Science.gov

Sample records for anti-stokes raman spectroscopy

  1. Vibronic spectroscopy of amorphous materials using higher order, multiresonant coherent anti-Stokes Raman spectroscopya)

    NASA Astrophysics Data System (ADS)

    Hurst, Gregory B.; Wright, John C.

    1992-09-01

    Multiresonant coherent anti-Stokes Raman spectroscopy is performed with three tunable lasers on perylene doped polymethylmethacrylate (PMMA). Sharp vibronic features can be observed in vibronic scans at constant energy from the parent electronic transition when resonance is established within the inhomogeneously broadened electronic band. These features are attributed to the nonlinear line narrowing predicted by Ouellette and Denariez-Roberge for a higher order saturated coherent anti-Stokes Raman process since line narrowing should be absent for four wave mixing coherent anti-Stokes Raman spectroscopy. It is shown that the features are sharply dependent on the presence of a simultaneous vibrational resonance as is also predicted by the higher order coherent anti-Stokes Raman model. Excited state coherent anti-Stokes Raman spectroscopy with resonance enhancement from higher singlet states does not contribute to the narrow features since such a process would not have vibrational resonances. Conventional two laser coherent anti-Stokes Raman shows only a weak line at the vibronic transition.

  2. Molecular vibrational dynamics in water studied by femtosecond coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-10-01

    We utilized femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) to study the ultrafast vibrational dynamics in distilled water at room temperature. The CARS signals from the broad OH-stretching modes between 3100 cm-1 and 3700 cm-1 were obtained and analyzed. The dephasing times of four Raman modes in water were detected and compared.

  3. Coherent anti-stokes Raman spectroscopy system for point temperature and major species concentration measurement

    SciTech Connect

    Singh, J.P.; Yueh, Fang-Yu

    1993-10-01

    The Coherent anti-Stokes Raman Spectroscopy system (CARS) has been developed as a laser-based, advanced, combustion-diagnostic technique to measure temperature and major species concentration. Principles of operation, description of the system and its capabilities, and operational details of this instrument are presented in this report.

  4. Single-pulse coherent anti-Stokes Raman spectroscopy via fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Oh, Seung Ryeol; Park, Joo Hyun; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2016-03-01

    Fiber Bragg grating is used in a variety of applications. In this study, we suggest compact, cost-effective coherent anti- Stokes Raman spectroscopy which is based on the pulse shaping methods via commercialized fiber Bragg grating. The experiment is performed incorporating a commercialized femtosecond pulse laser system (MICRA, Coherent) with a 100 mm length of 780-HP fiber which is inscribed 50 mm of Bragg grating. The pump laser for coherent anti-Stokes Raman spectroscopy has a bandwidth of 90 nm and central wavelength of 815 nm with a notch shaped at 785 nm. The positive chirped pulse is compensated by chirped mirror set. We compensate almost 14000 fs2 of positive group delay dispersion for the transform-limited pulse at the sample position. The pulse duration was 15 fs with average power of 50 mW, and showed an adequate notch shape. Finally, coherent anti-Stokes Raman signals are observed using a spectrometer (Jobin Yvon Triax320 and TE-cooled Andor Newton EMCCD). We obtained coherent anti-Stokes Raman signal of acetone sample which have Raman peak at the spectral finger-print region. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab. Furthermore, the proposed method can be used as endoscope application.

  5. Detection of Neutral Species in Silane Plasma Using Coherent Anti-Stokes Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu; Kajiyama, Koichi; Moro, Norio; Sajiki, Kazuaki

    1983-01-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) has been employed for the first time to investigate silane (SiH4) glow-discharge plasma. By measuring ν1 vibrational line of silane as a function of position between the two electrodes, spatial distribution of silane (number density) in the (bulk) plasma has been determined for various gas pressures. It has been demonstrated that CARS is an excellent diagnostic tool for a chemically-active plasma such as silane-based glow discharge.

  6. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  7. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond

    2009-07-01

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  8. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-06-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  9. Coherent Anti-Stokes Raman Spectroscopy of Radio-Frequency Discharge Plasmas of Silane and Disilane

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1986-01-01

    Coherent anti-Stokes Raman spectroscopy has been employed for the diagnosis of rf discharges of silane (SiH4) and disilane (Si2H6). The signal intensities from silane and disilane have been measured as a function of time after switching on the rf power supplied to SiH4 and Si2H6 gas in a closed reaction chamber. From this measurement, the loss rates of silane and disilane have been determined directly as functions of the rf-power density and gas pressure for the first time. The rate of formation of SiH4 in disilane discharge plasmas has also been determined.

  10. Single pulse phase-control interferometric coherent anti-StokesRaman scattering spectroscopy (CARS)

    SciTech Connect

    Lim, Sang-Hyun; Caster, Allison G.; Leone, Stephen R.

    2005-09-28

    In coherent anti-Stokes Raman scattering spectroscopy (CARS) experiments, usually the amplitude of the signal is measured and the phase information is lost. With a polarization- and phase-controlled pulse shaping technique, the relative phase between the resonant and non-resonant CARS signals is controlled, and spectral interferometry is performed without an interferometer. Both the real and imaginary parts of the background-free resonant CARS spectrum are measured via spectral interferometry between the resonant and non-resonant signals from the same sample. The resonant signal is amplified significantly by homodyne mixing with the non-resonant signal as a local oscillator, greatly improving the detection limit.

  11. Molecular vibrational dynamics in polyvinyl alcohol studied by femtosecond coherent anti-stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kozai, T.; Yamashita, S.; Hirochi, K.; Miyagawa, H.; Tsurumachi, N.; Koshiba, S.; Nakanishi, S.; Itoh, H.

    2012-11-01

    We have performed femtosecond time-resolved coherent anti-stokes Raman spectroscopy (CARS) to study the vibrational dynamics in polyvinyl alcohol (PVA) film. We observed femtosecond coherent vibrational relaxation and CARS signal beats in PVA at room temperature. We found that the coherent vibrational relaxation of anti-symmetric CH2 stretching modes in PVA is faster than that of symmetric modes, probably due to faster vibrational energy transfer. The coherent vibrational relaxation of OH stretching modes was observed to be slower than that of CH2 modes, because OH stretching modes have less resonant energy transfer rate compared to CH2 modes.

  12. Width-Increased Dual-Pump Enhanced Coherent Anti-Stokes Raman Spectroscopy (WIDECARS)

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Cutler, Andrew D.

    2010-01-01

    WIDECARS is a dual-pump coherent anti-Stokes Raman Spectroscopy technique that is capable of simultaneously measuring temperature and species mole fractions of N2, O2, H2, C2H4, CO, and CO2. WIDECARS is designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures. The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature.

  13. Diagnostics of silane and germane radio frequency plasmas by coherent anti-Stokes Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    In situ plasma diagnostics using coherent anti-Stokes Raman spectroscopy have shown different dissociation characteristics for GeH4 and SiH4 in radio frequency (rf) plasma-enhanced chemical vapor deposition of amorphous silicon germanium alloy (a-SiGe:H) thin films. The GeH4 dissociation rate in rf plasmas is a factor of about 3 larger than that of SiH4. Plasma diagnostics have revealed that the hydrogen dilution of the SiH4 and GeH4 mixed plasma plays a critical role in suppressing the gas phase polymerization and enhancing the GeH4 dissociation.

  14. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Singh, J.P.; Yueh, F.Y.; Kao, W.; Cook, R.L. )

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl ([chi][sub nr][sup HCl]), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  15. Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2.

    PubMed

    Afzelius, Mikael; Brackmann, Christian; Vestin, Fredrik; Bengtsson, Per-Erik

    2004-12-20

    We present a model for quantitative measurements in binary mixtures of nitrogen and carbon monoxide by the use of dual-broadband rotational coherent anti-Stokes Raman spectroscopy. The model has been compared with experimental rotational coherent anti-Stokes Raman scattering spectra recorded within the temperature range of 294-702 K. Temperatures and concentrations were evaluated by spectral fits using libraries of theoretically calculated spectra. The relative error of the temperature measurements was 1-2%, and the absolute error of the CO concentration measurements was <0.5% for temperatures < or =600 K. For higher temperatures, the gas composition was not chemically stable, and we observed a conversion of CO to CO2. The influence of important spectroscopic parameters such as the anisotropic polarizability and Raman line-broadening coefficients are discussed in terms of concentration measurements. In particular, it is shown that the CO concentration measurement was more accurate if N2-CO and CO-N2 line-broadening coefficients were included in the calculation. The applicability of the model for quantitative flame measurements is demonstrated by measuring CO concentrations in ethylene/air flames. PMID:15646786

  16. Next generation hazard detection via ultrafast coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Pellegrino, Paul M.

    2013-05-01

    Multiplex coherent anti-Stokes Raman spectroscopy (MCARS) is used to detect an explosive precursor material and two chemical warfare simulants. The spectral bandwidth of the femtosecond laser pulse used in these studies is sufficient to coherently and simultaneously drive all the vibrational modes in the molecule of interest. The research performed here demonstrates that MCARS has the capability to detect an explosive precursor (e.g., acetone) and hazardous materials, such as dimethyl methylphosphonate and 2-chloroethyl methyl sulfide (a sarin and a mustard gas chemical warfare simulant, respectively), with high specificity. Evidence shows that MCARS is capable of overcoming common the sensitivity limitations of spontaneous Raman scattering, thus allowing for the detection of the target material in milliseconds with standard USB spectrometers as opposed to seconds with intensified spectrometers. The exponential increase in the number of scattered photons suggests that the MCARS technique may be capable of overcoming range detection challenges common to spontaneous Raman scattering.

  17. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    SciTech Connect

    Bratescu, Maria Antoneta; Hieda, Junko; Umemura, Tomonari; Saito, Nagahiro; Takai, Osamu

    2011-05-15

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm{sup -1} increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  18. Anti-Stokes Raman laser

    SciTech Connect

    White, J.C.; Henderson, D.

    1982-02-01

    The first observation of nonresonant, stimulated anti-Stokes Raman emission is reported. A metastable T1 (6rho /sup 2/P/sup 0//sub 3/2/) inversion is created by selective photodissociation of TlCl. Raman scattering from the Tl metastable state to ground using 532- and 355-nm pump lasers resulted in stimulated emission at 376 and 278 nm, respectively. Conversion efficiencies up to 10% are reported.

  19. Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dogariu, A.; Goltsov, A.; Pestov, D.; Sokolov, A. V.; Scully, M. O.

    2008-02-01

    We demonstrate a realistic method for detection of anthrax-type spores in real time based on their chemical fingerprints using coherent anti-Stokes Raman scattering. Specifically, we demonstrate that coherent Raman scattering can be used to successfully identify spores with high accuracy and high selectivity in less than 50ms.

  20. Silane thermometry in radio-frequency discharge plasma by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1986-03-01

    The rotational temperature of silane molecules in a flowing gas as well as in a radio-frequency discharge plasma of silane has been determined by the analysis of its coherent anti-Stokes Raman spectra. The ν1 Q-band coherent anti-Stokes Raman spectra of silane have been measured under different conditions such as discharge off, discharge on, and electrode heating, and fitted to theoretically calculated curves for various rotational temperatures using a nonlinear least-squares method. The results have shown that discharge power as well as electrode heating increase the rotational temperature of SiH4.

  1. Coherent anti-Stokes Raman spectroscopy utilizing phase mismatched cascaded quadratic optical interactions in nonlinear crystals

    PubMed Central

    Petrov, Georgi I.; Zhi, Miaochan; Yakovlev, Vladislav V.

    2013-01-01

    We experimentally investigated the nonlinear optical interaction between the instantaneous four-wave mixing and the cascaded quadratic frequency conversion in commonly used nonlinear optical KTP and LiNbO3 with the aim of a possible background suppression of the non-resonant background in coherent anti-Stokes Raman scattering. The possibility of background-free heterodyne coherent anti-Stokes Raman scattering microspectroscopy is investigated at the interface formed by a liquid (isopropyl alcohol) and a nonlinear crystal (LiNbO3). PMID:24514791

  2. Investigation of a simulated tritium plasma using Coherent Anti-Stokes Raman Spectroscopy

    SciTech Connect

    Siwecki, S.A.; Dosser, L.R.

    1989-11-30

    The production of T{sup {minus}} in a tritium beta plasma occurs when a thermal electron and a tritium molecule undergo a dissociative attachment reaction. A measurement of the T{sup {minus}} concentration in tritium indicated that it was high, but further analysis showed this result to be inconclusive. It was then suggested that a high T{sup {minus}} concentration could arise if tritium molecules undergoing dissociative attachment were vibrationally excited. The reaction rate for such a process is orders of magnitude higher when vibrationally excited molecules are involved. Both the thermal electron and the vibrationally excited molecules are a result of the energy supplied by the beta decay of tritium. A search for the presence of vibrationally excited molecules in a simulated tritium plasma was undertaken using Coherent Anti-Stokes Raman Spectroscopy. The results showed no presence of vibrationally excited molecules and therefore did not support the foregoing hypothesis. 13 refs., 10 figs.

  3. Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Koszykowski, M.L.; Farrow, R.L.; Palmer, R.E.

    1985-10-01

    High-resolution coherent anti-Stokes Raman spectroscopy spectra of the N/sub 2/ Q branch at 294 K have been obtained at 1, 5, and 10 atm. Even at 1-atm pressure, disagreements with spectra calculated using the isolated line approximation were observed, indicating the importance of collisional narrowing effects in describing these spectra. A method of using the full G-matrix approach for the calculation of these spectra that is both exact and computationally efficient (requiring only one matrix diagonalization and inversion per spectrum) is discussed. Excellent agreement with experimental data is obtained using this method and a simple exponential gap model for the off-diagonal G-matrix elements.

  4. Coherent anti-Stokes Raman spectroscopy temperature measurements in a hydrogen-fueled supersonic combustor

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jarrett, Olin, Jr.; Antcliff, Richard R.; Northam, G. B.; Cutler, Andrew D.; Taylor, David J.

    1993-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) thermometry has been used to obtain static temperature cross sections in a three-dimensional supersonic combustor flowfield. Data were obtained in three spanwise planes downstream of a single normal fuel injector which was located downstream of a rearward-facing step. The freestream flow was nominally Mach 2 and was combustion heated to a total temperature of 1440 K (yielding a static temperature of about 800 K in the freestream) to simulate the inflow to a combustor operating at a flight Mach number of about 5.4. Since a broadband probe laser was used an instantaneous temperature sample was obtained with each laser shot at a repetition rate of 10 Hz. Thus root-mean-square (rms) temperatures and temperature probability density functions (pdf's) were obtained in addition to mean temperatures.

  5. Multiplex coherent anti-Stokes Raman spectroscopy by use of a nearly degenerate broadband optical parametric oscillator.

    PubMed

    Chen, P C; Joyner, C C; Burns-Kaurin, M

    1999-09-20

    Optical parametric oscillators (OPO's) provide low-maintenance solid-state alternatives to dye lasers. We present results from use of a nearly degenerate broadband OPO for multiplex coherent anti-Stokes Raman spectroscopy. The system described is capable of generating spectra that cover a range of approximately 1000 cm(-1). PMID:18324105

  6. Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi I.; Yakovlev, Vladislav V.; Sokolov, Alexei V.; Scully, Marlan O.

    2005-11-01

    Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy is used for detection of bacterial spores in aqueous solution. Polarization CARS spectroscopy is employed to suppress the non-resonant background. CARS spectrum recorded in the spectral region from 700 to 1900 cm-1 exhibits all the characteristic features of spontaneous Raman spectrum taken for a solid powder and resembles that one of the dipicolinic acid, which is considered to be the major component of bacterial spores, including anthrax.

  7. Coherent anti-Stokes Raman spectroscopy - Spectra of water vapor in flames

    NASA Technical Reports Server (NTRS)

    Hall, R. J.; Shirley, J. A.; Eckbreth, A. C.

    1979-01-01

    The results of experimental measurements of the coherent anti-Stokes Raman spectra of water vapor in flames are reported. A pulsed, frequency-doubled neodymium laser was used to supply the pump beam and to pump a dye laser to provide a broadband Stokes beam at 6600 A. Spectra were obtained in the postflame region of a premixed methane-air flame in the Raman frequency shift region of the symmetric stretch mode (3651.7 kaysers) at an approximate temperature of 1675 K. A theoretical calculation of the coherent anti-Stokes Raman spectrum of water vapor at this temperature was made, taking into account only isotropic Q-branch transitions, and using the energy level data of Floud et al. (1976). The theoretical prediction is shown essentially to reproduce all qualitative features of the experimental spectrum, and to exhibit a strong temperature dependence.

  8. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  9. Combined spontaneous Stokes and coherent anti-Stokes Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Becker, Karina; Kiefer, Johannes

    2016-05-01

    The simultaneous determination of multiple parameters is the key in the characterization of processes and materials that change with time. In combustion environments, the combined measurement of temperature and chemical composition is particularly desirable. In the present work, possible approaches for the simultaneous application of spontaneous Raman scattering (RS) and coherent anti-Stokes Raman scattering (CARS) spectroscopy are proposed and analyzed. While RS provides concentration information of all major species, vibrational CARS is a highly accurate thermometry tool at flame conditions. Five experimentally feasible CARS-RS schemes are identified and discussed with respect to signal intensity, measurement volume, and experimental complexity. From this analysis, one scheme was found to be the best option. It utilizes a broadband dye laser centered at 852 nm as a pump and the fundamental 1064-nm radiation of the Nd:YAG as Stokes laser. The third harmonic is used as CARS probe and RS laser. The experimentally most elegant scheme replaces the third harmonic in the above scheme by the second harmonic hence involving the smallest number of optical components in the setup.

  10. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration

    PubMed Central

    Moura, Catarina Costa; Tare, Rahul S.; Oreffo, Richard O. C.; Mahajan, Sumeet

    2016-01-01

    The use of skeletal stem cells (SSCs) for cell-based therapies is currently one of the most promising areas for skeletal disease treatment and skeletal tissue repair. The ability for controlled modification of SSCs could provide significant therapeutic potential in regenerative medicine, with the prospect to permanently repopulate a host with stem cells and their progeny. Currently, SSC differentiation into the stromal lineages of bone, fat and cartilage is assessed using different approaches that typically require cell fixation or lysis, which are invasive or even destructive. Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy present an exciting alternative for studying biological systems in their natural state, without any perturbation. Here we review the applications of Raman spectroscopy and CARS imaging in stem-cell research, and discuss the potential of these two techniques for evaluating SSCs, skeletal tissues and skeletal regeneration as an exemplar. PMID:27170652

  11. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration.

    PubMed

    Moura, Catarina Costa; Tare, Rahul S; Oreffo, Richard O C; Mahajan, Sumeet

    2016-05-01

    The use of skeletal stem cells (SSCs) for cell-based therapies is currently one of the most promising areas for skeletal disease treatment and skeletal tissue repair. The ability for controlled modification of SSCs could provide significant therapeutic potential in regenerative medicine, with the prospect to permanently repopulate a host with stem cells and their progeny. Currently, SSC differentiation into the stromal lineages of bone, fat and cartilage is assessed using different approaches that typically require cell fixation or lysis, which are invasive or even destructive. Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy present an exciting alternative for studying biological systems in their natural state, without any perturbation. Here we review the applications of Raman spectroscopy and CARS imaging in stem-cell research, and discuss the potential of these two techniques for evaluating SSCs, skeletal tissues and skeletal regeneration as an exemplar. PMID:27170652

  12. Tracking Bulk and Interfacial Diffusion Using Multiplex Coherent Anti-Stokes Raman Scattering Correlation Spectroscopy.

    PubMed

    Bailey, Karen A; Schultz, Zachary D

    2016-07-14

    Multiplex coherent anti-Stokes Raman scattering correlation spectroscopy (CARS-CS) is shown as a label-free, chemically specific approach for monitoring the molecular mobility of particles in solution and at interfaces on the millisecond time scale. The CARS spectral range afforded by broadband excitation facilitates a quantitative measurement for the number of particles in the focal volume, whereas the autocorrelation of spectral data elucidates dynamic events, such as diffusion. The measured diffusion coefficients for polymer beads ranging from 100 nm to 1.1 μm in diameter are on the order of 10(-8)-10(-9) cm(2)/s, in good agreement with predicted Stokes-Einstein values. Diffusion at different interfaces shows particles are fastest in bulk medium, marginally slower at the liquid/glass interface, and 1.5-2 times slower rate at the air/liquid interface. Multivariate curve resolution analysis of distinct spectral features in multiplex CARS measurement distinguishes different composition lipid vesicles in a mixture diffusing through the focal volume. The observed diffusion is consistent with results obtained from single particle tracking experiments. This work demonstrates the utility of multiplex CARS correlation spectroscopy for monitoring particle diffusion from different chemical species across diverse interfaces. PMID:27322504

  13. CARS (coherent anti-Stokes Raman spectroscopy) detection of gaseous species for diamond deposition process

    SciTech Connect

    Roman, W.C.; Eckbreth, A.C. )

    1989-01-01

    In order to understand the complicated chemical and physical processes that occur during the deposition of hard face coatings such as diamond, diagnostics that are remote, nonintrusive and sensitive to potential chemical species are necessary. One particularly promising approach is coherent anti-Stokes Raman spectroscopy (CARS) useful for measurements of temperature and species concentrations. Results to be described will include CARS measurements on a PACVD reactor used for depositing high quality diamond films. A mixture of acetylene (C{sub 2}H{sub 2}) and Argon, tested over a range of total pressures down to 0.1 Torr, was used to calibrate the CARS system. With the existing CARS system, detectivity of C{sub 2}H{sub 2} to 5 mtorr was demonstrated. This paper describes details of the scanned narrowband colinear CARS system and examples of CARS spectra obtained for CH{sub 4} and C{sub 2}H{sub 2} species under rf PACVD diamond deposition conditions and also using an alternate filament assisted technique.

  14. Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.

    2005-01-01

    This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  15. Development of multipoint vibrational coherent anti-Stokes Raman spectroscopy for flame applications.

    PubMed

    Afzelius, Mikael; Bengtsson, Per-Erik; Bood, Joakim; Brackmann, Christian; Kurtz, Alfred

    2006-02-20

    A novel technique for coherent anti-Stokes Raman spectroscopy (CARS) measurements in multiple points is presented. In a multipass cavity the pump and Stokes laser beams are multiply reflected and refocused into a measurement volume with an adjustable number of separated points along a line. This optical arrangement was used in a vibrational CARS setup with planar BOXCARS phase-matching configuration. The CARS spectra from spatially separated points were recorded at different heights on a CCD camera. Measurements of temperature profiles were carried out in the burned gas zone of a premixed one-dimensional flame to demonstrate the applicability of this method for temperature measurements in high-temperature regions. The ability to measure in flames with strong density gradients was demonstrated by simultaneous measurements of Q-branch spectra of N2 and CO in a Wolfhard-Parker burner flame. Interference phenomena found in multipoint spectra are discussed, and possible solutions are proposed. Merits and limitations of the technique are discussed. PMID:16523780

  16. Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Weikl, M. C.; Tedder, S. A.; Seeger, T.; Leipertz, A.

    2010-10-01

    High efficiency, marginal pollutant emissions and low fuel consumption are desirable standards for modern combustion devices. The porous burner technology is a modern type of energy conversion with a strong potential to achieve these standards. However, due to the solid ceramic framework investigation of the thermodynamic properties of combustion, for example temperature, is difficult. The combustion process inside the ceramic structure of a porous burner was experimentally investigated by coherent anti-Stokes Raman spectroscopy (CARS). In this work, we present measurements using dual-pump dual-broadband CARS (DP-DBB-CARS) of temperature and species concentrations inside the reaction and flue gas zone of a porous media burner. Improvements to the setup and data evaluation procedure in contrast to previous measurements are discussed in detail. The results at varied thermal power and stoichiometry are presented. In addition, measurements at a range of radial positions inside a pore are conducted and correlated with the solid structure of the porous foam, which was determined by X-ray computer tomography.

  17. Coherent anti-Stokes Raman spectroscopy of shock-compressed liquid oxygen

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1989-01-01

    Vibrational spectra of liquid oxygen, shock compressed to several high-pressure/high-temperature states, were obtained using single- pulse multiplex coherent anti-Stokes Raman scattering (CARS). The experimental spectra were compared to synthetic spectra calculated using a semiclassical model for the CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. Up to the maximum shock pressure of 9.6 GPa, the vibrational frequencies were found to increase monotonically with pressure. An empirical fit, which could be used as a pressure/temperature/frequency calibration standard, showed that the Raman frequency shifts could be accurately described by linear pressure and temperature dependences. Above /approx/9 GPa, the liquid oxygen opacity at 632.8 nm increased rapidly, presumably because of proximity (collision)-induced absorption. Calculations showed that the induced absorption did not resonantly enhance the CARS spectra, but did attenuate the laser beams and the CARS signals. 33 refs., 2 figs., 1 tab.

  18. Polarization Sensitive Coherent Anti-Stokes Raman Spectroscopy of DCVJ in Doped Polymer

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo

    2014-05-01

    Coherent Raman Microscopy is an emerging technic and method to image biological samples such as living cells by recording vibrational fingerprints of molecules with high spatial resolution. The race is on to record the entire image during the shortest time possible in order to increase the time resolution of the recorded cellular events. The electronically enhanced polarization sensitive version of Coherent anti-Stokes Raman scattering is one of the method which can shorten the recording time and increase the sharpness of an image by enhancing the signal level of special molecular vibrational modes. In order to show the effectiveness of the method a model system, a highly fluorescence sample, DCVJ in a polymer matrix is investigated. Polarization sensitive resonance CARS spectra are recorded and analyzed. Vibrational signatures are extracted with model independent methods. Details of the measurements and data analysis will be presented. The author gratefully acknowledge the UWF for financial support.

  19. Use of the Gerchberg-Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy.

    PubMed

    Moore, D S; McGrane, S D; Greenfield, M T; Scharff, R J; Chalmers, R E

    2012-01-01

    We are utilizing recent advances in ultrafast laser technology and recent discoveries in optimal shaping of laser pulses to significantly enhance the stand-off detection of explosives via control of molecular processes at the quantum level. Optimal dynamic detection of explosives is a method whereby the selectivity and sensitivity of any of a number of nonlinear spectroscopic methods are enhanced using optimal shaping of ultrafast laser pulses. We have recently investigated the Gerchberg-Saxton algorithm as a method to very quickly estimate the optimal spectral phase for a given analyte from its spontaneous Raman spectrum and the ultrafast laser pulse spectrum. Results for obtaining selective coherent anti-Stokes Raman spectra (CARS) for an analyte in a mixture, while suppressing the CARS signals from the other mixture components, are compared for the Gerchberg-Saxton method versus previously obtained results from closed-loop machine-learning optimization using evolutionary strategies. PMID:21887605

  20. Coherent Anti-Stokes Raman Spectroscopy (cars) Gas Temperature Measurements in a Monodisperse Combusting Droplet Stream.

    NASA Astrophysics Data System (ADS)

    Zhu, Junyong

    1991-06-01

    This dissertation describes a coherent anti-Stokes Raman spectroscopy (CARS) instrument for spatially and temporally resolved non-intrusive temperature measurements in combustion environments. It presents a detailed description of the CARS system development and standard procedures to perform CARS gas temperature measurements,and procedures to analyze the CARS spectra for temperature determination. The dissertation also applies the CARS apparatus developed to a single monodisperse methanol droplet stream flame to demonstrate synchronous CARS temperature measurements. The measurements correlate the temperature field with the droplet position and give the local characteristics of the combusting droplet stream thermal field. These measurements are not possible with conventional thermal probes due to the perturbation caused by the probes and the poor temporal and spatial resolution. These CARS measurements are the first known non-intrusive characterization of the local temperature field near burning droplets. The experiments use a 50 μm diameter nozzle vibrated by a piezoelectric crystal to generate a monodisperse droplet stream with a droplet diameter of about 150 μm and droplet-to-droplet spacing of 10 droplet diameters. A frequency divider divides the crystal vibration frequency of 10 kHz 1000 times to synchronize the CARS laser firing (~ 10 Hz) with the droplet generation process. The results show that there is a small thermal wake behind each droplet in the stream. The temperature profile measured radially outward from the droplet has a local minimum near the droplet surface, rises to a maximum at about 7 droplet diameters away, and then falls to room temperature at a radial distance of 15 mm (100 droplet diameters). The temperature profile measured between two adjacent droplets on the stream axis is nearly flat, suggesting that individual flames do not surround each droplet. The local effects due to the presence of droplets completely disappear about 15 droplet

  1. Coherent anti-Stokes Raman spectroscopy of shock-compressed liquid carbon monoxide

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Shaw, M.S.; Johnson, J.D. )

    1991-10-15

    Vibrational spectra of liquid carbon monoxide shock compressed to several high pressure/high temperature states were recorded using single-pulse multiplex coherent anti-Stokes Raman scattering. Vibrational frequencies, third-order suceptibility ratios, and linewidths are reported for the fundamental and first excited-state transition. The observed vibrational frequency shift with shock pressure was substantially less than that observed previously in nitrogen, implying a significant difference in the details of their inter- and intramolecular potentials. The transition intensity and linewidth data suggest that thermal equilibrium of the vibrational levels is attained in less than 10 ns at these shock pressures, and the vibrational temperatures obtained are comparable to calculated equation-of-state temperatures. The measured linewidths suggest that the vibrational dephasing time decreased to {similar to}2 ps at our highest pressure shock state.

  2. Coherent Anti-stokes Raman Spectroscopy (CARS) of gun propellant flames

    NASA Technical Reports Server (NTRS)

    Mcilwain, M. E.; Harris, L. E.

    1980-01-01

    Temperature measurements were made in a slightly fuel rich, premixed propane/air reference flame and nitrate ester propellant flames burning in air at atmospheric pressure using coherent anti-stokes raman scattering (CARS). Both single and multiple pulse VARS spectra of nitrogen in the reference flame were in good agreement with calculated and reported values. Single pulse CARS nitrogen spectra obtained in the propellant flames were analyzed to give temperatures consistent with values calculated using the NASA-Lewis thermochemical calculation. Comparison of a 0.1 second separated sequence of single pulse CARS spectra indicate turbulent air mixing in these propellant flames. The CARS spectral results demonstrate that temporal and spatially resolved temperature measurements could be determined in transient, turbulent flames.

  3. Quantitative, comparable coherent anti-Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase retrieval

    NASA Astrophysics Data System (ADS)

    Camp, Charles H., Jr.; Lee, Young Jong; Cicerone, Marcus T.

    2016-04-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error-correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers-Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates, and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download.

  4. Tunable anti-Stokes Raman laser

    SciTech Connect

    White, J.C.

    1984-12-04

    An anti-Stokes Raman laser is disclosed which is tunable over a range of 10-70 cm-/sup 1/. An alkali halide is used as the lasing medium and a metastable halide population inversion is created with respect to the ground state of the halide by selective photodissociation of the alkali halide. A pump laser is then employed to move the population from the metastable state to a region near an intermediate state of the halide. The population subsequently falls back to the initial ground state, thereby creating the anti-Stokes Raman emission. Since the intensity of the photodissociation is directly proportional to the amount of population inversion achieved, and hence, to the region the population may be pumped to, the tuning of the output anti-Stokes Raman lasing is a function of the intensity of the initial photodissoiation.

  5. Diagnostics of a capillary discharge of a CO2 waveguide laser by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vakhterov, A. A.; Iliukhin, A. A.; Konev, Iu. B.; Lipatov, N. I.; Pashinin, P. P.

    1985-01-01

    Experimental results are reported from coherent anti-Stokes Raman spectroscopy (CARS) diagnostic studies of capillary discharge in the CO2:N2:He = 1:1:8 working mixture of a CO2 waveguide laser. The CARS scans were used to characterize the translational temperature of the gas and the vibrational temperatures of the discharge plasma components. The data are vital for identifying anharmonic states which reduce the laser power and working mixture lifetime. Data are furnished on the translational temperature and vibrational temperature as functions of the capillary radius. CARS is concluded to be a valid technique for studying the distribution of pump power among the degrees of freedom of the working mixture components, even when dissociation is occurring.

  6. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  7. Dual-soliton Stokes-based background-free coherent anti-Stokes Raman scattering spectroscopy and microscopy.

    PubMed

    Chen, Kun; Wu, Tao; Wei, Haoyun; Li, Yan

    2016-06-01

    We propose an all-fiber-generated, dual-soliton, Stokes-based scheme for background-free coherent anti-Stokes Raman scattering (CARS) under the spectral focusing mechanism. Owing to the strong birefringence and high nonlinearity of a polarization-maintaining PCF (PM-PCF), two soliton pulses can be simultaneously emitted along different eigenpolarization axes and both serve as Stokes pulses, while allowing feasible tunability of frequency distance and temporal interval between them. This proposed scheme, based on an all-fiber light source, exploits a unique combination of slight frequency-shift temporal walk-off of these two solitons to achieve efficient suppression of the nonresonant background and beat the inaccessibility and complexity of the excitation source. Capability is experimentally demonstrated by background-free CARS spectroscopy and unambiguous CARS microscopy in the fingerprint region. PMID:27244431

  8. Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Kinnius, Paul J.; Lucht, Robert P.; Gord, James R.

    2008-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames. The initial frequency-spread dephasing rate of the Raman coherence induced by the ultrafast (∼85 fs) Stokes and pump beams is used as a measure of gas-phase temperature. This initial frequency-spread dephasing rate of the Raman coherence is completely independent of collisions and depends only on the frequency spread of the Raman transitions at different temperatures. A simple theoretical model based on the assumption of impulsive excitation of Raman coherence is used to extract temperatures from time-resolved fs-CARS experimental signals. The extracted temperatures from fs-CARS signals are in excellent agreement with the theoretical temperatures calculated from an adiabatic equilibrium calculation. The estimated absolute accuracy and the precision of the measurement technique are found to be ±40 K and ±50 K, respectively, over the temperature range 1500-2500 K.

  9. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    SciTech Connect

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular

  10. Label-Free Fluctuation Spectroscopy Based on Coherent Anti-Stokes Raman Scattering from Bulk Water Molecules.

    PubMed

    Rabasovic, M D; Sisamakis, E; Wennmalm, S; Widengren, J

    2016-04-01

    Nanoparticles (NPs) and molecules can be analyzed by inverse fluorescence correlation spectroscopy (iFCS) as they pass through an open detection volume, displacing fractions of the fluorescence-emitting solution in which they are dissolved. iFCS does not require the NPs or molecules to be labeled. However, fluorophores in μm-mm concentrations are needed for the solution signal. Here, we instead use coherent anti-Stokes Raman scattering (CARS) from plain water molecules as the signal from the solution. By this fully label-free approach, termed inverse CARS-based correlation spectroscopy (iCARS-CS), NPs that are a few tenths of nm in diameter and at pM concentrations can be analyzed, and their absolute volumes/concentrations can be determined. Likewise, lipid vesicles can be analyzed as they diffuse/flow through the detection volume by using CARS fluctuations from the surrounding water molecules. iCARS-CS could likely offer a broadly applicable, label-free characterization technique of, for example, NPs, small lipid exosomes, or microparticles in biomolecular diagnostics and screening, and can also utilize CARS signals from biologically relevant media other than water. PMID:26819085

  11. Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile.

    PubMed

    van Veen, Eric H; Roekaerts, Dirk

    2005-11-10

    An optimal system for temperature measurements by coherent anti-Stokes Raman spectroscopy (CARS) in turbulent flames and flows is presented. In addition to a single-mode pump laser and a modeless dye laser, an echelle spectrometer with a cross disperser is used. This system permits simultaneous measurement of the N2 CARS spectrum and the broadband dye laser profile. A procedure is developed to use software to transform this profile into the excitation profile by which the spectrum is referenced. Simultaneous shot-to-shot referencing is compared to sequential averaged referencing for data obtained in flat flames and in room air. At flame temperatures, the resultant 1.5% imprecision is limited by flame fluctuations, indicating that the system may have a single-shot imprecision below 1%. At room temperature, the 3.8% single-shot imprecision is of the same order as the best values reported for dual-broadband pure-rotational CARS. Using the unique shot-to-shot excitation profiles, simultaneous referencing eliminates systematic errors. At 2000 and 300 K, the 95% confidence intervals are estimated to be +/- 20 and +/- 10 K, respectively. PMID:16294976

  12. Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy.

    PubMed

    Weikl, Markus C; Beyrau, Frank; Leipertz, Alfred

    2006-05-20

    Pure rotational coherent anti-Stokes Raman spectroscopy was used for the simultaneous determination of temperature and exhaust-gas recirculation in a homogeneous charge-compression ignition engine. Measurements were performed in a production-line four-cylinder gasoline engine operated with standard gasoline fuel through small optical line-of-sight accesses. The homogenization process of fresh intake air with recirculated exhaust gas was observed during the compression stroke, and the effect of charge temperature on combustion timing is shown. Single-pulse coherent anti-Stokes Raman spectroscopy spectra could not only be taken in the compression stroke but also during the gas-exchange cycle and after combustion. Consequently, the used method has been shown to be suitable for the investigation of two of the key parameters for self-ignition, namely temperature and charge composition. PMID:16708111

  13. Study of a nitriding plasma using coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pealat, M.; Lefebvre, M.

    1987-01-01

    The rotational and vibrational distribution of the first levels of excitation of N2 molecular system were measured using Raman diffusion in the discharge of a nitriding plasma. The nitrided specimens were analyzed using metallography and X-ray diffraction.

  14. Direct measurement of S-branch N2-H2 Raman linewidths using time-resolved pure rotational coherent anti-Stokes Raman spectroscopy.

    PubMed

    Bohlin, A; Nordström, E; Patterson, B D; Bengtsson, P-E; Kliewer, C J

    2012-08-21

    S-branch N(2)-H(2) Raman linewidths have been measured in the temperature region 294-1466 K using time-resolved dual-broadband picosecond pure rotational coherent anti-Stokes Raman spectroscopy (RCARS). Data are extracted by mapping the dephasing rates of the CARS signal temporal decay. The J-dependent coherence decays are detected in the time domain by following the individual spectral lines as a function of probe delay. The linewidth data set was employed in spectral fits of N(2) RCARS spectra recorded in binary mixtures of N(2) and H(2) at calibrated temperature conditions up to 661 K using a standard nanosecond RCARS setup. In this region, the set shows a deviation of less than 2% in comparison with thermocouples. The results provide useful knowledge for the applicability of N(2) CARS thermometry on the fuel-side of H(2) diffusion flames. PMID:22920115

  15. Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh, Seung Ryeol; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-01

    Single-pulse coherently controlled nonlinear Raman spectroscopy is the simplest method among the coherent anti-Stokes Raman spectroscopy systems. In recent research, it has been proven that notch-shaped femtosecond pulse laser can be used to collect the coherent anti-Stokes Raman signals. In this study, we applied a fiber Bragg grating to the notch filtering component on the femtosecond pulse lasers. The experiment was performed incorporating a titanium sapphire femtosecond pulse laser source with a 100 mm length of 780-HP fiber which is inscribed 30 mm of Bragg grating. The fiber Bragg grating has 785 nm Bragg wavelength with 0.9 nm bandwidth. We proved that if the pulse lasers have above a certain level of positive group delay dispersion, it is sufficient to propagate in the fiber Bragg grating without any spectral distortion. After passing through the fiber Bragg grating, the pulse laser is reflected on the chirped mirror for 40 times to make the transform-limited pulse. Finally, the pulse time duration was 37 fs, average power was 50mW, and showed an adequate notch shape. Furthermore, the simulation of third order polarization signal is performed using MATLAB tools and the simulation result shows that spectral characteristic and time duration of the pulse is sufficient to use as an excitation source for single-pulse coherent anti-Stokes Raman spectroscopy. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab.

  16. Nonequilibrium vibrational excitation of H{sub 2} in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements

    SciTech Connect

    Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V.A.; De Pascale, O.

    2005-07-15

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient {gamma}{sub H} of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.

  17. Nonequilibrium vibrational excitation of H2 in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V. A.; De Pascale, O.

    2005-07-01

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient γH of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.

  18. Rotational coherent anti-stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements.

    PubMed

    Black, J D; Long, C A

    1992-07-20

    In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig. PMID:20725415

  19. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K

    NASA Astrophysics Data System (ADS)

    Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik

    2008-04-01

    Experiments were performed in the temperature range of 294-1143 K in pure CO2 using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO2 was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO2/N2-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO2/N2 concentrations were underestimated. Potential sources for these discrepancies are discussed.

  20. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  1. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  2. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  3. A shock pressure induced phase transition from liquid to solid of cyclohexane using time-resolved coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oguchi, Shiro; Sato, Akira; Kondo, Ken-Ichi; Nakamura, Kazutaka

    2007-06-01

    The liquid-solid phase transition of cyclohexane has been studied under laser shock compression up to 3.8 GPa by using nanosecond time-resolved Coherent Anti-stokes Raman Spectroscopy (CARS) and laser shock compression. The shock wave is generated by irradiation of 10 ns pulsed laser beam on the plasma confinement target and its pressure is estimated from a particle velocity, which is measured by optically recording velocity interferometer system (ORVIS). Higher frequency shift of the Raman peaks (ring-breathing, C-C stretching, and CH2 twist modes) was observed at high pressure. At 3.8 GPa, splitting of the peak (CH2 twist mode) due to change in symmetry of surrounding molecules, which corresponds to phase transition to solid IV, was observed at delay time of 20 ns. Rapid liquid-solid phase transition has been directly observed to occur within 20 ns.

  4. Spontaneous and coherent anti-Stokes Raman spectroscopy of human gastrocnemius muscle biopsies in CH-stretching region for discrimination of peripheral artery disease

    PubMed Central

    Huang, X.; Irmak, S.; Lu, Y. F.; Pipinos, I.; Casale, G.; Subbiah, J.

    2015-01-01

    Peripheral Artery Disease (PAD) is a common manifestation of atherosclerosis, characterized by lower leg ischemia and myopathy in association with leg dysfunction. In the present study, Spontaneous and coherent anti-Stokes Raman scattering (CARS) spectroscopic techniques in CH-stretching spectral region were evaluated for discriminating healthy and diseased tissues of human gastrocnemius biopsies of control and PAD patients. Since Raman signatures of the tissues in the fingerprint region are highly complex and CH containing moieties are dense, CH-stretching limited spectral range was used to classify the diseased tissues. A total of 181 Raman spectra from 9 patients and 122 CARS spectra from 12 patients were acquired. Due to the high dimensionality of the data in Raman and CARS measurements, principal component analysis (PCA) was first performed to reduce the dimensionality of the data (6 and 9 principal scores for Raman and CARS, respectively) in the CH-stretching region, followed by a discriminant function analysis (DFA) to classify the samples into different categories based on disease severity. The CH2 and CH3 vibrational signatures were observed in the Raman and CARS spectroscopy. Raman and CARS data in conjunction with PCA-DFA analysis were capable of differentiating healthy and PAD gastrocnemius with an accuracy of 85.6% and 78.7%, respectively. PMID:26309742

  5. Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H(2)-N(2) mixtures in the Dicke regime: Experiments and modeling of velocity effects.

    PubMed

    Tran, H; Chaussard, F; Le Cong, N; Lavorel, B; Faucher, O; Joubert, P

    2009-11-01

    In this paper, we present measurements and modeling of femtosecond time resolved coherent anti-Stokes Raman spectroscopy (CARS) signal in H(2)-N(2) mixtures at low densities. Three approaches have been used to model the CARS response. The first is the usual sum of Voigt profiles. In the second approach, the speed dependent Voigt profile is used. In the last approach, a model of the temporal CARS signal is developed, which takes into account the velocity changes induced by collisions and the speed dependence of the collisional parameters. The velocity changes are modeled using the Keilson and Storer memory function; the radiator speed dependences of the collisional parameters are determined from their temperature dependences. The results obtained are consistent with previous studies in the frequency domain, showing that the changes of the velocity have important effects for the H(2)/N(2) system in the Dicke narrowing density regime. PMID:19895015

  6. Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: Experiments and modeling of velocity effects

    NASA Astrophysics Data System (ADS)

    Tran, H.; Chaussard, F.; Le Cong, N.; Lavorel, B.; Faucher, O.; Joubert, P.

    2009-11-01

    In this paper, we present measurements and modeling of femtosecond time resolved coherent anti-Stokes Raman spectroscopy (CARS) signal in H2-N2 mixtures at low densities. Three approaches have been used to model the CARS response. The first is the usual sum of Voigt profiles. In the second approach, the speed dependent Voigt profile is used. In the last approach, a model of the temporal CARS signal is developed, which takes into account the velocity changes induced by collisions and the speed dependence of the collisional parameters. The velocity changes are modeled using the Keilson and Storer memory function; the radiator speed dependences of the collisional parameters are determined from their temperature dependences. The results obtained are consistent with previous studies in the frequency domain, showing that the changes of the velocity have important effects for the H2/N2 system in the Dicke narrowing density regime.

  7. Coherent anti-Stokes Raman spectra of oxygen atoms in flames.

    PubMed

    Teets, R E; Bechtel, J H

    1981-10-01

    Coherent anti-Stokes Raman spectroscopy (CARS) was used to detect oxygen atoms (electronic Raman scattering) and oxygen molecules (rotational Raman scattering) in both hydrogen-oxygen and methane-oxygen flames. The high spectral resolution of CARS is useful for distinguishing the oxygen-atom signals from larger nearby rotational Raman signals. Saturation of the molecular CARS signal that is due to stimulated Raman scattering was observed. This effect limits the sensitivity of the CARS method. PMID:19710736

  8. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    NASA Astrophysics Data System (ADS)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  9. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    SciTech Connect

    Niu, Kai; Lee, Soo-Y.

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  10. BRIEF COMMUNICATIONS: Coherent anti-Stokes Raman scattering by excited ions in a laser plasma

    NASA Astrophysics Data System (ADS)

    Gladkov, S. M.; Zheltikov, Aleksei M.; Koroteev, Nikolai I.; Rychev, M. V.; Fedotov, Andrei B.

    1989-07-01

    The coherent anti-Stokes Raman scattering (CARS) method was used in observation of excited Al II, Al III, In II and N II in an optical breakdown plasma. The feasibility of CARS spectroscopy of multiply charged ions in a laser plasma was established.

  11. Experimental demonstration of mode-selective phonon excitation of 6H-SiC by a mid-infrared laser with anti-Stokes Raman scattering spectroscopy

    SciTech Connect

    Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed; Sonobe, Taro; Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki

    2013-10-28

    Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.

  12. Compressive coherent anti-Stokes Raman scattering holography.

    PubMed

    Cocking, Alexander; Mehta, Nikhil; Shi, Kebin; Liu, Zhiwen

    2015-09-21

    Coherent anti-Stokes Raman scattering (CARS) holography captures both the amplitude and the phase of the anti-Stokes field generated from a sample and can thus perform single-shot, chemically selective three-dimensional imaging. We present compressive CARS holography, a numerical technique based on the concept of compressive sensing, to improve the quality of reconstructed images by leveraging sparsity in the source distribution and reducing the out-of-focus background noise. In particular, we use the two-step iterative shrinkage threshold (TwIST) algorithm with an l1 norm regularizer to iteratively retrieve images from an off axis CARS digital hologram. It is shown that the use of compressive CARS holography enhances the CARS holographic imaging technique by reducing noise and thereby effectively emulating a higher axial resolution using only a single shot hologram. PMID:26406699

  13. Cars temperature measurements and stability studies of a d. c. nitrogen discharge. Final report, September 1989-July 1991. [CARS (coherent anti-Stokes Raman spectroscopy)

    SciTech Connect

    Millard, M.

    1991-07-01

    The vibrational and rotational temperatures of a 30-Torr, normal glow N2 gas discharge have been measured using a coherent anti-Stokes Raman spectroscopy system in the folded BOXCARS configuration. The discharge was set up in slowly flowing nitrogen between two plane parallel molybdenum electrodes. Current densities of O.047 A/sq cm were used with an E/N of approximately 50 Td. The nearly wall-less discharge was stabilized using a Macor ceramic cap covering the cathode with a 9-mm circular aperture in the center. Measurements were made at spatially resolved locations within the discharge both axially and radially. Theoretical spectra were fit to experimental data in order to obtain the rotational and vibrational temperatures and the relative populations. A detailed study of the spectral line shape of the dye laser used as the probe beam in the CARS system was carried out using the optogalvanic effect in a Fe-Ne hollow-cathode lamp. The spectral line width and lineshape under differing dye pumping schemes were obtained. These measured line widths were greater than expected and showed a non-Gaussian profile for the probe laser. Stability of the nitrogen discharge was also studied in order to determine the conditions under which the discharge remains stable. Instability was noted visually, in the behavior of the CARS signal and the electrode voltage, both of which showed hysteresis. In order to make way for changes in the system in the future, a new CARS system was designed which will allow study of various gasses under differing discharge conditions.

  14. Coherent Anti-Stokes Raman Scattering Microscopy: A Biological Review

    SciTech Connect

    Rodriguez, Luis; Lockett, Stephen J.; Holtom, Gary R.

    2006-08-31

    Microscopic imaging of cells and tissues are generated by the interaction of light with either the sample itself or contrast agents that label the sample. Most contrast agents, however, alter the cell in order to introduce molecular labels, complicating live cell imaging. The interaction of light from multiple laser sources has given rise to microscopy, based on Raman scattering or vibrational resonance, which demonstrates selectivity to specific chemical bonds while cell imaging unmodified live cells. Here, we discuss the nonlinear optical technique of coherent anti-Stokes Raman scattering (CARS) microscopy, its instrumentation, and its status in live cell imaging.

  15. Time-resolved coherent anti-Stokes Raman spectroscopy (CARS) and the measurement of vibrational spectra in shock-compressed molecular materials

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.

    1990-01-01

    We present the use of coherent anti-Stokes Raman scattering (CARS) in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N{sub 2}, O{sub 2}, CO, and their mixtures. The experimental spectra are compared to spectra calculated using a semiclassical model for CARS intensities to obtain vibrational frequencies, peak Raman susceptibilities, and linewidths. The derived spectroscopic parameters suggest thermal equilibrium of the vibrational populations is established in less than a few nanoseconds after shock passage. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. 11 refs., 5 figs.

  16. Coherent anti-Stokes Raman scattering imaging under ambient light.

    PubMed

    Zhang, Yinxin; Liao, Chien-Sheng; Hong, Weili; Huang, Kai-Chih; Yang, Huaidong; Jin, Guofan; Cheng, Ji-Xin

    2016-08-15

    We demonstrate an ambient light coherent anti-Stokes Raman scattering microscope that allows CARS imaging to be operated under environmental light for field use. The CARS signal is modulated at megahertz frequency and detected by a photodiode equipped with a lab-built resonant amplifier, then extracted through a lock-in amplifier. The filters in both the spectral domain and the frequency domain effectively blocked the room light contamination of the CARS image. In situ hyperspectral CARS imaging of tumor tissue under ambient light is demonstrated. PMID:27519113

  17. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    SciTech Connect

    Farrow, R.L.; Rahn, L.A.

    1985-06-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile.

  18. Measurement of vibrational, gas, and rotational temperatures of H2 (X1 Σg+) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H2 in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2W/cm3 have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H2 CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  19. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications.

    PubMed

    Krafft, Christoph; Dietzek, Benjamin; Schmitt, Michael; Popp, Jürgen

    2012-04-01

    A tutorial article is presented for the use of linear and nonlinear Raman microspectroscopies in biomedical diagnostics. Coherent anti-Stokes Raman scattering (CARS) is the most frequently applied nonlinear variant of Raman spectroscopy. The basic concepts of Raman and CARS are introduced first, and subsequent biomedical applications of Raman and CARS are described. Raman microspectroscopy is applied to both in-vivo and in-vitro tissue diagnostics, and the characterization and identification of individual mammalian cells. These applications benefit from the fact that Raman spectra provide specific information on the chemical composition and molecular structure in a label-free and nondestructive manner. Combining the chemical specificity of Raman spectroscopy with the spatial resolution of an optical microscope allows recording hyperspectral images with molecular contrast. We also elaborate on interfacing Raman spectroscopic tools with other technologies such as optical tweezing, microfluidics and fiber optic probes. Thereby, we aim at presenting a guide into one exciting branch of modern biophotonics research. PMID:22559673

  20. Vibrational mode deactivation rates for gaseous discharge-excited nitrogen(2) on selected surfaces measured with coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Parish, John Walter, Jr.

    2000-09-01

    The disposal rate of nitrogen molecule internal-mode energy, kv , by deactivation in the presence of various surfaces was studied at low pressure and at approximately room temperature using coherent anti-Stokes Raman spectroscopy (CARS). Deactivation is the process whereby vibrational energy is lost one quantum or a few quanta at a time rather than all at once as in quenching. Deactivation coefficients, γv, or loss probabilities, of vibrationally-excited N2(X1Σg +,v) on gold, Pyrex, Teflon and alloys of aluminum, stainless steel and titanium, were calculated from the wall deactivation rate coefficients for the hot band quantum numbers v = 1 to 4 or 5. Vibration states were populated with a 1.5 cm diameter water-cooled-in- glass positive column discharge where the residence time was estimated to be about 60 ms in the tube. The flow rate and pressure were adjusted to optimize the populations and the observed decay. Subsequently, the excited gas was presented via a source tube to a tubular reactor. For precisely controlled residence times, the excited nitrogen would communicate with the reactor interior surface. Only the gas that had been exposed to the surface was measured upon exit from the reactor by a CARS system in the 3-D BOXCARS configuration. Extensive measurements on Pyrex gave γ 1 values between 2.4 × 10-4 and 6.7 × 10-4 depending on the treatment history of the surface. The values for γ4 ranged from 2.9 × 10-4 for the AMS 4943D alloy of titanium to approximately unity for the AMS 312 stainless steel alloy. The low value for titanium can be attributed to the oxide layer. The variation of kv with v was linear or nearly linear in all cases with slopes lower in most cases than the rate of increase of the vibration-translation V-T exchange rate with v. Direct measurement of rates, in this way, detects losses due to homogeneous gas collisions as well as heterogeneous collisions with the surface. An attempt to extract the true value of γv from the data was

  1. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    PubMed Central

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug delivery vehicles, and contrast agents in vivo. In the quest for superior photostability and bio-compatibility, nanodiamonds (NDs) are considered one of the best choices due to their unique structural, chemical, mechanical, and optical properties. So far, mainly fluorescent NDs have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centers with stable optical properties. Here, we show that single non-fluorescing NDs exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and ND size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of NDs internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively. PMID:25305746

  2. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    NASA Astrophysics Data System (ADS)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  3. Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy.

    PubMed

    Day, James P R; Domke, Katrin F; Rago, Gianluca; Kano, Hideaki; Hamaguchi, Hiro-o; Vartiainen, Erik M; Bonn, Mischa

    2011-06-23

    The ability to observe samples qualitatively at the microscopic scale has greatly enhanced our understanding of the physical and biological world throughout the 400 year history of microscopic imaging, but there are relatively few techniques that can truly claim the ability to quantify the local concentration and composition of a sample. We review coherent anti-Stokes Raman scattering (CARS) as a quantitative, chemically specific, and label-free microscopy. We discuss the complicating influence of the nonresonant response on the CARS signal and the various experimental and mathematical approaches that can be adopted to extract quantitative information from CARS. We also review the uses to which CARS has been employed as a quantitative microscopy to solve challenges in material and biological science. PMID:21526785

  4. Advantage of anti-Stokes Raman scattering for high-temperature measurements

    SciTech Connect

    Fujimori, Hirotaka; Kakihana, Masato; Ioku, Koji; Goto, Seishi; Yoshimura, Masahiro

    2001-08-13

    We present the results of experiments that assess the viability of anti-Stokes scattering to investigate in situ materials at high temperatures. Both anti-Stokes and Stokes Raman measurements have been performed at various high temperatures using hafnia as a test material. As compared with Stokes Raman spectra, anti-Stokes spectra were observed with lower thermal emission backgrounds in accordance with Planck's equation. The intensity ratio of anti-Stokes to Stokes scattering approaches 1 as the temperature increases at high temperatures satisfying the Boltzmann distribution law. These results clearly demonstrate the advantage and feasibility of anti-Stokes Raman scattering for the elimination of the thermal emission in comparison with Stokes scattering. {copyright} 2001 American Institute of Physics.

  5. Investigation of enhanced forward and backward anti-stokes Raman signals in lithium niobate waveguides

    SciTech Connect

    Li, Da; Hong, Pengda; Ding, Yujie J.; Liu, Zhaojun; Wang, Lei; Hua, Ping-Rang; Zhang, De-Long

    2015-07-07

    We have observed enhancements of the anti-Stokes Raman signals generated in lithium niobate waveguides in the forward and backward configurations by at least one order of magnitude under the pump power of the microwatt level. These output signals were measured using a single photon detector. The forward and backward propagating anti-Stokes signals exhibited different spectral features.

  6. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.

    PubMed

    Steuwe, Christian; Kaminski, Clemens F; Baumberg, Jeremy J; Mahajan, Sumeet

    2011-12-14

    Coherent anti-Stokes Raman spectroscopy (CARS) is a well-known tool in multiphoton imaging and nonlinear spectroscopy. In this work we combine CARS with plasmonic surface enhancement on reproducible nanostructured surfaces. We demonstrate strong correlation between plasmon resonances and surface-enhanced CARS (SECARS) intensities on our nanostructured surfaces and show that an enhancement of ∼10(5) can be obtained over standard CARS. Furthermore, we find SECARS to be >10(3) times more sensitive than surface-enhanced Raman Spectroscopy (SERS). We also demonstrate SECARS imaging of molecular monolayers. Our work paves the way for reliable single molecule Raman spectroscopy and fast molecular imaging on plasmonic surfaces. PMID:22074256

  7. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    SciTech Connect

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H/sub 2/, rovibrational excitation of H/sub 2/ produced by the reaction H + HBr ..-->.. H/sub 2/ + Br, and Br atom production by photolysis of HBr.

  8. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  9. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  10. Measurement of vibrational, gas, and rotational temperatures of H{sub 2} (X{sup 1} {sigma}{sub g}{sup +}) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    SciTech Connect

    Shakhatov, V.A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H{sub 2} in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2 W/cm{sup 3} have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H{sub 2} CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  11. Cars (coherent anti-Stokes Raman scattering) diagnostics in reacting mixtures

    SciTech Connect

    Valentini, J.J. )

    1989-01-01

    Coherent anti-Stokes Raman scattering (CARS) is a coherent optical variant of the inelastic light scattering process known as the Raman effect. CARS spectroscopy possesses the universality of Raman spectroscopy but with greatly enhanced sensitivity. It is insensitive to background luminescence, can be configured to allow remote measurements, has excellent temporal and spatial resolution, and can provide detailed information on both the chemical composition and physical state of gas, liquid, and solid samples. Because of these desirable attributes CARS has become an important optical diagnostic method, in particular for characterizing combustion media, plasmas, and chemically reacting mixtures. This article provides a brief introduction and overview of such applications of CARS, with a particular emphasis on the last of these.

  12. Picosecond VUV anti-Stokes Raman laser pumped by a KrF laser

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihiko; Maeda, Mitsuo; Muraoka, Katsunori; Akazaki, Masanori

    1989-02-01

    Generation of picosecond vacuum ultraviolet pulses by anti-Stokes stimulated Raman Scattering (ASRS) in hydrogen gas is reported. A tunable picosecond KrF excimer laser (30 ps FWHM, 12 mJ) is used as a pump source, and a series of anti-Stokes lines up to the 9th order (128.8 nm) is efficiently generated. The transient effects due to the finite decay time of the Raman medium are discussed for the present picosecond ASRS experiment.

  13. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    NASA Astrophysics Data System (ADS)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  14. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system.

    PubMed

    Bégin, Steve; Burgoyne, Bryan; Mercier, Vincent; Villeneuve, Alain; Vallée, Réal; Côté, Daniel

    2011-01-01

    We present a wavelength-swept coherent anti-Stokes Raman scattering (WS-CARS) spectroscopy system for hyperspectral imaging in thick tissue. We use a strategy where the Raman lines are excited sequentially, circumventing the need for a spectrometer. This fibre laser system, consisting of a pump laser synchronized with a rapidly tunable programmable laser (PL), can access Raman lines over a significant fraction of the high wavenumber region (2700-2950 cm(-1)) at rates of up to 10,000 spectral points per second. To demonstrate its capabilities, we have acquired WS-CARS spectra of several samples as well as images and hyperspectral images (HSI) of thick tissue both in forward and epi-detection. This instrument should be especially useful in providing local biochemical information with surrounding context supplied by imaging. PMID:21559141

  15. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system

    PubMed Central

    Bégin, Steve; Burgoyne, Bryan; Mercier, Vincent; Villeneuve, Alain; Vallée, Réal; Côté, Daniel

    2011-01-01

    We present a wavelength-swept coherent anti-Stokes Raman scattering (WS-CARS) spectroscopy system for hyperspectral imaging in thick tissue. We use a strategy where the Raman lines are excited sequentially, circumventing the need for a spectrometer. This fibre laser system, consisting of a pump laser synchronized with a rapidly tunable programmable laser (PL), can access Raman lines over a significant fraction of the high wavenumber region (2700–2950 cm−1) at rates of up to 10,000 spectral points per second. To demonstrate its capabilities, we have acquired WS-CARS spectra of several samples as well as images and hyperspectral images (HSI) of thick tissue both in forward and epi-detection. This instrument should be especially useful in providing local biochemical information with surrounding context supplied by imaging. PMID:21559141

  16. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.

    PubMed Central

    Weidlich, O; Ujj, L; Jäger, F; Atkinson, G H

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These

  17. Holographic coherent anti-Stokes Raman scattering bio-imaging

    PubMed Central

    Shi, Kebin; Edwards, Perry S.; Hu, Jing; Xu, Qian; Wang, Yanming; Psaltis, Demetri; Liu, Zhiwen

    2012-01-01

    CARS holography captures both the amplitude and the phase of a complex anti-Stokes field, and can perform three-dimensional imaging by digitally focusing onto different depths inside a specimen. The application of CARS holography for bio-imaging is demonstrated. It is shown that holographic CARS imaging of sub-cellular components in live HeLa cells can be achieved. PMID:22808443

  18. Anti-Stokes generation in a continuous-wave Raman laser

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil Kathleen

    The continuous-wave Raman laser system differs from other Raman systems in that it uses cavity enhancement to augment the pump laser source rather than a high-power pulsed laser source. Through interactions of the pump laser with the Raman active medium, all Raman systems can produce both red-shifted, Stokes, emission and blue-shifted, anti-Stokes, emission. Previous, continuous-wave Raman laser systems have focused on the Stokes emission. This dissertation presents theory and data on the anti-Stokes emission. Specifically, it investigates the anti-Stokes mode structure and the emitted power as a function of input pump power, detuning, pressure, and mode combination. In order to be able to compare theory to data, the existing semi-classical CW Raman laser theory is extended to include the possibility that the spatial mode of any of the three fields (pump, Stokes, or anti-Stokes) is not the fundamental spatial mode. Numerical simulations of this theory are used to understand the behavior of the CW Raman system. All the data is compared to the theory, with varying degrees of success. The pump laser used in this research is a frequency-doubled Nd:YAG at 532 nm and the Raman active medium is H2. This combination results in Stokes and anti-Stokes wavelengths of 683 nm and 435 nm, respectively. Five methods were found in this research for increasing the amount of anti-Stokes emitted: increasing the input pump power, detuning from gain line-center of the Stokes emission, increasing the reflectivity of the cavity mirrors at the anti-Stokes wavelength, switching to a higher-order spatial mode, and decreasing the H2 pressure within the Raman cavity. In general, it was found that the higher-order anti-Stokes modes did not agree with a single theoretical spatial mode. Superpositions were formed of multiple theoretical spatial modes giving intensity distribution across the profile similar to the measured profile. Three theoretical spatial mode symmetries were investigated

  19. Diagnostics of plasmas by CARS (coherent anti-Stokes Raman scattering)

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Pealat, M.; Taran, J. P.

    Some of the most representative results of the coherent anti-Stokes Raman spectroscopy research program on discharges at ONERA are presented. A very short review or the principles or CARS and of the main instrumental characteristics is first given. The results of an analysis or a magnetic multipole-confined H2 discharge are then shown. The kinetics of rotational and vibrational state populations have been followed in the transient regime and the deactivation of the vibrational level v = 1 by the walls measured. Also, O2 in a glow discharge and in a waveguide discharge has been studied. Rotational, vibrational temperatures and the density of the 1Delta state have been monitored as functions of position, pressure, and discharge current.

  20. Coherent Anti-Stokes Raman Spectroscopic Thermometry in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Danehy, P. M.; Springer, R. R.; OByrne, S.; Capriotti, D. P.; DeLoach, R.

    2003-01-01

    An experiment has been conducted to acquire data for the validation of computational fluid dynamics codes used in the design of supersonic combustors. The flow in a supersonic combustor, consisting of a diverging duct with a single downstream-angled wail injector, is studied. Combustor entrance Mach number is 2 and enthalpy nominally corresponds to Mach 7 flight. The primary measurement technique is coherent anti-Stokes Raman spectroscopy, but surface pressures and temperatures have also been acquired. Modern design of experiment techniques have been used to maximize the quality of the data set (for the given level of effort) and to minimize systematic errors. Temperature maps are obtained at several planes in the flow for a case in which the combustor is piloted by injecting fuel upstream of the main injector and one case in which it is not piloted. Boundary conditions and uncertainties are characterized.

  1. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring. An optimal scheme of clinical CARS micro-spectroscopy for thin ex vivo tissues. PMID:23674234

  2. Investigation of anti-Stokes Raman processes at phonon-polariton resonance: from Raman oscillation, frequency upconversion to Raman amplification.

    PubMed

    Ding, Yujie J

    2015-03-01

    Raman oscillation, frequency upconversion, and Raman amplification can be achieved in a second-order nonlinear medium at the phonon-polariton resonance. By beating two optical fields, a second-order nonlinear polarization is generated inside the medium. Such a polarization induces a spatially uniform nonpropagating electric field at the beat frequency, which in turn mixes with the input optical field at the lower frequency to generate or amplify the anti-Stokes optical field. Raman oscillation can be efficiently reached for the copropagating configuration. In comparison, efficient frequency upconversion and large amplifications are achievable for the counterpropagating configuration. These Raman processes can be used to effectively remove transverse-optical phonons before decaying to lower-frequency phonons, achieve laser cooling, and significantly enhance coherent anti-Stokes Raman scattering. The counterpropagating configuration offers advantages for amplifying extremely weak signals. PMID:25723418

  3. Coherent anti-Stokes Raman scattering in benzene and nitromethane shock-compressed to 10 GPa

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.; Shampine, D.L.; Holt, W.T.

    1985-01-01

    The frequency shifts of the ring-stretching mode of shock-compressed liquid benzene and the CN stretching mode of nitromethane have been measured using coherent anti-Stokes Raman scattering. Shock pressures up to 11 GPa were achieved using a two-stage light gas gun. The frequency shifted Raman signal was generated using single pulse Nd:YAG and broadband-type lasers. 16 refs., 3 figs.

  4. Watching orientational ordering at the nanoscale with coherent anti-stokes Raman microscopy.

    PubMed

    Parekh, Sapun H; Domke, Katrin F

    2013-09-01

    Whether in lipid membranes, liquid crystals or solid-state catalysts, the orientational ordering of molecules greatly influences the overall system behaviour. However, watching molecular alignment is a huge technical challenge. This article introduces nonlinear Raman (coherent anti-Stokes Raman scattering; CARS) microscopy as a promising tool for fast, label-free 3D chemical and structural sample characterization at the nanoscale in real time. PMID:25931284

  5. Phase-cycling coherent anti-Stokes Raman scattering using shaped femtosecond laser pulses.

    PubMed

    Li, Baolei; Warren, Warren S; Fischer, Martin C

    2010-12-01

    We demonstrate a homodyne coherent anti-Stokes Raman scattering (CARS) technique based on femtosecond laser pulse shaping. This technique utilizes fast phase cycling to extract nonlinear Raman signatures with a self-generated reference signal acting as a local oscillator. The local oscillator is generated at the focus and is intrinsically stable relative to the Raman signal even in highly scattering samples. We can therefore retrieve phase information from the Raman signal and can suppress the ubiquitous non-resonant background. PMID:21164927

  6. Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering.

    PubMed

    Beyrau, Frank; Bräuer, Andreas; Seeger, Thomas; Leipertz, Alfred

    2004-02-01

    Pure rotational coherent anti-Stokes Raman spectroscopy is applied for quantitative gas-phase temperature measurements in the vaporizing spray of an automotive fuel injector. Interferences from elastically scattered stray light are greatly reduced by use of a polarization technique and spectral filtering in a double monochromator. The applicability of this technique to probing low-temperature sprays is successfully demonstrated. PMID:14759040

  7. Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers

    PubMed Central

    Goldstein, Thomas; Chen, Shao-Yu; Tong, Jiayue; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    2016-01-01

    Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process. PMID:27324297

  8. Evaluation of turbulence induced noise in coherent anti-Stokes Raman scattering

    NASA Technical Reports Server (NTRS)

    Elliott, R. A.

    1982-01-01

    The effect of turbulence in a transonic wind tunnel on coherent anti-Stokes Raman scattering is considered. The driving pump and Stokes waves are taken to be coaxially propagating Gaussian beam waves which are focused on the Raman active medium through the turbulent boundary layer of the flow tube. The random index of refraction variations in the layer are modeled as phase perturbations of the driving waves which cause a reduction of the mean on-axis field and an increase in the mean diameter of the beams. Effective Gaussian beam parameters are developed and the radiated anti-Stokes power calculated as a function of the phase screen parameters. A significant reduction in signal strength occurs for realistic estimates of the phase screen parameter appropriate to a confined transonic flow. A method for estimating the signal degradation which could be applied to other experimental situations is presented.

  9. Measurement of vibrational populations in hydrogen plasma by coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Pealat, M.; Taran, J. P.; Taillet, J.; Bacal, M.; Bruneteau, A. M.

    Coherent anti-Stokes Raman Scattering (CARS) has been applied to the measurement of vibrational populations in a low-pressure H2 plasma. For an electron density of 2 x 10 to the 11th/cu cm and a total pressure of 0.13 mbar, the rotational temperature is found to be 475 K. The population of vibrational states 0, 1 and 2 has a non-Boltzmann distribution.

  10. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    SciTech Connect

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-07-09

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal.

  11. Macrophages interaction with pulmonary surfactant using coherent anti-Stokes Raman scattering (CARS) microscopy

    NASA Astrophysics Data System (ADS)

    Ocampo, Minette; Telesford, Dana Marie; Allen, Heather

    2012-04-01

    Alveolar pulmonary surfactant, composed mostly of phospholipids, is essential for maintenance of normal lung function. However, increased production of lung surfactant can lead to many pulmonary inflammatory disorders. Alveolar macrophages are responsible for the degradation of the surfactant and exhibit increased lipid uptake in inflamated lungs. Owing to their limited clearance capability, excessive accumulation of surfactant may impair their phagocytic function. In this study, the interaction of the macrophages with different lipid components was studied using coherent anti-Stokes Raman scattering (CARS) microscopy. CARS microscopy, a nonlinear vibrational technique which combines spectroscopy and microscopy, allows noninvasive characterization and imaging of chemical species without preparation or labeling. A monolayer of THP-1 macrophages and palmitic acid-d31 on phosphate buffer solution was transferred to a coverslip using the Langmuir-Blodgett method and then imaged using CARS by mapping the CH2 stretch signal of the lipid membrane of the macrophage and C-D stretch signal from palmitic acid-d31. Preliminary results showed CARS images of the macrophage on the solid substrate and thermal degradation of the sample due to long exposure to high laser power. A contrast image is expected to be observed by mapping the CH2 and C-D signals, which can show the lipid interaction and phagocytosis of the macrophage.

  12. Optimal coherent control of coherent anti-Stokes Raman scattering: Signal enhancement and background elimination

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Shuang, Feng; Shi, Junhui; Rabitz, Herschel; Wang, Haifeng; Cheng, Ji-Xin

    2012-04-01

    The ability to enhance resonant signals and eliminate the non-resonant background is analyzed for coherent anti-Stokes Raman scattering (CARS). The analysis is done at a specific frequency as well as for broadband excitation using femtosecond pulse-shaping techniques. An appropriate objective functional is employed to balance resonant signal enhancement against non-resonant background suppression. Optimal enhancement of the signal and minimization of the background can be achieved by shaping the probe pulse alone while keeping the pump and Stokes pulses unshaped. In some cases analytical forms for the probe pulse can be found, and numerical simulations are carried out for other circumstances. It is found that a good approximate optimal solution for resonant signal enhancement in two-pulse CARS is a superposition of linear and arctangent-type phases for the pump. The well-known probe delay method is shown to be a quasi-optimal scheme for broadband background suppression. The results should provide a basis to improve the performance of CARS spectroscopy and microscopy.

  13. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    PubMed

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials. PMID:26690965

  14. Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Cleff, Carsten; Gasecka, Alicja; Ferrand, Patrick; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2016-05-01

    Nonlinear optical methods, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, are able to perform label-free imaging, with chemical bonds specificity. Here we demonstrate that the use of circularly polarized light allows to retrieve not only the chemical nature but also the symmetry of the probed sample, in a single measurement. Our symmetry-resolved scheme offers simple access to the local organization of vibrational bonds and as a result provides enhanced image contrast for anisotropic samples, as well as an improved chemical selectivity. We quantify the local organization of vibrational bonds on crystalline and biological samples, thus providing information not accessible by spontaneous Raman and stimulated Raman scattering techniques. This work stands for a symmetry-resolved contrast in vibrational microscopy, with potential application in biological diagnostic.

  15. Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering

    PubMed Central

    Cleff, Carsten; Gasecka, Alicja; Ferrand, Patrick; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2016-01-01

    Nonlinear optical methods, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, are able to perform label-free imaging, with chemical bonds specificity. Here we demonstrate that the use of circularly polarized light allows to retrieve not only the chemical nature but also the symmetry of the probed sample, in a single measurement. Our symmetry-resolved scheme offers simple access to the local organization of vibrational bonds and as a result provides enhanced image contrast for anisotropic samples, as well as an improved chemical selectivity. We quantify the local organization of vibrational bonds on crystalline and biological samples, thus providing information not accessible by spontaneous Raman and stimulated Raman scattering techniques. This work stands for a symmetry-resolved contrast in vibrational microscopy, with potential application in biological diagnostic. PMID:27189667

  16. Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering.

    PubMed

    Cleff, Carsten; Gasecka, Alicja; Ferrand, Patrick; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2016-01-01

    Nonlinear optical methods, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, are able to perform label-free imaging, with chemical bonds specificity. Here we demonstrate that the use of circularly polarized light allows to retrieve not only the chemical nature but also the symmetry of the probed sample, in a single measurement. Our symmetry-resolved scheme offers simple access to the local organization of vibrational bonds and as a result provides enhanced image contrast for anisotropic samples, as well as an improved chemical selectivity. We quantify the local organization of vibrational bonds on crystalline and biological samples, thus providing information not accessible by spontaneous Raman and stimulated Raman scattering techniques. This work stands for a symmetry-resolved contrast in vibrational microscopy, with potential application in biological diagnostic. PMID:27189667

  17. Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator

    PubMed Central

    Zhai, Yan-Hua; Goulart, Christiane; Sharping, Jay E.; Wei, Huifeng; Chen, Su; Tong, Weijun; Slipchenko, Mikhail N.; Zhang, Delong; Cheng, Ji-Xin

    2011-01-01

    We report on multimodal coherent anti-Stokes Raman scattering (CARS) imaging with a source composed of a femtosecond fiber laser and a photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). By switching between two PCFs with different zero dispersion wavelengths, a tunable signal beam from the FOPO covering the range from 840 to 930 nm was produced. By combining the femtosecond fiber laser and the FOPO output, simultaneous CARS imaging of a myelin sheath and two-photon excitation fluorescence imaging of a labeled axons in rat spinal cord have been demonstrated at the speed of 20 μs per pixel. PMID:21677908

  18. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  19. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Shen, Yujie; Voronine, Dmitri V.; Sokolov, Alexei V.; Scully, Marlan O.

    2015-08-01

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  20. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    SciTech Connect

    Shen, Yujie; Voronine, Dmitri V.; Sokolov, Alexei V.; Scully, Marlan O.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  1. Anti-Stokes Raman laser investigations on atomic Tl and Sn

    NASA Astrophysics Data System (ADS)

    Ludewigt, K.; Birkmann, K.; Wellegehausen, B.

    1984-03-01

    Anti-Stokes Raman laser experiments using metastable atomic Tl and Sn have been performed. The required metastable population inversion is generated by photodissociation of TlI and SnBr2 with KrF laser radiation. The Tl(Sn) system permits frequency up-conversion by 7793 cm-1 (17,163 cm-1). By optimization of system parameters, uv output energies up to 2.5 mJ (377 nm) and conversion efficiencies of more than 25% have been achieved for Tl. Further improvements and principal limitations will be discussed.

  2. Measurement of nitric oxide concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman scattering.

    PubMed

    Kulatilaka, Waruna D; Chai, Ning; Naik, Sameer V; Laurendeau, Normand M; Lucht, Robert P; Kuehner, Joel P; Roy, Sukesh; Gord, James R

    2006-11-15

    We have measured nitric oxide (NO) concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy (ERE-CARS). Visible pump and Stokes beams were tuned to a Q-branch vibrational Raman resonance of NO. A UV probe beam was tuned into resonance with specific rotational transitions in the (v"=1,v'=0) vibrational band in the A(2)Sigma(+)-X(2)Pi electronic transition, thus providing a substantial electronic-resonance enhancement of the resulting CARS signal. NO concentrations were measured at levels down to 50 parts in 10(6) in H(2)/air flames at atmospheric pressure. NO was also detected in heavily sooting C(2)H(2)/air flames at atmospheric pressure with minimal background interference. PMID:17072422

  3. Spontaneous Anti-Stokes Raman Probe for Gas Temperature Measurements in Industrial Furnaces

    NASA Astrophysics Data System (ADS)

    Zikratov, George; Yueh, Fang-Yu; Singh, Jagdish P.; Norton, O. Perry; Kumar, R. Arun; Cook, Robert L.

    1999-03-01

    A compact, pulsed Nd:YAG laser-based instrument has been built to measure in situ absolute gas temperatures in large industrial furnaces by use of spontaneous anti-Stokes Raman scattering. The backscattering configuration was used to simplify the optics alignment and increase signal-to-noise ratios. Gated signal detection significantly reduced the background emission that is found in combustion environments. The anti-Stokes instead of the Stokes component was used to eliminate contributions to spectra from cold atmospheric nitrogen. The system was evaluated in a methane air flame and in a bench-top oven, and the technique was found to be a reliable tool for nonintrusive absolute temperature measurements with relatively clean gas streams. A water-cooled insertion probe was integrated with the Raman system for measurement of the temperature profiles inside an industrial furnace. Gas temperatures near 1500 1800 K at atmospheric pressure in an industrial furnace were inferred by fitting calculated profiles to experimental spectra with a standard deviation of less than 1% for averaging times of 200 s. The temperatures inferred from Raman spectra are in good agreement with data recorded with a thermocouple probe.

  4. Coherent anti-Stokes Raman scattering study of the dynamics of a multipolar plasma generator

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Péalat, M.; Taran, J.-P.; Bacal, M.; Berlemont, P.; Skinner, D. A.; Bretagne, J.; Hutcheon, R. J.

    1992-03-01

    A Coherent Anti-Stokes Raman Spectroscopy (CARS) study of the hydrogen plasma generated by a discharge with magnetic multipolar confinement has been conducted at pressures in the range 0.5-5 Pa. The steady-state radial distribution of the rovibrational populations has been measured. The vibrational temperature is always uniformly distributed and so is the rotational temperature at the lower pressures, while a strong gradient is seen at 5 Pa for the rotation. Time-resolved measurements with the discharge operated in a square-pulse mode give additional insight into the dynamics of the discharge. Some results are compared with the predictions of two computer models of the plasma kinetics. We observe H{2} vibrational excitation by the Joule-heated filament alone (in the absence of the discharge) and show it to be caused primarily by the confined discharge between the filament and its cold positive copper connector. Another interpretation of the presence of vibrationally excited H{2} by recombinative desorption (Hall R.I. et al., Phys. Rev. Lett. 60 (1988) 337) is not comforted by our results, within instrumental sensitivity. The densities of the first rotational levels that the ortho and para forms of H{2} have different electron collisional cross-sections. Under pulsed excitation, the vibrational temperature rises on a time scale of 1-2 ms in agreement with numerical predictions. At switch-off, we show by matching the experimental and theoretical decays that vibrational state v=1 survives 16± 5 wall collisions; meanwhile, the rotation cools very rapidly, probably because of superelastic electronic collisions.

  5. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  6. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Wang, Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-01

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  7. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering.

    PubMed

    Chen, Bi-Chang; Sung, Jiha; Wu, Xiaoxi; Lim, Sang-Hyun

    2011-02-01

    We demonstrate two different coherent anti-Stokes Raman scattering (CARS) microscopy and microspectroscopy methods based on the spectral focusing mechanism. The first method uses strongly chirped broadband pulses from a single Ti:sapphire laser and generates CARS signals at the fingerprint region. Fast modulation of the time delay between the pump and Stokes laser pulses coupled with lock-in signal detection significantly reduces the nonresonant background and produces Raman-like CARS signals with a spectral resolution of 20 cm(-1). The second method generates CARS signals in the CH (carbon-hydrogen) stretching region with IR supercontinuum pulses from a photonic crystal fiber. The spectral resolution of 30 cm(-1) is achieved. Maximum entropy method is used to retrieve a Raman-equivalent CARS spectrum from lipid membranes. Chemical imaging and microspectroscopy are demonstrated with various samples. PMID:21361675

  8. Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Yu; Suhalim, Jeffrey L.; Nien, Chyong Ly; Miljković, Miloš D.; Diem, Max; Jester, James V.; Potma, Eric. O.

    2011-02-01

    The lipid distribution in the mouse meibomian gland was examined with picosecond spectral anti-Stokes Raman scattering (CARS) imaging. Spectral CARS data sets were generated by imaging specific localized regions of the gland within tissue sections at consecutive Raman shifts in the CH2 stretching vibrational range. Spectral differences between the location specific CARS spectra obtained in the lipid-rich regions of the acinus and the central duct were observed, which were confirmed with a Raman microspectroscopic analysis, and attributed to meibum lipid modifications within the gland. A principal component analysis of the spectral data set reveals changes in the CARS spectrum when transitioning from the acini to the central duct. These results demonstrate the utility of picosecond spectral CARS imaging combined with multivariate analysis for assessing differences in the distribution and composition of lipids in tissues.

  9. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses.

    PubMed

    Liu, Jun; Zhang, Jun; Kobayashi, Takayoshi

    2008-07-01

    As broad as 12000 cm(-1) coherent anti-Stokes Raman scattering (CARS) light from ultraviolet to infrared was generated in a BBO crystal by using two crossing femtosecond laser pulses with 30% conversion efficiency. More than fifteenth-order anti-Stokes and second-order Stokes Raman sidebands were observed with nice Gaussian spatial mode. The effect of the crossing angle between two input beams on the spectrum and emitting angle of the Raman sidebands was studied in detail. Calculation shows that the phase-matching condition determines the frequencies and angles of the sidebands. PMID:18594676

  10. Label-free imaging of adipogenesis by coherent anti-stokes Raman scattering microscopy.

    PubMed

    Isomäki, Antti; Sillat, Tarvo; Ainola, Mari; Liljeström, Mikko; Konttinen, Yrjö T; Hukkanen, Mika

    2014-01-01

    Label-free imaging technologies to monitor the events associated with early, intermediate and late adipogenic differentiation in multipotent mesenchymal stromal cells (MSCs) offer an attractive and convenient alternative to conventional fixative based lipid dyes such as Oil Red O and Sudan Red, fluorescent labels such as LipidTOX, and more indirect methods such as qRT-PCR analyses of specific adipocyte differentiation markers such as peroxisome PPARγ and LPL. Coherent anti-Stokes Raman scattering (CARS) microscopy of live cells is a sensitive and fast imaging method enabling evaluation of the adipogenic differentiation with chemical specificity. CARS microscopy is based on imaging structures of interest by displaying the characteristic intrinsic vibrational contrast of chemical bonds. The method is nontoxic, non-destructive, and minimally invasive, thus presenting a promising method for longitudinal analyses of live cells and tissues. CARS provides a coherently emitted signal that is much stronger than the spontaneous Raman scattering. The anti-Stokes signal is blue shifted from the incident wavelength, thus reducing the non-vibrational background present in most biological materials. In this chapter, we aim to provide a detailed approach on how to induce adipogenic differentiation in MSC cultures, and present our methods related to label-free CARS imaging of the events associated with the adipogenesis. PMID:24706284

  11. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-01

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly

  12. Surface-enhanced coherent anti-Stokes Raman imaging of lipids.

    PubMed

    Fast, Alexander; Kenison, John P; Syme, Christopher D; Potma, Eric O

    2016-08-01

    This work describes in detail a wide-field surface-enhanced coherent anti-Stokes Raman scattering (CARS) microscope, which enables enhanced detection of sample structures in close proximity (∼100  nm) of the substrate interface. Unlike conventional CARS microscopy, where the sample is illuminated with freely propagating light, the current implementation uses evanescent fields to drive Raman coherences across the entire object plane. By coupling the pump and Stokes excitation beams to the surface plasmon-polariton mode at the interface of a 30 nm thick gold film, we obtained strong CARS signals from cholesteryl oleate droplets adhered to the surface. The surface-enhanced CARS imaging system visualizes lipid structures with vibrational selectivity using illumination doses per unit area that are more than four orders of magnitude lower than in point-scanning CARS microscopy. PMID:27505381

  13. Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers.

    PubMed

    Klarskov, Pernille; Isomäki, Antti; Hansen, Kim P; Andersen, Peter E

    2011-12-19

    Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectrum with power concentrated around the relevant wavelengths for lipid imaging (648 nm and 1027 nm). This new PCF is characterized by varying the fiber length, the average power, and the pulse width of the fs pump pulses. It was found that the selected PCF design gave a significantly improved spectral distribution compared to an existing PCF for CARS microscopy. Furthermore, the PCF is designed in a twofold symmetric structure allowing for polarization maintaining propagation. Finally, the pulse propagation is investigated numerically showing good agreement with the measured spectrum. From the numerical analysis, the nonlinear effects responsible for the spectral broadening are explained to be soliton fission processes, dispersive waves, and stimulated Raman scattering. PMID:22274252

  14. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-01

    We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels.

  15. Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain

    NASA Astrophysics Data System (ADS)

    Galli, Roberta; Uckermann, Ortrud; Koch, Edmund; Schackert, Gabriele; Kirsch, Matthias; Steiner, Gerald

    2014-07-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging multiphoton technique for the label-free histopathology of the central nervous system, by imaging the lipid content within the tissue. In order to apply the technique on standard histology sections, it is important to know the effects of tissue fixation on the CARS image. Here, we report the effects of two common fixation methods, namely with formalin and methanol-acetone, on mouse brain and human glioblastoma tissue. The variations induced by fixation on the CARS contrast and intensity were compared and interpreted using Raman microspectroscopy. The results show that, whenever unfixed cryosections cannot be used, fixation with formalin constitutes an alternative which does not deteriorate substantially the contrast generated by the different brain structures in the CARS image. Fixation with methanol-acetone strongly modifies the tissue lipid content and is therefore incompatible with the CARS imaging.

  16. Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique

    SciTech Connect

    Wang Xi; Zhang Aihua; Zhi Miaochan; Sokolov, Alexei V.; Welch, George R.

    2010-01-15

    We investigate the possibility of using a hybrid coherent anti-Stokes Raman scattering technique for noninvasive monitoring of blood glucose levels. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the nonresonant four-wave mixing background while maximizing the Raman-resonant signal and allows rapid and highly specific detection even in the presence of multiple scattering. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically relevant glucose levels.

  17. LD-side-pumped Nd:YAG/BaWO4 intracavity Raman laser for anti-Stokes generation

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wei, Wei; Wang, Weitao; Zhang, Yuangeng; Zhang, Huaijin; Yu, Haohai

    2014-07-01

    A diode-side-pumped actively Q-switched Nd:YAG/BaWO4 intracavity anti-Stokes Raman laser is demonstrated for the first time. The oscillation directions of the fundamental and the Stokes beams are separated at a phase-matching angle by introducing an additional coupled Raman cavity in the fundamental resonator. The highest 968 nm anti-Stokes output power of 0.94 mW is obtained with a 170 W 808 nm pumping power and a 7.5 kHz pulse repetition frequency. Meanwhile, the Stokes power obtained is 4.2 W.

  18. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    PubMed

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes. PMID:22193265

  19. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: D-CARS. II. Arbitrary interfaces.

    PubMed

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We address the general problem of detecting chemical interfaces arbitrarily oriented in space in coherent anti-Stokes Raman scattering (CARS) microscopy. Such a task is accomplished by using a beam reversal scheme, as recently demonstrated experimentally [J. Biomed. Opt. 16, 086006 (2011)]. We develop a full vectorial theoretical analysis of the situation and show that transverse chemical interfaces are readily highlighted without special care in the CARS signal detection. In addition, a finer analysis reveals that adequate angular analysis of the CARS far-field radiation pattern enables the detection of axial interfaces. Background-free CARS microscopy and spectroscopy are thus achievable through the combined application of excitation beam reversal and angular analysis of the CARS far-field radiation pattern. This differential CARS (D-CARS) technique is relevant for fast detection of interfaces between molecularly different media. PMID:22193266

  20. Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Beadie, Guy; Kattawar, George W.; Reintjes, John F.; Rostovtsev, Yuri; Zubairy, M. Suhail; Scully, Marlan O.

    2005-08-01

    Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering to estimate the number of detectable photons from a bacterial spore at a distance. For the first time, the theory incorporates enhanced quantum coherence via femtosecond pulses and a nonlinear process into the classical scattering problem. Our result shows a large backscattered signal in the far field, using typical parameters of an anthrax spore with maximally prepared vibrational coherence. Using train pulses of 1 kHz of repetition rate each with energy of 10 mJ, we estimate that about 107 photons can be detected by a 1 m diameter detector placed 1 km away from the spore in the backward scattering direction. The result shows the feasibility of developing a real time remote detection of hazardous microparticles in the atmosphere, particularly biopathogenic spores.

  1. Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores

    SciTech Connect

    Ooi, C.H. Raymond; Rostovtsev, Yuri; Scully, Marlan O.; Beadie, Guy; Reintjes, John F.; Kattawar, George W.; Zubairy, M. Suhail

    2005-08-15

    Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering to estimate the number of detectable photons from a bacterial spore at a distance. For the first time, the theory incorporates enhanced quantum coherence via femtosecond pulses and a nonlinear process into the classical scattering problem. Our result shows a large backscattered signal in the far field, using typical parameters of an anthrax spore with maximally prepared vibrational coherence. Using train pulses of 1 kHz of repetition rate each with energy of 10 mJ, we estimate that about 10{sup 7} photons can be detected by a 1 m diameter detector placed 1 km away from the spore in the backward scattering direction. The result shows the feasibility of developing a real time remote detection of hazardous microparticles in the atmosphere, particularly biopathogenic spores.

  2. Simultaneous observation of rotational coherent Stokes Raman scattering and coherent anti-Stokes Raman scattering in air and nitrogen

    NASA Technical Reports Server (NTRS)

    Snow, J. B.; Chang, R. K.; Zheng, J. B.; Leipertz, A.

    1983-01-01

    Rotational coherent Stokes Raman scattering (CSRS) and coherent anti-Stokes Raman scattering (CARS) in air and in nitrogen were observed simultaneously by using broadband generation and detection. In the broadband technique used, the entire CARS and CSRS spectrum was generated in a single laser pulse; the CSRS and CARS signals were dispersed by a spectrograph and detected simultaneously by an optical multichannel analyzer. A three-dimensional phase-matching geometry was used to achieve spatial resolution of the CSRS and CARS beams from the input beams. Under resonant conditions, similar experiments may provide a means of investigating the possible interaction between the CSRS and CARS processes in driving the rotational levels.

  3. Label-Free Cellular Imaging by Broadband Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    Parekh, Sapun H.; Lee, Young Jong; Aamer, Khaled A.; Cicerone, Marcus T.

    2010-01-01

    Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600–3200 cm−1, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics. PMID:20959111

  4. Coherent anti-Stokes Raman scattering performed on expanding thermal arc plasmas

    NASA Astrophysics Data System (ADS)

    Meulenbroeks, R. F. G.; Engeln, R. A. H.; van der Mullen, J. A. M.; Schram, D. C.

    1996-05-01

    The expanding plasma emanating from a thermal arc plasma source that can be used for deposition of thin films is studied using laser spectroscopic techniques. The argon-hydrogen plasma is characterized by very fast recombination that cannot be explained by atomic processes. To explore this phenomenon, which has been related to wall association of hydrogen atoms and recirculation, CARS (coherent anti-Stokes Raman scattering) is performed on (argon-)hydrogen plasmas. The periphery of the plasma appears to be rich in hydrogen molecules, in accordance with the recirculation model. No highly rovibrationally excited states are detected in the periphery, in spite of the spectrometer's very good sensitivity (0.1 Pa H2 at 300 K). For the plasma, rotational and vibrational temperatures as well as absolute H2 densities are measured. A simple model for the observed (non-Boltzmann) rotational populations is developed.

  5. Coherent anti-Stokes Raman scattering performed on expanding thermal arc plasmas

    SciTech Connect

    Meulenbroeks, R.F.; Engeln, R.A.; van der Mullen, J.A.; Schram, D.C.

    1996-05-01

    The expanding plasma emanating from a thermal arc plasma source that can be used for deposition of thin films is studied using laser spectroscopic techniques. The argon-hydrogen plasma is characterized by very fast recombination that cannot be explained by atomic processes. To explore this phenomenon, which has been related to wall association of hydrogen atoms and recirculation, CARS (coherent anti-Stokes Raman scattering) is performed on (argon-)hydrogen plasmas. The periphery of the plasma appears to be rich in hydrogen molecules, in accordance with the recirculation model. No highly rovibrationally excited states are detected in the periphery, in spite of the spectrometer{close_quote}s very good sensitivity (0.1 Pa H{sub 2} at 300 K). For the plasma, rotational and vibrational temperatures as well as absolute H{sub 2} densities are measured. A simple model for the observed (non-Boltzmann) rotational populations is developed. {copyright} {ital 1996 The American Physical Society.}

  6. Automated Identification of Subcellular Organelles by Coherent Anti-Stokes Raman Scattering

    PubMed Central

    El-Mashtoly, Samir F.; Niedieker, Daniel; Petersen, Dennis; Krauss, Sascha D.; Freier, Erik; Maghnouj, Abdelouahid; Mosig, Axel; Hahn, Stephan; Kötting, Carsten; Gerwert, Klaus

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the “random forest” ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells. PMID:24806923

  7. Interline Transfer CCD Camera for Gated Broadband Coherent Anti-Stokes Raman-Scattering Measurements.

    PubMed

    Roy, S; Ray, G; Lucht, R P

    2001-11-20

    Use of an interline transfer CCD camera for the acquisition of broadband coherent anti-Stokes Raman-scattering (CARS) spectra is demonstrated. The interline transfer CCD has alternating columns of imaging and storage pixels that allow one to acquire two successive images by shifting the first image in the storage pixels and immediately acquiring the second image. We have used this dual-image mode for gated CARS measurements by acquiring a CARS spectral image and shifting it rapidly from the imaging pixel columns to the storage pixel columns. We have demonstrated the use of this dual-image mode for gated single-laser-shot measurement of hydrogen and nitrogen CARS spectra at room temperature and in atmospheric pressure flames. The performance of the interline transfer CCD for these CARS measurements is compared directly with the performance of a back-illuminated unintensified CCD camera. PMID:18364895

  8. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Kee, Tak W.; Cicerone, Marcus T.

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is emerging as a powerful method for imaging materials and biological systems, partly because of its noninvasiveness and selective chemical sensitivity. However, its full potential for species-selective imaging is limited by a restricted spectral bandwidth. Recent increases in bandwidth are promising but still are not sufficient for the level of robust component discrimination that would be needed in a chemically complex milieu found, for example, in intracellular and extracellular environments. We demonstrate a truly broadband CARS imaging instrument that we use to acquire hyper-spectral images with vibrational spectra over a bandwidth of 2500 cm−1 with a resolution of 13 cm−1. PMID:15605477

  9. Investigation of microstructured chitosans by coherent anti-Stokes Raman microscopy.

    PubMed

    Dementjev, A; Mordas, G; Ulevičius, V; Gulbinas, V

    2015-03-01

    This work describes application of coherent anti-Stokes Raman scattering (CARS) microscopy technique for analytical characterization of microstructured materials based on chitosan. We demonstrate that nitrogen-hydrogen vibration band in the high wavenumber region of CARS spectrum prevails over response from oxygen-hydrogen vibrations and can be used as a spectral marker of chitosan. The chemically selective imaging is experimentally demonstrated by applying CARS microscopy to discriminate between chitosan and polystyrene microparticles. CARS microscopy was shown to be a valuable tool for characterization of polluted chitosan fibre from utilized engine filter material. A possibility to observe foreign material pieces on the surface of the polluted chitosan fibre is demonstrated and discussed. PMID:25529768

  10. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  11. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion

    SciTech Connect

    Liu Wei; Niu Hanben

    2011-02-15

    We provide an approach to significantly break the diffraction limit in coherent anti-Stokes Raman scattering (CARS) microscopy via an additional probe-beam-induced photon depletion (APIPD). The additional probe beam, whose profile is doughnut shaped and whose wavelength is different from the Gaussian probe beam, depletes the phonons to yield an unwanted anti-Stokes signal within a certain bandwidth at the rim of the diffraction-limited spot. When the Gaussian probe beam that follows immediately arrives, no anti-Stokes signal is generated in this region, resembling stimulated emission depletion (STED) microscopy, and the spot-generating useful anti-Stokes signals by this beam are substantially suppressed to a much smaller dimension. Scanning the spot renders three-dimensional, label-free, and chemically selective CARS images with subdiffraction resolution. Also, resolution-enhanced images of the molecule, specified by its broadband even-total CARS spectral signals not only by one anti-Stokes signal for its special chemical bond, can be obtained by employing a supercontinuum source.

  12. Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF.

    PubMed

    Trabold, B M; Abdolvand, A; Euser, T G; Russell, P St J

    2013-12-01

    A strong anti-Stokes Raman signal, from the vibrational Q(1) transition of hydrogen, is generated in gas-filled hollow-core photonic crystal fiber. To be efficient, this process requires phase-matching, which is not automatically provided since the group velocity dispersion is typically non-zero and--inside a fiber--cannot be compensated for using a crossed-beam geometry. Phase-matching can however be arranged by exploiting the different dispersion profiles of higher-order modes. We demonstrate the generation of first and second anti-Stokes signals in higher-order modes by pumping with an appropriate mixture of fundamental and a higher-order modes, synthesized using a spatial light modulator. Conversion efficiencies as high as 5.3% are achieved from the pump to the first anti-Stokes band. PMID:24514522

  13. Fast spectral coherent anti-Stokes Raman scattering microscopy with high-speed tunable picosecond laser.

    PubMed

    Cahyadi, Harsono; Iwatsuka, Junichi; Minamikawa, Takeo; Niioka, Hirohiko; Araki, Tsutomu; Hashimoto, Mamoru

    2013-09-01

    We develop a coherent anti-Stokes Raman scattering (CARS) microscopy system equipped with a tunable picosecond laser for high-speed wavelength scanning. An acousto-optic tunable filter (AOTF) is integrated in the laser cavity to enable wavelength scanning by varying the radio frequency waves applied to the AOTF crystal. An end mirror attached on a piezoelectric actuator and a pair of parallel plates driven by galvanometer motors are also introduced into the cavity to compensate for changes in the cavity length during wavelength scanning to allow synchronization with another picosecond laser. We demonstrate fast spectral imaging of 3T3-L1 adipocytes every 5  cm-1 in the Raman spectral region around 2850  cm-1 with an image acquisition time of 120 ms. We also demonstrate fast switching of Raman shifts between 2100 and 2850  cm-1, corresponding to CD2 symmetric stretching and CH2 symmetric stretching vibrations, respectively. The fast-switching CARS images reveal different locations of recrystallized deuterated and nondeuterated stearic acid. PMID:24013358

  14. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  15. Saturation of vibrational coherent anti-Stokes Raman scattering mediated by saturation of the rotational Raman transition

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2013-04-01

    Saturation of vibrational Raman coherence and coherent anti-Stokes Raman scattering (CARS) using femtosecond (fs) excitation pulses is investigated theoretically. The pump in a typical fs-CARS configuration has a bandwidth of a few hundred cm-1 that can couple tens of rotational states of room-air nitrogen molecules simultaneously, unlike in CARS with longer pulse durations. It is demonstrated that the vibrational coherence and also the vibrational CARS with fs excitation display saturationlike behavior once the rotational coherence is saturated. The Raman saturation threshold for the fs pump is numerically estimated to be at a peak intensity of ˜1022 W/m2, which is six to seven orders of magnitude higher than that in the nanosecond regime. The results are compared with the known saturation thresholds in different pulse-duration regimes and placed in perspective with other nonlinear thresholds reported in fs excitation regimes.

  16. Sparse sampling for fast hyperspectral coherent anti-Stokes Raman scattering imaging.

    PubMed

    Masia, Francesco; Borri, Paola; Langbein, Wolfgang

    2014-02-24

    We demonstrate a method to increase the acquisition speed in coherent anti-Stokes Raman scattering (CARS) hyperspectral imaging while retaining the relevant spectral information. The method first determines the important spectral components of a sample from a hyper-spectral image over a small number of spatial points but a large number of spectral points covering the accessible spectral range and sampling the instrument spectral resolution at the Nyquist limit. From these components we determine a small set of frequencies needed to retrieve the weights of the components with minimum error for a given measurement noise. Hyperspectral images with a large number of spatial points, for example covering a large spatial region, are then measured at this small set of frequencies, and a reconstruction algorithm is applied to generate the full spectral range and resolution. The resulting spectra are suited to retrieve from the CARS intensity the CARS susceptibility which is linear in the concentration, and apply unsupervised quantitative analysis methods such as FSC3. We demonstrate the method on CARS hyperspectral images of human osteosarcoma U2OS cell, with a reduction in the acquisition time by a factor of 25. This method is suited also for other coherent vibrational microscopy techniques such as stimulated Raman scattering, and in general for hyperspectral imaging techniques with sequential spectral acquisition. PMID:24663723

  17. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide

    PubMed Central

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed. PMID:24948887

  18. Nanosecond coherent anti-Stokes Raman scattering for particle size characterization

    NASA Astrophysics Data System (ADS)

    El Bassri, Farid; Lefort, Claire; Capitaine, Erwan; Louot, Christophe; Pagnoux, Dominique; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Particle size analyzers based on laser scattering commonly make use of light diffraction and scattering around the particle considered in its medium. For particle size below 50 μm, Fraunhofer theory must be abandoned in favor of Mie model, which requires to know the complex refractive index of both the particle and the medium. In this paper, we demonstrate that particle size characterization can be realized by measuring the macroscopic Raman spectral response of the whole set of particles excited by a laser beam. We use a home-made setup based on coherent anti-Stokes Raman scattering (CARS) and having a 0.36 cm-1 spectral resolution, in which the laser source is a dual-output infrared nanosecond supercontinuum source (1064 nm monochromatic pump wave, 1100-1640 nm broadband Stokes wave). The samples are latex beads in water with different diameters (20 nm, 50 nm, 100 nm, 5 μm). The C-H stretching line around 3050 cm-1 is studied. For this vibration, we study the variation of both the CARS central frequency and linewidth as a function of the particles size. A quasi linear increase of the linewidth with the inverse of the diameter is measured. A difference of 15 cm-1 is obtained between beads with diameters of 5 μm and 20 nm respectively. The physical phenomena at the origin of this difference are discussed, especially considering the contributions of the center and of the boundaries of the object to the global Raman response.

  19. Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes Raman Scattering Microspectroscopy

    PubMed Central

    Okuno, Masanari; Kano, Hideaki; Fujii, Kenkichi; Bito, Kotatsu; Naito, Satoru; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2014-01-01

    The mechanism of surfactant-induced cell lysis has been studied with quantitative coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The dynamics of surfactant molecules as well as intracellular biomolecules in living Chinese Hamster Lung (CHL) cells has been examined for a low surfactant concentration (0.01 w%). By using an isotope labeled surfactant having CD bonds, surfactant uptake dynamics in living cells has been traced in detail. The simultaneous CARS imaging of the cell itself and the internalized surfactant has shown that the surfactant molecules is first accumulated inside a CHL cell followed by a sudden leak of cytosolic components such as proteins to the outside of the cell. This finding indicates that surfactant uptake occurs prior to the cell lysis, contrary to what has been believed: surface adsorption of surfactant molecules has been thought to occur first with subsequent disruption of cell membranes. Quantitative CARS microspectroscopy enables us to determine the molecular concentration of the surfactant molecules accumulated in a cell. We have also investigated the effect of a drug, nocodazole, on the surfactant uptake dynamics. As a result of the inhibition of tubulin polymerization by nocodazole, the surfactant uptake rate is significantly lowered. This fact suggests that intracellular membrane trafficking contributes to the surfactant uptake mechanism. PMID:24710120

  20. Imaging the Intact Mouse Cornea Using Coherent Anti-Stokes Raman scattering (CARS)

    PubMed Central

    Ammar, David A.; Lei, Tim C.; Kahook, Malik Y.; Masihzadeh, Omid

    2013-01-01

    Purpose. The aim of this study was to image the cellular and noncellular structures of the cornea and limbus in an intact mouse eye using the vibrational oscillation of the carbon–hydrogen bond in lipid membranes and autofluorescence as label-free contrast agents. Methods. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Sequential images were collected through the full thickness of the cornea and limbal regions. Line scans along the transverse/sagittal axes were also performed. Results. Analysis of multiple CARS/TPAF images revealed that corneal epithelial and endothelial cells could be identified by the lipid-rich plasma membrane CARS signal. The fluorescent signal from the collagen fibers of the corneal stroma was evident in the TPAF channel. The transition from the cornea to sclera at the limbus was marked by a change in collagen pattern (TPAF channel) and thickness of surface cells (CARS channel). Regions within the corneal stroma that lack collagen autofluorescence coincided with CARS signal, indicating the presence of stromal fibroblasts or nerve fibers. Conclusions. The CARS technique was successful in imaging cells in the intact mouse eye, both at the surface and within corneal tissue. Multiphoton images were comparable to histologic sections. The methods described here represent a new avenue for molecular specific imaging of the mouse eye. The lack of need for tissue fixation is unique compared with traditional histology imaging techniques. PMID:23821187

  1. Coherent Anti-Stokes Raman Scattering (CARS) Microscopy: A Novel Technique for Imaging the Retina

    PubMed Central

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Lei, Tim C.

    2013-01-01

    Purpose. To image the cellular and noncellular structures of the retina in an intact mouse eye without the application of exogenous fluorescent labels using noninvasive, nondestructive techniques. Methods. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Cross sectional transverse sections and sequential flat (en face) sagittal sections were collected from a region of sclera approximately midway between the limbus and optic nerve. Imaging proceeded from the surface of the sclera to a depth of ∼60 μm. Results. The fluorescent signal from collagen fibers within the sclera was evident in the TPAF channel; the scleral collagen fibers showed no organization and appeared randomly packed. The sclera contained regions lacking TPAF and CARS fluorescence of ∼3 to 15 μm in diameter that could represent small vessels or scleral fibroblasts. Intense punctate CARS signals from the retinal pigment epithelial layer were of a size and shape of retinyl storage esters. Rod outer segments could be identified by the CARS signal from their lipid-rich plasma membranes. Conclusions. CARS microscopy can be used to image the outer regions of the mammalian retina without the use of a fluorescent dye or exogenously expressed recombinant protein. With technical advancements, CARS/TPAF may represent a new avenue for noninvasively imaging the retina and might complement modalities currently used in clinical practice. PMID:23580484

  2. Coherent anti-Stokes Raman scattering hyperspectral imaging of cartilage aiming for state discrimination of cell

    NASA Astrophysics Data System (ADS)

    Shiozawa, Manabu; Shirai, Masataka; Izumisawa, Junko; Tanabe, Maiko; Watanabe, Koich

    2016-07-01

    Noninvasive cell analyses are increasingly important in the medical field. A coherent anti-Stokes Raman scattering (CARS) microscope is the noninvasive imaging equipment and enables to obtain images indicating molecular distribution. However, due to low-signal intensity, it is still challenging to obtain images of the fingerprint region, in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of the fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source generating both pump light and broadband Stokes light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen. The spectrum quality was improved by optical adjustments of the power branching ratio and divergence of Stokes light. Periphery of a cartilage cell was highlighted in a CARS image of proline, and this result suggests correspondence with collagen generated as an extracellular matrix. The possibility of noninvasive analyses by using CARS hyperspectral imaging was indicated.

  3. Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds

    NASA Astrophysics Data System (ADS)

    Brackmann, Christian; Esguerra, Maricris; Olausson, Daniel; Delbro, Dick; Krettek, Alexandra; Gatenholm, Paul; Enejder, Annika

    2011-02-01

    The integration of living, human smooth muscle cells in biosynthesized cellulose scaffolds was monitored by nonlinear microscopy toward contractile artificial blood vessels. Combined coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy was applied for studies of the cell interaction with the biopolymer network. CARS microscopy probing CH2-groups at 2845 cm-1 permitted three-dimensional imaging of the cells with high contrast for lipid-rich intracellular structures. SHG microscopy visualized the fibers of the cellulose scaffold, together with a small signal obtained from the cytoplasmic myosin of the muscle cells. From the overlay images we conclude a close interaction between cells and cellulose fibers. We followed the cell migration into the three-dimensional structure, illustrating that while the cells submerge into the scaffold they extrude filopodia on top of the surface. A comparison between compact and porous scaffolds reveals a migration depth of <10 μm for the former, whereas the porous type shows cells further submerged into the cellulose. Thus, the scaffold architecture determines the degree of cell integration. We conclude that the unique ability of nonlinear microscopy to visualize the three-dimensional composition of living, soft matter makes it an ideal instrument within tissue engineering.

  4. Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.

    2003-01-01

    Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.

  5. Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-12-01

    To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

  6. Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging.

    PubMed

    Fussell, Andrew L; Mah, Pei Ting; Offerhaus, Herman; Niemi, Sanna-Mari; Salonen, Jarno; Santos, Hélder A; Strachan, Clare

    2014-11-01

    This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals, including poorly water-soluble drugs, by allowing the incorporation of drug into nanometer-sized pores. In this work, the loading of two poorly water-soluble model drugs, itraconazole and griseofulvin, in MCM-41 silica microparticles is characterized qualitatively, using the novel approach of CARS microscopy, which has advantages over other analytical approaches used to date and is non-destructive, rapid, label free, confocal and has chemical and physical specificity. The study investigated the effect of two solvent-based loading methods, namely immersion and rotary evaporation, and microparticle size on the three-dimensional (3-D) distribution of the two loaded drugs. Additionally, hyperspectral CARS microscopy was used to confirm the amorphous nature of the loaded drugs. Z-stacked CARS microscopy suggested that the drug, but not the loading method or particle size range, affected 3-D drug distribution. Hyperspectral CARS confirmed that the drug loaded in the MCM-41 silica microparticles was in an amorphous form. The results show that CARS microscopy and hyperspectral CARS microscopy can be used to provide further insights into the structural nature of loaded mesoporous silica microparticles as biomaterials. PMID:25064000

  7. Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Bremer, Marshall T.; Wrzesinski, Paul J.; Butcher, Nathan; Lozovoy, Vadim V.; Dantus, Marcos

    2011-09-01

    A non-destructive and highly selective method of standoff detection is presented and quantitatively evaluated. The method is found to be orders of magnitude more sensitive than previous coherent spectroscopy methods, identifying concentrations as low as 2 μg/cm2 of an explosive simulant mixed in a polymer matrix. The approach uses a single amplified femtosecond laser to generate high-resolution multiplex coherent anti-Stokes Raman scattering (CARS) spectra encompassing the fingerprint region (400-2500 cm-1) at standoff distance. Additionally, a standoff imaging modality is introduced, visually demonstrating similar sensitivity and high selectivity, providing promising results toward highly selective trace detection of explosives or warfare agents.

  8. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for gas-phase temperature measurements

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Daniel

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is employed for quantitative gas-phase temperature measurements in combustion processes and heated flows. In this approach, ultrafast 100-fs laser pulses are used to induce vibrational and rotational transitions in N2 and O2, while a third spectrally narrowed picosecond pulse is used to probe the molecular response. Temporal suppression of the nonresonant contribution and elimination of collisional effects are achieved by delay of the probe pulse, while sufficient spectral resolution is maintained for frequency-domain detection and thermometry. A theoretical framework is developed to model experimental spectra by phenomenologically describing the temporal evolution of the vibrational and rotational wavepackets as a function of temperature and pressure. Interference-free, single-shot vibrational fs/ps CARS thermometry is demonstrated at 1-kHz from 1400-2400 K in a H2-air flame, with accuracy better than 3%. A time-asymmetric exponential pulse shape is introduced to optimize nonresonant suppression with a 103 reduction at a probe delay of 0.31 ps. Low-temperature single-shot thermometry (300-700 K) with better than 1.5% accuracy is demonstrated using a fully degenerate rotational fs/ps CARS scheme, and the influence of collision energy transfer on thermometry error is quantified at atmospheric pressure. Interference-free thermometry, without nonresonant contributions and collision-induced error, is demonstrated for the first time using rotational fs/ps CARS at room temperature and pressures from 1-15 atm. Finally, the temporal and spectral resolution of fs/ps CARS is exploited for transition-resolved time-domain measurements of N2 and O2 self-broadened S-branch Raman linewidths at pressures of 1-20 atm.

  9. Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.

  10. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Evans, Conor L.; Potma, Eric O.; Puoris'haag, Mehron; Côté, Daniel; Lin, Charles P.; Xie, X. Sunney

    2005-01-01

    Imaging living organisms with molecular selectivity typically requires the introduction of specific labels. Many applications in biology and medicine, however, would significantly benefit from a noninvasive imaging technique that circumvents such exogenous probes. In vivo microscopy based on vibrational spectroscopic contrast offers a unique approach for visualizing tissue architecture with molecular specificity. We have developed a sensitive technique for vibrational imaging of tissues by combining coherent anti-Stokes Raman scattering (CARS) with video-rate microscopy. Backscattering of the intense forward-propagating CARS radiation in tissue gives rise to a strong epi-CARS signal that makes in vivo imaging possible. This substantially large signal allows for real-time monitoring of dynamic processes, such as the diffusion of chemical compounds, in tissues. By tuning into the CH2 stretching vibrational band, we demonstrate CARS imaging and spectroscopy of lipid-rich tissue structures in the skin of a live mouse, including sebaceous glands, corneocytes, and adipocytes, with unprecedented contrast at subcellular resolution. PMID:16263923

  11. Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography.

    PubMed

    Kamali, Tschackad; Považay, Boris; Kumar, Sunil; Silberberg, Yaron; Hermann, Boris; Werkmeister, René; Drexler, Wolfgang; Unterhuber, Angelika

    2014-10-01

    We demonstrate a multimodal optical coherence tomography (OCT) and online Fourier transform coherent anti-Stokes Raman scattering (FTCARS) platform using a single sub-12 femtosecond (fs) Ti:sapphire laser enabling simultaneous extraction of structural and chemical ("morphomolecular") information of biological samples. Spectral domain OCT prescreens the specimen providing a fast ultrahigh (4×12  μm axial and transverse) resolution wide field morphologic overview. Additional complementary intrinsic molecular information is obtained by zooming into regions of interest for fast label-free chemical mapping with online FTCARS spectroscopy. Background-free CARS is based on a Michelson interferometer in combination with a highly linear piezo stage, which allows for quick point-to-point extraction of CARS spectra in the fingerprint region in less than 125 ms with a resolution better than 4  cm(-1) without the need for averaging. OCT morphology and CARS spectral maps indicating phosphate and carbonate bond vibrations from human bone samples are extracted to demonstrate the performance of this hybrid imaging platform. PMID:25360965

  12. Selective probing of vibrational hot states in bromine using time-resolved coherent anti-Stokes Raman scattering.

    PubMed

    Namboodiri, Mahesh; Liebers, Jörg; Kleinekathöfer, Ulrich; Materny, Arnulf

    2012-11-26

    In previous work (Scaria, A.; et al. Chem. Phys. Lett. 2009, 470, 39-43) it was shown that the excitation of the electronic B state in bromine can be characterized by transitions starting from vibrational hot states of the electronic ground X state. This contribution is strongly depending on the specific Franck-Condon factors for the chosen wavelength (in that work 540 nm) used for excitation. For the investigation of the resulting excited state dynamics, a pump-degenerate four-wave mixing (pump-DFWM) experiment was applied. To increase the vibrational selectivity, in the present work we have performed temperature-dependent time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy to probe the B state dynamics of bromine. Also here, the wavelength of the excitation (in this case, the pump laser of the CARS process) was set to 540 nm for all measurements. The hot state contribution is small, even at high temperatures. It can be probed by tuning the Stokes wavelength to resonance. The time delay between the probe pulse and the time-coincident pump/Stokes pulse pair of the CARS process is scanned, giving access to the wave packet dynamics in the excited B state. The experimental observations are supported by quantum dynamical calculations. PMID:22757648

  13. Polyglutamine aggregate structure in vitro and in vivo; new avenues for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Perney, Nicolas M; Braddick, Lucy; Jurna, Martin; Garbacik, Erik T; Offerhaus, Herman L; Serpell, Louise C; Blanch, Ewan; Holden-Dye, Lindy; Brocklesby, William S; Melvin, Tracy

    2012-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ) aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D(2)Q(15)K(2)) were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross β-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the β-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm(-1). CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm(-1)) and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP) with polyQ (Q40) expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites) revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm(-1)) signals than in surrounding tissues at the resonance for the cross β-sheet polyQ in vitro. PMID:22911702

  14. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  15. Imaging of lipids in microalgae with coherent anti-stokes Raman scattering microscopy.

    PubMed

    Cavonius, Lillie; Fink, Helen; Kiskis, Juris; Albers, Eva; Undeland, Ingrid; Enejder, Annika

    2015-03-01

    Microalgae have great prospects as a sustainable resource of lipids for refinement into nutraceuticals and biodiesel, which increases the need for detailed insights into their intracellular lipid synthesis/storage mechanisms. As an alternative strategy to solvent- and label-based lipid quantification techniques, we introduce time-gated coherent anti-Stokes Raman scattering (CARS) microscopy for monitoring lipid contents in living algae, despite strong autofluorescence from the chloroplasts, at approximately picogram and subcellular levels by probing inherent molecular vibrations. Intracellular lipid droplet synthesis was followed in Phaeodactylum tricornutum algae grown under (1) light/nutrient-replete (control [Ctrl]), (2) light-limited (LL), and (3) nitrogen-starved (NS) conditions. Good correlation (r(2) = 0.924) was found between lipid volume data yielded by CARS microscopy and total fatty acid content obtained from gas chromatography-mass spectrometry analysis. In Ctrl and LL cells, micron-sized lipid droplets were found to increase in number throughout the growth phases, particularly in the stationary phase. During more excessive lipid accumulation, as observed in NS cells, promising commercial harvest as biofuels and nutritional lipids, several micron-sized droplets were present already initially during cultivation, which then fused into a single giant droplet toward stationary phase alongside with new droplets emerging. CARS microspectroscopy further indicated lower lipid fluidity in NS cells than in Ctrl and LL cells, potentially due to higher fatty acid saturation. This agreed with the fatty acid profiles gathered by gas chromatography-mass spectrometry. CARS microscopy could thus provide quantitative and semiqualitative data at the single-cell level along with important insights into lipid-accumulating mechanisms, here revealing two different modes for normal and excessive lipid accumulation. PMID:25583924

  16. Fiber bundle based probe with polarization for coherent anti-Stokes Raman scattering microendoscopy imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhengfan; Wang, Zhiyong; Wang, Xi; Xu, Xiaoyun; Chen, Xu; Cheng, Jie; Li, Xiaoyan; Chen, Shufen; Xin, Jianguo; Wong, Stephen T. C.

    2013-02-01

    The ability to visualize cellular structures and tissue molecular signatures in a live body could revolutionize the practice of surgery. Specifically, such technology is promising for replacing tissue extraction biopsy and offering new strategies for a broad range of intraoperative or surgical applications, including early cancer detection, tumor margin identification, nerve damage avoidance, and surgical outcomes enhancement. Coherent anti-Stokes Raman scattering (CARS) microendoscopy offers a way to achieve this with label-free imaging capability and sub-cellular resolution. However, efficient collection of epi-CARS signals and reduction of nonlinear effects in fibers are two major challenges encountered in the development of fiber-based CARS microendoscopy. To circumvent this problem, we designed and developed a fiber bundle for a CARS microendoscopy prototype. The excitation lasers were delivered by a single multimode fiber at the center of the bundle while the epi-CARS signals were collected by multiple MMFs surrounding the central fiber. A polarization scheme was employed to suppress the four-wave mixing (FWM) effect in the excitation fiber. Our experimental results suggest that, with this fiber bundle and the polarization FWM-suppressing scheme, the signal-to-noise ratio of the CARS images was greatly enhanced through a combination of high collection efficiency of epi-CARS signals, isolation of excitation lasers, and suppression of FWM. Tissue imaging capability of the microendoscopy prototype was demonstrated by ex vivo imaging on mouse skin and lung tissues. This fiber bundle-based CARS microendoscopy prototype, with the polarization FWM-suppressing scheme, offers a promising platform for constructing efficient fiber-based CARS microendoscopes for label free intraoperative imaging applications.

  17. Imaging of Lipids in Microalgae with Coherent Anti-Stokes Raman Scattering Microscopy1[OPEN

    PubMed Central

    Cavonius, Lillie; Fink, Helen; Kiskis, Juris; Albers, Eva; Undeland, Ingrid; Enejder, Annika

    2015-01-01

    Microalgae have great prospects as a sustainable resource of lipids for refinement into nutraceuticals and biodiesel, which increases the need for detailed insights into their intracellular lipid synthesis/storage mechanisms. As an alternative strategy to solvent- and label-based lipid quantification techniques, we introduce time-gated coherent anti-Stokes Raman scattering (CARS) microscopy for monitoring lipid contents in living algae, despite strong autofluorescence from the chloroplasts, at approximately picogram and subcellular levels by probing inherent molecular vibrations. Intracellular lipid droplet synthesis was followed in Phaeodactylum tricornutum algae grown under (1) light/nutrient-replete (control [Ctrl]), (2) light-limited (LL), and (3) nitrogen-starved (NS) conditions. Good correlation (r2 = 0.924) was found between lipid volume data yielded by CARS microscopy and total fatty acid content obtained from gas chromatography-mass spectrometry analysis. In Ctrl and LL cells, micron-sized lipid droplets were found to increase in number throughout the growth phases, particularly in the stationary phase. During more excessive lipid accumulation, as observed in NS cells, promising commercial harvest as biofuels and nutritional lipids, several micron-sized droplets were present already initially during cultivation, which then fused into a single giant droplet toward stationary phase alongside with new droplets emerging. CARS microspectroscopy further indicated lower lipid fluidity in NS cells than in Ctrl and LL cells, potentially due to higher fatty acid saturation. This agreed with the fatty acid profiles gathered by gas chromatography-mass spectrometry. CARS microscopy could thus provide quantitative and semiqualitative data at the single-cell level along with important insights into lipid-accumulating mechanisms, here revealing two different modes for normal and excessive lipid accumulation. PMID:25583924

  18. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel R.; Gibson, Emily A.

    2014-11-01

    Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated.

  19. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells

    PubMed Central

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel R.; Gibson, Emily A.

    2014-01-01

    Abstract. Increasing interest in the role of lipids in cancer cell proliferation and resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells are therefore of great importance. Using micro-Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy, we generated a lipid profile for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells upon exposure to medroxyprogesterone acetate (MPA) and synthetic androgen R1881. Combining Raman spectra with CARS imaging, we can study the process of hormone-mediated lipogenesis. Our results show that hormone-treated cancer cells T47D and LNCaP have an increased number and size of intracellular lipid droplets and higher degree of saturation than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant changes upon treatment. Principal component analysis with linear discriminant analysis of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881, and untreated. PMID:24933682

  20. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    DOE PAGESBeta

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm-1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm-1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H2/air flat flame.« less

  1. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.

    SciTech Connect

    Kearney, Sean Patrick

    2014-07-01

    A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparation bandwidth. Shifts of 100 cm-1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm-1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H2/air flat flame.

  2. Sum frequency generation and coherent anti-Stokes Raman spectroscopic studies on plasma-treated plasticized polyvinyl chloride films.

    PubMed

    Hankett, Jeanne M; Zhang, Chi; Chen, Zhan

    2012-03-13

    Polyvinyl chloride (PVC) is a widely used polymer to which various phthalates are extensively applied as plasticizers. PVC materials are often treated with plasma to vary the hydrophobicity or for cleaning purposes, but little is known of the nature of the surface molecular structures after treatment. This research characterizes molecular surface structures of PVC and bis-2-ethylhexyl phthalate (DEHP)-plasticized PVC films in air before annealing, after annealing, and after exposure to air-generated glow discharge plasma using sum frequency generation (SFG) vibrational spectroscopy. In addition, we compare the vibrational molecular signatures on the surfaces of PVC with DEHP (at a variety of percent loadings) to those of the bulk detected using coherent anti-Stokes Raman scattering (CARS). X-ray photoelectron spectroscopy (XPS) and contact angle measurements have been used to analyze PVC surfaces to supplement SFG data. Our results indicate that DEHP was found on the surfaces of PVC films even at low weight percentages (5 wt %) and that DEHP segregates on surfaces after annealing. The treatment of these films with glow discharge plasma resulted in surface-sensitive reactions involving the removal of chlorine atoms, the addition of oxygen atoms, and C-H bond rearrangement. CARS data demonstrate that the bulk of our films remained undisturbed during the plasma treatment. For the first time, we probed the molecular structure of the surface and the bulk of a PVC material using combined SFG and CARS studies on the same sample in exactly the same environment. In addition, the methodology used in this research can be applied to characterize various plasticizers in a wide variety of polymer systems to understand their surface and bulk structures before and after systematic applications of heat, plasma, or other treatments. PMID:22309397

  3. Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy.

    PubMed

    Ibata, Keiji; Takimoto, Shinichi; Morisaku, Toshinori; Miyawaki, Atsushi; Yasui, Masato

    2011-11-01

    Water can pass through biological membranes via two pathways: simple diffusion through the lipid bilayer, or water-selective facilitated diffusion through aquaporins (AQPs). Although AQPs play an important role in osmotic water permeability (P(f)), the role of AQPs in diffusional water permeability remains unclear because of the difficulty of measuring diffusional water permeability (P(d)). Here, we report an accurate and instantaneous method for measuring the P(d) of a single HeLa S3 cell using coherent anti-Stokes Raman scattering (CARS) microscopy with a quick perfusion device for H(2)O/D(2)O exchange. Ultra-high-speed line-scan CARS images were obtained every 0.488 ms. The average decay time constant of CARS intensities (τ(CARS)) for the external solution H(2)O/D(2)O exchange was 16.1 ms, whereas the intracellular H(2)O/D(2)O exchange was 100.7 ± 19.6 ms. To evaluate the roles of AQP in diffusional water permeability, AQP4 fused with enhanced green fluorescent protein (AQP4-EGFP) was transiently expressed in HeLa S3 cells. The average τ(CARS) for the intracellular H(2)O/D(2)O exchange in the AQP4-EGFP-HeLa S3 cells was 43.1 ± 15.8 ms. We also assessed the cell volume and the cell surface area to calculate P(d). The average P(d) values for the AQP4-EGFP-HeLa S3 cells and the control EGFP-HeLa S3 cells were 2.7 ± 1.0 × 10(-3) and 8.3 ± 2.6 × 10(-4) cm/s, respectively. AQP4-mediated water diffusion was independent of the temperature but was dependent on the expression level of the protein at the plasma membrane. These results suggest the possibility of using CARS imaging to investigate the hydrodynamics of single mammalian cells as well as the regulation of AQPs. PMID:22067168

  4. Dynamical rate theory of enzymatic reactions and triple-resonant coherent anti-Stokes Raman scattering microspectroscopy

    NASA Astrophysics Data System (ADS)

    Min, Wei

    Chapters 2-7 focus on physical enzymology. Despite its long history, recent single-molecule spectroscopy, among many others techniques, has generated new quantitative data that reveal unobserved features of protein dynamics and enzyme catalysis at unprecedented levels. Much of these are beyond the classic framework of transition state theory and Michalis-Menten (MM) enzyme kinetics. Due to the complexity of the problem, theoretical developments in this area have much lagged behind experiments. After an initial experimental characterization on single-molecule protein conformational fluctuations, we then develop a dynamical rate theory for enzyme catalyzed chemical reactions, from a statistical mechanics approach. Towards this goal, we formulate a two-dimensional (2D) multi-surface free energy description of the entire catalytic process that explicitly combines the concept of "fluctuating enzymes" with the MM enzyme kinetics. The outcome of this framework has two folds. On the rate theory side, going much beyond transition state theory, it connects conformational fluctuations to catalysis, allows for the interplay between energetics (e.g. Haldane's stain energy) and dynamics (e.g. Koshland's induced fit), and predicts the time dependence of single-enzyme catalysis. On the enzyme kinetics side, it gives mechanistic and unified understanding of MM and non-MM (both positive and negative cooperativity) kinetics of monomeric enzymes, in term of non-equilibrium steady state cycle on the 2D free energy surface. Chapters 8-11 present the principle and application of a new ultra-sensitive nonlinear optical microspectroscopy, femtosecond (fs) triple-resonant coherent anti-Stokes Raman scattering (CARS), in which the amplitude and phase of input fs laser pulses are optimally shaped to be in triple resonant with the molecular electronic and vibrational transitions to generate a coherent nonlinear signal beam at a new color with a highest possible efficiency. This technique

  5. Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices.

    PubMed

    Oshovsky, Gennady V; Rago, Gianluca; Day, James P R; Soudijn, Maarten L; Rock, William; Parekh, Sapun H; Ciancaleoni, Gianluca; Reek, Joost N H; Bonn, Mischa

    2013-10-01

    The kinetics of a key noncovalent, hydrogen bonding interaction was studied in situ using coherent anti-stokes Raman scattering (CARS) microspectroscopy in a microfluidic device. The association of model compounds, pyridine and hexafluoroisopropanol, was quantitatively monitored with submicrometer resolution. Lower limits for the very high formation and dissociation rate constants of the model 1:1 pyridine-hexafluoroisopropanol hydrogen bonded complex in dichloromethane-d2 were determined to be k1 > 10(5) M(-1)s(-1) and k-1 > 333.3 s(-1), respectively. PMID:23987583

  6. Comparative Study of Breast Normal and Cancer Cells Using Coherent Anti-Stokes Raman Scattering Microspectroscopy Imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jang Hyuk; Cho, Eun Hee; Shin, Sang-Mo; Oh, Myoung-kyu; Ko, Do-Kyeong

    2012-08-01

    A coherent anti-Stokes Raman scattering (CARS) microspectroscopy imaging system was developed using a femtosecond laser and a photonic crystal fiber (PCF). We separated resonant and non-resonant CARS signals in the time domain by the chirp of the PCF, and applied this system to compare live human breast normal and cancer cells. The CARS image and spectrum at C-H stretch vibration in lipid droplets could subsequently be used to differentiate cancer cells from normal cells, thereby confirming the potential of the CARS microspectroscopy imaging system as a diagnostic tool that allows the high-sensitivity, high-resolution, and fast detection of breast cancer.

  7. Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy

    SciTech Connect

    Beeker, Willem P.; Lee, Chris J.; Boller, Klaus-Jochen; Gross, Petra; Cleff, Carsten; Fallnich, Carsten; Offerhaus, Herman L.; Herek, Jennifer L.

    2010-01-15

    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground-state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum and that the frequency of the sidebands depends on the intensity of the control laser light field. We show that analyzing the sideband frequency upon scanning the beams across the sample allows one to spatially resolve emitter positions where a spatial resolution of 65 nm, which is well below the diffraction limit, can be obtained.

  8. Super-Spatial- and -Spectral-Resolution in Vibrational Imaging via Saturated Coherent Anti-Stokes Raman Scattering

    NASA Astrophysics Data System (ADS)

    Yonemaru, Yasuo; Palonpon, Almar F.; Kawano, Shogo; Smith, Nicholas I.; Kawata, Satoshi; Fujita, Katsumasa

    2015-07-01

    We demonstrate a vibrational microscopy technique with subdiffraction spatial resolution by the use of saturation of coherent anti-Stokes Raman scattering (CARS). The saturated CARS signals effectively produce a reduced point-spread function at harmonic frequencies, which is extracted by temporal modulation of the pump beam and demodulation of the CARS signal. An increase in spectral resolution and suppression of the nonresonant background signal accompany the spatial- resolution enhancement. Our simple, enhanced CARS technique promises to be useful in studying molecules in gas and liquid phases as well as soft condensed-matter systems.

  9. Rotational coherence imaging and control for CN molecules through time-frequency resolved coherent anti-Stokes Raman scattering.

    PubMed

    Lindgren, Johan; Hulkko, Eero; Pettersson, Mika; Kiljunen, Toni

    2011-12-14

    Numerical wave packet simulations are performed for studying coherent anti-Stokes Raman scattering (CARS) for CN radicals. Electronic coherence is created by femtosecond laser pulses between the X(2)Σ and B(2)Σ states. Due to the large energy separation of vibrational states, the wave packets are superpositions of rotational states only. This allows for a specially detailed inspection of the second- and third-order coherences by a two-dimensional imaging approach. We present the time-frequency domain images to illustrate the intra- and intermolecular interferences, and discuss the procedure to rationally control and experimentally detect the interferograms in solid Xe environment. PMID:22168710

  10. Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region.

    PubMed

    Chen, Bi-Chang; Sung, Jiha; Lim, Sang-Hyun

    2010-12-23

    We present a new coherent anti-Stokes Raman scattering (CARS) method that can perform background-free microscopy and microspectroscopy at the vibrational fingerprint region. Chirped broad-band pulses from a single Ti:sapphire laser generate CARS signals over 800-1700 cm(-1) with a spectral resolution of 20 cm(-1). Fast modulation of the time delay between the pump and Stokes pulses coupled with lock-in signal detection not only removes the nonresonant background but also produces Raman-like CARS signals. Chemical imaging and microspectroscopy are demonstrated with various samples such as edible oils, lipid membranes, skin tissue, and plant cell walls. Systematic studies of the signal generation mechanism and several fundamental aspects are discussed. PMID:21126030

  11. Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements.

    PubMed

    Dedic, Chloe E; Miller, Joseph D; Meyer, Terrence R

    2014-12-01

    A method for simultaneous ro-vibrational and pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is presented for multi-species detection and improved temperature sensitivity from room temperature to flame conditions. N₂/CH₄ vibrational and N₂/O₂/H₂ rotational Raman coherences are excited simultaneously using fs pump pulses at 660 and 798 nm, respectively, and a common fs Stokes pulse at 798 nm. A fourth narrowband 798 nm ps pulse probes all coherence states at a time delay that minimizes nonresonant background and the effects of collisions. The transition strength is concentration dependent, while the distribution among observed transitions is related to temperature through the Boltzmann distribution. The broadband excitation pulses and multiplexed signal are demonstrated for accurate thermometry from 298 to 2400 K and concentration measurements of four key combustion species. PMID:25490633

  12. Discrimination of chemical warfare simulants via multiplex coherent anti-Stokes Raman scattering and multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Farrell, Mikella E.; Pellegrino, Paul M.

    2014-02-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) is used to detect several chemical warfare simulants, such as dimethyl methylphosphonate and 2-chloroethyl ethyl sulfide, with high specificity. The spectral bandwidth of the femtosecond laser pulse used in these studies is sufficient to coherently and simultaneously drive all the vibrational modes in the molecule of interest. Evidence shows that MCARS is capable of overcoming common sensitivity limitations of spontaneous Raman scattering, thus allowing for the detection of the target material in milliseconds with standard, uncooled universal serial bus spectrometers as opposed to seconds with cooled, intensified CCD-based spectrometers. In addition, the obtained MCARS spectrum of the investigated sample provides multiple unique signatures. These signatures are used in an off-line multivariate statistical analysis allowing for the material's discrimination with high fidelity.

  13. Measurement of vibrational populations in low-pressure hydrogen plasma by coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Pealat, M.; Taran, J. P. E.; Taillet, J.; Bacal, M.; Bruneteau, A. M.

    1981-04-01

    Vibrational populations in a low-pressure H2 plasma have been measured by coherent anti-Stokes Raman scattering (CARS). The plasma generator is described, and some particulars of the optical arrangement are given. The CARS system is a commercial spectrometer, whose original optical system has been slightly modified for this study, by eliminating the Polarex arrangement for the YAG laser oscillator and by adding a YAG amplifier stage. This has resulted in improved beam quality and enhanced peak power. For an electron density of 2 x 10 to the 11th cm to the 0.001 and a total pressure of 0.13 m bar, the rotational temperature was found to be 475 K. The populations of the vibrational states v equals 0, 1, and 2 have also been measured. Their distribution is non-Boltzmann. The influence of pressure and discharge parameters is discussed.

  14. Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications.

    PubMed

    Lee, Eun Seong; Lee, Jae Yong; Yoo, Yong Shim

    2007-01-01

    The nonlinear optical interference of two successively generated coherent anti-Stokes Raman scattering (CARS) signals from two different samples placed in series is demonstrated for the imaging performance, in which a collinear phase matching geometry is used. The relative phase of two CARS signals is controlled by a phase-shifting unit made of dispersive glass materials of which the thickness can be precisely varied. The clear interference fringes are observed as the thickness of the phase-shifting unit changes. The interference effect is then utilized to achieve a better quality CARS image of a biological tissue taken from a mouse skin. Placing the tissue in the second sample position and performing raster scans of the laser beams on it, we can acquire a CARS image of higher contrast compared to the normal image obtained without interferometric implementation. PMID:17477725

  15. Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer.

    PubMed

    Legesse, Fisseha Bekele; Medyukhina, Anna; Heuke, Sandro; Popp, Jürgen

    2015-07-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful tool for fast label-free tissue imaging, which is promising for early medical diagnostics. To facilitate the diagnostic process, automatic image analysis algorithms, which are capable of extracting relevant features from the image content, are needed. In this contribution we perform an automated classification of healthy and tumor areas in CARS images of basal cell carcinoma (BCC) skin samples. The classification is based on extraction of texture features from image regions and subsequent classification of these regions into healthy and cancerous with a perceptron algorithm. The developed approach is capable of an accurate classification of texture types with high sensitivity and specificity, which is an important step towards an automated tumor detection procedure. PMID:25797604

  16. Increasing the imaging depth of coherent anti-Stokes Raman scattering microscopy with a miniature microscope objective

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Huff, Terry B.; Fu, Yan; Jia, Kevin Y.; Cheng, Ji-Xin

    2007-08-01

    A miniature objective lens with a tip diameter of 1.3 mm was used for extending the penetration depth of coherent anti-Stokes Raman scattering (CARS) microscopy. Its axial and lateral focal widths were determined to be 11.4 and 0.86 μm, respectively, by two-photon excitation fluorescence imaging of 200 nm beads at a 735 nm excitation wavelength. By inserting the lens tip into a soft gel sample, CARS images of 2 μm polystyrene beads 5 mm deep from the surface were acquired. The miniature objective was applied to CARS imaging of rat spinal cord white matter with a minimal requirement for surgery.

  17. Observation of anti-Stokes-stimulated Raman scattering and two-photon emission in lithium and sodium vapors

    NASA Astrophysics Data System (ADS)

    Chen, F. Z.; Wu, C. Y. Robert; Yih, T. S.; Wu, H. H.; Hsu, Y. C.; Lin, K. C.

    1988-10-01

    We have observed anti-Stokes-stimulated Raman scattering (ASRS) and two-photon emission (TPE) in Li and Na metal vapors. We found that the TPE can be generated from most of the excited even-parity states of both atoms but not ASRS. In the present work, the ``pump laser lines'' which stimulate the ASRS and TPE are those optically-pumped stimulated emissions (OPSE) generated in the same alkali metal vapor. Since ASRS and TPE processes take place from the same metastable state, strong competitions between both processes are expected. Enhanced outputs due to the presence of a resonant intermediate state in the ASRS and TPE processes have also been observed.

  18. Wavelength conversion of quadrupled Nd:YAG laser radiation to the vacuum ultraviolet by anti-stokes stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Moriwaki, Hiroki; Wada, Satoshi; Tashiro, Hideo; Toyoda, Koichi; Kasai, Akinari; Nakamura, Akira

    1993-08-01

    The observations from the beam property measurements of anti-Stokes (AS) pulses produced form AS Raman scattering (ASRS) using a quadrupled Nd:YAG laser were presented. The beam profiles of each AS wave were photographically examined. The beam pattern did not always exhibit a ring shape, but became tophatlike shaped or Gaussian-like shaped, provided the hydrogen pressure was kept lower than 0.39 MPa. The beam divergence of the AS ring radiation was elucidated using a model in which the wave front of the pump beam was considered as a plane within the Rayleigh region. The output energies of AS beams up to the ninth order were also estimated. The well-defined coherent vuv radiation produced by a tabletop ASRS system can be a fitting source for different application such as ablation of polymer films.

  19. Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Zhang, Delong; Huff, Terry B.; Wang, Xiaofei; Shi, Riyi; Xu, Xiao-Ming; Cheng, Ji-Xin

    2011-10-01

    In vivo imaging of white matter is important for the mechanistic understanding of demyelination and evaluation of remyelination therapies. Although white matter can be visualized by a strong coherent anti-Stokes Raman scattering (CARS) signal from axonal myelin, in vivo repetitive CARS imaging of the spinal cord remains a challenge due to complexities induced by the laminectomy surgery. We present a careful experimental design that enabled longitudinal CARS imaging of de- and remyelination at single axon level in live rats. In vivo CARS imaging of secretory phospholipase A2 induced myelin vesiculation, macrophage uptake of myelin debris, and spontaneous remyelination by Schwann cells are sequentially monitored over a 3 week period. Longitudinal visualization of de- and remyelination at a single axon level provides a novel platform for rational design of therapies aimed at promoting myelin plasticity and repair.

  20. In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography

    NASA Astrophysics Data System (ADS)

    Weinigel, M.; Breunig, H. G.; Kellner-Höfer, M.; Bückle, R.; Darvin, M. E.; Klemp, M.; Lademann, J.; König, K.

    2014-05-01

    The majority of existing coherent anti-Stokes Raman scattering (CARS) imaging systems are still huge and complicated laboratory systems and neither compact nor user-friendly nor mobile medically certified CARS systems. We have developed a new flexible multiphoton/CARS tomograph for imaging in a clinical environment. The system offers exceptional 360° flexibility with a very stable setup and enables label free ‘in vivo histology’ with chemical contrast within seconds. It can be completely operated by briefly trained non-laser experts. The imaging capability and flexibility of the novel in vivo tomograph are shown on optical biopsies with subcellular resolution and chemical contrast of patients suffering from psoriasis and squamous cell carcinoma.

  1. Excitation profile of coherent anti-Stokes Raman scattering from the MnO - 4 ion doped in a KClO4 crystal at low temperature

    NASA Astrophysics Data System (ADS)

    Leuchs, M.; Kiefer, W.

    1993-11-01

    We have performed polarized resonance coherent anti-Stokes Raman experiments on the permanganate ion doped in potassium perchlorate single crystals at temperature T=15 K. At this temperature the m (Cs) site splitting of the excited degenerate 1T2-electronic level of the permanganate ion and the vibronic structure are well resolved. We report on the A'-ν1 coherent anti-Stokes Raman excitation profile which shows a strong dependence on the frequency of the pump laser. The simulation of the experimental results is performed by using the transform theory, which enables one to calculate the resonance Raman excitation profile solely from the measured absorption spectrum. According to the well known relation between the third-order nonlinear susceptibility and the Raman polarizability the coherent anti-Stokes excitation profile is given by a simple product of two Raman excitation profiles which are shifted relative to each other. The linear and the quadratic electron-phonon coupling as well as the influence of non-Condon terms were taken into account. Since the transform theory is mode selective in case there are no mode mixing effects the results derived from the description of the Raman excitation profiles and the coherent anti-Stokes excitation profiles are more definite. For this purpose one only needs the model parameters of the mode of interest. The simulation of the A'-ν1 coherent anti-Stokes profile shows that a small amount of non-Condon coupling yields to a better agreement with the experiment.

  2. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    DOEpatents

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  3. Red-shifted solitons for coherent anti-Stokes Raman scattering microspectroscopy in a polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Li, Feng; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Tam, Hwa Yaw; Wai, Ping-kong Alexander

    2015-05-01

    An alternative light source for coherent anti-Stokes Raman scattering (CARS) microspectroscopy based on red-shifted solitons in a polarization-maintaining photonic crystal fiber (PM-PCF) is experimentally demonstrated. By coupling femtosecond pulses into the anomalous dispersion region of the fundamental mode of a PM-PCF along the slow and fast axes, the red-shifted solitons generated can be used as the Stokes beams when the pump pulses are chosen as the pump beams. Through the process of red-shift, the frequency differences of the pump-Stokes beams are tunable in the ranges of 0 to 4068 cm-1 and 0 to 4594 cm-1, respectively. Moreover, because of the well maintained polarization states of the pump and Stokes beams and the high output powers of the solitons, CARS microspectroscopy using the proposed source will have a high signal-to-noise ratio and short data acquisition time. CARS microspectroscopy based on the proposed all-fiber light source can be used for studying a wide range of vibrational Raman spectra.

  4. Hyperspectral coherent anti-Stokes Raman scattering microscopy for in situ analysis of solid-state crystal polymorphs

    NASA Astrophysics Data System (ADS)

    Garbacik, E. T.; Fussell, A. L.; Güres, S.; Korterik, J. P.; Otto, C.; Herek, J. L.; Offerhaus, H. L.

    2013-02-01

    Hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy is quickly becoming a prominent imaging modality because of its many advantages over the traditional paradigm of multispectral CARS. In particular, recording a significant portion of the vibrational spectrum at each spatial pixel allows image-wide spectral analysis at much higher rates than can be achieved with spontaneous Raman. We recently developed a hyperspectral CARS method, the driving principle behind which is the fast acquisition and display of a hyperspectral datacube as a set of intuitive images wherein each material in a sample appears with a unique trio of colors. Here we use this system to image and analyze two types of polymorphic samples: the pseudopolymorphic hydration of theophylline, and the packing polymorphs of the sugar alcohol mannitol. In addition to these solid-state form modifications we have observed spectral variations of crystalline mannitol and diprophylline as functions of their orientations relative to the optical fields. We use that information to visualize the distributions of these compounds in a pharmaceutical solid oral dosage form.

  5. Picosecond coherent anti-Stokes Raman scattering (CARS) study of vibrational dephasing of carbon disulfide and benzene in solution

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Woodward, Anne M.; Stephenson, John C.

    1986-01-01

    The vibrational dephasing of the 656/cm mode (nu1, a1g) of CS2 and the 991/cm mode (nu2, a1g) of benzene have been studied as a function of concentration in mixtures with a number of solvents using a ps time-resolved CARS technique. This technique employs two tunable synchronously-pumped mode-locked dye lasers in a stimulated Raman pump, coherent anti-Stokes Raman probe time-resolved experiment. Results are obtained for CS2 in carbon tetrachloride, benzene, nitrobenzene, and ethanol and for benzene nu2 in CS2. The dephasing rates of CS2 nu1 increase on dilution with the polar solvents and decrease or remain constant on dilution with the nonpolar solvents. The CS2/benzene solutions show a contrasting behavior, with the CS2 nu1 dephasing rate being nearly independent of concentration whereas the benzene nu2 dephasing rate decreases on dilution. These results are compared to theoretical models for vibrational dephasing of polyatomic molecules in solution.

  6. Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R

    2011-07-01

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model. PMID:21747487

  7. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    SciTech Connect

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-06-15

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  8. Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Fu, Yan; Huff, T. Brandon; Wang, Han-Wei; Wang, Haifeng; Cheng, Ji-Xin

    2009-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy was applied to image myelinated fibers in different regions of a mouse brain. The CARS signal from the CH2 symmetric stretching vibration allows label-free imaging of myelin sheath with 3D sub-micron resolution. Compared with two-photon excited fluorescence imaging with lipophilic dye labeling, CARS microscopy provides sharper contrast and avoids photobleaching. The CARS signal exhibits excitation polarization dependence which can be eliminated by reconstruction of two complementary images with perpendicular excitation polarizations. The capability of imaging myelinated fibers without exogenous labeling was used to map the whole brain white matter in brain slices and to analyze the microstructural anatomy of brain axons. Quantitative information about fiber volume%, myelin density, and fiber orientations was derived. Combining CARS with two-photon excited fluorescence allowed multimodal imaging of myelinated axons and other cells. Furthermore, in vivo CARS imaging on an upright microscope clearly identified fiber bundles in brain subcortex white matter. These advances open up new opportunities for the study of brain connectivity and neurological disorders. PMID:19030027

  9. Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers.

    PubMed

    Wang, Zhiyong; Gao, Liang; Luo, Pengfei; Yang, Yaliang; Hammoudi, Ahmad A; Wong, Kelvin K; Wong, Stephen T C

    2011-04-25

    We demonstrated an optical fiber delivered coherent anti-Stokes Raman scattering (CARS) microscopy imaging system with a polarization-based mechanism for suppression of four-wave mixing (FWM) signals in delivery fiber. Polarization maintaining fibers (PMF) were used as the delivery fiber to ensure stability of the state of polarization (SOP) of lasers. The pump and Stokes waves were coupled into PMFs at orthogonal SOPs along the slow and fast axes of PMFs, respectively, resulting in a significant reduction of FWM signals generated in the fiber. At the output end of PMFs, a dual-wavelength waveplate was used to realign the SOPs of the two waves into identical SOPs prior to their entrance into the CARS microscope. Therefore, it allows the pump and Stokes waves with identical SOPs to excite samples at highest excitation efficiency. Our experimental results showed that this polarization-based FWM-suppressing mechanism can dramatically reduce FWM signals generated in PMFs up to approximately 99%. Meanwhile, the PMF-delivered CARS microscopy system with this mechanism can still produce high-quality CARS images. Consequently, our PMF-delivered CARS microscopy imaging system with the polarization-based FWM-suppressing mechanism potentially offers a new strategy for building fiber-based CARS endoscopes with effective suppression of FWM background noises. PMID:21643045

  10. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator.

    PubMed

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences. PMID:23733020

  11. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  12. Development of Combined Dual-Pump Vibrational and Pure-Rotational Coherent Anti-Stokes Raman Scattering Technique.

    NASA Astrophysics Data System (ADS)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Coherent anti-Stokes Raman scattering is a parametric, four-wave mixing process. CARS, as a diagnostic technique, has been used extensively for obtaining accurate temperature and species concentration information in non-reacting and reacting flows. Dual-pump vibrational CARS (DPVCARS) can provide quantitative temperature and concentration information on multiple species in the probe volume. Mole-fraction information on molecules such as N2, O2, H2 and CO2 have been obtained in flames with peak temperature in excess of 2000 K. Although DPVCARS provides high accuracy at higher temperatures it has low sensitivity at lower temperatures (below 800 K). Typically, pure-rotational CARS (PRCARS) provides excellent sensitivity and precision at lower temperatures. We have combined DPVCARS and two-beam PRCARS into a single system which employs three laser beams at different wavelengths. The accuracy and precision of the new combined CARS system has been characterized in laminar flames. The system's single-shot precision is better than 5.5 % between 295-2200 K, indicating its suitability for diagnostics in turbulent flames. The new system has been applied towards understanding flame structure of CH4/H2/air laminar flames, stabilized in a counter-flow burner. Here, we present results detailing the development and application of the new combined CARS technique.

  13. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei

    2011-11-01

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.

  14. Detecting polymeric nanoparticles with coherent anti-stokes Raman scattering microscopy in tissues exhibiting fixative-induced autofluorescence

    NASA Astrophysics Data System (ADS)

    Garrett, N. L.; Godfrey, L.; Lalatsa, A.; Serrano, D. R.; Uchegbu, I. F.; Schatzlein, A.; Moger, J.

    2015-03-01

    Recent advances in pharmaceutical nanotechnology have enabled the development of nano-particulate medicines with enhanced drug performance. Although the fate of these nano-particles can be macroscopically tracked in the body (e.g. using radio-labeling techniques), there is little information about the sub-cellular scale mechanistic processes underlying the particle-tissue interactions, or how these interactions may correlate with pharmaceutical efficacy. To rationally engineer these nano-particles and thus optimize their performance, these mechanistic interactions must be fully understood. Coherent Anti-Stokes Raman scattering (CARS) microscopy provides a label-free means for visualizing biological samples, but can suffer from a strong non-resonant background in samples that are prepared using aldehyde-based fixatives. We demonstrate how formalin fixative affects the detection of polymeric nanoparticles within kidneys following oral administration using CARS microscopy, compared with samples that were snap-frozen. These findings have implications for clinical applications of CARS for probing nanoparticle distribution in tissue biopsies.

  15. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  16. Pressure measurements using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    PubMed

    Kearney, Sean P; Danehy, Paul M

    2015-09-01

    We investigate the feasibility of gas-phase pressure measurements using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is probed by a high-energy 5-ps pulse introduced at a time delay from the Raman preparation. These ultrafast laser pulses are shorter than collisional-dephasing time scales, enabling a new hybrid time- and frequency-domain detection scheme for pressure. Single-laser-shot rotational CARS spectra were recorded from N2 contained in a room-temperature gas cell for pressures from 0.4 to 3 atm and probe delays ranging from 16 to 298 ps. Sensitivity of the accuracy and precision of the pressure data to probe delay was investigated. The technique exhibits superior precision and comparable accuracy to previous laser-diagnostic pressure measurements. PMID:26368717

  17. Label-Free Chemical Imaging of Catalytic Solids by Coherent Anti-Stokes Raman Scattering and Synchrotron-Based Infrared Microscopy

    SciTech Connect

    Kox, M.; Domke, K; Day, J; Rago, G; Stavitski, E; Bonn, M; Weckhuysen, B

    2009-01-01

    Take a look inside: The combination of coherent anti-Stokes Raman scattering and synchrotron-based IR microscopy during the catalytic conversion of thiophene derivatives on zeolite crystals yields space- and time-resolved chemically specific information without the need for labeling (see picture). The thiophene reactant is mostly present in the center of the crystal, and the product is aligned within the straight pores of the zeolites.

  18. In vivo lipid saturation study of C. elegans using quantitative broadband coherent anti-Stokes Raman imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Littleton, Bradley; Kavanagh, Thomas; Nie, Yu; Abbate, Vincenzo; Hylands, Peter; Sturzenbaum, Stephen; Richards, David

    2016-03-01

    In vivo lipid saturation maps of microscopic nematodes (Caenorhabditis elegans) have been produced using our novel Spectral Interferometric Polarisation Coherent anti-Stokes Raman Scattering (SIP-CARS) imaging technique. This technique employs simple passive polarisation optics and a balanced homodyne detection scheme to exploit symmetries in the CARS polarisation response resulting in the complete cancellation of the non-resonant background (NRB) and real component of the CARS signal (with no prior or post assumptions as regards to their form). The remaining imaginary component of the CARS response is linear with analyte concentration and directly relatable to the spontaneous Raman spectrum [1]. Furthermore, the resonant CARS signal is interferometrically amplified by the non-resonant response, a necessity for rapid imaging at biologically relevant powers [2]. This technique permits acquisition of a broad NRB-free spectrum, in excess of 1800cm-1, in a single exposure at each pixel. This allows simultaneous determination of lipid droplet saturation, from the fingerprint region, and lipid order, from the C-H stretch region from which maps can be readily constructed. Additionally exploiting the dispersive nature of our signal collection two-photon autofluorescence can be isolated and images subsequently produced. We have successfully applied this technique to identify differences in lipid saturation distributions in selective C. elegans mutants and demonstrated that the technique is sufficiently sensitive to detect the effects of lipid metabolism altering drugs on wild type C. elegans. [1] Littleton et al, Phys Rev Lett, 111, 103902 (2013) [2] Parekh et al, Biophys J, 99, 2695-2704 (2010)

  19. Exploring the interactions between peptides and lipid bilayers using coherent anti-Stokes Raman scattering and two-photon fluorescence

    NASA Astrophysics Data System (ADS)

    Mari, M.; Mouras, R.; Downes, A.; Elfick, A.

    2011-06-01

    We have used a versatile and powerful microscope[1] for multi-modal biomedical imaging on which we combine Coherent Anti-Stokes Raman Scattering (CARS) with Two Photon Excitation Fluorescence (TPEF) using a Nd: YVO4 pump laser. We acquired 2PEF, CARS, and phase contrast images of Multilamellar Vesicles (MLVs) and Giant Unilamellar Vesicles (GUVs), as well as Raman spectra of the constituent lipids. A wide range of peptides are harmful to cells by altering the structure of the biological membranes. This effect depends on the composition of the membrane and the chemical structure of the peptide. The peptide we studied is the beta amyloid Aβ which is a major component of the amyloid plaques deposited on neuronal membranes of Alzheimer's disease (AD) patients. AD is neurodegenerative disorder in which the hallmark symptoms include cognitive decline and dementia[2] and is characterized by the formation of extracellular amyloid fibrils on the neuronal membranes of the brain. Many questions still remain unanswered concerning the destabilization of cellular ionic homeostasis due to pores formed during the interactions of lipid membranes with peptides. In this project, biomimics of cell membranes are used. The structures that best mimic the plasma membranes are MLVs or GUVs. These vesicles are formed using the gentle hydration technique[3] or the electroformation technique[4] respectively and are composed of phospholipids such as DOPC, DPPC, D62PPC and their binary mixtures. The MLVs and GUVs imaging by CARS and TPEF microscopy not only permits the direct imaging of the leakage phenomenon caused by the toxic peptide (Aβ) on the lipid bilayer, but also records simultaneously the lateral structure of the bilayer and peptide distribution in the plane across the membrane.

  20. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering

    DOE PAGESBeta

    Kearney, Sean P.; Guildenbecher, Daniel R.

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps)more » laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. Lastly, the results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.« less

  1. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering.

    PubMed

    Kearney, Sean P; Guildenbecher, Daniel R

    2016-06-20

    We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments. PMID:27409125

  2. Raman spectroscopies in shock-compressed materials

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.

    1983-01-01

    Spontaneous Raman spectroscopy, stimulated Raman scattering and coherent anti-Stokes Raman scattering have been used to measure temperatures and changes in molecular vibrational frequencies for detonating and shocked materials. Inverse Raman and Raman induced Kerr effect spectroscopies have been suggested as diagnostic probes for determining and phenomenology of shock-induced chemical reactions. The practicality, advantages, and disadvantages of using Raman scattering techniques as diagnostic probes of microscopic phenomenology through and immediately behind the shock front of shock-compressed molecular systems are discussed.

  3. Ultrafast saturation of electronic-resonance-enhanced coherent anti-Stokes Raman scattering and comparison for pulse durations in the nanosecond to femtosecond regime

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.

    2016-02-01

    The saturation threshold of a probe pulse in an ultrafast electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman spectroscopy (CARS) configuration is calculated. We demonstrate that while the underdamping condition is a sufficient condition for saturation of ERE-CARS with the long-pulse excitations, a transient gain must be achieved to saturate the ERE-CARS signal for the ultrafast probe regime. We identify that the area under the probe pulse can be used as a definitive parameter to determine the criterion for a saturation threshold for ultrafast ERE-CARS. From a simplified analytical solution and a detailed numerical calculation based on density-matrix equations, the saturation threshold of ERE-CARS is compared for a wide range of probe-pulse durations from the 10-ns to the 10-fs regime. The theory explains both qualitatively and quantitatively the saturation thresholds of resonant transitions and also gives a predictive capability for other pulse duration regimes. The presented criterion for the saturation threshold will be useful in establishing the design parameters for ultrafast ERE-CARS.

  4. Imaging the Effects of Prostaglandin Analogues on Cultured Trabecular Meshwork Cells by Coherent Anti-Stokes Raman Scattering

    PubMed Central

    Lei, Tim C.; Masihzadeh, Omid; Kahook, Malik Y.; Ammar, David A.

    2013-01-01

    Purpose. The aim of this study was to nondestructively monitor morphological changes to the lipid membranes of primary cultures of living human trabecular meshwork cells (hTMC) without the application of exogenous label. Methods. Live hTMC were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). The hTMC were treated with a commercial formulation of latanoprost (0.5 μg/mL) for 24 hours before imaging. Untreated cells and cells treated with vehicle containing the preservative benzalkonium chloride (BAK; 2 μg/mL) were imaged as controls. After CARS/TPAF imaging, hTMC were fixed, stained with the fluorescent lipid dye Nile Red, and imaged by conventional confocal microscopy to verify lipid membrane structures. Results. Analysis of CARS/TPAF images of hTMC treated with latanoprost revealed multiple intracellular lipid membranes absent from untreated or BAK-treated hTMC. Treatment of hTMC with sodium fluoride or ouabain, agents shown to cause morphological changes to hTMC, also did not induce formation of intracellular lipid membranes. Conclusions. CARS microscopy detected changes in living hTMC morphology that were validated by subsequent histological stain. Prostaglandin-induced changes to hTMC involved rearrangement of lipid membranes within these cells. These in vitro results identify a novel biological response to a class of antiglaucoma drugs, and further experiments are needed to establish how this effect is involved in the hypotensive action of prostaglandin analogues in vivo. PMID:23900606

  5. Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics.

    PubMed

    Meyer, Tobias; Chemnitz, Mario; Baumgartl, Martin; Gottschall, Thomas; Pascher, Torbjörn; Matthäus, Christian; Romeike, Bernd F M; Brehm, Bernhard R; Limpert, Jens; Tünnermann, Andreas; Schmitt, Michael; Dietzek, Benjamin; Popp, Jürgen

    2013-07-16

    Over the past years fast label-free nonlinear imaging modalities providing molecular contrast of endogenous disease markers with subcellular spatial resolution have been emerged. However, applications of these imaging modalities in clinical settings are still at the very beginning. This is because single nonlinear imaging modalities such as second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) have only limited value for diagnosing diseases due to the small number of endogenous markers. Coherent anti-Stokes Raman scattering (CARS) microscopy on the other hand can potentially be added to SHG and TPEF to visualize a much broader range of marker molecules. However, CARS requires a second synchronized laser source and the detection of a certain wavenumber range of the vibrational spectrum to differentiate multiple molecules, which results in increased experimental complexity and often inefficient excitation of SHG and TPEF signals. Here we report the application of a novel near-infrared (NIR) fiber laser of 1 MHz repetition rate, 65 ps pulse duration, and 1 cm(-1) spectral resolution to realize an efficient but experimentally simple SGH/TPEF/multiplex CARS multimodal imaging approach for a label-free characterization of composition of complex tissue samples. This is demonstrated for arterial tissue specimens demonstrating differentiation of elastic fibers, triglycerides, collagen, myelin, cellular cytoplasm, and lipid droplets by analyzing the CARS spectra within the C-H stretching region only. A novel image analysis approach for multispectral CARS data based on colocalization allows correlating spectrally distinct pixels to morphologic structures. Transfer of this highly precise but compact and simple to use imaging approach into clinical settings is expected in the near future. PMID:23781826

  6. Dynamical study of the water penetration process into a cellulose acetate film studied by coherent anti-Stokes Raman scattering (CARS) microspectroscopy

    NASA Astrophysics Data System (ADS)

    Fujisawa, Rie; Ohno, Tomoya; Kaneyasu, Junya F.; Leproux, Philippe; Couderc, Vincent; Kita, Hiroshi; Kano, Hideaki

    2016-07-01

    The penetration process of water into a cellulose acetate film was traced in real time by coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The Cdbnd O stretch mode was red-shifted due to hydrogen-bond formation. We also found that two Raman bands at 1605 cm-1 and 1665 cm-1 emerged only in the early stage of the water penetration process. Based on the combined analysis of the experimental and computational studies, these bands at 1605 cm-1 and 1665 cm-1 were assigned as the OH bend mode due to hydrogen-bonded penetrated water and hydrogen-bonded OH groups in pyranose rings, respectively.

  7. Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber

    SciTech Connect

    Fedotov, A.B.; Zheltikov, A.M.; Konorov, S.O.; Mitrokhin, V.P.; Serebryannikov, E.E

    2004-10-01

    Hollow-core photonic-crystal fibers are shown to offer the unique possibility of coherent excitation and probing of Raman-active vibrations in molecules by isolated air-guided modes of electromagnetic radiation. A 3-cm section of a hollow photonic-crystal fiber is used to prepare isolated air-guided modes of pump and probe fields for a coherent excitation of 2331-cm{sup -1} Q-branch vibrations of molecular nitrogen in the gas filling the fiber core, enhancing coherent anti-Stokes Raman scattering through these vibrations by a factor of 15 relative to the regime of tight focusing.

  8. Raman Spectroscopy and Related Techniques in Biomedicine

    PubMed Central

    Downes, Andrew; Elfick, Alistair

    2010-01-01

    In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes) and in vitro (in optical microscopes). PMID:21151763

  9. Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2016-02-01

    A structure's temperature can be determined from the Raman spectrum using the frequency and the ratio of the intensities of the anti-Stokes and Stokes signals (the Ias/Is ratio). In this study, we apply this approach and an equation relating the temperature, Raman frequency, and Ias/Is ratio to in-situ estimation of the phase change point of a (3-aminopropyl)triethoxysilane self-assembled monolayer (APTES SAM). Ag nanoparticles were deposited on APTES to enhance the Raman signals. A time-resolved measurement mode was used to monitor the variation in the Raman spectra in situ. Moreover, the structural change in APTES SAM (from ordered to disordered structure) under heating was discussed in detail, and the phase change point (around 118 °C) was calculated.

  10. A triple-resonance Raman chip for simultaneous enhancement of Stokes and anti-Stokes lines utilizing both localized and non-localized plasmonic resonance

    NASA Astrophysics Data System (ADS)

    Lin, Jiao; Zhang, Yuan; Lee, El-Hang; He, Sailing

    2015-10-01

    In this paper we report a triple-resonance surface-enhanced Raman scattering (SERS) chip that is able to provide simultaneous field enhancement for both the Stokes and anti-Stokes lines. The structure consists of an array of periodic gold bowties placed on the surface of a uniform gold film. It can support two localized surface plasmonic resonances (LSPRs): an electric dipole binding resonance (EDBR) and a magnetic dipole resonance (MDR). A third field enhancement peak is obtained by utilizing the strong interaction between the non-localized surface plasmonic resonance (non-localized SPR) and the LSPR, which greatly raises the field enhancement for the non-localized SPR. In addition, a gold strip-line resonator is incorporated to further enhance the local field intensity. Consequently, the field enhancement of the three peaks are all increased. Compared with the same structure without strip, the periodic bowtie-strip compound structure on gold film can gain as much as ∼22.8 times and ∼3.6 times larger Raman intensity enhancement simultaneously for both the Stokes and anti-Stokes lines.

  11. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  12. Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    PubMed

    Miller, Joseph D; Dedic, Chloe E; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-02-27

    Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, low-temperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, thereby improving thermometric accuracy with a time- and frequency-resolved theoretical model. PMID:22418304

  13. Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    Lee, Young Jong; Vega, Sebastián L.; Patel, Parth J.; Aamer, Khaled A.; Moghe, Prabhas V.

    2014-01-01

    We use broadband coherent anti-Stokes Raman scattering (BCARS) microscopy to characterize lineage commitment of individual human mesenchymal stem cells cultured in adipogenic, osteogenic, and basal culture media. We treat hyperspectral images obtained by BCARS in two independent ways, obtaining robust metrics for differentiation. In one approach, pixel counts corresponding to functional markers, lipids, and minerals, are used to classify individual cells as belonging to one of the three lineage groups: adipocytes, osteoblasts, and undifferentiated stem cells. In the second approach, we use multivariate analysis of Raman spectra averaged exclusively over cytosol regions of individual cells to classify the cells into the same three groups, with consistent results. The exceptionally high speed of spectral imaging with BCARS allows us to chemically map a large number of cells with high spatial resolution, revealing not only the phenotype of individual cells, but also population heterogeneity in the degree of phenotype commitment. PMID:24224876

  14. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities. PMID:24510129

  15. In planta imaging of Δ9-tetrahydrocannabinolic acid in Cannabis sativa L. with hyperspectral coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Garbacik, Erik T.; Korai, Roza P.; Frater, Eric H.; Korterik, Jeroen P.; Otto, Cees; Offerhaus, Herman L.

    2013-04-01

    Nature has developed many pathways to produce medicinal products of extraordinary potency and specificity with significantly higher efficiencies than current synthetic methods can achieve. Identification of these mechanisms and their precise locations within plants could substantially increase the yield of a number of natural pharmaceutics. We report label-free imaging of Δ9-tetrahydrocannabinolic acid (THCa) in Cannabis sativa L. using coherent anti-Stokes Raman scattering microscopy. In line with previous observations we find high concentrations of THCa in pistillate flowering bodies and relatively low amounts within flowering bracts. Surprisingly, we find differences in the local morphologies of the THCa-containing bodies: organelles within bracts are large, diffuse, and spheroidal, whereas in pistillate flowers they are generally compact, dense, and have heterogeneous structures. We have also identified two distinct vibrational signatures associated with THCa, both in pure crystalline form and within Cannabis plants; at present the exact natures of these spectra remain an open question.

  16. Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering (CARS) microscopy with singular value decomposition (SVD) analysis.

    PubMed

    Khmaladze, Alexander; Jasensky, Joshua; Price, Erika; Zhang, Chi; Boughton, Andrew; Han, Xiaofeng; Seeley, Emily; Liu, Xinran; Banaszak Holl, Mark M; Chen, Zhan

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy can be used as a powerful imaging technique to identify chemical compositions of complex samples in biology, biophysics, medicine, and materials science. In this work we developed a CARS microscopic system capable of hyperspectral imaging. By employing an ultrafast laser source, a photonic crystal fiber, and a scanning laser microscope together with spectral detection by a highly sensitive back-illuminated cooled charge-coupled device (CCD) camera, we were able to rapidly acquire and process hyperspectral images of live cells with chemical selectivity. We discuss various aspects of hyperspectral CARS image analysis and demonstrate the use of singular value decomposition methods to characterize the cellular lipid content. PMID:25198903

  17. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames. PMID:23503231

  18. Raman spectroscopy

    SciTech Connect

    Gerrard, D.L.; Bowley, H.J.

    1986-04-01

    The period of this review is from late 1983 to late 1985. During this time over 5000 papers have appeared in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to several new areas of study. As in the previous review in this series most of the applications relevant to solids are covered in one or other of the ten categories, which are the same as those used previously. However, aspects relating to solids which are not covered elsewhere include general reviews and the specific field of semiconductors. This is an area of great current interest in terms of Raman spectroscopy and the characterization of semiconductor materials and surfaces has been reported. Raman scattering also provides a new probe for the elucidation of structural properties of microcrystalline silicon and resonance Raman scattering in silicon at elevated temperatures has been studied. Many studies on carbon have also appeared in the literature including that of the various types of carbon, the use of Raman scattering to investigate disorder and crystallite formation in annealed carbon, in situ studies of intercalation kinetics, structural aspects of cokes and coals, and instrumentation for coal gasification. Raman spectroscopy has been applied to such diverse systems as organic crystals, the determination of modifications in layered crystals, the detection of explosives on silica gel or carbon, diagnostics of heterogeneous chemical processes, and a study of tungsten-halogen bulbs. Laser Raman spectroscopy has also been coupled with liquid chromatography and phase-resolved background suppression has been used to enhance Raman spectra. 397 references.

  19. New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements.

    SciTech Connect

    Lempert, Walter R.; Barnat, Edward V.; Kearney, Sean Patrick; Serrano, Justin Raymond

    2010-07-01

    We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurements with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.

  20. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.

    PubMed

    Mytskaniuk, Vasyl; Bardin, Fabrice; Boukhaddaoui, Hassan; Rigneault, Herve; Tricaud, Nicolas

    2016-01-01

    Laser scanning microscopes combining a femtosecond Ti:sapphire laser and an optical parametric oscillator (OPO) to duplicate the laser line have become available for biologists. These systems are primarily designed for multi-channel two-photon fluorescence microscopy. However, without any modification, complementary non-linear optical microscopy such as second-harmonic generation (SHG) or third harmonic generation (THG) can also be performed with this set-up, allowing label-free imaging of structured molecules or aqueous medium-lipid interfaces. These techniques are well suited for in-vivo observation, but are limited in chemical specificity. Chemically selective imaging can be obtained from inherent vibration signals based on Raman scattering. Confocal Raman microscopy provides 3D spatial resolution, but it requires high average power and long acquisition time. To overcome these difficulties, recent advances in laser technology have permitted the development of nonlinear optical vibrational microscopy, in particular coherent anti-Stokes Raman scattering (CARS). CARS microscopy has therefore emerged as a powerful tool for biological and live cell imaging, by chemically mapping lipids (via C-H stretch vibration), water (via O-H stretch vibrations), proteins or DNA. In this work, we describe the implementation of the CARS technique on a standard OPO-coupled multiphoton laser scanning microscope. It is based on the in-time synchronization of the two laser lines by adjusting the length of one of the laser beam path. We present a step-by-step implementation of this technique on an existing multiphoton system. A basic background in experimental optics is helpful and the presented system does not require expensive supplementary equipment. We also illustrate CARS imaging obtained on myelin sheaths of sciatic nerve of rodent, and we show that this imaging can be performed simultaneously with other nonlinear optical imaging, such as standard two-photon fluorescence technique

  1. Measurement of vibrationally excited N2(v) in an atmospheric-pressure air pulsed corona discharge using coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Teramoto, Yoshiyuki; Ono, Ryo

    2014-08-01

    Vibrationally excited N2(v = 1, 2) in an atmospheric-pressure air pulsed corona discharge was measured using coherent anti-Stokes Raman scattering (CARS). In a dry air discharge, the vibrational temperature determined from the ratio N2(v = 2)/N2(v = 0), Tv2, was approximately 500 K higher than that determined from N2(v = 1)/N2(v = 0), Tv1, immediately after the discharge pulse. Both vibrational temperatures reached equilibrium within 100 μs after the discharge pulse by the vibration-to-vibration (V-V) process of N2-N2. The translational temperature was also measured using CARS. The rise in the translational temperature due to vibration-to-translation (V-T) energy transfer was not observed for a postdischarge time of 5 μs-1 ms in the dry-air discharge. However, when the air was humidified, a significant V-T energy transfer was observed. It was due to an extremely rapid V-T process of H2O-H2O following the V-V process of N2-H2O. Measurements showed that the humidification of the ambient air accelerated the decrease in the N2 vibrational temperature and increased the translational temperature. N2(v) was generated mostly in the secondary streamer, not in the primary one, according to estimation from the measured N2(v) density.

  2. Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Yi, Yung-Hsiang; Chien, Cheng-Hao; Chen, Wei-Wen; Ma, Tian-Hsiang; Liu, Kuan-Yu; Chang, Yu-Sun; Chang, Ta-Chau; Lo, Szecheng J

    2014-01-01

    Lipid is an important energy source and essential component for plasma and organelle membranes in all kinds of cells. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free and nonlinear optical technique that can be used to monitor the lipid distribution in live organisms. Here, we utilize CARS microscopy to investigate the pattern of lipid droplets in two live Caenorhabditis elegans mutants (fat-2 and fat-3). The CARS images showed a striking decrease in the size, number, and content of lipid droplets in the fat-2 mutant but a slight difference in the fat-3 mutant as compared with the wild-type worm. Moreover, a nondroplet-like structure with enhanced CARS signal was detected for the first time in the uterus of fat-2 and fat-3 mutants. In addition, transgenic fat-2 mutant expressing a GFP fusion protein of vitellogenin-2 (a yolk lipoprotein) revealed that the enhanced CARS signal colocalized with the GFP signal, which suggests that the nondroplet-like structure is primarily due to the accumulation of yolk lipoproteins. Together, this study implies that CARS microscopy is a potential tool to study the distribution of yolk lipoproteins, in addition to lipid droplets, in live animals. PMID:23979461

  3. Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering

    SciTech Connect

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-11-01

    Pure rotational coherent anti-Stokes Raman scattering measurements of pure CO2 have been performed in a temperature range from 300 to 773 K and for pressure from 0.1 to 5 MPa for the purpose of time-resolved CO2 thermometry. Particular emphasis was put on the comparison of several linewidth approximations to model the experimental spectra. Generally good agreement of the temperature mean values with the thermocouple reference has been found for all models over almost the whole pressure and temperature range investigated. The standard deviations, which increased with temperature, were comparable with or better than the results gained for single-shot measurements of pure N2 or O2-N2 mixtures. Yet for high particle densities close to the critical point of CO2 the limitation of the models became obvious, owing to the strongly increased influence of motional narrowing effects. The characteristics of these effects have been demonstrated by measurements even closer to the critical conditions.

  4. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    NASA Astrophysics Data System (ADS)

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-02-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration.

  5. Impact of refractive index mismatches on coherent anti-Stokes Raman scattering and multiphoton autofluorescence tomography of human skin in vivo.

    PubMed

    Weinigel, M; Breunig, H G; Darvin, M E; Klemp, M; Röwert-Huber, J; Lademann, J; König, K

    2015-09-01

    Optical non-linear multimodal tomography is a powerful diagnostic imaging tool to analyse human skin based on its autofluorescence and second-harmonic generation signals. Recently, the field of clinical non-linear imaging has been extended by adding coherent anti-Stokes Raman scattering (CARS)-a further optical sectioning method for the detection of non-fluorescent molecules. However, the heterogeneity of refractive indices of different substances in complex tissues like human skin can have a strong influence on CARS image formation and requires careful clinical interpretation of the detected signals. Interestingly, very regular patterns are present in the CARS images, which have no correspondence to the morphology revealed by autofluorescence at the same depth. The purpose of this paper is to clarify this phenomenon and to sensitize users for possible artefacts. A further part of this paper is the detailed comparison of CARS and autofluorescence images of healthy human skin in vivo covering the complete epidermis and part of the upper dermis by employing the flexible medical non-linear tomograph MPTflex CARS. PMID:26305454

  6. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Miller, Joseph D.; Roy, Sukesh; Slipchenko, Mikhail N.; Gord, James R.; Meyer, Terrence R.

    2011-08-01

    High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

  7. Coherent anti-Stokes Raman scattering microscope with a high-signal-to-noise ratio, high stability, and high-speed imaging for live cell observation

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi; Takimoto, Shinichi; Hashimoto, Takeshi

    2007-02-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy, which can produce images of specific molecules without staining, has attracted the attention of researchers, as it matches the need for molecular imaging and pathway analysis of live cells. In particular, there have been an increasing number of CARS experimental results regarding lipids in live cells, which cannot be fluorescently tagged while keeping the cells alive. One of the important applications of lipid research is for the metabolic syndrome. Since the metabolic syndrome is said to be related to the lipids in lipocytes, blood, arterial vessels, and so on, the CARS technique is expected to find application in this field. However, CARS microscopy requires a pair of picosecond laser pulses, which overlap both temporally and spatially. This makes the optical adjustments of a CARS microscope challenging. The authors developed a CARS unit that includes optics for easy and stable adjustment of the overlap of these laser pulses. Adding the CARS unit to a laser scanning microscope provides CARS images of a high signal-to-noise ratio, with an acquisition rate as high as 2 microseconds per pixel. Thus, images of fast-moving lipid droplets in Hela cells were obtained.

  8. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Christophersen, Philip C; Birch, Ditlev; Saarinen, Jukka; Isomäki, Antti; Nielsen, Hanne M; Yang, Mingshi; Strachan, Clare J; Mu, Huiling

    2015-01-10

    The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using different lipids with lysozyme incorporated either as an aqueous solution or as a solid powder. Lysozyme distribution in SLMs was investigated using CARS microscopy with supportive structural analysis using electron microscopy. The release of lysozyme from SLMs was investigated in a medium simulating the conditions in the human duodenum. Both preparation method and lipid excipient affected the lysozyme distribution and release from SLMs. Lysozyme resided in a hollow core within the SLMs when incorporated as an aqueous solution. In contrast, lysozyme incorporated as a solid was embedded in clusters in the solid lipid matrix, which required full lipolysis of the entire matrix to release lysozyme completely. Therefore, SLMs with lysozyme incorporated in an aqueous solution released lysozyme much faster than with lysozyme incorporated as a solid. In conclusion, CARS microscopy was an efficient and non-destructive method for elucidating the distribution of lysozyme in SLMs. The interpretation of protein distribution and release during lipolysis enabled elucidation of protein release mechanisms. In future, CARS microscopy analysis could facilitate development of a wide range of protein-lipid matrices with tailor-made controlled release properties. PMID:25449810

  9. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering.

    PubMed

    Miller, Joseph D; Roy, Sukesh; Slipchenko, Mikhail N; Gord, James R; Meyer, Terrence R

    2011-08-01

    High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows. PMID:21934925

  10. In vivo monitoring specialized hepatocyte-like cells in Drosophila by coherent anti-Stokes Raman scattering (CARS) and two-photon excitation fluorescence (TPE-F) microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-03-01

    A group of specialized cells in Drosophila called oenocyte, sharing certain similar properties of hepatocytes in mammals, is known to play an important role in lipid metabolism. During starvation, the lipids are released from the fat body, and oenocytes then would accumulate lipid droplets and probably further oxidize them into shorter fatty acids chain as an energy source. Any genetic defect in lipid metabolism may result in different responses of oenocytes to starvation. To investigate this process in vivo, we used coherent anti-Stokes Raman scattering (CARS) and two-photon excitation fluorescence (TPE-F) microscopy to monitor oenocytes in living Drosophila larvae during starvation. We identified oenocytes by their intrinsic fluorescence and visualized lipid droplets by CARS signals at ~2845 cm-1 without any labeling. Compared with the wild-type, mutants with defects in lipid metabolism show different accumulation of lipid droplets in oenocytes. While some mutant accumulates much less lipid droplets in oenocytes during starvation, some has many lipid droplets in oenocytes even though they were fed with plenty of foods. Unlike traditional tissue staining, in vivo imaging allows us to specifically monitor the changes in individual, and provides us more information on the dynamic process of lipid metabolism in Drosophila.

  11. Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Yi, Yung-Hsiang; Chien, Cheng-Hao; Chen, Wei-Wen; Ma, Tian-Hsiang; Liu, Kuan-Yu; Chang, Yu-Sun; Chang, Ta-Chau; Lo, Szecheng J.

    2014-01-01

    Lipid is an important energy source and essential component for plasma and organelle membranes in all kinds of cells. Coherent anti-Stokes Raman scattering (CARS) microscopy is a label-free and nonlinear optical technique that can be used to monitor the lipid distribution in live organisms. Here, we utilize CARS microscopy to investigate the pattern of lipid droplets in two live Caenorhabditis elegans mutants (fat-2 and fat-3). The CARS images showed a striking decrease in the size, number, and content of lipid droplets in the fat-2 mutant but a slight difference in the fat-3 mutant as compared with the wild-type worm. Moreover, a nondroplet-like structure with enhanced CARS signal was detected for the first time in the uterus of fat-2 and fat-3 mutants. In addition, transgenic fat-2 mutant expressing a GFP fusion protein of vitellogenin-2 (a yolk lipoprotein) revealed that the enhanced CARS signal colocalized with the GFP signal, which suggests that the nondroplet-like structure is primarily due to the accumulation of yolk lipoproteins. Together, this study implies that CARS microscopy is a potential tool to study the distribution of yolk lipoproteins, in addition to lipid droplets, in live animals.

  12. Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2011-01-01

    Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila.

  13. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R.; Elfick, Alistair P. D.

    2012-11-01

    Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy as a minimally invasive technology to monitor the differentiation of adipose-derived stem cells (ADSCs) into adipocytes and osteoblasts. The induction of ADSCs toward these two different cell lineages was monitored simultaneously using coherent anti-Stokes Raman scattering, two photon excitation fluorescence (TPEF), and second harmonic generation at different time points. Changes in the cell's morphology, together with the appearance of biochemical markers of cell maturity were observed, such as lipid droplet accumulation for adipo-induced cells and the formation of extra-cellular matrix for osteo-induced cells. In addition, TPEF of flavoproteins was identified as a proxy for changes in cell metabolism that occurred throughout ADSC differentiation toward both osteoblasts and adipocytes. These results indicate that multimodal microscopy has significant potential as an enabling technology for the label-free investigation of SC differentiation.

  14. Flexible and stable optical parametric oscillator based laser system for coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Zhang, Wei; Parsons, Maddy; McConnell, Gail

    2010-06-01

    The characteristics of a stable and flexible laser system based on a synchronously pumped optical parametric oscillator (OPO) is presented. This OPO can offer very stable operation with both approximately 1 ps and approximately 300 fs outputs over a broad wavelength range, i.e., 920-1200 nm. Combining the pump tuning with the OPO tuning, a total Raman range of 1900-5500 cm(-1) is accessible. For maximum spectral sensitivity, the CARS microsope based on the ps laser system is presented in detail. The lateral resolution of the microscope is diffraction limited to be about 390 nm. Fast wavelength switching (sub-second) between two Raman vibrational frequencies, i.e., 2848 cm(-1) for C--H aliphatic vibrations and 3035 cm(-1) for C--H aromatic vibrations is presented as an example, although this also extends to other Raman frequencies. The possibility of obtaining a multimodal imaging system based on the fs laser system is also discussed. PMID:19941296

  15. Near-resonance enhanced O2 detection for dual-broadband pure rotational coherent anti-Stokes Raman scattering with an ultraviolet-visible setup at 266 nm

    SciTech Connect

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-07-01

    Broadband and dual-broadband coherent anti-Stokes Raman scattering (CARS) are widely established tools for nonintrusive gas diagnostics. Up to now the investigations have been mainly performed for electronic nonresonant conditions of the gas species of interest. We report on the enhancement of the O2-N2 detection limit of dual-broadband pure rotational CARS by shifting the wavelength of the narrowband pump laser from the commonly used 532-266 nm. This enhancement is caused when the Schumann-Runge absorption band is approached near 176 nm. The principal concept of this experiment, i.e., covering the Raman resonance with a single- or dual-broadband combination of lasers in the visible range and moving only the narrowband probe laser near or directly into electronic resonant conditions in the UV range, should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects for the purpose of single-shot concentration measurements of minority species. To quantify the enhancement in O2 sensitivity, comparative measurements at both a 266 and a 532 nm narrowband pump laser wavelength are presented, employing a 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyram (DCM) dye laser as a broadband laser source at 635 nm. An increase of approximately 13% in the ratio of the rotational CARS cross sections of O2 and N2 was obtained. The broad spectral width of the CARS excitation profile was approximately equal for both setups. Further enhancement should be achievable by shifting the narrowband pump laser closer toward 176 nm, for example, with a frequency-doubled optical parametric oscillator or an excimer laser. The principal concept of this experiment should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects of the narrowband pump laser with electronic transitions of minority species for the purpose of single-shot concentration measurements of those species.

  16. Raman spectroscopy

    SciTech Connect

    Gerrard, D.L.; Bowley, H.J.

    1988-06-15

    The period of this review is from late 1985 to late 1987. During this time over 6000 papers have been published in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to new areas of study. This article covers only those papers that are relevant to the analytical chemist and this necessitates a highly selective approach. There are some areas that have been the subject of many papers with relatively few being of analytical interest. In such cases the reader is referred to appropriate reviews which are detailed in this section.

  17. Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering.

    PubMed

    Engel, Sascha R; Koegler, Andreas F; Gao, Yi; Kilian, Daniel; Voigt, Michael; Seeger, Thomas; Peukert, Wolfgang; Leipertz, Alfred

    2012-09-01

    For the production of oxide nanoparticles at a commercial scale, flame spray processes are frequently used where mostly oxygen is fed to the flame if high combustion temperatures and thus small primary particle sizes are desired. To improve the understanding of these complex processes in situ, noninvasive optical measurement techniques were applied to characterize the extremely turbulent and unsteady combustion field at those positions where the particles are formed from precursor containing organic solvent droplets. This particle-forming regime was identified by laser-induced breakdown detection. The gas phase temperatures in the surrounding of droplets and particles were measured with O(2)-based pure rotational coherent anti-Stokes Raman scattering (CARS). Pure rotational CARS measurements benefit from a polarization filtering technique that is essential in particle and droplet environments for acquiring CARS spectra suitable for temperature fitting. Due to different signal disturbing processes only the minority of the collected signals could be used for temperature evaluation. The selection of these suitable signals is one of the major problems to be solved for a reliable evaluation process. Applying these filtering and signal selection steps temperature measurements have successfully been conducted. Time-resolved, single-pulse measurements exhibit temperatures between near-room and combustion temperatures due to the strongly fluctuating and flickering behavior of the particle-generating flame. The mean flame temperatures determined from the single-pulse data are decreasing with increasing particle concentrations. They indicate the dissipation of large amounts of energy from the surrounding gas phase in the presence of particles. PMID:22945152

  18. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Miller, Joseph D.; Slipchenko, Mikhail N.; Meyer, Terrence R.; Prince, Benjamin D.; Roy, Sukesh; Gord, James R.

    2014-01-01

    The hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs/ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs/ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs/ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications.

  19. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R; Prince, Benjamin D; Roy, Sukesh; Gord, James R

    2014-01-14

    The hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering (fs∕ps CARS) technique presents a promising alternative to either fs time-resolved or ps frequency-resolved CARS in both gas-phase thermometry and condensed-phase excited-state dynamics applications. A theoretical description of time-dependent CARS is used to examine this recently developed probe technique, and quantitative comparisons of the full time-frequency evolution show excellent accuracy in predicting the experimental vibrational CARS spectra obtained for two model systems. The interrelated time- and frequency-domain spectral signatures of gas-phase species produced by hybrid fs∕ps CARS are explored with a focus on gas-phase N2 vibrational CARS, which is commonly used as a thermometric diagnostic of combusting flows. In particular, we discuss the merits of the simple top-hat spectral filter typically used to generate the ps-duration hybrid fs∕ps CARS probe pulse, including strong discrimination against non-resonant background that often contaminates CARS signal. It is further demonstrated, via comparison with vibrational CARS results on a time-evolving solvated organic chromophore, that this top-hat probe-pulse configuration can provide improved spectral resolution, although the degree of improvement depends on the dephasing timescales of the observed molecular modes and the duration and timing of the narrowband final pulse. Additionally, we discuss the virtues of a frequency-domain Lorentzian probe-pulse lineshape and its potential for improving the hybrid fs∕ps CARS technique as a diagnostic in high-pressure gas-phase thermometry applications. PMID:24437886

  20. Fiber bundle based endomicroscopy prototype with two collection channels for simultaneous coherent anti-Stokes Raman scattering and second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhengfan; Satira, Zachary A.; Wang, Xi; Xu, Xiaoyun; Chen, Xu; Wong, Kelvin; Chen, Shufen; Xin, Jianguo; Wong, Stephen T. C.

    2014-02-01

    Label-free multiphoton imaging is promising for replacing biopsy and could offer new strategies for intraoperative or surgical applications. Coherent anti-Stokes Raman scattering (CARS) imaging could provide lipid-band contrast, and second harmonic generation (SHG) imaging is useful for imaging collagen, tendon and muscle fibers. A combination of these two imaging modalities could provide rich information and this combination has been studied by researchers to investigate diseases through microscopy imaging. The combination of these two imaging modalities in endomicroscopy imaging has been rarely investigated. In this research, a fiber bundle consisted of one excitation fiber and 18 collection fibers was developed in our endomicroscopy prototype. The 18 collection fibers were divided into two collection channels with 9 fibers in each channel. These two channels could be used together as one channel for effective signal collection or used separately for simplifying detection part of the system. Differences of collection pattern of these two channels were investigated. Collection difference of central excitation fiber and surrounding 18 fibers was also investigated, which reveals the potential ability of this system to measure forward to backward (F/B) ratio in SHG imaging. CARS imaging of mouse adipocyte and SHG imaging of mouse tail tendon were performed to demonstrate the CARS and SHG tissue imaging performance of this system. Simultaneous CARS and SHG imaging ability of this system was demonstrated by mouse tail imaging. This fiber bundle based endomicroscopy imaging prototype, offers a promising platform for constructing efficient fiber-based CARS and SHG multimodal endomicroscopes for label free intraoperative imaging applications.

  1. Paclitaxel distribution in poly(ethylene glycol) / poly(lactide-co-glycolic acid) blends and its release visualized by coherent anti-Stokes Raman scattering microscopy

    PubMed Central

    Kang, Eunah; Robinson, Joshua; Park, Kinam; Cheng, Ji-Xin

    2007-01-01

    Mechanisms underlying the release of paclitaxel (PTX) from poly(ethylene glycol)/poly(lactic-co-glycolic acid) (PEG/PLGA) blends were investigated by coherent anti-Stokes Raman scattering (CARS) microscopy. PLGA, PEG, and PTX were selectively imaged by using the resonant CARS signal from the CH3, CH2, and aromatic CH stretch vibrations, respectively. Phase segregation was observed in PLGA films containing 10 to 40 wt.% PEG in the absence of PTX loading. The PEG phase existed in the form of crystalline fibers in the (8:2, weight ratio) and (7:3) PLGA/PEG films. CARS observation indicated that PTX preferentially partitioned into the PEG domains in the (9:1) and (8:2) PLGA/PTX films, but exhibited a uniform mixing with both PLGA and PEG in the (7:3) PLGA/PEG film. The solid dispersion of PTX into PEG domains was attributed to a strong interaction between PTX and PEG, supported by the disappearance of PEG crystallization in the PTX-loaded PLGA/PEG film evidenced through X-ray diffraction analysis. PTX release was induced by exposing the film to an aqueous solution and monitored in real time by CARS and two-photon fluorescence microscopy. Fast dissolution of both PEG and PTX was observed at the film surface. Upon infiltration of water into the film, the PEG domains rearranged into ring structures enriched by both PTX and PEG. The CARS data provided a visual evidence explaining the accelerated burst release followed by more sustained release of PTX from the PLGA/PEG films as measured by HPLC. PMID:17574291

  2. The manipulation of massive ro-vibronic superpositions using time frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS): from quantum control to quantum computing

    NASA Astrophysics Data System (ADS)

    Zadoyan, R.; Kohen, D.; Lidar, D. A.; Apkarian, V. A.

    2001-05-01

    Molecular ro-vibronic coherences, joint energy-time distributions of quantum amplitudes, are selectively prepared, manipulated, and imaged in time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS) measurements using femtosecond laser pulses. The studies are implemented in iodine vapor, with its thermally occupied statistical ro-vibrational density serving as initial state. The evolution of the massive ro-vibronic superpositions, consisting of 10 3 eigenstates, is followed through two-dimensional images. The first- and second-order coherences are captured using time-integrated frequency-resolved CARS, while the third-order coherence is captured using time-gated frequency-resolved CARS. The Fourier filtering provided by time-integrated detection projects out single ro-vibronic transitions, while time-gated detection allows the projection of arbitrary ro-vibronic superpositions from the coherent third-order polarization. A detailed analysis of the data is provided to highlight the salient features of this four-wave mixing process. The richly patterned images of the ro-vibrational coherences can be understood in terms of phase evolution in rotation-vibration-electronic Hilbert space, using time-circuit diagrams. Beside the control and imaging of chemistry, the controlled manipulation of massive quantum coherences suggests the possibility of quantum computing. We argue that the universal logic gates necessary for arbitrary quantum computing - all single qubit operations and the two-qubit controlled-NOT (CNOT) gate - are available in time-resolved four-wave mixing in a molecule. The molecular rotational manifold is naturally "wired" for carrying out all single qubit operations efficiently, and in parallel. We identify vibronic coherences as one example of a naturally available two-qubit CNOT gate, wherein the vibrational qubit controls the switching of the targeted electronic qubit.

  3. Inverse Raman bands in ultrafast Raman loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Xueqiong; Li, Xiuting; Niu, Kai; Lee, Soo-Y.

    2011-10-01

    Ultrafast Raman loss spectroscopy (URLS) is equivalent to anti-Stokes femtosecond stimulated Raman spectroscopy (FSRS), using a broadband probe pulse that extends to the blue of the narrow bandwidth Raman pump, and can be described as inverse Raman scattering (IRS). Using the Feynman dual time-line diagram, the third-order polarization for IRS with finite pulses can be written down in terms of a four-time correlation function. An analytic expression is obtained for the latter in the harmonic approximation which facilitates computation. We simulated the URLS of crystal violet (CV) for various resonance Raman pump excitation wavelengths using the IRS polarization expression with finite pulses. The calculated results agreed well with the experimental results of S. Umapathy et al., J. Chem. Phys. 133, 024505 (2010). In the limit of monochromatic Raman pump and probe pulses, we obtain the third-order susceptibility for multi-modes, and for a single mode we recover the well-known expression for the third-order susceptibility, χ _{IRS}^{(3)}, for IRS. The latter is used to understand the mode dependent phase changes as a function of Raman pump excitation in the URLS of CV.

  4. Flame studies with the coherent anti-Stokes Raman spectroscopy technique

    SciTech Connect

    Goss, L.P.; Switzer, G.L.

    1980-01-01

    Results of various studies on propane- and acetylene-fueled flames utilizing the laboratory CARS system at the AFWAL Aero Propulsion Laboratory are reported. The burner built for these studies was especially adapted for flame seeding and stability. The studies conducted include: (1) a comparison of sodium-line-reversal utilizing CARS single-shot thermometry, (2) temperature profiling of the acetylene- and propane-fueled flames, (3) referencing-scheme studies for number density determinations, (4) an oxygen study of the flame with background suppression, and (5) simultaneous single-shot measurements of number density and temperature on the propane-fueled flame.

  5. Amorphous silicon deposition diagnostics using coherent anti-Stokes Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Perry, J. W.; Coulter, D. R.; Radhakrishnan, G.

    1987-01-01

    This paper reports on an in situ silicon deposition process diagnostics, using CARS performed at state-of-the-art a-Si:H film deposition conditions in a reactor designed for a-Si:H solar cell fabrication. The diagnostics procedure measures the silane depletion in an RF plasma as a function of the silane flow rate (where the relationship is linear between 50-percent depletion, at a flow rate of 5.6 sccm, and about 8-percent depletion, at 80 sccm) and the RF power (where the silane depletion is linearly dependent on the RF power in the region of 4 to 12 W). The linear RF power dependence of the silane depletion is considered to be consistent with the mechanism of silane decomposition primarily by electron impact dissociations, while the flow rate dependence is interpreted in terms of the residence time of the SiH4 molecules in the glow discharge region, where an increase of the residence time at a low flow rate results in a high depletion ratio.

  6. New χ (3)-nonlinear-laser manifestations in tetragonal LuVO4 crystal: more than sesqui-octave Raman-induced Stokes and anti-Stokes comb generation and cascaded self-frequency ``tripling''

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Rhee, H.; Eichler, H. J.; Ueda, K.; Oka, K.; Shibata, H.

    2008-12-01

    We report the experimental investigations of nonlinear-laser effects in LuVO4 vanadate under one-micron picosecond Nd3+:Y3Al5O12 pumping. In this tetragonal host-crystal for Ln3+ lasants for the first time we excited ultra-broad, more than one and half octave (13500 cm-1) Raman induced Stokes and anti-Stokes generation combs and observed multi-step cascaded parametric χ (3)-lasing in UV spectral region. All generation lines were identified and attributed to SRS-promoting modes of the crystal ( ω SRS1≈900 cm-1 and ω SRS2≈113 cm-1). We classified this vanadate as a promising material for self-Raman laser converters.

  7. Coherent and spontaneous Raman spectroscopy in shocked and unshocked liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Schiferl, D.; Chatelet, M.; Turner, T.P.; Shaner, J.W.; Shampine, D.L.; Holt, W.T.

    1985-01-01

    Coherent and non-coherent Raman spectroscopy is being used to study the structure and energy transfer in molecular liquids at high pressures. Stimulated Raman scattering, coherent anti-Stokes Raman scattering, and Raman induced Kerr effect scattering measurements have been performed in liquid benzene and liquid nitromethane shocked to pressures up to 11 GPa. Frequency shifts were observed for the 992 cm/sup -1/ ring stretching mode of benzene and the 920 cm/sup -1/ CN stretching mode of nitromethane. Results of these dynamic experiments are compared to spontaneous Raman scattering measurements made in a high temperature diamond anvil cell. Also, a picosecond infrared pump/spontaneous anti-Strokes Raman probe experiment is being used to measure CH stretch vibrational relaxation times in liquid halogenated methanes statically compressed to a few tenths GPa. 87 refs., 17 figs.

  8. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.

    PubMed

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns. PMID:23622430

  9. Electric Field in a Plasma Channel in a High-Pressure Nanosecond Discharge in Hydrogen: A Coherent Anti-Stokes Raman Scattering Study

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Tskhai, S.; Krasik, Ya. E.

    2013-12-01

    Experimental results of a study of the electric field in a plasma channel produced during nanosecond discharge at a H2 gas pressure of (2-3)×105 Pa by the coherent anti-Stokes scattering method are reported. The discharge was ignited by applying a voltage pulse with an amplitude of ˜100 kV and a duration of ˜5 ns to a blade cathode placed at a distance of 10 and 20 mm from the anode. It was shown that this type of gas discharge is characterized by the presence of an electric field in the plasma channel with root-mean-square intensities of up to 30 kV/cm. Using polarization measurements, it was found that the direction of the electric field is along the cathode-anode axis.

  10. Electronically tunable coherent Raman spectroscopy using acousto-optics tunable filter.

    PubMed

    Petrov, Georgi I; Meng, Zhaokai; Yakovlev, Vladislav V

    2015-09-21

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, we demonstrated a novel instrumentation to the broadband coherent Raman spectroscopy. System's tunability allows assessing Raman transitions ranging from <400 cm(-1) to 4500 cm(-1). We validated the use of the new instrumentation by collecting coherent anti-Stokes spectra and stimulated Raman spectra of various samples. PMID:26406668

  11. The many facets of Raman spectroscopy for biomedical analysis.

    PubMed

    Krafft, Christoph; Popp, Jürgen

    2015-01-01

    A critical review is presented on the use of linear and nonlinear Raman microspectroscopy in biomedical diagnostics of bacteria, cells, and tissues. This contribution is combined with an overview of the achievements of our research group. Linear Raman spectroscopy offers a wealth of chemical and molecular information. Its routine clinical application poses a challenge due to relatively weak signal intensities and confounding overlapping effects. Nonlinear variants of Raman spectroscopy such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been recognized as tools for rapid image acquisition. Imaging applications benefit from the fact that contrast is based on the chemical composition and molecular structures in a label-free and nondestructive manner. Although not label-free, surface enhanced Raman scattering (SERS) has also been recognized as a complementary biomedical tool to increase sensitivity. The current state of the art is evaluated, illustrative examples are given, future developments are pointed out, and important reviews and references from the current literature are selected. The topics are identification of bacteria and single cells, imaging of single cells, Raman activated cell sorting, diagnosis of tissue sections, fiber optic Raman spectroscopy, and progress in coherent Raman scattering in tissue diagnosis. The roles of networks-such as Raman4clinics and CLIRSPEC on a European level-and early adopters in the translation, dissemination, and validation of new methods are discussed. PMID:25428454

  12. THz-Raman: accessing molecular structure with Raman spectroscopy for enhanced chemical identification, analysis, and monitoring

    NASA Astrophysics Data System (ADS)

    Heyler, Randy A.; Carriere, James T. A.; Havermeyer, Frank

    2013-05-01

    Structural analysis via spectroscopic measurement of rotational and vibrational modes is of increasing interest for many applications, since these spectra can reveal unique and important structural and behavioral information about a wide range of materials. However these modes correspond to very low frequency (~5cm-1 - 200cm-1, or 150 GHz-6 THz) emissions, which have been traditionally difficult and/or expensive to access through conventional Raman and Terahertz spectroscopy techniques. We report on a new, inexpensive, and highly efficient approach to gathering ultra-low-frequency Stokes and anti-Stokes Raman spectra (referred to as "THz-Raman") on a broad range of materials, opening potential new applications and analytical tools for chemical and trace detection, identification, and forensics analysis. Results are presented on explosives, pharmaceuticals, and common elements that show strong THz-Raman spectra, leading to clear discrimination of polymorphs, and improved sensitivity and reliability for chemical identification.

  13. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  14. Probing the reaction coordinate for ligand binding in hemoglobin using ultrafast transient Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Lingle, Robert, Jr.; Xu, Xiaobing; Hopkins, John B.

    1993-05-01

    Transient picosecond Raman spectroscopy is capable of differentiating vibrational relaxation from conformational changes by comparing the Stokes and anti-Stokes dynamics. We report pump-probe picosecond Raman experiments on oxy- and deoxyhemoglobin (oxyHb and deoxyHb, respectively) using 8 ps 532 nm pump pulses and 8 ps 355 nm probe pulses. Heme- to-protein vibrational cooling has been directly observed in deoxyHb for the first time, and the deconvolved cooling time constant is measured to be 2 - 5 ps. By applying our mode-specific Stokes and anti-Stokes technique to oxyHb, we find that any geminate recombination of photodeligated O2 must occur in either less than two picoseconds or longer than a nanosecond.

  15. Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.

    2007-04-01

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  16. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O

    2007-04-13

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering. PMID:17431177

  17. Auger resonant Raman spectroscopy

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    As noted above, traditional spectroscopy of the electronic structure of the inner shells of atoms, molecules, and solids is limited by the lifetime broadening of the core-excited states. This limitation can also be avoided with the non-radiative analog of X-ray Raman scattering - resonant Auger Raman spectroscopy. We have used this technique to study the K-shell excitation spectrum of argon as the photon energy is continuously scanned across threshold.

  18. Label-free analysis of cellular biochemistry by Raman spectroscopy and microscopy.

    PubMed

    Schie, Iwan W; Huser, Thomas

    2013-04-01

    We review the biomedical applications of Raman spectroscopy at the single cell and tissue level. Raman scattering is the inelastic scattering of light by molecular bonds resulting in a wealth of spectral bands, which enable the identification of biological materials and the nondestructive analysis of dynamic changes in their biochemistry. We briefly review the basics behind highly sensitive Raman spectroscopy and highlight recent applications to biomedical research. We discuss advanced chemometrics methods that are utilized to analyze Raman spectral data and which permit one, for example, to distinguish between normal and diseased cells or which enable one to follow the differentiation of stem cells without perturbing the cellular biochemistry. We also discuss advanced coherent Raman scattering techniques, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, which allow for the molecularly specific imaging of cells, tissues, and entire organisms in vitro and in vivo. PMID:23720335

  19. Coherent Raman spectroscopy: From statics to dynamics and kinetics, progress in nonlinear methods

    NASA Astrophysics Data System (ADS)

    Akhmanov, S. A.

    1987-12-01

    In spite of its 60-year history Raman spectroscopy is still progressing nowadays. Highly stable lasers and short pulse oscillators, perfect electronic data acquisition systems, new nonlinear optical approaches created new exciting perspectives for Raman spectroscopy. One of the most important tendencies is Raman spectroscopy application for studying nonequilibrium states, fast dynamics and kinetics of atoms, molecules and condensed matter. All these problems were until recently regarded as inaccessible for optical spectroscopy. Nonlinear optical techniques of Coherent Anti-Stokes Raman Scattering (CARS) and modulation spectroscopy appeared to be most effective and provided important real-time information on molecular excitation and dissociation dynamics, deep cooling of molecules in a supersonic jet, short laser pulse induced phase transitions at semiconductor interface and so on. Problems yet to be solved include direct measurement of intramolecular vibrational relaxation, conformations in biomolecules, optical “oscilloscopy” of molecular vibrations.

  20. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J

    2013-05-20

    A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems. PMID:23736451

  1. Simultaneous and time-resolved temperature and relative CO2-N2 and O2-CO2-N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa

    SciTech Connect

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-09-10

    Pure rotational coherent anti-Stokes Raman-scattering (CARS) measurements have been performed in binary CO2-N2 and ternary CO2-O2-N2 mixtures in a temperature range between 300 and 773 K and pressures from 0.1 to 5 MPa to prove its potential for simultaneous single-shot thermometry and multispecies concentration measurements. In pressurized systems the CO2 component has a strong spectral influence on the pure rotational CARS spectra. Because of this dominance, pure rotational CARS proves to be a sensitive tool to measure in high-pressure combustion systems and the relative CO2-N2 concentration in the lower temperature range simultaneously with the temperature and the relative O2-N2 concentration. The evaluation of the spectra utilized a least-sum-squared differences fit of the spectral shape, weighted either constantly or inversely with respect to the normalized signal intensity. The results of the simultaneous temperature and relative CO2-N2 and O2-CO2-N2 concentration measurements provided a good accuracy and precision both in temperature and in concentrations. Because of the strong increase in the relative spectral contribution of CO2 with rising pressure, the precision of the CO2 concentration determination is in general significantly improved toward higher pressures, thus also clearly enhancing the CO2 detectability. The influence of temperature, O2 and CO2 concentration, pressure, and the evaluation techniques employed on both the accuracy and the precision is explained as well as their cross dependencies. The influence and limitations of the approximations used to model the CO2 molecule are discussed.

  2. Molecule-surface interactions probed by optimized surface-enhanced coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Sinyukov, Alexander; Hua, Xia; Zhang, Guowan; Yang, Wenlong; Wang, Kai; Jha, Pankaj; Welch, George; Sokolov, Alexei; Scully, Marlan

    2012-06-01

    Nanoscale molecular sensing is carried out using a time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy with optimized laser pulse configurations. This novel technique combines the advantages of an improved spectral resolution, suppressed non-resonant background and near-field surface enhancement of the Raman signal. We detect two species of pyridine in a vicinity of aggregated gold nanoparticles and measure their vibrational dephasing times which reveal the effects of surface environment and molecule-surface interactions on the ultrafast molecular dynamics. This technique may be applied to a variety of artificial and biological systems and complex molecular mixtures and has a potential for nanophotonic sensing applications.

  3. Raman spectroscopy of composites

    SciTech Connect

    Young, R.J.; Andrews, M.C.; Yang, X.; Huang, Y.L.; Gu, X.; Day, R.J.

    1994-12-31

    It is demonstrated that Raman Spectroscopy can be used to follow the micromechanics of the deformation of high-performance fibers within composites. The technique can be applied to a wide range of fiber systems including aramids, carbon and ceramic (using fluorescence spectroscopy) fibers. Well-defined Raman spectra are obtained and the position of the Raman bands shift on the application of stress or strain. It is possible to determine the point-to-point variation of strain along an individual fiber inside a transparent matrix under any general state of stress or strain. Examples are given of the use of the technique to study a variety of phenomena in a wide range of composite systems. The phenomena investigated include thermal stresses, fiber/matrix adhesion, matrix yielding for both fragmentation and pull-out tests. The systems studied include aramid/epoxy, carbon/epoxy and ceramic-fiber/glass composites.

  4. Raman spectroscopy in astrobiology.

    PubMed

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces. PMID:16456933

  5. Single-pulse coherent Raman spectroscopy in shock-compressed benzene

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Schiferl, D.; Shaner, J.W.

    1983-01-01

    Single-pulse backwards stimulated Raman and reflected broadband coherent anti-Stokes Raman spectroscopy (BSRC and RBBCARS) have been used to measure the vibrational frequency shifts of the 992 cm/sup -1/ ring-stretching mode of liquid benzene shock-compressed to pressures up to 1.2 GPa. The resulting shifts of approx. 7.5 cm/sup -1//GPa in the dynamic experiments are compared to spontaneous Raman-scattering measurements of heated samples compressed in a diamond-anvil cell. RBBCARS was used to simultaneously measure the ring-stretching mode vibrational frequencies of liquid benzene/liquid perdeuterobenzene mixtures shock-compressed to pressures up to 1.53 GPa. Additional experiments that demonstrate the difficulty of using polarization-sensitive coherent Raman techniques, such as Raman-induced Kerr effect spectroscopy (RIKES), in shock-compressed samples are described.

  6. Fiber enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Frosch, T.; Yan, D.; Hanf, S.; Popp, J.

    2014-05-01

    Fiber enhanced Raman sensing is presented for versatile and extremely sensitive analysis of pharmaceutical drugs and biogenic gases. Elaborated micro-structured optical fibers guide the light with very low losses within their hollow core and provide at the same time a miniaturized sample container for the analytes. Thus, fiber enhanced Raman spectroscopy (FERS) allows for chemically selective detection of minimal sample amounts with high sensitivity. Two examples are presented in this contribution: (i) the detection of picomolar concentrations of pharmaceutical drugs; and (ii) the analysis of biogenic gases within a complex mixture of gases with analytical sensitivities in the ppm range.

  7. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    PubMed Central

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-01-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm−1 to 4500 cm−1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies. PMID:26828198

  8. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF)

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  9. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF).

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2016-01-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm(-1) to 4500 cm(-1), sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies. PMID:26828198

  10. Measurement of detonation temperature of hydrogen-oxygen mixture by CARS (Coherent Anti-Stokes Raman Spectroscopy)

    NASA Technical Reports Server (NTRS)

    Tezaki, Atsumu; Matsui, Hiroyuki; Kawamura, Yoshiro

    1988-01-01

    It was confirmed that CARS is very useful as a temperature measurement method of detonation. By revising the detecting system so that a lot of information can be handled simultaneously like an optical multi-channel analyzer, it is possible to obtain information concerning the detailed three dimensional structure of detonation which has never been obtained.

  11. [Improvement of anti-stokes energy transfer between rare earth ions--2. Numerical calculation and analysis].

    PubMed

    Chen, Xiao-bo; Wang, Ce; Kang, Dong-guo; Sawanobori, Naruhito; Wang, Shui-feng; Li, Yong-liang; Wang, Ping

    2010-08-01

    The dynamics of all levels were calculated numerically in the present article for Er(0.5)Yb(3):FOV oxyfluoride nanophase vitroceramics. The population dynamical processes were analyzed carefully. It was found for the first time that traditional phonon-assisted energy transfer theory of rare earth ion energy transfer can not well explain the observed experimental calibrated results, as it does not take into account the difference between Stokes and anti-Stokes process. A coefficient, the improved factor of the intensity ratio of Stokes to anti-Stokes process in quantum Raman theory compared to classical Raman theory, was introduced for the first time to successfully describe the anti-Stokes energy transfer. The theoretical improvement results are coincident with experiments very well. This improvement is very significant and indispensable when the photonics of nanomaterials is probed. PMID:20939297

  12. Nonlinear Raman Techniques in Femtosecond Time Resolved Spectroscopy for the Analysis and Control of Molecular Dynamics

    SciTech Connect

    Materny, Arnulf; Konradi, Jakow; Namboodiri, Vinu; Namboodiri, Mahesh; Scaria, Abraham

    2008-11-14

    The use of four-wave mixing techniques in femtosecond time-resolved spectroscopy has considerable advantages. Due to the many degrees of freedom offered e.g. by coherent anti-Stokes Raman scattering (CARS), the dynamics even of complex systems can be analyzed in detail. Using pulse shaping techniques in combination with a self-learning loop approach, molecular mode excitation can be controlled very efficiently in a multi-photon excitation process. Results obtained from the optimal control of CARS on {beta}-carotene are discussed.

  13. Tunable sideband laser from cascaded four-wave mixing in thin glass for ultra-broadband femtosecond stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Liangdong; Liu, Weimin; Fang, Chong

    2013-08-01

    We demonstrate the generation of broadband up-converted multicolor array (BUMA) in a thin BK7 glass slide using two noncollinear weak near-IR laser pulses with various crossing angles. The BUMA signal arises from cubic nonlinear χ(3):χ(3) processes via cascaded four-wave mixing of the two incident beams. Broad and continuous tunability of BUMA is simply achieved by varying the time delay between the two pulses. We implement one of the BUMA sidebands as the probe pulse for femtosecond stimulated Raman spectroscopy and collect a solvent mixture anti-Stokes Raman spectrum with an ultrabroad detection range of ca. 100-4000 cm-1.

  14. Raman Spectroscopy of Cocrystals

    NASA Astrophysics Data System (ADS)

    Rooney, Frank; Reardon, Paul; Ochoa, Romulo; Abourahma, Heba; Marti, Marcus; Dimeo, Rachel

    2010-02-01

    Cocrystals are a class of compounds that consist of two or more molecules that are held together by hydrogen bonding. Pharmaceutical cocrystals are those that contain an active pharmaceutical ingredient (API) as one of the components. Pharmaceutical cocrystals are of particular interest and have gained a lot of attention in recent years because they offer the ability to modify the physical properties of the API, like solubility and bioavailability, without altering the chemical structure of the API. The APIs that we targeted for our studies are theophylline (Tp) and indomethacin (Ind). These compounds have been mixed with complementary coformers (cocrystal former) that include acetamide (AcONH2), melamine (MLM), nicotinic acid (Nic-COOH), 4-cyanopyridine (4-CNPy) and 4-aminopyridine (4-NH2Py). Raman spectroscopy has been used to characterize these cocrystals. Spectra of the cocrystals were compared to those of the coformers to analyze for peak shifts, specifically those corresponding to hydrogen bonding. A 0.5 m CCD Spex spectrometer was used, in a micro-Raman setup, for spectral analysis. An Argon ion Coherent laser at 514.5 nm was used as the excitation source. )

  15. Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Dietze, Daniel R; Mathies, Richard A

    2016-05-01

    Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast nonlinear optical technique that provides vibrational structural information with high temporal (sub-50 fs) precision and high spectral (10 cm(-1) ) resolution. Since the first full demonstration of its capabilities ≈15 years ago, FSRS has evolved into a mature technique, giving deep insights into chemical and biochemical reaction dynamics that would be inaccessible with any other technique. It is now being routinely applied to virtually all possible photochemical reactions and systems spanning from single molecules in solution to thin films, bulk crystals and macromolecular proteins. This review starts with an historic overview and discusses the theoretical and experimental concepts behind this technology. Emphasis is put on the current state-of-the-art experimental realization and several variations of FSRS that have been developed. The unique capabilities of FSRS are illustrated through a comprehensive presentation of experiments to date followed by prospects. PMID:26919612

  16. Broadband coherent Raman spectroscopy running at 24,000 spectra per second.

    PubMed

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s - more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique's strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200-1500 cm(-1)) with spectral resolution of 10 cm(-1) at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  17. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    NASA Astrophysics Data System (ADS)

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-02-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s - more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200-1500 cm-1) with spectral resolution of 10 cm-1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging.

  18. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    PubMed Central

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s – more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200–1500 cm−1) with spectral resolution of 10 cm−1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  19. Tackling field-portable Raman spectroscopy of real world samples

    NASA Astrophysics Data System (ADS)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  20. Observation of anomalous Stokes versus anti-Stokes ratio in MoTe2 atomic layers

    NASA Astrophysics Data System (ADS)

    Goldstein, Thomas; Chen, Shao-Yu; Xiao, Di; Ramasubramaniam, Ashwin; Yan, Jun

    We grow hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor, with chemical vapor transport methods and investigate its atomic layers with Stokes and anti-Stokes Raman scattering. We report observation of all six types of zone center optical phonons. Quite remarkably, the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, creating an illusion of 'negative temperature'. This effect is tunable, and can be switched from anti-Stokes enhancement to suppression by varying the excitation wavelength. We interpret this observation to be a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center, which are robust even for multiple layers of MoTe2. The intense anti-Stokes Raman scattering provides a cooling channel for the crystal and opens up opportunities for laser cooling of atomically thin TMDC semiconductor devices. Supported by the University of Massachusetts Amherst, the National Science Foundation Center for Hierarchical Manufacturing (CMMI-1025020) and Office of Emerging Frontiers in Research and Innovation (EFRI-1433496).

  1. Single-shot detection of bacterial endospores via coherent Raman spectroscopy

    PubMed Central

    Pestov, Dmitry; Wang, Xi; Ariunbold, Gombojav O.; Murawski, Robert K.; Sautenkov, Vladimir A.; Dogariu, Arthur; Sokolov, Alexei V.; Scully, Marlan O.

    2008-01-01

    Recent advances in coherent Raman spectroscopy hold exciting promise for many potential applications. For example, a technique, mitigating the nonresonant four-wave-mixing noise while maximizing the Raman-resonant signal, has been developed and applied to the problem of real-time detection of bacterial endospores. After a brief review of the technique essentials, we show how extensions of our earlier experimental work [Pestov D, et al. (2007) Science 316:265–268] yield single-shot identification of a small sample of Bacillus subtilis endospores (≈104 spores). The results convey the utility of the technique and its potential for “on-the-fly” detection of biohazards, such as Bacillus anthracis. The application of optimized coherent anti-Stokes Raman scattering scheme to problems requiring chemical specificity and short signal acquisition times is demonstrated. PMID:18184801

  2. Fiber-optic Raman spectroscopy for cure monitoring of advanced polymer composites

    SciTech Connect

    Myrick, M.L.; Angel, S.M.; Lyon, R.E.; Vess, T.M.

    1991-12-16

    The curing reaction of an epoxy matrix used for wet filament-wound composites was monitored using Raman spectroscopy measured over fiber optics. The resin system consists of the diglycidyl ether of bisphenol-A in combination with a polyethertriamine hardener in a 1:1 stoichiometric ratio. The extent of chemical reaction of the epoxy as a function of time was measurable through changes in peak heights of several vibrational modes. A Raman peak associated with a phenyl ring vibration in epoxide component was used as in internal reference to correct for density changes and instrumental variations. Temperature measurements were made over the same fiber optics used to obtain the cure chemistry data by measuring the intensity of anti-Stokes Raman scattering from the epoxy. Both single-fiber and dual-fiber probes were evaluated.

  3. Raman spectroscopy in halophile research

    PubMed Central

    Jehlička, Jan; Oren, Aharon

    2013-01-01

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well. PMID:24339823

  4. Raman spectroscopy in halophile research.

    PubMed

    Jehlička, Jan; Oren, Aharon

    2013-01-01

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well. PMID:24339823

  5. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    SciTech Connect

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  6. Raman spectroscopy of shocked water

    SciTech Connect

    Holmes, N.C.; Mitchell, A.C.; Nellis, W.J.; Graham, W.B.; Walrafen, G.E.

    1983-07-01

    Raman scattering has been used extensively to study the vibrational and rotational properties of molecules under a variety of conditions. Here, interest is in the behavior of water molecules shocked to high pressures and temperatures. Behind the shock front the water molecules undergo changes in bonding and the molecules may become ionized. Raman spectroscopy can be used to determine the molecular species behind the shock front. In addition, changes in Raman spectra can yield information regarding inter- and intramolecular potentials and the temperature behind the shock front.

  7. Mapping the energy distribution of SERRS hot spots from anti-Stokes to Stokes intensity ratios.

    PubMed

    dos Santos, Diego P; Temperini, Marcia L A; Brolo, Alexandre G

    2012-08-15

    The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped. PMID:22804227

  8. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  9. Femtosecond stimulated Raman spectroscopy of ultrafast biophysical reaction dynamics

    NASA Astrophysics Data System (ADS)

    McCamant, David William

    2004-12-01

    I have developed the technique of femtosecond stimulated Raman spectroscopy (FSRS), which enables the rapid acquisition of vibrational spectra with <100-fs time-resolution and <15-cm-1 frequency-resolution. FSRS uses three laser pulses: (1) a femtosecond visible actinic pump that initiates the photochemistry, (2) a narrow bandwidth picosecond Raman pump that provides the energy for amplification of the probe, and (3) a femtosecond continuum probe that is amplified at Raman resonances shifted from the Raman pump. FSRS has the ability to collect Raman spectra and depolarization ratios with only seconds of data averaging and negligible fluorescence interference. The capabilities of FSRS are explored through studies of the polyene beta-carotene. My initial experiments used picosecond time-resolved Stokes and anti-Stokes spontaneous resonance Raman spectroscopy to determine that vibrational relaxation in the S1 (2Ag-) electronic state is nearly complete within 2 ps and to quantify the intramolecular vibrational energy redistribution (IVR) processes in S0. FSRS studies on beta-carotene revealed that following optical excitation to S2 (1Bu +) the molecule relaxes to S1 in 160 fs where it undergoes rapid two-step IVR with 200- and 450-fs time constants. In later work, the FSRS spectrum of S2 beta-carotene was observed, which consists of three intense and broad bands at ˜1100, 1300 and 1650 cm-1 that exhibit kinetics matching the decay of the S2 near-infrared absorption. These data show that there is no additional intermediate 1B u- electronic state involved in the relaxation pathway of beta-carotene. FSRS was also used to study the photoisomerization dynamics in bacteriorhodopsin (bR). Spectra obtained during bR's excited state lifetime exhibit dispersive lineshapes at the ground-state frequencies that decay in 250 fs and are attributed to a nonlinear emission process. This relaxation is significantly faster than the decay of the stimulated emission (˜500 fs), indicating

  10. Raman Spectroscopy of Amorphous Carbon

    SciTech Connect

    Tallant, D.R.; Friedmann, T.A.; Missert, N.A.; Siegal, M.P.; Sullivan, J.P.

    1998-01-01

    Amorphous carbon is an elemental form of carbon with low hydrogen content, which may be deposited in thin films by the impact of high energy carbon atoms or ions. It is structurally distinct from the more well-known elemental forms of carbon, diamond and graphite. It is distinct in physical and chemical properties from the material known as diamond-like carbon, a form which is also amorphous but which has a higher hydrogen content, typically near 40 atomic percent. Amorphous carbon also has distinctive Raman spectra, whose patterns depend, through resonance enhancement effects, not only on deposition conditions but also on the wavelength selected for Raman excitation. This paper provides an overview of the Raman spectroscopy of amorphous carbon and describes how Raman spectral patterns correlate to film deposition conditions, physical properties and molecular level structure.

  11. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  12. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  13. Diagnostic Imaging in Flames with Instantaneous Planar Coherent Raman Spectroscopy.

    PubMed

    Bohlin, A; Kliewer, C J

    2014-04-01

    Spatial mapping of temperature and molecular species concentrations is vitally important in studies of gaseous chemically reacting flows. Temperature marks the evolution of heat release and energy transfer, while species concentration gradients provide critical information on mixing and chemical reaction. Coherent anti-Stokes Raman spectroscopy (CARS) was pioneered in measurements of such processes almost 40 years ago and is authoritative in terms of the accuracy and precision it may provide. While a reacting flow is fully characterized in three-dimensional space, a limitation of CARS has been its applicability as a point-wise measurement technique, motivating advancement toward CARS imaging, and attempts have been made considering one-dimensional probing. Here, we report development of two-dimensional CARS, with the first diagnostics of a planar field in a combusting flow within a single laser pulse, resulting in measured isotherms ranging from 450 K up to typical hydrocarbon flame temperatures of about 2000 K with chemical mapping of O2 and N2. PMID:26274479

  14. Raman spectroscopy of illicit substances

    NASA Astrophysics Data System (ADS)

    Stokes, Robert J.; Faulds, Karen; Smith, W. Ewen

    2007-10-01

    Raman spectroscopy provides a very effective method of identifying an illicit substance in situ without separation or contact other than with a laser beam. The equipment required is steadily improving and is now reliable and simple to operate. Costs are also coming down and hand held portable spectrometers are proving very effective. The main limitations on the use of the technique are that it is insensitive in terms of the number of incident photons converted into Raman scattered photons and fluorescence produced in the sample by the incident radiation interferes. Newer methods, still largely in the development phase, will increase the potential for selected applications. The use of picosecond pulsed lasers can discriminate between fluorescence and Raman scattering and this has been used in the laboratory to examine street samples of illicit drugs. Surface-enhanced Raman scattering, in which the analyte requires to be adsorbed onto a roughened metal surface, creates a sensitivity to compete with fluorescence and quenches fluorescence for molecules on a surface. This provides the ability to detect trace amounts of substances in some cases. The improving optics, detection capability and the reliability of the new methods indicate that the potential for the use of Raman spectroscopy for security purposes will increase with time.

  15. Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations.

    PubMed

    Urbanek, Diana C; Berg, Mark A

    2007-07-28

    For coherent Raman spectroscopies, common femtosecond pulses often lie in an intermediate regime: their bandwidth is too wide for measurements in the frequency domain, but their temporal width is too broad for homodyne measurements in the time domain. A recent paper [S. Nath et al., Phys. Rev. Lett. 97, 267401 (2006)] showed that complete Raman spectra can be recovered from intermediate length pulses by using simultaneous time and frequency detection (TFD). Heterodyne detection and a phase-stable local oscillator at the anti-Stokes frequency are not needed with TFD. This paper examines the theory of TFD Raman in more detail; a companion paper tests the results on experimental data. Model calculations illustrate how information on the Raman spectrum is transferred from the frequency domain to the time domain as the pulse width shortens. When data are collected in both dimensions, the Raman spectrum is completely determined to high resolution, regardless of the probe pulse width. The loss of resolution in many femtosecond coherent Raman experiments is due to the restriction to one-dimensional data collection, rather than due to a fundamental restriction based on the pulse width. PMID:17672689

  16. Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations

    NASA Astrophysics Data System (ADS)

    Urbanek, Diana C.; Berg, Mark A.

    2007-07-01

    For coherent Raman spectroscopies, common femtosecond pulses often lie in an intermediate regime: their bandwidth is too wide for measurements in the frequency domain, but their temporal width is too broad for homodyne measurements in the time domain. A recent paper [S. Nath et al., Phys. Rev. Lett. 97, 267401 (2006)] showed that complete Raman spectra can be recovered from intermediate length pulses by using simultaneous time and frequency detection (TFD). Heterodyne detection and a phase-stable local oscillator at the anti-Stokes frequency are not needed with TFD. This paper examines the theory of TFD Raman in more detail; a companion paper tests the results on experimental data. Model calculations illustrate how information on the Raman spectrum is transferred from the frequency domain to the time domain as the pulse width shortens. When data are collected in both dimensions, the Raman spectrum is completely determined to high resolution, regardless of the probe pulse width. The loss of resolution in many femtosecond coherent Raman experiments is due to the restriction to one-dimensional data collection, rather than due to a fundamental restriction based on the pulse width.

  17. Plasmon-assisted chemical reactions revealed by high-vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Shuaicheng; Sheng, Shaoxiang; Zhang, Zhenglong; Xu, Hongxing; Zheng, Hairong

    2014-08-01

    Tip-enhanced Raman spectroscopy (TERS) is the technique that combines the nanoscale spatial resolution of a scanning probe microscope and the highly sensitive Raman spectroscopy enhanced by the surface plasmons. It is suitable for chemical analysis at nanometer scale. Recently, TERS exhibited powerful potential in analyzing the chemical reactions at nanoscale. The high sensitivity and spatial resolution of TERS enable us to learn the reaction processes more clearly. More importantly, the chemical reaction in TERS is assisted by surface plasmons, which provides us an optical method to manipulate the chemical reactions at nanoscale. Here using our home-built high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup, we successfully observed the plasmon-assisted molecule dimerization and dissociation reactions. In HV-TERS system, under laser illumination, 4-nitrobenzenethiol (4NBT) molecules can be dimerized to p,p'-dimercaptoazobenzene (DMAB), and dissociation reaction occurs for malachite green (MG) molecules. Using our HV-TERS setup, the dynamic processes of the reactions are clearly revealed. The chemical reactions can be manipulated by controlling the plasmon intensity through changing the power of the incident laser, the tunneling current and the bias voltage. We also investigated the role of plasmonic thermal effect in the reactions by measuring both the Stokes and anti- Stokes Raman peaks. Our findings extend the applications of TERS, which can help to study the chemical reactions and understand the dynamic processes at single molecular level, and even design molecules by the plasmon-assisted chemical reactions.

  18. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  19. FT-Raman Spectroscopy: A Catalyst for the Raman Explosion?

    ERIC Educational Resources Information Center

    Chase, Bruce

    2007-01-01

    The limitations of Fourier transform (FT) Raman spectroscopy, which is used to detect and analyze the scattered radiation, are discussed. FT-Raman has served to revitalize a field that was lagging and the presence of Raman instrumentation as a routine analytical tool is established for the foreseeable future.

  20. Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array.

    PubMed

    Rock, William; Bonn, Mischa; Parekh, Sapun H

    2013-07-01

    We demonstrate near shot-noise limited hyperspectral stimulated Raman scattering (SRS) spectroscopy using oscillator-only excitation conditions. Using a fast CMOS camera synchronized to an acousto-optic modulator and subtracting subsequent frames acquired at up to 1 MHz frame rates, we demonstrate demodulation and recovery of the SRS spectrum. Surprisingly, we observe that the signal-to-noise of SRS spectra is invariant at modulation frequencies down to 2.5 kHz. Our approach allows for a direct comparison of SRS with coherent anti-Stokes Raman scattering (CARS) spectroscopy under identical experimental conditions. Our findings suggest that hyperspectral SRS imaging with shot-noise limited performance at biologically compatible excitation energies is feasible after minor modifications to fast frame-rate CMOS array technology. PMID:23842298

  1. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  2. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  3. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  4. Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Koch, Maria; Later, Robert; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2016-06-01

    Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by extensive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages, which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells. The Raman mapping of CH2 deformation mode intensity at 1440 cm-1 retrieved the lipid-depleted injury core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman band at 1743 cm-1, and were in agreement with CARS/TPEF microscopy. Principal component analysis revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy enabled to specifically detect inflammation after SCI and myelin degradation products.

  5. Development of coherent Raman measurements of temperature in condensed phases

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Bolme, Cindy A; Moore, David S

    2010-12-08

    We report theoretical considerations and preliminary data on various forms of coherent Raman spectroscopy that have been considered as candidates for measurement of temperature in condensed phase experiments with picosecond time resolution. Due to the inherent broadness and congestion of vibrational features in condensed phase solids, particularly at high temperatures and pressures, only approaches that rely on the ratio of anti-Stokes to Stokes spectral features are considered. Methods that rely on resolution of vibrational progressions, calibration of frequency shifts with temperature and pressure in reference experiments, or detailed comparison to calculation are inappropriate or impossible for our applications. In particular, we consider femtosecond stimulated Raman spectroscopy (FSRS), femtosecond/picosecond hybrid coherent Raman spectroscopy (multiplex CARS), and optical heterodyne detected femtosecond Raman induced Kerr Effect spectroscopy (OHD-FRIKES). We show that only FSRS has the ability to measure temperature via an anti-Stokes to Stokes ratio of peaks.

  6. Raman Spectroscopy Techniques for the Detection of Biological Samples in Suspensions and as Aerosol Particles: A Review

    NASA Astrophysics Data System (ADS)

    Félix-Rivera, Hilsamar; Hernández-Rivera, Samuel P.

    2012-03-01

    This article reviews current scientific literature focusing on Raman spectroscopy modalities that have been successfully applied to the detection of biological samples in aqueous suspensions and in aerosols. Normal Raman, surface enhanced Raman scattering, coherent anti-stokes Raman scattering, resonance Raman and UV-Raman spectropies, allow the detection of biological samples in situ in the near field and as well as in the far field at standoff distances. Applications span from fundamental studies to applied research in areas of defense and security and in monitoring of environmental pollution. A primary focus has been placed on biological samples including bacteria, pollen, virus, and biological contents in these specimens, in suspensions, and in aerosols. Several Raman spectroscopy studies have been reviewed to show how various modalities can achieve detection in these biosystems. Current data generated by our group is also included. Necessary parameters used to accomplish the detection and data analysis, which could also be used to interpret the results and to render the methodologies robust and reliable, are discussed.

  7. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  8. Anti-Stokes Fluorescent Probe with Incoherent Excitation

    PubMed Central

    Li, Yang; Zhou, Shifeng; Dong, Guoping; Peng, Mingying; Wondraczek, Lothar; Qiu, Jianrong

    2014-01-01

    Although inorganic anti-Stokes fluorescent probes have long been developed, the operational mode of today's most advanced examples still involves the harsh requirement of coherent laser excitation, which often yields unexpected light disturbance or even photon-induced deterioration during optical imaging. Here, we demonstrate an efficient anti-Stokes fluorescent probe with incoherent excitation. We show that the probe can be operated under light-emitting diode excitation and provides tunable anti-Stokes energy shift and decay kinetics, which allow for rapid and deep tissue imaging over a very large area with negligible photodestruction. Charging of the probe can be achieved by either X-rays or ultraviolet-visible light irradiation, which enables multiplexed detection and function integration with standard X-ray medical imaging devices. PMID:24518662

  9. Raman spectroscopy of transition metal dichalcogenides.

    PubMed

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs. PMID:27388703

  10. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  11. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  12. Raman spectroscopy: the gateway into tomorrow's virology.

    PubMed

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-01-01

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology. PMID:16805914

  13. Raman spectroscopy: the gateway into tomorrow's virology

    PubMed Central

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-01-01

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology. PMID:16805914

  14. Study of virus by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Moor, K.; Kitamura, H.; Hashimoto, K.; Sawa, M.; Andriana, B. B.; Ohtani, K.; Yagura, T.; Sato, H.

    2013-02-01

    Problem of viruses is very actual for nowadays. Some viruses, which are responsible for human of all tumors, are about 15 %. Main purposes this study, early detection virus in live cell without labeling and in the real time by Raman spectroscopy. Micro Raman spectroscopy (mRs) is a technique that uses a Raman spectrometer to measure the spectra of microscopic samples. According to the Raman spectroscopy, it becomes possible to study the metabolites of a live cultured cell without labeling. We used mRs to detect the virus via HEK 293 cell line-infected adenovirus. We obtained raman specters of lives cells with viruses in 24 hours and 7 days after the infection. As the result, there is some biochemical changing after the treatment of cell with virus. One of biochemical alteration is at 1081 cm-1. For the clarification result, we use confocal fluorescent microscopy and transmission electron microscopy (TEM).

  15. Emerging Dental Applications of Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Choo-Smith, Lin-P'ing; Hewko, Mark; Sowa, Michael G.

    Until recently, the application of Raman spectroscopy to investigate dental tissues has primarily focused on using microspectroscopy to characterize dentin and enamel structures as well as to understand the adhesive interface of various resin and bonding agents used in restorative procedures. With the advent of improved laser, imaging/mapping and fibre optic technologies, the applications have expanded to investigate various biomedical problems ranging from oral cancer, bacterial identification and early dental caries detection. The overall aim of these applications is to develop Raman spectroscopy into a tool for use in the dental clinic. This chapter presents the recent dental applications of Raman spectroscopy as well as discusses the potential, strengths and limitations of the technology in comparison with alternative techniques. In addition, a discussion and rationale about combining Raman spectroscopy with other optical techniques will be included.

  16. Plasma diagnostics using coherent anti-stokes Raman spectroscoy

    NASA Astrophysics Data System (ADS)

    Lynn, W. F.; Yaney, P. P.; Goss, L. P.; Kizirnis, S. W.

    1986-08-01

    Non-Boltzmann population distributions between the rotational and vibrational levels of N2 in a transverse hollow-cathode discharge were observed using CARS and a scanned probe laser. A planar, crossed beam geometry was used which allowed high spatial resolution. The apparent rotational and vibrational temperatures were determined to be near 900 K and 1500 K, respectively, with a clear dependence upon position. The estimated uncertainty is ±75 K. Deviations from previously reported tempertures in positive-column discharges is attributed to differences in electron energy distribution.

  17. Micro-mirror arrays for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, W. M.

    2015-03-01

    In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of

  18. Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials

    SciTech Connect

    Fernandez, Joaquin; Balda, Rolindes

    2006-07-21

    We report the first observation of anti-Stokes laser-induced cooling in the Er{sup 3+} ratio KPb{sub 2}Cl{sub 5} crystal and in the Er{sup 3+} ratio CNBZn (CdF{sub 2}-CdCl{sub 2}-NaF-BaF{sub 2}-BaCl{sub 2}-ZnF{sub 2}) glass. The internal cooling efficiencies have been calculated by using photothermal deflection spectroscopy. Thermal scans acquired with an infrared thermal camera proved the bulk cooling capability of the studied samples. The implications of these results are discussed.

  19. Occlusal caries detection using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ionita, I.; Bulou, A.

    2008-02-01

    The tooth enamel, because of its hydroxyapatite composition, must present a Raman spectrum with strong polarization anisotropy. Carious lesions of the enamel will produce an alteration of local symmetry and will increase much more scattering of light. This will reduce the anisotropy of the Raman spectra. Because of the difference between high sensitivity to polarization of the 959 cm -1 Raman peak in sound enamel and low sensitivity in carried enamel, Raman polarized spectroscopy could be a useful method to early detect teeth caries.

  20. Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1-x(OH)x)2SiO4: many-phonon χ(3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔χ(3) Raman-induced interactions under single- and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Lux, O.; Rhee, H.; Eichler, H. J.; Yoneda, H.; Shirakawa, A.; Ueda, K.; Rückamp, R.; Bohatý, L.; Becker, P.

    2013-07-01

    Natural crystals of topaz, Al2(F1-x(OH)x)2SiO4 were found to be an attractive Raman gain material and a subject for the investigation of different χ(3)-nonlinear optical effects. We present several manifestations of photon-phonon interactions related to SRS and RFWM processes initiated by picosecond excitations at room and cryogenic (≈9 K) temperature. Among them are octave-spanning Stokes and anti-Stokes generation in the visible and near-IR spectral range, combined SRS-active phonon modes, cross-cascaded up-conversion, χ(3)↔χ(3) lasing, as well as THG via self-sum frequency parametric generation. All recorded Raman-induced lasing lines are identified and attributed to the promoting χ(3)-vibration transitions. Based on the experimental data, theoretical simulations employing Fourier analysis are performed to demonstrate the potential of wide SRS frequency combs in terms of ultra-short pulse generation. On the 50th anniversary of the discovery of stimulated Raman scattering.

  1. Raman spectroscopy and polarization: Selected case studies

    NASA Astrophysics Data System (ADS)

    Ossikovski, Razvigor; Picardi, Gennaro; Ndong, Gérald; Chaigneau, Marc

    2012-10-01

    We show, through several selected case studies, the potential benefits that can be obtained by controlling the polarization states of the exciting and scattered radiations in a Raman scattering experiment. When coupled with polarization control, Raman spectroscopy is thus capable of providing extra information on the structural properties of the materials under investigation. The experimental examples presented in this work are taken from the area of both conventional, i.e., far-field, as well as from near-field Raman spectroscopy. They cover topics such as the stress tensor measurement in strained semiconductor structures, the vibration mode assignment in pentacene thin films and the Raman scattering tensor determination from near-field measurements on azobenzene monolayers. The basic theory necessary for modelling the far- and near-field polarized Raman responses is also given and the model efficiency is illustrated on the experimental data.

  2. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals. PMID:20419294

  3. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  4. Online fluorescence suppression in modulated Raman spectroscopy.

    PubMed

    De Luca, Anna Chiara; Mazilu, Michael; Riches, Andrew; Herrington, C Simon; Dholakia, Kishan

    2010-01-15

    Label-free chemical characterization of single cells is an important aim for biomedical research. Standard Raman spectroscopy provides intrinsic biochemical markers for noninvasive analysis of biological samples but is often hindered by the presence of fluorescence background. In this paper, we present an innovative modulated Raman spectroscopy technique to filter out the Raman spectra from the fluorescence background. The method is based on the principle that the fluorescence background does not change whereas the Raman scattering is shifted by the periodical modulation of the laser wavelength. Exploiting this physical property and importantly the multichannel lock-in detection of the Raman signal, the modulation technique fulfills the requirements of an effective fluorescence subtraction method. Indeed, once the synchronization and calibration procedure is performed, minimal user intervention is required, making the method online and less time-consuming than the other fluorescent suppression methods. We analyze the modulated Raman signal and shifted excitation Raman difference spectroscopy (SERDS) signal of 2 mum-sized polystyrene beads suspended in a solution of fluorescent dye as a function of modulation rate. We show that the signal-to-noise ratio of the modulated Raman spectra at the highest modulation rate is 3 times higher than the SERDS one. To finally evaluate the real benefits of the modulated Raman spectroscopy, we apply our technique to Chinese hamster ovary cells (CHO). Specifically, by analyzing separate spectra from the membrane, cytoplasm, and nucleus of CHO cells, we demonstrate the ability of this method to obtain localized sensitive chemical information from cells, away from the interfering fluorescence background. In particular, statistical analysis of the Raman data and classification using PCA (principal component analysis) indicate that our method allows us to distinguish between different cell locations with higher sensitivity and

  5. Difference Raman spectroscopy of DNA molecules

    NASA Astrophysics Data System (ADS)

    Anokhin, Andrey S.; Gorelik, Vladimir S.; Dovbeshko, Galina I.; Pyatyshev, Alexander Yu; Yuzyuk, Yury I.

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm-1) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule.

  6. Mobile Raman spectroscopy in astrobiology research.

    PubMed

    Vandenabeele, Peter; Jehlička, Jan

    2014-12-13

    Raman spectroscopy has proved to be a very useful technique in astrobiology research. Especially, working with mobile instrumentation during fieldwork can provide useful experiences in this field. In this work, we provide an overview of some important aspects of this research and, apart from defining different types of mobile Raman spectrometers, we highlight different reasons for this research. These include gathering experience and testing of mobile instruments, the selection of target molecules and to develop optimal data processing techniques for the identification of the spectra. We also identify the analytical techniques that it would be most appropriate to combine with Raman spectroscopy to maximize the obtained information and the synergy that exists with Raman spectroscopy research in other research areas, such as archaeometry and forensics. PMID:25368355

  7. Raman spectroscopy at the tritium laboratory Karlsruhe

    SciTech Connect

    Schloesser, M.; Bornschein, B.; Fischer, S.; Kassel, F.; Rupp, S.; Sturm, M.; James, T.M.; Telle, H.H.

    2015-03-15

    Raman spectroscopy is employed successfully for analysis of hydrogen isotopologues at the Tritium Laboratory Karlsruhe (TLK). Raman spectroscopy is based on the inelastic scattering of photons off molecules. Energy is transferred to the molecules as rotational/vibrational excitation being characteristic for each type of molecule. Thus, qualitative analysis is possible from the Raman shifted light, while quantitative information can be obtained from the signal intensities. After years of research and development, the technique is now well-advanced providing fast (< 10 s), precise (< 0.1%) and true (< 3%) compositional analysis of gas mixtures of hydrogen isotopologues. In this paper, we summarize the recent achievements in the further development on this technique, and the various applications for which it is used at TLK. Raman spectroscopy has evolved as a versatile, highly accurate key method for quantitative analysis complementing the port-folio of analytic techniques at the TLK.

  8. Towards Single-Shot Detection of Bacterial Endospores via Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Wang, Xi; Ariunbold, Gombojav; Murawski, Robert; Sautenkov, Vladimir; Sokolov, Alexei; Scully, Marlan

    2007-10-01

    Recent advances in coherent anti-Stokes Raman scattering (CARS) spectroscopy hold exciting promise to make the most out of now readily available ultrafast laser sources. Techniques have been devised to mitigate the nonresonant four-wave-mixing in favor of informative Raman-resonant signal. In particular, a hybrid technique for CARS (see Science 316, 265 (2007)) brings together the advantages of coherent broadband pump-Stokes excitation of molecular vibrations and their time-delayed but frequency-resolved probing via a spectrally narrowed and shaped laser pulse. We apply this technique to the problem of real-time detection of warfare bioagents and report single-shot acquisition of a distinct CARS spectrum from a small volume of B. subtilis endospores (˜10^4 spores), a harmless surrogate for B. anthracis. We study the dependence of the CARS signal on the energy of the ultrashort preparation pulses and find the limit on the pulse energy fluence (˜0.2 J/cm^2), imposed by the laser-induced damage of the spores.

  9. Using Raman spectroscopy to characterize biological materials.

    PubMed

    Butler, Holly J; Ashton, Lorna; Bird, Benjamin; Cinque, Gianfelice; Curtis, Kelly; Dorney, Jennifer; Esmonde-White, Karen; Fullwood, Nigel J; Gardner, Benjamin; Martin-Hirsch, Pierre L; Walsh, Michael J; McAinsh, Martin R; Stone, Nicholas; Martin, Francis L

    2016-04-01

    Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis. PMID:26963630

  10. Raman spectroscopy of white wines.

    PubMed

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. PMID:25794745

  11. Airborne chemistry coupled to Raman spectroscopy.

    PubMed

    Santesson, Sabina; Johansson, Jonas; Taylor, Lynne S; Levander, Ia; Fox, Shannon; Sepaniak, Michael; Nilsson, Staffan

    2003-05-01

    In this paper, the use of airborne chemistry (acoustically levitated drops) in combination with Raman spectroscopy is explored. We report herein the first Raman studies of crystallization processes in levitated drops and the first demonstration of surface-enhanced Raman scattering (SERS) detection in this medium. Crystallization studies on the model compounds benzamide and indomethacin resulted in the formation of two crystal modifications for each compound, suggesting that this methodology may be useful for investigation of polymorphs. SERS detection resulted in a signal enhancement of 27 000 for benzoic acid and 11 000 for rhodamine 6-G. The preliminary results presented here clearly indicate that several important applications of the combination between Raman spectroscopy and acoustic drop levitation can be expected in the future. PMID:12720359

  12. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Chen, Peter (Inventor); Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  13. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  14. Identification of gemstone treatments with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefert, Lore; Haenni, Henry A.; Chalain, Jean-Pierre

    2000-09-01

    The newest gemstone treatment concerns brownish diamonds of type IIa. These can be improved to near colorless by an enhancement process developed by General Electric, USA, using high temperature and pressure. A comparison of Raman spectroscopic features in the visible area (luminescence bands) of both treated and untreated colorless diamonds is given. Finally, examples of artificially colored peals and corals and their detection with Raman spectroscopy are shown.

  15. Temperature dependence of sapphire fiber Raman scattering

    DOE PAGESBeta

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; Homa, Daniel; Hill, Cary; Wang, Anbo; Pickrell, Gary

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  16. Analysis of lipsticks using Raman spectroscopy.

    PubMed

    Gardner, P; Bertino, M F; Weimer, R; Hazelrigg, E

    2013-10-10

    In this study, 80 lipsticks were obtained and evaluated using Raman spectroscopy at excitation wavelengths of 532 and 780 nm. Fluorescence severely limited analysis with the 532 nm line while the 780 nm line proved useful for all samples analyzed. It was possible to differentiate 95% of the lipsticks evaluated based on one or more Raman peaks. However, there were no peak trends observed that could be used to identify a manufacturer or categorize a sample. In situ analysis of lipstick smears was found to be possible even from several Raman active substrates, but was occasionally limited by background fluorescence and in extreme cases, photodegradation. PMID:24053867

  17. Raman spectroscopy under extreme conditions

    SciTech Connect

    Goncharov, A F; Crowhurst, J C

    2004-11-05

    We report the results of Raman measurements of various materials under simultaneous conditions of high temperature and high pressure in the diamond anvil cell (DAC). High temperatures are generated by laser heating or internal resistive (ohmic) heating or a combination of both. We present Raman spectra of cubic boron nitride (cBN) to 40 GPa and up to 2300 K that show a continuous pressure and temperature shift of the frequency of the transverse optical mode. We have also obtained high-pressure Raman spectra from a new noble metal nitride, which we synthesized at approximately 50 GPa and 2000 K. We have obtained high-temperature spectra from pure nitrogen to 39 GPa and up to 2000 K, which show the presence of a hot band that has previously been observed in CARS measurements. These measurements have also allowed us to constrain the melting curve and to examine changes in the intramolecular potential with pressure.

  18. Raman and multichannel Raman spectroscopy of biological systems

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Caramazza, R.; Fagnano, C.

    1991-05-01

    Raman and multichannel Raman spectroscopy are molecular techniques able to monitor the bulk and surface structure of a biomaterial, in a non destructive and non invasive way, giving therefore useful information on physical and chemical aspects of biocompatibility. The same techniques can also be adequately used for the characterization of the biomaterial-host tissue interface, hence providing structural information on the biochemical aspect of biocompatibility. Moreover, multichannel Raman spectroscopy can also determine "in vivo" and "in situ" the bulk and surface structure of a biomaterial and the molecular interactions between biomaterials and tissues. Useful information at a molecular level on the biomaterial-tissue system can so be deduced. In particular, the application of traditional Paman spectroscopy to bioactive glasses (glasses derived from Hench's bioglass and meta and oligophosphates of calcium by themselves and with the addition of sodium and aluminium) useful in orthopedics and the application to hydrophobic (PMMA) and hydrophilic (PHEMA and PVP) organic polymers useful in ophthalmology are shown. Instead the applications of multichannel Paman spectroscopy are elucidated in the case of intraocular lenses (lOLs) based on PMMA and contact lenses (CLs) based on hydrophi I ic polymers.

  19. Raman Studies of Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes–anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  20. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  1. Fast, non-linear optical-scattering spectroscopy in shock-compressed organic liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Schiferl, D.; Shaner, J.W.

    1983-01-01

    Nanosecond stimulated Raman and coherent anti-Stokes Raman scattering spectroscopy have been used to determine molecular vibrational frequency shifts and changes of phase in shock-compressed organic liquids. Results of dynamic experiments are compared to static Raman scattering measurements of samples, compressed and heated in a diamond-anvil cell. Objectives of the experiments are to determine the molecular structure and ultimately the energy transfer mechanisms in shock-compressed condensed phase materials.

  2. High fidelity nanohole enhanced Raman spectroscopy.

    SciTech Connect

    Bahns, J. T.; Guo, Q.; Gray, S. K.; Jaeger, H. M.; Chen, L.; Montgomery, J. M.; Univ. of Chicago

    2009-01-01

    Surface enhanced Raman spectroscopy (SERS) is a sensitive technique that can even detect single molecules. However, in many SERS applications, the strongly inhomogeneous distribution of intense local fields makes it very difficult for a quantitive assessment of the fidelity, or reproducibility of the signal, which limits the application of SERS. Herein, we report the development of exceptionally high-fidelity hole-enhanced Raman spectroscopy (HERS) from ordered, 2D hexagonal nanohole arrays. We take the fidelity f to be a measure of the percent deviation of the Raman peaks from measurement to measurement. Overall, area averaged fidelities for 12 gold array samples ranged from f {approx} 2-15% for HERS using aqueous R6G molecules. Furthermore, intensity modulations of the enhanced Raman spectra were measured for the first time as a function of polarization angle. The best of these measurements, which focus on static laser spots on the sample, could be consistent with even higher fidelities than the area-averaged results. Nanohole arrays in silver provided supporting polarization measurements and a more complete enhanced Raman fingerprint for phenylalanine molecules. We also carried out finite-difference time-domain calculations to assist in the interpretation of the experiments, identifying the polarization dependence as possibly arising from hole-hole interactions. Our results represent a step toward making quantitative and reproducible enhanced Raman measurements possible and also open new avenues for a large-scale source of highly uniform hot spots.

  3. Theory of femtosecond stimulated Raman spectroscopy.

    PubMed

    Lee, Soo-Y; Zhang, Donghui; McCamant, David W; Kukura, Philipp; Mathies, Richard A

    2004-08-22

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique that produces high-resolution (time-resolved) vibrational spectra from either the ground or excited electronic states of molecules, free from background fluorescence. FSRS uses simultaneously a narrow bandwidth approximately 1-3 ps Raman pump pulse with a continuum approximately 30-50 fs Stokes probe pulse to produce sharp Raman gains, at positions corresponding to vibrational transitions in the sample, riding on top of the continuum Stokes probe spectrum. When FSRS is preceded by a femtosecond actinic pump pulse that initiates the photochemistry of interest, time-resolved Raman spectroscopy can be carried out. We present two theoretical approaches to FSRS: one is based on a coupling of Raman pump and probe light waves with the vibrations in the medium, and another is a quantum-mechanical description. The latter approach is used to discuss the conditions of applicability and limitations of the coupled-wave description. Extension of the quantum-mechanical description to the case where the Raman pump beam is on resonance with an excited electronic state, as well as when FSRS is used to probe a nonstationary vibrational wave packet prepared by an actinic pump pulse, is also discussed. PMID:15303930

  4. Disposable sheath that facilitates endoscopic Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Short, Michael; Tai, Isabella T.; Zeng, Haishan

    2016-02-01

    In vivo endoscopic Raman spectroscopy of human tissue using a fiber optic probe has been previously demonstrated. However, there remain several technical challenges, such as a robust control over the laser radiation dose and measurement repeatability during endoscopy. A decrease in the signal to noise was also observed due to aging of Raman probe after repeated cycles of harsh reprocessing procedures. To address these issues, we designed and tested a disposable, biocompatible, and sterile sheath for use with a fiber optic endoscopic Raman probe. The sheath effectively controls contamination of Raman probes between procedures, greatly reduces turnaround time, and slows down the aging of the Raman probes. A small optical window fitted at the sheath cap maintained the measurement distance between Raman probe end and tissue surface. To ensure that the sheath caused a minimal amount of fluorescence and Raman interference, the optical properties of materials for the sheath, optical window, and bonding agent were studied. The easy-to-use sheath can be manufactured at a moderate cost. The sheath strictly enforced a maximum permissible exposure standard of the tissue by the laser and reduced the spectral variability by 1.5 to 8.5 times within the spectral measurement range.

  5. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  6. Applications of high resolution inverse Raman spectroscopy

    SciTech Connect

    Owyoung, A.; Esherick, P.

    1980-01-01

    The use of high-power, narrow-band lasers has significantly improved the resolving power and sensitivity of inverse Raman spectroscopy of gases. In this paper we shall describe this technique, illustrate its capabilities by showing some Q-branch spectra of heavy spherical tops, and survey some possible future applications.

  7. Raman Spectroscopy of Bone and Cartilage

    NASA Astrophysics Data System (ADS)

    Morris, Michael

    This chapter will reviews the Raman spectroscopy of the subject tissues. After a brief introduction to the structure, biology, and function of these tissues, we will describe the spectra and band assignments of the tissues and then summarize applications to studies of tissue development, mechanical function and competence, and pathology. Both metabolic diseases and genetic disorders will be covered.

  8. Raman spectroscopy of shocked water

    SciTech Connect

    Holmes, N.C.; Nellis, W.J.; Graham, W.B.; Walrafen, G.E.

    1985-08-01

    We describe a new technique for recording spontaneous Raman spectra from molecules during the passage of strong shock waves. We have used this technique to study the OH-stretch band of liquid H/sub 2/O shocked to pressure up to 26 GPa and 1700 K. The shape of the band changes over the range 7.5-26 GPa, and is described well by a two-component mixture model, implying changes in the intermolecular coupling of shock compressed water molecules. We discuss the implications of the spectra on the mechanism responsible for the electrical conductivity of shocked H/sub 2/O. 22 refs., 7 figs., 2 tabs.

  9. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  10. Detection Of Biochips By Raman And Surface Enhanced Raman Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kantarovich, Keren; Tsarfati, Inbal; Gheber, Levi A.; Haupt, Karsten; Bar, Ilana

    2010-08-01

    Biochips constitute a rapidly increasing research field driven by the versatility of sensing devices and the importance of their applications in the bioanalytical field, drug development, environmental monitoring, food analysis, etc. Common strategies used for creating biochips and for reading them have extensive limitations, motivating development of miniature biochips and label-free formats. To achieve these goals we combined the nano fountain pen method, for printing microscale features with Raman spectroscopy or surface enhanced Raman spectroscopy (SERS) for reading droplets of synthetic receptors. These receptors include molecularly imprinted polymers (MIPs), which are obtained by polymerization of suitable functional and cross-linking monomers around molecular templates. MIPs are characterized by higher physical and chemical stability than biomacromolecules, and therefore are potentially very suitable as recognition elements for biosensors, or biochips. The monitored bands in the Raman and SERS spectra could be related to the taken up compound, allowing direct detection of the template, i.e., the β-blocking drug propranolol in the imprinted droplets, as well as imaging of individual and multiple dots in an array. This study shows that the combination of nanolithography techniques with SERS might open the possibility of miniaturized arrayed MIP sensors with label-free, specific and quantitative detection.

  11. Raman spectroscopy of Alzheimer's diseased tissue

    NASA Astrophysics Data System (ADS)

    Sudworth, Caroline D.; Krasner, Neville

    2004-07-01

    Alzheimer's disease is one of the most common forms of dementia, and causes steady memory loss and mental regression. It is also accompanied by severe atrophy of the brain. However, the pathological biomarkers of the disease can only be confirmed and examined upon the death of the patient. A commercial (Renishaw PLC, UK) Raman system with an 830 nm NIR diode laser was used to analyse brain samples, which were flash frozen at post-mortem. Ethical approval was sought for these samples. The Alzheimer's diseased samples contained a number of biomarkers, including neuritic plaques and tangles. The Raman spectra were examined by order to differentiate between normal and Alzheimer's diseased brain tissues. Preliminary results indicate that Alzheimer's diseased tissues can be differentiated from control tissues using Raman spectroscopy. The Raman spectra differ in terms of peak intensity, and the presence of a stronger amide I band in the 1667 cm-1 region which occurs more prominently in the Alzheimer's diseased tissue. These preliminary results indicate that the beta-amyloid protein originating from neuritic plaques can be identified with Raman spectroscopy.

  12. Raman spectroscopy of 'Bisphenol A'

    NASA Astrophysics Data System (ADS)

    Ullah, Ramzan; Zheng, Yuxiang

    2016-03-01

    Raman spectra (95 - 3000 cm-1) of 'Bisphenol A' are presented. Absorption peaks have been assigned by Density Functional Theory (DFT) with B3LYP 6 - 311 ++ G (3df, 3pd) and wB97XD 6 - 311 ++ G (3df, 3pd). B3LYP 6 - 311 ++ G (3df, 3pd) gives frequencies which are nearer to experimental frequencies than wB97XD 6 - 311 ++ G (3df, 3pd) which involves empirical dispersion. Scale factor for wB97XD 6 - 311 ++ G (3df, 3pd) is found out to be 0.95008 by least squares fit.

  13. Raman spectroscopy in head and neck cancer

    PubMed Central

    2010-01-01

    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target. PMID:20923567

  14. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  15. Raman Spectroscopy of Soft Musculoskeletal Tissues

    PubMed Central

    Esmonde-White, Karen

    2015-01-01

    Tendon, ligament, and joint tissues are important in maintaining daily function. They can be affected by disease, age, and injury. Slow tissue turnover, hierarchical structure and function, and nonlinear mechanical properties present challenges to diagnosing and treating soft musculoskeletal tissues. Understanding these tissues in health, disease, and injury is important to improving pharmacologic and surgical repair outcomes. Raman spectroscopy is an important tool in the examination of soft musculoskeletal tissues. This article highlights exciting basic science and clinical/translational Raman studies of cartilage, tendon, and ligament. PMID:25286106

  16. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    PubMed Central

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-01-01

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made. PMID:25535081

  17. Candida parapsilosis biofilm identification by Raman spectroscopy.

    PubMed

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-01-01

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made. PMID:25535081

  18. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  19. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy.

    PubMed

    Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2016-06-23

    Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles. PMID:27049293

  20. Drug Stability Analysis by Raman Spectroscopy

    PubMed Central

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-01-01

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety. PMID:25533308

  1. Characterization of diatomaceous silica by Raman spectroscopy.

    PubMed

    Yuan, P; He, H P; Wu, D Q; Wang, D Q; Chen, L J

    2004-10-01

    The network characteristic of a selection of diatomaceous silica derived from China has been investigated using Raman spectroscopy. Before any thermal treatment of the sample, two prominent bands of 607 and circa 493 cm(-1) are resolved in the Raman spectra of diatomaceous silica, corresponding to the (SiO)3-ring breathing mode of D2-line and the O3SiOH tetrahedral vibration mode of D1-line, respectively. This is more similar to the pyrogenic silica rather than the silica gel. For the latter, to obtain a (SiO)3-ring, the sample must be heated between 250 and 450 degrees C. Significant difference is also found between the diatomaceous silica and other natural silicas, e.g. in the Raman spectra of sedimentary and volcanic opals, neither D1 nor D2 band is detected in previous reports. PMID:15350933

  2. Characterization of diatomaceous silica by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yuan, P.; He, H. P.; Wu, D. Q.; Wang, D. Q.; Chen, L. J.

    2004-10-01

    The network characteristic of a selection of diatomaceous silica derived from China has been investigated using Raman spectroscopy. Before any thermal treatment of the sample, two prominent bands of 607 and circa 493 cm -1 are resolved in the Raman spectra of diatomaceous silica, corresponding to the (SiO) 3-ring breathing mode of D 2-line and the O 3SiOH tetrahedral vibration mode of D 1-line, respectively. This is more similar to the pyrogenic silica rather than the silica gel. For the latter, to obtain a (SiO) 3-ring, the sample must be heated between 250 and 450 °C. Significant difference is also found between the diatomaceous silica and other natural silicas, e.g. in the Raman spectra of sedimentary and volcanic opals, neither D 1 nor D 2 band is detected in previous reports.

  3. Characterization of Kevlar Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  4. Remote adjustable focus Raman spectroscopy probe

    DOEpatents

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  5. Drug stability analysis by Raman spectroscopy.

    PubMed

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-01-01

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety. PMID:25533308

  6. Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene

    NASA Astrophysics Data System (ADS)

    Fesenko, Olena; Dovbeshko, Galyna; Dementjev, Andrej; Karpicz, Renata; Kaplas, Tommi; Svirko, Yuri

    2015-04-01

    Graphene-enhanced Raman scattering (GERS) spectra and coherent anti-Stokes Raman scattering (CARS) of thymine molecules adsorbed on a single-layer graphene were studied. The enhancement factor was shown to depend on the molecular groups of thymine. In the GERS spectra of thymine, the main bands are shifted with respect to those for molecules adsorbed on a glass surface, indicating charge transfer for thymine on graphene. The probable mechanism of the GERS enhancement is discussed. CARS spectra are in accord with the GERS results, which indicates similar benefit from the chemical enhancement.

  7. Detecting changes during pregnancy with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  8. Raman spectroscopy for analysis of thorium compounds

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-01

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including e.g. ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  9. Raman spectroscopy of ion-implanted silicon

    SciTech Connect

    Tuschel, D.D.; Lavine, J.P.

    1997-11-01

    Raman spectroscopy is used to characterize silicon implanted with boron at a dose of 10{sup 14}/cm{sup 2} or less and thermally annealed. The Raman scattering strengths and band shapes of the first-order optical mode at 520 cm{sup {minus}1} and of the second-order phonon modes are investigated to determine which modes are sensitive to the boron implant. The as-implanted samples show diminishing Raman scattering strength as the boron dose increases when the incident laser beam is 60{degree} with respect to the sample normal. Thermal annealing restores some of the Raman scattering strength. Three excitation wavelengths are used and the shortest, 457.9 nm, yields the greatest spectral differences from unimplanted silicon. The backscattering geometry shows a variety of changes in the Raman spectrum upon boron implantation. These involve band shifts of the first-order optical mode, bandwidth variations of the first-order optical mode, and the intensity of the second-order mode at 620 cm{sup {minus}1}.

  10. Raman Spectroscopy of Irradiated Tissue Samples

    NASA Astrophysics Data System (ADS)

    Alexa, P.; Synytsya, A.; Volka, K.; de Boer, J.; Besserer, J.; Froschauer, S.; Loewe, M.; Moosburger, M.; Würkner, M.

    2003-06-01

    Tissue samples (skin of mice, normal and tumor, skin of a woman, normal and tumor) were irradiated by protons from the Munich tandem accelerator. The samples were analysed using Raman spectroscopy at the Institute of Chemical Technology in Prague by measuring the intensity of signals sensitive to radiation damage. Effects depending on the delivered dose were found. Proton-irradiation effects are then compared to those of gamma-irradiation.

  11. Raman and photothermal spectroscopies for explosive detection

    NASA Astrophysics Data System (ADS)

    Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas

    2013-06-01

    Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.

  12. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  13. Raman Spectroscopy: Incorporating the Chemical Dimension into Dermatological Diagnosis

    PubMed Central

    Sharma, Amit; Sharma, Shruti; Zarrow, Anna; Schwartz, Robert A; Lambert, W Clark

    2016-01-01

    Raman spectroscopy provides chemical analysis of tissue in vivo. By measuring the inelastic interactions of light with matter, Raman spectroscopy can determine the chemical composition of a sample. Diseases that are visually difficult to visually distinguish can be delineated based on differences in chemical composition of the affected tissue. Raman spectroscopy has successfully found spectroscopic signatures for skin cancers and differentiated those of benign skin growths. With current and on-going advances in optics and computing, inexpensive and effective Raman systems may soon be available for clinical use. Raman spectroscopy provides direct analyses of skin lesions, thereby improving both disease diagnosis and management. PMID:26955087

  14. Raman spectroscopy of C-irradiated graphite

    SciTech Connect

    Hembree, D.M. Jr.; Pedraza, D.F.; Romanoski, G.R.; Withrow, S.P.; Annis, B.K.

    1994-09-01

    Highly oriented pyrolytic graphite samples were irradiated with C{sup +} ions at 35 keV in a direction normal to the basal plane and subsequently annealed up to 1373 K. Substantial surface topography changes were observed at fluences of 5 {times} 10{sup 18} ions/m{sup 2} and higher using scanning electron and atomic force microscopies. Intricate networks of surface cracks and ridges developed after high dose implantation. A systematic study of the irradiation effects was conducted using Raman spectroscopy. Microstructural changes in irradiated regions were first detected at a dose of 1 {times} 10{sup 17} ions/m{sup 2} through the appearance of the Raman D-line at {approx}1360 cm{sup {minus}1}. The intensity of this line increases while that of the Raman G-line at 1580 cm{sup {minus}1} decreases as the irradiation dose is increased or the irradiation temperature is decreased. After irradiation at 280K to a fluence of 5 {times} 10{sup 19} ions/m{sup 2} or higher the first order spectrum exhibits one single line at a wavelength intermediate between the D- and G-lines. Damage recovery upon thermal annealing depends not only on the initial damage state but also on the annealing temperature sequence. Samples irradiated to a damage level where two distinct Raman peaks are no longer resolvable exhibited upon direct annealing at a high temperature two distinct Raman lines. By contrast, pre-annealing these highly irradiated specimens at lower temperatures produced less pronounced changes in the Raman spectra. Pre-annealing appears to stabilize damage structures that are more resistant to high-temperature annealing than those induced by irradiation.

  15. Ultrasensitive coherent Raman technique with picosecond lasers

    SciTech Connect

    Schauer, M.W.; Pellin, M.J.; Biwer, B.M.; Gruen, D.M.

    1987-02-16

    The use of picosecond, Q-switched lasers and advanced polarization schemes has led to the development of a coherent Raman technique with the sensitivity of coherent anti-Stokes Raman spectroscopy experiments but without the troublesome phase-matching requirements. Experiments in dilute solutions of benzene indicate a limit of sensitivity for the current apparatus of 2.5 x 10/sup -4/ M in two minutes of signal averaging over 150 cm/sup -1/. Possible applications to the in situ study of passive films and thin films on transparent media are discussed.

  16. Raman spectroscopy for diagnosis of glioblastoma multiforme

    NASA Astrophysics Data System (ADS)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  17. Applications of Raman Spectroscopy to Virology and Microbial Analysis

    NASA Astrophysics Data System (ADS)

    Harz, Michaela; Stöckel, Stephan; Ciobotă, Valerian; Cialla, Dana; Rösch, Petra; Popp, Jürgen

    This chapter reports from the utilization of Raman spectroscopic techniques like Raman microscopy, Raman optical activity (ROA), UV-resonance Raman (UVRR)-spectroscopy, surface enhanced Raman spectroscopy (SERS), and tip-enhanced Raman spectroscopy (TERS) for the investigation of viruses and microorganisms, especially bacteria and yeasts for medical and pharmaceutical applications. The application of these Raman techniques allows for the analysis of chemical components of cells and subcellular regions, as well as the monitoring of chemical differences occurring as a result of the growth of microorganisms. In addition, the interaction of microorganisms with active pharmaceutical agents can be investigated. In combination with chemometric methods Raman spectroscopy can also be applied to identify microorganisms both in micro colonies and even on single cells.

  18. Electronic resonances in broadband stimulated Raman spectroscopy

    PubMed Central

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process. PMID:26728791

  19. Electronic resonances in broadband stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  20. Examining surface and bulk structures using combined nonlinear vibrational spectroscopies.

    PubMed

    Zhang, Chi; Wang, Jie; Khmaladze, Alexander; Liu, Yuwei; Ding, Bei; Jasensky, Joshua; Chen, Zhan

    2011-06-15

    We combined sum-frequency generation (SFG) vibrational spectroscopy with coherent anti-Stokes Raman scattering (CARS) spectroscopy in one system to examine both surface and bulk structures of materials with the same geometry and without the need to move the sample. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) thin films were tested before and after plasma treatment. The sensitivities of SFG and CARS were tested by varying polymer film thickness and using a lipid monolayer. PMID:21685990

  1. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  2. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  3. Diagnosing breast cancer by using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Shafer-Peltier, Karen E.; Fitzmaurice, Maryann; Crowe, Joseph; Dasari, Ramachandra R.; Feld, Michael S.

    2005-08-01

    We employ Raman spectroscopy to diagnose benign and malignant lesions in human breast tissue based on chemical composition. In this study, 130 Raman spectra are acquired from ex vivo samples of human breast tissue (normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma) from 58 patients. Data are fit by using a linear combination model in which nine basis spectra represent the morphologic and chemical features of breast tissue. The resulting fit coefficients provide insight into the chemical/morphological makeup of the tissue and are used to develop diagnostic algorithms. The fit coefficients for fat and collagen are the key parameters in the resulting diagnostic algorithm, which classifies samples according to their specific pathological diagnoses, attaining 94% sensitivity and 96% specificity for distinguishing cancerous tissues from normal and benign tissues. The excellent results demonstrate that Raman spectroscopy has the potential to be applied in vivo to accurately classify breast lesions, thereby reducing the number of excisional breast biopsies that are performed. Author contributions: M.F., J.C., R.R.D., and M.S.F. designed research; A.S.H. and K.E.S.-P. performed research; A.S.H. and M.F. analyzed data; and A.S.H. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: DEH, ductal epithelial hyperplasia; ROC, receiver operating characteristic; N/C, nuclear-to-cytoplasm.

  4. Detection of bacterial endospores by means of ultrafast coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry Sergeyevich

    This work is devoted to formulation and development of a laser spectroscopic technique for rapid detection of biohazards, such as Bacillus anthracis spores. Coherent anti-Stokes Raman scattering (CARS) is used as an underlying process for active retrieval of species-specific characteristics of an analyte. Vibrational modes of constituent molecules are Raman-excited by a pair of ultrashort, femtosecond laser pulses, and then probed through inelastic scattering of a third, time-delayed laser field. We first employ the already known time-resolved CARS technique. We apply it to the spectroscopy of easy-to-handle methanol-water mixtures, and then continue building our expertise on solutions of dipicolinic acid (DPA) and its salts, which happen to be marker molecules for bacterial spores. Various acquisition schemes are evaluated, and the preference is given to multi-channel frequency-resolved detection, when the whole CARS spectrum is recorded as a function of the probe pulse delay. We demonstrate a simple detection algorithm that manages to differentiate DPA solution from common interferents. We investigate experimentally the advantages and disadvantages of near-resonant probing of the excited molecular coherence, and finally observe the indicative backscattered CARS signal from DPA and NaDPA powders. The possibility of selective Raman excitation via pulse shaping of the preparation pulses is also demonstrated. The analysis of time-resolved CARS experiments on powders and B. subtilis spores, a harmless surrogate for B. anthracis, facilitates the formulation of a new approach, where we take full advantage of the multi-channel frequency-resolved acquisition and spectrally discriminate the Raman-resonant CARS signal from the background due to other instantaneous four-wave mixing (FWM) processes. Using narrowband probing, we decrease the magnitude of the nonresonant FWM, which is further suppressed by the timing of the laser pulses. The devised technique, referred to as

  5. Surface-enhanced Raman spectroscopy of pterins

    NASA Astrophysics Data System (ADS)

    Smyth, Ciarán A.; Mirza, Inam; Lunney, James G.; McCabe, Eithne M.

    2012-03-01

    Raman spectroscopy is a useful technique in the identification and characterisation of compounds, but in terms of sensitivity its application is limited. With respect to this the discovery of the surface-enhanced Raman scattering (SERS) phenomenon has proved monumental, and much research has been carried out over the past 30 years developing the technique. Pterins are biological compounds that are found in nature in colour pigmentation and in mammalian metabolic pathways. Moreover, they have been identified in abnormal concentrations in cancer patients, suggesting potential applications in cancer diagnostics. SERS is an ideal technique to identify these compounds, and both nanoparticle suspensions and pulsed laser deposited nanoparticle substrates have been used to examine the spectra of xanthopterin, both in aqueous solution and in different pH environments.

  6. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  7. Lignin analysis by FT-Raman spectroscopy

    SciTech Connect

    Agarwal, U.P.; Obst, J.R.; Cannon, A.B.

    1996-10-01

    Traditional methods of lignin analysis, such as Klason (acid insoluble) lignin determinations, give satisfactory results, are widely accepted, and often are considered as standard analyses. However, the Klason lignin method is laborious and time consuming; it also requires a fairly large-amount of isolated analyte. FT-Raman spectroscopy offers an opportunity to simplify and speed up lignin analyses. FT-Raman data for a number of hardwoods (angiosperms) and softwoods (gymnosperms) are compared with data obtained using other analytical methods, including Klason lignin (with corrections for acid soluble lignin), acetyl bromide, and FT-IR determinations. In addition, 10 different specimens of Nothofagus dombeyii (chosen because of the widely varying syringyl:guaiacyl monomer compositions of their lignins) were also analyzed. Lignin monomer compositions were determined by thioacidolysis of by nitrobenzene oxidation.

  8. Simultaneous Conoscopic Holography and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    A new instrument was developed for chemical characterization of surfaces that combines the analytical power of Raman spectroscopy with the three-dimensional topographic information provided by conoscopic holography. The figure schematically depicts the proposed hybrid instrument. The output of the conoscopic holographic portion of the instrument is a topographical map of the surface; the output of the Raman portion of the instrument is hyperspectral Raman data, from which the chemical and/or biological composition of the surface would be deduced. By virtue of the basic principles of design and operation of the instrument, the hyperspectral image data would be inherently spatially registered with the topographical data. In conoscopic holography, the object and reference beams of classical holography are replaced by the ordinary and extraordinary components generated by a single beam traveling through a birefringent, uniaxial crystal. In the basic conoscopic configuration, a laser light is projected onto a specimen and the resulting illuminated spot becomes a point source of diffuse light that propagates in every direction. The laser beam is rasterscanned in two dimensions (x and y) perpendicular to the beam axis (z), and at each x,y location, the pattern of interference between the ordinary and extraordinary rays is recorded. The recorded interferogram constitutes the conoscopic hologram. Of particular significance for the proposed instrument is that the conoscopic hologram contains information on the z coordinate (height) of the illuminated surface spot. Hence, a topographical map of the specimen is constructed point-by-point by rastering the laser beam in the x and y directions and correlating the x and y coordinates with the z information obtained from the interferograms. Conoscopic imaging is an established method, and conoscopic laboratory instruments for surface metrology are commercially available. In Raman spectroscopy of a surface, one measures the spectrum

  9. Characterization of Thalidomide using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  10. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. PMID:19418043

  11. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  12. UTI diagnosis and antibiogram using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  13. Disease recognition by infrared and Raman spectroscopy.

    PubMed

    Krafft, Christoph; Steiner, Gerald; Beleites, Claudia; Salzer, Reiner

    2009-02-01

    Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis. PMID:19343682

  14. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  15. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tenne, Dmitri

    2007-03-01

    Conventional vibrational spectroscopies operating in visible and infrared range fail to measure the phonon spectra of nanoscale ferroelectric structures because of extremely weak signals and the overwhelming substrate contribution. In this talk, application of ultraviolet (UV) Raman spectroscopy for studies of lattice dynamics and ferroelectric phase transitions in nanoscale ferroelectrics will be presented. We demonstrate that UV Raman spectroscopy is an effective technique allowing the observation of phonons and determination of the ferroelectric phase transition temperature (Tc) in nanoscale ferroelectrics, specifically, BaTiO3/SrTiO3 superlattices having the ferroelectric BaTiO3 layers as thin as 1 unit cell, and single BaTiO3 layers as thin as 4 nm. BaTiO3/SrTiO3 superlattices and ultrathin BaTiO3 films studied were grown by molecular beam epitaxy on SrTiO3 as well as GdScO3 and DyScO3 substrates. Excellent epitaxial quality and atomically abrupt interfaces are evidenced by X-ray diffraction and high resolution transmission electron microscopy. UV Raman results show that one-unit-cell thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are ferroelectric with the Tc as high as 250 K, and induce the polarization in much thicker SrTiO3 layers adjacent to them. The Tc in superlattices was tuned by hundreds of degrees from ˜170 to 650 K by varying the thicknesses of BaTiO3 and SrTiO3 layers. Using scandate substrates enables growth of superlattices with systematically changed coherent strain, thus allowing studying the stress effect on the ferroelectric phase transitions. UV Raman data are supported by the thermodynamic calculations of polarization in superlattices as a function of temperature. The work was done in collaboration with A. Soukiassian, W. Tian, D.G. Schlom, Y.L. Li, L.-Q. Chen, X.X. Xi (Pennsylvania State University), A. Bruchhausen, A. Fainstein (Centro Atomico Bariloche & Instituto Balseiro, Argentina), R. S. Katiyar (University of Puerto Rico), A

  16. In vivo Raman spectroscopy of cervix cancers

    NASA Astrophysics Data System (ADS)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  17. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  18. Coherent Raman Studies of Shocked Liquids

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn; Brown, Kathryn; Dang, Nhan; Bolme, Cynthia; Moore, David

    2013-06-01

    Transient vibrational spectroscopies offer the potential to directly observe time dependent shock induced chemical reaction kinetics. We report recent experiments that couple a hybrid picosecond/femtosecond coherent anti-Stokes Raman spectroscopy (CARS) diagnostic with our tabletop ultrafast laser driven shock platform. Initial results on liquids shocked to 20 GPa suggest that sub-picosecond dephasing at high pressure and temperature may limit the application of this nonresonant background free version of CARS. Initial results using interferometric CARS to increase sensitivity and overcome these limitations will be presented.

  19. Resonant Raman spectroscopy of twisted multilayer graphene.

    PubMed

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C; Tan, Ping-Heng

    2014-01-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures. PMID:25382099

  20. Characterization and identification of contraband using UV resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacey, Richard J.; Hayward, Ian P.; Sands, H. S.; Batchelder, David N.

    1997-02-01

    A range of explosives and narcotics have been examined using Raman spectroscopy with 244 nm excitation. This wavelength of excitation eliminates the fluorescence problems associated with excitation at visible wavelengths. Comparison with spectra obtained using visible excitation reveals that resonance Raman scattering is occurring. This results in simplified spectra, and enhanced Raman scattering efficiencies.

  1. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  2. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  3. Raman spectroscopy: an evolving technique for live cell studies.

    PubMed

    Smith, Rachael; Wright, Karen L; Ashton, Lorna

    2016-06-21

    One of the most exciting developments in Raman spectroscopy in the last decade has been its application to cells and tissues for diagnostic and pharmaceutical applications, and in particular its use in the analysis of cellular dynamics. Raman spectroscopy is rapidly advancing as a cell imaging method that overcomes many of the limitations of current techniques and is earning its place as a routine tool in cell biology. In this review we focus on important developments in Raman spectroscopy that have evolved into the exciting technique of live-cell Raman microscopy and highlight some of the most recent and significant applications to cell biology. PMID:27072718

  4. Molecular imaging with surface-enhanced Raman spectroscopy nanoparticle reporters

    PubMed Central

    Jokerst, Jesse V.; Pohling, Christoph; Gambhir, Sanjiv S.

    2013-01-01

    Molecular imaging scans cellular and molecular targets in living subjects through the introduction of imaging agents that bind to these targets and report their presence through a measurable signal. The picomolar sensitivity, signal stability, and high multiplexing capacity of Raman spectroscopy satisfies important needs within the field of molecular imaging, and several groups now utilize Raman and surface-enhanced Raman spectroscopy to image molecular targets in small animal models of human disease. This article details the role of Raman spectroscopy in molecular imaging, describes some substrates and imaging agents used in animal models, and illustrates some examples. PMID:24293809

  5. Evaluating internal maturity of tomatoes using spatially offset Raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatially offset Raman spectroscopy technique was investigated for evaluating internal maturity of intact tomatoes. A Raman spectroscopy system was assembled to acquire spatially offset spectra in the wavenumber range of 200–2500 cm–1. A 785-nm laser was used as the excitation source and the measure...

  6. Measurement of clathrate hydrates via Raman spectroscopy

    USGS Publications Warehouse

    Sum, A.K.; Burruss, R.C.; Sloan, E.D., Jr.

    1997-01-01

    Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

  7. Surface-enhanced Raman spectroscopy of peptides

    NASA Astrophysics Data System (ADS)

    Garrell, Robin L.; Herne, Tonya M.; Ahern, Angela M.; Sullenberger, Eve L.

    1990-07-01

    Surface-enhanced Raman (SER) spectroscopy has been used to probe the adsorption, surface interactions, and orientations of peptides on metal surfaces. Amino acids in homodipeptides give SER spectra with unique features that can be used to characterize the surface interactions of specific functional groups in more complicated peptides. In heterodipeptides, there is a hierarchy of functional group-surface interactions that prescribe their orientation and conformation on metal surfaces. By establishing this hierarchy, it is now possible to predict the interactions that occur between larger peptides and surfaces. Furthermore, the observed trends suggest that it should be possible to control these interactions by varying the solution pH, the charge on the surface, and other parameters of the measurement in order to adsorb species selectively from mixtures of peptides in solution. Potential biomedical applications of this technique will be described.

  8. Molecular velocimetry using stimulated Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Hillard, M. E.

    1984-01-01

    Molecular flow velocity of N2 was measured in a supersonic wind tunnel using inverse Raman spectroscopy. This technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counter-propagating (backward scattering). A retrometer system is employed to yield a vibration-free optical configuration which has the additional advantage of obtaining both the forward and backward scattered spectra simultaneously. The linebreadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the concept was performed in a supersonic wind tunnel and included: (1) measurements over the Mach number range 2.50 to 4.63; (2) static pressure measurements (at Mach 2.50) corresponding to a Reynolds number per foot range of 1 to 5 x 10 to the 6th power; and (3) measurements behind the shock wave of a flat plate model.

  9. FT Raman spectroscopy of Norway spruce needles

    NASA Astrophysics Data System (ADS)

    Matejka, P.; Pleserova, L.; Budinova, G.; Havirova, K.; Nahlik, J.; Skacel, F.; Volka, Karel

    2001-02-01

    12 Norway spruce [Picea abies (L.) Karst.] needles represent a very useful bioindicator of the air pollution. They serve not only as natural samplers of the pollutants but micromorphology of the epistomatal area can be directly correlated with an environmental stress. The needles of trees growing in polluted areas exhibit different types of injury to the epicuticular wax layer. It is evident that these changes of the morphology of the wax layers are connected also with the changes of their chemical composition and so a potential of the FT Raman spectroscopy was tested to serve as a screening method of these changes. In this work variability of the spectra with the age and with the position in the tree, in the locality, and also in the different localities of the Czech Republic was studied and evaluated in comparison with results of electron scanning microscopy.

  10. Raman spectroscopy of human saliva for acute myocardial infarction detection

    NASA Astrophysics Data System (ADS)

    Chen, Maowen; Chen, Yuanxiang; Wu, Shanshan; Huang, Wei; Lin, Jinyong; Weng, Guo-Xing; Chen, Rong

    2014-09-01

    Raman spectroscopy is a rapidly non-invasive technique with great potential for biomedical research. The aim of this study was to evaluate the feasibility of using Raman spectroscopy of human saliva for acute myocardial infarction (AMI) detection. Raman spectroscopy measurements were performed on two groups of saliva samples: one group from patients (n=30) with confirmed AMI and the other group from healthy controls (n=31). The diagnostic performance for differentiating AMI saliva from normal saliva was evaluated by multivariate statistical analysis. The combination of principal component analysis (PCA) and linear discriminate analysis (LDA) of the measured Raman spectra separated the spectral features of the two groups into two distinct clusters with little overlaps, rendering the sensitivity of 80.0% and specificity of 80.6%. The results from this exploratory study demonstrated that Raman spectroscopy of human saliva can serve as a potentially clinical tool for rapid AMI detection and screening.

  11. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  12. Raman spectroscopy for optical diagnosis of laryngeal cancer

    NASA Astrophysics Data System (ADS)

    Teh, Seng Khoon; Zheng, Wei; Lau, David P.; Huang, Zhiwei

    2008-02-01

    In this report, the diagnostic ability of near-infrared (NIR) Raman spectroscopy for identifying the malignant tumors from normal tissues in the larynx was studied. A rapid NIR Raman system was utilized. Multivariate statistical techniques were employed to develop effective diagnostic algorithms. Raman spectra in the range of 800-1,800 cm-1 differed significantly between normal and malignant tumor tissues. The diagnostic algorithms can yielded a diagnostic sensitivity of 92.9% and specificity 83.3% for separating malignant tumors from normal laryngeal tissues. NIR Raman spectroscopy with multivariate statistical techniques has a potential for the non-invasive detection of malignant tumors in the larynx.

  13. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    SciTech Connect

    Abramczyk, H.; Placek, I.; Brozek-Pluska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-12-26

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  14. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Placek, I.; BroŻek-Płuska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-12-01

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  15. Cutaneous porphyrins exhibit anti-stokes fluorescence that is detectable in sebum (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.

    2016-02-01

    Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.

  16. Raman spectroscopy of gliomas: an exploratory study

    NASA Astrophysics Data System (ADS)

    Shenoy, Mahesh; Hole, Arti R.; Shridhar, E.; Moiyadi, Aliasgar V.; Krishna, C. Murali

    2014-03-01

    Gliomas are extremely infiltrative type of brain cancers, the borders of which are difficult to locate. Gliomas largely consist of tumors of astrocytic or oligodendroglial lineage. Usually stereotactic surgery is performed to obtain tumor tissue sample. Complete excision of these tumors with preservation of uninvolved normal areas is important during brain tumor surgeries. The present study was undertaken to explore feasibility of classifying abnormal and normal glioma tissues with Raman spectroscopy (RS). RS is a nondestructive vibrational spectroscopic technique, which provides information about molecular composition, molecular structures and molecular interactions in tissue. Postoperated 33 (20-abnormal and 13-normal) gliomas tissue samples of different grades were collected under clinical supervision. Five micron section from tissue sample was used for confirmatory histopathological diagnosis while the remaining tissue was placed on CaF2 window and spectra were acquired using a fiberoptic-probe-coupled HE-785 Raman-spectrometer. Spectral acquisition parameters were laser power-80mW, integration-20s and averaged over 3 accumulations. Spectra were pre-processed and subjected to unsupervised Principal-Component Analysis (PCA) to identify trends of classification. Supervised PC-LDA (Principal-Component-Linear-Discriminant Analysis) was used to develop standard-models using spectra of 12 normal and abnormal specimens each. Leave-one-out crossvalidation yielded classification-efficiency of 90% and 80% for normal and abnormal conditions, respectively. Evaluation with an independent-test data-set comprising of 135 spectra of 9 samples provided sensitivity of 100% and specificity of 70%. Findings of this preliminary study may pave way for objective tumor margin assessment during brain surgery.

  17. Raman spectroscopy application to analyses of components in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping

    2006-09-01

    The characterization of species in aqueous solutions has presented a challenge to analytical and physical chemist, because the JR absorption of the aqueous solvent is so intense that it becomes difficult to observe the solute in the water by JR absorption. In contrast, Raman spectrum of the solute is unaffected by the water, so the weak scattering of water makes the technique well suited to aqueous samples, and the Raman spectrum exhibits well-defined bands corresponding to fundamental modes of vibration. In addition, Raman spectroscopy has some inherent advantages in aqueous solution analysis, because the spectral features of signals from different species are much more distinct, and it provides characteristic signatures for samples, such as blood, protein and cholesterol. All the advantages make Raman spectroscopy be a potential alternative for the study of aqueous solutions. Now, Raman spectroscopy has been applied to studying samples in aqueous solutions, blood serum, intracellular protein levels. Now, industrial wasted water contains many organic contaminants, and it is necessary to determine and monitor these contaminants. The paper first introduces Raman spectroscopy, and then describes its applications to determining the components in aqueous solutions, analyzes and assignes the Raman spectra of o-dichlorobenzene, o-xylene, m-xyiene and p-xylene in detail. The experimental results demonstrate that Raman spectroscopy is a particularly powerful technique for aqueous solutions analyses.

  18. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    SciTech Connect

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  19. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  20. Investigation of biomineralization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fatscher, Robert William

    Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental

  1. Sensitivity of Raman spectroscopy to normal patient variability

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  2. Clinical instrumentation and applications of Raman spectroscopy.

    PubMed

    Pence, Isaac; Mahadevan-Jansen, Anita

    2016-04-01

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering

  3. Clinical instrumentation and applications of Raman spectroscopy

    PubMed Central

    Pence, Isaac

    2016-01-01

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye – direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient’s skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy – light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of

  4. [Water Raman spectrum suppression with low-pass filter in underwater in-situ Raman spectroscopy].

    PubMed

    Guo, Jin-Jia; Liu, Zhi-Shen

    2011-09-01

    As a powerful tool for studying chemical structures, Raman spectroscopy has been used in aquatic environments in-situ measurement widely, and has been used in deep sea research recently. For underwater in-situ detection, O-H vibration Raman peak of water is inherent and strong compared with other dissolved matter's Raman signals. When the authors want to get a good SNR Raman signal of dissolved matter by increasing detection time, O-H vibration Raman peak of water will get to saturation easily, which influences other Raman signal's detection. In the present paper, a specially designed short-pass optical filter was used for suppression of water's O-H vibration Raman peak. The authors calculated the suppression effect of short-pass optical filter with linear and exponential edges. The simulation shows that exponential edge filter has better performance and can suppress water's O-H vibration Raman peak effectively. The experiment also proves the calculation results. With the suppression optical filter, the intensity of water's O-H vibration Raman signal and other dissolved matters' become similar. And the influence of suppression optical filter on other dissolved matters' Raman signal is little. So the suppression optical filter is feasible for in-situ underwater Raman spectroscopy. PMID:22097842

  5. Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials

    NASA Technical Reports Server (NTRS)

    Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

    2007-01-01

    This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

  6. Vibrational spectroscopy of shock-compressed liquid CO

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Shaw, M.S.; Johnson, J.D.

    1991-01-01

    Single-pulse, multiplex, coherent anti-Stokes Raman spectroscopy (CARS) was used to observe the vibrational spectra of liquid CO shock compressed to several pressures and temperatures up to 9.9 GPa and 2010 K. The experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities and Raman line widths. A comparison of these data with result in the isoelectronic and materially very similar N{sub 2} show a significant difference in vibrational frequency shift with pressure. 21 refs., 2 figs.

  7. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  8. Electrochemical Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zeng, Zhi-Cong; Huang, Sheng-Chao; Wu, De-Yin; Meng, Ling-Yan; Li, Mao-Hua; Huang, Teng-Xiang; Zhong, Jin-Hui; Wang, Xiang; Yang, Zhi-Lin; Ren, Bin

    2015-09-23

    Interfacial properties are highly important to the performance of some energy-related systems. The in-depth understanding of the interface requires highly sensitive in situ techniques that can provide fingerprint molecular information at nanometer resolution. We developed an electrochemical tip-enhanced Raman spectroscopy (EC-TERS) by introduction of the light horizontally to the EC-STM cell to minimize the optical distortion and to keep the TERS measurement under a well-controlled condition. We obtained potential-dependent EC-TERS from the adsorbed aromatic molecule on a Au(111) surface and observed a substantial change in the molecule configuration with potential as a result of the protonation and deprotonation of the molecule. Such a change was not observable in EC-SERS (surface-enhanced), indicating EC-TERS can more faithfully reflect the fine interfacial structure than EC-SERS. This work will open a new era for using EC-TERS as an important nanospectroscopy tool for the molecular level and nanoscale analysis of some important electrochemical systems including solar cells, lithium ion batteries, fuel cells, and corrosion. PMID:26351986

  9. [Identification of B jade by Raman spectroscopy].

    PubMed

    Zu, En-dong; Chen, Da-peng; Zhang, Peng-xiang

    2003-02-01

    Raman spectroscopy has been found to be a useful tool for identification of bleached and polymer-impregnated jadeites (so-called B jade). The major advantage of this system over classical methods of gem testing is the non-destructive identification of inclusions in gemstones and the determination of organic fracture filling in jade. Fissures in jadeites have been filled with oils and various resins to enhance their clarity, such as paraffin wax, paraffin oil, AB glue and epoxy resins. They show different peaks depending on their chemical composition. The characteristic spectrum ranges from 1,200-1,700 cm-1 to 2,800-3,100 cm-1. The spectra of resins show that they all have four strongest peaks related with phenyl: two C-C stretching modes at 1,116 and 1,609 cm-1, respectively, one C-H stretching mode at 3,069 cm-1, and a in-plane C-H bending mode at 1,189 cm-1. In addition, other two -CH2, -CH3 stretching modes at 2,906 and 2,869 cm-1, respectively, are very similar to paraffin. Therefore, the peaks at 1,116, 1,609, 1,189 and 3,069 cm-1 are important in distinguishing resin from paraffin, and we can identify B jade depending on them. PMID:12939970

  10. Clinical cancer diagnosis using optical fiber-delivered coherent anti-stokes ramon scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang

    This thesis describes the development of a combined label-free imaging and analytical strategy for intraoperative characterization of cancer lesions using the coherent anti-Stokes Raman scattering imaging (CARS) technique. A cell morphology-based analytical platform is developed to characterize CARS images and, hence, provide diagnostic information using disease-related pathology features. This strategy is validated for three different applications, including margin detection for radical prostatectomy, differential diagnosis of lung cancer, as well as detection and differentiation of breast cancer subtypes for in situ analysis of margin status during lumpectomy. As the major contribution of this thesis, the developed analytical strategy shows high accuracy and specificity for all three diseases and thus has introduced the CARS imaging technique into the field of human cancer diagnosis, which holds substantial potential for clinical translations. In addition, I have contributed a project aimed at miniaturizing the CARS imaging device into a microendoscope setup through a fiber-delivery strategy. A four-wave-mixing (FWM) background signal, which is caused by simultaneous delivery of the two CARS-generating excitation laser beams, is initially identified. A polarization-based strategy is then introduced and tested for suppression of this FWM noise. The approach shows effective suppression of the FWM signal, both on microscopic and prototype endoscopic setups, indicating the potential of developing a novel microendoscope with a compatible size for clinical use. These positive results show promise for the development of an all-fiber-based, label-free imaging and analytical platform for minimally invasive detection and diagnosis of cancers during surgery or surgical-biopsy, thus improving surgical outcomes and reducing patients' suffering.

  11. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  12. Raman Spectroscopy for the Investigation of Carbon Based Black Pigments

    NASA Astrophysics Data System (ADS)

    Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P.

    2014-06-01

    Carbon based black pigments play an important role among artists' materials. The disordered structure of these materials is investigated by means of Raman spectroscopy, which helps in the comprehension of their production processes.

  13. Analysis of Arctic Carbonates Profiles by Raman Spectroscopy using Exomars Raman Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Sansano, A.; López, G.; Medina, J.; Rull, F.

    2011-10-01

    This work details the analysis performed by Raman spectroscopy on carbonate samples from the Svalbard Islands (Norway) in the Arctic. This place is considered a potential Martian analog because the carbonate formation show close similarities with the formation in ALH84001 meteorite. The results obtained illustrate the performances of the Raman instrument included in the Exomars (ESA) mission.

  14. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  15. Quantitative Raman spectroscopy in turbid media

    NASA Astrophysics Data System (ADS)

    Reble, Carina; Gersonde, Ingo; Andree, Stefan; Eichler, Hans Joachim; Helfmann, Jürgen

    2010-05-01

    Intrinsic Raman spectra of biological tissue are distorted by the influences of tissue absorption and scattering, which significantly challenge signal quantification. A combined Raman and spatially resolved reflectance setup is introduced to measure the absorption coefficient μa and the reduced scattering coefficient μs' of the tissue, together with the Raman signals. The influence of μa and μs' on the resonance Raman signal of β-carotene is measured at 1524 cm-1 by tissue phantom measurements and Monte Carlo simulations for μa=0.01 to 10 mm-1 and μs'=0.1 to 10 mm-1. Both methods show that the Raman signal drops roughly proportional to 1/μa for μa>0.2 mm-1 in the measurement geometry and that the influence of μs' is weaker, but not negligible. Possible correction functions dependent on the elastic diffuse reflectance are investigated to correct the Raman signal for the influence of μa and μs', provided that μa and μs' are measured as well. A correction function based on the Monte Carlo simulation of Raman signals is suggested as an alternative. Both approaches strongly reduce the turbidity-induced variation of the Raman signals and allow absolute Raman scattering coefficients to be determined.

  16. High resolution study of the. nu. sub 1 vibration of CH sub 3 by coherent Raman photofragment spectroscopy

    SciTech Connect

    Triggs, N.E.; Zahedi, M.; Nibler, J.W. ); DeBarber, P.; Valentini, J.J. )

    1992-02-01

    Coherent anti-Stokes Raman spectroscopy (CARS) was used to measure the vibrational--rotational {ital Q}-branch structure of the {nu}{sub 1} symmetric stretch of methyl radicals produced by 266 nm laser photolysis of methyl iodide. Spectra were recorded in both flow cells and free jet expansions at instrumental resolutions ranging from 0.25 to 0.005 cm{sup {minus}1}. Due to the high recoil velocity of the CH{sub 3} fragment, Doppler and collisional broadening of the transitions is appreciable. Even at the highest resolution such broadening of the transitions leads to interference effects among the closely spaced Raman transitions that influence both the line positions and intensities in the observed CARS spectra. The molecular parameters (cm{sup {minus}1}) obtained from the analysis are {nu}{sub 1}=3004.42(4), {alpha}{sub {ital B}1}=0.0851(8), {alpha}{sub {ital C}1}=0.0475(7), {ital D}{sub {ital N}1}{minus}{ital D}{sub {ital N}0}={minus}0.000 046(8), {ital D}{sub {ital NK}1}{minus}{ital D}{sub {ital NK}0}=0.000 083(20), and, with assumptions, {ital D}{sub {ital K}1}{minus}{ital D}{sub {ital K}0}={minus}0.000 039. These results and infrared data in the literature yield a CH bond length of 1.08378(5) A for the (1000) state and, with some assumptions, an equilibrium bond length {ital R}{sub {ital e}} of 1.076 A for this prototypic case of {ital sp}{sup 2} bonding.

  17. Micro-Raman spectroscopy for meat type detection

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.

    2015-06-01

    The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.

  18. Non-linear line-narrowing spectroscopy in mixed organic crystals

    NASA Astrophysics Data System (ADS)

    Riebe, Michael T.; Wright, John C.

    1987-08-01

    We report the elimination of inhomogeneous broadening in mixed organic crystals with multiply resonant four-wave mixing methods. Line narrowing and the line shifts characteristic of site selective methods are observed for both coherent anti-Stokes Raman spectroscopy (CARS) and multiply enhanced non-parametric spectrosocopy (MENS). The site selective capability of CARS is in agreement with the model proposed by Ouellette and Denariez-Roberge.

  19. Micro-Raman spectroscopy on oral tissues

    NASA Astrophysics Data System (ADS)

    Zenone, F.; Lepore, M.; Perna, G.; Carmone, P.; Riccio, R.; Gaeta, G. M.; Capozzi, V.

    2006-02-01

    Micro-Raman Spectroscopy (μ-RS) provides a unique tool in medicine for a not invasive and real time analysis of biological tissue for biopsy and "in vivo" investigation. Based on the evaluation of molecular vibration frequencies, the μ-RS is able to detect the main molecular bonds of protein constituents, as the C-H and C-C ones. Changes in frequency or in the relative intensity of the vibration modes revealed by μ-RS can be related to changes of chemical bond and of protein structure induced by pathology. The μ-RS has been performed on samples of oral tissue from informed patients, affected by pemphigus vulgaris (an oral pathology) in an advanced regression state. The biopsies were thin slices (about 1mm thick) with 6mm diameter. The sample was measured through a 170 μm thick cover-glass. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a Peltier cell and with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a long focal length 50X optical objective. The main protein bonds are clearly detectable in the considered samples and this give important information on the integrity and on the state of tissue components (lipids and proteins), and consequently on the occurrence of pathology. The potential application of this method for in vivo analysis is an invaluable alternative to biopsy and pathological examinations for many medical application as screening diagnostic, therapy progress examination, and surgical support.

  20. Raman and surface-enhanced Raman spectroscopy for renal condition monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Li, Ming; Du, Yong; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2016-03-01

    Non- and minimally-invasive techniques can provide advantages in the monitoring and clinical diagnostics in renal diseases. Although renal biopsy may be useful in establishing diagnosis in several diseases, it is an invasive approach and impractical for longitudinal disease monitoring. To address this unmet need, we have developed two techniques based on Raman spectroscopy. First, we have investigated the potential of diagnosing and staging nephritis by analyzing kidney tissue Raman spectra using multivariate techniques. Secondly, we have developed a urine creatinine sensor based on surface-enhanced Raman spectroscopy with performance near commercial assays which require relatively laborious sample preparation and longer time.

  1. Isolation and identification of bacteria by means of Raman spectroscopy.

    PubMed

    Pahlow, Susanne; Meisel, Susann; Cialla-May, Dana; Weber, Karina; Rösch, Petra; Popp, Jürgen

    2015-07-15

    Bacterial detection is a highly topical research area, because various fields of application will benefit from the progress being made. Consequently, new and innovative strategies which enable the investigation of complex samples, like body fluids or food stuff, and improvements regarding the limit of detection are of general interest. Within this review the prospects of Raman spectroscopy as a reliable tool for identifying bacteria in complex samples are discussed. The main emphasis of this work is on important aspects of applying Raman spectroscopy for the detection of bacteria like sample preparation and the identification process. Several approaches for a Raman compatible isolation of bacterial cells have been developed and applied to different matrices. Here, an overview of the limitations and possibilities of these methods is provided. Furthermore, the utilization of Raman spectroscopy for diagnostic purposes, food safety and environmental issues is discussed under a critical view. PMID:25895619

  2. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.

    PubMed

    Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P

    2016-04-21

    Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies. PMID:26848784

  3. Raman spectroscopy for label-free identification of calciphylaxis.

    PubMed

    Lloyd, William R; Agarwal, Shailesh; Nigwekar, Sagar U; Esmonde-White, Karen; Loder, Shawn; Fagan, Shawn; Goverman, Jeremy; Olsen, Bjorn R; Jumlongras, Dolrudee; Morris, Michael D; Levi, Benjamin

    2015-08-01

    Calciphylaxis is a painful, debilitating, and premorbid condition, which presents as calcified vasculature and soft tissues. Traditional diagnosis of calciphylaxis lesions requires an invasive biopsy, which is destructive, time consuming, and often leads to exacerbation of the condition and infection. Furthermore, it is difficult to find small calcifications within a large wound bed. To address this need, a noninvasive diagnostic tool may help clinicians identify ectopic calcified mineral and determine the disease margin. We propose Raman spectroscopy as a rapid, point-of-care, noninvasive, and label-free technology to detect calciphylaxis mineral. Debrided calciphylactic tissue was collected from six patients and assessed by microcomputed tomography (micro-CT). Micro-CT confirmed extensive deposits in three specimens, which were subsequently examined with Raman spectroscopy. Raman spectra confirmed that deposits were consistent with carbonated apatite, consistent with the literature. Raman spectroscopy shows potential as a noninvasive technique to detect calciphylaxis in a clinical environment. PMID:26263412

  4. Raman spectroscopy for label-free identification of calciphylaxis

    PubMed Central

    Lloyd, William R.; Agarwal, Shailesh; Nigwekar, Sagar U.; Esmonde-White, Karen; Loder, Shawn; Fagan, Shawn; Goverman, Jeremy; Olsen, Bjorn R.; Jumlongras, Dolrudee; Morris, Michael D.; Levi, Benjamin

    2015-01-01

    Abstract. Calciphylaxis is a painful, debilitating, and premorbid condition, which presents as calcified vasculature and soft tissues. Traditional diagnosis of calciphylaxis lesions requires an invasive biopsy, which is destructive, time consuming, and often leads to exacerbation of the condition and infection. Furthermore, it is difficult to find small calcifications within a large wound bed. To address this need, a noninvasive diagnostic tool may help clinicians identify ectopic calcified mineral and determine the disease margin. We propose Raman spectroscopy as a rapid, point-of-care, noninvasive, and label-free technology to detect calciphylaxis mineral. Debrided calciphylactic tissue was collected from six patients and assessed by microcomputed tomography (micro-CT). Micro-CT confirmed extensive deposits in three specimens, which were subsequently examined with Raman spectroscopy. Raman spectra confirmed that deposits were consistent with carbonated apatite, consistent with the literature. Raman spectroscopy shows potential as a noninvasive technique to detect calciphylaxis in a clinical environment. PMID:26263412

  5. Fully resonant four-wave mixing spectroscopy of pentacene and dye molecules in condensed phases

    SciTech Connect

    Chang, T.C.

    1985-07-01

    Four-wave mixing spectroscopy (FWM) including coherent anti-Stokes Raman spectroscopy (CARS) and coherent Stokes Raman spectroscopy (CSRS) have been studied for pentacene doped in naphthalene crystals at low temperatures (4.5 to 35 K) in order to investigate nonlinear optical behavior of the third-order nonlinear susceptibility, X. Further, its application to study of cresyl violet perchlorate embedded in polyacrylic acid and in polyvinyl carbazole has been examined. Separate abstracting and indexing has been completed for the two papers.

  6. In situ cell cycle phase determination using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Takenaka, Tatsuji; Sato, Hidetoshi; Furihata, Chie

    2010-02-01

    Raman spectroscopy is a powerful tool for analysis of the chemical composition in living tissue and cells without destructive processes such as fixation, immunostaining, and fluorescence labeling. Raman microspectroscopic technique enables us to obtain a high quality spectrum from a single living cell. We demonstrated in situ cell cycle analysis with Raman microspectroscopy with the excitation wavelength of 532 nm. Cell cycle phases, G0/G1 and G2/M were able to be identified in the present study. The result of in situ Raman analysis was evaluated with flow cytometry analysis. Although the Raman spectra of living cells showed complex patterns during cell cycle, several Raman bands could be useful as markers for the cell cycle identification. A single cell analysis using Raman microspectroscopy predicted a possibility to observe directly molecular dynamics intracellular molecules of proteins, lipids and nucleic acids. Our current study focused on cytoplasm region and resonant Raman signals of cytochrome c in mitochondrion, and discussed how the Raman signals from cellular components contribute to the Raman spectral changes in cell cycle change in the human living cell (lung cancer cell).

  7. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy.

    PubMed

    Fu, Dan; Lu, Fa-Ke; Zhang, Xu; Freudiger, Christian; Pernik, Douglas R; Holtom, Gary; Xie, Xiaoliang Sunney

    2012-02-29

    Stimulated Raman scattering (SRS) microscopy is a newly developed label-free chemical imaging technique that overcomes the speed limitation of confocal Raman microscopy while avoiding the nonresonant background problem of coherent anti-Stokes Raman scattering (CARS) microscopy. Previous demonstrations have been limited to single Raman band measurements. We present a novel modulation multiplexing approach that allows real-time detection of multiple species using the fast Fourier transform. We demonstrate the quantitative determination of chemical concentrations in a ternary mixture. Furthermore, two imaging applications are pursued: (1) quantitative determination of oil content as well as pigment and protein concentration in microalgae cultures; and (2) 3D high-resolution imaging of blood, lipids, and protein distribution in ex vivo mouse skin tissue. We believe that quantitative multiplex SRS uniquely combines the advantage of fast label-free imaging with the fingerprinting capability of Raman spectroscopy and enables numerous applications in lipid biology as well as biomedical imaging. PMID:22316340

  8. Application of Raman spectroscopy technology to studying Sudan I

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  9. Applications of Raman scattering spectroscopy to halide glasses

    NASA Astrophysics Data System (ADS)

    Bendow, B.; Banerjee, P. K.; Drexhage, M. G.

    1983-04-01

    Polarized Raman scattering spectroscopy is a useful tool for investigating fundamental vibrational properties, structure and bonding, origins of IR edge absorption, and dispersion of the IR refractive index. In this paper, the application of Raman spectroscopy to halide glasses and, in particular, heavy metal fluoride glasses, is described. The spectra of the latter differ substantially from those of simple oxide, halide or chalcogenide glasses and, moreover, display a wide range of vibrational characteristics, depending on composition. In combination with infrared spectroscopy, useful guidelines can be developed for tailoring glass compositions for specific applications.

  10. Raman spectroscopy of carboranes and polycarboranesiloxanes

    SciTech Connect

    Shelnutt, J.A.

    1986-01-01

    Raman spectra of some m-carboranesiloxane polymers are compared with each other and with the spectrum of o-carborane and boron carbide. The comparisons and additional polarization studies allow the assignment of some vibrations to the icosahedral 1,7-dicarboranyl units, siloxy polymer connecting units, and substituent groups of the silicon atoms. The Raman investigation is directed toward understanding the interaction of carborane icosahedral units of boron-carbide semiconductor materials.

  11. Monoclinic LaGaGe2O7:Nd3+—a novel SRS- and SE-active crystal with high-order Stokes and anti-Stokes picosecond χ(3)-nonlinear lasing

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Rhee, H.; Lux, O.; Kaltenbach, A.; Eichler, H. J.; Hanuza, J.; Bagayev, S. N.; Yoneda, H.; Shirakawa, A.; Ueda, K.

    2013-07-01

    Steady-state χ(3)-nonlinear generation in the host crystal LaGaGe2O7 for Nd3+(Ln3+)-lasants has been discovered. All the registered Stokes and anti-Stokes lasing sidebands are identified and attributed to its SRS-promoting phonon mode at ωSRS ≈ 882 cm-1. We have classified the studied germanate as a promising crystal for self-Raman laser converters.

  12. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.

    PubMed

    Schmidt, Mikolaj K; Esteban, Ruben; González-Tudela, Alejandro; Giedke, Geza; Aizpurua, Javier

    2016-06-28

    Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of phonon-stimulated Raman scattering and a counterintuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this QED framework opens a venue to analyze the correlations of photons emitted from a plasmonic cavity. PMID:27203727

  13. Evaluation of thyroid tissue by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Teixeira, C. S. B.; Bitar, R. A.; Santos, A. B. O.; Kulcsar, M. A. V.; Friguglietti, C. U. M.; Martinho, H. S.; da Costa, R. B.; Martin, A. A.

    2010-02-01

    Thyroid gland is a small gland in the neck consisting of two lobes connected by an isthmus. Thyroid's main function is to produce the hormones thyroxine (T4), triiodothyronine (T3) and calcitonin. Thyroid disorders can disturb the production of these hormones, which will affect numerous processes within the body such as: regulating metabolism and increasing utilization of cholesterol, fats, proteins, and carbohydrates. The gland itself can also be injured; for example, neoplasias, which have been considered the most important, causing damage of to the gland and are difficult to diagnose. There are several types of thyroid cancer: Papillary, Follicular, Medullary, and Anaplastic. The occurrence rate, in general is between 4 and 7%; which is on the increase (30%), probably due to new technology that is able to find small thyroid cancers that may not have been found previously. The most common method used for thyroid diagnoses are: anamnesis, ultrasonography, and laboratory exams (Fine Needle Aspiration Biopsy- FNAB). However, the sensitivity of those test are rather poor, with a high rate of false-negative results, therefore there is an urgent need to develop new diagnostic techniques. Raman spectroscopy has been presented as a valuable tool for cancer diagnosis in many different tissues. In this work, 27 fragments of the thyroid were collected from 18 patients, comprising the following histologic groups: goitre adjacent tissue, goitre nodular tissue, follicular adenoma, follicular carcinoma, and papillary carcinoma. Spectral collection was done with a commercial FTRaman Spectrometer (Bruker RFS100/S) using a 1064 nm laser excitation and Ge detector. Principal Component Analysis, Cluster Analysis, and Linear Discriminant Analysis with cross-validation were applied as spectral classification algorithm. Comparing the goitre adjacent tissue with the goitre nodular region, an index of 58.3% of correct classification was obtained. Between goitre (nodular region and

  14. Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons.

    PubMed

    Zhang, Qing; Liu, Xinfeng; Utama, M Iqbal Bakti; Xing, Guichuan; Sum, Tze Chien; Xiong, Qihua

    2016-01-13

    Phonon-assisted anti-Stokes emission and its stimulated emission in polar semiconductor ZnTe are demonstrated via the annihilation of phonons as a result of strong exciton-phonon coupling. The findings are not only important for developing high-power radiation-balanced lasers, but are also promising for manufacturing ultraefficient solid-state laser coolers. PMID:26573758

  15. Tip-enhanced Raman spectroscopy and near-field polarization

    NASA Astrophysics Data System (ADS)

    Saito, Yuika; Mino, Toshihiro; Verma, Prabhat

    2015-12-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for High-resolution Raman spectroscopy. In this method, a metal coated nano-tip acts as a plasmonic antenna to enhance the originally weak Raman scattering from a nanometric volume of a sample. The technique enables to detect Raman scattering light from nano-scale area and also enhance the light intensity with combination of near-filed light and localized surface plasmon generated at a metallized tip apex. Nowadays TERS is used to investigate various nano-scale samples, for examples, carbon nanotubes, graphenes DNA and biomaterials. As the TERS developed, there is high demand to investigate the properties of near-field light e.g. polarization properties. We have analyzed the polarization properties of near-field light in TERS and successfully realized the quantitative nano-imaging by visible light.

  16. Anisotropic Raman Spectroscopy of Few-Layer Phosphorene

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Wu, Wangran; Maassen, Jesse; Luo, Zhe; Lundstrom, Mark; Xu, Xianfan; Ye, Peide

    Much recent research of black phosphorus (BP) and phosphorene has been focused on their unique anisotropy of this novel 2D material in terms of electrical, optical and thermal properties. Here we report the emerging Raman spectroscopy measurements of BP with respect to its isolation from bulk BP down to single layer phosphorene. The found frequency shift of BP in Raman spectra is to be correlated with atomic motion of modes, which can be explained by applying classical model of coupled harmonic oscillators. Raman intensity of different modes has also been included in our studies, which is confirmed as a solid strategy to quickly determine BP layer thickness. In addition, more information of their mechanical properties can also be obtained from Raman spectroscopy. The work was supported in part by NSF ECCS-1449270, NSF/AFOSR EFRI 2DARE Program, and ARO W911NF-15-1-0574.

  17. Raman and Infrared Spectroscopy of Pyridine under High Pressure

    SciTech Connect

    Zhuravlev, K.; Traikov, K; Dong, Z; Xie, S; Song, Y; Liu, Z

    2010-01-01

    We report the structural transitions of pyridine as a function of pressure up to 26 GPa using in situ Raman spectroscopy and infrared absorption spectroscopy. By monitoring changes in the Raman shifts in the lattice region as well as the band profiles in both Raman and IR spectra, a liquid-to-solid transition at 1 GPa followed by solid-to-solid transitions at 2, 8, 11, and 16 GPa were observed upon compression. These transitions were found to be reversible upon decompression from 22 GPa. A further chemical transformation was observed when compressed beyond 22 GPa as evidenced by the substantial and irreversible changes in the Raman and infrared spectra, which could be attributed to the destruction of the ring structure. The observed transformations in pyridine were also compared to those for benzene. The similar transition sequence with well-aligned transition pressures suggests that these isoelectronic aromatics may have similar structures and stabilities under high pressure.

  18. Remote cure monitoring of polymeric resins by laser Raman spectroscopy

    SciTech Connect

    Hong, K.C.; Vess, T.M.; Lyon, R.E.; Myrick, M.L.

    1993-05-01

    The validity of using Raman spectroscopy to monitor the cure chemistries of amine-cured epoxy is demonstrated by correlating NIR absorbance measurements with Raman measurements for a concentration series of bisphenol-A diglycidylether in its own reaction product with diethylamine. The intensity of a normalized Raman peak at 1240 cm{sup {minus}l}, assigned to the epoxide functionality, was found to be linearly related to the concentration of epoxide groups in the resin mixtures. Also, it is shown that the Ciba-Geigy Matrimid 5292 system can be monitored by ex-situ FT-Raman spectroscopy by observing changes in the carbonyl stretching (1773 cm{sup {minus}1}) or the C=C stretching of maleimide (1587 cm{sup {minus}1}) during the cure reaction.

  19. Monitoring the influence of antibiotic exposure using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Zemanek, Pavel; Bernatova, Silvie; Jezek, Jan; Sery, Mojmir; Jakl, Petr; Siler, Martin; Ruzicka, Filip

    2014-03-01

    Here we report on combination of the data obtained from MICs (minimum inhibitory concentrations) with infor- mation of microoragnisms fingerprint provided by Raman spectroscopy. In our feasibility study we could follow mechanisms of the bacteriostatic versus bactericidal action on biofilm-positive Staphylococcus epidermidis simply by monitoring Raman bands corresponding to DNA translating the changes introduced by selected antibiotics. The Raman spectra of Staphylococcus epidermidis treated with a bacteriostatic agent show little effect on DNA which is in contrast with the action of a bactericidal agent where decreased in dedicated Raman spectra signal strength suggests DNA fragmentation. Moreover, we demonstrate that Raman tweezers are indeed able to distinguish strains of biofilm-forming (biofilm-positive) and biofilm-negative Staphylococcus epidermidis strains using principal component analysis (PCA).

  20. Proximal and point detection of contaminated surfaces using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason A.; Christesen, Steven D.; Tripathi, Ashish; Emmons, Erik D.; Wilcox, Phillip G.; Emge, Darren K.; Pardoe, Ian J.; Fountain, Augustus W., III

    2011-11-01

    We are actively investigating the use of Raman spectroscopy for proximal standoff detection of chemicals and explosive materials on surfaces. These studies include Raman Chemical Imaging of contaminated fingerprints for forensic attribution and the assessments of commercial handheld or portable Raman instruments operating with near-infrared (IR) as well as ultraviolet (UV) laser excitation specifically developed for on-the-move reconnaissance of chemical contamination. As part of these efforts, we have measured the Raman cross sections of chemical agents, toxic industrial chemicals, and explosives from the UV to NIR. We have also measured and modeled the effect interrogation angle has on the Raman return from droplets on man-made surfaces. Realistic droplet distributions have been modeled and tested against variations in surface scan patterns and laser spot size for determining the optimum scan characteristics for detection of relevant surface contamination.

  1. Single bacteria identification by Raman spectroscopy.

    PubMed

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-01-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300 cm⁻¹. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24 mm². The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ~90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications. PMID:25028774

  2. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  3. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  4. Raman Spectroscopy Analysis Of Mechanical Stress Near Cu-TSVs

    NASA Astrophysics Data System (ADS)

    De Wolf, Ingrid

    2011-09-01

    This paper discusses Raman spectroscopy measurements of stress near Cu-TSVs (Through Silicon Vias) used in 3D stacking of thinned chips. It discusses the resolution and penetration depth of the technique and the relation between the measured Raman shift and stress. Using a simple model, the various stress components near TSVs are discussed and the relation between the measured Raman shift and these stress components is analyzed. Results obtained on TSVs with nearby shallow-trench isolation, with different Cu chemistry, with and without SiO2 layer on top, and with different aspect ratio are discussed and analyzed using the simple model.

  5. Pharmaceutical Analysis from Start to Finish by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Donahue, Michael; Smith, Wayne; Patient, Michael; Farquharson, Stuart

    2010-08-01

    During the past decade Raman spectroscopy has become a widely used analytical tool in the laboratory, process environment and on-line. This is largely due to the fact that virtually every chemical produces a unique Raman signature, sample preparation is generally not required, and analyses can be performed in 1 minute or less. This presentation will describe the value of fluorescent free and x-axis stable Raman spectra in confirming the identity of raw materials, tracking reaction kinetics during drug discovery and product synthesis, monitoring and controlling batch and continuous feed reactors, and determining product properties using chemometrics.

  6. Raman spectroscopy of polyhedral carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Codorniu Pujals, Daniel; Arias de Fuentes, Olimpia; Desdín García, Luis F.; Cazzanelli, Enzo; Caputi, Lorenzo S.

    2015-09-01

    The Raman spectra of polyhedral carbon nano-onions (PCO), obtained by underwater arc discharge of graphite electrodes, are studied. While the general Raman spectrum of PCO is very similar to those of other carbon nanostructures, including spherical nano-onions, the fine structure of the G and 2D bands gives valuable information that allows using Raman spectroscopy for differentiating the PCO from other carbon structures. The interpretation of the features of the fine structure of the spectra is supported by evidences obtained by TEM.

  7. Raman spectroscopy of blood in-vitro

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Ortiz-Lima, C. M.; Delgado-Atencio, J. A.

    2012-03-01

    We present Raman spectra from a sample of 8 volunteers that have different type of blood. The experimental data were carried out using a 785 nm excitation laser and an ocean optics spectrometer of 6 cm-1 resolution, with a used spectral region from 1000 to 1800 cm-1. We find Raman features at 1000 and 1542 cm-1 regarded with hemoglobin and its derivatives. Also we find Raman features at 1248 and 1342 cm-1 that are now regarded with pure fibrin. In this work, we use Principal Component analysis (PCA) to determine all variations of our samples, which allows us to define a classification of the influence of the blood type. Finally, we found vibrational lines of cholesterol, glucose and triglycerides that are reported in literature.

  8. Raman spectroscopy of vapors at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Laane, Jaan; Haller, Kristjan; Sakurai, Sachie; Morris, Kevin; Autrey, Daniel; Arp, Zane; Chiang, Whe-Yi; Combs, Amanda

    2003-05-01

    The most effective way to obtain high quality vapor-phase Raman spectra is to heat the samples to increase their vapor pressure. Many samples can be heated to 350 °C and higher without decomposition. We have designed a simple Raman cell to allow these high temperature studies to be carried out. The high-temperature Raman spectra of nine molecules will be presented and discussed. Most of these are non-rigid molecules containing aromatic rings for which vibrational potential energy surfaces have been determined from their spectra. Two molecules ( p-cresol and 3-methylindole) are model compounds for amino acids and their vapor-phase spectra are characteristic of environments with no hydrogen bonding.

  9. Differentiation of lipsticks by Raman spectroscopy.

    PubMed

    Salahioglu, Fatma; Went, Michael J

    2012-11-30

    Dispersive Raman spectra have been obtained using a Raman microscope and an excitation wavelength of 632.8 nm from 69 lipsticks of various colours and from a range of manufacturers without any pre-treatment of the samples. 10% of the samples were too fluorescent to give Raman spectra. 22% of the samples gave spectra which were unique to the brand and colour within the collected sample set. The remaining 68% of the samples gave spectra which could be classified into seven distinct groups. Discrimination of red lipsticks by this technique was the most difficult. The spectra of deposited lipstick samples remained unchanged over a period of a least a year. PMID:22959771

  10. Detection of Sphingomyelin Clusters by Raman Spectroscopy.

    PubMed

    Shirota, Koichiro; Yagi, Kiyoshi; Inaba, Takehiko; Li, Pai-Chi; Murata, Michio; Sugita, Yuji; Kobayashi, Toshihide

    2016-09-01

    Sphingomyelin (SM) is a major sphingolipid in mammalian cells that forms specific lipid domains in combination with cholesterol (Chol). Using molecular-dynamics simulation and density functional theory calculation, we identified a characteristic Raman band of SM at ∼1643 cm(-1) as amide I of the SM cluster. Experimental results indicate that this band is sensitive to the hydration of SM and the presence of Chol. We showed that this amide I Raman band can be utilized to examine the membrane distribution of SM. Similarly to SM, ceramide phosphoethanolamine (CerPE) exhibited an amide I Raman band in almost the same region, although CerPE lacks three methyl groups in the phosphocholine moiety of SM. In contrast to SM, the amide I band of CerPE was not affected by Chol, suggesting the importance of the methyl groups of SM in the SM-Chol interaction. PMID:27602727

  11. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.

    PubMed

    Wang, Zilong; Pearce, Stuart J; Lin, Yung-Chun; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-08-01

    Waveguide-enhanced Raman spectroscopy (WERS) is emerging as an attractive alternative to plasmonic surface-enhanced Raman spectroscopy approaches as it can provide more reproducible quantitative spectra on a robust chip without the need for nanostructured plasmonic materials. Realizing portable WERS systems with high sensitivity using low-cost laser diodes and compact spectrometers requires a detailed analysis of the power budget from laser to spectrometer chip. In this paper, we describe theoretical optimization of planar waveguides for maximum Raman excitation efficiency, demonstrate WERS for toluene on a silicon process compatible high index contrast tantalum pentoxide waveguide, measure the absolute conversion efficiency from pump power to received power in an individual Raman line, and compare this with a power budget analysis of the complete system including collection with an optical fiber and interfacing to a compact spectrometer. Optimized 110 nm thick Ta2O5 waveguides on silica substrates excited at a wavelength of 637 nm are shown experimentally to yield overall system power conversion efficiency of ∼0.5 × 10(-12) from the pump power in the waveguide to the collected Raman power in the 1002 cm(-1) Raman line of toluene, in comparison with a calculated efficiency of 3.9 × 10(-12) Collection efficiency is dictated by the numerical and physical apertures of the spectral detection system but may be improved by further engineering the spatial and angular Raman scattering distributions. PMID:27301326

  12. Sensitive algorithm for multiple-excitation-wavelength resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Wu, Hai-Shan; McCormick, William; Sluch, Mikhail; Martin, Robert; Ice, Robert; Lemoff, Brian E.

    2014-05-01

    Raman spectroscopy is a widely used spectroscopic technique with a number of applications. During the past few years, we explored the use of simultaneous multiple-excitation-wavelengths (MEW) in resonance Raman spectroscopy. This approach takes advantage of Raman band intensity variations across the Resonance Raman spectra obtained from two or more excitation wavelengths. Amplitude variations occur between corresponding Raman bands in Resonance Raman spectra due to complex interplay of resonant enhancement, self-absorption and laser penetration depth. We have developed a very sensitive algorithm to estimate concentration of an analyte from spectra obtained using the MEW technique. The algorithm uses correlations and least-square minimization approach to calculate an estimate for the concentration. For two or more excitation wavelengths, measured spectra were stacked in a two dimensional matrix. In a simple realization of the algorithm, we approximated peaks in the ideal library spectra as triangles. In this work, we present the performance of the algorithm with measurements obtained from a dual-excitation-wavelength Resonance Raman sensor. The novel sensor, developed at WVHTCF, detects explosives from a standoff distance. The algorithm was able to detect explosives with very high sensitivity even at signal-to-noise ratios as low as ~1.6. Receiver operating characteristics calculated using the algorithm showed a clear benefit in using the dual-excitation-wavelength technique over single-excitation-wavelength techniques. Variants of the algorithm that add more weight to amplitude variation information showed improved specificity to closely resembling spectra.

  13. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  14. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy.

    PubMed

    Wang, Zilong; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-09-01

    We demonstrate Raman spectroscopy on a high index thin film tantalum pentoxide waveguide and compare collection of Raman emission from the waveguide end with that from the waveguide surface. Toluene was used as a convenient model analyte, and a 40-fold greater signal was collected from the waveguide end. Simulations of angular and spatial Raman emission distributions showed good agreement with experiments, with the enhancement resulting from efficient collection of power from dipoles near the surface into the high-index waveguide film and substrate, combined with long interaction length. The waveguide employed was optimized at the excitation wavelength but not at emission wavelengths, and full optimization is expected to lead to enhancements comparable to surface-enhanced Raman spectroscopy in robust low-cost metal-free and nanostructure-free chips. PMID:27607994

  15. Two-dimensional-vibrational spectroscopy: Development and testing of a two-dimensional ultrafast Raman spectrometer with Time-Frequency Detection

    NASA Astrophysics Data System (ADS)

    Urbanek, Diana Camila

    The major emphasis of this dissertation will be given toward the theoretical tools necessary to acquire high resolution femtosecond Raman spectra from broadband femtosecond pulses. The theory of simultaneous Time-Frequency Detection (TFD) will be discussed and demonstrated to be a robust technique to acquire the vibrational coherence information. Finally, two experimental cases that demonstrate the feasibility of femtosecond TFD-CARS for acetonitrile and nitrobenzene will be presented. In the introductory first chapter, the motivation and fundamentals for developing 2D-vibrational spectroscopy using femtosecond Raman detection is presented. For coherent Raman spectroscopies, common femtosecond pulses often lie in an intermediate regime: their bandwidth is too wide for measurements in the frequency domain, but their temporal width is too broad for homodyne measurements in the time domain. A recent paper [Phys. Rev. Lett. 97 , 267401 (2006)] showed that complete Raman spectra can be recovered from intermediate length pulses by using simultaneous time and frequency detection (TFD). Heterodyne detection and a phase-stable local oscillator at the anti-Stokes frequency are not needed with TFD. Phase-control, pulse shaping or pulses of widely differing duration are not required. To demonstrate the TFD method, a high resolution Raman spectrum of nitrobenzene obtained from 60 fs pulses is discussed theoretically and experimentally in the second chapter. In the third chapter model calculations illustrate how information on the Raman spectrum is smoothly transferred from the frequency domain to the time domain as the pulse width shortens. When data is collected in both dimensions, the Raman spectrum is completely determined to high resolution, regardless of the probe pulse width. The TFD method is tested on experimental CARS data from acetonitrile in the fourth chapter. Compared to theoretical models, experimental data are complicated by noise and incomplete knowledge of the

  16. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  17. The substrate matters in the Raman spectroscopy analysis of cells

    NASA Astrophysics Data System (ADS)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  18. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  19. Dengue blood analysis by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rehman, A.; Anwar, S.; Firdous, S.; Ahmed, M.; Rasheed, R.; Nawaz, M.

    2012-06-01

    In this work Raman spectra of normal and dengue infected serum and whole blood were analyzed. In normal whole blood and serum characteristic peaks were observed when excited at 442 and 532 nm. In dengue whole blood and serum all peaks found to be blue shifted with reduced Raman intensity. Dengue whole blood and serum shows two peaks at 1614 and 1750 cm-1 which are due to presence of Immunoglobulin antibodies IgG and IgM. Whole study provides a route of information for diagnosis of dengue viral infection.

  20. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.