit PMN arrival in the tear fluid following corneal injury but do not inhibit the reepithelialization either by corneal epithelial cells or by conjunctival epithelial cells. Therefore, they can be used safely in ocular inflammatory conditions even when corneal epithelial defects are present. Corticosteroids, on the other hand, inhibit reepithelialization by conjunctival epithelial cells and not by corneal epithelial cells in the doses tested. This inhibition does not occur with pretreatment prior to injury, suggesting that corticosteroids can be used clinically in conditions that have intact corneal epithelium without fear of slowing down wound healing should epithelial defects occur when not on steroid therapy. Furthermore, the steroid inhibition is temporary since there is a breakthrough in steroid inhibition with time, and occurs only if the steroids have been used shortly after deepithelialization. The steroid inhibition can be reversed by specific steroid antagonist, indicating that the steroid effect is mediated through specific receptors. An exciting and new hypothesis proposes that corticosteroids induce the formation of an inhibitory protein that inhibits the phospholipase enzyme to cause a block in arachidonic acid release from cell membranes. This mechanism of action may also be prevalent in the steroid effect on corneal reepithelialization, and experiments are under way to isolate this inhibitory protein from steroid-treated conjunctival epithelium. This isolation and pharmacologic characterization of this inhibitory protein is of obvious advantage to the field of ophthalmic therapeutics since this protein may have the anti-inflammatory potential of the steroids without their steroid sideeffects. Images FIGURE 3 a FIGURE 3 b PMID:6763806

  20. A review of anti-inflammatory agents for symptoms of schizophrenia.

    PubMed

    Keller, William R; Kum, Lionel M; Wehring, Heidi J; Koola, Maju Mathew; Buchanan, Robert W; Kelly, Deanna L

    2013-04-01

    Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the US population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as non-steroidal anti-inflammatory agents, such as the cyclo-oxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia. PMID:23151612

  1. Anti-inflammatory and antifibrotic effects of methyl palmitate

    SciTech Connect

    El-Demerdash, Ebtehal

    2011-08-01

    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-{alpha} and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (I{kappa}B{alpha}) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-{kappa}B, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research Highlights: >Methyl palmitate is a universal macrophage inhibitor. >It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. >The underlying mechanism of these effects could be through NF-kB inhibition.

  2. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae)

    PubMed Central

    Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi

    2016-01-01

    Background: Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. Objective: This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. Materials and Methods: The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. Results: The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. Conclusion: J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. SUMMARY Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine. PMID:27034606

  3. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    SciTech Connect

    Nagib, Marwa M.; Tadros, Mariane G.; ELSayed, Moushira I.; Khalifa, Amani E.

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  4. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status

    PubMed Central

    Cameron, Amy R.; Morrison, Vicky L.; Levin, Daniel; Mohan, Mohapradeep; Forteath, Calum; Beall, Craig; McNeilly, Alison D.; Balfour, David J.K.; Savinko, Terhi; Wong, Aaron K.F.; Viollet, Benoit; Sakamoto, Kei; Fagerholm, Susanna C.; Foretz, Marc

    2016-01-01

    Rationale: The diabetes mellitus drug metformin is under investigation in cardiovascular disease, but the molecular mechanisms underlying possible benefits are poorly understood. Objective: Here, we have studied anti-inflammatory effects of the drug and their relationship to antihyperglycemic properties. Methods and Results: In primary hepatocytes from healthy animals, metformin and the IKKβ (inhibitor of kappa B kinase) inhibitor BI605906 both inhibited tumor necrosis factor-α–dependent IκB degradation and expression of proinflammatory mediators interleukin-6, interleukin-1β, and CXCL1/2 (C-X-C motif ligand 1/2). Metformin suppressed IKKα/β activation, an effect that could be separated from some metabolic actions, in that BI605906 did not mimic effects of metformin on lipogenic gene expression, glucose production, and AMP-activated protein kinase activation. Equally AMP-activated protein kinase was not required either for mitochondrial suppression of IκB degradation. Consistent with discrete anti-inflammatory actions, in macrophages, metformin specifically blunted secretion of proinflammatory cytokines, without inhibiting M1/M2 differentiation or activation. In a large treatment naive diabetes mellitus population cohort, we observed differences in the systemic inflammation marker, neutrophil to lymphocyte ratio, after incident treatment with either metformin or sulfonylurea monotherapy. Compared with sulfonylurea exposure, metformin reduced the mean log-transformed neutrophil to lymphocyte ratio after 8 to 16 months by 0.09 U (95% confidence interval, 0.02–0.17; P=0.013) and increased the likelihood that neutrophil to lymphocyte ratio would be lower than baseline after 8 to 16 months (odds ratio, 1.83; 95% confidence interval, 1.22–2.75; P=0.00364). Following up these findings in a double-blind placebo controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin suppressed plasma cytokines including the aging

  5. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication.

    PubMed

    Du, Bin; Zeng, Huansong; Yang, Yuedong; Bian, Zhaoxiang; Xu, Baojun

    2016-10-01

    Ultrasound treatment was applied to modify the physicochemical properties of an exopolysaccharide from mycelial culture of Schizophyllum commune. Molecular weight (MW) degradation, viscosity and anti-inflammatory property of ultrasonic treated polysaccharide were optimized with response surface methodology. The best ultrasonic parameters were obtained with a three-variable-three-level Box-Behnken design. The optimized conditions for efficient anti-inflammatory activity are initial concentration at 0.4%, ultrasonic power at 600W, and duration of ultrasonic irradiation for 9min. Under these conditions, the nitric oxide inhibition rate was 95±0.03% which agreed closely with the predicted value (96%). Average MW of polysaccharide decreased after ultrasonic treatments. The viscosity of degraded polysaccharide dropped compared with native polysaccharide. The anti-inflammatory activity was improved by ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the MW of polysaccharide with high anti-inflammatory activity. Ultrasonic treatment is a viable modification technology for high MW polymer materials. PMID:27189700

  6. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    PubMed

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  7. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages.

    PubMed

    Pi, Jiang; Cai, Huaihong; Yang, Fen; Jin, Hua; Liu, Jianxin; Yang, Peihui; Cai, Jiye

    2016-01-01

    A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs. PMID:26476923

  8. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  9. [Anti-inflammatory effects of tea-flavonoids].

    PubMed

    Hoensch, H; Oertel, R

    2012-12-01

    Tea flavonoids belong to the large group of polyphenols and display antioxidative, anti-inflammatory and anti-neoplastic activities. These phytochemicals are xenobiotics and are synthesized by tea plants such as Camellia sinensis and Camomilla recucita. These botanicals exhibit in vivo activities similar to that of biologicals which are widely used for chronic inflammatory diseases (rheumatoid arthritis, chronic inflammatory bowel disease). Epigallocathechin gallate and apigenin from these plants inhibit cytokines, chemokines and activated immune cells in vivo and in vitro. Clinical disorders with induced inflammatory pathways could benefit from flavonoid treatment. Dietary supplementation with specific tea-flavonoids could be used for Crohn's disease, ulcerative colitis and irritable bowel syndrome. Suppression of cytokine production could ultimately lead to inhibition of carcinogenesis. This mechanism could explain why flavonoids are effective in the prevention of intestinal neoplasia. This innovative new form of therapy should be tested in controlled, randomized clinical studies. PMID:23233307

  10. Anti-Inflammatory and Immunomodulatory Mechanism of Tanshinone IIA for Atherosclerosis

    PubMed Central

    Chen, Zhuo

    2014-01-01

    Tanshinone IIA (Tan II A) is widely used in the treatment of cardiovascular diseases as an active component of Salvia miltiorrhiza Bunge. It has been demonstrated to have pleiotropic effects for atherosclerosis. From the anti-inflammatory and immunomodulatory mechanism perspective, this paper reviewed major progresses of Tan IIA in antiatherosclerosis research, including immune cells, antigens, cytokines, and cell signaling pathways. PMID:25525444

  11. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages

    PubMed Central

    Shahraz, Anahita; Kopatz, Jens; Mathy, Rene; Kappler, Joachim; Winter, Dominic; Kapoor, Shoba; Schütza, Vlad; Scheper, Thomas; Gieselmann, Volkmar; Neumann, Harald

    2015-01-01

    Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are α2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to α2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-α (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-β1–42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-β1–42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages. PMID:26582367

  12. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages.

    PubMed

    Shahraz, Anahita; Kopatz, Jens; Mathy, Rene; Kappler, Joachim; Winter, Dominic; Kapoor, Shoba; Schütza, Vlad; Scheper, Thomas; Gieselmann, Volkmar; Neumann, Harald

    2015-01-01

    Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are α2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to α2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-α (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-β1-42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-β1-42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages. PMID:26582367

  13. Intestinal anti-inflammatory activity of calcium pyruvate in the TNBS model of rat colitis: Comparison with ethyl pyruvate.

    PubMed

    Algieri, F; Rodriguez-Nogales, A; Garrido-Mesa, J; Camuesco, D; Vezza, T; Garrido-Mesa, N; Utrilla, P; Rodriguez-Cabezas, M E; Pischel, I; Galvez, J

    2016-03-01

    Pyruvate is a key intermediate of the carbohydrate metabolism with endogenous scavenger properties. However, it cannot be used in clinics due to its instability. Ethyl pyruvate (EP) has shown better stability as well as an antioxidant and anti-inflammatory activity. Calcium pyruvate monohydrate (CPM) is another stable pyruvate derivative that could also provide the benefits from calcium, fundamental for bone health. Considering everything, we propose CPM as a therapeutic strategy to treat diseases with an immune component in which there is also a significant dysregulation of the skeletal homeostasis. This could be applicable to inflammatory bowel disease, which is characterized by over-production of pro-inflammatory mediators, including cytokines and reactive oxygen and nitrogen metabolites that induces intestinal mucosal damage and chronic inflammation, and extra-intestinal symptoms like osteopenia and osteoporosis. The effects of CPM and EP (20, 40 and 100mg/kg) were evaluated on the trinitrobenzenesulfonic acid (TNBS) model of colitis in rats, after a 7-day oral treatment, with main focus on colonic histology and inflammatory mediators. Both pyruvates showed intestinal anti-inflammatory effects in the TNBS-induced colitis. They were evident both histologically, with a recovery of the mucosal cytoarchitecture and a reduction of the neutrophil infiltration, and through the profile of inflammatory mediators (IL-1, IL-6, IL-17, IL-23, iNOS). However, CPM appeared to be more effective than ethyl pyruvate. In conclusion, CPM exerts intestinal anti-inflammatory effect on the TNBS-induced colitis in rats, although further experiments are needed to explore its beneficial effects on bone health and osteoporosis. PMID:26774455

  14. 4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions.

    PubMed

    Pinz, Mikaela; Reis, Angélica S; Duarte, Vanessa; da Rocha, Márcia J; Goldani, Bruna S; Alves, Diego; Savegnago, Lucielli; Luchese, Cristiane; Wilhelm, Ethel A

    2016-06-01

    The development of new drugs to treat painful and inflammatory clinical conditions continues to be of great interest. The present study evaluated the antinociceptive and anti-inflammatory effects of 4-phenylselenyl-7-chloroquinoline (4-PSQ). Mice were orally (p.o.) pretreated with 4-PSQ (0.1-25mg/kg), meloxicam (25mg/kg, a reference drug) or vehicle, 30min prior to the acetic acid, formalin, hot-plate and open-field tests. 4-PSQ reduced abdominal writhing induced by acetic acid and it caused an increase in latency time in the hot-plate test. 4-PSQ inhibited early and late phases of nociception and reduced the paw edema caused by formalin. Locomotor and exploratory activities in the open field test were not altered by treatments. In addition, a time-response curve was carried out by administration of 4-PSQ (25mg/kg; p.o.) at different times before the acetic acid injection. The antinociceptive effect in inhibiting acetic acid-induced abdominal writhing of 4-PSQ started at 0.5h and remained significant up to 4h after administration. Indeed, the anti-inflammatory and antioxidant properties of 4-PSQ were investigated. 4-PSQ diminished the edema formation and decreased the myeloperoxidase activity and reactive species levels induced by croton oil in the ear tissue. 4-PSQ partially protected against the decrease of the 2,2'-Azinobis-3-ethylbenzothiazoline 6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) levels induced by croton oil. Meloxicam presented similar results for 4-PSQ in tests evaluated. These results demonstrated that 4-PSQ exerts acute anti-inflammatory and antinociceptive actions, suggesting that it may represent an alternative in the development of future new therapeutic strategies. PMID:27020552

  15. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model.

    PubMed

    Lee, Seung-Hong; Ko, Chang-Ik; Jee, Youngheun; Jeong, Yoonhwa; Kim, Misook; Kim, Jin-Soo; Jeon, You-Jin

    2013-01-30

    Fucoidan extracted from Ecklonia cava had strong anti-inflammatory activities. However, the direct effects of fucoidan of E. cava on anti-inflammatory activities in vivo model remained to be determined. Therefore, the present study was designed to assess in vivo anti-inflammatory effect of fucoidan extracted from E. cava (ECF) using tail-cutting-induced and lipopolysaccharide (LPS)-stimulated zebrafish model. Treating zebrafish model with tail-cutting and LPS-treatment significantly increased the ROS and NO level. However, ECF inhibited this tail-cutting-induced and LPS-stimulated ROS and NO generation. These results show that ECF alleviated inflammation by inhibiting the ROS and NO generation induced by tail-cutting and LPS-treatment. In addition, ECF has a protective effect against the toxicity induced by LPS exposure in zebrafish embryos. This outcome could explain the potential anti-inflammatory activity of ECF, which might have a beneficial effect during the treatment of inflammatory diseases. PMID:23218269

  16. Anti-Inflammatory Constituents from Bidens frondosa.

    PubMed

    Le, Jiamei; Lu, Wenquan; Xiong, Xiaojuan; Wu, Zhijun; Chen, Wansheng

    2015-01-01

    A new polyacetylene glucoside (3E,5E,11E)-tridecatriene-7,9-diyne-1,2,13-triol-2-O-β-D-glucopyranoside (1), a new phenylpropanoid glucoside 2'-butoxyethylconiferin (2), and a new flavonoid glycoside 8,3',4'-trihydroxyflavone-7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (3), have been isolated from Bidens frondosa together with fifty-three known compounds 4-56. The structures of these compounds were established by spectroscopic methods. mainly ESIMS, 1D- and 2D-NMR spectroscopic data. and comparison with literature data. Compounds 1-34, 36, 39, 43, 47, 51, and 52 were tested for inhibition of nuclear factor kappa B (NF-κB) in 293-NF-κB-luciferase report cell line induced by lipopolysaccharide (LPS), and compounds 1, 2, 3, 9, 15, 21, 24 and 51 were tested for the production of TNF-α, IL-1β, IL-6, IL-10 in RAW 264.7 macrophages induced by LPS. In conclusion, the isolated compounds 1, 2, 3, 9, 15, 21, 24 and 51 exhibited significant activity in anti-inflammatory activity assays. PMID:26473814

  17. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease.

    PubMed

    García-Lafuente, Ana; Guillamón, Eva; Villares, Ana; Rostagno, Mauricio A; Martínez, José Alfredo

    2009-09-01

    Chronic inflammation is being shown to be increasingly involved in the onset and development of several pathological disturbances such as arteriosclerosis, obesity, diabetes, neurodegenerative diseases and even cancer. Treatment for chronic inflammatory disorders has not been solved, and there is an urgent need to find new and safe anti-inflammatory compounds. Flavonoids belong to a group of natural substances occurring normally in the diet that exhibit a variety of beneficial effects on health. The anti-inflammatory properties of flavonoids have been studied recently, in order to establish and characterize their potential utility as therapeutic agents in the treatment of inflammatory diseases. Several mechanisms of action have been proposed to explain in vivo flavonoid anti-inflammatory actions, such as antioxidant activity, inhibition of eicosanoid generating enzymes or the modulation of the production of proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response. However, much work remains to be done in order to achieve definitive conclusions about their potential usefulness. This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease. PMID:19381780

  18. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention.

    PubMed

    Fajardo, Alexandra M; Piazza, Gary A

    2015-07-15

    Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs. PMID:26021807

  19. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention

    PubMed Central

    Piazza, Gary A.

    2015-01-01

    Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs. PMID:26021807

  20. Repositioning drugs for inflammatory disease – fishing for new anti-inflammatory agents

    PubMed Central

    Hall, Christopher J.; Wicker, Sophie M.; Chien, An-Tzu; Tromp, Alisha; Lawrence, Lisa M.; Sun, Xueying; Krissansen, Geoffrey W.; Crosier, Kathryn E.; Crosier, Philip S.

    2014-01-01

    Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning – the process of finding new uses for existing drugs – is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs. PMID:25038060

  1. NF-κB-targeted anti-inflammatory activity of Prunella vulgaris var. lilacina in macrophages RAW 264.7.

    PubMed

    Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A

    2013-01-01

    Prunella vulgaris var. lilacina, a herbal medicine, has long been used in Korea for the treatment of sore throat, and to alleviate fever and accelerate wound healing. Although the therapeutic effect of P. vulgaris var. lilacina is likely associated with anti-inflammatory activity, the precise underlying mechanisms are largely unknown. Here, we sought to elucidate the possible mechanisms of the anti-inflammatory activity. We have investigated the anti-inflammatory activity of the various solvent fractions (hexane, butanol, chloroform and water) from the ethanol extract of P. vulgaris var. lilacina in activated macrophages. The hexane fraction exhibited higher anti-inflammatory activities, inducing inhibition of nitric oxide and prostaglandin E2 production as well as inducible nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α mRNA expression in response to lipopolysaccharide stimulation. Moreover, the hexane fraction from P. vulgaris var. lilacina significantly inhibited the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the nuclear translocation of the NF-κB p50 and p65 subunits. These results indicate that P. vulgaris var. lilacina has an anti-inflammatory capacity in vitro, suggesting that it could be a potential source of natural anti-inflammatory agents. PMID:24177568

  2. Anti-inflammatory properties of quebecol and its derivatives.

    PubMed

    Cardinal, Sébastien; Azelmat, Jabrane; Grenier, Daniel; Voyer, Normand

    2016-01-15

    Herein we report our results on the anti-inflammatory activity of quebecol, a polyphenolic compound discovered in maple syrup. Bioassays demonstrated that quebecol has an anti-inflammatory effect on LPS-induced NF-κB activation and inhibits the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. We also prepared and tested precursors of quebecol and its derivatives corresponding to its substructures of interest, with the aim to study the structure-activity relationships. Comparing the results obtained for all tested compounds allowed the identification of the main moiety responsible for the anti-inflammatory activity of quebecol. PMID:26691759

  3. Synthesis and Biological Evaluation of Novel Resveratrol-NSAID Derivatives as Anti-inflammatory Agents.

    PubMed

    Peng, Wei; Ma, Yan-Yan; Zhang, Kun; Zhou, Ai-Yu; Zhang, Yu; Wang, Huaqian; Du, Zhiyun; Zhao, Deng-Gao

    2016-06-01

    Long-term use of nonsteroidal antiinflammatory drugs (NSAIDs) may cause serious side effects such as gastric mucosal damage. Resveratrol, a naturally dietary polyphenol, exhibited anti-inflammatory activity and a protective effect against gastric mucosa damage induced by NSAIDs. In this regard, we synthesized a series of resveratrol-based NSAIDs derivatives and evaluated their anti-inflammatory activity against nitric oxide (NO) overproduction in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We identified mono-substituted resveratrol-ibuprofen combination 21 as the most potent anti-inflammatory agent, which is more active than a physical mixture of ibuprofen and resveratrol, individual ibuprofen, or individual resveratrol. In addition, compound 21 exerted potent inhibitory effects on the LPS-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Furthermore, compound 21 significantly increased the survival rate in an LPS-induced acute inflammatory model and produced markedly less gastric damage than ibuprofen. It was found that compound 21 may be a potent anti-inflammatory agent for the treatment of inflammation-related diseases. PMID:27009373

  4. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I

    2011-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  5. Design and In Vivo Anti-Inflammatory Effect of Ketoprofen Delayed Delivery Systems.

    PubMed

    Cerciello, Andrea; Auriemma, Giulia; Morello, Silvana; Pinto, Aldo; Del Gaudio, Pasquale; Russo, Paola; Aquino, Rita P

    2015-10-01

    For the treatment of inflammatory-based diseases affected by circadian rhythms, the development of once-daily dosage forms is required to target early morning symptoms. In this study, Zn-alginate beads containing ketoprofen (K) were developed by a tandem technique prilling/ionotropic gelation. The effect of main critical variables on particles micromeritics, inner structure as well as on drug loading and in vitro drug release was studied. The in vivo anti-inflammatory efficacy was evaluated using a modified protocol of carrageenan-induced edema in rat paw administering beads to rats by oral gavage at 0, 3, or 5 h before edema induction. Good drug loading and desired particle size and morphology were obtained for the optimized formulation F20. In vitro dissolution studies showed that F20 had a gastroresistant behavior and delayed release of the drug in simulated intestinal fluid. The in vitro delayed release pattern was clearly reflected in the prolonged anti-inflammatory effect in vivo of F20, compared to pure ketoprofen; F20, administered 3 h before edema induction, showed a significant anti-inflammatory activity, reducing maximum paw volume in response to carrageenan injection, whereas no response was observed for ketoprofen. The designed beads appear a promising platform suitable for a delayed release of anti-inflammatory drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3451-3458, 2015. PMID:26088065

  6. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation.

    PubMed

    Monforte, Maria T; Fimiani, Vincenzo; Lanuzza, Francesco; Naccari, Clara; Restuccia, Salvatore; Galati, Enza M

    2014-04-01

    Feijoa sellowiana Berg var. coolidge fruit juice was studied in vivo for the anti-inflammatory activity by carrageenin-induced paw edema test and in vitro for the effects on superoxide anion release from neutrophils in human whole blood. The fruit juice was analyzed by the high-performance liquid chromatography method, and quercetin, ellagic acid, catechin, rutin, eriodictyol, gallic acid, pyrocatechol, syringic acid, and eriocitrin were identified. The results showed a significant anti-inflammatory activity of F. sellowiana fruit juice, sustained also by an effective antioxidant activity observed in preliminary studies on 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. In particular, the anti-inflammatory activity edema inhibition is significant since the first hour (44.11%) and persists until the fifth hour (44.12%) of the treatment. The effect on superoxide anion release was studied in human whole blood, in the presence of activators affecting neutrophils by different mechanisms. The juice showed an inhibiting response on neutrophils basal activity in all experimental conditions. In stimulated neutrophils, the higher inhibition of superoxide anion generation was observed at concentration of 10(-4) and 10(-2) mg/mL in whole blood stimulate with phorbol-myristate-13-acetate (PMA; 20% and 40%) and with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 15% and 48%). The significant reduction of edema and the inhibition of O2(-) production, occurring mainly through interaction with protein-kinase C pathway, confirm the anti-inflammatory effect of F. sellowiana fruit juice. PMID:24433073

  7. Anti-inflammatory and antinociceptive activities of Solenostemon monostachyus aerial part extract in mice

    PubMed Central

    Okokon, Jude Fiom; Davis, Koofreh; Nwidu, Lucky Legbosi

    2016-01-01

    Objective: Solenostemon monostachyus is used in traditional medicine for the treatment of various ailments such as ulcer, hypertension, pains and inflammatory diseases. Evaluation of anti-inflammatory and analgesic activities of S. monostachyus aerial parts was carried out to ascertain its uses in traditional medicine. Materials and Methods: The aerial parts of S. monostachyus was cold extracted by soaking the dried powdered material in ethanol. The aerial parts crude extract (75 –225 mg/kg) of S. monostachyus was investigated for analgesic and anti-inflammatory activities using various experimental models; acetic acid, formalin and thermal- induced pains models for analgesic study and carrageenin, egg albumin and xylene – induced edema models for anti-inflammatory investigation. Results: The extract caused a significant (p<0.05 – 0.001) dose-dependent reduction of inflammation and pains induced by different phlogistic agents used. These effects were comparable to those of the standard drug, (ASA, 100 mg/kg) used in some models. Conclusion: The anti-inflammatory and analgesic effects of this plant may in part be mediated through the chemical constituents of the plant and the results of the analgesic action suggest central and peripheral mechanisms. The findings of this work confirm the ethno medical use of this plant to treat inflammatory conditions. PMID:27462551

  8. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil.

    PubMed

    Silva, Gabriela L da; Luft, Carolina; Lunardelli, Adroaldo; Amaral, Robson H; Melo, Denizar A da Silva; Donadio, Márcio V F; Nunes, Fernanda B; de Azambuja, Marcos S; Santana, João C; Moraes, Cristina M B; Mello, Ricardo O; Cassel, Eduardo; Pereira, Marcos Aurélio de Almeida; de Oliveira, Jarbas R

    2015-08-01

    Several studies have investigated the antinociceptive, immunomodulatory and anti-inflammatory properties of compounds found in the lavender essential oil (LEO), however to date, there is still lack of substantial data. The objective of this study was to assess the antioxidant, anti-inflammatory and antinociceptive effects of lavender essential oil. The 1,1-diphenyl-2-picrylhydrazyl radical decolorization assay was used for antioxidant activity evaluation. The anti-inflammatory activity was tested using two models of acute inflammation: carrageenan-induced pleurisy and croton oil-induced ear edema. The antinociceptive activity was tested using the pain model induced by formalin. LEO has antioxidant activity, which is dose-dependent response. The inflammatory response evoked by carrageenan and by croton oil was reduced through the pre-treatment of animals with LEO. In the pleurisy model, the drug used as positive control, dexamethasone, was more efficacious. However, in the ear swelling, the antiedematogenic effect of the oil was similar to that observed for dexamethasone. In the formalin test, LEO consistently inhibited spontaneous nociception and presented a similar effect to that of tramadol. The results of this study reveal (in vivo) the analgesic and anti-inflammatory activities of LEO and demonstrates its important therapeutic potential. PMID:26247152

  9. Improvement of bioavailability and anti-inflammatory potential of curcumin in combination with emu oil.

    PubMed

    Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna

    2014-12-01

    The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis. PMID:25028100

  10. Experimental evaluation of analgesic and anti-inflammatory activity of simvastatin and atorvastatin

    PubMed Central

    Jaiswal, Swapnil R.; Sontakke, Smita D.

    2012-01-01

    Aim: The aim of this study is to evaluate the analgesic and anti-inflammatory activities of atorvastatin and simvastatin in different experimental models in mice and rats. Materials and Methods: Analgesic activity of simvastatin and atorvastatin was assessed in tail flick model in rats (n = 6), where it was compared with aspirin and tramadol and in acetic acid induced writhing in mice (n = 6), where it was compared with aspirin. Anti-inflammatory activity of statins was evaluated using carrageenin induced paw edema and formalin induced arthritis in rats. Results: In the tail flick method, analgesic effect of tramadol was significantly more than the other drugs except at two observation times, when it was comparable to simvastatin and atorvastatin. Effect of simvastatin was found to be comparable to aspirin. In acetic acid induced writhing method, analgesic activity of simvastatin was comparable to that of aspirin while that of atorvastatin was significantly less. In carrageenin induced paw edema in rats, both simvastatin and atorvastatin showed anti-inflammatory activity which was comparable to aspirin. Both the statins exhibited significant anti-inflammatory activity (P < 0.01) in formalin induced arthritis model though less than aspirin (P < 0.05). Conclusion: The results of this study if substantiated by further experimental and clinical research suggest that simvastatin and atorvastatin may play an adjuvant role, which may be particularly beneficial in the treatment of inflammatory disorders, especially when there is coexisting dyslipidemia. PMID:23087508

  11. AMP-activated protein kinase is activated by non-steroidal anti-inflammatory drugs.

    PubMed

    King, Tanya S; Russe, Otto Quintus; Möser, Christine V; Ferreirós, Nerea; Kynast, Katharina L; Knothe, Claudia; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-09-01

    AMP-activated kinase (AMPK) is a cellular energy sensor, which is activated in stages of increased adenosine triphosphate (ATP) consumption. Its activation has been associated with a number of beneficial effects such as decrease of inflammatory processes and inhibition of disease progression of diabetes and obesity. A recent study suggested that salicylate, the active metabolite of the non-steroidal anti-inflammatory drug (NSAID) acetyl-salicylic acid (aspirin), is able to activate AMPK pharmacologically. This observation raised the question whether or not other NSAIDs might also act as AMPK activators and whether this action might contribute to their cyclooxygenase (COX)-independent anti-inflammatory properties. In this study, we investigated mouse and human neuronal cells and liver tissue of mice after treatment with various NSAIDs. Our results showed that the non-selective acidic NSAIDs ibuprofen and diclofenac induced AMPK activation similar to aspirin while the COX-2 selective drug etoricoxib and the non-opioid analgesic paracetamol, both drugs have no acidic structure, failed to activate AMPK. In conclusion, our results revealed that AMPK can be activated by specific non-steroidal anti-inflammatory drugs such as salicylic acid, ibuprofen or diclofenac possibly depending on the acidic structure of the drugs. AMPK might therefore contribute to their antinociceptive and anti-inflammatory properties. PMID:26049010

  12. In vivo anti-inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsuta

    PubMed Central

    Azza, Zora; Oudghiri, Mounia

    2015-01-01

    Background: The aerial parts of Thymelaea hirsuta (TH) are used as a decoction in the treatment of different pathologies in folk medicine in Morocco. Objective: The aqueous extracts were evaluated for its anti-inflammatory activity and in inhibition of adjuvant induction arthritis in male Wistar rats. Materials and Methods: The anti-inflammatory activity was carried out using carrageenan-induced rat paw edema model, and the antiarthritic activity was carried out using complete Freund's adjuvant-induced arthritis model. Results: The plant extract (500 mg/kg body weight) exhibited significant activity in acute inflammation produced 60% of inhibition after 4 h as compared with that of the standard anti-inflammatory drug, the diclofenac (100 mg/kg) which showed 40% of inhibition. In arthritis model, the extract produced 85% inhibition after 18 days when compared with the diclofenac (10 mg/kg; 72%). Conclusion: These results indicate that the aqueous extract of TH had an anti-inflammatory activity and inhibited the induction of adjuvant arthritis in male Wistar rats. PMID:25829798

  13. Analgesic, anti-inflammatory and anti-pyretic activities of Caesalpinia decapetala

    PubMed Central

    Parveen, Amna; Sajid Hamid Akash, Muhammad; Rehman, Kanwal; Mahmood, Qaisar; Qadir, Muhammad Imran

    2014-01-01

    Introduction: In many pathological conditions, pain, inflammation and fever are interdependent to each other. Due to the use of synthetic drugs, many unwanted effects usually appear. Various studies have been conducted on Caesalpinia decapetala (C. decapetala) to evaluate its effects in the treatment of various diseases but no sufficient scientific literature is available online to prove its analgesic, anti-inflammatory and anti-pyretic activities. Methods: The analgesic, anti-inflammatory and anti-pyretic activities of 70% aqueous methanolic and n-hexane extracts of C. decapetala was evaluated using Swiss albino mice (20-30 g). Results: The results showed that aqueous methanolic extract of C. decapetala at the dose of 100 mg/kg exhibited significant (p< 0.05) activities in various pain models including acetic acid-induced writhing (18.4 ± 0.53), formalin-induced licking (275 ± 4.18) and hot plate method (2.3 ± 0.0328); whereas,  n-hexane extract showed its effects in acetic acid-induced writhing (20 ± 0.31), formalin-induced licking (293 ± 1.20) and hot plate method (2.224 ± 0.029) compared to the effects observed in control group animals. Similarly, the aqueous methanolic extract of C. decapetala after 2 h of treatment exhibited more significant anti-inflammatory (0.66 ± 0.06) and anti-pyretic (38.81 ± 0.05) activities compared to the control group animals. Conclusion: From the findings of our present study, we concluded that the aqueous methanolic extract of C. decapetala has stronger analgesic, anti-inflammatory and anti-pyretic effects than its n-hexane extract. Further studies are required to investigate the active constituents of C. decapetala that exhibit analgesic, anti-inflammatory and anti-pyretic activities. PMID:24790898

  14. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent.

    PubMed

    Sun, Lan-Di; Wang, Fu; Dai, Fang; Wang, Yi-Hua; Lin, Dong; Zhou, Bo

    2015-06-01

    Inflammation, especially chronic inflammation, is directly involvement in the pathogenesis of many diseases including cancer. An effective approach for managing inflammation is to employ chemicals to block activation of nuclear factor-κB (NF-κB), a key regulator for inflammatory processes. Piperlongumine (piplartine, PL), an electrophilic molecule isolated from Piper longum L., possesses excellent anti-cancer and anti-inflammatory properties. In this study, a new PL analogue (PL-0N) was designed by replacing nitrogen atom of lactam in PL with carbon atom to increase its electrophilicity and thus anti-inflammatory activity. It was found that PL-0N is more potent than the parent compound in suppressing lipopolysaccharide (LPS)-induced secretion of nitric oxide and prostaglandin E2 as well as expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW264.7 macrophages. Mechanistic investigation implies that PL-0N exerts anti-inflammatory activity through inhibition of LPS-induced NF-κB transduction pathway, down-regulation of LPS-induced MAPKs activation and impairment of proteasomal activity, but also enhancement of LPS-induced autophagy; the inhibition of NF-κB by PL-0N is achieved at various stages by: (i) preventing phosphorylation of IKKα/β, (ii) stabilizing the suppressor protein IκBα, (iii) interfering with the nuclear translocation of NF-κB, and (iv) inhibiting the DNA-binding of NF-κB. These data indicate that nitrogen-atom-lacking pattern is a successful strategy to improve anti-inflammatory property of PL, and that the novel molecule, PL-0N may be served as a promising lead for developing natural product-directed anti-inflammatory agents. PMID:25850000

  15. Anti-Inflammatory Activity of Delonix regia (Boj. Ex. Hook)

    PubMed Central

    Shewale, Vaishali D.; Deshmukh, Tushar A.; Patil, Liladhar S.; Patil, Vijay R.

    2012-01-01

    The present work was to evaluate the anti-inflammatory activity of Delonix regia leaves (Family: Caesalpiniaceae). The powder of Delonix regia leaves was subjected to extraction with ethanol in soxhlet extractor. The ethanol extract after preliminary phytochemical investigation showed the presence of sterols, triterpenoids, phenolic compounds and flavonoids. The anti-inflammatory activity was studied using carrageenan-induced rat paw edema and cotton pellet granuloma at a three different doses (100, 200, and 400 mg/kg b.w. p.o.) of ethanol extract. The ethanol extract of Delonix regia leaves was exhibited significant anti-inflammatory activity at the dose of 400 mg/kg in both models when compared with control group. Indomethacin (10 mg/kg b.w. p.o) was also shown significant anti-inflammatory activity in both models. PMID:22110490

  16. Anti-Inflammatory Activity of Chitooligosaccharides in Vivo

    PubMed Central

    Fernandes, João C.; Spindola, Humberto; de Sousa, Vanessa; Santos-Silva, Alice; Pintado, Manuela E.; Malcata, Francisco Xavier; Carvalho, João E.

    2010-01-01

    All the reports to date on the anti-inflammatory activity of chitooligosaccharides (COS) are mostly based on in vitro methods. In this work, the anti-inflammatory activity of two COS mixtures is characterized in vivo (using balb/c mice), following the carrageenan-induced paw edema method. This is a widely accepted animal model of acute inflammation to evaluate the anti-inflammatory effect of drugs. Our data suggest that COS possess anti-inflammatory activity, which is dependent on dose and, at higher doses, also on the molecular weight. A single dose of 500 mg/kg b.w. weight may be suitable to treat acute inflammation cases; however, further studies are needed to ascertain the effect upon longer inflammation periods as well as studies upon the bioavailability of these compounds. PMID:20631868

  17. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins.

    PubMed

    Tubaro, Aurelia; Giangaspero, Anna; Sosa, Silvio; Negri, Roberto; Grassi, Gianpaolo; Casano, Salvatore; Della Loggia, Roberto; Appendino, Giovanni

    2010-10-01

    A selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids. PMID:20450962

  18. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  19. [Anti-inflammatory effects of methylprednisolone aceponate in animals].

    PubMed

    Ikoma, Y; Yamashita, M; Kamitani, K; Nakagawa, H

    1991-11-01

    In the case of dermal application of the drugs to croton oil-induced ear edema in rats and picryl chloride-induced delayed type hypersensitivity in mice, the anti-inflammatory effect of methylprednisolone aceponate (MPA) was slightly weaker than those of clobetasol 17-propionate and diflucortolone 21-valerate, but stronger than those of hydrocortisone 17-butyrate and hydrocortisone 17-butyrate 21-propionate. Betamethasone 17-valerate applied dermally was less and more effective than MPA to ear edema in rats and delayed type hypersensitivity in mice, respectively. The anti-inflammatory effect of MPA was weaker in subcutaneous administration than in topical application to the two inflammatory models. It was suggested that MPA has strong anti-inflammatory effects and weak systemic effects by topical application. Methylprednisolone 17-propionate (MP-17P) and methylprednisolone (MP), unesterified in only the C-21 position and in both the C-17 and 21 positions of MPA, respectively, showed weaker anti-inflammatory activities than MPA by topical application to croton oil-induced ear edema. The ratio of the anti-inflammatory effects by topical application to subcutaneous administration of MPA was higher than those of MP-17P and MP. The excellent characteristics of MPA as a dermal anti-inflammatory drug are suggested to be derived from di-esterification of MP, which has a weak activity intrinsically. PMID:1813371

  20. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  1. Analgesic and anti-inflammatory activities of the aqueous extracts from three Flemingia species.

    PubMed

    Ko, Yu-Jen; Lu, Tsung-Chun; Kitanaka, Susumu; Liu, Chia Yu; Wu, Jin-Bin; Kuo, Chao-Lin; Cheng, Hao-Yuan; Lin, Ying-Chih; Peng, Wen-Huang

    2010-01-01

    I-Tiao-Gung has long been used in the Kinmen area of Taiwan as an anti-inflammatory agent for the treatment of rheumatic illness. The roots of Flemingia lineata (FL), Flemingia macrophylla (FM) and Flemingia prostrata (FP) are also used as I-Tiao-Gung in the Taiwan markets. In the present study, we investigated the analgesic effect of aqueous extracts of Flemingia lineata (FL), Flemingia macrophylla (FM), and Flemingia prostrata (FP) by acetic acid-induced writhing response, formalin test, and the anti-inflammatory effect of FM, FL and FP by lambda-carrageenan-induced paw edema in mice. We also detected the changes in the activities of superoxide dismutase (SOD), glutathione reductase (GRx) and glutathione peroxidase (GPx) of liver in the lambda-carrageenan-induced paw edema in mice to investigate the anti-inflammatory mechanism of FL and FM. The results showed that FL and FM significantly inhibited the acetic acid-induced writhing response and formalin-induced licking time during the late phase (p < 0.001). FL and FM also significantly decreased the lambda-carrageenan-induced paw edema (p < 0.001). FL and FM significantly increased the GRx and GPx activities in the liver and decreased the levels of malondialdehyde (MDA) and nitric oxide (NO) in the edema paw (p < 0.001). These results indicated that FL and FM possessed analgesic and anti-inflammatory effects. The anti-inflammatory mechanism of FL and FM might be related to the decrease in the level of MDA in the edema paw via increasing the activities of GPx and GRx in the liver and decreasing the NO level in the edema paw. PMID:20503477

  2. Caveolae control the anti-inflammatory phenotype of senescent endothelial cells

    PubMed Central

    Powter, Elizabeth E; Coleman, Paul R; Tran, Mai H; Lay, Angelina J; Bertolino, Patrick; Parton, Robert G; Vadas, Mathew A; Gamble, Jennifer R

    2015-01-01

    Senescent endothelial cells (EC) have been identified in cardiovascular disease, in angiogenic tumour associated vessels and in aged individuals. We have previously identified a novel anti-inflammatory senescent phenotype of EC. We show here that caveolae are critical in the induction of this anti-inflammatory senescent state. Senescent EC induced by either the overexpression of ARHGAP18/SENEX or by H2O2 showed significantly increased numbers of caveolae and associated proteins Caveolin-1, cavin-1 and cavin-2. Depletion of these proteins by RNA interference decreased senescence induced by ARHGAP18 and by H2O2. ARHGAP18 overexpression induced a predominantly anti-inflammatory senescent population and depletion of the caveolae-associated proteins resulted in the preferential reduction in this senescent population as measured by neutrophil adhesion and adhesion protein expression after TNFα treatment. In confirmation, EC isolated from the aortas of CAV-1−/− mice failed to induce this anti-inflammatory senescent cell population upon expression of ARHGAP18, whereas EC from wild-type mice showed a significant increase. NF-κB is one of the major transcription factors mediating the induction of E-selectin and VCAM-1 expression, adhesion molecules responsible for leucocyte attachment to EC. TNFα-induced activation of NF-κB was suppressed in ARHGAP18-induced senescent EC, and this inhibition was reversed by Caveolin-1 knock-down. Thus, out results demonstrate that an increase in caveolae and its component proteins in senescent ECs is associated with inhibition of the NF-kB signalling pathway and promotion of the anti-inflammatory senescent pathway. PMID:25407919

  3. Anti-Inflammatory Action of Angiotensin 1-7 in Experimental Colitis

    PubMed Central

    Khajah, Maitham A.; Fateel, Maryam M.; Ananthalakshmi, Kethireddy V.; Luqmani, Yunus A.

    2016-01-01

    Background There is evidence to support a role for angiotensin (Ang) 1–7 in reducing the activity of inflammatory signaling molecules such as MAPK, PKC and SRC. Enhanced angiotensin converting enzyme 2 (ACE2) expression has been observed in patients with inflammatory bowel disease (IBD) suggesting a role in its pathogenesis, prompting this study. Methods The colonic expression/activity profile of ACE2, Ang 1–7, MAS1-receptor (MAS1-R), MAPK family and Akt were determined by western blot and immunofluorescence. The effect of either exogenous administration of Ang 1–7 or pharmacological inhibition of its function (by A779 treatment) was determined using the mouse dextran sulfate sodium model. Results Enhanced colonic expression of ACE2, Ang1-7 and MAS1-R was observed post-colitis induction. Daily Ang 1–7 treatment (0.01–0.06 mg/kg) resulted in significant amelioration of DSS-induced colitis. In contrast, daily administration of A779 significantly worsened features of colitis. Colitis-associated phosphorylation of p38, ERK1/2 and Akt was reduced by Ang 1–7 treatment. Conclusion Our results indicate important anti-inflammatory actions of Ang 1–7 in the pathogenesis of IBD, which may provide a future therapeutic strategy to control the disease progression. PMID:26963721

  4. Effects of nonsteroidal anti-inflammatory drugs on microvascular dynamics.

    PubMed

    Slater, C; House, S D

    1993-03-01

    Techniques of intravital microscopy were used to assess the effect of the nonsteroidal anti-inflammatory drugs (NSAIDs), indomethacin and ibuprofen, on the microcirculation. Hemodynamics in venules of the rat mesentery were studied in terms of vessel diameter, red blood cell velocity, and leukocyte-endothelium interactions: leukocyte-endothelium adhesion (LEA), white blood cell (WBC) marginating flux, and WBC velocity. Measurements were made during (1) control conditions (topical suffusion with ringer-gelatin drip), (2) topically suffused indomethacin or ibuprofen, (3) an induced inflammatory response (suffusion with the chemoattractant N-Formyl-Methionyl-Leucyl-Phenylalanine (FMLP)), and (4) concomitant suffusion with FMLP and NSAID. Short term topical suffusion (90 sec) with indomethacin and ibuprofen had little or no effect on control hemodynamics. Five-minute suffusions with indomethacin (5 x 10(-5) to 5 x 10(-4) M) significantly increased LEA while ibuprofen (5 x 10(-3) M) significantly decreased LEA. Topical suffusion with the chemotactic agent FMLP induced inflammation and significantly increased LEA in venules. Treatment with indomethacin during induced inflammation had no effect on the inflammatory reaction in terms of the microvascular hemodynamics measured in this study. Treatment with ibuprofen during induced inflammation significantly reduced LEA and increased red blood cell velocity. In conclusion, although both of the NSAIDs studied here are known to block the cyclooxygenase pathway of arachidonic acid metabolism, the actions of indomethacin and ibuprofen on the inflammatory process are very different with an important effect of ibuprofen being to decrease LEA. PMID:8361400

  5. Pharmaceutical aspects of anti-inflammatory TNF-blocking drugs.

    PubMed

    Jinesh, Sandhya

    2015-06-01

    Tumor necrosis factor (TNF) is a key regulator of inflammatory processes in several immune-mediated inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, Crohn's disease, ulcerative colitis, psoriasis and psoriatic arthritis. Inactivating TNF has been found to be a plausible approach in treating these conditions. Two major strategies have been adopted by scientists to inactivate TNF: one is to use monoclonal antibodies (mAbs) that bind to TNF, and the other is to use fusion proteins that bind to TNF, both inactivate TNF and help to prevent TNF-mediated inflammatory processes. Monoclonal antibodies (mAbs) are biological products that selectively bind to specific antigen molecules, and fusion proteins are soluble receptors that bind to TNF. These types of drugs are generally known as biologics and there has been an explosion in the development and testing of biologics since the 1994 US approval and launch of abciximab, a mAb that binds to GPIIb/IIIa on platelets. Anti-TNF drugs that are currently approved by FDA for treating inflammatory conditions include adalimumab, certolizumab pegol, golimumab, infliximab and etanercept. Since these agents are complex protein molecules, the pharmacodynamics and pharmacokinetics of these drugs are different from small-molecule anti-inflammatory agents. This review focuses on the pharmaceutical aspects of these drugs such as mechanism of action, adverse effects, pharmacokinetics and drug interactions. An effort was also taken to compare the pharmacodynamics and pharmacokinetic properties of these drugs, with the available data at this time. PMID:25687751

  6. Anti arthritic and anti inflammatory activity of a cytotoxic protein NN-32 from Indian spectacle cobra (Naja naja) venom in male albino rats.

    PubMed

    Gomes, Antony; Datta, Poulami; Das, Tanaya; Biswas, Ajoy Kumar; Gomes, Aparna

    2014-11-01

    The anti arthritic and anti inflammatory activity of NN-32, a cytotoxic protein from Indian spectacle cobra snake (Naja naja) venom has been studied in Freund's complete adjuvant (FCA) induced arthritis and carrageenan induced anti inflammatory model. NN-32 treatment showed significant decrease in physical and urinary parameters, serum enzymes, serum cytokines levels as compared to arthritic control group of rats. NN-32 treatment recovered carrageenan induced inflammation as compared to control group of rats. The findings showed that the cytotoxic protein NN-32 shares anti arthritic and anti inflammatory activity and thus NN-32 may target complex pathophysiological processes like cancer- arthritis-inflammation. PMID:25026566

  7. Non-steroidal anti-inflammatory drug indometacin enhances endogenous remyelination.

    PubMed

    Preisner, Anna; Albrecht, Stefanie; Cui, Qiao-Ling; Hucke, Stephanie; Ghelman, Julia; Hartmann, Christine; Taketo, Makoto Mark; Antel, Jack; Klotz, Luisa; Kuhlmann, Tanja

    2015-08-01

    Multiple sclerosis is the most frequent demyelinating disease in the CNS that is characterized by inflammatory demyelinating lesions and axonal loss, the morphological correlate of permanent clinical disability. Remyelination does occur, but is limited especially in chronic disease stages. Despite effective immunomodulatory therapies that reduce the number of relapses the progressive disease phase cannot be prevented. Therefore, promotion of neuroprotective and repair mechanisms, such as remyelination, represents an attractive additional treatment strategy. A number of pathways have been identified that may contribute to impaired remyelination in MS lesions, among them the Wnt/β-catenin pathway. Here, we demonstrate that indometacin, a non-steroidal anti-inflammatory drug (NSAID) that has been also shown to modulate the Wnt/β-catenin pathway in colorectal cancer cells promotes differentiation of primary human and murine oligodendrocytes, myelination of cerebellar slice cultures and remyelination in cuprizone-induced demyelination. Our in vitro experiments using GSK3β inhibitors, luciferase reporter assays and oligodendrocytes expressing a mutant, dominant stable β-catenin indicate that the mechanism of action of indometacin depends on GSK3β activity and β-catenin phosphorylation. Indometacin might represent a promising treatment option to enhance endogenous remyelination in MS patients. PMID:25943886

  8. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats.

    PubMed

    Nagib, Marwa M; Tadros, Mariane G; ElSayed, Moushira I; Khalifa, Amani E

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5days. OLM-M (1, 3 and 10mg/kg) was administered orally during 21days prior to the induction of colitis, and for 5days after. Sulfasalazine (500mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. PMID:23665423

  9. Antimetastatic and Anti-Inflammatory Potentials of Essential Oil from Edible Ocimum sanctum Leaves

    PubMed Central

    Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran; Ramya, Gunasekar; Ramnath, Gogul

    2014-01-01

    Antimetastatic and anti-inflammatory activities of Ocimum sanctum essential oil (OSEO) have been assessed in this study. OSEO at the concentration of 250 μg/mL and above showed a significant (*P < 0.05) decrease in the number of migrated cancer cells. In addition, OSEO at concentration of 250 μg/mL and above suppressed MMP-9 activity in lipopolysaccharide (LPS) induced inflammatory cells. A dose-dependent downregulation of MMP-9 expression was observed with the treatment of OSEO compared to the control. Our findings indicate that OSEO has both antimetastatic and anti-inflammatory potentials, advocating further investigation for clinical applications in the treatment of inflammation associated cancer. PMID:25431779

  10. [The immunomodulatory and anti-inflammatory properties of different antimicrobial agents].

    PubMed

    Guz, Katarzyna; Bugla-Płoskońska, Gabriela

    2007-01-01

    One of the major achievements in modern medicine has been the development of research into antimicrobial agents. These drugs are now widely used in the treatment of human and animal infectious diseases caused by bacterial pathogens. However, some antibacterial agents, mainly macrolides, tetracyclines, and sulfonamides, have both anti-inflammatory and immunomodalotory properties. They can down-regulate prolonged inflammation, increase mucus clearance, prevent bacterial biofilm formation, and stimulate or impair the activation of the host immune system. It is possible that these drugs are able in modify phagocyte activity by altering their functions (chemotaxis, phagocytosis, oxidative burst, bacterial killing, and cytokine production). In addition, some antibiotics influence the biology of bacteria; they alter their metabolism, morphology, and antigenicity and inhibit the production of various virulence factors. The immunomodulatory and anti-inflammatory properties of antibiotics can occasionally be therapeutically useful in the treatment of chronic, noninfectious disorders, such as rheumatism, asthma, and other immunological diseases. PMID:18097341

  11. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  12. Immunoadjuvant and anti-inflammatory plant saponins: characteristics and biotechnological approaches towards sustainable production.

    PubMed

    de Costa, F; Yendo, A C A; Fleck, J D; Gosmann, G; Fett-Neto, A G

    2011-09-01

    Saponins can be classified as triterpenoid (C30) or steroidal (C27), based on their carbon nucleus (aglycone). Sugar residues are linked to the aglycone, conferring an amphiphilic nature on these molecules, which is relevant for their biological activities. Saponins include a large variety of molecules that find several applications in pharmacology. Saponins have been shown to display immunoadjuvant, anti-inflammatory, antiplatelet, hypocholesterolemic, antitumoral, anti-HIV, antibacterial, insecticide, fungicide and anti-leishmanial activities. Anti-inflammatory medicines are increasingly demanded to treat various forms of arthritis in aging and obese populations and to help reduce the doses and duration of conventional corticotherapy with less side effects and without immunosuppression. The vaccine market for both human and veterinary uses is close to US$ 15 billion, progressively inflated by the recurrent threat of global pandemics.This paper provides an overview of recent advances (main focus on the last five years) on plant saponins that show anti-inflammatory and/or immunoadjuvant activities: source plants, isolation procedures, mechanism of action and biotechnological approaches towards sustainable production of bioactive saponins. Special attention is given to ginseng and Quillaja saponins. Strategies based on plant cultivation, cell and tissue culture, elicitation, and metabolic engineering for improved production of saponins are described. Future directions for research in the field and strategies to overcome bottlenecks are also discussed. PMID:21762102

  13. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate

    PubMed Central

    du Souich, Patrick; García, Antonio G; Vergés, Josep; Montell, Eulàlia

    2009-01-01

    Chondroitin sulphate (CS) is a natural glycosaminoglycan present in the extracellular matrix and is formed by the 1–3 linkage of D-glucuronic acid to N-acetylgalactosamine. In chondrocytes, CS diminishes interleukin-1 p (IL-1p)-induced increases in p38 mitogen-activated protein kinase (p38MAPK) and signal-regulated kinase 1/2 (Erk1/2) phosphorylation, and decreases nuclear factor-KB (NF-kB) nuclear translocation and as a consequence, reduces the formation of pro-inflammatory cytokines, IL-1 p and TNF-a, and pro-inflammatory enzymes, such as phospholipase A2 (PLA2), cyclooxygenase 2 (COX-2) and nitric oxide synthase-2 (NOS-2). The mechanism of action of CS explains its beneficial effect on the cartilage, synovial membrane and subchondral bone. On the other hand, in vivo, CS given orally prevents hepatic NF-κB nuclear translocation, suggesting that systemic CS may elicit an anti-inflammatory effect in many tissues besides the articulation. There is preliminary evidence showing that in human beings, CS may be of benefit in other diseases where inflammation is an essential marker, such as psoriasis and atherosclerosis. The review of the literature suggest that CS might also be of interest for the treatment of other diseases with an inflammatory and/or autoimmune character, such as inflammatory bowel disease, degenerative diseases of the central nervous system and stroke, multiple sclerosis and other autoimmune diseases. PMID:19522843

  14. Proteomic analysis of the anti-inflammatory action of minocycline

    PubMed Central

    Dunston, Christopher R; Griffiths, Helen R; Lambert, Peter A; Staddon, Susan; Vernallis, Ann B

    2011-01-01

    Minocycline possesses anti-inflammatory properties independently of its antibiotic activity although the underlying molecular mechanisms are unclear. Lipopolysaccharide (LPS)-induced cytokines and pro-inflammatory protein expression are reduced by minocycline in cultured macrophages. Here, we tested a range of clinically important tetracycline compounds (oxytetracycline, doxycycline, minocycline and tigecycline) and showed that they all inhibited LPS-induced nitric oxide production. We made the novel finding that tigecycline inhibited LPS-induced nitric oxide production to a greater extent than the other tetracycline compounds tested. To identify potential targets for minocycline, we assessed alterations in the macrophage proteome induced by LPS in the presence or absence of a minocycline pre-treatment using 2-DE and nanoLC-MS. We found a number of proteins, mainly involved in cellular metabolism (ATP synthase β-subunit and aldose reductase) or stress response (heat shock proteins), which were altered in expression in response to LPS, some of which were restored, at least in part, by minocycline. This is the first study to document proteomic changes induced by minocycline. The observation that minocycline inhibits some, but not all, of the LPS-induced proteomic changes shows that minocycline specifically affects some signalling pathways and does not completely inhibit macrophage activation. PMID:21182193

  15. Cerebral analgesic response to nonsteroidal anti-inflammatory drug ibuprofen.

    PubMed

    Hodkinson, Duncan J; Khawaja, Nadine; OʼDaly, Owen; Thacker, Michael A; Zelaya, Fernando O; Wooldridge, Caroline L; Renton, Tara F; Williams, Steven C R; Howard, Matthew A

    2015-07-01

    Nonopioid agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are the most commonly used class of analgesics. Increasing evidence suggests that cyclooxygenase (COX) inhibition at both peripheral and central sites can contribute to the antihyperalgesic effects of NSAIDs, with the predominant clinical effect being mediated centrally. In this study, we examined the cerebral response to ibuprofen in presurgical and postsurgical states and looked at the analgesic interaction between surgical state and treatment. We used an established clinical pain model involving third molar extraction, and quantitative arterial spin labelling (ASL) imaging to measure changes in tonic/ongoing neural activity. Concurrent to the ASL scans, we presented visual analogue scales inside the scanner to evaluate the subjective experience of pain. This novel methodology was incorporated into a randomized double-blind placebo-controlled design, with an open method of drug administration. We found that independent of its antinociceptive action, ibuprofen has no effect on regional cerebral blood flow under pain-free conditions (presurgery). However, in the postsurgical state, we observed increased activation of top-down modulatory circuits, which was accompanied by decreases in the areas engaged because of ongoing pain. Our findings demonstrate that ibuprofen has a measurable analgesic response in the human brain, with the subjective effects of pain relief reflected in two distinct brain networks. The observed activation of descending modulatory circuits warrants further investigation, as this may provide new insights into the inhibitory mechanisms of analgesia that might be exploited to improve safety and efficacy in pain management. PMID:25851460

  16. Colonic anastomoses and non-steroidal anti-inflammatory drugs.

    PubMed

    Slim, K; Joris, J; Beloeil, H

    2016-08-01

    Nonsteroidal anti-inflammatory drugs (NSAID) play an important role in the treatment of post-operative pain, particularly in the context of enhanced recovery after colorectal surgery. Several recent articles have suggested that NSAID may have a deleterious effect on colo-colic or colo-rectal anastomoses. The aim of this review is to analyze the evidence based on meta-analyses and cohort studies in the literature. A systematic review of clinical studies identified twelve studies including two meta-analyses and ten comparative cohort studies that included a large number of patients. The data in these studies are heterogeneous, often biased, and do not permit a formal recommendation based on a high level of evidence. The main conclusion of this review is that the balance of benefit vs. risk (analgesic effect/risk of anastomotic disruption) is acceptable; it appears (with a low level of evidence) that a prescription of NSAID for 48h after surgery may be recommended for elective colon surgery. Nevertheless, it is important to respect the specific contra-indications of NSAID and avoid post-operative NSAID use if there are risk factors for anastomotic leakage: advanced age, malnutrition, severe co-morbidities, intra-operative difficulties. PMID:27480526

  17. Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis

    PubMed Central

    Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy

    2015-01-01

    Objectives: Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (P. vietnamenis). Materials and Methods: Aqueous (POR) and alcoholic (PE) fractions were successfully isolated from P. vietnamenis. Further biological investigations were performed using a classic test of paw edema induced by carrageenan, writhing induced by acetic acid, hot plate method and naproxen induced gastro-duodenal ulcer. Results: Among the fractions POR showed better activity. POR and PE significantly (p < 0.05) reduced carrageenan induced paw edema in a dose dependent manner. In the writhing test POR significantly (p < 0.05) reduced abdominal writhes than PE. In hot plate method POR showed better analgesic activity than PE. POR showed comparable ulcers reducing potential (p<0.01) to that of omeprazole, and has more ulcer reducing potential then PE. Conclusions: The results of this study demonstrated that P. vietnamenis aqueous fraction possesses biological activity that is close to the standards taken for the treatment of peripheral painful or/and inflammatory and ulcer conditions. PMID:25767759

  18. One-Step Synthesis of Chiral Oxindole-type Analogues with Potent Anti-inflammatory and Analgesic Activities

    PubMed Central

    Sun, Yulong; Liu, Jia; Jiang, Xianxing; Sun, Tao; Liu, Luping; Zhang, Xiaoyuan; Ding, Shaoli; Li, Jingyi; Zhuang, Yan; Wang, Yiqing; Wang, Rui

    2015-01-01

    Here we report a facile approach to synthesize highly optically active oxindole-type analogues with both high yield and enantioselectivity. This single-step synthesis strategy represents a substantial improvement upon existing methods that are often involved with multi-step routes and have suboptimal atomic economy. One such compound, namely Q4c, showed remarkable in vivo anti-inflammatory activity with efficiency approaching to that of a steroidal compound dexamethasone. Moreover, Q4c alleviated pain in mouse models with comparable activity to morphine. Further investigation suggested that nitric oxide signaling pathway is involved in the anti-inflammatory and analgesic activities of Q4c. Notably, this is the first time that chiral oxindole-type analogues have been identified to be both anti-inflammatory and analgesic, and our study also paved the way for future development of oxindoles as drug candidates in this field. PMID:26324065

  19. One-Step Synthesis of Chiral Oxindole-type Analogues with Potent Anti-inflammatory and Analgesic Activities.

    PubMed

    Sun, Yulong; Liu, Jia; Jiang, Xianxing; Sun, Tao; Liu, Luping; Zhang, Xiaoyuan; Ding, Shaoli; Li, Jingyi; Zhuang, Yan; Wang, Yiqing; Wang, Rui

    2015-01-01

    Here we report a facile approach to synthesize highly optically active oxindole-type analogues with both high yield and enantioselectivity. This single-step synthesis strategy represents a substantial improvement upon existing methods that are often involved with multi-step routes and have suboptimal atomic economy. One such compound, namely Q4c, showed remarkable in vivo anti-inflammatory activity with efficiency approaching to that of a steroidal compound dexamethasone. Moreover, Q4c alleviated pain in mouse models with comparable activity to morphine. Further investigation suggested that nitric oxide signaling pathway is involved in the anti-inflammatory and analgesic activities of Q4c. Notably, this is the first time that chiral oxindole-type analogues have been identified to be both anti-inflammatory and analgesic, and our study also paved the way for future development of oxindoles as drug candidates in this field. PMID:26324065

  20. The use of polymeric microcarriers loaded with anti-inflammatory substances in the therapy of experimental skin wounds.

    PubMed

    Murueva, A V; Shershneva, A M; Shishatskaya, E I; Volova, T G

    2014-09-01

    We studied the effects of anti-inflammatory substances incorporated in polymeric microparticles made of degradable natural polyhydroxyalkanoate polyesters on experimental skin wounds caused by chemical burns in laboratory animals. Treatment with encapsulated forms of anti-inflammatory substances (applied in gel) accelerated wound healing in comparison with routine therapy (estimated by area of burn wound, wound healing activity, number of acanthotic cells, and number of hair and sebaceous follicles). The results showed the perspectives of usage of developed form of substances (degradable polymeric microparticles) for treatment of skin defects. PMID:25261193

  1. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances

    PubMed Central

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  2. Anti-Inflammatory Effect of Triterpene Saponins Isolated from Blue Cohosh (Caulophyllum thalictroides).

    PubMed

    Lee, Yeonju; Jung, Jae-Chul; Ali, Zulfiqar; Khan, Ikhlas A; Oh, Seikwan

    2012-01-01

    Blue cohosh has been used as a medicinal herb in eastern North America. It was commonly used as traditional medicines for the treatment of menopausal symptoms, rheumatic pain, and as anti-inflammatory remedy. Particularly, extract of blue cohosh roots has been used as anti-inflammatory antipyretic in traditional medicines. In the present study, we investigated the effects of blue cohosh components on the suppressive expression of iNOS or proinflammatory cytokines after the activation of microglia with lipopolysaccharide (LPS). The expression of iNOS, TNF-α, IL-1β, and IL-6 was determined by western blotting or gene expression. Blue cohosh treatment suppressed the elevation of LPS-induced iNOS expression in a concentration-dependent manner in microglia cells. Blue cohosh constituents also suppressed the expression of TNF-α, IL-1β, and IL-6. In addition, blue cohosh extract suppressed the expression of COX-2, iNOS, and proinflammatory cytokines in adrenal glands of mice. These results demonstrate that constituents of blue cohosh exert anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines. Therefore, blue cohosh may have therapeutic potential for the treatment of inflammation-related diseases. PMID:22988475

  3. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances.

    PubMed

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  4. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111

  5. Optimization and pharmacological validation of a leukocyte migration assay in zebrafish larvae for the rapid in vivo bioactivity analysis of anti-inflammatory secondary metabolites.

    PubMed

    Cordero-Maldonado, María Lorena; Siverio-Mota, Dany; Vicet-Muro, Liliana; Wilches-Arizábala, Isabel María; Esguerra, Camila V; de Witte, Peter A M; Crawford, Alexander D

    2013-01-01

    Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts. PMID:24124487

  6. Optimization and Pharmacological Validation of a Leukocyte Migration Assay in Zebrafish Larvae for the Rapid In Vivo Bioactivity Analysis of Anti-Inflammatory Secondary Metabolites

    PubMed Central

    Vicet-Muro, Liliana; Wilches-Arizábala, Isabel María; Esguerra, Camila V.; de Witte, Peter A. M.; Crawford, Alexander D.

    2013-01-01

    Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts. PMID:24124487

  7. Synthesis, Antimicrobial and Anti-inflammatory Activity of Some New Benzoxazinone and Quinazolinone Candidates.

    PubMed

    El-Hashash, Maher Abd El-Aziz; Azab, Mohammad Emad; Faty, Rasha Abd El-Aziz; Amr, Abd El-Galil Elsyed

    2016-01-01

    Benzoxazinones and quinazolinones have a wide spectrum of biological activity. In this paper we focused on studying the antimicrobial and anti-inflammatory activities of some newly synthesized benzoxazinone and quinazolinone derivatives. Thus we prepared 2-[α-benzoylaminostyryl]-6,8-dibromo-3,1-benzoxazin-4(H)-one 2 which underwent a reaction with primary and secondary amines, and hydrazine hydrate to give compounds 3, 4 and 5, respectively. Treatment of 2 with hydroxylamine hydrochloride, formamide and/or NaN3/AcOH afforded compounds 7, 8, 11 and 12, respectively. Also, compound 2 reacted with maleic anhydride, aromatic hydrocarbons and/or active methylene compounds to produce compounds 13, 15a-c and 16, respectively. Most of the newly synthesized compounds showed significant antimicrobial and anti-inflammatory activities comparable to ampicillin, mycostatine and indomethacin positive controls. PMID:26699093

  8. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism

    PubMed Central

    Wang, Qing; van Hoecke, Michael; Tang, Xiannan; Lee, Hokyou; Zheng, Zheng; Swanson, Raymond A.; Yenari, Midori A.

    2009-01-01

    Pyruvate, a key intermediate in glucose metabolism, was explored as a potential treatment in models of experimental stroke and inflammation. Pyruvate was administered to rodents after the onset of middle cerebral artery occlusion (MCAO). Since the extent of inflammation is often proportional to the size of the infarct, we also studied a group of animals given lipopolysaccharide (LPS) to cause brain inflammation without cell death. Following MCAO, pyruvate did not affect physiological parameters but significantly reduced infarct volume, improved behavioral tests and reduced numbers of neutrophils, microglial and NF-kB activation. Animals given LPS showed increased microglial and NF-kB activation which was almost completely abolished by pyruvate. Lactate, a major metabolite of pyruvate, was increased after pyruvate administration. However, administration of lactate itself did not have any anti-inflammatory effects. Pyruvate protects against ischemia possibly by blocking inflammation, but lactate itself does not appear to explain pyruvate's anti-inflammatory properties. PMID:19635562

  9. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants.

    PubMed

    Conforti, Filomena; Sosa, Silvio; Marrelli, Mariangela; Menichini, Federica; Statti, Giancarlo A; Uzunov, Dimitar; Tubaro, Aurelia; Menichini, Francesco; Loggia, Roberto Della

    2008-02-28

    Five hydroalcoholic extracts of edible plants from Calabria region (Italy) used in local traditional medicine for the treatment of inflammatory diseases were evaluated for their in vivo topical anti-inflammatory activity (inhibition of croton oil-induced ear oedema in mice) and in vitro antioxidant and antiradical properties (inhibition of linoleic acid oxidation and bovine brain liposomes peroxidation, DPPH radical scavenging). All the extracts showed an anti-inflammatory effect: 300 microg/cm(2) provoked oedema reductions ranging from 21 to 27%. All the extracts exerted also radical scavenging and/or antioxidant properties, the most active plant being Mentha aquatica L. (Lamiaceae) which contained the highest amount of phenolics (337 mg/g) and of flavonoids (15.75 mg/g). Moreover, the content and the composition of sterols were assessed by GC-MS in the examined plants Borago officinalis L. (Boraginaceae) contained the highest number of sterols. PMID:18164564

  10. Mediators, Receptors, and Signalling Pathways in the Anti-Inflammatory and Antihyperalgesic Effects of Acupuncture

    PubMed Central

    McDonald, John L.; Cripps, Allan W.; Smith, Peter K.

    2015-01-01

    Acupuncture has been used for millennia to treat allergic diseases including both intermittent rhinitis and persistent rhinitis. Besides the research on the efficacy and safety of acupuncture treatment for allergic rhinitis, research has also investigated how acupuncture might modulate immune function to exert anti-inflammatory effects. A proposed model has previously hypothesized that acupuncture might downregulate proinflammatory neuropeptides, proinflammatory cytokines, and neurotrophins, modulating transient receptor potential vallinoid (TRPV1), a G-protein coupled receptor which plays a central role in allergic rhinitis. Recent research has been largely supportive of this model. New advances in research include the discovery of a novel cholinergic anti-inflammatory pathway activated by acupuncture. A chemokine-mediated proliferation of opioid-containing macrophages in inflamed tissues, in response to acupuncture, has also been demonstrated for the first time. Further research on the complex cross talk between receptors during inflammation is also helping to elucidate the mediators and signalling pathways activated by acupuncture. PMID:26339274

  11. Anti-inflammatory activity of aqueous leaf extract of Chromolaena odorata.

    PubMed

    Owoyele, Victor B; Adediji, Joseph O; Soladoye, Ayodele O

    2005-01-01

    The anti-inflammatory activity of the aqueous extract of Chromolaena odorata was investigated in rats using the carrageenan-induced oedema, cotton pellet granuloma and formalin-induced oedema methods. The extract was administered orally at doses of 25, 50, 100 and 200 mg/kg. In the carrageenan method the paw oedema was significantly reduced by all the doses of the extract administered, with the 200 mg/kg dose producing the highest oedema inhibition (80.5%). In the cotton pellet method, granuloma weight was significantly reduced from 14 +/- 0.1 to 9.0 +/- 0.1 mg, while in the formaldehyde induced arthritis the extract inhibited the oedema during the 10-day period. In conclusion, this study has established the anti-inflammatory activity of C. odorata and, thus, justifies the traditional uses of the plant in the treatment of wounds and inflammation. PMID:16280100

  12. New insights into insulin: The anti-inflammatory effect and its clinical relevance.

    PubMed

    Sun, Qiang; Li, Jia; Gao, Feng

    2014-04-15

    Hyperglycemia, a commonly exhibited metabolic disorder in critically ill patients, activates the body's inflammatory defense mechanism, causing the waterfall release of numerous inflammatory mediators and cytokines, and eventually leads to organ damage. As the only glucose-lowering hormone in the body, insulin not only alleviates the detrimental effects of hyperglycemia through its metabolic regulation, but also directly modulates inflammatory mediators and acts upon immune cells to enhance immunocompetence. In this sense, hyperglycemia is pro-inflammatory whereas insulin is anti-inflammatory. Therefore, during the past 50 years, insulin has not only been used in the treatment of diabetes, but has also been put into practical use in dealing with cardiovascular diseases and critical illnesses. This review summarizes the recent advances regarding the anti-inflammatory effects of insulin in both basic research and clinical trials, with the hope of aiding in the design of further experimental research and promoting effective insulin administration in clinical practice. PMID:24765237

  13. Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity.

    PubMed

    Danilov, Anton; Shaposhnikov, Mikhail; Shevchenko, Oksana; Zemskaya, Nadezhda; Zhavoronkov, Alex; Moskalev, Alexey

    2015-08-14

    Most age-related diseases and aging itself are associated with chronic inflammation. Thus pharmacological inhibition of inflammatory processes may be effective antiaging strategy. In this study we demonstrated that treatment of Drosophila melanogaster with 10 non-steroidal anti-inflammatory drugs (NSAIDs: CAY10404, aspirin, APHS, SC-560, NS-398, SC-58125, valeroyl salicylate, trans-resveratrol, valdecoxib, licofelone) leads to extension of lifespan, delays age-dependent decline of locomotor activity and increases stress resistance. The effect of the lifespan increase was associated with decrease of fecundity. Depending on the concentration, NSAIDs demonstrated both anti- and pro-oxidant properties in Drosophila tissues. However, we failed to identify clear correlation between antioxidant properties of NSAIDs and their pro-longevity effects. The lifespan extending effects of APHS, SC-58125, valeroyl salicylate, trans-resveratrol, valdecoxib, and licofelone were more pronounced in males, valdecoxib and aspirin - in females. We demonstrated that lifespan extension effect of NSAIDs was abolished in flies with defective genes involved in Pkh2-ypk1-lem3-tat2 pathway. PMID:26305987

  14. Hyporesponsiveness to the anti-inflammatory action of interleukin-10 in type 2 diabetes

    PubMed Central

    Barry, Julianne C.; Shakibakho, Soroush; Durrer, Cody; Simtchouk, Svetlana; Jawanda, Kamaldeep K.; Cheung, Sylvia T.; Mui, Alice L.; Little, Jonathan P.

    2016-01-01

    Chronic low-grade inflammation contributes to the pathology and complications of type 2 diabetes (T2D). Interleukin-10 (IL10), an anti-inflammatory cytokine, is suggested to play a protective role in T2D. However, the impact of T2D on IL10 function has not been previously assessed. We examined the ability of IL10 to inhibit inflammation in human T2D immune cells and explored underlying mechanisms using macrophage models. IL10 was less effective at inhibiting tumour necrosis factor (TNF)-α secretion in T2D whole blood cultures, which was not explained by altered IL10 receptor surface expression. These findings were observed in macrophages exposed to high glucose, which demonstrated similar IL10 resistance or hyporesponsiveness. These findings were also not explained by changes in IL10 receptor protein or other downstream signaling proteins. High glucose was also shown to impair the ability of IL10 to activate STAT3, a downstream signaling protein of IL10. Treatment with the SHIP1 agonist, AQX-MN100, reversed IL10 hyporesponsiveness in macrophages cultured in high glucose and showed equal effectiveness at different glucose conditions. This data supports the idea that IL10 hyporesponsiveness may contribute to chronic inflammation in T2D. These novel findings suggest that strategies aimed to overcome IL10 hyporesponsiveness may hold therapeutic potential for reducing inflammation in T2D. PMID:26883847

  15. Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy

    PubMed Central

    Wallace, John L

    2013-01-01

    This article reviews the latest developments in understanding the pathogenesis, detection and treatment of small intestinal damage and bleeding caused by nonsteroidal anti-inflammatory drugs (NSAIDs). With improvements in the detection of NSAID-induced damage in the small intestine, it is now clear that this injury and the associated bleeding occurs more frequently than that occurring in the stomach and duodenum, and can also be regarded as more dangerous. However, there are no proven-effective therapies for NSAID-enteropathy, and detection remains a challenge, particularly because of the poor correlation between tissue injury and symptoms. Moreover, recent studies suggest that commonly used drugs for protecting the upper gastrointestinal tract (i.e., proton pump inhibitors) can significantly worsen NSAID-induced damage in the small intestine. The pathogenesis of NSAID-enteropathy is complex, but studies in animal models are shedding light on the key factors that contribute to ulceration and bleeding, and are providing clues to the development of effective therapies and prevention strategies. Novel NSAIDs that do not cause small intestinal damage in animal models offer hope for a solution to this serious adverse effect of one of the most widely used classes of drugs. PMID:23569332

  16. Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity

    PubMed Central

    Danilov, Anton; Shaposhnikov, Mikhail; Shevchenko, Oksana; Zemskaya, Nadezhda; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    Most age-related diseases and aging itself are associated with chronic inflammation. Thus pharmacological inhibition of inflammatory processes may be effective antiaging strategy. In this study we demonstrated that treatment of Drosophila melanogaster with 10 non-steroidal anti-inflammatory drugs (NSAIDs: CAY10404, aspirin, APHS, SC-560, NS-398, SC-58125, valeroyl salicylate, trans-resveratrol, valdecoxib, licofelone) leads to extension of lifespan, delays age-dependent decline of locomotor activity and increases stress resistance. The effect of the lifespan increase was associated with decrease of fecundity. Depending on the concentration, NSAIDs demonstrated both anti- and pro-oxidant properties in Drosophila tissues. However, we failed to identify clear correlation between antioxidant properties of NSAIDs and their pro-longevity effects. The lifespan extending effects of APHS, SC-58125, valeroyl salicylate, trans-resveratrol, valdecoxib, and licofelone were more pronounced in males, valdecoxib and aspirin - in females. We demonstrated that lifespan extension effect of NSAIDs was abolished in flies with defective genes involved in Pkh2-ypk1-lem3-tat2 pathway. PMID:26305987

  17. Kalanchosine dimalate, an anti-inflammatory salt from Kalanchoe brasiliensis.

    PubMed

    Costa, Sônia Soares; de Souza, Maria de Lourdes Mendes; Ibrahim, Tereza; de Melo, Giany Oliveira; de Almeida, Ana Paula; Guette, Catherine; Férézou, Jean-Pierre; Koatz, Vera Lucia G

    2006-05-01

    This report describes the isolation and characterization of kalanchosine dimalate (KMC), an anti-inflammatory salt from the fresh juice of the aerial parts of Kalanchoe brasiliensis. KMC comprises the new metabolite kalanchosine (1) and malic acid (2) in a 1:2 stoichiometric ratio. Kalanchosine (1), 3,6-diamino-4,5-dihydroxyoctanedioic acid, is the first naturally occurring dimeric bis(gamma-hydroxy-beta-amino acid) and is at least partially responsible for the anti-inflammatory properties of K. brasiliensis. PMID:16724848

  18. [Non-steroidal anti-inflammatory drugs in pregnancy].

    PubMed

    Valha, P; Zmrhal, J; Feyereisl, J

    2010-02-01

    Non-steroidal anti-inflammatory drugs, usually abbreviated to NSAIDs, are drugs with analgesic, antipyretic (lowering an elevated body temperature and relieving pain without impairing consciousness) and, in higher doses, with anti-inflammatory effects (reducing inflammation). As inhibitors of cyclooxygenase NSAIDs given during pregnancy have the potential to cause adverse maternal and fetal effects. Maternal effects include prolongation of pregnancy and labour, whereas constriction of the ductus arteriosus, renal dysfunction and haemostatic abnormalities can occur in the fetus and neonate. As weak acids, NSAIDs are excreted in small amounts into human breast milk with little risk for adverse effects in the suckling infant. PMID:20437842

  19. Gastrointestinal and Cardiovascular Risk of Nonsteroidal Anti-inflammatory Drugs

    PubMed Central

    Al-Saeed, Abdulwahed

    2011-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) confer a gastrointestinal (GI) side effect profile and concerns regarding adverse cardiovascular effects have emerged associated with considerable morbidity and mortality. NSAIDs are highly effective in treating pain and inflammation, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although they may increase cardiovascular adverse events. The selection of an appropriate analgesic or anti-inflammatory agent with or without gastroprotective therapy should be individualized. PMID:22253945

  20. Vasoconstrictor and the anti-inflammatory effects of 7 corticosteroids.

    PubMed

    Crijns, M B; Nater, J P; van Oostveen, F; van der Valk, P G

    1984-08-01

    The vasoconstrictor effect of 7 proprietary corticosteroid creams was compared with their effect on patches of allergic contact dermatitis provoked by patch testing in 20 subjects. A parallel between the blanching effect on the normal skin and the anti-inflammatory effect on the eczematous skin was generally found. A modified patch test method using the Finn chamber technique is described, which (with certain restrictions) offers an opportunity of studying the anti-inflammatory effect of corticosteroids on allergic dermatitis under standard conditions. PMID:6488765

  1. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    PubMed

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. PMID:27621596

  2. Mechanisms of Action of Ig Preparations: Immunomodulatory and Anti-Inflammatory Effects

    PubMed Central

    Matucci, Andrea; Maggi, Enrico; Vultaggio, Alessandra

    2015-01-01

    Primary immunodeficiency (PID) disorders that predispose patients to recurrent infections require immunoglobulin (Ig) replacement therapy. Ig replacement therapy has been stated as beneficial, although the optimal IgG trough level to be maintained over time in order to minimize infectious risk has not been established. The most common route of administration of Ig has been intravenously, although there are different options, one of them being the subcutaneous route. Ig replacement therapy has been a life-saving treatment for patients suffering from primary and secondary antibody immunodeficiency. The key role of regular Ig replacement in patients with antibody deficiencies is related to the ability to provide specific antibodies that could not be produced by these patients as demonstrated by the reduction of severe infections such as meningitis and pneumonia. The therapeutic benefits of Ig may also be due to an active role in various anti-inflammatory and immunomodulatory activities, which may complicate the clinical picture of PID. Anti-inflammatory activities are seen more generally when intravenous Ig is administered at high dose. The immunomodulatory and anti-inflammatory activities are important not only in the treatment of autoimmune diseases but also in patients suffering from immunodeficiency. PMID:25628625

  3. Brazilian Green Propolis: Anti-Inflammatory Property by an Immunomodulatory Activity

    PubMed Central

    Machado, Joleen Lopes; da Silva, Mayara Cristina Pinto; dos Reis, Aramys Silva; Costa, Graciomar Conceição; Arruda, Diêgo de Sousa; Rocha, Bruno Alves; Vaz, Mirela Mara de Oliveira Lima Leite; Paes, Antonio Marcus de Andrade; Guerra, Rosane Nassar Meireles; Berretta, Andresa Aparecida; do Nascimento, Flávia Raquel Fernandes

    2012-01-01

    The immunomodulatory and anti-inflammatory activities of green propolis extracts from Apis mellifera were investigated using acute and chronic inflammation models. Swiss mice were anesthetized and a cotton pellet granuloma was implanted in subcutaneous tissue. Then the mice were divided into six groups and received apyrogenic water or different propolis extracts by oral route (5 mg/kg). According to the treatment the groups were designated as E1A, E1B, E10, E11, and E12. The control group received apyrogenic water. The treatment was performed by six days when the mice were killed. The blood and the bronchoalveolar lavage (BAL) were collected to measure the leukocyte recruitment. In acute pulmonary inflammation, Balb/c mice received lipopolysaccharide (LPS) of Escherichia coli by intranasal route for three days. Concomitantly the mice received by oral route apyrogenic water (control) or E10 and E11 propolis extracts. BAL was performed to assess the inflammatory infiltrate and cytokine quantification. The results showed that the E11 extract has anti-inflammatory property in both models by the inhibition of proinflammatory cytokines and increase of anti-inflammatory cytokines suggesting an immunomodulatory activity. PMID:23320022

  4. Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants.

    PubMed

    Khokhlova, Ekaterina V; Smeianov, Vladimir V; Efimov, Boris A; Kafarskaia, Lyudmila I; Pavlova, Svetlana I; Shkoporov, Andrei N

    2012-01-01

    Certain Bifidobacterium strains have been shown to inhibit inflammatory responses in intestinal epithelial cells. However, the precise mechanisms of these effects, including the chemical nature of the active compounds, remain to be elucidated. Here partial characterization of the anti-inflammatory properties of Bifidobacterium strains isolated from feces of healthy infants is reported. It was found that conditioned media (CM) of all strains studied are capable of attenuating tumor necrosis factor-α (TNF-α) and lipopolysaccharide- (LPS) induced inflammatory responses in the HT-29 cell line. In contrast, neither killed bifidobacterial cells, nor cell-free extracts showed such activities. Further investigations resulted in attribution of this activity to heat-stable, non-lipophilic compound(s) resistant to protease and nuclease treatments and of molecular weight less than 3 kDa. The anti-inflammatory effects were dose- and time-dependent and associated with inhibition of IκB phosphorylation and nuclear factor-κ light chain enhancer of activated B cells (NF-κB)-dependent promoter activation. The combined treatments of cells with CMs and either LPS or TNF-α, but not with CMs alone, resulted in upregulation of transforming growth factor-β1, IκBζ, and p21(CIP) mRNAs. Our data suggest certain species-specificities of the anti-inflammatory properties of bifidobacteria. This observation should prompt additional validation studies using larger set of strains and employing the tools of comparative genomics. PMID:22040047

  5. Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn.

    PubMed

    Siqueira, Jarbas Mota; Peters, Rodrigo Rebelo; Gazola, Andressa Córneo; Krepsky, Patrícia Baier; Farias, Mareni Rocha; Rae, Giles Alexander; de Brum-Fernandes, Artur José; Ribeiro-do-Valle, Rosa Maria

    2007-03-20

    Wilbrandia ebracteata (WE), a Brazilian medicinal plant used in folk medicine for the treatment of rheumatic diseases, displays anti-inflammatory properties and constitutes a rich source of cucurbitacins and cucurbitacin-related compounds. The current study investigated the potential anti-inflammatory properties of Dihydrocucurbitacin B (DHCB), a cucurbitacin-derived compound isolated from roots of WE, in some in vivo and in vitro experimental models. Intraperitoneal treatment of mice with DHCB reduced both carrageenan-induced paw edema (0.3, 1 and 3 mg/kg caused inhibitions of 26, 44 and 56 % at 2 h after stimulation, respectively) and pleurisy (10 mg/kg inhibited leukocyte numbers and LTB(4) levels in the pleural fluid by 51 and 75% at 6 h after cavity challenge, respectively). In vitro, DHCB (up to 10 microg/mL) failed to modify LTB(4) production by human neutrophils or PGE(2) production by COS-7 cells transfected with COX-1, but PGE(2) production by COX-2 transfected COS-7 cells was markedly inhibited (by 72%). The levels of COX-1 or COX-2 proteins in IL-1alpha-stimulated NIH3T3 cells were unaffected by DHCB. The results corroborate the potential anti-inflammatory properties ascribed to W. ebracteata Cogn. in folk medicine and suggest that they might be attributed, at least in part, to the capacity of one of this plants main constituents, DHCB, to inhibit COX-2 activity (but not its expression) during inflammation. PMID:17286991

  6. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma.

    PubMed Central

    van der Velden, V H

    1998-01-01

    GLUCOCORTICOIDS are potent inhibitors of inflammatory processes and are widely used in the treatment of asthma. The anti-inflammatory effects are mediated either by direct binding of the glucocorticoid/glucocorticoid receptor complex to glucocorticoid responsive elements in the promoter region of genes, or by an interaction of this complex with other transcription factors, in particular activating protein-1 or nuclear factor-kappaB. Glucocorticoids inhibit many inflammation-associated molecules such as cytokines, chemokines, arachidonic acid metabolites, and adhesion molecules. In contrast, anti-inflammatory mediators often are up-regulated by glucocorticoids. In vivo studies have shown that treatment of asthmatic patients with inhaled glucocorticoids inhibits the bronchial inflammation and simultaneously improves their lung function. In this review, our current knowledge of the mechanism of action of glucocorticoids and their anti-inflammatory potential in asthma is described. Since bronchial epithelial cells may be important targets for glucocorticoid therapy in asthma, the effects of glucocorticoids on epithelial expressed inflammatory genes will be emphasized. PMID:9792333

  7. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    PubMed Central

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin’ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. PMID:27621596

  8. Effects of some nonsteroidal anti-inflammatory agents on experimental radiation pneumonitis

    SciTech Connect

    Gross, N.J.; Holloway, N.O.; Narine, K.R. )

    1991-09-01

    Corticosteroids have previously been found to be protective against the mortality of radiation pneumonitis in mice, even when given well after lethal lung irradiation. The authors explored the possibility that this effect was due to their well-known anti-inflammatory actions by giving various nonsteroidal inhibitors of arachidonate metabolism to groups of mice that had received 19 Gy to the thorax (bilaterally). Treatments of four cyclooxygenase inhibitors, one lipoxygenase inhibitor, and one leukotriene receptor antagonist, given by various routes in various doses, were commenced 10 weeks after irradiation or sham irradiation and continued throughout the period when death from radiation pneumonitis occurs, 11-26 weeks after irradiation. Each of the treatments had the appropriate effect on arachidonate metabolism in the lungs as assessed by LTB4 and PGE2 levels in lung lavage fluid. The principal end point was mortality. The 5-lipoxygenase inhibitor diethylcarbamazine and the LTD4/LTE4 receptor antagonist LY 171883 markedly reduced mortality in dose-response fashion. The effects of cyclooxygenase inhibitors were divergent; piroxicam and ibuprofen were marginally protective, indomethacin in all doses accelerated mortality, and aspirin reduced mortality in a dose-response fashion. These results suggest that the protective effect of corticosteroids in radiation pneumonitis can be tentatively attributed to their anti-inflammatory actions, and that nonsteroidal anti-inflammatory agents, particularly those that affect lipoxygenase products, may offer equal or better protection than corticosteroids against mortality due to radiation pneumonitis.

  9. The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis

    PubMed Central

    Poniatowski, Łukasz A.

    2014-01-01

    Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed. PMID:24876674

  10. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing.

    PubMed

    Kempf, Tibor; Zarbock, Alexander; Vestweber, Dietmar; Wollert, Kai C

    2012-04-01

    The wound healing response after myocardial infarction (MI) involves a cascade of molecular and cellular events that lead to a replacement of the necrotic area with a collagen-rich scar. Clearance of necrotic debris by neutrophils, monocytes, and macrophages is a critical component of infarct healing; however, tight control and timely repression of this inflammatory response is important to prevent excessive tissue degradation leading to infarct expansion and heart failure. Genetic ablation or blockade of anti-inflammatory pathways tends to be detrimental after MI, whereas genetic ablation of pro-inflammatory pathways tends to be beneficial. Accordingly, therapies enhancing endogenous anti-inflammatory pathways or blocking endogenous pro-inflammatory pathways have been found to improve wound healing and to reduce the risk of heart failure in rodent models of acute MI. Besides their scavenger function, inflammatory cells promote healing by stimulating angiogenesis and granulation tissue formation via paracrine factors. Moreover, signaling mediators that are active in inflammatory cells may be active also in non-inflammatory cell types involved in infarct healing. Some anti-inflammatory interventions are therefore deleterious. However, interventions that carefully adjust the balance between the essential and detrimental facets of inflammation may provide new therapeutic opportunities for patients with large MIs who continue to be at risk of developing heart failure, despite modern reperfusion and anti-remodeling strategies. PMID:22228177

  11. A novel anti-inflammatory role of GPR120 in intestinal epithelial cells.

    PubMed

    Anbazhagan, Arivarasu N; Priyamvada, Shubha; Gujral, Tarunmeet; Bhattacharyya, Sumit; Alrefai, Waddah A; Dudeja, Pradeep K; Borthakur, Alip

    2016-04-01

    GPR120 (free fatty acid receptor-4) is a G protein-coupled receptor for medium- and long-chain unsaturated fatty acids, including ω-3 fatty acids. Recent studies have shown GPR120 to play cardinal roles in metabolic disorders via modulation of gut hormone secretion and insulin sensitivity and to exert anti-inflammatory effects in macrophages and adipose tissues. However, information on anti-inflammatory role of GPR120 at the level of intestinal epithelium is very limited. Current studies demonstrated differential levels of GPR120 mRNA and protein along the length of the human, mouse, and rat intestine and delineated distinct anti-inflammatory responses following GPR120 activation in model human intestinal epithelial Caco-2 cells, but not in model mouse intestinal epithelial endocrine cell line STC-1. In Caco-2 cells, GPR120 was internalized, bound to β-arrestin-2, and attenuated NF-κB activation in response to 30-min exposure to the agonists GW9508, TUG-891, or docosahexaenoic acid. These effects were abrogated in response to small interfering RNA silencing of β-arrestin-2. Treatment of STC-1 cells with these agonists did not induce receptor internalization and had no effects on NF-κB activation, although treatment with the agonists GW9508 or TUG-891 for 6 h augmented the synthesis and secretion of the gut hormone glucagon-like peptide-1 in this cell line. Our studies for the first time demonstrated a GPR120-mediated novel anti-inflammatory pathway in specific intestinal epithelial cell types that could be of therapeutic relevance to intestinal inflammatory disorders. PMID:26791484

  12. Anti-inflammatory activity studies on the stems and roots of Jasminum lanceolarium Roxb.

    PubMed

    Yan, Wen-xia; Zhang, Jian-hua; Zhang, Yi; Meng, Da-li; Yan, Dan

    2015-08-01

    Jasminum lanceolarium Roxb is an important traditional Chinese medicine. Its stems and roots have been used for the treatment of rheumatism and fever while the leaves are used as an anti-inflammatory agent to relieve pain. In order to support its traditional Chinese medicinal uses, five animal models were designed and the anti-inflammatory and analgesic properties of the 70% EtOH-H2O extracts of J. lanceolarium (EJL) were investigated. Meanwhile, biochemical parameters such as cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) in blood serum of rats exposed to acute (carrageenan) inflammation model were evaluated. At doses of 400 mg/kg, EJL exhibited higher anti-inflammation effect than that of indomethacin and better analgesic activity than that of aspirin (P<0.001). Furthermore, eleven isolated compounds including six lignanoids (1, 2, 6, 7, 8, and 11) and five iridoids (3, 4, 5, 9, and 10) were isolated from the active extracts and showed significant anti-inflammatory activities with the IC50 values of 1.76-5.22 mg/mL, respectively, when testing their inhibitory effects on phospholipase A2 in vitro. The results demonstrated that the possible anti-inflammatory mechanisms might be attributed to inhibit the hydrolysis of membrane phospholipids, production on both COX-2 and 5-LOX, and then finally inhibit the release of prostaglandins (PGs), which suggested that EJL had a non-selective inhibitory effect on the release or actions of these mediators, and might be a dual LOX-COX inhibitor for the treatment of inflammation from the natural resource. The studies on the animals and the inflammatory mediators, along with the bioactive compounds presumed that the existences of iridoids and lignanoids could be response for their bioactivities of the whole plants. PMID:26055344

  13. PCT-233, a novel modulator of pro- and anti-inflammatory cytokine production

    PubMed Central

    BISSONNETTE, E Y; PROULX, L-I; TURMEL, V; DROUIN, R; PURCELL, M

    2004-01-01

    Plant extracts have been implicated in various immunoregulatory effects that are poorly understood. Thus, we investigated the modulatory activity of PureCell Complex (PCT)-233, an active molecular complex from mesophyll tissue of Spinacia oleacea on the inflammatory process. Alveolar macrophages (AM) were treated with PCT-233 and/or budesonide, a well-known anti-inflammatory agent, before or after being stimulated with lipopolysaccharides (LPS). Pro- and anti-inflammatory cytokine production, tumour necrosis factor (TNF) and interleukin (IL)-10, respectively, were measured in cell-free supernatants at different times after the treatment. PCT-233 increased unstimulated AM release of both TNF and IL-10, whereas heat- and light-inactivated PCT-233 stimulated only the release of TNF without affecting IL-10 production, suggesting that different mechanisms are involved in the modulation of TNF and IL-10 release by PCT-233. The presence of LPS did not modify PCT-233-stimulated TNF production, but the ratio TNF/IL-10 production by LPS-stimulated AM was reduced significantly in the presence of PCT-233. Pretreatment of AM with PCT-233 and budesonide before LPS stimulation reduced TNF production at both protein and mRNA levels, whereas IL-10 production was increased. Moreover, TNF/IL-10 ratio was reduced further with the combination PCT-233/budesonide. Interestingly, AM treatment with PCT-233 and budesonide 18 h after LPS stimulation did not modulate TNF release significantly but it did increase IL-10 production, and a synergistic effect was observed with the combination PCT-233/budesonide. These exciting data suggest that PCT-233 possesses some anti-inflammatory properties, even when added during the inflammatory process, and could potentiate the effect of other anti-inflammatory agents. PMID:15008976

  14. Anti-Inflammatory Effects of 4-Methylcyclopentadecanone on Edema Models in Mice

    PubMed Central

    Ma, Yukui; Li, Yue; Li, Xiufeng; Wu, Yingliang

    2013-01-01

    The present study evaluated the anti-inflammatory effects of 4-methylcyclopentadecanone (4-MCPC) on edema models in mice and aimed to determine the safety of 4-MCPC after acute exposure. The acute toxicity of 4-MCPC was evaluated by oral administration to rats of single doses of 0, 5, 50, 500 and 5000 mg/kg. Toxic symptoms were observed for 14 days. The anti-inflammatory activity was evaluated in xylene-induced mouse ear edema and carrageenan-induced mouse paw edema. The animals were treated with 4-MCPC once every day for seven consecutive days. Edema index, % inhibition, IL-1β, TNF-α, PGE2 and MPO levels in paws were detected after the treatment with xylene or carrageenan. Our results indicated that the LD50 value of 4-MCPC in rats is greater than 5000 mg/kg. The ED50 of 4-MCPC in xylene-induced mouse ear edema model was 7.5 mg/kg. 4-MCPC (8 or 16 mg/kg) remarkably inhibited carrageenan-induced mouse paw edema. Further study revealed that 4-MCPC treatment also decreased IL-1β, TNF-α, PGE2 and MPO levels in mice paws. Intragastric administration of 4-MCPC exhibited more significant anti-inflammatory activity than muscone at a dose of 16 mg/kg. Taken together, our results suggest that 4-MCPC has potent anti-inflammatory activity and the mechanisms might be related to the decreases of the levels of IL-1β, TNF-α, PGE2 and MPO in inflamed paws. PMID:24351869

  15. Treatment strategies for atopic dermatitis: optimizing the available therapeutic options.

    PubMed

    Paller, Amy S; Simpson, Eric L; Eichenfield, Lawrence F; Ellis, Charles N; Mancini, Anthony J

    2012-09-01

    Bathing and moisturization to control dryness, applications of topical anti-inflammatory agents (including corticosteroids and calcineurin inhibitors [TCIs]) to control flares, minimization of the risk for infection, and relief of pruritus are the cornerstones of effective therapy for atopic dermatitis. Education of parents and patients is crucial to enhance adherence. Strategies for reduced Staphylococcus aureus colonization may help control re-emergence of flares following cessation of antimicrobial treatment for infection; these include dilute bleach baths and minimizing the risk for contamination of topical agents. In severe, refractory cases, more aggressive therapy with systemic immunosuppressants may be considered, but appropriate laboratory testing must be included as part of patient monitoring during treatment. The value of adjuvant therapy with wet wraps to "cool down" particularly erythematous and pruritic flares is becoming increasingly recognized. PMID:23021780

  16. The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases

    PubMed Central

    Ozanne, James; Prescott, Alan R.; Clark, Kristopher

    2014-01-01

    Macrophages switch to an anti-inflammatory, ‘regulatory’-like phenotype characterized by the production of high levels of interleukin (IL)-10 and low levels of pro-inflammatory cytokines to promote the resolution of inflammation. A potential therapeutic strategy for the treatment of chronic inflammatory diseases would be to administer drugs that could induce the formation of ‘regulatory’-like macrophages at sites of inflammation. In the present study, we demonstrate that the clinically approved cancer drugs bosutinib and dasatinib induce several hallmark features of ‘regulatory’-like macrophages. Treatment of macrophages with bosutinib or dasatinib elevates the production of IL-10 while suppressing the production of IL-6, IL-12p40 and tumour necrosis factor α (TNFα) in response to Toll-like receptor (TLR) stimulation. Moreover, macrophages treated with bosutinib or dasatinib express higher levels of markers of ‘regulatory’-like macrophages including LIGHT, SPHK1 and arginase 1. Bosutinib and dasatinib were originally developed as inhibitors of the protein tyrosine kinases Bcr-Abl and Src but we show that, surprisingly, the effects of bosutinib and dasatinib on macrophage polarization are the result of the inhibition of the salt-inducible kinases. Consistent with the present finding, bosutinib and dasatinib induce the dephosphorylation of CREB-regulated transcription co-activator 3 (CRTC3) and its nuclear translocation where it induces a cAMP-response-element-binding protein (CREB)-dependent gene transcription programme including that of IL-10. Importantly, these effects of bosutinib and dasatinib on IL-10 gene expression are lost in macrophages expressing a drug-resistant mutant of salt-inducible kinase 2 (SIK2). In conclusion, our study identifies the salt-inducible kinases as major targets of bosutinib and dasatinib that mediate the effects of these drugs on the innate immune system and provides novel mechanistic insights into the anti-inflammatory

  17. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus.

    PubMed

    Silva, Jeane; Abebe, Worku; Sousa, S M; Duarte, V G; Machado, M I L; Matos, F J A

    2003-12-01

    Many species of the genus Eucalyptus from the Myrtaceae family are used in Brazilian folk medicine for the treatment of various medical conditions such as cold, flue, fever, and bronchial infections. In the current investigation, we evaluated the analgesic and anti-inflammatory effects of essential oil extracts from three species of Eucalyptus employing various standard experimental test models. Using acetic acid-induced writhes in mice and hot plate thermal stimulation in rats, it was shown that the essential oils of Eucalyptus citriodora (EC), Eucalyptus tereticornis (ET), and Eucalyptus globulus (EG) induced analgesic effects in both models, suggesting peripheral and central actions. In addition, essential oil extracts from the three Eucalyptus species produced anti-inflammatory effects, as demonstrated by inhibition of rat paw edema induced by carrageenan and dextran, neutrophil migration into rat peritoneal cavities induced by carrageenan, and vascular permeability induced by carrageenan and histamine. However, no consistent results were observed for some of the parameters evaluated, both in terms of activities and dose-response relationships, reflecting the complex nature of the oil extracts and/or the assay systems used. Taken together, the data suggest that essential oil extracts of EC, ET, and EG possess central and peripheral analgesic effects as well as neutrophil-dependent and independent anti-inflammatory activities. These initial observations provide support for the reported use of the eucalyptus plant in Brazilian folk medicine. Further investigation is warranted for possible development of new classes of analgesic and anti-inflammatory drugs from components of the essential oils of the Eucalyptus species. PMID:14611892

  18. Anti-inflammatory and wound healing potential of cashew apple juice (Anacardium occidentale L.) in mice.

    PubMed

    da Silveira Vasconcelos, Mirele; Gomes-Rochette, Neuza F; de Oliveira, Maria Liduína M; Nunes-Pinheiro, Diana Célia S; Tomé, Adriana R; Maia de Sousa, Francisco Yuri; Pinheiro, Francisco Geraldo M; Moura, Carlos Farley H; Miranda, Maria Raquel A; Mota, Erika Freitas; de Melo, Dirce Fernandes

    2015-12-01

    Cashew apple is a tropical pseudofruit consumed as juice due to its excellent nutritional and sensory properties. In spite of being well known for its important antioxidant properties, the cashew apple has not been thoroughly investigated for its therapeutic potential. Thereby, this study evaluated the antioxidant capacity, anti-inflammatory, and wound-healing activities of cashew apple juice. Juices from ripe and immature cashew apples were analyzed for antioxidant, anti-inflammatory, and wound-healing properties. Those were evaluated in murine models of xylene-induced ear edema and wound excision. Swiss mice were treated with cashew juice by gavage. Edema thickness was measured and skin lesions were analyzed by planimetry and histology. Both antioxidant content and total antioxidant activity were higher in ripe cashew apple juice (RCAJ) than in unripe cashew apple juice (UNCAJ). The UNCAJ presented the main anti-inflammatory activity by a significant inhibition of ear edema (66.5%) when compared to RCAJ (10%). Moreover, UNCAJ also showed the best result for wound contraction (86.31%) compared to RCAJ (67.54%). Despite of higher antioxidant capacity, RCAJ did not promote better anti-inflammatory, and healing responses, which may be explained by the fact that treatment increased antioxidants level leading to a redox "imbalance" turning down the inflammatory response modulation exerted by reactive oxygen species (ROS). The results suggest that UNCAJ presents a greater therapeutic activity due to a synergistic effect of its phytochemical components, which improve the immunological mechanisms as well as an optimal balance between ROS and antioxidants leading to a better wound healing process. PMID:25819683

  19. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    PubMed Central

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  20. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I.

    2010-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) to lipoxin A4 (LXA4) and 15-epi-LXA4. However it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE2, TXB2 and leukotriene B4 (LTB4) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE2, but increased LTB4, LXA4 and 15-epi-LXA4 concentrations. Both doses attenuated the LPS effects on PGE2, and TXB2. The increments in LXA4 and 15-epi-LXA4 caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA4 and 15-epi-LXA4 and reduce pro-inflammatory PGE2 and TXB2 suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  1. Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages.

    PubMed

    Moore, Sherri M; Holt, Vivian V; Malpass, Lillie R; Hines, Ian N; Wheeler, Michael D

    2015-10-01

    The beginning stages of liver damage induced by various etiologies (i.e. high fat diet, alcohol consumption, toxin exposure) are characterized by abnormal accumulation of lipid in liver. Alterations in intracellular lipid transport, storage, and metabolism accompanied by cellular insult within the liver play an important role in the pathogenesis of liver disease, often involving a sustained inflammatory response. The intracellular lipid transporter, fatty acid binding protein 5 (FABP5), is highly expressed in macrophages and may play an important role in the hepatic inflammatory response after endotoxin exposure in mice. This study tested the hypothesis that FABP5 regulates macrophage response to LPS in male C57bl/6 (wild type) and FABP5 knockout mice, both in vitro and in vivo. Treatment with LPS revealed that loss of FABP5 enhances the number of hepatic F4/80(+) macrophages in the liver despite limited liver injury. Conversely, FABP5 knock out mice display higher mRNA levels of anti-inflammatory cytokines IL-10, arginase, YM-1, and Fizz-1 in liver compared to wild type mice. Bone marrow derived macrophages stimulated with inflammatory (LPS and IFN-γ) or anti-inflammatory (IL-4) mediators also showed significantly higher expression of anti-inflammatory/regulatory factors. These findings reveal a regulatory role of FABP5 in the acute inflammatory response to LPS-induced liver injury, which is consistent with the principle finding that FABP5 is a regulator of macrophage phenotype. Specifically, these findings demonstrate that loss of FABP5 promotes a more anti-inflammatory response. PMID:26105806

  2. Differential Anti-inflammatory Activity of HDAC Inhibitors in Human Macrophages and Rat Arthritis.

    PubMed

    Lohman, Rink-Jan; Iyer, Abishek; Fairlie, Thomas J; Cotterell, Adam; Gupta, Praveer; Reid, Robert C; Vesey, David A; Sweet, Matthew J; Fairlie, David P

    2016-02-01

    Vorinostat and other inhibitors of different histone deacetylase (HDAC) enzymes are currently being sought to modulate a variety of human conditions, including chronic inflammatory diseases. Some HDAC inhibitors are anti-inflammatory in rodent models of arthritis and colitis, usually at cytotoxic doses that may cause side effects. Here, we investigate the dose-dependent pro- and anti-inflammatory efficacy of two known inhibitors of multiple HDACs, vorinostat and BML281, in human macrophages and in a rat model of collagen-induced arthritis by monitoring effects on disease progression, histopathology, and immunohistochemistry. Both HDAC inhibitors differentially modulated lipopolysaccharide (LPS)-induced cytokine release from human macrophages, suppressing release of some inflammatory mediators (IL12p40, IL6) at low concentrations (<3 µM) but amplifying production of others (TNF, IL1β) at higher concentration (>3 μΜ). This trend translated in vivo to rat arthritis, with anti-inflammatory activity inversely correlating with dose. Both compounds were efficacious only at a low dose (1 mg⋅kg(-1)⋅day(-1) s.c.), whereas a higher dose (5 mg⋅kg(-1)⋅day(-1) s.c.) showed no positive effects on reducing pathology, even showing signs of exacerbating disease. These striking effects suggest a smaller therapeutic window than previously reported for HDAC inhibition in experimental arthritis. The findings support new investigations into repurposing HDAC inhibitors for anti-inflammatory therapeutic applications. However, HDAC inhibitors should be reinvestigated at lower, rather than higher, doses for enhanced efficacy in chronic diseases that require long-term treatment, with careful management of efficacy and long-term safety. PMID:26660228

  3. Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis.

    PubMed

    Kraakman, Michael J; Dragoljevic, Dragana; Kammoun, Helene L; Murphy, Andrew J

    2016-05-01

    Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Atherosclerosis is the most common form of CVD, which is complex and multifactorial with an elevated risk observed in people with either metabolic or inflammatory diseases. Accumulating evidence now links obesity with a state of chronic low-grade inflammation and has renewed our understanding of this condition and its associated comorbidities. An emerging theme linking disease states with atherosclerosis is the increased production of myeloid cells, which can initiate and exacerbate atherogenesis. Although anti-inflammatory drug treatments exist and have been successfully used to treat inflammatory conditions such as rheumatoid arthritis (RA), a commonly observed side effect is dyslipidemia, inadvertently, a major risk factor for the development of atherosclerosis. The mechanisms leading to dyslipidemia associated with anti-inflammatory drug use and whether CVD risk is actually increased by this dyslipidemia are of great therapeutic importance and currently remain poorly understood. Here we review recent data providing links between inflammation, hematopoiesis, dyslipidemia and CVD risk in the context of anti-inflammatory drug use. PMID:27350883

  4. Anti-inflammatory effects of limonene from yuzu (Citrus junos Tanaka) essential oil on eosinophils.

    PubMed

    Hirota, Ryoji; Roger, Ngatu Nlandu; Nakamura, Hiroyuki; Song, Hee-Sun; Sawamura, Masayoshi; Suganuma, Narufumi

    2010-04-01

    Yuzu (Citrus junos Tanaka) has been used as a traditional medicine in Japan. We investigated in vitro anti-inflammatory effects of limonene from yuzu peel on human eosinophilic leukemia HL-60 clone 15 cells. To examine anti-inflammatory effects of limonene on the cells, we measured the level of reactive oxygen species (ROS), monocyte chemoattractant protein-1 (MCP-1), nuclear factor (NF) kappa B, and p38 mitogen-activated protein kinase (MAPK). We found that low concentration of limonene (7.34 mmol/L) inhibited the production of ROS for eotaxin-stimulated HL-60 clone 15 cells. 14.68 mmol/L concentration of limonene diminished MCP-1 production via NF-kappa B activation comparable to the addition of the proteasomal inhibitor MG132. In addition, it inhibited cell chemotaxis in a p38 MAPK dependent manner similar to the adding of SB203580. These results suggest that limonene may have potential anti-inflammatory efficacy for the treatment of bronchial asthma by inhibiting cytokines, ROS production, and inactivating eosinophil migration. PMID:20492298

  5. Anti-inflammatory effect of taurocholate on TNBS-induced ulcerative colitis in mice.

    PubMed

    Yang, Yang; He, Jiao; Suo, Yuan; Lv, Le; Wang, Jingjing; Huo, Chuanchuan; Zheng, Zongwei; Wang, Ziye; Li, Jing; Sun, Wenji; Zhang, Yongmin

    2016-07-01

    Taurocholate is a natural conjugated bile acid. The aim of this study was to evaluate the anti-inflammatory effect of taurocholate in TNBS-induced ulcerative colitis in mice. The colitis were induced by rectal administration of TNBS. After 24h, the experimental animals were treated with sulfasalazine (SASP, 500mg/kg/day) and taurocholate (20, 40 and 60mg/kg) for 7 consecutive days. The anti-inflammatory effects of taurocholate for colitis were assessed by body weight, colonic weight and length, macroscopic scores, and histopathological examinations. In addition, the colonic tissue levels of myeloperoxidase (MPO) activity, interleukin (IL)-1β, interferon (IFN-γ) and tumour necrosis factor-α (TNF-α) were also determined to assess the effect of taurocholate. Compared with the model group, treatment with taurocholate (20, 40 and 60mg/kg) significantly inhibited the body weight loss, improved colonic weight and length, and decreased macroscopic and histopathological scores. Furthermore, the activity accumulation of MPO and the colonic tissue levels of IL-1β, IFN-γ and TNF-α were also decreased by administration of taurocholate. All the findings of this study suggested that taurocholate has the anti-inflammatory effect in ulcerative colitis in mice and indicated it as a good candidate to treat inflammatory bowel disease. PMID:27261622

  6. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Seoane, Samuel; Eiro, Noemi; Gonzalez, Francisco; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2016-08-01

    The aim of the present study was to evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) in uveitis. To do that, uveitis was induced in rats after footpad injection of Escherichia coli lipopolysaccaride (LPS). Human retinal pigment epithelial (ARPE-19) cells after LPS challenge were used to test anti-inflammatory effect of CM-hUCESCs 'ìn vitro'. Real-time PCR was used to evaluate mRNA expression levels of the pro-inflammatory cytokines interkeukin-6, interkeukin-8, macrophage inflammatory protein-1 alpha, tumor necrosis factor alpha, and the anti-inflammatory interkeukin-10. Leucocytes from aqueous humor (AqH) were quantified in a Neubauer chamber, and eye histopathological analysis was done with hematoxylin-eosin staining. Additionally, using a human cytokine antibody array we evaluated CM-hUCESCs to determine mediating proteins. Results showed that administration of CM-hUCESCs significantly reduced LPS-induced pro-inflammatory cytokines both 'in vitro' and 'in vivo', and decreased leucocytes in AqH and ocular tissues. High levels of cytokines with anti-inflammatory effects were found in CM-hUCESCs, suggesting a possible role of these factors in reducing intraocular inflammation. In summary, treatment with CM-hUCESCs significantly reduces inflammation in uveitis. Our data indicate that CM-hUCESCs could be regarded as a potential therapeutic agent for patients suffering from ocular inflammation. PMID:27381329

  7. Antioxidant, Analgesic, Anti-Inflammatory, and Hepatoprotective Effects of the Ethanol Extract of Mahonia oiwakensis Stem

    PubMed Central

    Chao, Jung; Liao, Jiunn-Wang; Peng, Wen-Huang; Lee, Meng-Shiou; Pao, Li-Heng; Cheng, Hao-Yuan

    2013-01-01

    The aim of this study was to evaluate pharmacological properties of ethanol extracted from Mahonia oiwakensis Hayata stems (MOSEtOH). The pharmacological properties included antioxidant, analgesic, anti-inflammatory and hepatoprotective effects. The protoberberine alkaloid content of the MOSEtOH was analyzed by high-performance liquid chromatography (HPLC). The results revealed that three alkaloids, berberine, palmatine and jatrorrhizine, could be identified. Moreover, the MOSEtOH exhibited antioxidative activity using the DPPH assay (IC50, 0.743 mg/mL). The DPPH radical scavenging activity of MOSEtOH was five times higher that that of vitamin C. MOSEtOH was also found to inhibit pain induced by acetic acid, formalin, and carrageenan inflammation. Treatment with MOSEtOH (100 and 500 mg/kg) or silymarin (200 mg/kg) decreased the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the CCl4-treated group. Histological evaluation showed that MOSEtOH reduced the degree of liver injury, including vacuolization, inflammation and necrosis of hepatocytes. The anti-inflammatory and hepatoprotective effect of MOSEtOH were found to be related to the modulation of antioxidant enzyme activity in the liver and decreases in malondialdehyde (MDA) level and nitric oxide (NO) contents. Our findings suggest that MOSEtOH has analgesic, anti-inflammatory and hepatoprotective effects. These effects support the use of MOSEtOH for relieving pain and inflammation in folk medicine. PMID:23364614

  8. Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis

    PubMed Central

    Kraakman, Michael J; Dragoljevic, Dragana; Kammoun, Helene L; Murphy, Andrew J

    2016-01-01

    Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Atherosclerosis is the most common form of CVD, which is complex and multifactorial with an elevated risk observed in people with either metabolic or inflammatory diseases. Accumulating evidence now links obesity with a state of chronic low-grade inflammation and has renewed our understanding of this condition and its associated comorbidities. An emerging theme linking disease states with atherosclerosis is the increased production of myeloid cells, which can initiate and exacerbate atherogenesis. Although anti-inflammatory drug treatments exist and have been successfully used to treat inflammatory conditions such as rheumatoid arthritis (RA), a commonly observed side effect is dyslipidemia, inadvertently, a major risk factor for the development of atherosclerosis. The mechanisms leading to dyslipidemia associated with anti-inflammatory drug use and whether CVD risk is actually increased by this dyslipidemia are of great therapeutic importance and currently remain poorly understood. Here we review recent data providing links between inflammation, hematopoiesis, dyslipidemia and CVD risk in the context of anti-inflammatory drug use. PMID:27350883

  9. Anti-inflammatory Activity of Constituents Isolated from Aerial Part of Angelica acutiloba Kitagawa.

    PubMed

    Uto, Takuhiro; Tung, Nguyen Huu; Taniyama, Risa; Miyanowaki, Tosihide; Morinaga, Osamu; Shoyama, Yukihiro

    2015-12-01

    Recently, the resources of medicinal plants have been exhausting. The root of Angelica acutiloba is one of the most important ingredients in Japanese Kampo medicine for the treatment of gynecological diseases. In our search for alternative medicinal plant resources of the root of A. acutiloba, we found that its aerial part has the anti-inflammatory potency as well as the root. Phytochemical investigation of the aerial part resulted in the isolation of four compounds including a new dimeric phthalide, namely tokiaerialide (2), along with Z-ligustilide (1), falcarindiol (3), and bergaptol (4). Next, we investigated the in vitro anti-inflammatory activity of 1-4 in lipopolysaccharide-stimulated RAW264 macrophages. Among the isolated compounds, 1 exhibited the most potent inhibition against lipopolysaccharide-induced production of prostaglandin E2 , nitric oxide, and pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Compounds 3 and 4 also inhibited all inflammatory mediators, but their inhibitory abilities were weaker than those of 1. Furthermore, 1, 3, and 4 strongly also induced heme oxygenase-1. These results suggest that 1, 3, and 4 potentially exert anti-inflammatory activity, and the aerial part of A. acutiloba may be considered to be a useful medicinal resource for inflammatory diseases. PMID:26463105

  10. Anti-inflammatory action of γ-irradiated genistein in murine peritoneal macrophage

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Park, Jae-Nam; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Kim, Jae-Hun

    2014-12-01

    This present study was to examine the cytotoxicity and anti-inflammatory activity of gamma (γ)-irradiated genistein in murine peritoneal macrophage. Inflammation to macrophage was induced by adding the lipopolysaccharide (LPS). γ-Irradiated genistein significantly decreased the cytotoxicity to murine peritoneal macrophage in dose ranges from 5 to 10 μM than that of non-irradiated genistein. Anti-inflammatory activity within the doses less than 2 μM showed that γ-irradiated genistein treatment remarkably reduced the lipopolysaccharide-induced inflammation by decreasing the nitric oxide (NO) and cytokines (TNF-α, IL-6) production. In a structural analysis through the high pressure liquid chromatography (HPLC), γ-irradiated genistein showed a new peak production distinguished from main peak of genistein (non-irradiated). Therefore, increase of anti-inflammatory activity may closely mediate with structural changes induced by γ irradiation exposure. Based on the above result, γ-irradiation could be an effective tool for reduction of toxicity and increase of physiological activity of biomolecules.