Science.gov

Sample records for antibacterial labdenoic acid

  1. The antibacterial effect of fatty acids on Helicobacter pylori infection

    PubMed Central

    Jung, Sung Woo; Lee, Sang Woo

    2016-01-01

    Eradication of Helicobacter pylori is recommended for the management of various gastric diseases, including peptic ulcers and mucosa-associated lymphoid tissue lymphoma. Because of the increasing prevalence of antibiotic resistance, the eradication rates of antibiotic-based therapies have decreased. Therefore, alternative treatments should be considered. The antibacterial properties of fatty acids (FAs) have been investigated in various organisms, including H. pylori. Some FAs, particularly polyunsaturated FAs, have been shown to have bactericidal activity against H. pylori in vitro; however, their antibacterial effects in vivo remain controversial. Poor solubility and delivery of FAs may be important reasons for this discrepancy. Recently, a series of studies demonstrated the antibacterial effects of a liposomal formulation of linolenic acid against H. pylori, both in vitro and in vivo. Further research is needed to improve the bioavailability of FAs and apply them in clinical use. PMID:26767854

  2. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    PubMed

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5 % based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications. PMID:26895244

  3. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  4. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides.

    PubMed

    Jackman, Joshua A; Yoon, Bo Kyeong; Li, Danlin; Cho, Nam-Joon

    2016-01-01

    Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed. PMID:26950108

  5. Fatty acid biosynthesis as a target for novel antibacterials

    PubMed Central

    Rock, Charles O

    2006-01-01

    The bacterial fatty acid synthesis pathway has significant potential as a target for the development of novel antibacterials. The pathway has been extensively studied in Escherichia coli, the crystal structures of the compounds involved are known and homologous genes are readily identified in the genomes of important pathogens. The, currently used drugs triclosan and isoniazid are known to target one step in the pathway. Other experimental compounds such as thiolactomycin and cerulenin effectively inhibit other steps. These known pathway inhibitors are reviewed and the areas for potential future developments are explored. PMID:15043388

  6. Synergistic Antibacterial Effect and Antibacterial Action Mode of Chitosan-Ferulic Acid Conjugate against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Eom, Sung-Hwan; Kang, Shin-Kook; Lee, Dae-Sung; Myeong, Jeong-In; Lee, Jinhwan; Kim, Hyun-Woo; Kim, Kyoung-Ho; Je, Jae-Young; Jung, Won-Kyo; Kim, Young-Mog

    2016-04-28

    We evaluated the synergistic antibacterial effect in combination with the chitosan-ferulic acid conjugate (CFA) and β-lactam antibiotics, such as ampicillin, penicillin, and oxacillin, against methicillin-resistant Staphylococcus aureus (MRSA) using fractional inhibitory concentration (FIC) indices. CFA clearly reversed the antibacterial activity of ampicillin, penicillin, and oxacillin against MRSA in the combination mode. Among these antibiotics, the combination of oxacillin-CFA resulted in a ∑FICmin range of 0.250 and ∑FICmax of 0.563, suggesting that the oxacillin-CFA combination resulted in an antibacterial synergy effect against MRSA. In addition, we determined that CFA inhibited the mRNA expression of gene mecA and the production of PBP2a, which is a key determinant for β-lactam antibiotic resistance, in a dosedependent manner. Thus, the results obtained in this study supported the idea on the antibacterial action mechanism that oxacillin will restore the antibacterial activity against MRSA through the suppression of PBP2a production by CFA. PMID:26718468

  7. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  8. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium.

    PubMed

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection. PMID:25632231

  9. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium

    PubMed Central

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection. PMID:25632231

  10. Thiourea derivatives incorporating a hippuric acid moiety: synthesis and evaluation of antibacterial and antifungal activities.

    PubMed

    Abbas, Samir Y; El-Sharief, Marwa A M Sh; Basyouni, Wahid M; Fakhr, Issa M I; El-Gammal, Eman W

    2013-06-01

    New series of thiourea derivatives incorporating a hippuric acid moiety have been synthesized through the reaction of 4-hippuric acid isothiocyanate with various nitrogen nucleophiles such as aliphatic amines, aromatic amines, sulfa drugs, aminopyrazoles, phenylhydrazine and hydrazides. The synthesized compounds were tested against bacterial and fungal strains. Most of compounds, such as 2-(4-(3-(3-bromophenyl)thioureido)benzamido)acetic acid and 2-(4-(3-(4-(N-pyrimidin-2-ylsulfamoyl)phenyl)thioureido)benzamido)acetic acid, showed significant antibacterial and antifungal activities. These compounds comprise a new class of promising broad-spectrum antibacterial and antifungal agents. PMID:23644194

  11. Synthesis and antibacterial evaluation of New N-acylhydrazone derivatives from dehydroabietic acid.

    PubMed

    Gu, Wen; Wu, Rongrong; Qi, Shilong; Gu, Chenhai; Si, Fanjunnan; Chen, Zhuhui

    2012-01-01

    A series of new N-acylhydrazone derivatives were synthesized in good yields through the reactions of dehydroabietic acid hydrazide with a variety of substituted arylaldehydes. The structures of the synthesized compounds were confirmed by IR, 1H- and 13C-NMR, ESI-MS, elemental analysis and single crystal X-ray diffraction. From the crystal structure of compound 4l, the C=N double bonds of these N-acylhydrazones showed (E)-configuration, while the NMR data of compounds 4a-q indicated the existence of two rotamers for each compound in solution. The target compounds were evaluated for their antibacterial activities against four microbial strains. The result suggested that several compounds exhibited pronounced antibacterial activities. Particularly, compound 4p exhibited good antibacterial activity against Staphylococcus aureus and Bacillus subtilis comparable to positive control. The possible antibacterial metabolism and the strategy for further optimization of this compound were also discussed. PMID:22522394

  12. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  13. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Rahman, Russly Abdul; Jokar, Maryam; Darroudi, Majid

    2010-01-01

    In this study, antibacterial characteristic of silver/poly (lactic acid) nanocomposite (Ag/PLA-NC) films was investigated, while silver nanoparticles (Ag-NPs) were synthesized into biodegradable PLA via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were respectively used as a silver precursor and reducing agent in the PLA, which acted as a polymeric matrix and stabilizer. Meanwhile, the properties of Ag/PLA-NCs were studied as a function of the Ag-NP weight percentages (8, 16, and 32 wt% respectively), in relation to the use of PLA. The morphology of the Ag/PLA-NC films and the distribution of the Ag-NPs were also characterized. The silver ions released from the Ag/PLA-NC films and their antibacterial activities were scrutinized. The antibacterial activities of the Ag/PLA-NC films were examined against Gram-negative bacteria (Escherichia coli and Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using Muller–Hinton agar. The results indicated that Ag/PLA-NC films possessed a strong antibacterial activity with the increase in the percentage of Ag-NPs in the PLA. Thus, Ag/PLA-NC films can be used as an antibacterial scaffold for tissue engineering and medical application. PMID:20856832

  14. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric.

    PubMed

    Kantouch, A; El-Sayed, A Atef; Salama, M; El-Kheir, A Abou; Mowafi, S

    2013-11-01

    Salicylic acid and three of its derivatives were used to provide antibacterial properties to viscose fabrics. The four bactericides used were bonded to the viscose fabrics using epichlorohydrin or polymer binders. Optimization of the salicylic acid and its derivatives as well as the concentration of polymers was reported. The ability of the polymer binders to attract and bind the four bactericides was observed. The overall results show that the antibacterial reactivity of salicylic acid and its derivatives are in the following order 5-bromosalicylic acid>salicylic acid>5-chlorosalicylic acid>4-chlorosalicylic acid. Using epichlorohydrin as a binding agent, unfortunately, inhibits the bactericidal activity of the four bactericides. The FTIR study concludes that the reaction between salicylic acid as well as its derivatives with epichlorohydrin takes place through the phenolic group of the acids. The unexpected deterioration in the bactericidal properties of salicylic acid and its derivatives as a result of the treatment with epichlorohydrin could be due to the nature of interaction between the epichlorohydrin molecule and the acids molecules. PVP and PU show superior ability to sustain the four bactericides used even after 10 washing cycles. PMID:24076193

  15. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  16. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  17. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences. PMID:27555764

  18. Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan.

    PubMed

    Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren

    2016-08-01

    Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property. PMID:27102367

  19. Complestatin exerts antibacterial activity by the inhibition of fatty acid synthesis.

    PubMed

    Kwon, Yun-Ju; Kim, Hyun-Ju; Kim, Won-Gon

    2015-01-01

    Bacterial enoyl-acyl carrier protein (ACP) reductase has been confirmed as a novel target for antibacterial drug development. In the screening of inhibitors of Staphylococcus aureus enoyl-ACP reductase (FabI), complestatin was isolated as a potent inhibitor of S. aureus FabI together with neuroprotectin A and chloropeptin I from Streptomyces chartreusis AN1542. Complestatin and related compounds inhibited S. aureus FabI with IC₅₀ of 0.3-0.6 µM. They also prevented the growth of S. aureus as well as methicillin-resistance S. aureus (MRSA) and quinolone-resistant S. aureus (QRSA), with minimum inhibitory concentrations (MICs) of 2-4 µg/mL. Consistent with its FabI-inhibition, complestatin selectively inhibited the intracellular fatty acid synthesis in S. aureus, whereas it did not affect the macromolecular biosynthesis of other cellular components, such as DNA, RNA, proteins, and the cell wall. Additionally, supplementation with exogenous fatty acids reversed the antibacterial effect of complestatin, demonstrating that it targets fatty acid synthesis. In this study, we reported that complestatin and related compounds showed potent antibacterial activity via inhibiting fatty acid synthesis. PMID:25947917

  20. Antibacterial and Biofilm-Disrupting Coatings from Resin Acid-Derived Materials.

    PubMed

    Ganewatta, Mitra S; Miller, Kristen P; Singleton, S Parker; Mehrpouya-Bahrami, Pegah; Chen, Yung P; Yan, Yi; Nagarkatti, Mitzi; Nagarkatti, Prakash; Decho, Alan W; Tang, Chuanbing

    2015-10-12

    We report antibacterial, antibiofilm, and biocompatible properties of surface-immobilized, quaternary ammonium-containing, resin acid-derived compounds and polycations that are known to be efficient antimicrobial agents with minimum toxicities to mammalian cells. Surface immobilization was carried out by the employment of two robust, efficient chemical methods: Copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition click reaction, and surface-initiated atom transfer radical polymerization. Antibacterial and antibiofilm activities against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were strong. Hemolysis assays and the growth of human dermal fibroblasts on the modified surfaces evidenced their biocompatibility. We demonstrate that the grafting of quaternary ammonium-decorated abietic acid compounds and polymers from surfaces enables the incorporation of renewable biomass in an effective manner to combat bacteria and biofilm formation in biomedical applications. PMID:26324023

  1. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid).

    PubMed

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications. PMID:26090449

  2. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid)

    PubMed Central

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications. PMID:26090449

  3. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains. PMID:26993531

  4. Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions

    NASA Astrophysics Data System (ADS)

    Rotaru, Ileana; Varvara, Simona; Gaina, Luiza; Muresan, Liana Maria

    2014-12-01

    The present study is aiming to investigate the effect of four antibiotics (amoxicillin, ciprofloxacin, doxycycline and streptomycin,) belonging to different classes of antibacterial drugs on bronze corrosion in a solution simulating an acid rain (pH 4). Due to their ability to form protective films on the metal surface, the tested antibiotics act as corrosion inhibitors for bronze. The antibiotics were tested at various concentrations in order to determine the optimal concentration range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, polarization curves, electrochemical impedance spectroscopy, SEM and XPS measurements were used. Moreover, a correlation between the inhibition efficiency of some antibacterial drugs and certain molecular parameters was determined by quantum chemical computations. Parameters like energies EHOMO and ELUMO and HOMO-LUMO energy gap were used for correlation with the corrosion data.

  5. Inhibition of acidic mine drainage using anti-bacterial substances. Technical report (Final)

    SciTech Connect

    Sherrard, J.H.; Kavanaugh, R.G.; Stroebel, P.S.; Stallard, M.L.

    1990-04-01

    Laboratory experiments were carried out to evaluate the effectiveness of antibacterial substances and antibiotics against Thiobacillus ferrooxidans, the organism responsible for bacterial mediated acidic mine drainage. Twenty-two antibiotics and two antibacterial substances were evaluated. The most promising compound, N-Serve, was evaluated further in column studies. A column study was completed using coal mine waste and hard rock mine waste spoils. Eight columns containing 7 kg of each spoil were established using varying concentrations of N-Serve applied to the spoils. The columns were leached once a week with one inch of rain (distilled water). Effluent was collected and monitored for water quality parameters. Only the highest N-Serve dose produced column leachates significantly better in quality than that of the control columns.

  6. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  7. Antibacterial properties of soap containing some fatty acid esters.

    PubMed

    Pandey, N K; Natraj, C V; Kalle, G P; Nambudiry, M E

    1985-02-01

    Synopsis Chemical microbial inhibitors compatible with formulations of soaps and deodorant perfumes are more effective if they are substantive to the skin. However, highly effective inhibitors are toxic and their substantivity on skin may accentuate the toxicity. Natural compounds such as short to medium chain fatty acids and their derivatives, which are known to be germicidal, offer a viable alternative to chemical inhibitors. We report here the synthesis of sodium 2-lauroyloxy propionate and an in vivo method to test its substantivity on skin following its incorporation in soaps. Among several compounds tested, sodium 2-lauroyloxy propionate was found to be highly substantive in soap formulation. PMID:19460009

  8. The contribution of acidulant to the antibacterial activity of acid soluble α- and β-chitosan solutions and their films.

    PubMed

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2014-01-01

    This study evaluated individual contributions of dissolving acids (acetic acid, lactic acid, and hydrochloric acid) or acid solubilized chitosan to the antibacterial activity against Listeria innocua and Escherichia coli as solutions and dried films. Solutions containing chitosan showed significantly (P < 0.05) different inhibitory activity (measured as percentage of inhibition (PI), in percent) against L. innocua and E. coli, compared to equivalent acid solutions. This increase was calculated as additional inhibition (AI, in percent), which could be as high as 65% in solutions containing 300-320 kDa chitosan depending on the acid type, bacterial species, and the chitosan form (α or β). Solutions containing 4-5 kDa chitosan had lower AI and showed much greater variability among the different chitosan forms, acid types, and bacterial species. Higher molecular weight (Mw) chitosan also showed significantly higher levels of adsorption to bacterial cells than that of lower Mw samples, suggesting that the observed increase in inhibition was the result of surface phenomena. The contribution of acids to the antibacterial activity of chitosan films was assessed by comparing non-rinsed and rinsed films (rinsed in the appropriate broth to remove residual acids and active fragments formed on the dried film). Rinsing β-chitosan films has reduced PI by as much as 28% compared with non-rinsed films, indicating that part of the antibacterial activity of chitosan films is due to the presence of soluble acid compounds and/or other active fragments. Overall, both acidulant and chitosan were found to contribute to the antibacterial activity of acid solubilized α- and β-chitosan, with the exact antibacterial activity of chitosan varying based on the solution and film properties, suggesting a complex interaction. PMID:24196584

  9. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  10. The Pleiotropic Antibacterial Mechanisms of Ursolic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA).

    PubMed

    Wang, Chao-Min; Jhan, Yun-Lian; Tsai, Shang-Jie; Chou, Chang-Hung

    2016-01-01

    (1) BACKGROUND: Several triterpenoids were found to act synergistically with classes of antibiotic, indicating that plant-derived chemicals have potential to be used as therapeutics to enhance the activity of antibiotics against multidrug-resistant pathogens. However, the mode of action of triterpenoids against bacterial pathogens remains unclear. The objective of this study is to evaluate the interaction between ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA); (2) METHODS: The ability of ursolic acid to damage mammalian and bacterial membranes was examined. The proteomic response of methicillin-resistant S. aureus in ursolic acid treatment was investigated using two-dimensional (2D) proteomic analysis; (3) RESULTS: Ursolic acid caused the loss of staphylococcal membrane integrity without hemolytic activity. The comparison of the protein pattern of ursolic acid-treated and normal MRSA cells revealed that ursolic acid affected a variety of proteins involved in the translation process with translational accuracy, ribonuclease and chaperon subunits, glycolysis and oxidative responses; (4) CONCLUSION: The mode of action of ursolic acid appears to be the influence on the integrity of the bacterial membrane initially, followed by inhibition of protein synthesis and the metabolic pathway. These findings reflect that the pleiotropic effects of ursolic acid against MRSA make it a promising antibacterial agent in pharmaceutical research. PMID:27399657

  11. Potent Antibacterial Antisense Peptide–Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    PubMed Central

    Ghosal, Anubrata

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce antisense peptide–peptide nucleic acid (PNA) conjugates as antibacterial agents against P. aeruginosa. We have designed and optimized antisense peptide–PNA conjugates targeting the translation initiation region of the ftsZ gene (an essential bacterial gene involved in cell division) or the acpP gene (an essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)4-Ahx-βala or the H-(R-Ahx)6-βala peptide exhibited complete growth inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1–2 μM concentrations without any indication of bacterial membrane disruption (even at 20 μM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections. PMID:23030590

  12. Design, Synthesis and Antibacterial Evaluation of Some New 2-Phenyl-quinoline-4-carboxylic Acid Derivatives.

    PubMed

    Wang, Xiaoqin; Xie, Xiaoyang; Cai, Yuanhong; Yang, Xiaolan; Li, Jiayu; Li, Yinghan; Chen, Wenna; He, Minghua

    2016-01-01

    A series of new 2-phenyl-quinoline-4-carboxylic acid derivatives was synthesized starting from aniline, 2-nitrobenzaldehyde, pyruvic acid followed by Doebner reaction, amidation, reduction, acylation and amination. All of the newly-synthesized compounds were characterized by ¹H-NMR, (13)C-NMR and HRMS. The antibacterial activities of these compounds against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), as well as one strain of methicillin-resistant Staphylococcus aureus (MRSA) bacteria were evaluated by the agar diffusion method (zone of inhibition) and a broth dilution method (minimum inhibitory concentration (MIC)), and their structure-activity relationships were obtained and discussed. The results revealed that some compounds displayed good antibacterial activity against Staphylococcus aureus, and Compounds 5a₄ and 5a₇ showed the best inhibition with an MIC value of 64 μg/mL against Staphylococcus aureus and with an MIC value of 128 μg/mL against Escherichia coli, respectively. The results of the MTT assay illustrated the low cytotoxicity of Compound 5a₄. PMID:26978336

  13. Low expression of the antibacterial factor L-amino acid oxidase in bovine mammary gland.

    PubMed

    Nagaoka, Kentaro; Zhang, Haolin; Arakuni, Masahiro; Taya, Kazuyoshi; Watanabe, Gen

    2014-12-01

    In the mouse, L-amino acid oxidase (LAO) produces hydrogen peroxide by utilizing free amino acids and is a proven antibacterial factor in mammary glands. Mastitis, a bacterial infection of the mammary gland, is the most frequent disease in dairy cattle. Here, we investigate whether LAO is expressed in the mammary gland of dairy cattle and is antibacterial. In dairy cattle, the expression level of LAO mRNA in the mammary gland was considerably lower than that in mice, and LAO activity was not observed in cattle milk that produced hydrogen peroxide. The expression of LAO mRNA was also low in Japanese Black cattle, the same as in Holstein cattle. A higher LAO mRNA expression was observed in the mastitis glands than in the lactating glands. Furthermore, spleen and lymph nodes expressed high levels of LAO mRNA in dairy cattle. We conclude that mammary glands in dairy cattle have lower ability to express the LAO gene compared to that in mice, which may result in a high incidence of mastitis. PMID:24961772

  14. The Impact of Fatty Acids on the Antibacterial Properties of N-Thiolated β-Lactams

    PubMed Central

    Prosen, Katherine R.; Carroll, Ronan K.; Burda, Whittney N.; Krute, Christina N.; Bhattacharya, Biplob; Dao, My Lien; Turos, Edward; Shaw, Lindsey N.

    2011-01-01

    Bacterial fatty acid synthesis (FAS) is a potentially important, albeit controversial, target for antimicrobial therapy. Recent studies have suggested that the addition of exogenous fatty acids (FA) to growth media can circumvent the effects of FAS-targeting compounds on bacterial growth. Consequently, such agents may have limited in vivo applicability for the treatment of human disease, as free FAs are abundant within the body. Our group has previously developed N-thiolated β-lactams and found they function by interfering with FAS in select pathogenic bacteria, including MRSA. To determine if the FAS targeting activity of N-thiolated β-lactams can be abrogated by exogenous fatty acids, we performed MIC determinations for MRSA strains cultured with the fatty acids oleic acid and Tween 80. We find that, whilst the activity of the known FAS inhibitor triclosan is severely compromised by the addition of both oleic acid and Tween 80, exogenous FAs do not mitigate the antibacterial activity of N-thiolated β-lactams towards MRSA. Consequently, we propose that N-thiolated β-lactams are unique amongst FAS-inhibiting antimicrobials, as their effects are unimpeded by exogenous FAs. PMID:21821415

  15. Mechanism of Antibacterial Activity of Liposomal Linolenic Acid against Helicobacter pylori

    PubMed Central

    Jung, Sung Woo; Thamphiwatana, Soracha; Zhang, Liangfang; Obonyo, Marygorret

    2015-01-01

    Helicobacter pylori infects approximately half of the world population and is a major cause of gastritis, peptic ulcer, and gastric cancer. Moreover, this bacterium has quickly developed resistance to all major antibiotics. Recently, we developed a novel liposomal linolenic acid (LipoLLA) formulation, which showed potent bactericidal activity against several clinical isolated antibiotic-resistant strains of H. pylori including both the spiral and coccoid form. In addition, LipoLLA had superior in vivo efficacy compared to the standard triple therapy. Our data showed that LipoLLA associated with H. pylori cell membrane. Therefore, in this study, we investigated the possible antibacterial mechanism of LipoLLA against H. pylori. The antibacterial activity of LipoLLA (C18:3) was compared to that of liposomal stearic acid (LipoSA, C18:0) and oleic acid (LipoOA, C18:1). LipoLLA showed the most potent bactericidal effect and completely killed H. pylori within 5 min. The permeability of the outer membrane of H. pylori increased when treated with LipoOA and LipoLLA. Moreover, by detecting released adenosine triphosphate (ATP) from bacteria, we found that bacterial plasma membrane of H. pylori treated with LipoLLA exhibited significantly higher permeability than those treated with LipoOA, resulting in bacteria cell death. Furthermore, LipoLLA caused structural changes in the bacterial membrane within 5 min affecting membrane integrity and leading to leakage of cytoplasmic contents, observed by both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Our findings showing rapid bactericidal effect of LipoLLA suggest it is a very promising new, effective anti-H. pylori agent. PMID:25793403

  16. Surface Modification of PET Fabric by Graft Copolymerization with Acrylic Acid and Its Antibacterial Properties

    PubMed Central

    Abdolahifard, M.; Bahrami, S. Hajir; Malek, R. M. A.

    2011-01-01

    Graft copolymerization of acrylic acid (AA) onto Poly(ethylene terephthalate) (PET) fabrics with the aid of benzoyl peroxide was carried out. The effect of polymerization parameters on the graft yield was studied. Percent grafting was enhanced significantly by increasing benzoyl peroxide (BP) concentrations up to 3.84 g/lit and then decreased upon further increase in initiator concentration. Preswelling of PET leads to changes in its sorption-diffusion properties and favors an increase in the degree of grafting. The antibiotics treated grafted fabrics showed antibacterial properties towards gram-positive and gram-negative microorganisms. FTIR and SEM were used to characterize AA-grafted polyester fabrics. PMID:24052819

  17. Antibacterial activity of a 7,10-dihydroxy-8(E)-octadecenoic acid against plant pathogenic bacteria.

    PubMed

    Sohn, Hye-Ran; Bae, Jae-Han; Hou, Ching T; Kim, Hak-Ryul

    2013-08-15

    7,10-Dihydroxy-8(E)-octadecenoic acid (DOD), one of hydroxy fatty acids, was successfully produced from oleic acid and natural vegetable oils containing oleic acid by a bacterial strain Pseudomonas aeruginosa (PR3). However, biological properties of DOD remained unknown so far. In this study, as a trial to determine the biological properties of DOD molecule, antibacterial activities of DOD against plant pathogenic bacteria were determined qualitatively and quantitatively. DOD presented strong antibacterial activities against all the bacterial strains tested with MIC value being in the range of 125-1000μg/ml and there was no sensitivity preference detected between Gram-positive and Gram-negative strains. PMID:23830454

  18. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus.

    PubMed

    Desbois, Andrew P; Lawlor, Keelan C

    2013-11-01

    New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32-1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15-30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically. PMID:24232668

  19. Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against Propionibacterium acnes and Staphylococcus aureus

    PubMed Central

    Desbois, Andrew P.; Lawlor, Keelan C.

    2013-01-01

    New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32–1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15–30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically. PMID:24232668

  20. Antibacterial efficacy of recombinant Siganus oramin L-amino acid oxidase expressed in Pichia pastoris.

    PubMed

    Li, Ruijun; Li, Anxing

    2014-12-01

    Siganus oraminl-amino acid oxidase is a novel natural protein (named SR-LAAO) isolated from serum of the rabbitfish (S. oramin), which showed antibacterial activity against both Gram-positive and Gram-negative bacteria and had a lethal effect on the parasites Cryptocaryon irritans, Trypanosoma brucei brucei and Ichthyophthirius multifiliis. In order to test whether recombinant SR-LAAO (rSR-LAAO) produced by the eukaryotic expression system also has antimicrobial activity, the yeast Pichia pastoris was used as the expression host to obtain rSR-LAAO in vitro. Crude rSR-LAAO produced by P. pastoris integrated with the SR-LAAO gene had antibacterial activity against both Gram-positive and Gram-negative bacteria as shown by inhibition zone assay of the antibacterial spectrum on agar plates. The average diameter of the inhibition zone of crude rSR-LAAO against the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae was 1.040 ± 0.045 cm and 1.209 ± 0.085 cm, respectively. For the Gram-negative bacteria Aeromonas sobria, Escherichia coli, Vibrio alginolyticus, Vibrio cholera and Photobacterium damselae subsp. piscicida, the average diameter of inhibition zone was 1.291 ± 0.089 cm, 0.943 ± 0.061 cm, 0.756 ± 0.057 cm, 0.834 ± 0.023 cm and 1.211 ± 0.026 cm, respectively. These results were obtained at the logarithmic growth phase of S. agalactiae and A. sobria cell suspensions after incubation with 0.5 mg/mL crude rSR-LAAO for 24 h. The final bacterial growth rate was decreased significantly. The relative inhibition rate can reach 50% compared to crude products from P. pastoris integrated with an empty vector at the same concentration of protein. The antimicrobial activity of crude rSR-LAAO was likely associated with H2O2 formation, because its inhibition zones were disturbed significantly by catalase. Scanning electron microscopy results showed crude rSR-LAAO-treated bacterial surfaces became rough and particles were attached, cell walls were

  1. Nanotechnology approaches for antibacterial drug delivery: Preparation and microbiological evaluation of fusogenic liposomes carrying fusidic acid.

    PubMed

    Nicolosi, Daria; Cupri, Sarha; Genovese, Carlo; Tempera, Gianna; Mattina, Roberto; Pignatello, Rosario

    2015-06-01

    Many antibacterial drugs have some difficulty passing through the bacterial cell membrane, especially if they have a high molecular weight or large spatial structure. Consequently, intrinsic resistance is shown by some bacterial strains. Reduced cell membrane permeability is one of the mechanisms of resistance known for fusidic acid (FUS), a bacteriostatic steroidal compound with activity limited to Gram-positive bacteria. Moreover, the lipophilic character of FUS has been shown to cause drug retention inside the bilayers of cell membranes, preventing its diffusion towards target sites inside the cytoplasm. Targeting antimicrobial agents by means of liposomes may be a valid strategy in the treatment of infections refractory to conventional routes of antimicrobial treatment. On this basis, loading of FUS in fusogenic liposomes (FLs) was planned in this study. Fusogenic small unilamellar vesicles loaded with FUS were produced to evaluate their influence on improving the cell penetration and antibacterial activity of the antibiotic. The produced carriers were technologically characterised and were subjected to an in vitro microbiological assay against several strains of Gram-negative and Gram-positive bacteria. The experimental results showed that encapsulating FUS in a liposomal carrier can improve antimicrobial efficacy and reduce the effective concentration required, probably through putative mechanisms of increased diffusion through the bacterial cell membrane. In fact, whilst free FUS was active only on the tested Gram-positive strains, incubation of FUS-loaded FLs exhibited growth inhibitory activity both against Gram-positive and Gram-negative strains. The lowest MICs were obtained against Staphylococcus epidermidis (≤0.15 μg/mL) and Acinetobacter baumannii (37.5 μg/mL) clinical strains. PMID:25816979

  2. Anti-tyrosinase kinetics and antibacterial process of caffeic acid N-nonyl ester in Chinese Olive (Canarium album) postharvest.

    PubMed

    Jia, Yu-Long; Zheng, Jing; Yu, Feng; Cai, Yi-Xiang; Zhan, Xi-Lan; Wang, Hui-Fang; Chen, Qing-Xi

    2016-10-01

    Enzymatic browning and bacterial putrefaction are mainly responsible for quality losses of Chinese Olive (Canarium album) postharvest and lead to very short shelf life on average. Screening anti-browning and anti-bacterial agents is important for preservation of Chinese Olive. Caffeic acid N-nonyl ester (C-9) and caffeic acid N- Heptyl ester (C-7) was synthesized as inhibitors of tyrosinase, which is a key enzyme in browning process. The compound of C-9 could inhibit the activity of tyrosinase strongly and its IC50 value was determined to be 37.5μM, while the compound of C-7 had no inhibitory ability. Kinetic analyses showed that compound of C-9 has been a reversible inhibitory mechanism below 50μM and been irreversible mechanisms above 50μM. For the reversible inhibitory mechanism, the values of inhibitory constants (KI and KIS) were determined to be 24.6 and 37.4μM, respectively. The results of Chinese Olive fruit postharvest showed that the compound of C-9 could effectively anti-browning and anti-bacterial putrefaction. In addition, this compound had strong antibacterial activities against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Salmonella. Therefore, C-9 could be a potential anti-browning and anti-bacterial reagent. PMID:27246378

  3. Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase

    PubMed Central

    2004-01-01

    Isoprenoid biosynthesis via the methylerythritol phosphate pathway is a target against pathogenic bacteria and the malaria parasite Plasmodium falciparum. 4-(Hydroxyamino)-4-oxobutylphosphonic acid and 4-[hydroxy(methyl)amino]-4-oxobutyl phosphonic acid, two novel inhibitors of DXR (1-deoxy-D-xylulose 5-phosphate reducto-isomerase), the second enzyme of the pathway, have been synthesized and compared with fosmidomycin, the best known inhibitor of this enzyme. The latter phosphonohydroxamic acid showed a high inhibitory activity towards DXR, much like fosmidomycin, as well as significant antibacterial activity against Escherichia coli in tests on Petri dishes. PMID:15473867

  4. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens.

    PubMed

    D'Alvise, Paul W; Phippen, Christopher B W; Nielsen, Kristian F; Gram, Lone

    2016-01-01

    Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography-high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926, and Phaeobacter sp. strain 27-4 under low-iron concentrations and was instantaneously converted to TDA when pH was lowered. Production of TDA in the presence of Fe(3+) coincides with formation of a dark brown substance, which could be precipitated by acid addition. From this brown pigment TDA could be liberated slowly with aqueous ammonia, and both direct-infusion mass spectrometry and elemental analysis indicated a [Fe(III)(TDA)2]x complex. The pigment could also be produced by precipitation of pure TDA with FeCl3. Our results raise questions about how biologically active TDA is produced in natural marine settings where iron is typically limited and whether the affinity of TDA to iron points to a physiological or ecological function of TDA other than as an antibacterial compound. PMID:26519388

  5. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens

    PubMed Central

    D'Alvise, Paul W.; Phippen, Christopher B. W.; Nielsen, Kristian F.

    2015-01-01

    Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography–high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926, and Phaeobacter sp. strain 27-4 under low-iron concentrations and was instantaneously converted to TDA when pH was lowered. Production of TDA in the presence of Fe3+ coincides with formation of a dark brown substance, which could be precipitated by acid addition. From this brown pigment TDA could be liberated slowly with aqueous ammonia, and both direct-infusion mass spectrometry and elemental analysis indicated a [FeIII(TDA)2]x complex. The pigment could also be produced by precipitation of pure TDA with FeCl3. Our results raise questions about how biologically active TDA is produced in natural marine settings where iron is typically limited and whether the affinity of TDA to iron points to a physiological or ecological function of TDA other than as an antibacterial compound. PMID:26519388

  6. Thermochemical studies on the quantity-antibacterial effect relationship of four organic acids from Radix Isatidis on Escherichia coli growth.

    PubMed

    Kong, Weijun; Zhao, Yanling; Shan, Limei; Xiao, Xiaohe; Guo, Weiying

    2008-07-01

    In this report, we have investigated the inhibitory action of four organic acids from Radix Isatidis on Escherichia coli growth was investigated at 37 degrees C by using a microcalorimeter. The four organic acids were: syringic acid, 2-amino-benzoic acid, salicylic acid, benzoic acid. In accordance with thermokinetic model, the pertaining relationships of the drugs, such as growth inhibitory ratio vs. concentration, maximal power-output vs. growth rate constant, growth rate constant vs. concentration, were obtained. Half-inhibitory concentration of the drugs, IC(50), was obtained by quantitative analysis. From the view of thermodynamics and molecular structure, the relationship between quantity and effect of the four organic acids has been discussed. The functional groups on phenyl ring had important influence on the antibacterial activities. Our work suggests that microcalorimetry is a fast, simple and more sensitive method that can be easily performed and applied to study the anti-bacterial activities of organic acids from Radix Isatidis on microorganism compared to other biological methods. PMID:18591764

  7. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity.

    PubMed

    Chen, Zhen-Hua; Zheng, Chang-Ji; Sun, Liang-Peng; Piao, Hu-Ri

    2010-12-01

    With an intention to synergize the anti-bacterial activity of chalcones and rhodanine-3-acetic acid, several hybrid compounds possessing chalcone and rhodanine-3-acetic acid moieties were synthesized and tested for their anti-bacterial activity. Some compounds presented great anti-microbial activities against Gram-positive bacteria (including the multidrug-resistant clinical isolates). This class of compounds presented high potency against Staphylococcus aureus, among which the derivatives 5k with a MIC of 2 μg/mL was as active as the standard drug (norfloxacin) and less active than oxacillin. Compounds 5a-s did not inhibit the growth of Gram-negative bacteria Escherichia coli CCARM 1924 or E. coli CCARM 1356 at 64 μg/mL. PMID:20889240

  8. Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane

    PubMed Central

    Bai, Jinrong; Wu, Yanping; Liu, Xiaoyan; Zhong, Kai; Huang, Yina; Gao, Hong

    2015-01-01

    Shikimic acid (SA) has been reported to possess antibacterial activity against Staphylococcus aureus, whereas the mode of action of SA is still elusive. In this study, the antibacterial activity and mechanism of SA toward S. aureus by cell membrane damage was investigated. After SA treatment, massive K+ and nucleotide leakage from S. aureus, and a significant change in the membrane potential was observed, suggesting SA may act on the membrane by destroying the cell membrane permeability. Through transmission electron microscopic observations we further confirmed that SA can disrupt the cell membrane and membrane integrity. Meanwhile, SA was found to be capable of reducing the membrane fluidity of the S. aureus cell. Moreover, the fluorescence experiments indicated that SA could quench fluorescence of Phe residues of the membrane proteins, thus demonstrating that SA can bind to S. aureus membrane proteins. Therefore, these results showed the antibacterial activity of SA against S. aureus could be caused by the interactions of SA with S. aureus membrane proteins and lipids, resulting in causing cell membrane dysfunction and bacterial damage or even death. This study reveals the potential use of SA as an antibacterial agent. PMID:26580596

  9. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  10. The introduction of antibacterial drug pipemidic acid into the POM field: Syntheses, characterization and antitumor activity

    NASA Astrophysics Data System (ADS)

    Sha, Jing-Quan; Li, Xin; Zhou, Ying-Hua; Yan, Peng-Fei; Li, Guang-Ming; Wang, Cheng

    2011-11-01

    Two new compounds based on polyoxometalates (POMs) and the quinolone antibacterial drug pipemidic acid (HPPA), {[Ni(PPA) 2]H 4[SiW 12O 40]}·HPPA·3H 2O ( 1), and {[Zn(PPA) 2] 2H 4[SiW 12O 40]}·3H 2O ( 2), have been synthesized under hydrothermal conditions and structurally characterized by routine technique. Single-crystal X-Ray diffraction analysis shows that compound 1 is constructed by Keggin clusters grafted by binuclear nickel clusters, isolated HPPA and water molecules, while compound 2 consists of Keggin clusters grafted by binuclear zinc clusters and water molecules. Due to the selection of different transition metal (TM) ions, compounds 1 and 2 exhibit different structures and antitumor activities. Compound 1 possesses 0D structure and shows no antitumor activities. However, compound 2 possesses 1D structure and exhibits higher antitumor activities than its parent compound. The results show that introduction of different TM-PPA moieties onto the polyoxoanion surface can affect not only the final structures but also their antitumor activities.

  11. 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum.

    PubMed

    Sebastianes, Fernanda L S; Cabedo, Nuria; El Aouad, Noureddine; Valente, Angela M M P; Lacava, Paulo T; Azevedo, João L; Pizzirani-Kleiner, Aline A; Cortes, Diego

    2012-11-01

    Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens. PMID:22886401

  12. Characterization and cDNA sequence of Bothriechis schlegeliil-amino acid oxidase with antibacterial activity.

    PubMed

    Vargas Muñoz, Leidy Johana; Estrada-Gomez, Sebastian; Núñez, Vitelbina; Sanz, Libia; Calvete, Juan J

    2014-08-01

    Snake venoms are complex mixtures of proteins including l-amino acid oxidase (lAAO). A lAAO (named BslAAO) with a mass of 56kDa and a theoretical Ip of 5.79, was purified from Bothriechis schlegelii venom through size-exclusion, ion exchange and affinity chromatography. The entire protein sequence of 498 amino acids, was determined from cDNA using reverse-transcribed mRNA isolated from venom gland. The enzyme showed dose-dependent inhibition of bacterial growth. BslAAO showed inhibitory effect against S. aureus with a MIC of 4μg/mL and a MBC of 8μg/mL. Against Acinetobacter baumannii, showed a MIC of 2μg/mL and MBC of 4μg/mL, No effect was observed in Escherichia coli. This antibacterial activity was inhibited by catalase, indicating that antimicrobial activity was due to H2O2 production. BslAAO did not show any cytotoxic activity toward mouse myoblast cell line C2C12 or peripheral blood mononuclear cells. The enzyme oxidated l-Leu, with a Km of 16.37μM and a Vmax of 0.39μM/min. Snake venoms lAAOs, are potential frames of different therapeutics molecules since these enzymes exhibit low MICs and MBCs and show to be harmless to human cells due to microorganisms being generally several fold more sensitive to reactive oxygen species than human tissues. PMID:24875315

  13. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka

    PubMed Central

    Ratnaweera, Pamoda B.; Williams, David E.; de Silva, E. Dilip; Wijesundera, Ravi L.C.; Dalisay, Doralyn S.; Andersen, Raymond J.

    2014-01-01

    An endophytic fungus was isolated from surface sterilized leaf segments of Anoectochilus setaceus, an orchid endemic to Sri Lanka, and was identified as Xylaria sp. by morphological characters and DNA sequencing. Bioassay-guided chromatographic fractionation of the organic extract of a laboratory culture of this fungus led to the isolation of the known antibacterial helvolic acid. Helvolic acid was active against the Gram-positive bacteria, Bacillus subtilis [minimal inhibitory concentrations (MIC), 2 μg mL−1] and methicillin-resistant Staphylococcus aureus (MIC, 4 μg mL−1). PMID:24772371

  14. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka.

    PubMed

    Ratnaweera, Pamoda B; Williams, David E; de Silva, E Dilip; Wijesundera, Ravi L C; Dalisay, Doralyn S; Andersen, Raymond J

    2014-03-01

    An endophytic fungus was isolated from surface sterilized leaf segments of Anoectochilus setaceus, an orchid endemic to Sri Lanka, and was identified as Xylaria sp. by morphological characters and DNA sequencing. Bioassay-guided chromatographic fractionation of the organic extract of a laboratory culture of this fungus led to the isolation of the known antibacterial helvolic acid. Helvolic acid was active against the Gram-positive bacteria, Bacillus subtilis [minimal inhibitory concentrations (MIC), 2 μg mL(-1)] and methicillin-resistant Staphylococcus aureus (MIC, 4 μg mL(-1)). PMID:24772371

  15. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement-A comparative study

    NASA Astrophysics Data System (ADS)

    Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane

    2014-08-01

    Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).

  16. 18β-Glycyrrhetinic Acid Derivatives Possessing a Trihydroxylated A Ring Are Potent Gram-Positive Antibacterial Agents.

    PubMed

    Huang, Li-Rong; Hao, Xiao-Jiang; Li, Qi-Ji; Wang, Dao-Ping; Zhang, Jian-Xin; Luo, Heng; Yang, Xiao-Sheng

    2016-04-22

    The oleanane-type triterpene 18β-glycyrrhetinic acid (1) was modified chemically through the introduction of a trihydroxylated A ring and an ester moiety at C-20 to enhance its antibacterial activity. Compounds 22, 23, 25, 28, 29, 31, and 32 showed more potent inhibitory activity against Streptomyces scabies than the positive control, streptomycin. Additionally, the inhibitory activity of the most potent compound, 29, against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was greater than that of the positive controls. The antibacterial mode of action of the active derivatives involved the regulation of the expression of genes associated with peptidoglycans, the respiratory metabolism, and the inherent virulence factors found in bacteria, as determined through a quantitative real-time reverse transcriptase PCR assay. PMID:26928299

  17. Elucidation on enhanced application of synthesised kojic acid immobilised magnetic and chitosan tri-polyphosphate nanoparticles as antibacterial agents.

    PubMed

    Chaudhary, Jignesh; Lakhawat, Sudarshan; Pathak, Amrendra Nath

    2015-12-01

    Kojic acid (KA) is a secondary metabolite which is secreted by several aspergillus species. It is a multi-functional skeleton from which many derivatives can be synthesised and applied in various areas of biotechnology. KA grafting on synthesised magnetic nanoparticles (MNPs) and chitosan tri-polyphosphate (chitosan-TPP) nanoparticles was successfully done and characterised by Fourier transformation infrared spectroscopy. It was observed that amino propyl triethoxy silane-coated MNPs and chitosan-TPP nanoparticles enhanced the antibacterial activity of KA against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa). The organic constitution and significant antibacterial activity of KA-chitosan-TPP nanoparticles can be applicable in the field of medical biotechnology. PMID:26647814

  18. Construction of antibacterial poly(ethylene terephthalate) films via layer by layer assembly of chitosan and hyaluronic acid.

    PubMed

    Del Hoyo-Gallego, Sara; Pérez-Álvarez, Leyre; Gómez-Galván, Flor; Lizundia, Erlantz; Kuritka, Ivo; Sedlarik, Vladimir; Laza, Jose Manuel; Vila-Vilela, Jose Luis

    2016-06-01

    Polyelectrolytic multilayers (PEMs) with enhanced antibacterial properties were built up onto commercial poly(ethylene terephthalate) (PET) films based on the layer by layer assembling of bacterial contact killing chitosan and bacterial repelling highly hydrated hyaluronic acid. The optimization of the aminolysis modification reaction of PET was carried out by the study of the mechanical properties and the surface characterization of the modified polymers. The layer by layer assembly was successfully monitored by TEM microscopy, surface zeta-potential, contact angle measurements and, after labeling with fluorescein isothiocyanate (FTIC) by absorption spectroscopy and confocal fluorescent microscopy. Beside, the stability of the PEMs was studied at physiological conditions in absence and in the presence of lysozyme and hyaluronidase enzymes. Antibacterial properties of the obtained PEMs against Escherichia coli were compared with original commercial PET. PMID:27083341

  19. The effect of unsaturated fatty acid and triglyceride oil addition on the mechanical and antibacterial properties of acrylic bone cements.

    PubMed

    Persson, Cecilia; Robert, Elise; Carlsson, Elin; Robo, Céline; López, Alejandro; Godoy-Gallardo, Maria; Ginebra, Maria-Pau; Engqvist, Håkan

    2015-09-01

    Acrylic bone cements have an elastic modulus several times higher than the surrounding trabecular bone. This has been hypothesized to contribute to certain clinical complications. There are indications that the addition of specific fatty acids and triglyceride oils may reduce the elastic modulus of these types of cements. Some of these additives also appear to have inherent antibiotic properties, although this has never been evaluated in bone cements. In this study, several types of fatty acids and triglyceride oils were evaluated for use in acrylic bone cements. Their mechanical properties were evaluated under uniaxial compression testing and selected cements were then further characterized in terms of microstructure, handling and antibacterial properties using scanning electron microscopy, polymerization temperature measurements, agar diffusion tests and bactericidal activity assays of cement extracts. It was found that any of the evaluated fatty acids or triglyceride oils could be used to tailor the stiffness of acrylic bone cements, although at varying concentrations, which also depended on the type of commercial base cement used. In particular, the addition of very small amounts of linoleic acid (<2.0 wt%) resulted in Young's moduli and compressive strengths in the range of human trabecular bone, while maintaining a similar setting time. Further, the addition of 12.6 wt% ricinoleic acid to Osteopal V cement was found to have a significant antibacterial effect, inhibiting growth of Staphylococcus aureus in an agar diffusion test as well as demonstrating 100% bactericidal activity against the same strain. PMID:25876889

  20. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. PMID:26483137

  1. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release.

    PubMed

    Kaffashi, Babak; Davoodi, Saeed; Oliaei, Erfan

    2016-07-11

    In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction. The sustained release behavior of TC from PCL remained unchanged since no significant changes occurred in the samples' crystallinity compared with that in the neat PCL. The elastic moduli of samples were enhanced once LATC30 is included. This is necessary since the elastic modulus is decreased with water absorption. The rheological behaviors of samples showed appropriate properties for melt electro-spinning. A stable process was established as the relaxation time of the bionanocomposites was increased. The hydrophilic properties of samples were increased with increasing LATC30. The proliferation rate of the fibroblast (L929) cells was enhanced as the content of nanoparticles was increased. A system similar to this could be implemented to prepare long-term antibacterial and drug delivery systems based on PCL and various low molecular weight drugs. The prepared bionanocomposites are considered as candidates for the soft connective tissue engineering and long-term drug delivery. PMID:27155590

  2. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents.

    PubMed

    Liu, Xiao-Fang; Zheng, Chang-Ji; Sun, Liang-Peng; Liu, Xue-Kun; Piao, Hu-Ri

    2011-08-01

    A series of chalcone derivatives bearing the 2,4-thiazolidinedione and benzoic acid moieties (8a-s) were synthesized, characterized, and evaluated for their anti-bacterial activity. Among the tested compounds, the most effective were 8a, 8h, 8k, 8n and 8q with MIC value in the range of 0.5-4 μg/mL against six Gram-positive bacteria (including multidrug-resistant clinical isolates). None of the compounds exhibited any activity against the Gram-negative bacteria Escherichia coli 1356 and E. coli 1682 at 64 μg/mL. PMID:21624712

  3. Antibacterial Optimization of 4-Aminothiazolyl Analogues of the Natural Product GE2270 A: Identification of the Cycloalkylcarboxylic Acids

    SciTech Connect

    LaMarche, Matthew J.; Leeds, Jennifer A.; Amaral, Kerri; Brewer, Jason T.; Bushell, Simon M.; Dewhurst, Janetta M.; Dzink-Fox, JoAnne; Gangl, Eric; Goldovitz, Julie; Jain, Akash; Mullin, Steve; Neckermann, Georg; Osborne, Colin; Palestrant, Deborah; Patane, Michael A.; Rann, Elin M.; Sachdeva, Meena; Shao, Jian; Tiamfook, Stacey; Whitehead, Lewis; Yu, Donghui

    2012-11-09

    4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for their activity against Gram positive bacterial infections. Optimization efforts focused on improving the physicochemical properties (e.g., aqueous solubility and chemical stability) of the 4-aminothiazolyl natural product template while improving the in vitro and in vivo antibacterial activity. Structure-activity relationships were defined, and the solubility and efficacy profiles were improved over those of previous analogues and 1. These studies identified novel, potent, soluble, and efficacious elongation factor-Tu inhibitors, which bear cycloalkylcarboxylic acid side chains, and culminated in the selection of development candidates amide 48 and urethane 58.

  4. Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships.

    PubMed

    Batovska, Daniela I; Todorova, Iva T; Tsvetkova, Iva V; Najdenski, Hristo M

    2009-01-01

    The antibacterial activity of the medium chain fatty acids and their 1-monoglycerides was evaluated towards several Gram-positive strains belonging to the genera Staphylococcus, Corynebacterium, Bacillus, Listeria and Streptococcus. The 1-monoglycerides were more active than the fatty acids with monolaurin being the most active compound. Interesting effects were observed when the streptococcal strain Streptococcus pyogenes was used as a test microorganism. First, blocking of the hydroxyl groups of the glycerol moiety of monolaurin led to a compound with remarkable antibacterial activity (MIC, 3.9 microg/ml). Secondly, synergistic relationships were observed between monolaurin and monocaprin as well as between monolaurin and the poorly active lauric acid when their two component mixtures were examined. The mixtures in which one of the components was 2-fold more predominant than the other one were much more active than the pure components taken individually. Moreover, the presence of the components in ratio 1:1 was disadvantageous. Synergistic relationships were also found between monolaurin and monomyristin towards Staphylococcus aureus 209 when monomyristin was in the same quantity as monolaurin or in shortage. PMID:19469285

  5. Cotton textiles modified with citric acid as efficient anti-bacterial agent for prevention of nosocomial infections

    PubMed Central

    Bischof Vukušić, Sandra; Flinčec Grgac, Sandra; Budimir, Ana; Kalenić, Smilja

    2011-01-01

    Aim To study the antimicrobial activity of citric acid (CA) and sodium hypophosphite monohydrate (SHP) against gram-positive and gram-negative bacteria, and to determine the influence of conventional and microwave thermal treatments on the effectiveness of antimicrobial treatment of cotton textiles. Method Textile material was impregnated with CA and SHP solution and thermally treated by either conventional or microwave drying/curing treatment. Antibacterial effectiveness was tested according to the ISO 20743:2009 standard, using absorption method. The surfaces were morphologically observed by scanning electron microscopy, while physical characteristics were determined by wrinkle recovery angles method (DIN 53 891), tensile strength (DIN 53 837), and whiteness degree method (AATCC 110-2000). Results Cotton fabric treated with CA and SHP showed significant antibacterial activity against MRSA (6.38 log10 treated by conventional drying and 6.46 log10 treated by microwave drying before washing, and 6.90 log10 and 7.86 log10, respectively, after 1 cycle of home domestic laundering washing [HDLW]). Antibacterial activity was also remarkable against S. aureus (4.25 log10 by conventional drying, 4.58 log10 by microwave drying) and against P. aeruginosa (1.93 log10 by conventional and 4.66 log10 by microwave drying). Antibacterial activity against P. aeruginosa was higher in samples subjected to microwave drying/curing than in those subjected to conventional drying/curing. As expected, antibacterial activity was reduced after 10 HDLW cycles but the compound was still effective. The surface of the untreated cotton polymer was smooth, while minor erosion stripes appeared on the surfaces treated with antimicrobial agent, and long and deep stripes were found on the surface of the washed sample. Conclusion CA can be used both for the disposable (non-durable) materials (gowns, masks, and cuffs for blood pressure measurement) and the materials that require durability to laundering

  6. Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Fischer, Carol L.; Drake, David R.; Dawson, Deborah V.; Blanchette, Derek R.; Brogden, Kim A.

    2012-01-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid bases d-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. d-Sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  7. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds.

    PubMed

    Makras, Lefteris; Triantafyllou, Vagelis; Fayol-Messaoudi, Domitille; Adriany, Tom; Zoumpopoulou, Georgia; Tsakalidou, Effie; Servin, Alain; De Vuyst, Luc

    2006-04-01

    Six Lactobacillus strains including commercial probiotic ones (L. acidophilus IBB 801, L. amylovorus DCE 471, L. casei Shirota, L. johnsonii La1, L. plantarum ACA-DC 287 and L. rhamnosus GG) were investigated, through batch fermentations under controlled conditions, for their capacity to inhibit Salmonella enterica serovar Typhimurium SL1344. All lactobacilli displayed strong antibacterial activity toward this Gram-negative pathogen and significantly inhibited invasion of the pathogen into cultured human enterocyte-like Caco-2/TC7 cells. By studying the production kinetics of antibacterial activity and applying the appropriate acid and pH control samples during a killing assay, we were able to distinguish between the effect of lactic acid and other inhibitory compounds produced. The antibacterial activity of L. acidophilus IBB 801, L. amylovorus DCE 471, L. casei Shirota and L. rhamnosus GG was solely due to the production of lactic acid. The antibacterial activity of L. johnsonii La1 and L. plantarum ACA-DC 287 was due to the production of lactic acid and (an) unknown inhibitory substance(s). The latter was (were) only active in the presence of lactic acid. In addition, the lactic acid produced was responsible for significant inhibitory activity upon invasion of Salmonella into Caco-2/TC7 cells. PMID:16266797

  8. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids.

    PubMed

    Hicks, Rickey P

    2016-09-15

    Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted C(α) amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X=any one of the following residues, A5c, A6c, Tic or Oic and B=any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5μM) values against selected cancer cell lines. PMID:27387357

  9. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss

    PubMed Central

    Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam

    2016-01-01

    Objective: The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Materials and Methods: Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. Results: GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Conclusion: Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs). PMID:27462560

  10. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus. PMID:24571086

  11. Spiculisporic acid analogues of the marine-derived fungus, Aspergillus candidus strain HDf2, and their antibacterial activity.

    PubMed

    Wang, Rong; Guo, Zhi Kai; Li, Xiang Min; Chen, Fu Xiao; Zhan, Xia Fei; Shen, Ming Hui

    2015-07-01

    Two novel antibiotic spiculisporic acid analogues, named as spiculisporic acid F (1) and G (2), and two known compounds, (-)-spiculisporic acid (3) and secospiculisporic acid B (4), were isolated by bioactivity-guided fractionation from the fermentation broth of the sea urchin-derived Aspergillus candidus strain HDf2. Their structures were unambiguously established by comprehensive analysis of 1D and 2D NMR, and high-resolution MS spectra, and by comparison with known compounds. Biological experiments demonstrated that compounds 1 and 2 displayed antibacterial activity against Gram-negative Pseudomonas solanacearum and Gram-positive Staphylococcus aureus, but showed no cytotoxicity against SGC-7901 human gastric adenocarcinoma and SPC-A-1 human lung adenocarcinoma tumor cell lines. This is the first critical evidence identifying spiculisporic acid derivatives as a potential bio-control agent for the soil borne pathogen P. solanacearum (E. F. Smith) Smith. These findings provide further insight into the chemical and biological activity diversity of this class of compounds. PMID:25912731

  12. Fatty Acids Composition and Antibacterial Activity of Aristolochia longa L. and Bryonia dioïca Jacq. Growing Wild in Tunisia.

    PubMed

    Dhouioui, Mouna; Boulila, Abdennacer; Jemli, Maroua; Schiets, Fréderic; Casabianca, Hervé; Zina, Mongia Saïd

    2016-08-01

    The composition of the fatty acids of the roots and aerial parts of Aritolochia longa (Aristolacheae) and Bryonia dioïca (Cucurbutaceae) was analyzed by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The oils extracted from the aerial parts of both species were rich in polyunsaturated fatty acids with the essential linolenic and linoleic acids being the most prominent compounds. Oleic and linoleic acids were the majors fatty acids in the roots of both species. Whatever the plant part analyzed and the species, the saturated fatty acids were predominantly composed of palmitic and stearic acids. The antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the lipid extracts were determined against a panel of five bacterial strains. The results showed that the sensitivity to the lipid extracts was different for the test bacterial strains, and the susceptibility of gram positive bacteria was found to be greater than gram negative bacteria. The antibacterial activity of the root lipid extracts was particularly important against Enterococcus feacium (CMI value of 125 µg/mL; CMB values > 250 µg/mL) and Streptococcus agalactiae (CMI value of 125 µg/mL; CMB values 250 µg/mL for A. longa roots). These results indicate that A. longa and B. dioïca could be considered as good sources of essential fatty acids which can act as natural antibacterial agents. PMID:27430383

  13. The antibacterial activity of chloroxylenol in combination with ethylenediaminetetra-acetic acid.

    PubMed Central

    Dankert, J.; Schut, I. K.

    1976-01-01

    The bactericidal activity of RBA 777 has been found to vary with both the cultural and environmental test conditions against Pseudomonas aeruginosa and to a lesser extent against Staphylococcus aureus. These variations may explain certain anomalies in earlier work regarding the activity of chloroxylenol-based products. The addition of EDTA to RBA 777 has brought about an improvement in the performance against P. aeruginosa and this activity is confirmed in vivo. Previous reports have already illustrated this potential and the evaluations of the new antibacterial agent DA 136 confirms and extends these results to its performance under adverse conditions, often associated with the hospital environment. PMID:812899

  14. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A.

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H, 13C, and 29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands. PMID:23983671

  15. Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna

    2016-02-01

    The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.

  16. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    NASA Astrophysics Data System (ADS)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  17. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  18. Nucleic acid interaction and antibacterial behaviours of a ternary palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.

    2012-02-01

    The bidentate ligands and Pd(II) complexes have been synthesized and characterized using elemental analysis (C, H, N), 1H NMR, 13C NMR, electronic spectra, FT-IR and FAB mass spectroscopy. The binding of palladium complexes with calf thymus DNA (CT DNA) has been explored using absorption titration, DNA melting temperature and viscosity measurements. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results suggest that complexes can bind to DNA by intercalative modes and exhibit nuclease activities in which supercoil form is converted to open circular form. The antibacterial activity of ligands and complexes has been performed against three Gram(-ve) and two Gram(+ve) microorganisms and the study indicates that all the complexes show better microbial inhibition activity than ligands and palladium salt.

  19. Synthesis, characterization and antibacterial activity of mixed ligand dioxouranium complexes of 8-hydroxyquinoline and some amino acids.

    PubMed

    Patil, Sunil S; Shaikh, Manzoor M

    2012-01-01

    Mixed ligand complexes of dioxouranium(VI) of the type [UO2(Q)(L)-2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N- and/or O- donor amino acids (HL) such as L-lysine, L-aspartic acid and L-cysteine as secondary ligands. The metal complexes have been characterized on the basis of elemental analysis, electrical conductance, room temperature magnetic susceptibility measurements, spectral and thermal studies. The electrical conductance studies of the complexes in DMF in 10(-3) M concentration indicate their non-electrolytic nature. Room temperature magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intra-ligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O- donor atoms of the ligands is revealed by IR studies and the chemical environment of the protons is also confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtherinae, S. typhi and E. coli. PMID:22876610

  20. Antilisterial effects of antibacterial formulations containing essential oils, nisin, nitrite and organic acid salts in a sausage model.

    PubMed

    Ghabraie, Mina; Vu, Khanh Dang; Huq, Tanzina; Khan, Avik; Lacroix, Monique

    2016-06-01

    This study was conducted to evaluate the effects of sixteen antibacterial formulations against Listeria monocytogenes in a sausage model using a standard experimental design with 4 independent factors at 2 levels (2(4)). Four independent factors consisted of nisin (12.5-25 ppm), nitrite (100-200 ppm) and organic acid salts (1.55-3.1 %) and the mixture of Chinese cinnamon and Cinnamon bark Essential Oils (EOs) (0.025-0.05 %). Based on the analysis, utilization of low (0.025 %) or high concentration (0.05 %) of EOs in combination with low concentration of nitrite (100 ppm), organic acid salts (1.55 %), and nisin (12.5 ppm) could reduce respectively 1.5 or 2.6 log CFU/g of L. monocytogenes in sausage at day 7 of storage as compared to the control. A predictive equation was created to predict the growth of L. monocytogenes in sausage. The sensory evaluation was then performed on selected optimized formulations in cooked meat (both pork and beef sausages) with a trained jury consisting of 35 individuals, demonstrated the selected antimicrobial formulations were organoleptically acceptable. The results revealed an important role of hurdle technology to control L. monocytogenes in meat product. PMID:27478218

  1. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    PubMed

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease. PMID:27321493

  2. Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications.

    PubMed

    Karahaliloğlu, Zeynep; Ercan, Batur; Chung, Stanley; Taylor, Erik; Denkbaş, Emir B; Webster, Thomas J

    2014-12-01

    Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exposure times were altered to control surface morphology. Most significantly, and without the use of antibiotics, results showed a decrease in Staphylococcus aureus (a dangerous pathogen infecting skin grafts) growth for up to ∼40% after 2 days of culture on nanofeatured PLGA membranes compared to untreated controls. Results also showed that while bacteria growth was stunted, mammalian cell growth was not. Specifically, cell culture results showed an increase in human epidermal keratinocyte density, while the density of scar tissue forming human dermal fibroblasts, did not change on nanofeatured PLGA surfaces compared to the untreated controls after 3 days of culture. These findings indicate that the alkaline treatment of PLGA membranes is a promising quick and effective manner to limit scar tissue formation and bacterial invasion while increasing skin cell proliferation for improving numerous wound-healing applications. PMID:24677536

  3. Re-engineering nalidixic acid's chemical scaffold: A step towards the development of novel anti-tubercular and anti-bacterial leads for resistant pathogens.

    PubMed

    Peraman, Ramalingam; Varma, Raghu Veer; Reddy, Y Padmanabha

    2015-10-01

    Occurrence of antibacterial and antimycobacterial resistance stimulated a thrust to discover new drugs for infectious diseases. Herein we report the work on re-engineering nalidixic acid's chemical scaffold for newer leads. Stepwise clubbing of quinoxaline, 1,2,4-triazole/1,3,4-oxadiazole with nalidixic acid yielded better compounds. Compounds were screened against ciprofloxacin resistant bacteria and Mycobacterium tuberculosis H37Rv species. Results were obtained as minimum inhibitory concentration, it was evident that molecule with quinoxaline linked azide as side chain served as antitubercular lead (<6.25 μg/ml) whilst molecule with oxadiazole or triazole linked quinoxaline side chain served as anti-bacterial lead. Few compounds were significantly active against Escherichia coli and Proteus vulgaris with MIC less than 0.06 μg/ml and relatively potent than ciprofloxacin. No true compound was potentially active against Salmonella species as compared to amoxicillin. PMID:26277407

  4. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms. PMID:25285490

  5. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents.

    PubMed

    Grover, Gaurav; Kini, Suvarna G

    2006-02-01

    In continuation of our work on synthesis of biheterocycles carrying the biodynamic heterocyclic systems at position 3, a series of new nalidixic acid derivatives having quinazolones moiety were synthesised to achieve enhanced biological activity and wide spectrum of activity. Nalidixic acid was first converted into its acid chloride using thionyl chloride as an acylating agent at laboratory temperature. Later it was converted to methyl ester. Nalidixoyl chloride formed vigorously reacts with methanol to give a methyl ester of nalidixic acid. The ester on addition of hydrazine hydrate furnished nalidixic acid hydrazide. Appropriate anthranilic acid was refluxed with acetic anhydride to form Benzoxazine/Acetanthranil. 5-iodo-derivative of anthranilic acid was prepared and also utilised to obtain 6-iodo-Benzoxazine/Acetanthranil. Also, 6-nitro-Benzoxazine/Acetanthranil was obtained by nitration of acetanthranil using conc. H(2)SO(4) and fuming HNO(3). Equimolar proportions of the appropriate synthesised acetanthranils and nalidixic acid hydrazide in the presence of ethanol were refluxed to synthesise quinazolones. Elemental analysis and IR spectra confirmed nalidixic acid hydrazide formation. The structures of the compounds obtained have been established on the basis of Spectral (IR, (1)H NMR and mass) data. The current study also involves in vitro antimicrobial screening (using Agar dilution and Punch well diffusion method) of synthesised quinazolone derivatives bearing nalidixic acid moiety on randomly collected microbial strains. The derivatives Ga (NAH), Gb (QN) and Gd (NiQNA) showed marked inhibitory activity against enteric pathogen like Aeromonas hydrophila, a causative agent of diarrhoea in both children as well as adults. Among the respiratory pathogens included in study, derivative Gd (NiQNA) was found to be active against Streptococcus pyogenes. No significant inhibitory activity was seen by any of synthesised derivatives against Coagulase negative

  6. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity.

    PubMed

    El Khoury, Elsy; Abiad, Mohamad; Kassaify, Zeina G; Patra, Digambara

    2015-03-01

    Silver nanoparticles (Ag NPs) are often synthesized by chemical and physical methods. Natural and non-toxic molecules are recently being replaced for nanoparticles preparation. In this paper we have used curcumin, which interacts with Ag+ and subsequently synthesizes silver nanoparticles. Further continuation of the reaction often makes aggregation and forms dark brown/black silver oxide. Presence of glycerol in the reaction mixture gives mono-disperse curcumin conjugated Ag NPs, which can be made stable by capping with polyvinylpyrolidone (PVP). XRD data confirm that curcumin conjugated Ag NPs are crystalline in nature with a mean crystalline size of 13.27 nm. The Ag NPs are spherical and in the range of 10-50 nm though their hydrodynamic radius is found to be higher, ∼294 nm, due to polyvinylpyrolidone capping and aggregation of nanoparticles in solution. The production of curcumin conjugated Ag NPs follows first order kinetics and the effect of curcumin concentration during formation of Ag NPs indicates a linear enhancement in the production of Ag NPs with an increase in concentration of curcumin. These curcumin conjugated silver nanoparticles show anti-bacterial activity and can successfully determine nucleic acid (DNA and RNA) in the concentration range 100-1000 ng/mL with a linear regression coefficient >0.997 using Resonance Rayleigh Scattering spectra. PMID:25687098

  7. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom.

    PubMed

    Lee, Mui Li; Tan, Nget Hong; Fung, Shin Yee; Sekaran, Shamala Devi

    2011-03-01

    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme. PMID:21059402

  8. Fabrication and in vitro release behavior of a novel antibacterial coating containing halogenated furanone-loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium

    PubMed Central

    Cheng, Yicheng; Wu, Jiang; Gao, Bo; Zhao, Xianghui; Yao, Junyan; Mei, Shenglin; Zhang, Liang; Ren, Huifang

    2012-01-01

    Background Dental implants have become increasingly common for the management of missing teeth. However, peri-implant infection remains a problem, is usually difficult to treat, and may lead eventually to dental implant failure. The aim of this study was to fabricate a novel antibacterial coating containing a halogenated furanone compound, ie, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone (BBF)-loaded poly(L-lactic acid) (PLLA) nanoparticles on microarc-oxidized titanium and to evaluate its release behavior in vitro. Methods BBF-loaded PLLA nanoparticles were prepared using the emulsion solvent-evaporation method, and the antibacterial coating was fabricated by cross-linking BBF-loaded PLLA nanoparticles with gelatin on microarc-oxidized titanium. Results The BBF-loaded PLLA nanoparticles had a small particle size (408 ± 14 nm), a low polydispersity index (0.140 ± 0.008), a high encapsulation efficiency (72.44% ± 1.27%), and a fine spherical shape with a smooth surface. The morphology of the fabricated antibacterial coating showed that the BBF-loaded PLLA nanoparticles were well distributed in the pores of the microarc oxidation coating, and were cross-linked with each other and the wall pores by gelatin. The release study indicated that the antibacterial coating could achieve sustained release of BBF for 60 days, with a slight initial burst release during the first 4 hours. Conclusion The novel antibacterial coating fabricated in this study is a potentially promising method for prevention of early peri-implant infection. PMID:23152682

  9. cDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity.

    PubMed

    Kovalchuk, Svetlana N; Chikalovets, Irina V; Chernikov, Oleg V; Molchanova, Valentina I; Li, Wei; Rasskazov, Valery A; Lukyanov, Pavel A

    2013-10-01

    An amino acid sequence of GalNAc/Gal-specific lectin from the mussel Crenomytilus grayanus (CGL) was determined by cDNA sequencing. CGL consists of 150 amino acid residues, contains three tandem repeats with high sequence similarities to each other (up to 73%) and does not belong to any known lectins family. According to circular dichroism results CGL is a β/α-protein with the predominance of β-structure. CGL was predicted to adopt a ß-trefoil fold. The lectin exhibits antibacterial activity and might be involved in the recognition and clearance of bacterial pathogens in the shellfish. PMID:23886951

  10. Identification of L-amino acid oxidase (Mb-LAAO) with antibacterial activity in the venom of Montivipera bornmuelleri, a viper from Lebanon.

    PubMed

    Rima, Mohamad; Accary, Claudine; Haddad, Katia; Sadek, Riyad; Hraoui-Bloquet, Souad; Desfontis, Jean C; Fajloun, Ziad

    2013-10-01

    The L-amino acid oxidase (LAAO) is a multifunctional enzyme, able to partake in different activities including antibacterial activity. In this study, a novel LAAO (Mb-LAAO) was isolated from the venom of M. bornmuelleri snake using size exclusion chromatography followed by RP-HPLC and partially characterized. However, the molecular weight of the Mb-LAAO determined by ESI-MS and SDS-PAGE was 59 960.4 Da. Once the enzymatic activity test confirming the enzyme's identity (transformation of L-leucine) was done, the Mb-LAAO was evaluated for its antibacterial activity against Gram-negative bacteria. It showed a remarkable effect against M. morganii and K. pneumoniae. Moreover, no cytotoxic activity was observed for Mb-LAAO against human erythrocytes arguing for an exploration of its pharmaceutical interest. PMID:24712674

  11. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants.

    PubMed

    Yoon, Bo Kyeong; Jackman, Joshua A; Kim, Min Chul; Cho, Nam-Joon

    2015-09-22

    Medium-chain saturated fatty acids and related compounds (e.g., monoglycerides) represent one class of membrane-active surfactants with antimicrobial properties. Most related studies have been in vitro evaluations of bacterial growth inhibition, and there is limited knowledge about how the compounds in this class destabilize lipid bilayers, which are the purported target within the bacterial cell membrane. Herein, the interaction between three representative compounds in this class and a supported lipid bilayer platform was investigated using quartz crystal microbalance-dissipation and fluorescence microscopy in order to examine membrane destabilization. The three tested compounds were lauric acid, sodium dodecyl sulfate, and glycerol monolaurate. For each compound, we discovered striking differences in the resulting morphological changes of supported lipid bilayers. The experimental trends indicate that the compounds have membrane-disruptive behavior against supported lipid bilayers principally above the respective critical micelle concentration values. The growth inhibition properties of the compounds against standard and methicillin-resistant Staphylococcus aureus bacterial strains were also tested. Taken together, the findings in this work improve our knowledge about how saturated fatty acids and related compounds destabilize lipid bilayers, offering insight into the corresponding molecular mechanisms that lead to membrane morphological responses. PMID:26325618

  12. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

    PubMed Central

    Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari

    2013-01-01

    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719

  13. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    PubMed

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (P<0.05), and the bone-implant contact rate and ultimate interfacial strength were significantly lower than those of the other two groups (P<0.05). Scanning electron microscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage. PMID:27099494

  14. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants

    PubMed Central

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs’ mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (P<0.05), and the bone–implant contact rate and ultimate interfacial strength were significantly lower than those of the other two groups (P<0.05). Scanning electron microscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage. PMID:27099494

  15. Isolation, structure elucidation and antibacterial activity of a new tetramic acid, ascosetin.

    PubMed

    Ondeyka, John G; Smith, Scott K; Zink, Deborah L; Vicente, Francisca; Basilio, Angela; Bills, Gerald F; Polishook, Jon D; Garlisi, Charles; Mcguinness, Debra; Smith, Elizabeth; Qiu, Hongchen; Gill, Charles J; Donald, Robert G K; Phillips, John W; Goetz, Michael A; Singh, Sheo B

    2014-07-01

    The ever-increasing bacterial resistance to clinical antibiotics is making many drugs ineffective and creating significant treatment gaps. This can be only circumvented by the discovery of antibiotics with new mechanisms of action. We report here the identification of a new tetramic acid, ascosetin, from an Ascomycete using the Staphylococcus aureus fitness test screening method. The structure was elucidated by spectroscopic methods including 2D NMR and HRMS. Relative stereochemistry was determined by ROESY and absolute configuration was deduced by comparative CD spectroscopy. Ascosetin inhibited bacterial growth with 2-16 μg ml(-1) MIC values against Gram-positive strains including methicillin-resistant S. aureus. It also inhibited the growth of Haemophilus influenzae with a MIC value of 8 μg ml(-1). It inhibited DNA, RNA, protein and lipid synthesis with similar IC50 values, suggesting a lack of specificity; however, it produced neither bacterial membrane nor red blood cell lysis. It showed selectivity for bacterial growth inhibition compared with fungal but not mammalian cells. The isolation, structure and biological activity of ascosetin have been detailed here. PMID:24690911

  16. Antibacterial activity of an acidic phospholipase A2 (NN-XIb-PLA2) from the venom of Naja naja (Indian cobra).

    PubMed

    Sudarshan, S; Dhananjaya, B L

    2016-01-01

    The resistance of bacteria against the use of conventional antibiotics has become a serious threat to public health and considering the associated side effect with antibiotics; new strategies to find and develop new molecules with novel modes of action has received grate attention in recent years. In this study, when the antibacterial potential of an acidic protein-NN-XIb-PLA2 (Naja naja venom phospholipase A2 fraction-XIb) of Naja naja venom was evaluated, it showed significant bactericidal action against the human pathogenic strains tested. It inhibited more effectively the gram positive bacteria like Staphylococcus aureus and Bacillus subtilis, when compared to gram negative bacteria like Escherichia coli, Vibrio cholerae, Klebsiell pneumoniae and Salmonella paratyphi. It inhibited the bacterial growth, with a MIC values ranging from 17 to 20 µg/ml. It was interesting to observe that NN-XIb-PLA2 showed comparable antibacterial activity to the used standards antibiotics. It was found that their was a strong correlation between PLA2 activities, hemolytic and antibacterial activity. Furthermore, it is found that in the presence of p-bromophenacyl bromide (p-BPB), there is a significant decrease in enzymatic activity and associated antibacterial activities, suggesting that a strong association exists between catalytic activity and antimicrobial effects, which thereby destabilize the membrane bilayer. These studies encourage further in dept study on molecular mechanisms of bactericidal properties of NN-XIb-PLA2 and thereby help in development of this protein into a possible therapeutic lead molecule for treating bacterial infections. PMID:26885465

  17. Synthesis, structure, optical properties, antifungal and antibacterial activities of 2-(1-oxo-1H-2,3-dihydroisoindol-2-yl)-3-imidazolyl-L-lactamic acid

    NASA Astrophysics Data System (ADS)

    Jia, Ting; Zhang, Wei-Long; Chen, Yun; Cai, Shuang-Lian; Yi, Hai-Bo

    2013-10-01

    2-(1-oxo-1H-2,3-dihydroisoindol-2-yl)-3-imidazolyl-L-lactamic acid has been prepared conveniently by the condensation reaction of o-phthalaldehyde (OPA) with L-Histidine, and its single crystal structure has been characterized by X-ray crystallography method. The in vitro antifungal and antibacterial activities of the compound were investigated with the representative strains of Candida albicans, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Its luminescent and nonlinear optical properties have also been investigated. Second-harmonic-generation (SHG) measurements indicate that compound 1 displays a weak SHG response of about 0.75 times that of KH2PO4.

  18. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.

    PubMed

    Wang, Yuntao; Li, Jing; Li, Bin

    2016-07-20

    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry. PMID:27378105

  19. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity.

    PubMed

    Nurhasni, Hasan; Cao, Jiafu; Choi, Moonjeong; Kim, Il; Lee, Bok Luel; Jung, Yunjin; Yoo, Jin-Wook

    2015-01-01

    Nitric oxide (NO)-releasing nanoparticles (NPs) have emerged as a wound healing enhancer and a novel antibacterial agent that can circumvent antibiotic resistance. However, the NO release from NPs over extended periods of time is still inadequate for clinical application. In this study, we developed NO-releasing poly(lactic-co-glycolic acid)-polyethylenimine (PEI) NPs (NO/PPNPs) composed of poly(lactic-co-glycolic acid) and PEI/diazeniumdiolate (PEI/NONOate) for prolonged NO release, antibacterial efficacy, and wound healing activity. Successful preparation of PEI/NONOate was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet/visible spectrophotometry. NO/PPNPs were characterized by particle size, surface charge, and NO loading. The NO/PPNPs showed a prolonged NO release profile over 6 days without any burst release. The NO/PPNPs exhibited potent bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa concentration-dependently and showed the ability to bind on the surface of the bacteria. We also found that the NO released from the NO/PPNPs mediates bactericidal efficacy and is not toxic to healthy fibroblast cells. Furthermore, NO/PPNPs accelerated wound healing and epithelialization in a mouse model of a MRSA-infected wound. Therefore, our results suggest that the NO/PPNPs presented in this study could be a suitable approach for treating wounds and various skin infections. PMID:25960648

  20. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity

    PubMed Central

    Nurhasni, Hasan; Cao, Jiafu; Choi, Moonjeong; Kim, Il; Lee, Bok Luel; Jung, Yunjin; Yoo, Jin-Wook

    2015-01-01

    Nitric oxide (NO)-releasing nanoparticles (NPs) have emerged as a wound healing enhancer and a novel antibacterial agent that can circumvent antibiotic resistance. However, the NO release from NPs over extended periods of time is still inadequate for clinical application. In this study, we developed NO-releasing poly(lactic-co-glycolic acid)-polyethylenimine (PEI) NPs (NO/PPNPs) composed of poly(lactic-co-glycolic acid) and PEI/diazeniumdiolate (PEI/NONOate) for prolonged NO release, antibacterial efficacy, and wound healing activity. Successful preparation of PEI/NONOate was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet/visible spectrophotometry. NO/PPNPs were characterized by particle size, surface charge, and NO loading. The NO/PPNPs showed a prolonged NO release profile over 6 days without any burst release. The NO/PPNPs exhibited potent bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa concentration-dependently and showed the ability to bind on the surface of the bacteria. We also found that the NO released from the NO/PPNPs mediates bactericidal efficacy and is not toxic to healthy fibroblast cells. Furthermore, NO/PPNPs accelerated wound healing and epithelialization in a mouse model of a MRSA-infected wound. Therefore, our results suggest that the NO/PPNPs presented in this study could be a suitable approach for treating wounds and various skin infections. PMID:25960648

  1. Novel triphenylantimony(V) and triphenylbismuth(V) complexes with benzoic acid derivatives: structural characterization, in vitro antileishmanial and antibacterial activities and cytotoxicity against macrophages.

    PubMed

    Islam, Arshad; Da Silva, Jeferson Gomes; Berbet, Filipe Moan; da Silva, Sydnei Magno; Rodrigues, Bernardo Lages; Beraldo, Heloisa; Melo, Maria Norma; Frézard, Frédéric; Demicheli, Cynthia

    2014-01-01

    Two novel organoantimony(V) and two organobismuth(V) complexes of the type ML2 were synthesized, with L = acetylsalicylic acid (HL1) or 3-acetoxybenzoic acid (HL2) and M = triphenylantimony(V) (M1) or triphenylbismuth(V) (M2). Complexes, [M1(L1)2] (1), [M1(L2)2]∙CHCl3 (2), [M2(L1)2], (3) and [M2(L2)2] (4), were characterized by elemental analysis, IR and NMR. Crystal structures of triphenylantimony(V) dicarboxylate complexes 1 and 2 were determined by single crystal X-ray diffraction. Structural analyses revealed that 1 and 2 adopt five-coordinated extremely distorted trigonal bipyramidal geometries, binding with three phenyl groups in the equatorial position and two deprotonated organic ligands (L) in the axial sites. The metal complexes, their metal salts and ligands were evaluated in vitro for their activities against Leishmania infantum and amazonensis promastigotes and Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Both the metal complexes showed antileishmanial and antibacterial activities but the bismuth complexes were the most active. Intriguingly, complexation of organobismuth(V) salt reduced its activity against Leishmania, but increased it against bacteria. In vitro cytotoxic test of these complexes against murine macrophages showed that antimony(V) complexes were the least toxic. Considering the selectivity indexes, organoantimony(V) complexes emerge as the most promising antileishmanial agents and organobismuth(V) complex 3 as the best antibacterial agent. PMID:24824136

  2. The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Inbaraj, B. Stephen; Kao, T. H.; Tsai, T. Y.; Chiu, C. P.; Kumar, R.; Chen, B. H.

    2011-02-01

    Magnetite nanoparticles (MNPs) modified with sodium and calcium salts of poly(γ-glutamic acid) (NaPGA and CaPGA) were synthesized by the coprecipitation method, followed by characterization and evaluation of their antibacterial and cytotoxic effects. Superparamagnetic MNPs are particularly attractive for magnetic driving as well as bacterial biofilm and cell targeting in in vivo applications. Characterization of synthesized MNPs by the Fourier transform infrared spectra and magnetization curves confirmed the PGA coating on MNPs. The mean diameter of NaPGA- and CaPGA-coated MNPs as determined by transmission electron microscopy was 11.8 and 14 nm, respectively, while the x-ray diffraction pattern revealed the as-synthesized MNPs to be pure magnetite. Based on agar dilution assay, both NaPGA- and CaPGA-coated MNPs showed a lower minimum inhibitory concentration in Salmonella enteritidis SE 01 than the commercial antibiotics linezolid and cefaclor, but the former was effective against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 10832, whereas the latter was effective against Escherichia coli O157:H7 TWC 01. An in vitro cytotoxicity study in human skin fibroblast cells as measured by MTT assay implied the as-synthesized MNPs to be nontoxic. This outcome demonstrated that both γ-PGA-modified MNPs are cytocompatible and possess antibacterial activity in vitro, and thereby should be useful in in vivo studies for biomedical applications.

  3. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.

    PubMed

    Liu, Xiaoli; Xia, Wenshui; Jiang, Qixing; Xu, Yanshun; Yu, Peipei

    2015-09-01

    Our work here, for the first time, reported the antibacterial activity of kojic acid-grafted-chitosan oligosaccharides (COS/KA) against three gram-positive and three gram-negative bacteria. Integrity of cell membrane, outer membrane (OM) and inner membrane (IM) permeabilization assay, alkaline phosphatase (ALP) and glucose-6-phosphate dehydrogenase (G6PDH) assay, and SDS-PAGE assay techniques were used to investigate the interactions between COS/KA and bacterial membranes. The antibacterial activity of COS/KA was higher than those of unmodified COS. The electric conductivity of bacteria suspensions increased, followed by increasing of the units of average release for ALP and G6PDH. COS/KA can also rapidly increase the 1-N-phenylanphthylamine (NPN) uptake and the release of β-galactosidase via increasing the permeability of OM and IM in Escherichia coli. SDS-PAGE indicated the content of cellular soluble proteins decreased significantly in COS/KA-treated bacteria. Hence, COS/KA has potential in food industry and biomedical sciences. PMID:25682520

  4. Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium(IV, V) complexes containing chelidamic acid and novel thiourea derivatives.

    PubMed

    Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2015-06-01

    Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains. PMID:25770009

  5. ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV) Heteroleptic (Benzoylacetone and Hydroxamic Acids) Complexes

    PubMed Central

    Kaushal, Raj; Thakur, Sheetal; Nehra, Kiran

    2016-01-01

    Five structurally related titanium (IV) heteroleptic complexes, [TiCl2(bzac)(L1–4)] and [TiCl3(bzac)(HL5)]; bzac = benzoylacetonate; L1–5 = benzohydroximate (L1), salicylhydroximate (L2), acetohydroximate (L3), hydroxyurea (L4), and N-benzoyl-N-phenyl hydroxylamine (L5), were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV) complexes (1–5) demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV) complexes with calf thymus DNA (ct-DNA). On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV) complexes is likely to occur through the same mode. Results indicated that titanium (IV) complex can bind to calf thymus DNA (ct-DNA) via an intercalative mode. The intrinsic binding constant (Kb) was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes. PMID:27119022

  6. ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV) Heteroleptic (Benzoylacetone and Hydroxamic Acids) Complexes.

    PubMed

    Kaushal, Raj; Thakur, Sheetal; Nehra, Kiran

    2016-01-01

    Five structurally related titanium (IV) heteroleptic complexes, [TiCl2(bzac)(L(1-4))] and [TiCl3(bzac)(HL(5))]; bzac = benzoylacetonate; L(1-5) = benzohydroximate (L(1)), salicylhydroximate (L(2)), acetohydroximate (L(3)), hydroxyurea (L(4)), and N-benzoyl-N-phenyl hydroxylamine (L(5)), were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV) complexes (1-5) demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV) complexes with calf thymus DNA (ct-DNA). On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV) complexes is likely to occur through the same mode. Results indicated that titanium (IV) complex can bind to calf thymus DNA (ct-DNA) via an intercalative mode. The intrinsic binding constant (K b ) was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes. PMID:27119022

  7. Superhydrophobic antibacterial cotton textiles.

    PubMed

    Shateri Khalil-Abad, Mohammad; Yazdanshenas, Mohammad E

    2010-11-01

    We present a facile and effective method to prepare superhydrophobic cotton textiles. Silver particles were produced on cotton fibers by treatment with aqueous KOH and AgNO(3), followed by reduction treatment with ascorbic acid in the presence of a polymeric steric stabilizer to generate a dual-size surface roughness. Further modification of the particle-containing cotton textiles with octyltriethoxysilane led to hydrophobic surfaces. Surfaces prepared showed a sticky property, which exhibits a static water contact angle of 151 degrees for a 10 microL droplet that water drop did not slid off even when the sample was held upside down. The modified cotton has potent antibacterial activity toward both Gram-positive and Gram-negative bacteria. The Ag particles were uniformly and stably distributed on the substrate surface and killed bacteria. These modified cotton textiles are potentially useful; as superhydrophobic antibacterial fabrics in a wide variety of biomedical and general use applications. PMID:20709327

  8. Antibacterials in Household Products

    MedlinePlus

    ... products such as soaps, detergents, health and skincare products and household cleaners. How do antibacterials work? ♦ Antibacterials may be ... contain triclosan or other biocide agents? Antibacterials in household products Are there any risks associated with triclosan-containing ...

  9. Antibacterial activity of a 7,10-dihydroxy-8(E)-octadecenoic acid against food-bourne pathogenic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial conversion of the natural unsaturated fatty acids often generate polyhydroxy fatty acids rendering them to have new properties such as higher viscosity and reactivity. A bacterial strain Pseudomonas aeruginosa (PR3) has been intensively studied to produce a novel 7,10-dihydroxy-8(E)-octad...

  10. Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop.

    PubMed

    Thompson, J L; Hinton, M

    1997-03-01

    1. The inclusion of formic and propionic acids in the form of Bio-Add to the food of hens made no difference to the pH of the intestinal tract, but resulted in higher concentrations of these acids in the contents of the crop and gizzard. 2. Organic acids in the crop contents were bactericidal for Salmonella serotype Enteritidis PT4 in vitro, and also caused sub-lethal damage because fewer cells were recovered on selective salmonella media (brilliant green phenol red agar) than on non-selective media (nutrient agar). 3. Inclusion of Bio-Add in the food at 12g/kg may reduce the number of lactic acid-producing bacteria in the crop, and hence the amount of naturally produced organic acids. PMID:9088614

  11. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  12. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis.

    PubMed

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-01

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA(2-))·2(IM(+))·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O(-)⋯HN(+) hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device. PMID:25748591

  13. Preparation, spectroscopic and antibacterial studies on charge-transfer complexes of 2-hydroxypyridine with picric acid and 7,7',8,8'-tetracyano-p-quinodimethane.

    PubMed

    Gaballa, Akmal S; Amin, Alaa S

    2015-06-15

    The reactions of electron acceptors such as picric acid (HPA) and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains. PMID:25795603

  14. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity.

    PubMed

    MacDonald, Marybeth C; Arivalagan, Pugazhendhi; Barre, Douglas E; MacInnis, Judith A; D'Cunha, Godwin B

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  15. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity

    PubMed Central

    MacDonald, Marybeth C.; Arivalagan, Pugazhendhi; Barre, Douglas E.; MacInnis, Judith A.; D’Cunha, Godwin B.

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  16. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: Structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-01

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA2-)·2(IM+)·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O-⋯Hsbnd N+ hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device.

  17. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  18. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  19. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  20. Ent-trachyloban-19-oic acid isolated from Iostephane heterophylla as a promising antibacterial agent against Streptococcus mutans biofilms.

    PubMed

    Hernández, Dulce M; Díaz-Ruiz, Gloria; Rivero-Cruz, Blanca E; Bye, Robert A; Aguilar, María Isabel; Rivero-Cruz, J Fausto

    2012-04-01

    From the roots of Iostephane heterophylla, six known compounds, namely, ent-trachyloban-19-oic acid (1), the mixture of ent-kaur-16-en-19-oic acid (2) and ent-beyer-15-en-19-oic acid (3), xanthorrhizol (4), 16α-hydroxy-ent-kaurane (5) and 16α-hydroxy-ent-kaur-11-en-19-oic acid (6) were isolated using a bioassay-guided fractionation method. The known compounds (1-6) were identified by comparison of their spectroscopic data with reported values in the literature. In an attempt to increase the resultant antimicrobial activity of 1 and 4, a series of reactions was performed on ent-trachyloban-19-oic acid (1) and xanthorrhizol (4), to obtain derivatives 1a, 1b, and 4a-4d. All the isolated compounds (1-6) and the derivatives 1a, 1b, and 4a-4d were evaluated for their antimicrobial activity against two oral pathogens, Streptococcus mutans and Porphyromonas gingivalis associated with caries and periodontal disease, respectively. Compounds 1, 1b, 2+3, 4 and 4d inhibited the growth of S. mutans with concentrations ranging from 4.1 μg/mL to 70.5 μg/mL. No significant activity was found on P. gingivalis except for 4 with an MIC of 6.8 μg/mL. The ability of 1, 1b, 2+3, 4 and 4d to inhibit biofilm formation by S. mutans was evaluated. It was found that 1, 1b, 4 and 4d interfered with the establishment of S. mutans biofilms, inhibiting their development at 32.5, 125.0, 14.1 and 24.4 μg/mL, respectively. PMID:22245083

  1. Fatty Acid Binding Proteins FABP9 and FABP10 Participate in Antibacterial Responses in Chinese Mitten Crab, Eriocheir sinensis

    PubMed Central

    Li, Shuang; Guo, Xiao-Nv; Wang, Juan; Gong, Ya-Nan; He, Lin; Wang, Qun

    2013-01-01

    Invertebrates rely solely on the innate immune system for defense against pathogens and other stimuli. Fatty acid binding proteins (FABP), members of the lipid binding proteins superfamily, play a crucial role in fatty acid transport and lipid metabolism and are also involved in gene expression induced by fatty acids. In the vertebrate immune system, FABP is involved in inflammation regulated by fatty acids through its interaction with peroxidase proliferator activate receptors (PPARs). However, the immune functions of FABP in invertebrates are not well characterized. For this reason, we investigated the immune functionality of two fatty acid binding proteins, Es-FABP9 and Es-FABP10, following lipopolysaccharide (LPS) challenge in the Chinese mitten crab (Eriocheir sinensis). An obvious variation in the expression of Es-FABP9 and Es-FABP10 mRNA in E. sinensis was observed in hepatopancreas, gills, and hemocytes post-LPS challenge. Recombinant proteins rEs-FABP9 and rEs-FABP10 exhibited distinct bacterial binding activity and bacterial agglutination activity against Escherichia coli and Staphylococcus aureus. Furthermore, bacterial growth inhibition assays demonstrated that rEs-FABP9 responds positively to the growth inhibition of Vibrio parahaemolyticuss and S. aureus, while rEs-FABP10 responds positively to the growth inhibition of Aeromonas hydrophila and Bacillus subtilis. Coating of agarose beads with recombinant rEs-FABP9 and rEs-FABP10 dramatically enhanced encapsulation of the beads by crab hemocytes in vitro. In conclusion, the data presented here demonstrate the participation of these two lipid metabolism-related proteins in the innate immune system of E. sinensis. PMID:23365646

  2. Indomethacin/ibuprofen-like anti-inflammatory agents selectively potentiate the gamma-aminobutyric acid-antagonistic effects of several norfloxacin-like quinolone antibacterial agents on [35S]t-butylbicyclophosphorothionate binding.

    PubMed

    Squires, R F; Saederup, E

    1993-05-01

    Four piperazinoquinolone antibacterial drugs (norfloxacin, ciprofloxacin, enoxacin, and pipemidic acid), known to be gamma-aminobutyric acid (GABA) antagonists, fully reversed the inhibitory effect of GABA on [35S]t-butylbicyclophosphorothionate ([35S] TBPS) binding to rat brain membranes in vitro. Twelve indomethacin/ibuprofen-like arylalkanoic acid (AAA) anti-inflammatory drugs alone had no effect on [35S]TBPS binding, or on its inhibition by GABA, but potentiated the GABA-antagonistic effects of the four quinolones. Felbinac (4-biphenylacetic acid) was most potent in this respect (EC50 = 110 nM, together with 5 microM norfloxacin), followed by flurbiprofen > anirolac > metiazinic acid > tolmetin = ketoprofen = fenbufen = indomethacin > fenoprofen > ibuprofen = (+)-naproxen = sulindac. Other anti-inflammatory analgesic drugs, including aspirin, diclofenac, diflunisal, meclofenamic acid, mefenamic acid, nambumetone, phenacetin, piroxicam, and phenylbutazone, failed to potentiate the GABA-antagonistic effect of norfloxacin. Felbinac (1 microM) increased the GABA-antagonistic potencies of norfloxacin and enoxacin about 26-fold, while increasing those of ciprofloxacin and pipemidic acid 7-fold and 2.3-fold, respectively. Using subsaturating concentrations of the four quinolones, concentration-response curves for felbinac yielded EC50 values ranging from 110 nM with 5 microM norfloxacin to 1.3 microM with 100 microM pipemidic acid. Three other piperazinoquinolone antibacterial agents (amifloxacin, difloxacin, and fleroxacin) and four nonpiperazinoquinolone anti-bacterial agents (oxolinic acid, cinoxacin, nalidixic acid, and piromidic acid) were much weaker GABA antagonists and were not significantly potentiated by felbinac. All other known GABAA receptor blockers tested, including R 5135, pitrazepin, bicuculline, SR 95531, strychnine, D-tubocurarine, thebaine, securinine, theophylline, and caffeine, were not potentiated by felbinac. Our results suggest that

  3. Synthesis and Antibacterial Evaluation of (S,Z)-4-methyl-2-(4-oxo-5-((5-substituted phenylfuran-2-yl) methylene)-2-thioxothiazolidin-3-yl)Pentanoic Acids

    PubMed Central

    Song, Ming-Xia; Deng, Xian-Qing; Wei, Zhi-Yu; Zheng, Chang-Ji; Wu, Yan; An, Chang-Shan; Piao, Hu-Ri

    2015-01-01

    The microbial resistance has become a global hazard with the irrational use of antibiotics. Infection of drug-resistant bacteria seriously threatens human health. Currently, there is an urgent need for the development of novel antimicrobial agents with new mechanisms and lower levels of toxicity. In this paper, a series of (S,Z)-4-methyl-2-(4-oxo-5-((5-substitutedphenylfuran-2-yl) methylene)-2-thioxothiazolidin-3-yl)pentanoic acids via a Knoevenagel condensation were synthesized and evaluated for their antibacterial activity in-vitro. The synthesized compounds were characterized by IR, 1H NMR and MS. The antibacterial test in-vitro showed that all of the synthesized compounds had good antibacterial activity against several Gram-positive bacteria (including multidrug-resistant clinical isolates) with minimum inhibitory concentration (MIC) values in the range of 2–4 µg/mL. Especially compounds 4c, 4d, 4e and 4f were the most potent, with MIC values of 2 µg/mL against four multidrug-resistant Gram-positive bacterial strains. PMID:25561915

  4. Characterization of an Antibacterial Compound, 2-Hydroxyl Indole-3-Propanamide, Produced by Lactic Acid Bacteria Isolated from Fermented Batter.

    PubMed

    Jeevaratnam, Kadirvelu; Vidhyasagar, Venkatasubramanian; Agaliya, Perumal Jayaprabha; Saraniya, Appukuttan; Umaiyaparvathy, Muthukandan

    2015-09-01

    Lactic acid bacteria are known to produce numerous antimicrobial compounds that are active against various pathogens. Here, we have purified and characterized a novel low-molecular-weight (LMW) antimicrobial compound produced by Lactobacillus and Pediococcus isolated from fermented idly and uttapam batter. The LMW compound was extracted from cell-free supernatant using ice-cold acetone, purified by gel permeation and hydrophobic interaction chromatography. It exhibited antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria sparing the probiotic strains like Lactobacillus rhamnosus. The molecular weight of the LMW compound was identified as 204 Da using LC-MS-ESI. In addition, the structure of the compound was predicted using spectroscopic methods like FTIR and NMR and identified as 2-hydroxyl indole-3-propanamide. The LMW compound was differentiated from its related compound, tryptophan, by Salkowski reaction and thin-layer chromatography. This novel LMW compound, 2-hydroxyl indole-3-propanamide, may have an effective application as an antibiotic which can spare prevailing probiotic organisms but target only the pathogenic strains. PMID:26201479

  5. Rosmarinic acid from eelgrass shows nematicidal and antibacterial activities against pine wood nematode and its carrying bacteria.

    PubMed

    Wang, Jingyu; Pan, Xueru; Han, Yi; Guo, Daosen; Guo, Qunqun; Li, Ronggui

    2012-12-01

    Pine wilt disease (PWD), a destructive disease for pine trees, is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus and additional bacteria. In this study, extracts of Zostera marina showed a high nematicidal activity against PWN and some of the bacteria that it carries. Light yellow crystals were obtained from extracts of Z. marina through solvent extraction, followed by chromatography on AB-8 resin and crystallization. The NMR and HPLC analysis showed that the isolated compound was rosmarinic acid (RosA). RosA showed effective nematicidal activity, of which the LC₅₀ (50% lethal concentration) to PWN at 24 h, 48 h and 72 h was 1.18 mg/g, 1.05 mg/g and 0.95 mg/g, respectively. To get a high yield rate of RosA from Z. marina, single factor experiments and an L₉ (3⁴) orthogonal experiment were performed. This extraction process involved 70% ethanol for 3 h at 40 °C. The extraction dosage was 1:50 (w/v). The highest yield of RosA from Zostera was 3.13 mg/g DW (dried weight). The crude extracts of Zostera marina (10 mg/mL) and RosA (1 mg/mL) also showed inhibitory effects to some bacterial strains carried by PWN: Klebsiella sp., Stenotrophomonas maltophilia, Streptomyces sp. and Pantoea agglomerans. The results of these studies provide clues for preparing pesticide to control PWD from Z. marina. PMID:23201594

  6. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing.

    PubMed

    Montazer, Majid; Alimohammadi, Farbod; Shamei, Ali; Rahimi, Mohammad Karim

    2012-01-01

    Colloidal nano silver was applied on the surface of cotton fabric and stabilized using 1,2,3,4-butanetetracarboxylic acid (BTCA). The two properties of antimicrobial activity and resistance against creasing were imparted to the samples of fabric as a result of the treatment with silver nano colloid and BTCA. The antimicrobial property of samples was evaluated using two pathogenic bacteria including Escherichia coli and Staphylococcus aureus as outstanding barometers in this field. The durability of applied nanoparticles, color variation, wettability and wrinkle recovery angle of the treated samples were investigated employing related credible standards. The presence of nano silver particles on the surface of treated cotton fabric was proved using EDS spectrum as well as the SEM images. Furthermore, the creation of cross-links was confirmed by the means of both ATR-FTIR and Raman spectra. In conclusion, it was observed that BTCA plays a prominent role in stabilizing silver nanoparticle. Besides, Wettability and winkle recovery angle of finished samples decreased and increased, respectively. In addition, it is noteworthy that no obvious color variation was observed. PMID:21978552

  7. Synthesis of amino acid conjugates of tetrahydrocurcumin and evaluation of their antibacterial and anti-mutagenic properties.

    PubMed

    Manjunatha, J R; Bettadaiah, B K; Negi, P S; Srinivas, P

    2013-08-15

    Tetrahydrocurcumin (THC), the hydrogenated and stable form of curcumin, exhibits physiological and pharmacological activities similar to curcumin. A protocol has been developed for the synthesis of novel conjugates of THC with alanine (2a), isoleucine (2b), proline (2c), valine (2d), phenylalanine (2e), glycine (2f) and leucine (2g) in high yields (43-82%). All the derivatives of THC exhibited more potent anti-microbial activity than THC against Bacillus cereus, Staphylococcus aureus, Escherichia coli and Yersinia enterocolitica. The MIC values of the derivatives were 24-37% of those for THC in case of both gram-positive and gram-negative bacteria. Derivatives 2g and 2d exhibited maximum anti-mutagenicity against Salmonella typhimurium TA 98 and TA 1538, respectively at a low concentration of 313 μg/plate, with comparable activity for THC evident only at 3750 μg/plate. These results clearly demonstrated that the conjugation of THC at the phenolic position with amino acids led to significant improvement of its in vitro biological attributes. PMID:23561114

  8. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide.

    PubMed

    Malina, Amir; Shai, Yechiel

    2005-09-15

    Many studies have shown that an amphipathic structure and a threshold of hydrophobicity of the peptidic chain are crucial for the biological function of AMPs (antimicrobial peptides). However, the factors that dictate their cell selectivity are not yet clear. In the present study, we show that the attachment of aliphatic acids with different lengths (10, 12, 14 or 16 carbon atoms) to the N-terminus of a biologically inactive cationic peptide is sufficient to endow the resulting lipopeptides with lytic activity against different cells. Mode-of-action studies were performed with model phospholipid membranes mimicking those of bacterial, mammalian and fungal cells. These include determination of the structure in solution and membranes by using CD and ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectroscopy, membrane leakage experiments and by visualizing bacterial and fungal damage via transmission electron microscopy. The results obtained reveal that: (i) the short lipopeptides (10 and 12 carbons atoms) are non-haemolytic, active towards both bacteria and fungi and monomeric in solution. (ii) The long lipopeptides (14 and 16 carbons atoms) are highly antifungal, haemolytic only at concentrations above their MIC (minimal inhibitory concentration) values and aggregate in solution. (iii) All the lipopeptides adopt a partial alpha-helical structure in 1% lysophosphatidylcholine and bacterial and mammalian model membranes. However, the two short lipopeptides contain a significant fraction of random coil in fungal membranes, in agreement with their reduced antifungal activity. (iv) All the lipopeptides have a membranolytic effect on all types of cells assayed. Overall, the results reveal that the length of the aliphatic chain is sufficient to control the pathogen specificity of the lipopeptides, most probably by controlling both the overall hydrophobicity and the oligomeric state of the lipopeptides in solution. Besides providing us with basic

  9. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity.

    PubMed

    Baig, Mirza Salman; Ahad, Abdul; Aslam, Mohammed; Imam, Syed Sarim; Aqil, Mohd; Ali, Asgar

    2016-04-01

    The aim of the present study was to develop and optimize levofloxacin loaded solid lipid nanoparticles for the treatment of conjunctivitis. Box-Behnken experimental design was applied for optimization of solid lipid nanoparticles. The independent variables were stearic acid as lipid (X1), Tween 80 as surfactant (X2) and sodium deoxycholate as co-surfactant (X3) while particle size (Y1) and entrapment efficiency (Y2) were the dependent variables. Further in vitro release and antibacterial activity in vitro were also performed. The optimized formulation of levofloxacin provides particle size of 237.82 nm and showed 78.71% entrapment efficiency and achieved flux 0.2,493 μg/cm(2)/h across excised goat cornea. In vitro release study showed prolonged drug release from the optimized formulation following Korsmeyer-Peppas model. Antimicrobial study revealed that the developed formulation possesses antibacterial activity against Staphylococcus aureus, and Escherichia coli equivalent to marketed eye drops. HET-CAM test demonstrated that optimized formulation was found to be non-irritant and safe for topical ophthalmic use. Our results concluded that solid lipid nanoparticles are an efficient carrier for ocular delivery of levofloxacin and other drugs. PMID:26740466

  10. Antibacterial Activity and Membrane-Disruptive Mechanism of 3-p-trans-Coumaroyl-2-hydroxyquinic Acid, a Novel Phenolic Compound from Pine Needles of Cedrus deodara, against Staphylococcus aureus.

    PubMed

    Wu, Yanping; Bai, Jinrong; Zhong, Kai; Huang, Yina; Qi, Huayi; Jiang, Yan; Gao, Hong

    2016-01-01

    Recently, we reported that a novel phenolic compound isolated from Cedrus deodara, 3-p-trans-coumaroyl-2-hydroxyquinic acid (CHQA), exhibits a potent antioxidant activity. The present study aimed to evaluate the antibacterial activity of CHQA against eleven food-borne pathogens and to elucidate its mechanism of action against Staphylococcus aureus. The results from minimum inhibitory concentration (MIC) determinations showed that CHQA exhibited moderate inhibitory effects on all of the tested pathogens with MIC values ranging from 2.5-10 mg/mL. Membrane potential measurements and flow cytometric analysis demonstrated that CHQA damaged the cytoplasmic membrane of S. aureus, causing a significant membrane hyperpolarization with a loss of membrane integrity. Moreover, CHQA induced an increase in membrane fluidity and conformational changes in membrane protein of S. aureus, suggesting that CHQA probably acts on the cell membrane by interactions with membrane lipid and protein. Transmission electron microscopic observations further confirmed that CHQA disrupted the cell membrane of S. aureus and caused severe morphological changes, which even led to leakage of intracellular constituents. These findings indicated that CHQA could have the potential to serve as a natural antibacterial agent to control and prevent the growth of pathogens in food and in food-processing environments. PMID:27548123

  11. Pyridonecarboxylic acids as antibacterial agents. IX. Synthesis and structure-activity relationship of 3-substituted 10-(1-aminocyclopropyl)-9-fluoro-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]- 1,4-benzoxazine-6-carboxylic acids and their 1-thio and 1-aza analogues.

    PubMed

    Todo, Y; Takagi, H; Iino, F; Fukuoka, Y; Takahata, M; Okamoto, S; Saikawa, I; Narita, H

    1994-12-01

    A series of the title compounds listed in Chart 1 have been synthesized to study the effects of 3-alkyl substituents on the antibacterial potency and in vivo efficacy of 10-(1-aminocyclopropyl)-9-fluoro-7-oxo-2,3-dihydro-7H-pyrido[1,2,3 -de]-1,4-benzoxazine-6-carboxylic acid and its 1-thio and 1-aza variants. Compound (S)-1, which proved most active in vitro against five representative gram-positive and gram-negative organisms, was assayed in vivo using Staphylococcus aureus and Pseudomonas aeruginosa mouse infection models. It exhibited an excellent in vivo efficacy, being superior to ofloxacin and ciprofloxacin, and was then assayed for convulsion-inducing activity, mammalian cell cytotoxicity, and topoisomerase II inhibition. The biological results showed that (S)-1 displayed antibacterial and toxicological advantages over ofloxacin and ciprofloxacin. Compound (S)-1 and its methanesulfonate showed high serum concentrations after oral and intravenous administrations to mice. PMID:7697774

  12. Antibacterial properties of nanoparticles.

    PubMed

    Hajipour, Mohammad J; Fromm, Katharina M; Ashkarran, Ali Akbar; Jimenez de Aberasturi, Dorleta; de Larramendi, Idoia Ruiz; Rojo, Teofilo; Serpooshan, Vahid; Parak, Wolfgang J; Mahmoudi, Morteza

    2012-10-01

    Antibacterial agents are very important in the textile industry, water disinfection, medicine, and food packaging. Organic compounds used for disinfection have some disadvantages, including toxicity to the human body, therefore, the interest in inorganic disinfectants such as metal oxide nanoparticles (NPs) is increasing. This review focuses on the properties and applications of inorganic nanostructured materials and their surface modifications, with good antimicrobial activity. Such improved antibacterial agents locally destroy bacteria, without being toxic to the surrounding tissue. We also provide an overview of opportunities and risks of using NPs as antibacterial agents. In particular, we discuss the role of different NP materials. PMID:22884769

  13. The Antibacterial Applications of Graphene and Its Derivatives.

    PubMed

    Shi, Lin; Chen, Jiongrun; Teng, Lijing; Wang, Lin; Zhu, Guanglin; Liu, Sa; Luo, Zhengtang; Shi, Xuetao; Wang, Yingjun; Ren, Li

    2016-08-01

    Graphene materials have unique structures and outstanding thermal, optical, mechanical and electronic properties. In the last decade, these materials have attracted substantial interest in the field of nanomaterials, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of antibacterial agents. Here, recent advancements in the use of graphene and its derivatives as antibacterial agents are reviewed. Graphene is used in three forms: the pristine form; mixed with other antibacterial agents, such as Ag and chitosan; or with a base material, such as poly (N-vinylcarbazole) (PVK) and poly (lactic acid) (PLA). The main mechanisms proposed to explain the antibacterial behaviors of graphene and its derivatives are the membrane stress hypothesis, the oxidative stress hypothesis, the entrapment hypothesis, the electron transfer hypothesis and the photothermal hypothesis. This review describes contributions to improving these promising materials for antibacterial applications. PMID:27389848

  14. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds.

    PubMed

    Chohan, Zahid H; Arif, M; Akhtar, Muhammad A; Supuran, Claudiu T

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L(1))-(L(5)) were derived by condensation of beta-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H(2)O)(4)]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)(2)(H(2)O)(2)] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22

  15. Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs.

    PubMed

    Abdul Qadir, Muhammad; Ahmed, Mahmood; Iqbal, Muhammad

    2015-01-01

    Novel sulfonamides were developed and structures of the new products were confirmed by elemental and spectral analysis (FT-IR, ESI-MS, (1)HNMR, and (13)CNMR). In vitro, developed compounds were screened for their antibacterial activities against medically important gram (+) and gram (-) bacterial strains, namely, S. aureus, B. subtilis, E. coli, and K. pneumoniae. The antibacterial activities have been determined by measuring MIC values (μg/mL) and zone of inhibitions (mm). Among the tested compounds, it was found that compounds 5a and 9a have most potent activity against E. coli with zone of inhibition: 31 ± 0.12 mm (MIC: 7.81 μg/mL) and 30 ± 0.12 mm (MIC: 7.81 μg/mL), respectively, nearly as active as ciprofloxacin (zone of inhibition: 32 ± 0.12 mm). In contrast, all the compounds were totally inactive against the gram (+) B. subtilis. PMID:25802872

  16. Synthesis, Characterization, and Antibacterial Activities of Novel Sulfonamides Derived through Condensation of Amino Group Containing Drugs, Amino Acids, and Their Analogs

    PubMed Central

    Abdul Qadir, Muhammad; Ahmed, Mahmood; Iqbal, Muhammad

    2015-01-01

    Novel sulfonamides were developed and structures of the new products were confirmed by elemental and spectral analysis (FT-IR, ESI-MS, 1HNMR, and 13CNMR). In vitro, developed compounds were screened for their antibacterial activities against medically important gram (+) and gram (−) bacterial strains, namely, S. aureus, B. subtilis, E. coli, and K. pneumoniae. The antibacterial activities have been determined by measuring MIC values (μg/mL) and zone of inhibitions (mm). Among the tested compounds, it was found that compounds 5a and 9a have most potent activity against E. coli with zone of inhibition: 31 ± 0.12 mm (MIC: 7.81 μg/mL) and 30 ± 0.12 mm (MIC: 7.81 μg/mL), respectively, nearly as active as ciprofloxacin (zone of inhibition: 32 ± 0.12 mm). In contrast, all the compounds were totally inactive against the gram (+) B. subtilis. PMID:25802872

  17. Antibacterial Constituents of Hainan Morinda citrifolia (Noni) Leaves.

    PubMed

    Zhang, Wei-Min; Wang, Wei; Zhang, Jing-Jing; Wang, Zhi-Rong; Wang, Yu; Hao, Wang-Jun; Huang, Wu-Yang

    2016-05-01

    Noni (Morinda citrifolia L.) is an edible and medicinal plant distributed in Hainan, China. The antibacterial activities of the extracts of water (WE), petroleum ether (PEE), ethyl acetate (EAE), chloroform (CE), and n-butanol (BE) were assayed by the disk diffusion method. The results showed that the extracts from Noni leaves possessed antibacterial effects against Bacillus subtilis, Escherichia coli, Proteus vulgaris, and Staphylococcus aureus. Among 5 different extracts, the BE produced the best antibacterial activity. The samples were first extracted by ethanol, and the primary compounds in the BE fraction of ethanol extract was further isolated and identified. Six phenolic compounds, including 5, 15-dimethylmorindol, ferulic acid, p-hydroxycinamic acid, methyl 4-hydroxybenzoate, methyl ferulate, and methyl 4-hydroxycinnamate, were identifiedby NMR. The results indicated that the phenolic compounds might significantly contribute to antibacterial activities of Noni leaves. PMID:27074391

  18. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly

    PubMed Central

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    Objectives The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. Methods In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. Results The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. Conclusions The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing

  19. [Influence of Polycations on Antibacterial Activity of Lysostaphin].

    PubMed

    Kulikov, S N; Khairullin, R Z; Varlamov, V P

    2015-01-01

    The synergistic antibacterial activity of lysostaphin and polycations of different chemical structures against Staphylococcus aureus has been shown. Polycations improved the lytic activity of lysostaphin against the peptidoglycan of staphylococci. It is proposed that this resulted in decreased binding of positively charged lysostaphin with S. aureus cell-wall teichoic acids. These data provide an opportunity to search for polycations that would amplify the synergistic effect of lysostaphin or other antibacterial proteins against staphylococci. PMID:26859963

  20. Isolation, identification, and quantification of roasted coffee antibacterial compounds.

    PubMed

    Daglia, Maria; Papetti, Adele; Grisoli, Pietro; Aceti, Camilla; Spini, Valentina; Dacarro, Cesare; Gazzani, Gabriella

    2007-12-12

    Coffee brew is a widely consumed beverage with multiple biological activities due both to naturally occurring components and to the hundreds of chemicals that are formed during the roasting process. Roasted coffee extract possesses antibacterial activity against a wide range of microorganisms, including Staphylococcus aureus and Streptococcus mutans, whereas green coffee extract exhibits no such activity. The naturally occurring coffee compounds, such as chlorogenic acids and caffeine, cannot therefore be responsible for the significant antibacterial activity exerted by coffee beverages against both bacteria. The very low minimum inhibitory concentration (MIC) found for standard glyoxal, methylglyoxal, and diacetyl compounds formed during the roasting process points to these alpha-dicarbonyl compounds as the main agents responsible for the antibacterial activity of brewed coffee against Sa. aureus and St. mutans. However, their low concentrations determined in the beverage account for only 50% of its antibacterial activity. The addition of caffeine, which has weak intrinsic antibacterial activity, to a mixture of alpha-dicarbonyl compounds at the concentrations found in coffee demonstrated that caffeine synergistically enhances the antibacterial activity of alpha-dicarbonyl compounds and that glyoxal, methylglyoxal, and diacetyl in the presence of caffeine account for the whole antibacterial activity of roasted coffee. PMID:18001036

  1. Antibacterials from the Sea

    PubMed Central

    Hughes, Chambers C.; Fenical, William

    2011-01-01

    The ocean contains a host of macroscopic life in a great microbial soup. Unlike the terrestrial environment, an aqueous environment provides perpetual propinquity and blurs spatial distinctions. Marine organisms are under a persistent threat of infection by resident pathogenic microbes including bacteria, and in response they have engineered complex organic compounds with antibacterial activity from a diverse set of biological precursors. The diluting effect of the ocean drives the construction of potent molecules that are stable to harsh salty conditions. Members of each class of metabolite—ribosomal and non-ribosomal peptides, alkaloids, polyketides, and terpenes—have been shown to exhibit antibacterial activity. The sophistication and diversity of these metabolites points to the ingenuity and flexibility of biosynthetic processes in Nature. Compared with their terrestrial counterparts, antibacterial marine natural products have received much less attention. Thus, a concerted effort to discover new antibacterials from marine sources has the potential to contribute significantly to the treatment of the ever increasing drug-resistant infectious diseases. PMID:20845412

  2. Should antibacterials be deregulated?

    PubMed

    Rovira, J; Figueras, M; Segú, J L

    1998-05-01

    Deregulation of antibacterials is a recurrent topic in the debate on pharmaceutical policy. This article focuses on one aspect of pharmaceutical regulation, namely the requirement of a medical prescription for purchasing antibacterials. However, a strategy of deregulation should not only concern the switch from prescription-only status to nonprescription status for a given drug, but should consider some complementary measures to minimise potentially harmful effects on health and costs. Risk-benefit and economic evaluations, which are possible approaches to assess the convenience of antibacterial deregulation, force the empirical evidence, the assumptions, as well as the value judgements on which the options are evaluated, to be made explicit. We outline the basic traits of an economic-evaluation approach to assess the issues related to the public interest and the feasibility of a deregulation policy. However, the answer cannot be a generic one, but should address the question for each particular country, and for each antibacterial and indication. Given the limitations of existing evidence on that issue, a tentative research agenda is also proposed. PMID:10180749

  3. Antibacterial activity of antibacterial cutting boards in household kitchens.

    PubMed

    Kounosu, Masayuki; Kaneko, Seiichi

    2007-12-01

    We examined antibacterial cutting boards with antibacterial activity values of either "2" or "4" in compliance with the JIS Z 2801 standard, and compared their findings with those of cutting boards with no antibacterial activity. These cutting boards were used in ten different households, and we measured changes in the viable cell counts of several types of bacteria with the drop plate method. We also identified the detected bacterial flora and measured the minimum antimicrobial concentrations of several commonly used antibacterial agents against the kinds of bacteria identified to determine the expected antibacterial activity of the respective agents. Cutting boards with activity values of both "2" and "4" proved to be antibacterial in actual use, although no correlation between the viable cell counts and the antibacterial activity values was observed. In the kitchen environment, large quantities of Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were detected, and it was confirmed that common antibacterial agents used in many antibacterial products are effective against these bacterial species. In addition, we measured the minimum antimicrobial concentrations of the agents against lactobacillus, a typical good bacterium, and discovered that this bacterium is less sensitive to these antibacterial agents compared to more common bacteria. PMID:18198718

  4. Synthesis and antibacterial activity of alaremycin derivatives for the porphobilinogen synthase.

    PubMed

    Iwai, Noritaka; Nakayama, Kyosuke; Oku, Jumpei; Kitazume, Tomoya

    2011-05-15

    The preparation and the antibacterial activity of alaremycin derivatives such as their CF(3)-derivatives and (R)- and (S)-4-oxo-5-acetylaminohexanoic acid for the porphobilinogen synthase (PBGS), were described. The IC(50) values of the antibacterial activity of the prepared materials for the inhibitor of PBGS, were determined using PBGS assay. PMID:21514151

  5. Novel antibacterial polypeptide laparaxin produced by Lactobacillus paracasei strain NRRL B-50314 via fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the production and characterization of a novel antibacterial polypeptide, designated laparaxin, which is secreted by Lactobacillus paracasei NRRL B-50314. Crude laparaxin has antibacterial activity against a wide variety of Gram-positive bacteria, including: lactic acid bacteria ...

  6. Synthesis and antibacterial activity of thioglycolic amino acid derivatives and dipeptides containing the 2-methyl-3,4-dihydroquinazolin-4-one moiety.

    PubMed

    Atta, F M

    1994-11-01

    3-(2'-Chloroethyl)-2-methyl-3,4-dihydroquinazolin-4-one (I) was reacted with sodio (sodium thioglycolate) in dry dioxane and yielded compound II. By using thionyl chloride, this compound was converted to the corresponding acid chloride (III). The prepared acyl chloride (III) was allowed to interact with different alpha-amino acids such as Gly, L-Ala, L-B-Phe, DL-Asp, L-Glu, L-Thr and L-Val to give new amino acid derivatives (IVa-g). A selected C-terminal derivative of glycine (IVa) was converted into acid chloride (V). The acid chloride formed was reacted with L-Ala, L-B-Phe, DL-Asp, L-Glu, L-Thr and L-Val and yielded the new dipeptides VIa-f. The structures of the synthesized compounds were elucidated by elemental analysis and IR spectra. The prepared peptides were tested for their antimicrobial activities by comparison with tetra-cycline as a reference compound. PMID:7765582

  7. Challenges of Antibacterial Discovery

    PubMed Central

    Silver, Lynn L.

    2011-01-01

    Summary: The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort. PMID:21233508

  8. Antibacterial Applications of Nanodiamonds.

    PubMed

    Szunerits, Sabine; Barras, Alexandre; Boukherroub, Rabah

    2016-04-01

    Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs) revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities. PMID:27077871

  9. Antibacterial Applications of Nanodiamonds

    PubMed Central

    Szunerits, Sabine; Barras, Alexandre; Boukherroub, Rabah

    2016-01-01

    Bacterial infectious diseases, sharing clinical characteristics such as chronic inflammation and tissue damage, pose a major threat to human health. The steady increase of multidrug-resistant bacteria infections adds up to the current problems modern healthcare is facing. The treatment of bacterial infections with multi-resistant germs is very difficult, as the development of new antimicrobial drugs is hardly catching up with the development of antibiotic resistant pathogens. These and other considerations have generated an increased interest in the development of viable alternatives to antibiotics. A promising strategy is the use of nanomaterials with antibacterial character and of nanostructures displaying anti-adhesive activity against biofilms. Glycan-modified nanodiamonds (NDs) revealed themselves to be of great promise as useful nanostructures for combating microbial infections. This review summarizes the current efforts in the synthesis of glycan-modified ND particles and evaluation of their antibacterial and anti-biofilm activities. PMID:27077871

  10. X-ray crystallographic, FT-IR and NMR studies as well as anticancer and antibacterial activity of the salt formed between ionophore antibiotic Lasalocid acid and amines

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Rutkowski, Jacek; Wietrzyk, Joanna; Stefańska, Joanna; Maj, Ewa; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil; Bartl, Franz

    2013-01-01

    Two new complexes of the ionophore antibiotic Lasalocid acid (LAS) with phenylamine (PhA) and butylamine (BuA) were synthesized and their molecular structures were studied using single crystal X-ray diffraction and spectroscopic methods. In the solid state both amines are protonated and all NH3+ protons are hydrogen bonded to etheric, hydroxyl and carboxylic oxygen atoms of the LAS anion. In chloroform solutions the structure observed in the crystal of LAS-BuA complex is preserved and an equilibrium between the LAS-PhA complex and dissociated Lasalocid acid and phenylamine is observed. In vitro antimicrobial tests of the complexes showed a significant activity towards some strains of Gram-positive bacteria. For the first time Lasalocid acid and its complexes with amines were tested in vitro for cytotoxic activity against human cancer cell lines: A-549 (lung), MCF-7 (breast), HT-29 (colon) and mouse cancer cell line P-388 (leukemia). We found that LAS and its complexes are strong cytotoxic agents towards all tested cell lines. The cytostatic activity of the compounds studied is greater than that of cisplatin, indicating that Lasalocid and its complexes are promising candidates for new anticancer drugs.

  11. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  12. Antibacterial and synergic effects of gallic acid-grafted-chitosan with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Lee, Dae-Sung; Eom, Sung-Hwan; Kim, Young-Mog; Kim, Hye Seon; Yim, Mi-Jin; Lee, Sang-Hoon; Kim, Do-Hyung; Je, Jae-Young

    2014-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is spreading worldwide, emphasizing the need to search for new antibiotics. The anti-MRSA activities of gallic acid-grafted-chitosans (GA-g-chitosans) were investigated against 2 MRSA standards and 10 MRSA clinical isolates by determining the minimum inhibitory concentrations (MICs). GA-g-chitosan (I), which has the highest gallic acid content, exhibited the strongest anti-MRSA activities, with MICs of 32-64 μg/mL. A time-kill investigation revealed that GA-g-chitosan (I) exhibited a bactericidal effect at twice the MIC, also demonstrating good thermal and pH stability. Investigation of cell envelope integrity showed the release of intracellular components with an increasing absorbance value at 260 nm, indicating cell envelope damage caused by the GA-g-chitosan (I), which was further confirmed by transmission electron microscopy. When GA-g-chitosans were combined with β-lactams, including ampicillin and penicillin, synergistic effects were observed on the 2 standard MRSA strains and on the 10 clinical isolates, with fractional inhibitory indices ranging from 0.125 to 0.625. In the time-kill dynamic confirmation test, synergistic bactericidal effects were observed for the combinations of GA-g-chitosans with β-lactams, and over 4.0 log CFU/mL reductions were observed after 24 h when combination treatment was used. These results may prove GA-g-chitosans to be a potent agent when combined with ampicillin and penicillin for the elimination of MRSA. PMID:25216286

  13. Synthesis and antibacterial evaluation of a novel tricyclic oxaborole-fused fluoroquinolone.

    PubMed

    Li, Xianfeng; Zhang, Yong-Kang; Plattner, Jacob J; Mao, Weimin; Alley, M R K; Xia, Yi; Hernandez, Vincent; Zhou, Yasheen; Ding, Charles Z; Li, Jinpeng; Shao, Zhijun; Zhang, Hongwei; Xu, Musheng

    2013-02-15

    We have designed and synthesized a novel class of compounds based on fluoroquinolone antibacterial prototype. The design concept involved the replacement of the 3-carboxylic acid in ciprofloxacin with an oxaborole-fused ring as an acid-mimicking group. The synthetic method employed in this work provides a good example of incorporating boron atom in complex molecules with multiple functional groups. The antibacterial activity of the newly synthesized compounds has been evaluated. PMID:23312945

  14. Synthesis, spectral characterization, thermal behaviour, antibacterial activity and DFT calculation on N'-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide and N'-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester.

    PubMed

    Bharty, M K; Dani, R K; Kushawaha, S K; Prakash, Om; Singh, Ranjan K; Sharma, V K; Kharwar, R N; Singh, N K

    2015-06-15

    Two new compounds N'-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide {Hbmshb (1)} and N'-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester {H2mbhce (2)} have been synthesized and characterized with the aid of elemental analyses, IR, NMR and single crystal X-ray diffraction data. Compounds 1 and 2 crystallize in orthorhombic and monoclinic systems with space group Pna21 and P21/n, respectively. Inter and intra molecular hydrogen bonding link two molecules and provide linear chain structure. In addition to this, compound 2 is stabilized by CH⋯π and NH⋯π interactions. Molecular geometry from X-ray analysis, geometry optimization, charge distribution, bond analysis, frontier molecular orbital (FMO) analysis and non-linear optical (NLO) effects have been performed using the density functional theory (DFT) with the B3LYP functional. The bioefficacy of compounds has been examined against the growth of bacteria to evaluate their anti-microbial potential. Compounds 1 and 2 are thermally stable and show NLO behaviour better than the urea crystal. PMID:25767993

  15. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. PMID:26648134

  16. Characterization and antibacterial properties of porous fibers containing silver ions

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-11-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  17. Antibacterial properties of compounds isolated from Carpobrotus edulis.

    PubMed

    Martins, A; Vasas, A; Viveiros, M; Molnár, J; Hohmann, J; Amaral, L

    2011-05-01

    Several compounds isolated from the plant Carpobrotus edulis were evaluated for their activity against multidrug-resistant (MDR) bacteria and their efflux pump systems. Amongst the compounds isolated, six compounds were tested, namely uvaol, β-amyrin, oleanolic acid, catechin, epicatechin and monogalactosyldiacylglycerol. Oleanolic acid presented high antibacterial activity against a large number of bacterial strains. The triterpene uvaol was the most active compound for modulation of efflux activity by MDR Gram-positive strains. PMID:21411294

  18. Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates.

    PubMed

    Hoffknecht, Barbara C; Prochnow, Pascal; Bandow, Julia E; Metzler-Nolte, Nils

    2016-07-01

    Peptide dendrimers and derivatisation of peptides with metallocenes showed promising results in the search for new antibacterial agents. The two concepts are combined in this work leading to multivalent, metallocene-containing peptide derivates. These new peptides were synthesised utilising microwave assisted, copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, "click" chemistry). Twelve new peptide conjugates, containing either a ferrocenoyl group or a ruthenocenoyl group on so-called ultrashort (i.e. < 5 amino acids) peptides, and ranging from monovalent to trivalent conjugates, were synthesised and their antibacterial activity was investigated by minimal inhibitory concentration (MIC) assays on five different bacterial strains. The antibacterial activity was compared to the same peptide conjugates without metallocenes. The resulting MIC values showed a significant enhancement of the antibacterial activity of these peptide conjugates against Gram-positive bacteria by the metallocenoyl groups. Additionally, the compounds with two metallocenoyl groups presented the best antibacterial activities overall. PMID:26988572

  19. Antibacterial polyelectrolyte-coated Mg alloys for biomedical applications

    NASA Astrophysics Data System (ADS)

    Seraz, Md. S.; Asmatulu, R.; Chen, Z.; Ceylan, M.; Mahapatro, A.; Yang, S. Y.

    2014-04-01

    This study deals with two biomedical subjects: corrosion rates of polyelectrolyte-coated magnesium (Mg) alloys, mainly used for biomedical purposes, and antibacterial properties of these alloys. Thin sheets of Mg alloys were coated with cationic polyelectrolyte chitosan (CHI) and anionic polyelectrolyte carboxymethyl cellulose (CMC) using a layer-by-layer coating method and then embedded with antibacterial agents under vacuum. Electrochemical impedance spectroscopy was employed to analyze these samples in order to detect their corrosion properties at different conditions. In the electrochemical analysis section, a corrosion rate of 72 mille inches per year was found in a salt solution for the sample coated with a 12 phosphonic acid self-assembled monolayer and 9 CHI/CMC multilayers. In the antibacterial tests, gentamicin was used to investigate the effects of the drug embedded with the coated surfaces against the Escherichia coli (E. coli) bacteria. Antibacterial studies were tested using the disk diffusion method. Based on the standard diameter of the zone of inhibition chart, the antibacterial diffusion from the surface strongly inhibited bacterial growth in the regions. The largest recorded diameter of the zone of inhibition was 50 mm for the pre-UV treated and gentamicin-loaded sample, which is more than three times the standard diameter.

  20. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  1. Antibacterial nanocomposite with calcium phosphate and quaternary ammonium.

    PubMed

    Cheng, L; Weir, M D; Zhang, K; Xu, S M; Chen, Q; Zhou, X; Xu, H H K

    2012-05-01

    Secondary caries is a frequent reason for restoration failure, resulting from acidogenic bacteria and their biofilms. The objectives of this study were to: (1) develop a novel nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and quaternary ammonium dimethacrylate (QADM); and (2) investigate its mechanical and antibacterial durability. A spray-drying technique yielded NACP with particle size of 116 nm. The nanocomposite contained NACP and reinforcement glass fillers, with QADM in the resin. Two commercial composites were tested as controls. Composites were inoculated with Streptococcus mutans. After 180-day water-aging, NACP+QADM nanocomposite had flexural strength and elastic modulus matching those of commercial controls (p > 0.1). NACP+QADM nanocomposite reduced the biofilm colony-forming units (CFU) by 3-fold, compared with commercial composites (p < 0.05). Metabolic activity and lactic acid production of biofilms on NACP+QADM were much less than those on commercial composites (p < 0.05). The antibacterial properties of NACP+QADM were maintained after water-aging for 30, 90, and 180 d (p > 0.05). In conclusion, the novel NACP-QADM nanocomposite greatly decreased biofilm metabolic activity, CFU, and lactic acid, while matching the load-bearing capability of commercial composites without antibacterial properties. The NACP-QADM nanocomposite with strong and durable antibacterial properties, together with its previously reported Ca-PO(4) release capability, may render it useful for caries-inhibiting restorations. PMID:22403412

  2. Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds

    PubMed Central

    Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana

    2014-01-01

    The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249

  3. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  4. The influence of nalidixic acid on Escherichia coli growth in milk.

    PubMed

    Tyczyńska, B; Bassalik-Chabielska, L

    1987-01-01

    The high antibacterial activity of nalidixic acid against Escherichia coli, cultivated in raw and pasteurized milk has been shown. The low oxygen reduction potential had no influence on the antibacterial activity of this drug. The natural antibacterial agents in active milk from an inflamed udder have reduced the efficacy of nalidixic acid inhibition of the growth of E. coli. PMID:2447751

  5. Substituted Hydroxyapatites with Antibacterial Properties

    PubMed Central

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  6. Antibacterial Biomimetic Hybrid Films

    PubMed Central

    Ferrer, M. Carme Coll; Hickok, Noreen J.; Eckmann, David M.; Composto, Russell J.

    2012-01-01

    In this work, we present a novel method to prepare a hybrid coating based on dextran grafted to a substrate and embedded with silver nanoparticles (Ag NPs). First, the Ag NPs are synthesized in situ in the presence of oxidized dextran in solution. Second, the oxidized dextran is exposed to an amine functionalized surface resulting in the simultaneous grafting of dextran and the trapping of Ag NPs within the layer. The NP loading is controlled by the concentration of silver nitrate, which is 2 mM (DEX-Ag2) and 5 mM (DEX-Ag5). The dried film thickness increases with silver nitrate concentration from 2 nm for dextran to 7 nm and 12 nm for DEX-Ag2 and DEX-Ag5, respectively. The grafted dextran film displays features with a diameter and height of ~ 50 nm and 2 nm, respectively. For the DEX-Ag2 and DEX-Ag5, the dextran features as well as individual Ag NPs (~ 5 nm) and aggregates of Ag NPs are observed. Larger and more irregular aggregates are observed for DEX-Ag5. Overall, the Ag NPs are embedded in the dextran film as suggested by AFM and UVO studies. In terms of its antimicrobial activity, DEX-Ag2 resists bacterial adhesion to a greater extent than DEX-Ag5, which in turn is better than dextran and silicon. Because these antibacterial hybrid coatings can be grafted to a variety of surfaces, many biomedical applications can be envisioned, ranging from coating implants to catheters. PMID:23807896

  7. Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials.

    PubMed

    Chen, Shiguo; Chen, Shaojun; Jiang, Song; Mo, Yangmiao; Luo, Junxuan; Tang, Jiaoning; Ge, Zaochuan

    2011-07-01

    Antibacterial agents receive a great deal of attention around the world due to the interesting academic problems of how to combat bacteria and of the beneficial health, social and economic effects of successful agents. Scientists are actively developing new antibacterial agents for biomaterial applications. This paper reports the novel antibacterial agent siloxane sulfopropylbetaine (SSPB), which contains reactive alkoxysilane groups. The structure and properties of SSPB were systematically investigated, with the results showing that SSPB contains both quaternary ammonium compounds and reactive siloxane groups. SSPB has good antibacterial activity against both Escherichia coli (E. coli, 8099) and Staphylococcus aureus (S. aureus, ATCC 6538). The minimal inhibition concentration is 70 μmol/ml SSPB against both E. coli and S. aureus. In addition, the SSPB antibacterial agent can be used in both weak acid and weak alkaline environments, functioning within the wide pH range of 4.0-9.0. The SSPB-modified glass surface killed 99.96% of both S. aureus and E. coli organisms within 24 h. No significant decrease was observed in this antibacterial activity after 20 washes. Moreover, SSPB does not induce a skin reaction and is nontoxic to animals. Thus, SSPB is an ideal candidate for future applications as a safe, environmentally friendly antibacterial agent. PMID:21450443

  8. Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis.

    PubMed

    Li, Ju; Rong, Kaifeng; Zhao, Huiping; Li, Fei; Lu, Zhong; Chen, Rong

    2013-10-01

    Silver nanoparticles (AgNPs) with different sizes (5, 15 and 55 nm) were synthesized via simple method, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX) and ultraviolet-visible absorption spectroscopy (UV-Vis). The antibacterial activities of the prepared AgNPs against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis) were evaluated by inhibition zone, inhibition curve, and colony counting methods. The results showed that the AgNPs exhibited obvious bacterium-selective and size-dependent antibacterial activities. The Gram-positive bacteria S. aureus and B. subtilis were more sensitive to AgNPs than Gram-negative bacterium E. coli. Interestingly, AgNPs displayed remarkably antibacterial activities against B. subtilis among Gram-positive bacteria, regardless of whether in separately or cocultured bacteria. It also showed that AgNPs with 5 nm in size presented the highest antibacterial activity against both Gram-negative and Gram-positive bacteria. The effects of AgNPs on the membrane leakage of the reducing sugars from three bacteria were also measured by 3,5-dinitrosalicylic acid method. The leakage amount of reducing sugars from B. subtilis was the highest among the tested bacteria, indicating that AgNPs could damage the structure of bacteria cell membrane and resulted in the leakage of reducing sugars, leading to the death of bacteria. PMID:24245147

  9. Antibacterial activity of Nymphaea nouchali (Burm. f) flower

    PubMed Central

    2013-01-01

    Background The present work aimed to find out the antibacterial activity of Nymphaea nouchali flower on human and plant pathogenic bacteria. Methods Antibacterial potency of methanol, acetone, ethyl acetate and petroleum spirit extracts of Nymphaea nouchali flower has been tested against four human pathogenic bacteria Bacillus subtilis (FO 3026) Escherichia coli (IFO 3007), Klebsiella pneumonia (ATTC 10031) and Sarcina lutea (IFO 3232) and one plant pathogenic bacterium Xanthomonas campestris (IAM 1671) by disc diffusion assay. Zone of inhibition produced by different extracts against the test bacteria was measured and compared with standard antibiotic disc. Results Methanol extract possessed better antibacterial activity against two pathogenic bacteria, B. subtilis (FO 3026) and S. lutea (IFO 3232) than commercial antibiotic nalidixic acid. Acetone extract showed moderate sensitivity whereas B. subtilis (FO 3026), S. lutea (IFO 3232) and X. campestris (IAM 1671) showed resistance to ethyl acetate and petroleum spirit extracts. The minimum inhibitory concentrations of various extracts were ranged between 128–2048 μgml-1. Conclusions Nymphaea nouchali flower could be a potential candidate for future development of novel broad spectrum antibacterial herbal formulation. PMID:24099586

  10. Comparison of the antibacterial activity of chelating agents using the agar diffusion method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of 2 metal chelators. Concentrations of 0 to 40 mM of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N,N’-disuccinic acid (EDDS) were prepared in 1.0 M potassium hydroxide (KOH). The pH of the solutions was adjusted to 1...

  11. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  12. pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

    PubMed Central

    Cunningham, Tanya M.; Koehl, Jennifer L.; Summers, Jack S.; Haydel, Shelley E.

    2010-01-01

    Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies. PMID:20209160

  13. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants.

    PubMed

    Ge, Xiang; Leng, Yang; Bao, Chongyun; Xu, Sherry Li; Wang, Renke; Ren, Fuzeng

    2010-11-01

    Percutaneous orthopedic and dental implants require not only good adhesion with bone but also the ability to attach and form seals with connective tissues and the skin. To solve the skin-seal problem of such implants, an electrochemical deposition method was used to modify the surfaces of metallic implants to improve their antibacterial ability and skin seals around them. A dense and uniform fluoridated calcium phosphate coating with a thickness of about 200 nm was deposited on an acid-etched pure titanium substrate by controlling the current density and reaction duration of the electrochemical process. The as-deposited amorphous fluoridated calcium phosphate transformed to fluoridated hydroxyapatite (FHA) after heat treatment at 600°C in a water vapor environment for 3 h. Both single crystal diffraction patterns and high-resolution transmission electron microscope (HRTEM) images confirmed the phase of the fluoridated calcium phosphate after the heat treatment. The antibacterial activities of FHA coatings were tested against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Porphyromonas gingivalis (P. gingivalis) with the film attachment method. The antibacterial activity of FHA coating is much higher than that of pure hydroxyapatite (HA) coating and acid-etched pure titanium surface. The promising features of FHA coating make it suitable for orthopedic and dental applications. PMID:20725973

  14. Contact-active antibacterial aerogels from cellulose nanofibrils.

    PubMed

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure. PMID:27391038

  15. Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite

    PubMed Central

    Zhou, Chenchen; Weir, Michael D.; Zhang, Ke; Deng, Dongmei; Cheng, Lei; Xu, Hockin H. K.

    2013-01-01

    Objectives Composites are the principal material for tooth cavity restorations due to their esthetics and direct-filling capabilities. However, composites accumulate biofilms in vivo, and secondary caries due to biofilm acids is the main cause of restoration failure. The objectives of this study were to: (1) synthesize new antibacterial monomers; and (2) develop nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and antibacterial monomer. Methods Two new antibacterial monomers were synthesized: dimethylaminohexane methacrylate (DMAHM) with a carbon chain length of 6, and dimethylaminododecyl methacrylate (DMADDM) with a chain length of 12. A spray-drying technique was used to make NACP. DMADDM was incorporated into NACP nanocomposite at mass fractions of 0%, 0.75%, 1.5%, 2.25% and 3%. A flexural test was used to measure composite strength and elastic modulus. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure viability, metabolic activity, and lactic acid production of biofilms on composites. Results The new DMAHM was more potent than a previous quaternary ammonium dimethacrylate (QADM). DMADDM was much more strongly antibacterial than DMAHM. The new DMADDM-NACP nanocomposite had strength similar to that of composite control (p > 0.1). At 3% DMADDM in the composite, the metabolic activity of adherent biofilms was reduced to 5% of that on composite control. Lactic acid production by biofilms on composite containing 3% DMADDM was reduced to only 1% of that on composite control. Biofilm colony-forming unit (CFU) counts on composite with 3% DMADDM were reduced by 2-3 orders of magnitude. Significance New antibacterial monomers were synthesized, and the carbon chain length had a strong effect on antibacterial efficacy. The new DMADDM-NACP nanocomposite possessed potent anti-biofilm activity without compromising load-bearing properties, and is promising for antibacterial and remineralizing dental

  16. Washable and antibacterial superhydrophbic fabric

    NASA Astrophysics Data System (ADS)

    Ou, Junfei; Wang, Zhile; Wang, Fajun; Xue, Mingshan; Li, Wen; Amirfazli, Alidad

    2016-02-01

    Inspired by the high adherence of mussel and the excellent water repellency of lotus leaf, superhydrophobic fabric is fabricated via the sequential deposition of polydopamine, Ag2O, and 1H,1H,2H,2H-perfluorodecanethiol, which shows excellent washability and high anti-bacterial activity due to the strong interfacial interaction and the surface silver species as well as the non-wettability, respectively.

  17. Indirect conductimetric assay of antibacterial activities.

    PubMed

    Sawai, J; Doi, R; Maekawa, Y; Yoshikawa, T; Kojima, H

    2002-11-01

    The applicability of indirect conductimetric assays for evaluation of antibacterial activity was examined. The minimal inhibitory concentration (MIC) obtained by the indirect method was consistent with that by the direct conductimetric assay and the turbidity method. The indirect assay allows use of growth media, which cannot be used in the direct conductimetric assay, making it possible to evaluate the antibacterial activity of insoluble or slightly soluble materials with high turbidity, such as antibacterial ceramic powders. PMID:12407467

  18. Antibacterial and Antifungal Compounds from Marine Fungi

    PubMed Central

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616

  19. Lysozyme-Based Antibacterial Nanomotors.

    PubMed

    Kiristi, Melek; Singh, Virendra V; Esteban-Fernández de Ávila, Berta; Uygun, Murat; Soto, Fernando; Aktaş Uygun, Deniz; Wang, Joseph

    2015-09-22

    An effective and rapid bacterial killing nanotechnology strategy based on lysozyme-modified fuel-free nanomotors is demonstrated. The efficient antibacterial property of lysozyme, associated with the cleavage of glycosidic bonds of peptidoglycans present in the bacteria cell wall, has been combined with ultrasound (US)-propelled porous gold nanowire (p-AuNW) motors as biocompatible dynamic bacteria nanofighters. Coupling the antibacterial activity of the enzyme with the rapid movement of these p-AuNWs, along with the corresponding fluid dynamics, promotes enzyme-bacteria interactions and prevents surface aggregation of dead bacteria, resulting in a greatly enhanced bacteria-killing capability. The large active surface area of these nanoporous motors offers a significantly higher enzyme loading capacity compared to nonporous AuNWs, which results in a higher antimicrobial activity against Gram-positive and Gram-negative bacteria. Detailed characterization studies and control experiments provide useful insights into the underlying factors controlling the antibacterial performance of the new dynamic bacteria nanofighters. Rapid and effective killing of the Gram-positive Micrococcus lysodeikticus bacteria (69-84% within 1-5 min) is demonstrated. PMID:26308491

  20. Crystal Structure of Carboxyltransferase from Staphylococcus aureus Bound to the Antibacterial Agent Moiramide B.

    PubMed

    Silvers, Molly A; Pakhomova, Svetlana; Neau, David B; Silvers, William C; Anzalone, Nicholas; Taylor, Carol M; Waldrop, Grover L

    2016-08-23

    The dramatic increase in the prevalence of antibiotic-resistant bacteria has necessitated a search for new antibacterial agents against novel targets. Moiramide B is a natural product, broad-spectrum antibiotic that inhibits the carboxyltransferase component of acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid synthesis. Herein, we report the 2.6 Å resolution crystal structure of moiramide B bound to carboxyltransferase. An unanticipated but significant finding was that moiramide B bound as the enol/enolate. Crystallographic studies demonstrate that the (4S)-methyl succinimide moiety interacts with the oxyanion holes of the enzyme, supporting the notion that an anionic enolate is the active form of the antibacterial agent. Structure-activity studies demonstrate that the unsaturated fatty acid tail of moiramide B is needed only for entry into the bacterial cell. These results will allow the design of new antibacterial agents against the bacterial form of carboxyltransferase. PMID:27471863

  1. Effect of Antibacterial Dental Adhesive on Multispecies Biofilms Formation

    PubMed Central

    Zhang, K.; Wang, S.; Zhou, X.; Xu, H.H.K.; Weir, M.D.; Ge, Y.; Li, M.; Wang, S.; Li, Y.; Xu, X.; Zheng, L.

    2015-01-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial

  2. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    PubMed

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P < 0.05). EPS was reduced significantly in 5% DMADDM group (P < 0.05). The DMADDM groups reduced the colony-forming unit counts significantly (P < 0.05) and had higher dead:live volume ratio in biofilms compared with control group (P < 0.05). The proportion of S. mutans decreased steadily in DMADDM-containing groups and continually increased in control group, and the biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial

  3. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  4. Synthesis of Silver Abietate as an Antibacterial Agent for Textile Applications

    PubMed Central

    Yıldız, A.; Değirmencioğlu, M.

    2015-01-01

    This study explored the potential use of new silver abietate obtained from abietic acid as an antibacterial agent for textile applications. Synthesis, structure, and antibacterial studies of silver abietate compound are reported. Silver complex was obtained reacting abietic acid with silver. The new compounds were characterized by 1H NMR, 13C NMR, DEPT, IR, UV, and ESI-MS techniques which support the proposed structures. The new Ag abietate complex has no environmental hazard, its antibacterial activities were evaluated after being applied to cotton fabric by padding process according to the JIS L 1902-2008 agar diffusion test method and against three Gram-negative and three Gram-positive bacteria, respectively. Stability of antibacterial effect after repeated washings (3, 5, 10, and 20) was also tested which indicated that the synthesized silver abietate compound could be used as a new antibacterial agent in textile industry. In this way, the compound has been synthesized the first time in the literature and the applications have been investigated. PMID:25810694

  5. Light therapy: complementary antibacterial treatment of oral biofilm.

    PubMed

    Feuerstein, O

    2012-09-01

    Conventional antibacterial treatment fails to eradicate biofilms associated with common infections of the oral cavity. Unlike chemical agents, which are less effective than anticipated, owing to diffusion limitations in biofilms, light is more effective on bacteria in biofilm than in suspension. Effectiveness depends also on the type and parameters of the light. We tested the phototoxic effects of non-coherent blue light (wavelengths, 400-500 nm) and CO(2) laser (wavelength, 10.6 μm), which have different mechanisms of action on the oral bacterium Streptoccocus mutans, in biofilm and on tooth enamel. Exposure of S. mutans in biofilm to blue light had a delayed effect on bacterial viability throughout the biofilm and a sustained antibacterial effect on biofilm newly formed by previously irradiated bacteria. A synergistic antibacterial effect between blue light and H(2)O(2) may enhance the phototoxic effect, which involves a photochemical mechanism mediated by reactive oxygen species (ROS) formation. The effect of CO(2) laser irradiation on the viability of S. mutans in biofilm on enamel samples appeared to be higher in the deep layers, due to heating of the enamel surface by the absorbed energy. Biofilms do not interfere with the chemical changes resulting from irradiation, which may increase the enamel's resistance to acid attack. PMID:22899690

  6. Evaluation of Parmotrema reticulatum Taylor for Antibacterial and Antiinflammatory Activities.

    PubMed

    Jain, A P; Bhandarkar, S; Rai, G; Yadav, A K; Lodhi, S

    2016-01-01

    Lichens produce variety of secondary metabolites including depsides, depsidones and dibenzofurans having multifunctional activity in response to external environmental condition. Present study provides evidence for in vitro antibacterial and in vivo antiinflammatory activity of acetone and ethanol extracts of Parmotrema reticulatum. In vitro antibacterial activity was investigated against gram positive and gram negative bacteria. Cotton pellet-induced granuloma, xylene-induced ear swelling, carragennan-induced edema, histamine-induced and carboxymethylcellulose sodium-induced leukocyte emigration in mice models were used to quantify the antiinflammatory activity. Acetone and ethanol extracts were showed antibacterial activity against Bacillus subtilis (minimal inhibitory concentration: 100 and 150 μg/ml) and Staphylococcus aureus (minimal inhibitory concentration: 100 and 200 μg/ml), Escherichia coli (minimal inhibitory concentration: 200 and 250 μg/ml), and Pseudomonasa eruginosa (minimal inhibitory concentration: 200 and 300 μg/ml). Acetone extract was inhibited edema significantly at 200 mg/kg with xylene, cotton pellet, carragennan and histamine induced edema in vivo models. Ethanol extract was found effective at dose of 300 mg/kg with all in vivo antiinflammatory models. The results showed significant (P<0.01) antiinflammatory effects at 200 and 300 mg/kg dose of acetone and ethanol extracts, respectively, which can be concluded that significant activity may be due to presence of flavanoids in ethanol extract and usnic acid in acetone extract. PMID:27168687

  7. Osteogenic activity and antibacterial effect of zinc ion implanted titanium.

    PubMed

    Jin, Guodong; Cao, Huiliang; Qiao, Yuqin; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Titanium (Ti) and its alloys are widely used as orthopedic and dental implants. In this work, zinc (Zn) was implanted into oxalic acid etched titanium using plasma immersion ion implantation technology. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition of Zn-implanted titanium. The results indicate that the depth profile of zinc in Zn-implanted titanium resembles a Gaussian distribution, and zinc exists in the form of ZnO at the surface whereas in the form of metallic Zn in the interior. The Zn-implanted titanium can significantly stimulate proliferation of osteoblastic MC3T3-E1 cells as well as initial adhesion, spreading activity, ALP activity, collagen secretion and extracellular matrix mineralization of the rat mesenchymal stem cells. The Zn-implanted titanium presents partly antibacterial effect on both Escherichia coli and Staphylococcus aureus. The ability of the Zn-implanted titanium to stimulate cell adhesion, proliferation and differentiation as well as the antibacterial effect on E. coli can be improved by increasing implantation time even to 2 h in this work, indicating that the content of zinc implanted in titanium can easily be controlled within the safe concentration using plasma immersion ion implantation technology. The Zn-implanted titanium with excellent osteogenic activity and partly antibacterial effect can serve as useful candidates for orthopedic and dental implants. PMID:24632388

  8. Evaluation of Parmotrema reticulatum Taylor for Antibacterial and Antiinflammatory Activities

    PubMed Central

    Jain, A. P.; Bhandarkar, S.; Rai, G.; Yadav, A. K.; Lodhi, S.

    2016-01-01

    Lichens produce variety of secondary metabolites including depsides, depsidones and dibenzofurans having multifunctional activity in response to external environmental condition. Present study provides evidence for in vitro antibacterial and in vivo antiinflammatory activity of acetone and ethanol extracts of Parmotrema reticulatum. In vitro antibacterial activity was investigated against gram positive and gram negative bacteria. Cotton pellet-induced granuloma, xylene-induced ear swelling, carragennan-induced edema, histamine-induced and carboxymethylcellulose sodium-induced leukocyte emigration in mice models were used to quantify the antiinflammatory activity. Acetone and ethanol extracts were showed antibacterial activity against Bacillus subtilis (minimal inhibitory concentration: 100 and 150 μg/ml) and Staphylococcus aureus (minimal inhibitory concentration: 100 and 200 μg/ml), Escherichia coli (minimal inhibitory concentration: 200 and 250 μg/ml), and Pseudomonasa eruginosa (minimal inhibitory concentration: 200 and 300 μg/ml). Acetone extract was inhibited edema significantly at 200 mg/kg with xylene, cotton pellet, carragennan and histamine induced edema in vivo models. Ethanol extract was found effective at dose of 300 mg/kg with all in vivo antiinflammatory models. The results showed significant (P<0.01) antiinflammatory effects at 200 and 300 mg/kg dose of acetone and ethanol extracts, respectively, which can be concluded that significant activity may be due to presence of flavanoids in ethanol extract and usnic acid in acetone extract. PMID:27168687

  9. The mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus.

    PubMed

    Lee, Young-Seob; Han, Sin-Hee; Lee, Su-Hwan; Kim, Young-Guk; Park, Chung-Berm; Kang, Ok-Hwa; Keum, Joon-Ho; Kim, Sung-Bae; Mun, Su-Hyun; Seo, Yun-Soo; Myung, Noh-Yil; Kwon, Dong-Yeul

    2012-08-01

    Tetrandrine (TET) is a bis-benzylisoquinoline alkaloid derived from the radix of Stephania tetrandra S. Moore. TET performs a wide spectrum of biological activities. The radix of S. tetrandrae has been used traditionally in Asia, including Korea, to treat congestive circulatory disorders and inflammatory diseases. The aim of this study was to examine the mechanism of antibacterial activity of tetrandrine against Staphylococcus aureus. The mechanism was investigated by studying the effects of TET in combination with detergent or membrane potential un-couplers. In addition, the direct involvement of peptidoglycan (PGN) was assessed in titration assays. TET activity against S. aureus was 125-250 μg/mL, and the minimum inhibitory concentration (MIC) of the two reference strains was 250 μg/mL. The OD(600) of each suspension treated with a combination of ethylenediaminetetraacetic acid (EDTA), tris(hydroxymethyl) aminomethane (TRIS), and Triton X-100 (TX) with TET (0.25×MIC) had been reduced from 43% to 96%. Additional structure-function studies on the antibacterial activity of TET in combination with other agents may lead to the discovery of more effective antibacterial agents. PMID:22845553

  10. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects.

    PubMed

    Sarhan, Wessam A; Azzazy, Hassan M E

    2015-05-20

    Honey nanofibers represent an attractive formulation with unique medicinal and wound healing advantages. Nanofibers with honey concentrations of <10% were prepared, however, there is a need to prepare nanofibers with higher honey concentrations to increase the antibacterial and wound healing effects. In this work, chitosan and honey (H) were cospun with polyvinyl alcohol (P) allowing the fabrication of nanofibers with high honey concentrations up to 40% and high chitosan concentrations up to 5.5% of the total weight of the fibers using biocompatible solvents (1% acetic acid). The fabricated nanofibers were further chemically crosslinked, by exposure to glutaraldehyde vapor, and physically crosslinked by heating and freezing/thawing. The new HP-chitosan nanofibers showed pronounced antibacterial activity against Staphylococcus aureus but weak antibacterial activity against Escherichia coli. The developed HP-chitosan nanofibers revealed no cytotoxicity effects on cultured fibroblasts. In conclusion, biocompatible, antimicrobial crosslinked honey/polyvinyl alcohol/chitosan nanofibers were developed which hold potential as effective wound dressing. PMID:25817652

  11. Assessment of the Effectiveness of Silver-Coated Dressing, Chlorhexidine Acetate (0.5%), Citric Acid (3%), and Silver Sulfadiazine (1%) for Topical Antibacterial Effects Against the Multi-Drug Resistant Pseudomonas Aeruginosa Infecting Full-Skin Thickness Burn Wounds on Rats

    PubMed Central

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 108 CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp. PMID:24229034

  12. Antibacterial constituents from Stemona sessilifolia.

    PubMed

    Zhang, Tong; Zhang, Ya-Zhong; Tao, Jian-Sheng

    2007-01-01

    Bioassay-guided fractionation led to the isolation of eight compounds from Stemona sessilifolia. Of the eight isolates, three new bibenzyls, stilbostemins M-O (1-3), and a new tocopherol, 6-methoxy-3,4-dehydro-delta-tocopherol (4) were revealed together with four known compounds 3,5-dihydroxy-2'-methoxy bibenzyl (5), 3,5-dihydroxy bibenzyl (6), beta-tocopherol (7), and gamma-tocopherol (8). Compounds 5, 6, and 8 exhibited strong antibacterial activities against Staphylococcus aureus and S. epidermidis. PMID:17701569

  13. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1996-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque. PMID:11524862

  14. Antibacterial activity of baking soda.

    PubMed

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque. PMID:12017929

  15. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Limkangwalmongkol, Penwadee; Hack, Gary D.; Xu, Hockin H. K.; Chen, Qianming; Zhou, Xuedong

    2012-01-01

    Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R2 ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries. PMID:22190356

  16. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Calcium and phosphate ion-releasing resin composites are promising for remineralization. However, there has been no report on incorporating antibacterial agents to these composites. The objective of this study was to develop antibacterial and mechanically-strong nanocomposites incorporating a quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP). Methods The QADM, bis(2-methacryloyloxyethyl) dimethylammonium bromide (ionic dimethacrylate-1), was synthesized from 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate. Ng was synthesized by dissolving Ag 2-ethylhexanoate salt in 2-(tertbutylamino)ethyl methacrylate. Mechanical properties were measured in three-point flexure with bars of 2×2×25 mm (n = 6). Composite disks (diameter = 9 mm, thickness = 2 mm) were inoculated with Streptococcus mutans. The metabolic activity and lactic acid production of biofilms were measured (n = 6). Two commercial composites were used as controls. Results Flexural strength and elastic modulus of NACP+QADM, NACP+NAg, and NACP+QADM+NAg matched those of commercial composites with no antibacterial property (p > 0.1). The NACP+QADM+NAg composite decreased the titer counts of adherent S. mutans biofilms by an order of magnitude, compared to the commercial composites (p < 0.05). The metabolic activity and lactic acid production of biofilms on NACP+QADM+NAg composite were much less than those on commercial composites (p < 0.05). Combining QADM and NAg rendered the nanocomposite more strongly antibacterial than either agent alone (p < 0.05). Significance QADM and NAg were incorporated into calcium phosphate composite for the first time. NACP+QADM+NAg was strongly-antibacterial and greatly reduced the titer counts, metabolic activity, and acid production of S. mutans biofilms, while possessing mechanical properties similar to commercial composites. These nanocomposites are promising to have

  17. Heteroatom-containing antibacterial phenolic metabolites from a terrestrial Ampelomyces fungus.

    PubMed

    Zhang, Huiye; Xie, Haihui; Qiu, Samuel X; Xue, Jinghua; Wei, Xiaoyi

    2008-07-01

    Two new sulfur-containing phenolic compounds, 7-hydroxy-5-hydroxymethyl-2H-benzo[1,4]thiazin-3-one (1) and 2,5-dihydroxy-3-methanesulfinylbenzyl alcohol (2), along with two known compounds, 3-chloro-2,5-dihydroxybenzyl alcohol (3) and 2-hydroxy-6-methylbenzoic acid (4), were isolated from the mycelial solid culture of a soil-derived Ampelomyces fungus by antibacterial assay-guided fractionation. Their structures were elucidated on the basis of spectroscopic analysis. Compounds 1-3 showed structure and microbial dependent antibacterial activities. PMID:18603789

  18. Antibacterial structure-activity relationship studies of several tricyclic sulfur-containing flavonoids.

    PubMed

    Bahrin, Lucian G; Hopf, Henning; Jones, Peter G; Sarbu, Laura G; Babii, Cornelia; Mihai, Alina C; Stefan, Marius; Birsa, Lucian M

    2016-01-01

    A structure-activity relationship study concerning the antibacterial properties of several halogen-substituted tricyclic sulfur-containing flavonoids has been performed. The compounds have been synthesized by cyclocondensation of the corresponding 3-dithiocarbamic flavanones under acidic conditions. The influence of different halogen substituents on the antibacterial properties has been tested against Staphylococcus aureus and Escherichia coli. Amongst the N,N-dialkylamino-substituted flavonoids, those having an N,N-diethylamino moiety exhibited good to excellent antimicrobial properties against both pathogens. Fluorine-substituted flavonoids were found to be less active than those bearing other halogen atoms. PMID:27340492

  19. Antibacterial structure–activity relationship studies of several tricyclic sulfur-containing flavonoids

    PubMed Central

    Bahrin, Lucian G; Hopf, Henning; Jones, Peter G; Sarbu, Laura G; Babii, Cornelia; Mihai, Alina C

    2016-01-01

    Summary A structure–activity relationship study concerning the antibacterial properties of several halogen-substituted tricyclic sulfur-containing flavonoids has been performed. The compounds have been synthesized by cyclocondensation of the corresponding 3-dithiocarbamic flavanones under acidic conditions. The influence of different halogen substituents on the antibacterial properties has been tested against Staphylococcus aureus and Escherichia coli. Amongst the N,N-dialkylamino-substituted flavonoids, those having an N,N-diethylamino moiety exhibited good to excellent antimicrobial properties against both pathogens. Fluorine-substituted flavonoids were found to be less active than those bearing other halogen atoms. PMID:27340492

  20. Antibacterial and cytotoxic triterpenoids from the roots of Combretum racemosum.

    PubMed

    Gossan, Diane Patricia Apie; Alabdul Magid, Abdulmagid; Yao-Kouassi, Philomène Akoua; Josse, Jérôme; Gangloff, Sophie C; Morjani, Hamid; Voutquenne-Nazabadioko, Laurence

    2016-04-01

    A new pentacyclic triterpenoid glucoside, together with fourteen known compounds, was isolated from the roots of Combretum racemosum. Combretaceae). The structure of the new compound was established as 28-O-β-d-glucopyranosyl-2α,3β,21β,23-tetrahydroxyolean-18-en-28-oate (1) on the basis of detailed spectroscopic data including MS, 1D, and 2D NMR. The inhibitory activity of compounds 1-15 against promyelocytic leukemia HL-60 and human erythromyeloblastoid leukemia K562 cell lines was evaluated. Compounds 11 (3-O-β-acetyl-ursolic acid), 14 (betulinic acid), and 15 (quadranoside II) exhibited significant cytotoxicity, with IC50 values of 13 to 50 μM. Among the isolated triterpenes, compounds 1, 3 (arjungenin), 5 (terminolic acid), and 11 exhibited moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Enterococcus faecalis (MICs within a range of 64 and 256 μg/mL). PMID:26946378

  1. Antibacterial mechanism and activities of black pepper chloroform extract.

    PubMed

    Zou, Lan; Hu, Yue-Ying; Chen, Wen-Xue

    2015-12-01

    Black pepper extracts reportedly inhibit food spoilage and food pathogenic bacteria. This study explored the antimicrobial activity of black pepper chloroform extract (BPCE) against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism of BPCE was elucidated by analyzing the cell morphology, respiratory metabolism, pyruvic acid content, and ATP levels of the target bacteria. Scanning electron micrographs showed that the bacterial cells were destroyed and that plasmolysis was induced. BPCE inhibited the tricarboxylic acid pathway of the bacteria. The extract significantly increased pyruvic acid concentration in bacterial solutions and reduced ATP level in bacterial cells. BPCE destroyed the permeability of the cell membrane, which consequently caused metabolic dysfunction, inhibited energy synthesis, and triggered cell death. PMID:26604394

  2. Rapid, Bioassay-Guided Process for the Detection and Identification of Antibacterial Neem Oil Compounds.

    PubMed

    Krüzselyi, Dániel; Nagy, Róbert; Ott, Péter G; Móricz, Ágnes M

    2016-08-01

    Bioassay guidance was used along the whole process including method development, isolation and identification of antibacterial neem (Azadirachta indica) oil compounds. The biomonitoring was performed by direct bioautography (DB), a combination of thin-layer chromatography (TLC) and antimicrobial detection. DB of neem oil showed one antibacterial zone that was not UV-active; therefore, the TLC separation was improved under DB control. The chromatographic zone that exhibited activity against Bacillus subtilis, Xanthomonas euvesicatoria, Aliivibrio fischeri, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus was characterized by TLC reagents, indicating a lipophilic, fatty acid-like chemical feature. Two compounds were found and identified in the active zone by high-performance liquid chromatography-electrospray ionization mass spectrometry as linoleic and oleic acids. Both fatty acids inhibited B. subtilis, but A. fischeri was sensitive only against linoleic acid. PMID:26951543

  3. Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia.

    PubMed

    Darwish, Mohamed S A; Nguyen, Nhung H A; Ševců, Alena; Stibor, Ivan; Smoukov, Stoyan K

    2016-06-01

    Multifunctional nanoparticles for magnetic hyperthermia which simultaneously display antibacterial properties promise to decrease bacterial infections co-localized with cancers. Current methods synthesize such particles by multi-step procedures, and systematic comparisons of antibacterial properties between coatings, as well as measurements of specific absorption rate (SAR) during magnetic hyperthermia are lacking. Here we report the novel simple method for synthesis of magnetic nanoparticles with shells of oleic acid (OA), polyethyleneimine (PEI) and polyethyleneimine-methyl cellulose (PEI-mC). We compare their antibacterial properties against single gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria as well as biofilms. Magnetite nanoparticles (MNPs) with PEI-methyl cellulose were found to be most effective against both S. aureus and E. coli with concentration for 10% growth inhibition (EC10) of <150 mg/l. All the particles have high SAR and are effective for heat-generation in alternating magnetic fields. PMID:27040199

  4. SAR Studies for a New Class of Antibacterial NAD Biosynthesis Inhibitors

    PubMed Central

    Moro, Whitney Beysselance; Yang, Zhengrong; Kane, Tasha A.; Zhou, Qingxian; Harville, Steve; Brouillette, Christie G.; Brouillette, Wayne J.

    2009-01-01

    A new lead class of antibacterial drug-like NAD synthetase (NADs) inhibitors was previously identified from a virtual screening study. Here a solution-phase synthetic library of 76 compounds, analogs of the urea-sulfonamide 5838, was synthesized in parallel to explore SAR on the sulfonamide aryl group. All library members were tested for enzyme inhibition against NADs and nicotinic acid mononucleotide adenylyltransferase (NaMNAT), the last two enzymes in the biosynthesis of NAD, and for growth inhibition in a B. anthracis antibacterial assay. Most compounds that inhibited bacterial growth also showed inhibition against one of the enzymes tested. While only modest enhancements in the enzyme inhibition potency against NADs were observed, of significance was the observation that the antibacterial urea-sulfonamides more consistently inhibited NaMNAT. PMID:19408950

  5. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud.

    PubMed

    Kang, K H; Jang, S K; Kim, B K; Park, M K

    1994-12-01

    The butanol extract of Paulownia tomentosa stem showed antibacterial activity against Staphylococcus aureus (SG511, 285 and 503), Streptococcus pyogenes (A308 and A77) and Streptococcus faecium MD8b etc. The most active compound of the extract was identified to be campneoside I, which had a minimal inhibitory concentration (MIC) of 150 micrograms/ml against Streptococcus and Staphylococcus species. From such antibacterial activity, the methoxy group of campneoside I was postulated to be the essential element for the antibacterial activity. PMID:10319161

  6. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels.

    PubMed

    He, Guanghua; Chen, Xiang; Yin, Yihua; Cai, Weiquan; Ke, Wanwan; Kong, Yahui; Zheng, Hua

    2016-01-01

    In this study, O-carboxymethyl chitosan (O-CMCS) was synthesized from chitosan and monochloroacetic acid. Then O-CMCS hydrogel was prepared by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in which the lincomycin was packaged. The Fourier transform infrared spectrum and scanning electron microscopy were adopted to characterize the structure and morphology of the product. The influences of dosage of EDC/NHS and concentration of O-CMCS on the swelling properties of the hydrogels were investigated. The hydrogels performed good swelling capacities and obvious pH-sensitive properties. The antibacterial activities of the hydrogels were tested against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Compared with pure O-CMCS hydrogels, the antibacterial activities of O-CMCS/lincomycin hydrogels were significantly improved with the increase in the concentration of lincomycin against E. coli and S. aureus. With the increase in dosage of crosslinking agent or concentration of O-CMCS, the antibacterial activities both decreased gradually against the two bacteria. O-CMCS/lincomycin hydrogel was expected to be used for antibacterial material in view of its significant antibacterial activities. PMID:26675323

  7. Improved secondary caries resistance via augmented pressure displacement of antibacterial adhesive

    PubMed Central

    Zhou, Wei; Niu, Li-na; Huang, Li; Fang, Ming; Chang, Gang; Shen, Li-juan; Tay, Franklin R.; Chen, Ji-hua

    2016-01-01

    The present in vitro study evaluated the secondary caries resistance potential of acid-etched human coronal dentin bonded using augmented pressure adhesive displacement in conjunction with an experimental antibacterial adhesive. One hundred and twenty class I cavities were restored with a commercial non-antibacterial etch-and-rinse adhesive (N) or an experimental antibacterial adhesive (A) which was displaced by gentle air-blow (G) or augmented pressure air-blow (H). After bonding and restoration with resin composite, the resulted 4 groups (N-G, N-H, A-G and A-H) were exposed to Streptococcus mutans biofilm for 4, 8, 15, 20 or 25 days. The development of secondary caries in the bonding interface was then examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Data acquired from 15, 20 and 25 days of artificial caries induction were analyzed with three-way ANOVA at α = 0.05. The depth of the artificial carious lesions was significantly affected by “adhesive type” (Single Bond 2 vs experimental antibacterial adhesive p = 0.003), “intensity of adhesive displacement” (gentle vs augmented-pressure adhesive displacement; p < 0.001), as well as “artificial caries induction time” (p < 0.001). The combined use of augmented pressure adhesive displacement and experimental antibacterial adhesive reduces the progression of secondary caries. PMID:26928742

  8. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli.

    PubMed

    Moghimi, Roya; Ghaderi, Lida; Rafati, Hasan; Aliahmadi, Atousa; McClements, David Julian

    2016-03-01

    Natural preservatives are being extensively investigated for their potential industrial applications in foods and other products. In this work, an essential oil (Thymus daenensis) was formulated as a water-dispersible nanoemulsion (diameter=143nm) using high-intensity ultrasound. The antibacterial activity of the essential oil in both pure and nanoemulsion forms was measured against an important food-borne pathogen bacterium, Escherichia coli. Antibacterial activity was determined by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibacterial activity of the essential oil against E. coli was enhanced considerably when it was converted into a nanoemulsion, which was attributed to easier access of the essential oils to the bacterial cells. The mechanism of antibacterial activity was investigated by measuring potassium, protein, and nucleic acid leakage from the cells, and electron microscopy. Evaluation of the kinetics of microbial deactivation showed that the nanoemulsion killed all the bacteria in about 5min, whereas only a 1-log reduction was observed for pure essential oil. The nanoemulsion appeared to amplify the antibacterial activity of essential oils against E. coli by increasing their ability to disrupt cell membrane integrity. PMID:26471573

  9. Characterization of antibacterial polyethersulfone membranes using the Respiration Activity Monitoring System (RAMOS).

    PubMed

    Kochan, Jozef; Scheidle, Marco; van Erkel, Joost; Bikel, Matías; Büchs, Jochen; Wong, John Erik; Melin, Thomas; Wessling, Matthias

    2012-10-15

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial properties of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(ethylenimine) (PEI) exhibits only little antibacterial effects. The other two strategies contain silver in both ionic (Ag(+)) and metallic (Ag(0)) form. Ag(+) embedded into negatively charged poly(sodium 4-styrene sulfonate) (PSS) layers totally inhibits bacterial growth. Ag(0) nanoparticles were introduced to the membrane surface by LbL deposition of chitosan- and poly(methacrylic acid) - sodium salt (PMA)-capped silver nanoparticles and subsequent UV or heat treatment. Antibacterial properties of the modified membranes were quantified by a new method based on the Respiration Activity Monitoring System (RAMOS), whereby the oxygen transfer rates (OTR) of E. coli K12 cultures on the membranes were monitored online. As opposed to colony forming counting method RAMOS yields more quantitative and reliable data on the antibacterial effect of membrane modification. Ag-imprinted polyelectrolyte film composed of chitosan (Ag(0))/PMA(Ag(0))/chitosan(Ag(0)) was found to be the most promising among the tested membranes. Further investigation revealed that the concentration and equal distribution of silver in the membrane surface plays an important role in bacterial growth inhibition. PMID:22884245

  10. Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity.

    PubMed

    Trabelsi, Imen; Ayadi, Dorra; Bejar, Wacim; Bejar, Samir; Chouayekh, Hichem; Ben Salah, Riadh

    2014-03-01

    The present study aimed to investigate and evaluate the efficiency of immobilizing the Lactobacillus plantarum TN9 strain in alginate using chitosan and gelatin as coating materials, in terms of viability and antibacterial activity. The results indicate that maximum concentrations of L. plantarum TN9 strain were produced with 2% sodium alginate, 10(8)UFC/ml, and 1M calcium chloride. The viability and antibacterial activity of the L. plantarum TN9 cultures before and after immobilization in alginate, chitosan-coated alginate, and gelatin-coated alginate, were studied. The findings revealed that the viability of encapsulated L. plantarum could be preserved more than 5.8 log CFU/ml after 35 day of incubation at 4 °C, and no effects were observed when gelatin was used. The antibacterial activity of encapsulated L. plantarum TN9 against Gram-positive and Gram-negative pathogenic bacteria was enhanced in the presence of chitosan coating materials, and no activity was observed in the presence of gelatin. The effects of catalase and proteolytic enzymes on the culture supernatant of L. plantarum TN9 were also investigated, and the results suggested that the antibacterial activity observed was due to the production of organic acids. Taken together, the findings indicated that immobilization in chitosan enhanced the antibacterial activity of L. plantarum TN9 against several pathogenic bacteria. This encapsulated strain could be considered as a potential strong candidate for future application as an additive in the food and animal feed industries. PMID:24315948

  11. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  12. Cell-Envelope Remodeling as a Determinant of Phenotypic Antibacterial Tolerance in Mycobacterium tuberculosis

    PubMed Central

    2016-01-01

    The mechanisms that lead to phenotypic antibacterial tolerance in bacteria remain poorly understood. We investigate whether changes in NaCl concentration toward physiologically higher values affect antibacterial efficacy against Mycobacterium tuberculosis (Mtb), the causal agent of human tuberculosis. Indeed, multiclass phenotypic antibacterial tolerance is observed during Mtb growth in physiologic saline. This includes changes in sensitivity to ethionamide, ethambutol, d-cycloserine, several aminoglycosides, and quinolones. By employing organism-wide metabolomic and lipidomic approaches combined with phenotypic tests, we identified a time-dependent biphasic adaptive response after exposure of Mtb to physiological levels of NaCl. A first rapid, extensive, and reversible phase was associated with changes in core and amino acid metabolism. In a second phase, Mtb responded with a substantial remodelling of plasma membrane and outer lipid membrane composition. We demonstrate that phenotypic tolerance at physiological concentrations of NaCl is the result of changes in plasma and outer membrane lipid remodeling and not changes in core metabolism. Altogether, these results indicate that physiologic saline-induced antibacterial tolerance is kinetically coupled to cell envelope changes and demonstrate that metabolic changes and growth arrest are not the cause of phenotypic tolerance observed in Mtb exposed to physiologic concentrations of NaCl. Importantly, this work uncovers a role for bacterial cell envelope remodeling in antibacterial tolerance, alongside well-documented allterations in respiration, metabolism, and growth rate. PMID:27231718

  13. Antibacterial Activity of a Novel Peptide-Modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa

    PubMed Central

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-01-01

    The global emergence of multidrug-resistant (MDR) bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA) was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI) with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid) could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs) and stationary phase (with OMPs) A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices. PMID:26733995

  14. Some probiotic and antibacterial properties of Lactobacillus acidophilus cultured from dahi a native milk product.

    PubMed

    Mahmood, Talat; Masud, Tariq; Sohail, Asma

    2014-08-01

    In this study, different strains of Lactobacillus acidophilus from dahi were analyzed for certain probiotic and antibacterial properties. Initially, these strains were confirmed by the amplification of 16S rRNA regions and then screened for antibacterial activities against food borne pathogens. The phenotypic relationship between apparent antibacterial activity and cell wall proteins were established by cluster analysis. It was observed that those strains, which have prominent bands having size 22-25 kDa possess antibacterial activity. On the basis of wide spectrum of killing pattern, a strain LA06FT was further characterized that showed no change in its behavior when subjected to the antibiotic protected environment and grow well in acid-bile conditions. The bacteriocin produced by this strain has specific antibacterial activity of 5369.13 AU mg(-1). It remained stable at 60-90 °C and pH range of 4.5-6.5 while proteolytic enzymes inactivate the bacteriocin that confirm its proteinic nature having molecular weight of ≤8.5 kDa. PMID:24689927

  15. Antibacterial activity of papain and bromelain on Alicyclobacillus spp.

    PubMed

    dos Anjos, Márcia Maria; da Silva, Angela Aparecida; de Pascoli, Isabela Carolini; Mikcha, Jane Martha Graton; Machinski, Miguel; Peralta, Rosane Marina; de Abreu Filho, Benício Alves

    2016-01-01

    Alicyclobacillus spp. are spore forming bacteria that are often related to the deterioration of acidic products such as beverages and citrus juices. After the process of industrial pasteurization, the spore produced by the bacteria can germinate and the microorganism can grow, causing sensory abnormalities in the product. Alternative biopreservatives, such as the antimicrobial compounds, are of considerable importance to the food industry. Papain and bromelain are proteolytic enzymes derived frompapaya and pineapple, respectively. These enzymes are widely used in medicine and in the pharmaceutical and food industries, but while some studies have described their antibacterial action, no studies of the Alicyclobacillus spp. exist. The aimof this studywas to analyze the antibacterial effect of papain and bromelain on Alicyclobacillus spp. through 1) determining minimum inhibitory and bactericidal concentration (MIC and MBC); 2) determining the death time curve of the micro-organism in the presence and absence of enzymes; and 3) investigating the enzymatic mechanism on the microorganism. The antibacterial activity of enzymes in combination with nisin was also evaluated. The results showed that for the Alicyclobacillus acidoterrestris strain, the MIC of papain was 0.98 μg/mL and the MBC was 3.91 μg/mL, while theMIC of bromelain was 62.5 μg/mL and the MBCwas 250 μg/mL. The concentration of 4 ×MIC for both the enzymes was sufficient to eliminate 4 logs of the micro-organism after 24 h of incubation. Through the use of enzyme inhibitors specific for cysteine proteases, it was found that the antibacterial activity of papain and bromelain is not related to its proteolytic activity, butmay be related to other activities, such as amidse and esterase. The synergistic activity of the enzymes revealed a fractional inhibitory concentration (FIC) level of 0.16. Combination with nisin revealed an FIC of 0.25 for papain and 0.19 for bromelain, indicating synergism between both

  16. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  17. Recent advances in antibacterial drugs

    PubMed Central

    Rai, Jaswant; Randhawa, Gurpreet Kaur; Kaur, Mandeep

    2013-01-01

    The incidence of antimicrobial resistance is on continued rise with a threat to return to the “pre-antibiotic” era. This has led to emergence of such bacterial infections which are essentially untreatable by the current armamentarium of available treatment options. Various efforts have been made to develop the newer antimicrobials with novel modes of action which can act against these multi-drug resistant strains. This review aims to focus on these newly available and investigational antibacterials approved after year 2000, their mechanism of actions/resistance, and spectrum of activity and their phases of clinical trials. Newer unexploited targets and strategies for the next generation of antimicrobial drugs for combating the drug resistance and emerging pathogens in the 21st century have also been reviewed in the present article. PMID:23776832

  18. Antibacterial activities and release kinetics of a newly developed recoverable controlled agent-release system.

    PubMed

    Ehara, A; Torii, M; Imazato, S; Ebisu, S

    2000-03-01

    We attempted to develop a resin with a recoverable antibacterial activity based on the desorption/adsorption of a cationic bactericide by the ion-exchange mechanism. The aims of this study were to investigate the release kinetics of the agent and the antibacterial activity of this newly designed resin system. An experimental resin was prepared by the addition of methacrylic acid as a cation-exchanger and a cationic antibacterial agent, cetylpyridinium chloride (CPC), to triethyleneglycol dimethacrylate. The amount of CPC desorbed from the experimental resin into buffer solutions at pH 4-8 was measured. The adsorption of CPC to control resin and re-adsorption of CPC to the experimental resin, which had once desorbed the agent, were also determined. The antibacterial activity of experimental resin against Streptococcus mutans was evaluated, and the relationship between bacterial acid production and antibacterial effect was assessed. The experimental resin desorbed CPC at pH < or = 6, and the amount of agent desorbed increased with increasing acidity. The control resin adsorbed CPC when immersed in CPC aqueous solution at a rate determined by the concentration of the agent and immersion time. The experimental resin, once desorbed CPC, could re-adsorb the bactericide by being exposed to a solution of the agent. Less plaque formed on the experimental resin, and the growth and survival of S. mutans was inhibited in the condition in which acid was produced. These results demonstrate that the resin system proposed was able to desorb and re-adsorb the cationic bactericide by an ion-exchange mechanism and could show an inhibitory effect on S. mutans growth and plaque formation. PMID:10765955

  19. Chemical constituents and antibacterial activity of Melastoma malabathricum L.

    PubMed

    Wong, Keng-Chong; Hag Ali, Dafaalla Mohamed; Boey, Peng-Lim

    2012-01-01

    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety. PMID:21834640

  20. FDA Cracks Down on Antibacterial Soaps

    MedlinePlus

    ... than traditional soap, and may pose risk of bacterial resistance To use the sharing features on this page, ... concerns that antibacterial soaps might be contributing to bacterial resistance. In the United States, at least 2 million ...

  1. Newer Antibacterials in Therapy and Clinical Trials

    PubMed Central

    Paknikar, Simi S; Narayana, Sarala

    2012-01-01

    In order to deal with the rising problem of antibiotic resistance, newer antibacterials are being discovered and added to existing pool. Since the year 2000, however, only four new classes of antibacterials have been discovered. These include the oxazolidinones, glycolipopeptides, glycolipodepepsipeptide and pleuromutilins. Newer drugs were added to existing classes of antibiotics, such as streptogramins, quinolones, beta-lactam antibiotics, and macrolide-, tetracycline- and trimethoprim-related drugs. Most of the antibacterials are directed against resistant S. aureus infections, with very few against resistant gram-negative infections. The following article reviews the antibacterials approved by the FDA after the year 2000 as well as some of those in clinical trials. Data was obtained through a literature search via Pubmed and google as well as a detailed search of our library database. PMID:23181224

  2. A Supramolecular Antibiotic Switch for Antibacterial Regulation.

    PubMed

    Bai, Haotian; Yuan, Huanxiang; Nie, Chenyao; Wang, Bing; Lv, Fengting; Liu, Libing; Wang, Shu

    2015-11-01

    A supramolecular antibiotic switch is described that can reversibly "turn-on" and "turn-off" its antibacterial activity on demand, providing a proof-of-concept for a way to regulate antibacterial activity of biotics. The switch relies on supramolecular assembly and disassembly of cationic poly(phenylene vinylene) derivative (PPV) with cucurbit[7]uril (CB[7]) to regulate their different interactions with bacteria. This simple but efficient strategy does not require any chemical modification on the active sites of the antibacterial agent, and could also regulate the antibacterial activity of classical antibiotics or photosensitizers in photodynamic therapy. This supramolecular antibiotic switch may be a successful strategy to fight bacterial infections and decrease the emergence of bacterial resistance to antibiotics from a long-term point of view. PMID:26307170

  3. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    SciTech Connect

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin; Khajeh, Khosro

    2014-02-01

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  4. Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms

    NASA Astrophysics Data System (ADS)

    Güngör, Özlem; Gürkan, Perihan

    2014-09-01

    Schiff bases derived from 5-nitro-salicylaldehyde and 4-aminobutyric acid, 5-aminopentanoic acid and 6-aminohexanoic acid were synthesized both as monosodium salts (1a-3a) and neutral forms (1b-3b). The monosodium-Schiff bases were characterized by elemental analysis, 1H/13C NMR, IR, powder XRD, UV-vis spectra and conductivity measurements. The neutral-Schiff bases were characterized by elemental analysis, 1H/13C NMR, 2D NMR (HMQC), mass, IR, powder XRD, UV-vis spectra and conductivity measurements. The intramolecular hydrogen bonding and related tautomeric equilibria in all the Schiff bases were studied by UV-vis and 1H NMR spectra in solution. Additionally, the neutral-Schiff bases were screened against Staphylococcus aureus-EB18, S. aureus-ATCC 25923, Escherichia coli-ATCC 11230, Candida albicans-M3 and C. albicans-ATCC 16231.

  5. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    PubMed

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance. PMID:26606647

  6. LD50 value, phototoxicity and convulsion induction test of the new quinolone antibacterial agent (S)-10-[(S)-(8-amino-6-azaspiro[3,4]octan-6-yl)]-9-fluoro-2, 3-dihydro-3-methyl-7-oxo-7H-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxyl ic acid hemihydrate in laboratory animals.

    PubMed

    Shimoda, K; Akahane, K; Nomura, M; Kato, M

    1996-06-01

    (S)-10-[(S)-(8-Amino-6-azaspiro[3,4]octan-6-yl)]-9-fluoro-2, 3-dihydro-3-methyl-7-oxo-7H-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxyli c acid hemihydrate (CAS 151390-79-3, DV-7751a) a new quinolone antibacterial agent, was examined for LD50 value, phototoxicity and convulsion inducing potential in laboratory animals. A single oral administration of DV-7751a induced soft stool in rats at 1000 and 2000 mg/ kg and in monkeys at 250 mg/kg and vomiting in monkeys at 500 mg/kg or more. A single intravenous administration caused a decrease in locomotor activity, respiratory depression, convulsion, pulmonary edema and death in rats and mice. The LD50 values with oral administration were more than 2000 mg/ kg for rats and mice and more than 250 mg/kg for monkeys, and those with intravenous administration were 164.3 mg/kg for rats of both sexes at an injection rate of 2 ml/min, 118.8 mg/kg for male rats and 104 to 125 mg/kg for female rats at 0.5 ml/min, and 184.7 mg/kg for male mice and 187.4 mg/kg for female mice. DV-7751a showed very weak phototoxicity in mice after single oral administration of 600 mg/kg, followed by UVA irradiation, but no convulsion after oral administration of 200 or 1000 mg/kg in combination with 4-biphenylacetic acid at 400 mg/kg. PMID:8767355

  7. Antibacterial metabolites secreted under glucose-limited environment of the mimicked proximal colon model by lactobacilli abundant in infant feces.

    PubMed

    Kanjan, Pochanart; Hongpattarakere, Tipparat

    2016-09-01

    The most abundance of anti-Salmonella lactic acid bacteria (LAB) was found in feces of naturally born, exclusively breastfed Thai infants. Six strains of Lactobacillus plantarum and one strain of Lactobacillus paracasei were selected and identified. In the co-cultivation assay, L. plantarum subsp. plantarum I62 showed the strongest and broadest antibacterial activity against Escherichia coli, Shigella sonnei, Salmonella Paratyphi A, and Salmonella Typhimurium SA 2093 under the mimicked proximal colon condition, in which glucose and other nutrients were limited. According to GC-MS analysis, the major antibacterial contribution of organic acids secreted by L. plantarum I62 grown in the presence of glucose was dramatically reduced from 95.8 to 41.9 % under glucose-limited niche. The production of low-pK a acids, such as lactic, 1,2-benzenedicarboxylic, and 3-phenyllactic acids, was remarkably dropped. Surprisingly, higher-pK a acids such as 5-chlorobenzimidazole-2-carboxylic, pyroglutamic, palmitic, and oleic acids were enhanced. Moreover, cyclic dipeptides, ketones, alkanes, alcohols, and miscellaneous compounds, which were pH-independent antibacterial metabolites, became dominant. The electron microscopy strongly supported the synergistic attacks of the multiple antibacterial components targeting outer and cytoplasmic membranes leading to severe leakage and cell disruption of Salmonella Typhimurium. This strain poses to be a potential probiotic candidate for effectively controlling and treating human foodborne bacterial infection. PMID:27188778

  8. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed Central

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-01-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  9. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-05-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  10. Investigations to the Antibacterial Mechanism of Action of Kendomycin

    PubMed Central

    A. Elnakady, Yasser; Chatterjee, Indranil; Bischoff, Markus; Rohde, Manfred; Josten, Michaele; Sahl, Hans-Georg; Herrmann, Mathias; Müller, Rolf

    2016-01-01

    Purpose The emergence of bacteria that are resistant to many currently used drugs emphasizes the need to discover and develop new antibiotics that are effective against such multi-resistant strains. Kendomycin is a novel polyketide that has a unique quinone methide ansa structure and various biological properties. This compound exhibits strong antibacterial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the promise of kendomycinin in several therapeutic areas, its mode of action has yet to be identified. Methods In this study, we used a multidisciplinary approach to gain insight into the antibacterial mechanism of this compound. Results The antibacterial activity of kendomycin appears to be bacteriostatic rather than bactericidal. Kendomycin inhibited the growth of the MRSA strain COL at a low concentration (MIC of 5 μg/mL). Proteomic analysis and gene transcription profiling of kendomycin-treated cells indicated that this compound affected the regulation of numerous proteins and genes involved in central metabolic pathways, such as the tricarboxylic acid (TCA) cycle (SdhA) and gluconeogenesis (PckA and GapB), cell wall biosynthesis and cell division (FtsA, FtsZ, and MurAA), capsule production (Cap5A and Cap5C), bacterial programmed cell death (LrgA and CidA), the cellular stress response (ClpB, ClpC, ClpP, GroEL, DnaK, and GrpE), and oxidative stress (AhpC and KatA). Electron microscopy revealed that kendomycin strongly affected septum formation during cell division. Most kendomycin-treated cells displayed incomplete septa with abnormal morphology. Conclusions Kendomycin might directly or indirectly affect the cell division machinery, protein stability, and programmed cell death in S. aureus. Additional studies are still needed to obtain deeper insight into the mode of action of kendomycin. PMID:26795276

  11. Antibacterial, Antifungal and antioxidant activities of some medicinal plants.

    PubMed

    Wazir, Asma; Mehjabeen, -; Jahan, Noor; Sherwani, Sikander Khan; Ahmad, Mansoor

    2014-11-01

    The purpose of this study was to evaluate the antibacterial, antifungal and antioxidant activities of medicinal plants. The antibacterial activity of methanolic extracts of three medicinal plants (Swertia chirata, Terminalia bellerica and Zanthoxylum armatum) were tested against Gentamicin (standard drug) on eleven gram positive and seventeen gram negative bacteria by agar well method. It was revealed that seven-gram negative and six gram positive bacterial species were inhibited by these plant extracts. Minimum inhibitory concentrations (MIC) of the extracts were determined by broth micro-dilution method. The significant MIC value of Swertia chirata was 20mg/ml against Serratia marcesens, Zanthoxylum armatum was 10 mg/ml against Aeromonas hydrophila and Terminali bellerica was 20mg/ml against Acinetobacter baumanii as well as Serratia marcesens. Antifungal screening was done for methanolic extracts of these plants by agar well method with the 6 saprophytic, 5 dermatophytic and 6 yeasts. In this case Griseofulvin was used as a standard. All saprophytes and dermatophytes were showed resistance by these plants extracts except Microsporum canis, which was inhibited by Z. armatum and S. chirata extracts. The significant MIC value of Zanthoxylum armatum was 10mg/ml against Microsporum canis and Swertia chirata was 10mg/ml against Candida tropicalis. The anti-oxidant study was performed by DPPH free radical scavenging assay using ascorbic acid as a reference standard. Significant antioxidant activities were observed by Swertia chirata and Zanthoxylum armatum at concentration 200μg/ml was 70% DPPH scavenging activity (EC50=937.5μg/ml) while Terminalia bellerica showed 55.6% DPPH scavenging activity (EC50=100μg/ml). This study has shown that these plants could provide potent antibacterial compounds and may possible preventive agents in ROS related ailments. PMID:26045377

  12. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    PubMed Central

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J. V. N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-01-01

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity. PMID:19164768

  13. Structure-kinetic relationship of carbapenem antibacterials permeating through E. coli OmpC porin.

    PubMed

    Tran, Que-Tien; Pearlstein, Robert A; Williams, Sarah; Reilly, John; Krucker, Thomas; Erdemli, Gül

    2014-11-01

    The emergence of Gram-negative "superbugs" exhibiting resistance to known antibacterials poses a major public health concern. Low molecular weight Gram-negative antibacterials are believed to penetrate the outer bacterial membrane (OM) through porin channels. Therefore, intracellular exposure needed to drive antibacterial target occupancy should depend critically on the translocation rates through these proteins and avoidance of efflux pumps. We used electrophysiology to study the structure-translocation kinetics relationships of a set of carbapenem antibacterials through purified porin OmpC reconstituted in phospholipid bilayers. We also studied the relative susceptibility of OmpC+ and OmpC- E. coli to these compounds as an orthogonal test of translocation. Carbapenems exhibit good efficacy in OmpC-expressing E. coli cells compared with other known antibacterials. Ertapenem, which contains an additional acidic group compared to other analogs, exhibits the fastest entry into OmpC (k(on) ≈ 2 × 10(4) M(-1) s(-1)). Zwitterionic compounds with highly polar groups attached to the penem-2 ring, including panipenem, imipenem and doripenem exhibit faster k(on) (>10(4) M(-1) s(-1)), while meropenem and biapenem with fewer exposed polar groups exhibit slower k(on) (∼5 × 10(3) M(-1) s(-1)). Tebipenem pivoxil and razupenem exhibit ∼13-fold slower k(on) (∼1.5 × 10(3) M(-1) s(-1)) than ertapenem. Overall, our results suggest that (a) OmpC serves as an important route of entry of these antibacterials into E. coli cells; and (b) that the structure-kinetic relationships of carbapenem translocation are governed by H-bond acceptor/donor composition (in accordance with our previous findings that the enthalpic cost of transferring water from the constriction zone to bulk solvent increases in the presence of exposed nonpolar groups). PMID:25082756

  14. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    SciTech Connect

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J.V.N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  15. Combined Antibacterial and Anti-Inflammatory Activity of a Cationic Disubstituted Dexamethasone-Spermine Conjugate▿

    PubMed Central

    Bucki, Robert; Leszczyńska, Katarzyna; Byfield, Fitzroy J.; Fein, David E.; Won, Esther; Cruz, Katrina; Namiot, Andrzej; Kułakowska, Alina; Namiot, Zbigniew; Savage, Paul B.; Diamond, Scott L.; Janmey, Paul A.

    2010-01-01

    The rising number of antibiotic-resistant bacterial strains represents an emerging health problem that has motivated efforts to develop new antibacterial agents. Endogenous cationic antibacterial peptides (CAPs) that are produced in tissues exposed to the external environment are one model for the design of novel antibacterial compounds. Here, we report evidence that disubstituted dexamethasone-spermine (D2S), a cationic corticosteroid derivative initially identified as a by-product of synthesis of dexamethasone-spermine (DS) for the purpose of improving cellular gene delivery, functions as an antibacterial peptide-mimicking molecule. This moiety exhibits bacterial killing activity against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa present in cystic fibrosis (CF) sputa, and Pseudomonas aeruginosa biofilm. Although compromised in the presence of plasma, D2S antibacterial activity resists the proteolytic activity of pepsin and is maintained in ascites, cerebrospinal fluid, saliva, and bronchoalveolar lavage (BAL) fluid. D2S also enhances S. aureus susceptibility to antibiotics, such as amoxicillin (AMC), tetracycline (T), and amikacin (AN). Inhibition of interleukin-6 (IL-6) and IL-8 release from lipopolysaccharide (LPS)- or lipoteichoic acid (LTA)-treated neutrophils in the presence of D2S suggests that this molecule might also prevent systemic inflammation caused by bacterial wall products. D2S-mediated translocation of green fluorescent protein (GFP)-labeled glucocorticoid receptor (GR) in bovine aorta endothelial cells (BAECs) suggests that some of its anti-inflammatory activities involve engagement of glucocorticoid receptors. The combined antibacterial and anti-inflammatory activities of D2S suggest its potential as an alternative to natural CAPs in the prevention and treatment of some bacterial infections. PMID:20308375

  16. Prulifloxacin: a new antibacterial fluoroquinolone.

    PubMed

    Prats, Guillem; Rossi, Vilma; Salvatori, Enrica; Mirelis, Beatriz

    2006-02-01

    In the last few years, the antimicrobial activity, efficacy and relative safety of fluoroquinolones have made them attractive for the treatment of community-acquired and nosocomial infections. Prulifloxacin is a new fluoroquinolone antibacterial agent with a broad spectrum of activity against Gram-positive and -negative bacteria. Prulifloxacin is available for oral use, and after absorption is metabolized in to the active form, ulifloxacin. It exhibits good penetration in target tissues and a long elimination half-life, allowing once-daily administration. A number of randomized, controlled clinical trials carried out in Europe demonstrated the efficacy of prulifloxacin in the treatment of urinary tract (acute uncomplicated and complicated) and respiratory tract infections (acute exacerbations of chronic bronchitis), in comparison with the most widely used drugs such as ciprofloxacin, co-amoxiclav and pefloxacin. Prulifloxacin was generally well tolerated. The most frequent adverse reactions observed in clinical trials were gastric pain, diarrhea, nausea and skin rash. This review focuses on the characteristics of prulifloxacin, summarizing the relevant preclinical and clinical data. PMID:16441207

  17. Synthesis and antibacterial activity of littorachalcone and related diphenyl ethers.

    PubMed

    Kraus, George A; Kumar, Ganesh; Phillips, Gregory; Michalson, Kris; Mangano, Maria

    2008-04-01

    Littorachalcone (1) and diacid 10 were synthesized by direct routes. The antibacterial activity of 1, 10 and synthetic precursors were evaluated. Dialdehyde 3a showed potent antibacterial activity. PMID:18343663

  18. A novel antibacterial resin composite for improved dental restoratives.

    PubMed

    Weng, Yiming; Howard, Leah; Guo, Xia; Chong, Voon Joe; Gregory, Richard L; Xie, Dong

    2012-06-01

    A novel furanone-containing antibacterial resin composite has been prepared and evaluated. compressive strength (CS) and Streptococcus mutans viability were used to evaluate the mechanical strength and antibacterial activity of the composites. The modified resin composites showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With 5-30 % addition of the furanone derivative, the composite kept its original CS unchanged but showed a significant antibacterial activity with a 16-68 % reduction in the S. mutans viability. Further, the antibacterial function of the new composite was not affected by human saliva. The aging study indicates that the composite may have a long-lasting antibacterial function. Within the limitations of this study, it appears that the experimental antibacterial resin composite may potentially be developed into a clinically attractive dental restorative due to its high mechanical strength and antibacterial function. PMID:22466818

  19. Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41.

    PubMed

    Li, Gang; Kusari, Souvik; Lamshöft, Marc; Schüffler, Anja; Laatsch, Hartmut; Spiteller, Michael

    2014-11-26

    Two new compounds containing the decalin moiety, eupenicinicols A and B (1 and 2), two new sirenin derivatives, eupenicisirenins A and B (3 and 4), and four known compounds, (2S)-butylitaconic acid (5), (2S)-hexylitaconic acid (6), xanthomegnin (7), and viridicatumtoxin (8), were isolated from an endophytic fungus, Eupenicillium sp. LG41, harbored in the roots of the Chinese medicinal plant Xanthium sibiricum. Their structures were confirmed through combined spectroscopic analysis (NMR and HRMS(n)), and their absolute configurations were deduced by ECD calculations or optical rotation data. Since the endophytic fungus was isolated from the roots, the antibacterial efficacies of the compounds 1-6 were investigated against Bacillus subtilis and Acinetobacter sp. BD4, which typically inhabit soil, as well as the clinically important Staphylococcus aureus and Escherichia coli. (2S)-Butylitaconic acid (5) and (2S)-hexylitaconic acid (6) exhibited pronounced efficacy against Acinetobacter sp., corroborating the notion that root-endophytes provide chemical defense to the host plants. Compound 2 was highly active against the clinically relevant S. aureus. By comparing 1 with 2, it was revealed that altering the substitution at C-11 could drastically increase the antibacterial efficacy of 1. Our study reveals plausible ecological roles of the endophyte and its potential pharmaceutical use as a source of antibacterial compounds. PMID:25356913

  20. Tunable, antibacterial activity of silicone polyether surfactants.

    PubMed

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  1. Phosphonopeptides as Antibacterial Agents: Alaphosphin and Related Phosphonopeptides

    PubMed Central

    Allen, John G.; Atherton, Frank R.; Hall, Michael J.; Hassall, Cedric H.; Holmes, Simon W.; Lambert, Robert W.; Nisbet, Louis J.; Ringrose, Peter S.

    1979-01-01

    Alaphosphin, l-alanyl-l-1-aminoethylphosphonic acid, was selected from a range of phosphonopeptides for evaluation in humans on the basis of its antibacterial activity, pharmacokinetics, and stability to intestinal and kidney peptidases. In vitro, the antibacterial action was antagonized by small peptides, resulting in low activity on peptone media. On an antagonist-free medium alaphosphin was bactericidal and rapidly lysed most susceptible gram-negative bacteria, but it was largely bacteriostatic and essentially nonlytic against gram-positive organisms. Its spectrum included most strains normally isolated from urinary tract infections, but potency was greatly reduced by very high inoculum levels and by alkaline pH. Although strains of Proteus and Pseudomonas were less susceptible to alaphosphin than were other common gram-negative bacteria, like other species they formed spheroplasts when exposed under appropriate conditions. Alaphosphin was equally effective against penicillin-susceptible and -resistant strains and showed no cross-resistance with known antibiotics. Good synergy and increased bactericidal activity were demonstrated with combinations of alaphosphin and d-cycloserine or β-lactam antibiotics. Images PMID:43113

  2. Antibacterial activities and phytochemical analysis of Cassia fistula (Linn.) leaf

    PubMed Central

    Panda, Sujogya K.; Padhi, L. P.; Mohanty, G.

    2011-01-01

    Cassia fistula Linn. which belongs to family Leguminosae is a medium-sized tree and its different parts are used in ayurvedic medicine as well as home remedies for common ailments. Sequential extraction was carried out using solvents viz. petroleum ether, chloroform, ethanol, methanol and water from leaf of the plant were investigated for preliminary phytochemical and antibacterial property. Results of the study showed that all the extracts had good inhibitory activity against Gram-positive test organism. Although all five extracts showed promising antibacterial activity against test bacterial species, yet maximum activity was observed in ethanol extract. The minimum inhibitory concentration ranged in between 94 to 1 500 μg/ml. Evaluation of phytochemicals such as alkaloids, flavonoids, carbohydrates, glycosides, protein and amino acids, saponins, and triterpenoids revealed the presence of most of constituents in polar extracts (ethanol, methanol, and aqueous) compared with nonpolar extracts (petroleum ether and chloroform). Furthermore, the ethanol extract was subjected to TLC bioautography and time-kill study against Staphylococcus epidermidis. All the findings exhibit that the leaf extracts have broad-spectrum activity and suggest its possible use in treatment of infectious diseases. PMID:22171295

  3. Unveiling the Mode of Action of Two Antibacterial Tanshinone Derivatives.

    PubMed

    Wang, Dongdong; Zhang, Wuxia; Wang, Tingting; Li, Na; Mu, Haibo; Zhang, Jiwen; Duan, Jinyou

    2015-01-01

    In this study, 2-(N-pyrrolidine-alkyl) tanshinones bearing pyrrolidine groups were synthesized and the antibacterial mechanism was explored. These derivatives selectively elicited antibacterial activity against Gram-positive bacteria. Moreover, their antibacterial activities were time-, concentration-dependent and persistent. It appeared that Fenton-mediated hydroxyl radicals were involved, and the disruption of cell membranes was observed. This study indicates that 2-(N-pyrrolidine-alkyl) tanshinones might be potential candidates as antibacterial agents. PMID:26263982

  4. Unveiling the Mode of Action of Two Antibacterial Tanshinone Derivatives

    PubMed Central

    Wang, Dongdong; Zhang, Wuxia; Wang, Tingting; Li, Na; Mu, Haibo; Zhang, Jiwen; Duan, Jinyou

    2015-01-01

    In this study, 2-(N-pyrrolidine-alkyl) tanshinones bearing pyrrolidine groups were synthesized and the antibacterial mechanism was explored. These derivatives selectively elicited antibacterial activity against Gram-positive bacteria. Moreover, their antibacterial activities were time-, concentration-dependent and persistent. It appeared that Fenton-mediated hydroxyl radicals were involved, and the disruption of cell membranes was observed. This study indicates that 2-(N-pyrrolidine-alkyl) tanshinones might be potential candidates as antibacterial agents. PMID:26263982

  5. Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: optimization of fermentation conditions.

    PubMed

    Moayedi, Ali; Hashemi, Maryam; Safari, Mohammad

    2016-01-01

    In this study, protein-rich waste of tomato processing industries was fermented by Bacillus subtilis A14h to produce hydrolysates with antioxidant and antibacterial activities. The effects of different levels of initial pH, incubation temperature, fermentation time, protein concentration and inoculum size on proteolytic activity, release of amino acids and peptides, antioxidant and antibacterial activities of hydrolysates were evaluated and optimized by using response surface methodology (RSM). Results showed that all the evaluated variables significantly influenced the hydrolysis and bioactivities of hydrolysates in polynomial models. Hydrolysates showed remarkable 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (up to 70 %), ferric ion reducing power, and inhibitory activity against B. cereus (up to 69.8 %) and E. coli (up to 29.8 %). Overall, good correlation between the concentration of amino acids and peptides, and antioxidant as well as antibacterial activities (in particular for B. cereus inhibition activity) was observed. Finally, optimum conditions for fermentative conversion of tomato waste proteins to antioxidant and antibacterial hydrolysates were established. Results of this study showed that tomato waste protein can be valorized to produce antioxidant and antibacterial hydrolysates in a fermentative system using B. subtilis A14h. PMID:26787958

  6. Effective antibacterials: at what cost? The economics of antibacterial resistance and its control.

    PubMed

    White, Anthony R

    2011-09-01

    The original and successful business model of return on investment being sufficiently attractive to the pharmaceutical industry to encourage development of new antibacterial molecules and related diagnostics has been compromised by increasing development costs and regulatory hurdles, resulting in a decreasing chance of success and financial return. The supply of new effective agents is diminishing along with the number of companies engaged in antibacterial research and development. The BSAC Working Party on The Urgent Need:Regenerating Antibacterial Drug Discovery and Development identified the need to establish, communicate and apply the true health and economic value of antibacterials, along with the adoption of meaningful incentives, as part of the future model for antibacterial development. Robust data are needed on the cost of resistance and ineffective treatment of bacterial infection, along with national and local holistic analyses of the cost-benefit of antibacterials. An understanding of the true health and economic value of antibacterials and the cost of resistance across healthcare systems needs to be generated, communicated and used in order to set a pricing and reimbursement structure that is commensurate with value. The development and economic model of antibacterial use needs to be rebuilt based on this value through dialogue with the various stakeholders, including the pharmaceutical industry, and alternative incentives from 'push' to 'pull' and funding models, such as public/private partnerships, agreed. A research and development model that succeeds in developing and delivering new antibacterial agents that address the health needs of society from start to finish, 'from cradle to grave', must be established. PMID:21700625

  7. Phenolic content, antioxidant and antibacterial activity of selected natural sweeteners available on the Polish market.

    PubMed

    Grabek-Lejko, Dorota; Tomczyk-Ulanowska, Kinga

    2013-01-01

    Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy. PMID:24007486

  8. Antibacterial Resistance Leadership Group: Open for Business

    PubMed Central

    Chambers, Henry F.; Bartlett, John G.; Bonomo, Robert A.; Chiou, Christine; Cosgrove, Sara E.; Cross, Heather R.; Daum, Robert S.; Downing, Michele; Evans, Scott R.; Knisely, Jane; Kreiswirth, Barry N.; Lautenbach, Ebbing; Mickley, Brenda S.; Patel, Robin; Pettigrew, Melinda M.; Rodvold, Keith A.; Spellberg, Brad; Fowler, Vance G.

    2014-01-01

    Funded by the National Institute of Allergy and Infectious Diseases, the Antibacterial Resistance Leadership Group (ARLG) is tasked with developing a clinical research agenda and conducting clinical studies to address the growing public health threat of antibacterial resistance. The ARLG has identified 4 high-priority areas of research: infections caused by gram-negative bacteria, infections caused by gram-positive bacteria, antimicrobial stewardship and infection prevention, and diagnostics. The ARLG will be accepting proposals from the scientific community for clinical research that addresses 1 or more of these high-priority areas. These studies should have the potential to transform medical practice and be unlikely to occur without ARLG support. The purpose of this article is to make interested parties aware of clinical research opportunities made available by ARLG and to encourage submission of clinical research proposals that address the problem of antibacterial resistance. PMID:24610430

  9. Injectable Bioadhesive Hydrogels with Innate Antibacterial Properties

    PubMed Central

    Giano, Michael C.; Ibrahim, Zuhaib; Medina, Scott H.; Sarhane, Karim A.; Christensen, Joani M.; Yamada, Yuji; Brandacher, Gerald; Schneider, Joel P.

    2014-01-01

    Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here, we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde (PDA) and branched polyethylenimine (PEI). These adhesives kill both Gram-negative and Gram–positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5 wt % oxidized dextran and 6.9 wt % PEI sets within seconds forming a mechanically rigid (~1700 Pa) gel offering a maximum adhesive stress of ~ 2.8 kPa. A murine infection model showed that the adhesive is capable of killing S. pyogenes introduced subcutaneously at the bioadhesive’s surface, with minimal inflammatory response. The adhesive was also effective in a cecal ligation and puncture model, preventing sepsis and significantly improving survival. These bioadhesives represent novel, inherently antibacterial materials for wound filling applications. PMID:24958189

  10. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    PubMed

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive. PMID:24650181

  11. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  12. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    PubMed

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  13. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    PubMed Central

    Ghanbari, Raheleh; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2012-01-01

    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp.) were evaluated. Papain hydrolysis showed the highest DH value (89.44%), followed by alcalase hydrolysis (83.35%). Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions. PMID:23222684

  14. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin.

    PubMed

    Wald, Maleen; Schwarz, Karin; Rehbein, Hartmut; Bußmann, Bettina; Beermann, Christopher

    2016-08-15

    Trout by-product hydrolysates, generated using trout pepsin, were characterized and studied in terms of their antibacterial effects against food contaminants and fish farming pathogens. After a hydrolysis time of 25 min, the hydrolysates demonstrated inhibitory activity against several gram-positive and gram-negative bacteria. The degree of hydrolysis (DH) was found to exert a considerable influence on antibacterial activity, with a significant increase in the observed inhibitory effect at the beginning of hydrolysis. The highest antibacterial activity was obtained at a DH of 30% (enzyme/protein ratio 0.04 U/mg of protein, enzyme activity 6.5 U/mg protein, hydrolysis conditions 37°C, pH 3.0). The highest antibacterial activity detected was against the fish farming bacteria Flavobacterium psychrophilum and Renibacterium salmoninarum, with minimal inhibition concentrations of 2mg/ml and 5mg/ml, respectively. The amino acid determination of the hydrolysate (DH 30%) revealed that lysine, leucine, alanine, arginine, glycine, aspartic acid and glutamic acid residues represented the major amino acids. PMID:27006234

  15. Injectable bioadhesive hydrogels with innate antibacterial properties

    NASA Astrophysics Data System (ADS)

    Giano, Michael C.; Ibrahim, Zuhaib; Medina, Scott H.; Sarhane, Karim A.; Christensen, Joani M.; Yamada, Yuji; Brandacher, Gerald; Schneider, Joel P.

    2014-06-01

    Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde and branched polyethylenimine. These adhesives kill both Gram-negative and Gram-positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5 wt% oxidized dextran and 6.9 wt% polyethylenimine sets within seconds forming a mechanically rigid (~\

  16. Newer Antibacterial Drugs for a New Century

    PubMed Central

    Devasahayam, Gina; Scheld, W. Michael; Hoffman, Paul S.

    2010-01-01

    Antibacterial drug discovery and development has slowed considerably in recent years with novel classes discovered decades ago and regulatory approvals tougher to get. This article describes newer classes of antibacterial drugs introduced or approved after year 2000, their mechanisms of action/ resistance, improved analogs, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action as well as novel unexploited bacterial targets and strategies which may pave the way for combating drug resistance and emerging pathogens in the 21st century. PMID:20053150

  17. Antibacterial activity of N-benzylsalicylthioamides.

    PubMed

    Petrlíková, E; Waisser, K; Jílek, P; Dufková, I

    2010-09-01

    The in-vitro biological activity of N-benzylsalicylthioamides against 8 bacterial strains was determined by broth microdilution method; results were compared with those obtained with neomycin, penicillin G, ciprofloxacin and penicillin V. The compounds showed moderate to high activity against G(+) bacteria; especially compounds 4, 6, 13, 16-21 and 24 exhibited comparable or higher activity than reference drugs. The antibacterial activity was analyzed by quantitative structure-activity relationship (QSAR). The antibacterial activity increased with lipophilicity, with the presence of halogens and with increasing value of Hammet substituent constant σ. PMID:20941574

  18. Antibacterial substance from Carica papaya fruit extract.

    PubMed

    Emeruwa, A C

    1982-01-01

    Ripe and unripe Carica papaya fruits (epicarp, endocarp, seeds and leaves) were extracted separately and purified. All the extracts except that of leaves produced very significant antibacterial activity on Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Shigella flexneri. The MIC of the substance was small (0.2-0.3 mg/ml) for gram-positive bacteria and large (1.5-4 mg/ml) for gram-negative bacteria. The substance was bactericidal and showed properties of a protein. Other proteins previously found in C. papaya did not show antibacterial activity. PMID:7097295

  19. Novel 3-Aminothiazolquinolones: Design, Synthesis, Bioactive Evaluation, SARs, and Preliminary Antibacterial Mechanism.

    PubMed

    Cui, Sheng-Feng; Addla, Dinesh; Zhou, Cheng-He

    2016-05-26

    A series of novel 3-aminothiazolquinolones as analogues of quinolone antibacterial agents were designed and synthesized in an effort to circumvent quinolone resistance. Among these 3-aminothiazolquinolones, 3-(2-aminothiazol-4-yl)-7-chloro-6-(pyrrolidin-1-yl) quinolone 12b exhibited potent antibacterial activity, low cytotoxicity to hepatocyte cells, strong inhibitory potency to DNA gyrase, and a broad antimicrobial spectrum including against multidrug-resistant strains. This active molecule 12b also induced bacterial resistance more slowly than norfloxacin. Analysis of structure-activity relationships (SARs) disclosed that the 2-aminothiazole fragment at the 3-position of quinolone plays an important role in exerting antibacterial activity. Molecular modeling and experimental investigation of aminothiazolquinolone 12b with DNA from a sensitive methicillin-resistant Staphylococcus aureus (MRSA) strain revealed that the possible antibacterial mechanism might be related to the formation of a compound 12b-Cu(2+)-DNA ternary complex in which the Cu(2+) ion acts as a bridge between the backbone of 3-aminothiazolquinolone and the phosphate group of the nucleic acid. PMID:27115717

  20. Antibacterial effect of self-etching adhesive systems on Streptococcus mutans

    PubMed Central

    Kim, Seung-Ryong

    2014-01-01

    Objectives In this study, we evaluated the antibacterial activity of self-etching adhesive systems against Streptococcus mutans using the agar diffusion method. Materials and Methods Three 2-step systems, Clearfil SE Bond (SE, Kuraray), Contax (CT, DMG), and Unifil Bond (UnB, GC), and three 1-step systems, Easy Bond (EB, 3M ESPE), U-Bond (UB, Vericom), and All Bond SE (AB, BISCO) were used. 0.12% chlorhexidine (CHX, Bukwang) and 37% phosphoric acid gel (PA, Vericom) were used as positive controls. Results The antibacterial activity of CHX and PA was stronger than that of the other groups, except SE. After light activation, the inhibition zone was reduced in the case of all 2-step systems except CT. However, all 1-step systems did not exhibit any inhibition zone upon the light activation. Conclusions SE may be better than CT or UnB among the 2-step systems with respect to antibacterial activity, however, 1-step systems do not exhibit any antibacterial activity after light curing. PMID:24516827

  1. Antibacterial activity and mechanism of chitosan with ultra high molecular weight.

    PubMed

    Li, Jianhui; Wu, Yiguang; Zhao, Liqing

    2016-09-01

    Chitosan with different degree of deacetylation (DD) and ultra high molecular weight (MW >10(6)) was prepared from β-chitin by mild deacetylation. The effects of DD of chitosan and pH value of its solution/suspension on its antibacterial activity were investigated. The results showed that the optimal pH value was 6.0 for the highest bactericidal activity. The antibacterial activity against Escherichia coli and Staphylococcus aureus of chitosan solution at pH 6.0 enhanced as the DD of chitosan increased. Same as chitosan with low MW, the antibacterial activity of chitosan with high MW in acidic solution was also due to the amino protonation and subsequently cationic formation. Its ultra long molecular chain was propitious to coat and bind the E. coli and S. aureus, and highly enhanced its antibacterial activity. E. coli and S. aureus were at first restrained and then killed by chitosan and the cells were ruptured and decomposed gradually. PMID:27185132

  2. TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF THE EXTRACT OF EPHEDRA PROCERA FISCH. ET MEY.

    PubMed

    Dehkordi, Naser Vahed; Kachouie, Mehrdad Ataie; Pirbalouti, Abdollah Ghasemi; Malekpoor, Fatemeh; Rabei, Mohammad

    2015-01-01

    Ephedra prcera belonging to the family Ephedraceae is a poison and medicinal plant. The main aim of present study was to determine total phenolic content and antioxidant and antibacterial activities of ethanolic extract from the aerial parts of E. procera collected from a natural habitat in Chaharmahal va Bakhtiari province, Southwestern Iran. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the extract were evaluated against five bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Enteobacter aeogenes, Bacillus ceirus and Staphylococcus aureus. Total phenolic content in the extract of E. procera was 0.718 mg tannic acid/g dry weight extract. The results indicated that the ethanolic extract of E. piocera exhibited radical scavenging activity. In addition, the results of this study confirmed that the ethanolic extract of E. procera exhibited antibacterial activity. In conclusion, the extract of E. piocera could be an important source of phenolic components with antioxidant capacity and antibacterial activity. PMID:26642685

  3. Molecular cloning, recombinant expression and antibacterial activity analysis of hepcidin from Simensis crocodile (Crocodylus siamensis).

    PubMed

    Hao, Juan; Li, Yan-Wei; Xie, Ming-Quan; Li, An-Xing

    2012-01-01

    Hepcidin, a cysteine-rich cationic antibacterial peptide, plays an important role in human defense against pathogen infection. However, its role in reptile immune response and whether it is involved in antibacterial immune have not yet been proven. In order to study the antibacterial activity of Crocodylus siamensis hepcidin (Cshepc), a common reptile which lives in topic region of Southeast Asia, a cDNA sequence of Cshepc was cloned, which included an open reading frame (ORF) of 300 bp encoding a 99 amino acid preprohepcidin. Cshepc has eight cysteines formed four conserved disulfide bridges, similarly to that of human's. Sequence analysis showed that Cshepc mature peptide was more conserved than that of preprohepcidin. Tissue expression analysis indicated that Cshepc transcripts were highly expressed in the liver, muscle and heart of C. siamensis. Recombinant expressed hepcidin could significantly inhibit the growth of the Gram-negative bacteria Escherichia coli and Aeromonas sobria as well as the Gram-positive bacterium Staphylococcus aureus, and Bacillus subtilis in vitro, suggesting that Cshepc, like human hepcidin could play a role in the antibacterial function in hosts innate immune response. PMID:22967859

  4. Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca.

    PubMed

    Barnes, Emma C; Kavanagh, Angela M; Ramu, Soumya; Blaskovich, Mark A; Cooper, Matthew A; Davis, Rohan A

    2013-09-01

    Chemical investigations of the aerial parts of the Australian plant Eremophila microtheca resulted in the isolation of three serrulatane diterpenoids, 3-acetoxy-7,8-dihydroxyserrulat-14-en-19-oic acid (1), 3,7,8-trihydroxyserrulat-14-en-19-oic acid (2) and 3,19-diacetoxy-8-hydroxyserrulat-14-ene (3) as well as the previously reported compounds verbascoside (4) and jaceosidin (5). Acetylation and methylation of the major serrulatane diterpenoid 2 afforded 3,8-diacetoxy-7-hydroxyserrulat-14-en-19-oic acid (6) and 3,7,8-trihydroxyserrulat-14-en-19-oic acid methyl ester (7), respectively. The antibacterial activity of 1-7 was assessed against a panel of Gram-positive and Gram-negative bacterial isolates. All of the serrulatane compounds exhibited moderate activity against Streptococcus pyogenes (ATCC 12344) with minimum inhibitory concentrations (MICs) ranging from 64-128 μg/mL. Serrulatane 1 demonstrated activity against all Gram-positive bacterial strains (MICs 64-128 μg/mL) except for Enterococcus faecalis and Enterococcus faecium. This is the first report of natural products from E. microtheca. PMID:23602054

  5. A novel antibacterial orthodontic cement containing a quaternary ammonium monomer dimethylaminododecyl methacrylate

    PubMed Central

    Melo, Mary A.S.; Wu, Junling; Weir, Michael D.; Xu, Hockin H. K.

    2015-01-01

    Demineralized lesions in tooth enamel around orthodontic brackets are caused by acids from cariogenic biofilm. This study aimed to develop a novel antibacterial orthodontic cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM) into a commercial orthodontic cement, and to investigate the effects on microcosm biofilm response and enamel bond strength. DMADDM, a recently-synthetized antibacterial monomer, was incorporated into orthodontic cement at 0%, 1.5%, 3% and 5% mass fractions. Bond strength of brackets to enamel was measured. A microcosm biofilm model was used to measure metabolic activity, lactic acid production, and colony-forming units (CFU) on orthodontic cements. Shear bond strength was not reduced at 3% DAMDDM (p > 0.1), but was slightly reduced at 5% DMADDM, compared to 0% DMADDM. Biofilm viability was substantially inhibited when in contact with orthodontic cement containing 3% DMADDM. Biofilm metabolic activity, lactic acid production, and CFU were much lower on orthodontic cement containing DMADDM than control cement (p < 0.05). Therefore, the novel antibacterial orthodontic cement containing 3% DMADDM inhibited oral biofilms without compromising the enamel bond strength, and is promising to reduce or eliminate demineralization in enamel around orthodontic brackets. PMID:25035230

  6. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens.

    PubMed

    Eckhard, Lea H; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  7. Antibacterial and bioactive nanostructured titanium surfaces for bone integration

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Venturello, A.; Miola, M.; Cochis, A.; Rimondini, L.; Spriano, S.

    2014-08-01

    An effective and physiological bone integration and absence of bacterial infection are essential for a successful orthopaedic or dental implant. A titanium surface able to actively promote bone bonding and avoid microbial colonization represents an extremely interesting challenge for these purposes. An innovative and patented surface treatment focused on these issues is described in the present paper. It is based on acid etching and subsequent controlled oxidation in hydrogen peroxide, enriched with silver ions. It has been applied to commercially pure titanium (Ti-cp) and alloy Ti6Al4V. The chemistry and morphology of the surfaces are modified by the treatment on a nanoscale: they show a thin oxide layer with porosity on the nanoscale and silver particles (few nanometers in diameter), embedded in it. These features are effective in order to obtain antibacterial and bioactive titanium surfaces.

  8. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts.

    PubMed

    Yong, Ann-Li; Ooh, Keng-Fei; Ong, Hean-Chooi; Chai, Tsun-Thai; Wong, Fai-Chu

    2015-11-01

    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents. PMID:25976788

  9. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles

    PubMed Central

    Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Hsia, Ru-ching; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.

    2013-01-01

    Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1) incorporate nanoparticles of silver (NAg), quaternary ammonium dimethacrylate (QADM), and nanoparticles of amorphous calcium phosphate (NACP) into bonding agent; and (2) investigate their effects on dentin bonding and microcosm biofilms. An experimental primer was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with bisphenol-A-glycerolate dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA). NAg was incorporated into primer at 0.1wt%. The adhesive contained 0.1% NAg and 10% QADM, and 0-40% NACP. Incorporating NAg into primer and NAg-QADM-NACP into adhesive did not adversely affect dentin bond strength (p>0.1). SEM showed numerous resin tags, and TEM revealed NAg and NACP in dentinal tubules. Viability of human saliva microcosm biofilms on primer/adhesive/composite disks was substantially reduced via NAg and QADM. Metabolic activity, lactic acid, and colony-forming units of biofilms were much lower on the new bonding agents than control (p<0.05). In conclusion, novel dental bonding agents containing NAg, QADM and NACP were developed with the potential to kill residual bacteria in the tooth cavity and inhibit the invading bacteria along tooth-restoration margins, with NACP to remineralize tooth lesions. The novel method of combining antibacterial agents (NAg and QADM) with remineralizing agent (NACP) may have wide applicability to other adhesives for caries inhibition. PMID:23281264

  10. Phenolic contents, antioxidant and antibacterial activities of Hymenocardia acida.

    PubMed

    Sofidiya, Margaret O; Odukoya, Olukemi A; Afolayan, Anthony J; Familoni, Oluwole B

    2009-01-01

    This study investigates the antioxidant and antibacterial activities of aqueous and methanolic extracts from Hymenocardia acida Tul. (Hymenocardiaceae). The inhibition values of the extracts and quercetin were found to be very close, with no significant differences at a concentration of 0.05 mg mL(-1) in their ability to inhibit 1,1-diphenyl-2-picrylhydrazyl (DPPH). Total proanthocyanidins for both water and methanol extracts were 20.2 +/- 0.01 and 30.6 +/- 0.51 mg g(-1) (catechin equivalent) while the total phenol contents were 20.0 +/- 0.52 and 35.6 +/- 1.42 mg mL(-1) (tannic acid equivalent), respectively. Positive correlations R(2) = 0.85, R(2) = 0.94, R(2) = 0.97 for DPPH, reducing power and 2'-azino-bis(3-ethylbenzo thiazoline)6-sulphonic acid (ABTS). Linear regression analysis also produced a high correlation coefficient with total proanthocyanidins (DPPH, R(2) = 0.69; ABTS, R(2) = 0.94). H. acida extracts showed low antibacterial activity (minimum inhibitory concentration (MIC) value >or=5.0 mg mL(-1)) against gram negative bacteria but significantly (MIC value

  11. The diversity of antibacterial compounds of Terminalia species (Combretaceae).

    PubMed

    Shinde, S L; Junne, S B; Wadje, S S; Baig, M M V

    2009-11-15

    The antibacterial activity of acetone, hexane, dichloromethane leaf extract of five Terminalia species (Terminalia alata Heyne ex Roth., Terminalia arjuna (Roxb.) Wt. and Am., Terminalia bellerica (Gaertn.) Roxb., Terminalia catappa L. and Terminalia chebula Retz.) were tested by Agar-well-diffusion method against human pathogens E. coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis. The Rf values and relative activities of separated compounds were tested. Hexane and dichloromethane extracts have shown more antibacterial components than the acetone extract indicating the non-polar character of the antibacterial compounds. The non-polar character of the antibacterial compounds was confirmed from the Rf values. It indicated that the antibacterial activity was not due to tannins. Terminalia catappa found to possess the compounds which are more antibacterial. Terminalia arjuna and T. catappa plants were found most promising for isolating antibacterial compounds. PMID:20180323

  12. HYDROLYTIC BREAKDOWN OF LACTOFERRICIN BY LACTIC ACID BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactoferricin is a 25 amino acid antimicrobial peptide domain that is liberated by pepsin digestion of lactoferrin in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. There is substantial ...

  13. Antibacterial Effect and Physical-Mechanical Properties of Temporary Restorative Material Containing Antibacterial Agents

    PubMed Central

    Mushashe, Amanda Mahammad; Gonzaga, Carla Castiglia; Tomazinho, Paulo Henrique; da Cunha, Leonardo Fernandes; Leonardi, Denise Piotto; Pissaia, Janes Francio; Correr, Gisele Maria

    2015-01-01

    Introduction. For the maintenance of the aseptic chain created during the treatment the coronal sealing becomes paramount. Aim. Evaluating the antibacterial effect and the physical-mechanical properties of a temporary restorative material containing different antibacterial agents. Material and Methods. Two antibacterial agents (triclosan and chloramine T) were manually added to a temporary restorative material used as base (Coltosol). The antibacterial action of the material was analyzed using the agar diffusion method, in pure cultures of Escherichia coli (ATCC BAA-2336) and Staphylococcus aureus (ATCC 11632) and mixed culture of saliva collection. The microleakage rate was analyzed using bovine teeth, previously restored with the materials, and submitted to thermocycling, in a solution of 0.5% methylene blue, for a period of 24 hours. The physical and mechanical properties of the materials analyzed were setting time, water sorption, solubility, and compression strength. Results. No marginal leakage was observed for all groups. There was no statistical significant difference in antimicrobial activity, setting time, water sorption, solubility, and compression strength among the materials. Conclusion. The addition of antibacterial agents on a temporary restorative material did not optimize the antibacterial ability of the material and also did not change its physical-mechanical properties. PMID:27347539

  14. Antibacterial activity of Rosa damascena essential oil.

    PubMed

    Basim, E; Basim, H

    2003-06-01

    The essential oil of Rosa damascena petals was evaluated for its antibacterial effects against three strains of Xanthomonas axonopodis spp. vesicatoria. The essential oil may be a potential control agent in the management of the disease caused by X.a. vesicatoria in tomato and pepper plants. PMID:12781814

  15. Synthetic and Antibacterial Studies of Quinolinylchalcones

    NASA Astrophysics Data System (ADS)

    Azad, Muhammad; Munawar, Munawar Ali; Athar, Makshoof

    A series of quinolinyl chalcones have been prepared by the condensation of N-substituted-3-acetyl-4-hydroxyquinolin-2(1H)-ones with different aromatic aldehydes using conventional heating and ultrasound-assisted methods. The percentage yields are considerably increased in ultrasound-assisted method. The prepared chalcone derivatives were assayed for antibacterial and cytotoxicity and were found to be active.

  16. Antibacterial activity of Ailanthus excelsa (Roxb).

    PubMed

    Shrimali, M; Jain, D C; Darokar, M P; Sharma, R P

    2001-03-01

    The antibacterial activity of different fractions of a methanol extract obtained from the dried stem bark of Ailanthus excelsa (Roxb) was studied using different bacterial strains. The ethyl acetate fraction inhibited the growth of all test bacteria. The MIC of the EA fraction was found to be 6 mg/disc. PMID:11268120

  17. Antibacterial Activity of Honey on Cariogenic Bacteria

    PubMed Central

    Ahmadi – Motamayel, Fatemeh; Hendi, Seyedeh Sare; Alikhani, Mohammad Yusof; Khamverdi, Zahra

    2013-01-01

    Objective: Honey has antibacterial activity. The aim of this study was to evaluate the antibacterial activity of honey on Streptococcus mutans and Lactobacillus. Materials and Methods: In this in vitro study, solutions containing 0%, 5%, 10%, 20%, 50% and 100%(w/v) of natural Hamadan honey were prepared. Each blood (nutrient) agar plate was then filled with dilutions of the honey. The strains of bacteria were inoculated in blood agar for 24 hours at 37°C and were adjusted according to the McFarland scale (10×10 cfumcl−1). All assays were repeated 10 times for each of the honey concentrations. Data were analyzed by non parametric Chi-Square test. Statistical significance was set at α=0.05. Results: Significant antibacterial activity was detected for honey on Streptococcus mutans in concentrations more than 20% and on Lactobacillus in 100% concentration (P<0.05). Conclusion: It seems that antibacterial activity of honey could be used for prevention and reduction of dental caries. PMID:23724198

  18. Antibacterial paperboard packaging using microfibrillated cellulose.

    PubMed

    Lavoine, Nathalie; Desloges, Isabelle; Manship, Brigitte; Bras, Julien

    2015-09-01

    The industry and consumers are focusing more and more on the development of biodegradable and lightweight food-packaging materials, which could better preserve the quality of the food and improve its shelf-life. In an attempt to meet these requirements, this study presents a novel bio-substrate able to contain active bio-molecules for future food-packaging applications. Based on a paperboard substrate, the development of an antibacterial bio-packaging material is, therein, achieved using a chlorhexidine digluconate (CHX) solution as a model of an antibacterial molecule, mixed with microfibrillated cellulose (MFC) and used as coating onto paperboard samples. AFM and FE-SEM analyses were performed to underline the nanoporous MFC network able to trap and to progressively release the CHX molecules. The release study of CHX was conducted in an aqueous medium and showed a lower proportion (20 %) of CHX released when using MFC. This led to the constant release of low amounts of CHX over 40 h. Antibacterial tests were carried out to assess the preservation of the antibacterial activity of the samples after the release studies. Samples remained active against Bacillus subtilis, with better results being obtained when MFC was used. The preservation of the quality of a model food was finally evaluated paving the way for future promising applications in the food packaging industry. PMID:26344972

  19. Characterization of antibacterial silver coated yarns.

    PubMed

    Pollini, M; Russo, M; Licciulli, A; Sannino, A; Maffezzoli, A

    2009-11-01

    Surface treatments of textile fibers and fabrics significantly increase their performances for specific biomedical applications. Nowadays, silver is the most used antibacterial agent with a number of advantages. Among them, it is worth to note the high degree of biocompatibility, an excellent resistance to sterilization conditions, antibacterial properties with respect to different bacteria associated with a long-term of antibacterial efficiency. However, there are only a few antibacterial fibres available, mainly synthetic with high production cost and limited effectiveness. Cotton yarns with antimicrobial properties are most suitable for wound healing applications and other medical treatments thanks to their excellent moisture absorbance while synthetic based fibres are most suitable for industrial applications such as automotive tapestry and air filters. The silver-coated fibers were developed applying an innovative and low cost silver deposition technique for natural and synthetic fibers or yarns. The structure and morphology of the silver nanoclusters on the fibers was observed by scanning electron microscopy (SEM), atomic force microscopy analysis (AFM) and XRD analysis, and quantitatively confirmed by thermogravimetric analysis (TGA) measurements. Good silver coating stability has been confirmed performing several industrial washing. Antimicrobial tests with Escherichia coli were performed. PMID:19526328

  20. Antibacterial activity of Persea cordata stem barks.

    PubMed

    Schlemper, S R; Schlemper, V; da Silva, D; Cordeiro, F; Cruz, A B; Oliveira, A E; Cechinel-Filho, V

    2001-01-01

    The antibacterial effects of extracts obtained from Persea cordata stem bark, employed in Brazil to treat infectious diseases, were studied. The ethyl acetate fraction of the hydroalcoholic extract showed activity against pathogenic bacteria which may justify the popular use of the plant. PMID:11163947

  1. Antibacterial activity of selected Malaysian honey

    PubMed Central

    2013-01-01

    Background Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Methods Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. Results The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Conclusions Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other

  2. Structural and biological characterization of one antibacterial acylpolyamine isolated from the hemocytes of the spider Acanthocurria gomesiana

    SciTech Connect

    Pereira, Lourivaldo S.; Silva, Pedro I.; Miranda, M. Teresa M.; Almeida, Igor C.; Naoki, Hideo; Konno, Katsuhiro; Daffre, Sirlei . E-mail: sidaffre@icb.usp.br

    2007-01-26

    We have isolated a 417 Da antibacterial molecule, named mygalin, from the hemocytes of the spider Acanthoscurria gomesiana. The structure of mygalin was elucidated by tandem mass spectrometry (MS/MS) and by two spectroscopic techniques, nuclear magnetic resonance (NMR) and ultraviolet (UV) spectroscopy. Mygalin was identified as bis-acylpolyamine N1,N8-bis(2,5-dihydroxybenzoyl)spermidine, in which the primary amino groups of the spermidine are acylated with the carboxyl group of the 2,5-dihydroxybenzoic acid. Mygalin was active against Escherichia coli at 85 {mu}M, being this activity inhibited completely by catalase. Therefore, the antibacterial activity of mygalin was attributed to its production of hydrogen peroxide (H{sub 2}O{sub 2}). The putative mechanisms of formation of H{sub 2}O{sub 2} from mygalin are discussed. To our knowledge this is the first report of one bis-acylpolyamine with antibacterial activity purified from animal source.

  3. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism.

    PubMed

    Yan, Feilong; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Wang, Teng; Fan, Bing; Cha, Dongsu; Li, Xiaoli; Liang, Shengnan; Zhang, Zhenzhen

    2016-09-20

    A novel chitosan derivative, 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan (AACS), was successfully prepared to improve water solubility and antibacterial activity of chitosan. AACS had good antibacterial activity, with minimum inhibitory concentrations of 0.25mg/mL, against Escherichia coli and Staphylococcus aureus. Cell membrane integrity, electric conductivity and NPN uptake tests showed that AACS caused quickly increasing the release of intracellular nucleic acids, the uptake of NPN, and the electric conductivity by damaging membrane integrity. On the other hand, hydrophobicity, cell viability and SDS-PAGE experiments indicated that AACS was able to reduce the surface hydrophobicity, the cell viability and the intracellular proteins through increasing membrane permeability. SEM observation further confirmed that AACS could kill bacteria via disrupting their membranes. All results above verified that AACS mainly exerted antibacterial activity by a membrane damage mechanism, and it was expected to be a new food preservative. PMID:27261735

  4. Evidence of Antibacterial Activities in Peptide Fractions Originating from Snow Crab (Chionoecetes opilio) By-Products.

    PubMed

    Beaulieu, Lucie; Thibodeau, Jacinthe; Desbiens, Michel; Saint-Louis, Richard; Zatylny-Gaudin, Céline; Thibault, Sharon

    2010-10-01

    Antibacterial peptide fractions generated via proteolytic processing of snow crab by-products exhibited activity against Gram-negative and Gram-positive bacteria. Among the bacterial strains tested, peptide fractions demonstrated inhibitory activity against the Gram-negative bacteria such as Aeromonas caviae, Aeromonas hydrophila, Campylobacter jejuni, Listonella anguillarum, Morganella morganii, Shewanella putrefasciens, Vibrio parahaemolyticus and Vibrio vulnificus and against a few Gram-positive bacteria such as Listeria monocytogenes, Staphylococcus epidermidis and Streptococcus agalactiae. The principal bioactive peptide fraction was comprised mainly of proteins and minerals (74.3 and 15.5%, respectively). Lipids were not detected. The amino acid content revealed that arginine (4.6%), glutamic acid (5.3%) and tyrosine (4.8%) residues were represented in the highest composition in the antibacterial peptide fraction. The optimal inhibitory activity was observed at alkaline pH. The V. vulnificus strain, most sensitive to the peptide fraction, was used to develop purification methods. The most promising chromatography resins selected for purification, in order to isolate peptides of interest and to carry out their detailed biochemical characterization, were the SP-Sepharose™ Fast Flow cation exchanger and the Phenyl Sepharose™ High Performance hydrophobic interaction media. The partially purified antibacterial peptide fraction was analyzed for minimum inhibitory concentration (MIC) determination, and the value obtained was 25 μg ml(-1). Following mass spectrometry analysis, the active peptide fraction seems to be a complex of molecules comprised of several amino acids and other organic compounds. In addition, copper was the main metal found in the active peptide fraction. Results indicate the production of antibacterial molecules from crustacean by-products that support further applications for high-value bioproducts in several areas such as food and health

  5. Purification and characterization of an antibacterial protein from dried fruiting bodies of the wild mushroom Clitocybe sinopica.

    PubMed

    Zheng, Suyue; Liu, Qinghong; Zhang, Guoqing; Wang, Hexiang; Ng, Tzi Bun

    2010-01-01

    A novel antibacterial protein with a molecular mass of 44 kDa has been isolated from dried fruiting bodies of the wild mushroom Clitocybe sinopica. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis showed that the protein was composed of two subunits each with a molecular mass of 22 kDa. Its N-terminal amino-acid sequence, SVQATVNGDKML, has not been reported for other antimicrobial proteins. The purification protocol included ion exchange chromatography on DEAE-cellulose, CM-cellulose and Q-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The antibacterial protein was adsorbed on all three ion exchangers. The antimicrobial activity profile of the protein against tested bacterial and fungal strains disclosed that it possessed potent antibacterial activity against Agrobacterium rhizogenes, A. tumefaciens, A. vitis, Xanthomonas oryzae and X. malvacearum with a minimum inhibitory concentration mostly below 0.6 microM. However, it had no antibacterial activity against Pseudomonas batatae, Erwinia herbicola, Escherichia coli, and Staphylococcus aureus, and no antifungal activity against Setosphaeria turcica, Fusarium oxysporum, Verticillium dahliae, Bipolaris maydis, and B. sativum. The antibacterial antivity against A. tumefaciens was stable after exposure to 20-60 degrees C for 30 min and to pH 4-9 for 1 h. PMID:20198215

  6. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    PubMed

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications. PMID:26188297

  7. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles

    PubMed Central

    Wu, Junling; Weir, Michael D.; Melo, Mary Anne S.; Xu, Hockin H. K.

    2015-01-01

    Objectives Fracture and secondary caries are the primary reasons for dental restoration failure. The objective of this study was to develop a self-healing composite to heal cracks, while containing dimethylaminohexadecyl methacrylate (DMAHDM) for antibacterial function and nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Methods Microcapsules were synthesized with poly(urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid. Composite contained 20 mass% of NACP and 35% glass fillers. In addition, composite contained 0%, 2.5%, 5%, 7.5%, or 10% of microcapsules. A single edge V-notched beam method measured fracture toughness (KIC) and self-healing efficiency. A dental plaque microcosm biofilm model was used to test the antibacterial properties. Results Incorporation of microcapsules up to 7.5% into the composite did not adversely affect the mechanical properties (p > 0.1). Successful self-healing was achieved, with KIC recovery of 65–81% (mean ± sd; n = 6) to regain the load-bearing capability after composite fracture. The self-healing DMAHDM-NACP composite displayed a strong antibacterial potency, inhibiting biofilm viability and lactic acid production, and reducing colony-forming units by 3–4 orders of magnitude, compared to control composite without DMAHDM. Conclusions A dental composite was developed with triple benefits of self-healing after fracture, antibacterial activity, and remineralization capability for the first time. Clinical significance The self-healing, antibacterial and remineralizing composite may be promising for tooth cavity restorations to combat bulk fracture and secondary caries. The method of using triple agents (self-healing microcapsules, DMAHDM, and NACP) may have wide applicability to other dental composites, adhesives, sealants and cements. PMID:25625674

  8. Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents

    PubMed Central

    Payne, David J.; Miller, William H.; Berry, Valerie; Brosky, John; Burgess, Walter J.; Chen, Emile; DeWolf, Jr., Walter E.; Fosberry, Andrew P.; Greenwood, Rebecca; Head, Martha S.; Heerding, Dirk A.; Janson, Cheryl A.; Jaworski, Deborah D.; Keller, Paul M.; Manley, Peter J.; Moore, Terrance D.; Newlander, Kenneth A.; Pearson, Stewart; Polizzi, Brian J.; Qiu, Xiayang; Rittenhouse, Stephen F.; Slater-Radosti, Courtney; Salyers, Kevin L.; Seefeld, Mark A.; Smyth, Martin G.; Takata, Dennis T.; Uzinskas, Irene N.; Vaidya, Kalindi; Wallis, Nicola G.; Winram, Scott B.; Yuan, Catherine C. K.; Huffman, William F.

    2002-01-01

    Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus. Iterative medicinal chemistry and X-ray crystal structure-based design led to the identification of compound 4 [(E)-N-methyl-N-(2-methyl-1H-indol-3-ylmethyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide], which is 350-fold more potent than the original lead compound obtained by high-throughput screening in the FabI inhibition assay. Compound 4 has exquisite antistaphylococci activity, achieving MICs at which 90% of isolates are inhibited more than 500 times lower than those of nine currently available antibiotics against a panel of multidrug-resistant strains of S. aureus and Staphylococcus epidermidis. Furthermore, compound 4 exhibits excellent in vivo efficacy in an S. aureus infection model in rats. Biochemical and genetic approaches have confirmed that the mode of antibacterial action of compound 4 and related compounds is via inhibition of FabI. Compound 4 also exhibits weak FabK inhibitory activity, which may explain its antibacterial activity against Streptococcus pneumoniae and Enterococcus faecalis, which depend on FabK and both FabK and FabI, respectively, for their enoyl-ACP reductase function. These results show that compound 4 is representative of a new, totally synthetic series of antibacterial agents that has the potential to provide novel alternatives for the treatment of S. aureus infections that are resistant to our present armory of antibiotics. PMID:12234833

  9. Discovery of a novel and potent class of FabI-directed antibacterial agents.

    PubMed

    Payne, David J; Miller, William H; Berry, Valerie; Brosky, John; Burgess, Walter J; Chen, Emile; DeWolf Jr, Walter E; Fosberry, Andrew P; Greenwood, Rebecca; Head, Martha S; Heerding, Dirk A; Janson, Cheryl A; Jaworski, Deborah D; Keller, Paul M; Manley, Peter J; Moore, Terrance D; Newlander, Kenneth A; Pearson, Stewart; Polizzi, Brian J; Qiu, Xiayang; Rittenhouse, Stephen F; Slater-Radosti, Courtney; Salyers, Kevin L; Seefeld, Mark A; Smyth, Martin G; Takata, Dennis T; Uzinskas, Irene N; Vaidya, Kalindi; Wallis, Nicola G; Winram, Scott B; Yuan, Catherine C K; Huffman, William F

    2002-10-01

    Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus. Iterative medicinal chemistry and X-ray crystal structure-based design led to the identification of compound 4 [(E)-N-methyl-N-(2-methyl-1H-indol-3-ylmethyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide], which is 350-fold more potent than the original lead compound obtained by high-throughput screening in the FabI inhibition assay. Compound 4 has exquisite antistaphylococci activity, achieving MICs at which 90% of isolates are inhibited more than 500 times lower than those of nine currently available antibiotics against a panel of multidrug-resistant strains of S. aureus and Staphylococcus epidermidis. Furthermore, compound 4 exhibits excellent in vivo efficacy in an S. aureus infection model in rats. Biochemical and genetic approaches have confirmed that the mode of antibacterial action of compound 4 and related compounds is via inhibition of FabI. Compound 4 also exhibits weak FabK inhibitory activity, which may explain its antibacterial activity against Streptococcus pneumoniae and Enterococcus faecalis, which depend on FabK and both FabK and FabI, respectively, for their enoyl-ACP reductase function. These results show that compound 4 is representative of a new, totally synthetic series of antibacterial agents that has the potential to provide novel alternatives for the treatment of S. aureus infections that are resistant to our present armory of antibiotics. PMID:12234833

  10. Bacterial Viability and Physical Properties of Antibacterially Modified Experimental Dental Resin Composites

    PubMed Central

    Rüttermann, Stefan; Trellenkamp, Taina; Bergmann, Nora; Beikler, Thomas; Ritter, Helmut; Janda, Ralf

    2013-01-01

    Purpose To investigate the antibacterial effect and the effect on the material properties of a novel delivery system with Irgasan as active agent and methacrylated polymerizable Irgasan when added to experimental dental resin composites. Materials and Methods A delivery system based on novel polymeric hollow beads, loaded with Irgasan and methacrylated polymerizable Irgasan as active agents were used to manufacture three commonly formulated experimental resin composites. The non-modified resin was used as standard (ST). Material A contained the delivery system providing 4 % (m/m) Irgasan, material B contained 4 % (m/m) methacrylated Irgasan and material C 8 % (m/m) methacrylated Irgasan. Flexural strength (FS), flexural modulus (FM), water sorption (WS), solubility (SL), surface roughness Ra, polymerization shrinkage, contact angle Θ, total surface free energy γS and its apolar γSLW, polar γSAB, Lewis acid γS+and base γS- term as well as bacterial viability were determined. Significance was p < 0.05. Results The materials A to C were not unacceptably influenced by the modifications and achieved the minimum values for FS, WS and SL as requested by EN ISO 4049 and did not differ from ST what was also found for Ra. Only A had lower FM than ST. Θ of A and C was higher and γSAB of A and B was lower than of ST. Materials A to C had higher γS+ than ST. The antibacterial effect of materials A to C was significantly increased when compared with ST meaning that significantly less vital cells were found. Conclusion Dental resin composites with small quantities of a novel antibacterially doped delivery system or with an antibacterial monomer provided acceptable physical properties and good antibacterial effectiveness. The sorption material being part of the delivery system can be used as a vehicle for any other active agent. PMID:24223890

  11. Screening for Antibacterial and Antioxidant Activities and Phytochemical Analysis of Oroxylum indicum Fruit Extracts.

    PubMed

    Sithisarn, Patchima; Nantateerapong, Petcharat; Rojsanga, Piyanuch; Sithisarn, Pongtip

    2016-01-01

    Oroxylum indicum, which is called Pheka in Thai, is a traditional Thai plant in the Bignoniaceae family with various ethnomedical uses such as as an astringent, an anti-inflammatory agent, an anti-bronchitic agent, an anti-helminthic agent and an anti-microbial agent. The young fruits of this plant have also been consumed as vegetables. However, there has been no report concerning its antibacterial activities, especially activities related to clinically isolated pathogenic bacteria and the in vitro antioxidant effects of this plant. Therefore, the extracts from O. indicum fruits and seeds collected from different provinces in Thailand were prepared by decoction and maceration with ethanol and determined for their in vitro antibacterial effects on two clinically isolated bacteria, Streptococcus suis and Staphylococcus intermedius, using disc diffusion assay. Ethanol extracts from O. indicum fruits collected from Nakorn Pathom province at the concentration of 1000 mg/mL exhibited intermediate antibacterial activity against S. intermedius with an inhibition zone of 15.11 mm. Moreover, it promoted moderate inhibitory effects on S. suis with an inhibition zone of 14.39 mm. The extracts prepared by maceration with ethanol promoted higher antibacterial activities than those prepared with water. The ethanol extract from the seeds of this plant, purchased in Bangkok, showed stronger in vitro antioxidant activities than the other extracts, with an EC50 value of 26.33 µg/mL. Phytochemical analysis suggested that the seed ethanol extract contained the highest total phenolic and flavonoid contents (10.66 g% gallic acid equivalent and 7.16 g% quercetin equivalent, respectively) by a significant amount. Thin layer chromatographic analysis of the extracts showed the chromatographic band that could correspond to a flavonoid baicalein. From the results, extracts from O. indicum fruits have an in vitro antioxidant effect, with antibacterial potential, on clinically pathologic

  12. Antioxidant, antibacterial and cytotoxic effects of the phytochemicals of whole Leucas aspera extract

    PubMed Central

    Rahman, Md Atiar; Islam, Md Saiful

    2013-01-01

    Objective To investigate the antioxidant, antibacterial and cytotoxic activity of whole Leucas aspera (Labiatae) (L. aspera) alcoholic extract. Methods Whole L. aspera powder was extracted by absolute ethanol (99.50%). The ethanolic extract was subjected to antioxidant, antibacterial and brine shrimp lethality assay. Results The extract showed potent radical scavenging effect (antioxidant) with IC50 value of (99.58±1.22) µg/mL which was significant (P<0.01) in comparison to ascorbic acid with IC50 value of (1.25±0.95) µg/mL. In case of antibacterial screening, the extract showed notable antibacterial effect against the tested microbial strains. Significant (P<0.05) zone of inhibitions against Gram positive Bacillus subtilis [(12.00±1.32) mm] and Bacillus megaterium [(13.00±1.50) mm], Staphylococcus aureus [(8.00±0.50) mm] and Gram negative Salmonella typhi [(6.00±0.50) mm], Salmonella paratyphi [(8.00±1.00) mm], Shigella dysenteriae [(9.00±1.32) mm] and Vibrio cholerae [(9.00±0.66) mm] was observed. In brine shrimp lethality bioassay, the extract showed the LC50 value as (181.68±2.15) µg/mL which was statistically significant (P<0.01) compared to positive control vincristine sulfate [LC50=(0.76±0.04) µg/mL]. Conclusions The results demonstrate that the ethanolic extract of L. aspera could be used as antibacterial, pesticidal and various pharmacologic actives. PMID:23620850

  13. Isolation, Purification and Evaluation of Antibacterial Agents from Aloe vera

    PubMed Central

    Lawrence, Rubina; Tripathi, Priyanka; Jeyakumar, Ebenezer

    2009-01-01

    The ethanol, methanol and acetone extracts of Aloe vera gel were studied for their antimicrobial activity against four Gram-positive and Gram-negative bacteria using agar well diffusion method. The extracts showed varied levels of antimicrobial activity against the tested pathogens. The ethanol and methanol extracts showed higher activity while acetone extract, showed least or no activity against most of the tested pathogens. Fractions obtained from the extracts by Thin Layer and Column Chromatography were studied for their antagonistic properties using Spot Assay Technique. Compounds with maximum antibacterial activity isolated from the ethanol and methanol extracts were identified as p – coumaric acid (Mol. wt.165), ascorbic acid (Mol. wt.177 ), pyrocatechol (Mol. wt.110 ) and cinnamic acid (Mol. wt.148), on the basis of Gas Chromatography Mass Spectrometry. The study suggests the antimicrobial activity of the A. vera gel extract to be dependant on the synergistic effect of different compounds. With the broad spectral antimicrobial effect of A. vera gel, it could be further recommended in the treatment of various bacterial diseases. PMID:24031440

  14. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom.

    PubMed

    Conde, R; Zamudio, F Z; Rodríguez, M H; Possani, L D

    2000-04-14

    A novel peptide, scorpine, was isolated from the venom of the scorpion Pandinus imperator, with anti-bacterial activity and a potent inhibitory effect on the ookinete (ED(50) 0.7 microM) and gamete (ED(50) 10 microM) stages of Plasmodium berghei development. It has 75 amino acids, three disulfide bridges with a molecular mass of 8350 Da. Scorpine has a unique amino acid sequence, similar only to some cecropins in its N-terminal segment and to some defensins in its C-terminal region. Its gene was cloned from a cDNA library. PMID:10767415

  15. Casocidin-I: a casein-alpha s2 derived peptide exhibits antibacterial activity.

    PubMed

    Zucht, H D; Raida, M; Adermann, K; Mägert, H J; Forssmann, W G

    1995-09-25

    Here we report the isolation and characterization of an antibacterial peptide from bovine milk inhibiting the growth of Escherichia coli, and Staphylococcus carnosus. The primary structure of the peptide was revealed as a 39-amino-acid-containing fragment of bovine alpha s2-casein (position 165-203) by means of Edman amino acid sequencing and mass spectrometry. Since human milk does not contain any casein-alpha s2, these findings could explain the different influence of human and bovine milk on the gastrointestinal flora of the suckling. PMID:7556666

  16. In vitro antioxidant, antifungal and antibacterial activities of five international Calibrachoa cultivars.

    PubMed

    Elansary, Hosam O; Yessoufou, Kowiyou

    2016-06-01

    The total phenolic, flavonoid and tannin contents in leaf extracts of Calibrachoa x hybrida (C.h.) (Solanaceae) international cultivars, as well as their overall antioxidant activities using DPPH and linoleic acid assays, were investigated. Furthermore, the antifungal and the antibacterial activities were examined against a wide spectrum of micro-organisms. DPPH and linoleic acid assays ranged from 62.1 to 80.1% and of 74.1-93.4%, respectively. C.h. Superbells® Trailing Rose (CHST), C.h. Superbells® Frost Fire, C.h. Superbells® Strawberry Punch, C.h. Superbells® Dreamsicle and C.h. Superbells® Plum (CHSP) varied in their antifungal and the antibacterial activities against a wide spectrum of micro-organisms. CHSP exhibited the highest antioxidant, antifungal and antibacterial activities followed by CHST. These activities might be attributed to the presence of phenolic, flavonoid and tannin compounds, indicating that these cultivars might be potential sources of therapeutic substances. PMID:26653617

  17. Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene.

    PubMed

    de Rancourt, Yoann; Couturaud, Benoit; Mas, André; Robin, Jean Jacques

    2013-07-15

    Antibacterial polymer surfaces were designed using ZnO nanoparticles as a bactericide. Mineral encapsulated nanoparticles were grafted onto activated polymer surfaces through their shells. Polypropylene (PP) surfaces were treated using an innovative process coupling core-shell technology and plasma grafting, well-known techniques commonly used to obtain active surfaces for biomedical applications. First, ZnO nanoparticles were encapsulated by (co)polymers: poly(acrylic acid) (PAA) or a poly(methyl methacrylate-co-methacrylic acid) copolymer [P(MMA-MA)]. Second, PP substrates were activated using plasma treatment. Finally, plasma-treated surfaces were immersed in solutions containing the encapsulated nanoparticles dispersed in an organic solvent and allowed to graft onto it. The presence of nanoparticles on the substrates was demonstrated using Fourier-Transform Infrared Spectroscopy (FTIR) analysis, Scanning Electron Microspcopy (SEM)/Energy-Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) studies. Indeed, the ZnO-functionalized substrates exhibited an antibacterial response in Escherichia coli adhesion tests. Moreover, this study revealed that, surprisingly, native ZnO nanoparticles without any previous functionalization could be directly grafted onto polymeric surfaces through plasma activation. The antibacterial activity of the resulting sample was shown to be comparable to that of the other samples. PMID:23628200

  18. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    PubMed Central

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  19. Polymer multilayers with pH-triggered release of antibacterial agents.

    PubMed

    Pavlukhina, Svetlana; Lu, Yiming; Patimetha, Altida; Libera, Matthew; Sukhishvili, Svetlana

    2010-12-13

    We report on the layer-by-layer design principles of poly(methacrylic acid) (PMAA) ultrathin hydrogel coatings that release antimicrobial agents (AmAs) in response to pH variations. The studied AmAs include gentamicin and an antibacterial cationic peptide L5. Adipic acid dihydrazide (AADH) is a cross-linker which, relative to ethylenediamine (EDA), increases the hydrogel hydrophobicity and introduces centers for hydrogen bonding to AmAs. AmA retention in AADH-cross-linked hydrogels in high-salt solutions was enhanced while AmA release at low pH was suppressed. L5 retains its antibacterial activity toward planktonic Staphylococcus epidermidis after release from PMAA hydrogels in response to pH decreases in the surrounding medium due to bacterial growth. Staphylococcus epidermidis adhesion and colonization was almost completely inhibited by L5 loading of hydrogels. The AmA-releasing and AmA-retaining properties of these hydrogel coatings provide new opportunities to study the fundamental mechanisms of AmA-coating-bacteria interactions and develop a new class of clinically relevant antibacterial coatings for medical devices. PMID:21028796

  20. PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens.

    PubMed

    Marslin, Gregory; Revina, Ann Mary; Khandelwal, Vinoth Kumar Megraj; Balakumar, Krishnamoorthy; Sheeba, Caroline J; Franklin, Gregory

    2015-08-01

    The rise of bacterial resistance against important drugs threatens their clinical utility. Fluoroquinones, one of the most important classes of contemporary antibiotics has also reported to suffer bacterial resistance. Since the general mechanism of bacterial resistance against fluoroquinone antibiotics (e.g. ofloxacin) consists of target mutations resulting in reduced membrane permeability and increased efflux by the bacteria, strategies that could increase bacterial uptake and reduce efflux of the drug would provide effective treatment. In the present study, we have compared the efficiencies of ofloxacin delivered in the form of free drug (OFX) and as nanoparticles on bacterial uptake and antibacterial activity. Although both poly(lactic-co-glycolic acid) (OFX-PLGA) and methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (OFX-mPEG-PLGA) nanoformulations presented improved bacterial uptake and antibacterial activity against all the tested human bacterial pathogens, namely, Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus, OFX-mPEG-PLGA showed significantly higher bacterial uptake and antibacterial activity compared to OFX-PLGA. We have also found that mPEG-PLGA nanoencapsulation could significantly inhibit Bacillus subtilis resistance development against OFX. PMID:26005932

  1. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-08-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed.

  2. Purification and characterisation of antibacterial peptide-containing compound derived from palm kernel cake.

    PubMed

    Tan, Yen Nee; Ayob, Mohd Khan; Wan Yaacob, Wan Ahmad

    2013-01-01

    Palm kernel cake (PKC), the most useful by-product resulted from palm kernel oil production. In this study, PKC-derived protein product was found suitable for use as an antimicrobial agent with potent antibacterial activity, particularly against Bacillus species, after enzymatic hydrolysis with alcalase. The hydrolysate was further purified by gel filtration chromatography. The purified fraction was found to have 14.63±0.70% (w/w) protein, a molecular mass of 2.4kDa and low hemolytic activity (<50% hemolysis of human erythrocytes at concentration of 1000μg/ml). The presence of lysine and the major component lauric acid derivative, as indicated by electrospray ionisation-mass spectrometry (ESI-MS) direct infusion and nuclear magnetic resonance (NMR) spectroscopy, may have contributed to the antibacterial effect of purified PKC fraction. This study suggests that the antibacterial PKC compound may be not a pure peptide but instead a peptide-containing compound high in lauric acid derivative. PMID:23017424

  3. Microencapsulation of rifampicin for the prevention of endophthalmitis: In vitro release studies and antibacterial assessment.

    PubMed

    Lee, Mi Yeon; Bourgeois, Sandrine; Almouazen, Eyad; Pelletier, Jocelyne; Renaud, François; Fessi, Hatem; Kodjikian, Laurent

    2016-05-30

    Rifampicin encapsulated microparticles were designed for intraocular injection after cataract surgery to prevent postoperative endophthalmitis. Microparticles were formulated by emulsification diffusion method using poly(lactic acid-co-glycolic acid) (PLGA) as polymer in order to propose a new form of rifampicin that overcome its limitations in intraocular delivery. Depending on processing formulation, different types of microparticles were prepared, characterized and evaluated by in vitro release studies. Two types of microparticles were selected to get a burst release of rifampicin, to reach minimal inhibitory concentrations to inhibit 90% of Staphylococcus epidermidis mainly involved in postoperative endophthalmitis, combined with a sustained release to maintain rifampicin concentration over 24h. The antibacterial activity and antiadhesive property on intraocular lenses were evaluated on S. epidermidis. Microparticles, with a rapid rifampicin release profile, showed an effect towards bacteria development similar to free rifampicin over 48h. However, slow-release profile microparticles exhibited a similar antibacterial effect during the first 24h, and were able to destroy all the S epidermidis in the medium after 30h. The association of the two formulations allowed obtaining interesting antibacterial profile. Moreover, rifampicin-loaded microparticles have shown a very efficient anti-adherent effect of S. epidermidis on intraocular lenses at 24h. These results propose rifampicin microparticles as suitable for antibioprophylaxis of the postoperative endophthalmitis. PMID:26997423

  4. Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation.

    PubMed

    Azmi, Fazren; Elliott, Alysha G; Marasini, Nirmal; Ramu, Soumya; Ziora, Zyta; Kavanagh, Angela M; Blaskovich, Mark A T; Cooper, Matthew A; Skwarczynski, Mariusz; Toth, Istvan

    2016-05-15

    The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria. PMID:27048775

  5. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  6. Tragacanth gum/nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties.

    PubMed

    Montazer, M; Keshvari, A; Kahali, P

    2016-12-10

    This paper is mainly focused on introducing cotton fabric with hydrogel and antimicrobial properties using Tragacanth gum as a natural polymer with hydrogel properties, silver nitrate as silver precursor, citric acid as a cross-linking agent and sodium hypophosphite as catalyst. The water absorption behavior of the treated fabrics was investigated with moisture regain, water retention, drying time of wetted fabric at room condition and vertical wicking tests. Antibacterial properties of the samples were evaluated against Escherichia coli and Staphylococcous aureus. The SEM pictures confirmed formation of nano silver and hydrogel layer on the fabric surface and XRD performed the crystal and particle size of the nano silver. The chemical structure of the fabric samples was identified with FTIR spectra. The central composite design (CCD) was used for statistical modelling, evaluated effective parameters and created optimum conditions. The treated cotton fabrics showed good water absorption properties along with reasonable antibacterial effectiveness. PMID:27577917

  7. Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation.

    PubMed

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Silva, Sónia; Henriques, Mariana; Ferreira, Isabel C F R

    2015-01-15

    Bioactivity of thyme has been described, but mostly related to its essential oils, while studies with aqueous extracts are scarce. Herein, the antioxidant and antibacterial properties of decoction, infusion and hydroalcoholic extract, as also their phenolic compounds, were evaluated and compared. Decoction showed the highest concentration of phenolic compounds (either phenolic acids or flavonoids), followed by infusion and hydroalcoholic extract. In general, the samples were effective against gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and gram-negative (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Enterococcus aerogenes, Proteus vulgaris and Enterobacter sakazakii) bacteria, with decoction presenting the most pronounced effect. This sample also displayed the highest radical scavenging activity and reducing power. Data obtained support the idea that compounds with strong antioxidant and antibacterial activities are also water-soluble. Furthermore, the use of thyme infusion and decoction, by both internal and external use, at recommended doses, is safe and no adverse reactions have been described. PMID:25148969

  8. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts.

    PubMed

    Pata, Supawadee; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Yosapong; Svasti, Jisnuson; Araki, Tomohiro; Thammasirirak, Sompong

    2011-05-01

    Four novel antibacterial peptides, Leucrocin I-IV from Siamese crocodile white blood cell extracts were purified by reverse phase high performance liquid chromatography (RP-HPLC). Leucrocins exhibit strong antibacterial activity towards Staphylococcus epidermidis, Salmonella typhi and Vibrio cholerae. The peptides were 7-10 residues in length with different primary structure. The amino acid sequence of Leucrocin I is NGVQPKY with molecular mass around 806.99 Da and Leucrocin II is NAGSLLSGWG with molecular mass around 956.3 Da. Further, the interaction between peptides and bacterial membranes as part of their killing mechanism was studied by fluorescence and electron microscopy. The outer membrane and cytoplasmic membrane was the target of action of Leucrocins as assayed in model membrane by release of β-galactosidase due to the membrane permeabilization. Finally, the hemolytic effect was tested against human red blood cell. Leucrocin I, III and IV showed less toxicity against human red blood cells than Leucrocin II. PMID:21184776

  9. Light-activated polymethylmethacrylate nanofibers with antibacterial activity.

    PubMed

    Elashnikov, Roman; Lyutakov, Oleksiy; Ulbrich, Pavel; Svorcik, Vaclav

    2016-07-01

    The creation of an antibacterial material with triggerable properties enables us to avoid the overuse or misuse of antibacterial substances and, thus, prevent the emergence of resistant bacterial strains. As a potential light-activated antibacterial material, polymethylmethacrylate (PMMA) nanofibers doped with silver nanoparticles (AgNPs) and meso-tetraphenylporphyrin (TPP) were prepared by electrospinning. TPP was chosen as an effectively reactive oxygen species (ROS) producer. Antibacterial tests on Staphylococcus epidermidis (S. epidermidis) and Enterococcus faecalis (E. faecalis) showed the excellent light-triggerable antibacterial activity of the doped materials. Upon light irradiation at the wavelength corresponding to the TPP absorption peak (405nm), antibacterial activity dramatically increased, mostly due to the release of AgNPs from the polymer matrix. Furthermore, under prolonged light irradiation, the AgNPs/TPP/PMMA nanofibers, displayed enhanced longevity and photothermal stability. Thus, our results suggest that the proposed material is a promising option for the photodynamic inactivation of bacteria. PMID:27127048

  10. Cytocompatibility and antibacterial properties of capping materials.

    PubMed

    Poggio, Claudio; Arciola, Carla Renata; Beltrami, Riccardo; Monaco, Annachiara; Dagna, Alberto; Lombardini, Marco; Visai, Livia

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  11. Cytocompatibility and Antibacterial Properties of Capping Materials

    PubMed Central

    Arciola, Carla Renata; Monaco, Annachiara; Lombardini, Marco

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  12. Antibacterial activity of essential oil components.

    PubMed

    Moleyar, V; Narasimham, P

    1992-08-01

    Antibacterial activity of fifteen essential oil components towards food borne Staphylococcus sp., Micrococcus sp., Bacillus sp. and Enterobacter sp. was studied by an agar plate technique. Cinnamic aldehyde was the most active compound followed by citral, geraniol, eugenol and menthol. At 500 micrograms/ml, cinnamic aldehyde completely inhibited the bacterial growth for more than 30 days at 30 degrees C that was comparable to 200 micrograms/ml of butylated hydroxy anisole (BHA). At lower temperatures, 25 and 20 degrees C, antibacterial activity of the five essential oil components increased. Addition of sodium chloride at 4% level (w/v) in the medium had no effect on the inhibitory activity of cinnamic aldehyde. In mixtures of cinnamic aldehyde and eugenol or BHA an additive effect was observed. PMID:1457292

  13. Antibacterial activity of resin rich plant extracts

    PubMed Central

    Shuaib, Mohd; Ali, Abuzer; Ali, Mohd; Panda, Bibhu Prasad; Ahmad, Mohd Imtiyaz

    2013-01-01

    Background: The in vitro antibacterial activity of resin rich methanolic extracts (RRMEs) of Commiphora myrrha, Operculina turpethum, and Pinus roxburghii. Materials and Methods: Different concentration were studied by agar-well diffusion method against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Enterococcus faecalis) and Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae). Results: Among all the bacterial strains tested, E. faecalis was most sensitive and S. typhi was resistant to C. myrrha and P. roxburghii. The extracts of O. turpethum were active against all tested strains in which B. subtilis and S. aureus were the most sensitive. Conclusion: This suggested that the antibacterial activity of RRMEs of O. turpethum was more than C. myrrha and P. roxburghii. This probably explains the potential of these plants against a number of infections caused by bacterial strains tested. PMID:24302834

  14. ANTIBACTERIAL PROPERTIES OF THE CFTR POTENTIATOR IVACAFTOR

    PubMed Central

    Reznikov, Leah R.; Abou Alaiwa, Mahmoud H.; Dohrn, Cassie L.; Gansemer, Nick D.; Diekema, Daniel J.; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Background Ivacaftor increases CFTR channel activity and improves pulmonary function for individuals bearing a G551D mutation. Because ivacaftor structurally resembles quinolone antibiotics, we tested the hypothesis that ivacaftor possesses antibacterial properties. Methods Bioluminescence, colony forming unit, and minimal inhibitory concentration assays were used to assess viability of Staphylococcus aureus, Pseudomonas aeruginosa and multiple clinical microbial isolates. Results Ivacaftor induced a dose-dependent reduction in bioluminescence of S. aureus and decreased the number of colony forming units. We observed a similar but less robust effect in P. aeruginosa following outer membrane permeabilization. Ivacaftor inhibited the growth of respiratory isolates of S. aureus and Streptococcus pneumoniae and exhibited positive interactions with antibiotics against lab and respiratory strains of S. aureus and S. pneumoniae. Conclusion These data indicate that ivacaftor exhibits antibacterial properties and raise the intriguing possibility that ivacaftor might have an antibiotic effect in people with CF. PMID:24618508

  15. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model

    PubMed Central

    Li, Fang; Wang, Ping; Weir, Michael D.; Fouad, Ashraf F.; Xu, Hockin H. K.

    2014-01-01

    Antibacterial and remineralizing dental composites and adhesives were recently developed to inhibit biofilm acids and combat secondary caries. It is not clear what effect these materials will have on dental pulps in vivo. The objectives of this study were to investigate the antibacterial and remineralizing restorations in a rat tooth cavity model, and determine pulpal inflammatory response and tertiary dentin formation. Nanoparticles of amorphous calcium phosphate (NACP) and antibacterial dimethylaminododecyl methacrylate (DMADDM) were synthesized and incorporated into a composite and an adhesive. Occlusal cavities were prepared in the first molars of rats and restored with four types of restoration: Control composite and adhesive; control plus DMADDM; control plus NACP; and control plus both DMADDM and NACP. At 8 or 30 days (d), rat molars were harvested for histological analysis. For inflammatory cell response, regardless of time periods, NACP group and DMADDM+NACP group showed lower scores (better biocompatibility) than control group (p = 0.014 for 8 d, p = 0.018 for 30 d). For tissue disorganization, NACP and DMADDM+NACP had better scores than control (p = 0.027) at 30 d. At 8 d, restorations containing NACP had tertiary dentin thickness (TDT) that was 5-6 fold that of control. At 30 d, restorations containing NACP had TDT that was 4-6 fold that of control. In conclusion, novel antibacterial and remineralizing restorations were tested in rat teeth in vivo for the first time. Composite and adhesive containing NACP and DMADDM exhibited milder pulpal inflammation and much greater tertiary dentin formation, than control adhesive and composite. Therefore, the novel composite and adhesive containing NACP and DMADDM are promising as a new therapeutic restorative system to not only combat oral pathogens and biofilm acids as shown previously, but also facilitate the healing of the dentin-pulp complex. PMID:24583320

  16. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model.

    PubMed

    Li, Fang; Wang, Ping; Weir, Michael D; Fouad, Ashraf F; Xu, Hockin H K

    2014-06-01

    Antibacterial and remineralizing dental composites and adhesives were recently developed to inhibit biofilm acids and combat secondary caries. It is not clear what effect these materials will have on dental pulps in vivo. The objectives of this study were to investigate the antibacterial and remineralizing restorations in a rat tooth cavity model, and determine pulpal inflammatory response and tertiary dentin formation. Nanoparticles of amorphous calcium phosphate (NACP) and antibacterial dimethylaminododecyl methacrylate (DMADDM) were synthesized and incorporated into a composite and an adhesive. Occlusal cavities were prepared in the first molars of rats and restored with four types of restoration: control composite and adhesive; control plus DMADDM; control plus NACP; and control plus both DMADDM and NACP. At 8 or 30days, rat molars were harvested for histological analysis. For inflammatory cell response, regardless of time periods, the NACP group and the DMADDM+NACP group showed lower scores (better biocompatibility) than the control group (p=0.014 for 8days, p=0.018 for 30days). For tissue disorganization, NACP and DMADDM+NACP had better scores than the control (p=0.027) at 30days. At 8days, restorations containing NACP had a tertiary dentin thickness (TDT) that was five- to six-fold that of the control. At 30days, restorations containing NACP had a TDT that was four- to six-fold that of the control. In conclusion, novel antibacterial and remineralizing restorations were tested in rat teeth in vivo for the first time. Composite and adhesive containing NACP and DMADDM exhibited milder pulpal inflammation and much greater tertiary dentin formation than the control adhesive and composite. Therefore, the novel composite and adhesive containing NACP and DMADDM are promising as a new therapeutic restorative system to not only combat oral pathogens and biofilm acids as shown previously, but also facilitate the healing of the dentin-pulp complex. PMID:24583320

  17. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities.

    PubMed

    Mabou, Florence Déclaire; Tamokou, Jean-de-Dieu; Ngnokam, David; Voutquenne-Nazabadioko, Laurence; Kuiate, Jules-Roger; Bag, Prasanta Kumar

    2016-01-01

    Diarrhea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. The aim of the present study was to evaluate the antibacterial and antioxidant activities of extracts and compounds from Ludwigia leptocarpa, a plant traditionally used for its vermifugal, anti-dysenteric, and antimicrobial properties. A methanol extract was prepared by maceration of the dried plant and this was successively extracted with ethyl acetate to obtain an EtOAc extract and with n-butanol to obtain an n-BuOH extract. Column chromatography of the EtOAc and n-BuOH extracts was followed by purification of different fractions, leading to the isolation of 10 known compounds. Structures of isolated compounds were assigned on the basis of spectral analysis and by comparison to structures of compounds described in the literature. Antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and gallic acid equivalent antioxidant capacity (GAEAC) assays. Antibacterial activity was assessed with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) with respect to strains of a Gram-positive bacterium, Staphylococcus aureus (a major cause of community and hospital-associated infection), and Gram-negative multi-drug-resistant bacteria, Vibrio cholerae (a cause of cholera) and Shigella flexneri (a cause of shigellosis). All of the extracts showed different degrees of antioxidant and antibacterial activities. 2β-hydroxyoleanolic acid, (2R,3S,2''S)-3''',4',4''',5,5'',7,7''-heptahydroxy-3,8"-biflavanone, and luteolin-8-C-glucoside displayed the most potent antibacterial and antioxidant properties, and these properties were in some cases equal to or more potent than those of reference drugs. Overall, the present results show that L. leptocarpa has the potential to be a natural source of anti-diarrheal and antioxidant products, so further investigation is warranted. PMID:27431270

  18. [Current status and further prospects of dental resin-based materials with antibacterial properties].

    PubMed

    Shi, X; Lu, H B; Mao, J; Gong, S Q

    2016-09-01

    The mode of dental antibacterial resin-based materials can be divided into two types, namely, single and combined antibacterial mode. With regard to single antibacterial mode, only one kind of antibacterial agent is added into the resin, which can be released or act as contacting antibacterial agent. The single mode resin has limitation in sterilization methods and effect. As for combined antibacterial mode, it is a combination of different types of biocides and thus maximizes the sterilizing effect, including the releasing antibacterial agent incorporated with the contacting antibacterial agent or antibacterial agents combined with calcium compound possessing biological mineralization function. In this paper, current status and further prospects of dental resin-based materials with antibacterial properties are reviewed from the perspectives of single and combined antibacterial modes to provide guidance for dental antibacterial resin material research. PMID:27596349

  19. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-01-01

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials. PMID:23771512

  20. Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids.

    PubMed

    Selvakumar, N; Kumar, G Sunil; Azhagan, A Malar; Rajulu, G Govinda; Sharma, Shikha; Kumar, M Sitaram; Das, Jagattaran; Iqbal, Javed; Trehan, Sanjay

    2007-04-01

    With an intention to synergise the antibacterial activity of chalcones and oxazolidinones, several hybrid compounds possessing both chalcone and oxazolidinone moieties were synthesized and tested for antibacterial activity. The hybrid molecules containing heterocycles instead of aromatic ring were found to be active. A SAR study with various heterocycles resulted in a lead molecule 20, which was converted to one of the potent antibacterial compounds 27. PMID:17150281

  1. Similarity analysis, synthesis, and bioassay of antibacterial cyclic peptidomimetics

    PubMed Central

    Berhanu, Workalemahu M; Ibrahim, Mohamed A; Pillai, Girinath G; Oliferenko, Alexander A; Khelashvili, Levan; Jabeen, Farukh; Mirza, Bushra; Ansari, Farzana Latif; ul-Haq, Ihsan; El-Feky, Said A

    2012-01-01

    Summary The chemical similarity of antibacterial cyclic peptides and peptidomimetics was studied in order to identify new promising cyclic scaffolds. A large descriptor space coupled with cluster analysis was employed to digitize known antibacterial structures and to gauge the potential of new peptidomimetic macrocycles, which were conveniently synthesized by acylbenzotriazole methodology. Some of the synthesized compounds were tested against an array of microorganisms and showed antibacterial activity against Bordetella bronchistepica, Micrococcus luteus, and Salmonella typhimurium. PMID:23019443

  2. Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts.

    PubMed

    Yaraksa, Nualyai; Anunthawan, Thitiporn; Theansungnoen, Tinnakorn; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-03-01

    Leucrocin I is an antibacterial peptide isolated from crocodile (Crocodylus siamensis) white blood cell extracts. Based on Leucrocin I sequence, cationic peptide, NY15, was designed, synthesized and evaluated for antibacterial activity against Bacillus sphaericus TISTR 678, Bacillus megaterium (clinical isolate), Vibrio cholerae (clinical isolate), Salmonella typhi (clinical isolate), Salmonella typhi ATCC 5784 and Escherichia coli 0157:H7. The efficacy of the peptide made from all L-amino acids was also compared with all D-amino acids. The peptide made from all D-amino acids was more active than the corresponding L-enantiomer. In our detailed study, the interaction between peptides and the cell membrane of Vibrio cholerae as part of their killing mechanism was studied by fluorescence and electron microscopy. The results show that the membrane was the target of action of the peptides. Finally, the cytotoxicity assays revealed that both L-NY15 and D-NY15 peptides are non-toxic to mammalian cells at bacteriolytic concentrations. PMID:24192554

  3. Licensing new antibacterial agents - a European perspective.

    PubMed

    Powell, M

    2000-11-01

    There are two procedures by which new antibacterial agents may be granted marketing authorisation in the EU. The Centralised Procedure involves a single application through the European Agency for the Evaluation of Medicinal Products (EMEA). If a positive opinion is advised by the Committee on Proprietary Medicinal Products (CPMP), the European Commission grants a marketing authorisation in all EU Member States (MS). In the Mutual Recognition Procedure, the first EU country to license the drug becomes the Reference MS (RMS) and the company then requests some or all of the other MS to recognise this first authorisation. Both Centralised and Decentralised Procedures result in a Summary of Product Characteristics (SPC) which is identical in all EU MS. These EU-wide procedures have made possible the development of CPMP guidance regarding the clinical development of antibacterial agents, the presentation of data on in-vitro activity in SPCs, and the exploration of the pharmacokinetic-pharmacodynamic relationship. In addition, many CPMP guidelines that are applicable to a wide range of drugs, such as that regarding drug development in children, are pertinent to antibacterial agents. PMID:11091036

  4. What Makes a Natural Clay Antibacterial?

    PubMed Central

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  5. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    PubMed Central

    Barbosa-Santillán, Liliana I.; Sánchez-Escobar, Juan J.; Calixto-Romo, M. Angeles; Barbosa-Santillán, Luis F.

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  6. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.

    PubMed

    Barbosa-Santillán, Liliana I; Sánchez-Escobar, Juan J; Calixto-Romo, M Angeles; Barbosa-Santillán, Luis F

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  7. Guar gum based biodegradable, antibacterial and electrically conductive hydrogels.

    PubMed

    Kaith, Balbir S; Sharma, Reena; Kalia, Susheel

    2015-04-01

    Guar gum-polyacrylic acid-polyaniline based biodegradable electrically conductive interpenetrating network (IPN) structures were prepared through a two-step aqueous polymerization. Hexamine and ammonium persulfate (APS) were used as a cross linker-initiator system to crosslink the poly(AA) chains on Guar gum (Ggum) backbone. Optimum reaction conditions for maximum percentage swelling (7470.23%) were time (min) = 60; vacuum (mmHg) = 450; pH = 7.0; solvent (mL) = 27.5; [APS] (mol L(-1)) = 0.306 × 10(-1); [AA] (mol L(-1)) = 0.291 × 10(-3) and [hexamine] (mol L(-1))=0.356 × 10(-1). The semi-interpenetrating networks (semi-IPNs) were converted into IPNs through impregnation of polyaniline chains under acidic and neutral conditions. Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques were used to characterize the semi-IPNs and IPNs. Synthesized semi-IPNs and IPNs were further evaluated for moisture retention in different soils, antibacterial and biodegradation behavior. PMID:25660656

  8. Addition of antibacterial agents to MMA-TBB dentin bonding systems--influence on tensile bond strength and antibacterial effect.

    PubMed

    Kudou, Y; Obara, K; Kawashima, T; Kubota, M; Abe, S; Endo, T; Komatsu, M; Okuda, R

    2000-03-01

    To produce a bonding system which has both high bond strength and antibacterial properties, an antibacterial agent (vancomycin: VCM or metronidazol: MN) was added to the PMMA powder of 4-META/MMA-TBB resin (CB). The influence of the addition of an antibacterial agent on tensile bond strength to dentin and the antibacterial effect were investigated in this study. Forty-seven freshly extracted bovine first or second incisors were used to measure the tensile bond strength to dentin. The bond strengths to bovine dentin were not significantly decreased by addition of VCM (1%, 2%, 5%), or MN (1%) to CB (p < 0.05). The antibacterial effect of CB containing antibacterial agent on six strains of bacteria was investigated by the agar plate diffusion method, analyzing the appearance of the inhibition zone around a resin disk following anaerobic culturing. The resin disks containing VCM showed antibacterial effects on all of the strains examined; the widths of the inhibition zones were 4-15 mm. The resin disks containing MN showed antibacterial effects on three strains; the widths of the inhibition zones were 0-4 mm. It was thus possible to produce a bonding system with both antibacterial effect and high tensile bond strength by addition of VCM to PMMA powder. PMID:11219091

  9. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia

    PubMed Central

    Al-Saif, Sarah Saleh Abdu-llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A.; Aref, Ibrahim A.

    2013-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances. PMID:24596500

  10. Detection and characterization of a novel antibacterial substance produced by a Lactobacillus delbrueckii strain 1043.

    PubMed

    Miteva, V; Ivanova, I; Budakov, I; Pantev, A; Stefanova, T; Danova, S; Moncheva, P; Mitev, V; Dousset, X; Boyaval, P

    1998-09-01

    A novel antibacterial substance produced by a strain isolated from Bulgarian yellow cheese was characterized. The producer strain was identified by molecular typing to belong to the species Lactobacillus delbrueckii, which is a rare producer of bacteriocins. The inhibitory agent was heat stable and active against lactic acid bacteria species and several food-borne pathogens: Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Yersinia enterocolitica and Y. pseudotuberculosis. Its sensitivity to amylolitic enzymes and lipase suggested that a lipid and carbohydrate moiety could be important for the activity. The amino acid content of the purified bacteriocin was estimated to 29 amino acids. The bacteriocin was shown to be small (3.6-6 kDa) by three different methods: HPLC gel-filtration, SDS-PAGE and amino acid contents. PMID:9750290

  11. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Karska-Wysocki, Barbara; Bazo, Mari; Smoragiewicz, Wanda

    2010-10-20

    Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant microorganism and the principal nosocomial pathogen worldwide. The antibacterial activity of lactic acid bacteria against MRSA from ten human clinical isolates as well as MRSA standard strain ATCC 43300 was tested in vitro. The Lactobacillus (Lb.) strains (Lb. acidophilus CL1285(®) and Lb. casei LBC80R) as pure cultures, which came from commercial food products were employed. The growth inhibitory effect produced by the antimicrobial activity of the lactic acid bacteria on the MRSA strains was tested on solid medium using agar diffusion methods as well as a using a liquid medium procedure that contained a mixture of MRSA and lactic acid bacteria cultures. In the latter instance, we were able to demonstrate that the direct interaction of lactic acid bacteria and MRSA in such a mixture led to the elimination of 99% of the MRSA cells after 24 h of their incubation at 37°C. PMID:20116228

  12. Molecular structure, chemical synthesis, and antibacterial activity of ABP-dHC-cecropin A from drury (Hyphantria cunea).

    PubMed

    Zhang, Jiaxin; Movahedi, Ali; Wang, Xiaoli; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2015-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. In this paper, cDNA encoding cecropin A was amplified from drury (Hyphantria cunea) (dHC) pupa fatbody total RNA using RT-PCR. The full-length dHC-cecropin A cDNA encoded a protein of 63 amino acids with a predicted 26-amino acid signal peptide and a 37-amino acid functional domain. We synthesized the antibacterial peptide (ABP) from the 37-amino acid functional domain (ABP-dHC-cecropin A), and amidated it via the C-terminus. Time-of-flight mass spectrometry showed its molecular weight to be 4058.94. The ABP-dHC-cecropin A was assessed in terms of its protein structure using bioinformatics and CD spectroscopy. The protein's secondary structure was predicted to be α-helical. In an antibacterial activity analysis, the ABP-dHC-cecropin A exhibited strong antibacterial activity against E. coli K12D31 and Agrobacterium EHA105. PMID:25241628

  13. Dirt in the Wound: Evaluating the Role of Iron in Antibacterial Minerals

    NASA Astrophysics Data System (ADS)

    Morrison, K. D.; Williams, L. B.

    2013-12-01

    minimum inhibitory concentrations for bactericide. The acidic pH is not the only factor contributing to the antibacterial effect. The intracellular particles observed upon cell death were determined to be Fe-oxides by STEM-EELS. STXM iron maps of single cells indicate that soluble Fe2+ and Fe3+ are adsorbing to the bacterial cell walls. The adsorption of reduced iron to the cell walls of bacteria can result in lipid peroxidation and the concurrent release of toxic aldehydes. Results from the HPLC-UV-Vis aldehyde assay reveal that the antibacterial leachates cause lipid peroxidation and the release of mono-aldehydes at μM levels from bacterial cell walls. The hydrogen peroxide and ferrous/ferric iron assay of the mineral leachates indicates that H2O2 is being generated in the presence of Fe2+, ultimately generating hydroxyl radicals which are toxic to bacterial lipids, proteins and DNA.

  14. Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications.

    PubMed

    Wu, Geng-Hsi; Hsu, Shan-Hui

    2016-10-01

    Cationic polymers are often used as antimicrobial materials and transfection reagents. Water-based process could reduce environmental pollution and prevent the risk of solvent residue in the final product. In this study, waterborne biodegradable cationic polyurethane (WCPU) was synthesized by reacting polycaprolactone (PCL diol), isophorone diisocyanate (IPDI), and N-methyldiethanolamine (N-MDEA) under 75°C. An aqueous dispersion of WCPU nanoparticles (NPs) could be acquired by vigorous stirring under acidic condition. The particles in the dispersion had an average size of ∼80nm and a zeta potential of ∼60mV. When cast into films, the contact angle of the film was ∼67° and the zeta potential was ∼16mV. WCPU NPs demonstrated excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (100% inhibition with a contact time of 3h). Meanwhile, the antibacterial ratio of WCPU films to E. coli and S. aureus reached 100% after 24h of contact. Moreover, WCPU NPs could be used as a transfection reagent without significant toxicity for concentrations less than 1000μg/mL and showed the ability to condensate plasmid DNA. The transfection efficiency for HEK293T cells and hBMSCs was ∼60% and ∼30% at 48h, respectively, after the transfection. Therefore, the WCPU synthesized in this study has potential antibacterial and gene delivery applications. PMID:27451371

  15. Monocyclic β-lactam and unexpected oxazinone formation: synthesis, crystal structure, docking studies and antibacterial evaluation.

    PubMed

    Aneja, Babita; Irfan, Mohammad; Hassan, Md Imtaiyaz; Prakash, Amresh; Yadava, Umesh; Daniliuc, Constantin G; Zafaryab, Md; Rizvi, M Moshahid A; Azam, Amir; Abid, Mohammad

    2016-10-01

    Novel monocyclic β-lactam derivatives bearing aryl, phenyl and heterocyclic rings were synthesized as possible antibacterial agents. Cyclization of imines (3h, 3t) with phenylacetic acid in the presence of phosphoryl chloride and triethyl amine did not afford the expected β-lactams. Instead, highly substituted 1,3-oxazin-4-ones (4h, 4t) were isolated as the only product and confirmed by single crystal X-ray analysis of 4t. The results of antibacterial activity showed that compound 4l exhibited considerable antibacterial activity with MIC and MBC values of 62.5 µg/mL against Klebsiella pneumoniae. Cytotoxicity assay on Chinese Hamster Ovary (CHO) cell line revealed non-cytotoxic behavior of compounds 4d, 4h, 4k and 4l up to 200 μg/mL conc. Molecular docking was performed for compound 4l with penicillin binding protein-5 to identify the nature of interactions. The results of both in silico and in vitro evaluation provide the basis for compound 4l to be carried as a potential lead molecule in the drug discovery pipeline against bacterial infections. PMID:26133357

  16. Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties

    PubMed Central

    Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning

    2016-01-01

    A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15. PMID:26742050

  17. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju.

    PubMed

    Gogavekar, Shweta S; Rokade, Shilpa A; Ranveer, Rahul C; Ghosh, Jai S; Kalyani, Dayanand C; Sahoo, Akshaya K

    2014-08-01

    Oyster mushroom (Pleurotus sajor-caju) cultivated in the laboratory was studied for nutritional constituents, flavor components, antioxidant and antibacterial properties. Nutritional constituents estimated per 100 g dry weight (d.w.) include protein (29.3 g), carbohydrate (62.97 g), crude fat (0.91 g), ash (6.82 g) and crude fiber (12.3 g). Energy value of this mushroom was about 297.5 kcal/100 g d.w. Major mineral components estimated include Ca, Fe, and Mg with highest level of 505.0, 109.5 and 108.7 mg/100 g respectively. Methanolic extract containing significant amounts of phenols and flavonoids showed free radical scavenging potential and antibacterial activities against various spp. of Gram positive and Gram negative bacteria. Compounds responsible for antibacterial activities analyzed by GC-MS include β- Sistosterol, Cholestanol, 1,5-Dibenzoylnaphthalene and 1,2-Benzenedicarboxylic acid. Flavor components extracted by hot extraction method were found to be higher in number and concentration than the cold extraction method. The characteristic flavor component of mushroom i.e. 1-Octen-3-ol was better extracted by hot than the cold. PMID:25114338

  18. Layer-by-Layer (LBL) Self-Assembled Biohybrid Nanomaterials for Efficient Antibacterial Applications.

    PubMed

    Wu, Yuanhao; Long, Yubo; Li, Qing-Lan; Han, Shuying; Ma, Jianbiao; Yang, Ying-Wei; Gao, Hui

    2015-08-12

    Although antibiotics have been widely used in clinical applications to treat pathogenic infections at present, the problem of drug-resistance associated with abuse of antibiotics is becoming a potential threat to human beings. We report a biohybrid nanomaterial consisting of antibiotics, enzyme, polymers, hyaluronic acid (HA), and mesoporous silica nanoparticles (MSNs), which exhibits efficient in vitro and in vivo antibacterial activity with good biocompatibility and negligible hemolytic side effect. Herein, biocompatible layer-by-layer (LBL) coated MSNs are designed and crafted to release encapsulated antibiotics, e.g., amoxicillin (AMO), upon triggering with hyaluronidase, produced by various pathogenic Staphylococcus aureus (S. aureus). The LBL coating process comprises lysozyme (Lys), HA, and 1,2-ethanediamine (EDA)-modified polyglycerol methacrylate (PGMA). The Lys and cationic polymers provided multivalent interactions between MSN-Lys-HA-PGMA and bacterial membrane and accordingly immobilized the nanoparticles to facilitate the synergistic effect of these antibacterial agents. Loading process was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction spectroscopy (XRD). The minimal inhibition concentration (MIC) of MSN-Lys-HA-PGMA treated to antibiotic resistant bacteria is much lower than that of isodose Lys and AMO. Especially, MSN-Lys-HA-PGMA exhibited good inhibition for pathogens in bacteria-infected wounds in vivo. Therefore, this type of new biohybrid nanomaterials showed great potential as novel antibacterial agents. PMID:26192024

  19. Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles

    NASA Astrophysics Data System (ADS)

    Taheri, Shima; Baier, Grit; Majewski, Peter; Barton, Mary; Förch, Renate; Landfester, Katharina; Vasilev, Krasimir

    2014-08-01

    Infections associated with medical devices are a substantial healthcare problem. Consequently, there has been increasing research and technological efforts directed toward the development of coatings that are capable of preventing bacterial colonization of the device surface. Herein, we report on novel hybrid silver loaded poly(L-lactic acid) nanoparticles (PLLA-AgNPs) with narrowly distributed sizes (17 ± 3 nm) prepared using a combination of solvent evaporation and mini-emulsion technology. These particles were then immobilized onto solid surfaces premodified with a thin layer of allylamine plasma polymer (AApp). The antibacterial efficacy of the PLLA-AgNPs nanoparticles was studied in vitro against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. The minimal inhibitory concentration values against Staphylococcus epidermidis and Escherichia coli were 0.610 and 1.156 μg · mL-1, respectively. The capacity of the prepared coatings to prevent bacterial surface colonization was assessed in the presence of Staphylococcus epidermidis, which is a strong biofilm former that causes substantial problems with medical device associated infections. The level of inhibition of bacterial growth was 98%. The substrate independent nature and the high antibacterial efficacy of coatings presented in this study may offer new alternatives for antibacterial coatings for medical devices.

  20. Antibacterial Effects of Cissus welwitschii and Triumfetta welwitschii Extracts against Escherichia coli and Bacillus cereus

    PubMed Central

    2015-01-01

    Antibiotic resistance has increased sharply, while the pace for the development of new antimicrobials has slowed down. Plants provide an alternative source for new drugs. This study aimed to screen extracts from Cissus welwitschii and Triumfetta welwitschii for antibacterial activity against Escherichia coli and Bacillus cereus. The tests conducted included a susceptibility determination test, analysis of the effect of T. welwitschii on cell wall integrity, and transport across the membrane. It was found that the T. welwitschii methanol extracts were more effective than the water extracts and had the lowest minimum inhibitory concentration and minimum bactericidal concentration at 0.125 mg/mL and 0.5 mg/mL, respectively, against E. coli and B. cereus. The C. welwitschii extract caused the most drug accumulation in E. coli. In B. cereus, no significant drug accumulation was observed. Nucleic acid leakage in B. cereus and E. coli and protein leakage in E. coli were observed after exposure to the T. welwitschii extract. The extracts from T. welwitschii had greater antibacterial activity than the extracts from C. welwitschii. T. welwitschii may be a potential source of lead compounds for that could be developed into antibacterial agents. PMID:26904744

  1. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties.

    PubMed

    Ravanetti, F; Chiesa, R; Ossiprandi, M C; Gazza, F; Farina, V; Martini, F M; Di Lecce, R; Gnudi, G; Della Valle, C; Gavini, J; Cacchioli, A

    2016-03-01

    In implantology, as an alternative approach to the use of antibiotics, direct surface modifications of the implant addressed to inhibit bacterial adhesion and to limit bacterial proliferation are a promising tactic. The present study evaluates in an in vivo normal model the osteogenic response and the osteointegration of an anodic spark deposition nanostructured titanium surface doped with gallium (ASD + Ga) in comparison with two other surface treatments of titanium: an anodic spark deposition treatment without gallium (ASD) and an acid etching treatment (CTR). Moreover the study assesses the osteoprotective potential and the antibacterial effect of the previously mentioned surface treatments in an experimentally-induced peri-implantitis model. The obtained data points out a more rapid primary fixation in ASD and ASD + Ga implants, compared with CTR surface. Regarding the antibacterial properties, the ASD + Ga surface shows osteoprotective action on bone peri-implant tissue in vivo as well as an antibacterial effect within the first considered time point. PMID:26787484

  2. Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications.

    PubMed

    Aubert-Viard, François; Martin, Adeline; Chai, Feng; Neut, Christel; Tabary, Nicolas; Martel, Bernard; Blanchemain, Nicolas

    2015-02-01

    Polyethylene terephtalate (PET) and Polypropylene (PP) textiles are widely used in biomedical application such as wound dressings and implants. The aim of this work was to develop an antibacterial chitosan (CHT) coating activated by silver or by iodine. Chitosan was immobilized onto PET and PP supports using citric acid (CTR) as a crosslinking agent through a pad-dry-cure textile finishing process. Interestingly, depending on the CHT/CTR molar ratio, two different systems were obtained: rich in cationic ammonium groups when the CTR concentration was 1%w/v, and rich in anionic carboxylate groups when the CTR concentration was 10%w/v. As a consequence, such samples could be selectively loaded with iodine and silver nitrate, respectively.Both types of coatings were analyzed using SEM and FTIR, their sorption capacities were evaluated toward iodide/iodate anions (I(-)/IO3(-)) and the silver cations (Ag(+)) were evaluated using elemental analysis. Finally, in vitro evaluations were carried out to evaluate the cytocompatibility on the epithelial cell line. The silver loaded textile reported a stronger antibacterial effect against E.coli (5 log10 reduction) than toward S. aureus (3 log10) while the antibacterial effect of the iodide loaded textiles was limited to 1 log10 to 2 log10 on both strains. PMID:25730424

  3. Antioxidant, antibacterial and cytotoxic potential of the ripe fruits of Solanum lycocarpum A. St. Hil. (Solanaceae).

    PubMed

    Morais, Melissa Grazielle; da Costa, Guilherme Augusto Ferreira; Aleixo, Álan Alex; de Oliveira, Graziela Teixeira; Alves, Lucas Ferreira; Duarte-Almeida, Joaquim Maurício; Siqueira Ferreira, Jaqueline Maria; Lima, Luciana Alves Rodrigues dos Santos

    2015-01-01

    Ethanol extract (EE) and fractions obtained from the ripe fruits of Solanum lycocarpum were examined in order to determine their phenolic composition, antioxidant capacity, antibacterial activities and cytotoxic potential. High-performance liquid chromatography coupled with DAD analysis indicated that caffeic and chlorogenic acids were the main phenolic compounds present in the EE, dichloromethane (DCM) and ethyl acetate (Ac) fractions. The antioxidant activity assessed by the scavenging ability on 1,1-diphenyl-2-picrylhydrazyl radical was significantly more pronounced for DCM and Ac fractions than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). EE and fractions exhibited selective antibacterial activity against Gram-positive bacteria, especially the hexane (Hex) and DCM fractions. EE and fractions exhibited low toxicity towards the LLC-MK2 cell line, especially the Hex, DCM and Ac fractions. This work provides the knowledge of phenolic composition in the extract and fractions from the ripe fruits of S. lycocarpum and their antioxidant, antibacterial and cytotoxic activities. PMID:25159821

  4. In vitro antibacterial phenolic extracts from "sugarbag" pot-honeys of Australian stingless bees (Tetragonula carbonaria).

    PubMed

    Massaro, C Flavia; Shelley, Daniel; Heard, Tim A; Brooks, Peter

    2014-12-17

    Australian stingless bee honeys have been shown to exert antioxidant and in vitro antimicrobial properties; however their bioactive factors remained unidentified. This study investigated the antibacterial properties of phenolic extracts from Tetragonula carbonaria honeys. Honeys were harvested from beehives in three sites of South East Australia. Liquid-liquid extractions yielded the phenolic concentrates, for analyses by liquid and gas chromatography mass spectrometry. Antibacterial assays were conducted against Staphylococcus aureus and Klebsiella pneumoniae by in vitro agar diffusion and broth dilution assays. The phenolic extracts averaged to 5.87 mg/100 g of raw honeys, and constituents were 3-phenyllactic acid, lumichrome, diglycosylflavonoids, norisoprenoids. The honeys did not contain methylglyoxal, dihydroxyacetone or phenolics characteristic of Leptospermum nectars. Hydrogen peroxide content amounted up to 155.8 μM in honeys. Beside the bactericidal effects of hydrogen peroxide at 760 μM, other antibacterial factors were the phenolic extracts of "sugarbag" honeys that were active at minimum bactericidal concentrations of 1.2-1.8 mg/mL. PMID:25423113

  5. [Antibacterial action of ether oils of some plants].

    PubMed

    Khaldun, A O

    2006-01-01

    Inhibitory effect of clove oil on Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Shigella dysenteriae and Candida albicans was detected. Mint ether oil had the high antibacterial action on S. aureus, however against other microorganisms mint oil had a reliably low effect then clove oil. Fennel oil had high antibacterial effect on C. albicans, and bactericidal action on S. typhimurium and S. dysenteriae. PMID:16830599

  6. Synthesis and antibacterial properties of ZnO brush pens

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Rong; Li, Yilin; Weng, Yuan; Liang, Weiquan; Zhang, Wenfeng; Zheng, Weitao; Hu, Haimei

    2015-12-01

    In this paper, ZnO with a novel hierarchical nanostructure has been synthesized by a new solution method. The novel hierarchical structure is named a ‘brush pen’. The biocompatibility and antibacterial properties of ZnO brush pens have been evaluated. The results demonstrate that ZnO brush pens show good antibacterial activity against Staphylococcus aureus.

  7. Synthesis and characterization of antibacterial dental monomers and composites

    PubMed Central

    Xu, Xiaoming; Wang, Yapin; Liao, Sumei; Wen, Zezhang T.; Fan, Yuwei

    2012-01-01

    The objective of this study is to synthesize antibacterial methacrylate and methacrylamide monomers and formulate antibacterial fluoride-releasing dental composites. Three antibacterial methacrylate or methacrylamide monomers containing long-chain quaternary ammonium fluoride, 1,2-methacrylamido-N,N,N-trimethyldodecan-1-aminium fluoride (monomer I), N-benzyl-11-(methacryloyloxy)-N,N-dimethylundecan-1-aminium fluoride (monomer II), and methacryloxyldecylpyridinium fluoride (monomer III) have been synthesized and analyzed by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The cytotoxicity test and bactericidal test against Streptococcus mutans indicate that antibacterial monomer II is superior to monomers I and III. A series of dental composites containing 0–6% of antibacterial monomer II have been formulated and tested for degree of conversion (DC), flexure strength, water sorption, solubility, and inhibition of S. mutans biofilms. An antibacterial fluoride-releasing dental composite has also been formulated and tested for flexure strength and fluoride release. The dental composite containing 3% of monomer II has a significant effect against S. mutans biofilm formation without major adverse effects on its physical and mechanical properties. The new antibacterial monomers can be used together with the fluoride-releasing monomers containing a ternary zirconiun- fluoride chelate to formulate a new antibacterial fluoride- releasing dental composite. Such a new dental composite is expected to have higher anticaries efficacy and longer service life. PMID:22447582

  8. Targeting virulence not viability in the search for future antibacterials

    PubMed Central

    Heras, Begoña; Scanlon, Martin J; Martin, Jennifer L

    2015-01-01

    New antibacterials need new approaches to overcome the problem of rapid antibiotic resistance. Here we review the development of potential new antibacterial drugs that do not kill bacteria or inhibit their growth, but combat disease instead by targeting bacterial virulence. PMID:24552512

  9. Flame retardant antibacterial cotton high-loft nonwoven fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  10. Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.

    PubMed

    Punia, Ashish; He, Edward; Lee, Kevin; Banerjee, Probal; Yang, Nan-Loh

    2014-07-01

    Acrylic copolymers with appropriate compositions of counits having cationic charge with 2-carbon and 6-carbon spacer arms can show superior antibacterial activities with concomitant very low hemolytic effect. These amphiphilic copolymers represent one of the most promising synthetic polymer antibacterial systems reported. PMID:24854366

  11. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries

    PubMed Central

    Zhang, Ke; Li, Fang; Imazato, Satoshi; Cheng, Lei; Liu, Huaibing; Arola, Dwayne D.; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Dental resins containing 12-methacryloyloxydodecylpyridinium bromide (MDPB) showed potent antibacterial functions. Recent studies developed antibacterial resins containing nanoparticles of silver (NAg). The objectives of this study were to develop an adhesive containing dual agents of MDPB and NAg for the first time, and to investigate the combined effects of antibacterial adhesive and primer on biofilm viability, metabolic activity, lactic acid, dentin bond strength, and fibroblast cytotoxicity. MDPB and NAg were incorporated into Scotchbond Multi-Purpose (SBMP) adhesive “A” and primer “P”. Five systems were tested: SBMP adhesive A; A+MDPB; A+NAg; A+MDPB+NAg; P+MDPB+NAg together with A+MDPB+NAg. Dental plaque microcosm biofilms were cultured using mixed saliva from ten donors. Metabolic activity, colony-forming units, and lactic acid production of biofilms were investigated. Human fibroblast cytotoxicity of bonding agents was determined. MDPB+NAg in adhesive/primer did not compromise dentin bond strength (p>0.1). MDPB or NAg alone in adhesive substantially reduced the biofilm activities. Dual agents MDPB+NAg in adhesive greatly reduced the biofilm viability compared to each agent alone (p<0.05). The greatest inhibition of biofilms was achieved when both adhesive and primer contained MDPB+NAg. Fibroblast viability of groups with dual antibacterial agents was similar to control using culture medium without resin eluents (p>0.1). In conclusion, this study showed for the first time that the antibacterial potency of MDPB adhesive could be substantially enhanced via NAg. Adding MDPB+NAg into both primer and adhesive achieved the strongest anti-biofilm efficacy. The dual agent (MDPB+NAg) method could have wide applicability to other adhesives, sealants, cements and composites to inhibit biofilms and caries. PMID:23529901

  12. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite.

    PubMed

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin H K

    2016-03-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3-18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3-18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit caries

  13. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite

    PubMed Central

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2016-01-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3–18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3–18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit

  14. Enhanced antibacterial activity of roxithromycin loaded pegylated poly lactide-co-glycolide nanoparticles

    PubMed Central

    2012-01-01

    Background and the purpose of the study The purpose of this study was to prepare pegylated poly lactide-co-glycolide (PEG-PLGA) nanoparticles (NPs) loaded with roxithromycin (RXN) with appropriate physicochemical properties and antibacterial activity. Roxithromycin, a semi-synthetic derivative of erythromycin, is more stable than erythromycin under acidic conditions and exhibits improved clinical effects. Methods RXN was loaded in pegylated PLGA NPs in different drug;polymer ratios by solvent evaporation technique and characterized for their size and size distribution, surface charge, surface morphology, drug loading, in vitro drug release profile, and in vitro antibacterial effects on S. aureus, B. subtilis, and S. epidermidis. Results and conclusion NPs were spherical with a relatively mono-dispersed size distribution. The particle size of nanoparticles ranged from 150 to 200 nm. NPs with entrapment efficiency of up to 80.0±6.5% and drug loading of up to 13.0±1.0% were prepared. In vitro release study showed an early burst release of about 50.03±0.99% at 6.5 h and then a slow and steady release of RXN was observed after the burst release. In vitro antibacterial effects determined that the minimal inhibitory concentration (MIC) of RXN loaded PEG-PLGA NPs were 9 times lower on S. aureus, 4.5 times lower on B. subtilis, and 4.5 times lower on S. epidermidis compared to RXN solution. In conclusion it was shown that polymeric NPs enhanced the antibacterial efficacy of RXN substantially. PMID:23351784

  15. Purification, characterization and activities of two hemolytic and antibacterial proteins from coelomic fluid of the annelid Eisenia fetida andrei.

    PubMed

    Milochau, A; Lassègues, M; Valembois, P

    1997-01-01

    The coelomic fluid of the earthworm Eisenia fetida andrei exhibits antibacterial, hemolytic and hemagglutinating activities. These activities are mainly mediated by two proteins, named fetidins, of apparent molecular mass 40 kDa and 45 kDa, respectively. For the first time, the two proteins have been purified to homogeneity from dialysed coelomic fluid by means of anion-exchange chromatography. Three peaks had hemolytic activity. The first fraction was found to correspond to the 40 kDa fetidin, the second to mixed 40 and 45 kDa fetidins, the last one to the 45 kDa fetidin. Both purified proteins still exhibited their hemolytic and antibacterial activities as dialysed coelomic fluid did. In this study, the amino-acid sequence of purified proteins is compared to the amino-acid sequence predicted by cDNA. This cDNA was isolated by screening an expression cDNA library from earthworm total tissues (unpublished data). PMID:9003444

  16. Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly).

    PubMed Central

    Yamada, K; Natori, S

    1994-01-01

    Sapecin B, an antibacterial protein of Sarcophaga peregrina, was divided into four peptides. A hendecapeptide derived from its helix region was found to have comparable antibacterial activity with that of the complete protein. This peptide had a much wider spectrum of antimicrobial activity than that of sapecin B, exhibiting activity on not only Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), but also some yeasts, including Candida albicans. The peptide was shown to bind to liposomes containing acidic phospholipids and cause release of entrapped glucose, suggesting that its primary site of action is the bacterial membrane. Its antimicrobial activity could be increased by substituting various amino acid residues for hydrophobic and/or basic ones. PMID:8141776

  17. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor.

    PubMed

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan; Veerappan, Anbazhagan

    2016-11-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. PMID:27524096

  18. Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine.

    PubMed

    Chen, Shiguo; Chen, Shaojun; Jiang, Song; Xiong, Meiling; Luo, Junxuan; Tang, Jiaoning; Ge, Zaochuan

    2011-04-01

    This paper reports a novel environmentally friendly antibacterial cotton textile finished with reactive siloxane sulfopropylbetaine(SSPB). The results show that SSPB can be covalently bound onto the cotton textile surface, imparting perdurable antibacterial activity. The textiles finished with SSPB have been investigated systematically from the mechanical properties, thermal stability, hydrophilic properties and antibacterial properties. It is found that the hydrophilicity and breaking strength are improved greatly after the cotton textiles are finished with SSPB. Additionally, the cotton textiles finished with SSPB exhibit good antibacterial activities against gram-positive bacteria Staphylococcus aureus (S.aureus, ATCC 6538), gram-negative bacteria Escherichia coli (E.coli, 8099) and fungi Candida albicans (C.albicans, ATCC 10231). Moreover, SSPB is nonleachable from the textiles, and it does not induce skin stimulation and is nontoxic to animals. Thus, SSPB is ideal candidate for environmentally friendly antibacterial textile applications. PMID:21417413

  19. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes.

    PubMed

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  20. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes

    PubMed Central

    Sfeir, Julien; Lefrançois, Corinne; Baudoux, Dominique; Derbré, Séverine; Licznar, Patricia

    2013-01-01

    Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred. PMID:23662123

  1. Synthesis and antibacterial evaluation of macrocyclic diarylheptanoid derivatives.

    PubMed

    Lin, Hao; Bruhn, David F; Maddox, Marcus M; Singh, Aman P; Lee, Richard E; Sun, Dianqing

    2016-08-15

    Bacterial infections, caused by Mycobacterium tuberculosis and other problematic bacterial pathogens, continue to pose a significant threat to global public health. As such, new chemotype antibacterial agents are desperately needed to fuel and strengthen the antibacterial drug discovery and development pipeline. As part of our antibacterial research program to develop natural product-inspired new antibacterial agents, here we report synthesis, antibacterial evaluation, and structure-activity relationship studies of an extended chemical library of macrocyclic diarylheptanoids with diverse amine, amide, urea, and sulfonamide functionalities. Results of this study have produced macrocyclic geranylamine and 4-fluorophenethylamine substituted derivatives, exhibiting moderate to good activity against M. tuberculosis and selected Gram-positive bacterial pathogens. PMID:27406794

  2. Antibacterial drug discovery in the resistance era.

    PubMed

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era. PMID:26791724

  3. Chemical and antibacterial constituents of Skimmia anquetelia.

    PubMed

    Sharma, Rajni Kant; Negi, Devendra Singh; Gibbons, Simon; Otsuka, Hideaki

    2008-02-01

    Investigation of the leaves of Skimmia anquetelia (Rutaceae) led to the isolation of a new coumarin glucoside 7,8-dihdroxy-6-[3'-beta- D-glucopyranosyloxy-2'(xi)-hydroxy-3'-methylbutyl]-coumarin ( 1) together with five known coumarins: 6-(2,3-dihydroxy-3-methylbutyl)-7-methoxycoumarin ( 2), skimmin ( 3), osthol ( 4), esculetin ( 5) and scopuletin ( 6). The antibacterial activity of compounds 1 and 3 was also investigated against the plant bacterial pathogens Agrobacterium tumifaciens, Pseudomonas syringae and Pactobacterium carotovorum. Structures were determined on the basis of analyses of spectral evidence including 1D, 2 D NMR (COSY, HMQC, HMBC and NOESY) and mass spectroscopy. PMID:18240101

  4. Canthin-4-ones as Novel Antibacterial Agents.

    PubMed

    Tremmel, Tim; Puzik, Andreas; Gehring, André P; Bracher, Franz

    2016-09-01

    Based on the chemotype of canthin-4-one alkaloids with moderate antimicrobial activity, a collection of variously substituted canthin-4-ones and desaza analogs were synthesized. Key steps in the syntheses were regioselective halogenations of (desaza) canthin-4-one, followed by Pd-catalyzed cross-coupling reactions. The in vitro screening for antimicrobial activity revealed that two 5-substituted canthin-4-ones (3-pyridyl, 2-bromophenyl) exhibit significant activity against Streptococcus entericus, coupled with high selectivity and the lack of cytotoxicity against mammalian cells. The intact canthin-4-one ring system was demonstrated to be essential for antibacterial activity. PMID:27503113

  5. What makes a natural clay antibacterial?

    USGS Publications Warehouse

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals.

  6. Nanostructured medical sutures with antibacterial properties.

    PubMed

    Serrano, Cristina; García-Fernández, Luis; Fernández-Blázquez, Juan Pedro; Barbeck, Mike; Ghanaati, Shahram; Unger, Ron; Kirkpatrick, James; Arzt, Eduard; Funk, Lutz; Turón, Pau; del Campo, Aránzazu

    2015-06-01

    Bacterial repellence in suture materials is a desirable property that can potentially improve the healing process by preventing infection. We describe a method for generating nanostructures at the surface of commercial sutures of different composition, and their potential for preventing biofilm formation. We show how bacteria attachment is altered in the presence of nanosized topographies and identify optimum designs for preventing it without compromising biocompatibility and applicability in terms of nanostructure robustness or tissue friction. These studies open new possibilities for flexible and cost-effective realization of topography-based antibacterial coatings for absorbable biomedical textiles. PMID:25818435

  7. Antibacterial properties of cationic steroid antibiotics.

    PubMed

    Savage, Paul B; Li, Chunhong; Taotafa, Uale; Ding, Bangwei; Guan, Qunying

    2002-11-19

    Cationic steroid antibiotics have been developed that display broad-spectrum antibacterial activity. These compounds are comprised of steroids appended with amine groups arranged to yield facially amphiphilic morphology. Examples of these antibiotics are highly bactericidal, while related compounds effectively permeabilize the outer membranes of Gram-negative bacteria sensitizing these organisms to hydrophobic antibiotics. Cationic steroid antibiotics exhibit various levels of eukaryote vs. prokaryote cell selectivity, and cell selectivity can be increased via charge recognition of prokaryotic cells. Studies of the mechanism of action of these antibiotics suggest that they share mechanistic aspects with cationic peptide antibiotics. PMID:12445638

  8. [Antibacterial activity of enoxacin in vitro and in urine].

    PubMed

    Soussy, C J; Deforges, L; Duval, J

    1987-05-01

    Minimal inhibitory concentrations (MIC) of enoxacin (ENO) were evaluated by agar dilution, in comparison with MIC of nalidixic acid (NAL), pipemidic acid (PIP), oxolinic acid (OXO), pefloxacin (PEF), norfloxacin (NOR), ofloxacin (OFL) and ciprofloxacin (CIP), for eleven Enterobacteriaceae reference strains chosen as a function of sensitivity and level of resistance to NAL. In the four strains susceptible to NAL, MIC of ENO (0.06 to 0.25 micrograms/ml) were similar to those for PEF and NOR, 2 to 4 times inferior to those for OXO, 16 to those for PIP and 32 to those for NAL; this ratio of activity was also seen in the majority of strains resistant to NAL. Measurement of MIC of ENO for 397 recent clinical isolates confirmed efficacy of this substance against Enterobacteriaceae and showed its activity against Pseudomonas aeruginosa (mode MIC: 0.5-1 micrograms/ml), and Gram positive cocci, essentially Staphylococcus aureus (mode MIC: 0.5-1). Antibacterial activity in the urine was measured by the Heilman test in 5 male adults after two doses of 200 mg of ENO administered at 12 hours intervals, two doses of 400 mg of ENO and, in comparison two of 400 mg of PIP administered under the same conditions. Maximal inhibitory dilutions obtained with ENO reached (mean for 5 subjects): 1/64 to 1/128 after 200 mg and 1/128 to 1/512 after 400 mg for a sensitive Providencia strain (MIC ENO: 0.25); 1/32 to 1/128 and 1/64 to 1/256 for an E. coli strain of low level of resistance to NAL (MIC ENO: 2); activity was very low on a Serratia strain highly resistant to NAL (MIC ENO: 16).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3302849

  9. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries

    PubMed Central

    Zhang, Ning; Ma, Jianfeng; Melo, Mary A. S.; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilm acids contribute to secondary caries, which is a main reason for dental restoration failures. The objectives of this study were to: (1) develop a protein-repellent and antibacterial composite, and (2) investigate the effects of combining 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) on composite mechanical properties and biofilm response for the first time. Methods MPC, DMAHDM and glass particles were mixed into a dental resin composite. Mechanical properties were measured in three-point flexure. Protein adsorption onto the composites was measured by a micro bicinchoninic acid method. A human saliva microcosm model was used to grow biofilms on composites. Colony-forming unit (CFU) counts, live/dead assay, metabolic activity, and lactic acid production of biofilms were determined. Results Incorporation of 3% MPC and 1.5% DMAHDM into composite achieved protein-repellent and antibacterial capabilities without compromising the mechanical properties. Composite with 3% MPC + 1.5% DMAHDM had protein adsorption that was 1/10 that of a commercial composite (p < 0.05). The composite with 3% MPC + 1.5% DMAHDM had much greater reduction in biofilm growth than using MPC or DMAHDM alone (p < 0.05). Biofilm CFU counts on composite with 3% MPC + 1.5% DMAHDM were more than three orders of magnitude lower than that of commercial control. Conclusions Dental composite with a combination of strong protein-repellent and antibacterial capabilities was developed for the first time. Composite with MPC and DMAHDM greatly reduced biofilm activity and is promising to inhibit secondary caries. The dual agents of MPC plus DMAHDM may have wide applicability to other dental materials. PMID:25478889

  10. Antioxidant and antibacterial activities of Hibiscus Rosa-sinensis Linn flower extracts.

    PubMed

    Khan, Zulfiqar Ali; Naqvi, Syed Ali-Raza; Mukhtar, Ammara; Hussain, Zaib; Shahzad, Sohail Anjum; Mansha, Asim; Ahmad, Matloob; Zahoor, Ameer Fawad; Bukhari, Iftikhar Hussain; Ashraf-Janjua, Muhammad Ramazan-Saeed; Mahmood, Nasir; Yar, Muhammad

    2014-05-01

    Antioxidant and antibacterial potential of different solvent extracts of locally grown Hibiscus rosa-sinensis Linn was evaluated. The antioxidant activity was assessed by estimation of total flavonoids contents, total phenolic contents, DPPH free radical scavenging activity and percentage inhibition of linoleic acid oxidation capacity. Agar disc diffusion method was used to assess antibacterial potential of crude extract of H. rosa-sinensis. The yield of the crude extracts (23.21 ± 3.67 and 18.36 ± 2.98% in 80% methanol and ethanol solvents was calculated, respectively. Methanol and ethanol extract of H. rosa-sinensis showed total phenolics 61.45 ± 3.23 and 59.31 ± 4.31 mg/100g as gallic acid equivalent, total flavonoids 53.28 ± 1.93 and 32.25±1.21 mg/100g as catechine equivalent, DPPH free radical scavenging activity 75.46±4.67 and 64.98 ± 2.11% and inhibition of linoleic acid oxidation potential 75.8 ±3.22 and 61.6 ± 2.01% respectively, was measured. Antibacterial study against three human pathogens such as staphlococus sp. Bacillus sp. and Escherichia coli showed growth inhibitory effect in the range of 12.75 ± 1.17 to 16.75 ± 2.10 mm. These results showed H. rosa-sinensis indigenous to Kallar Kahar and its allied areas bear promising medicinal values and could be used for developing herbal medicines to target oxidative stress and infectious diseases. PMID:24811803

  11. Synthesis and antibacterial activity of novel lincomycin derivatives. I. Enhancement of antibacterial activities by introduction of substituted azetidines.

    PubMed

    Kumura, Ko; Wakiyama, Yoshinari; Ueda, Kazutaka; Umemura, Eijiro; Watanabe, Takashi; Shitara, Eiki; Fushimi, Hideki; Yoshida, Takuji; Ajito, Keiichi

    2016-06-01

    The synthesis and antibacterial activity of (7S)-7-sulfur-azetidin-3-yl lincomycin derivatives are described. Modification was achieved by a simple reaction of (7R)-7-O-methanesulfonyllincomycin and the corresponding substituted azetidine-2-thiol. Several compounds first showed moderate antibacterial activity against Streptococcus pneumoniae and Streptococcus pyogenes with erm gene as lincomycin derivatives. PMID:26758495

  12. Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Li, Ping; Sun, Shiyu; Dong, Alideertu; Hao, Yanping; Shi, Shuangqiang; Sun, Zijia; Gao, Ge; Chen, Yuxin

    2015-11-01

    New materials with excellent antibacterial activity attract numerous research interests. Herein, a facile synthetic method of polyethylene glycol (PEG) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-PEG-PHGC), a novel antibacterial material, was reported. The as-prepared products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray pattern (XRD) and elemental analysis. The antibacterial effect on the bacterial strain was investigated by incubating both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). The results show that GO-PEG-PHGC has enhanced antibacterial activity when compared to GO, GO-PEG or GO-PHGC alone. The improved antibacterial activity was described to be related to a better dispersion of GO-PEG-PHGC in the presence of PEG. This better dispersion leads to a greater contact between the bacteria membrane and nanomaterials, therefore leading to greater cell damage. Not only Gram-negative bacteria but also Gram-positive bacteria are greatly inhibited by this antibacterial agent. With the powerful antibacterial activity as well as its low cost and facile preparation, the GO-PEG-PHGC as a novel antibacterial agent can find potential application in the areas of healthcare and environmental engineering.

  13. Determination of the antibacterial activity of crude extracts and compounds isolated from Hortia oreadica (Rutaceae) against oral pathogens

    PubMed Central

    Severino, Vanessa Gisele Pasqualotto; da Silva, Maria Fátima das Graças Fernandes; Lucarini, Rodrigo; Montanari, Lilian Bueno; Cunha, Wilson Roberto; Vinholis, Adriana Helena Chicharo; Martins, Carlos Henrique Gomes

    2009-01-01

    Extracts from Hortia oreadica afforded four dihydrocinnamic acid derivatives, isolated from the n-hexane extract, as well as limonoid guyanin and the furoquinoline alkaloid dictamnine, both isolated from the dichloromethane extract. The extracts and the isolated compounds were tested against some oral pathogens, so as to investigate their antibacterial activity. The results showed that the n-hexane extract and the compound dictamnine are the most active against the selected microorganisms PMID:24031396

  14. Comparative evaluation of antibacterial activity of total-etch and self-etch adhesive systems: An ex vitro study

    PubMed Central

    Amin, Swathi; Shetty, Harish K.; Varma, Ravi K.; Amin, Vivek; Nair, Prathap M. S.

    2014-01-01

    Aim: The aim of this ex vivo study was to compare the antibacterial activity of total-etch and self-etch adhesive systems against Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces viscosus through disk diffusion method. Materials and Methods: The antibacterial effects of Single Bond (SB) and Adper Prompt (AP) and aqueous solution of chlorhexidine 0.2% (positive control) were tested against standard strain of S. mutans, L. acidophilus, and A. viscosus using the disk diffusion method. The diameters of inhibition zones were measured in millimeters. Data was analyzed using Kruskal-Wallis test. Mann-Whitney U test was used for pairwise comparison. Result: Of all the materials tested, AP showed the maximum inhibitory action against S. mutans and L. acidophilus. Aqueous solution of chlorhexidine 0.2% showed the maximum inhibitory action against A. viscosus. Very minimal antibacterial effect was noted for SB. Conclusion: The antibacterial effects observed for the tested different dentin bonding systems may be related to the acidic nature of the materials. PMID:24944452

  15. Chemical composition and antibacterial activity of methanolic extract and essential oil of Iranian Teucrium polium against some of phytobacteria.

    PubMed

    Purnavab, S; Ketabchi, S; Rowshan, V

    2015-01-01

    The antibacterial activity of essential oil and methanolic extract of Teucrium polium was determined against Pseudomonas aeruginosa, Pantoea agglomerans, Brenneria nigrifluens, Rhizobium radiobacter, Rhizobium vitis, Streptomyces scabies, Ralstonia solanacearum, Xanthomonas campestris and Pectobacterium cartovorum by disc diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration were determined by using the serial dilution method. Chemical composition of essential oil and methanolic extract was determined by GC-MS and HPLC. α-Pinene (25.769%) and myrcene (12.507) were of the highest percentage in T. polium essential oil, and sinapic acid (15.553 mg/g) and eugenol (6.805 mg/g) were the major compounds in the methanolic extract. Our results indicate that both methanolic extract and essential oil did not show antibacterial activity against P. aeruginosa. Also the essential oil did not show antibacterial activity against P. cartovorum. In general, both methanolic extract and essential oil showed the same antibacterial activity against R. solanacearum, P. agglomerans, B. nigrifluens and S. scabies. PMID:25583240

  16. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo.

    PubMed

    Bernet-Camard, M F; Liévin, V; Brassart, D; Neeser, J R; Servin, A L; Hudault, S

    1997-07-01

    The adhering human Lactobacillus acidophilus strain LA1 inhibits the cell association and cell invasion of enteropathogens in cultured human intestinal Caco-2 cells (M. F. Bernet, D. Brassard, J. R. Neeser, and A. L. Servin, Gut 35:483-489, 1994). Here, we demonstrate that strain LA1 developed its antibacterial activity in conventional or germ-free mouse models orally infected by Salmonella typhimurium. We present evidence that the spent culture supernatant of strain LA1 (LA1-SCS) contained antibacterial components active against S. typhimurium infecting the cultured human intestinal Caco-2 cells. The LA1-SCS antibacterial activity was observed in vitro against a wide range of gram-negative and gram-positive pathogens, such as Staphylococcus aureus, Listeria monocytogenes, S. typhimurium, Shigella flexneri, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter cloacae. By contrast, no activity was observed against species of the normal gut flora, such as lactobacilli and bifidobacteria. The LA1-SCS antibacterial activity was insensitive to proteases and independent of lactic acid production. PMID:9212421

  17. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo.

    PubMed Central

    Bernet-Camard, M F; Liévin, V; Brassart, D; Neeser, J R; Servin, A L; Hudault, S

    1997-01-01

    The adhering human Lactobacillus acidophilus strain LA1 inhibits the cell association and cell invasion of enteropathogens in cultured human intestinal Caco-2 cells (M. F. Bernet, D. Brassard, J. R. Neeser, and A. L. Servin, Gut 35:483-489, 1994). Here, we demonstrate that strain LA1 developed its antibacterial activity in conventional or germ-free mouse models orally infected by Salmonella typhimurium. We present evidence that the spent culture supernatant of strain LA1 (LA1-SCS) contained antibacterial components active against S. typhimurium infecting the cultured human intestinal Caco-2 cells. The LA1-SCS antibacterial activity was observed in vitro against a wide range of gram-negative and gram-positive pathogens, such as Staphylococcus aureus, Listeria monocytogenes, S. typhimurium, Shigella flexneri, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter cloacae. By contrast, no activity was observed against species of the normal gut flora, such as lactobacilli and bifidobacteria. The LA1-SCS antibacterial activity was insensitive to proteases and independent of lactic acid production. PMID:9212421

  18. Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, a cecropin-type antibacterial peptide

    SciTech Connect

    Yagi-Utsumi, Maho; Yamaguchi, Yoshiki; Boonsri, Pornthip; Iguchi, Takeshi; Okemoto, Kazuo; Natori, Shunji; Kato, Koichi

    2013-02-08

    Highlights: ► Recombinant sarcotoxin IA was successfully produced with {sup 13}C- and {sup 15}N-labeling. ► Sarcotoxin IA adopts an N-terminal α-helix upon binding to lipid A-embedding micelles. ► Two lysine residues are involved in lipid A-mediated antibacterial activities. -- Abstract: Sarcotoxin IA is a 39-residue cecropin-type peptide from Sarcophaga peregrina. This peptide exhibits antibacterial activity against Gram-negative bacteria through its interaction with lipid A, a core component of lipopolysaccharides. To acquire detailed structural information on this specific interaction, we performed NMR analysis using bacterially expressed sarcotoxin IA analogs with {sup 13}C- and {sup 15}N-labeling along with lipid A-embedding micelles composed of dodecylphosphocholine. By inspecting the stable isotope-assisted NMR data, we revealed that the N-terminal segment (Leu3–Arg18) of sarcotoxin IA formed an amphiphilic α-helix upon its interaction with the aqueous micelles. Furthermore, chemical shift perturbation data indicated that the amino acid residues displayed on this α-helix were involved in the specific interaction with lipid A. On the basis of these data, we successfully identified Lys4 and Lys5 as key residues in the interaction with lipid A and the consequent antibacterial activity. Therefore, these results provide unique information for designing chemotherapeutics based on antibacterial peptide structures.

  19. Peptidolipins B-F, Antibacterial Lipopeptides from an Ascidian-derived Nocardia sp

    PubMed Central

    Wyche, Thomas P.; Hou, Yanpeng; Vazquez-Rivera, Emmanuel; Braun, Doug; Bugni, Tim S.

    2012-01-01

    A marine Nocardia sp. isolated from the ascidian Trididemnum orbiculatum was found to produce five new lipopeptides, peptidolipins B-F (1–5), which show distinct similarities to the previously reported L-Val(6) analog of peptidolipin NA. Synthetic modification of peptidolipin E (4) was used to determine the location of an olefin within the lipid chain. Advanced Marfey’s method was used to determine the absolute configurations of the amino acids. Peptidolipins B (1) and E (4) demonstrated moderate antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). PMID:22482367

  20. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-01-01

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives. PMID:25046750

  1. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    PubMed Central

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H. K.; Weir, Michael D.; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-01-01

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives. PMID:25046750

  2. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss.

    PubMed

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  3. Conformational Flexibility Determines Selectivity and Antibacterial, Antiplasmodial, and Anticancer Potency of Cationic α-Helical Peptides*

    PubMed Central

    Vermeer, Louic S.; Lan, Yun; Abbate, Vincenzo; Ruh, Emrah; Bui, Tam T.; Wilkinson, Louise J.; Kanno, Tokuwa; Jumagulova, Elmira; Kozlowska, Justyna; Patel, Jayneil; McIntyre, Caitlin A.; Yam, W. C.; Siu, Gilman; Atkinson, R. Andrew; Lam, Jenny K. W.; Bansal, Sukhvinder S.; Drake, Alex F.; Mitchell, Graham H.; Mason, A. James

    2012-01-01

    We used a combination of fluorescence, circular dichroism (CD), and NMR spectroscopies in conjunction with size exclusion chromatography to help rationalize the relative antibacterial, antiplasmodial, and cytotoxic activities of a series of proline-free and proline-containing model antimicrobial peptides (AMPs) in terms of their structural properties. When compared with proline-free analogs, proline-containing peptides had greater activity against Gram-negative bacteria, two mammalian cancer cell lines, and intraerythrocytic Plasmodium falciparum, which they were capable of killing without causing hemolysis. In contrast, incorporation of proline did not have a consistent effect on peptide activity against Mycobacterium tuberculosis. In membrane-mimicking environments, structures with high α-helix content were adopted by both proline-free and proline-containing peptides. In solution, AMPs generally adopted disordered structures unless their sequences comprised more hydrophobic amino acids or until coordinating phosphate ions were added. Proline-containing peptides resisted ordering induced by either method. The roles of the angle subtended by positively charged amino acids and the positioning of the proline residues were also investigated. Careful positioning of proline residues in AMP sequences is required to enable the peptide to resist ordering and maintain optimal antibacterial activity, whereas varying the angle subtended by positively charged amino acids can attenuate hemolytic potential albeit with a modest reduction in potency. Maintaining conformational flexibility improves AMP potency and selectivity toward bacterial, plasmodial, and cancerous cells while enabling the targeting of intracellular pathogens. PMID:22869378

  4. Chemical Composition and Antibacterial and Cytotoxic Activities of Allium hirtifolium Boiss

    PubMed Central

    Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh

    2013-01-01

    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141

  5. Acaloleptins A: inducible antibacterial peptides from larvae of the beetle, Acalolepta luxuriosa.

    PubMed

    Imamura, M; Wada, S; Koizumi, N; Kadotani, T; Yaoi, K; Sato, R; Iwahana, H

    1999-01-01

    We purified and characterized three structurally related antibacterial peptides with a molecular mass of 8 kDa (acaloleptins A1, A2, and A3) from the hemolymph of immunized larvae of the Udo longicorn beetle, Acalolepta luxuriosa. These peptides have the same 6 N-terminal amino acid residues and show potent antibacterial activity against some Gram-negative bacteria. The three peptides are thought to be isoforms. Reverse phase HPLC analysis of the hemolymph of immunized and naive larvae showed that acaloleptins A1, A2, and A3 were inducible and suggested that all three peptides were produced in a single insect. We determined the complete amino acid sequence of acaloleptin A1: Acaloleptin A1 consists of 71 amino acid residues and shares significant sequence similarity with coleoptericin and holotricin 2, which were isolated from other coleopteran insects. Furthermore, the 29 C-terminal residues of acaloleptin A1 had 40% identity with the 30 C-terminal residues of hymenoptaecin found in honeybees. Arch. Insect Biochem. PMID:10077828

  6. Single-point mutation-mediated local amphipathic adjustment dramatically enhances antibacterial activity of a fungal defensin.

    PubMed

    Wu, Jiajia; Gao, Bin; Zhu, Shunyi

    2016-07-01

    The emergence and rapid spread of multiresistant bacteria has lead to an urgent need for novel antimicrobials. Based on single-point substitutions, we generated a series of mutants of micasin, a dermatophytic defensin, with enhanced activities against multiple clinical isolates of Staphylococcus species, including 4 antibiotic-resistant strains. We first mapped the functional surface of micasin by alanine-scanning mutational analysis of its highly exposed residues, through which we found that substitution of site 8 (acidic Glu) dramatically enhanced bacterial killing of this peptide. Structural analysis indicates that this single point mutation could result in a functional local amphipathic architecture. Four different types of side chains (hydrophobic, cationic polar, neutral polar, and acidic polar) were introduced at site 8 to clarify the role of this local architecture in micasin function. The results show that all mutants displayed increased antibacterial activity with the exception of the acidic replacement. These mutants with enhanced activity exhibited low hemolysis and cytotoxicity and showed high serum stability, indicating their therapeutic potential. Our work represents the first example of structural fine-tuning to largely improve the antibacterial potency of a dermatophytic defensin.-Wu, J., Gao, B., Zhu, S. Single-point mutation-mediated local amphipathic adjustment dramatically enhances antibacterial activity of a fungal defensin. PMID:27084888

  7. Photodynamic antibacterial effect of graphene quantum dots.

    PubMed

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD. PMID:24612819

  8. Silver nanoparticles as potential antibacterial agents.

    PubMed

    Franci, Gianluigi; Falanga, Annarita; Galdiero, Stefania; Palomba, Luciana; Rai, Mahendra; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-01-01

    Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials. PMID:25993417

  9. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties.

    PubMed

    Reis, Filipa S; Barros, Lillian; Calhelha, Ricardo C; Cirić, Ana; van Griensven, Leo J L D; Soković, Marina; Ferreira, Isabel C F R

    2013-12-01

    Being Cordyceps militaris (L.) Link recognized as a medicinal and edible mushroom, this work intends to reveal new interesting bioactive molecules that could be isolated from this species. Hydrophilic and lipophilic compounds were analyzed by chromatographic techniques coupled to different detectors. The methanolic extract of C. militaris was tested for its antioxidant, antibacterial, antifungal and anti-proliferative properties in different human tumor cell lines. Mannitol (2.01 g/100 g dw) and trehalose (24.71 g/100 g) were the free sugars found in C. militaris. Polyunsaturated fatty acids (68.87%) predominated over saturated fatty acids (23.40%) and δ-tocopherol was the only isoform of vitamin E detected (55.86 μg/100 g). The organic acids found in this mushroom were oxalic, citric and fumaric acids (0.33, 7.97 and 0.13 g/100 g, respectively). p-Hydroxybenzoic acid was the only phenolic acid quantified in this species (0.02 mg/100 g); although cinnamic acid was also found (0.11 mg/100 g). The methanolic extract of C. militaris proved to inhibit lipid peroxidation, have reducing power and scavenge free radicals. This extract also revealed strong antibacterial and antifungal properties. Finally, the C. militaris extract was able to inhibit the proliferation of MCF-7 (breast), NCI-H460 (non-small lung), HCT-15 (colon) and HeLa (cervical) human carcinoma cell lines. PMID:23994083

  10. Growth and membrane fluidity of food-borne pathogen Listeria monocytogenes in the presence of weak acid preservatives and hydrochloric acid

    PubMed Central

    Diakogiannis, Ioannis; Berberi, Anita; Siapi, Eleni; Arkoudi-Vafea, Angeliki; Giannopoulou, Lydia; Mastronicolis, Sofia K.

    2013-01-01

    This study addresses a major issue in microbial food safety, the elucidation of correlations between acid stress and changes in membrane fluidity of the pathogen Listeria monocytogenes. In order to assess the possible role that membrane fluidity changes play in L. monocytogenes tolerance to antimicrobial acids (acetic, lactic, hydrochloric acid at low pH or benzoic acid at neutral pH), the growth of the bacterium and the gel-to-liquid crystalline transition temperature point (Tm) of cellular lipids of each adapted culture was measured and compared with unexposed cells. The Tm of extracted lipids was measured by differential scanning calorimetry. A trend of increasing Tm values but not of equal extent was observed upon acid tolerance for all samples and this increase is not directly proportional to each acid antibacterial action. The smallest increase in Tm value was observed in the presence of lactic acid, which presented the highest antibacterial action. In the presence of acids with high antibacterial action such as acetic, hydrochloric acid or low antibacterial action such as benzoic acid, increased Tm values were measured. The Tm changes of lipids were also correlated with our previous data about fatty acid changes to acid adaptation. The results imply that the fatty acid changes are not the sole adaptation mechanism for decreased membrane fluidity (increased Tm). Therefore, this study indicates the importance of conducting an in-depth structural study on how acids commonly used in food systems affect the composition of individual cellular membrane lipid molecules. PMID:23785360

  11. Antibacterial and Antibiofilm Effects of Boron on Different Bacteria.

    PubMed

    Sayin, Zafer; Ucan, Uckun Sait; Sakmanoglu, Asli

    2016-09-01

    Boron (B) compounds are used in many fields ranging from medicine to industry. In this study, boric acid (BA) and disodium octaborate tetrahydrate (DOT) were evaluated for their antibacterial effects and antibiofilm capacities on selected strains of clinical and type cultures that are of veterinary concern (Staphylococcus aureus ATCC 25923, Aeromonas hydrophila ATCC 19570, Pseudomonas aeruginosa ATCC 27853, Brucella melitensis Rev1 and field isolates of Vibrio anguillarum, Aeromonas hydrophila, Yersinia ruckeri, Pseudomonas aeruginosa, Lactococcus garvieae, and Brucella abortus). Also, the inhibition of biofilm was monitored by scanning electron microscopy. The lowest MIC values of BA and DOT were measured, by broth method using microdilution, from Pseudomonas aeruginosa ATCC 27853, and were 0.385 and 0.644 mg/ml, respectively. Staphylococcus aureus was the most resistant to both BA and DOT. Using the microplate method, we observed that the strongest positivities for biofilm production were presented by Pseudomonas aeruginosa ATCC 27853 and also a clinical isolate of Lactococcus garviea. Lower values in the MIC scores for both B compounds were tested by measuring the inhibitory effect on biofilm production. We found that all the bacterial strains inhibited biofilm formation with the exception of the Pseudomonas aeruginosa strains for BA only and an isolate of Lactococcus garviea for DOT only. Such effects by BA and DOT are worth discussing in order to find novel approaches for different functions in medicine and industry using the bacteria tested. PMID:26864941

  12. Purity of graphene oxide determines its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Barbolina, I.; Woods, C. R.; Lozano, N.; Kostarelos, K.; Novoselov, K. S.; Roberts, I. S.

    2016-06-01

    Nanomaterials based on two-dimensional (2D) atomic crystals are considered to be very promising for various life-science and medical applications, from drug delivery to tissue modification. One of the most suitable materials for these purposes is graphene oxide (GO), thanks to a well-developed methods of production and water solubility. At the same time, its biological effect is still debated. Here we demonstrate that highly purified and thoroughly washed GO neither inhibited nor stimulated the growth of E.coli, ATCC25922; E.coli NCIMB11943 and S.aureus ATCC25923 at concentrations of up to 1 mg ml‑1. Moreover, transmission electron microscopy (TEM) of GO exposed bacteria did not reveal any differences between GO exposed and not exposed populations. In contrast, a suspension of insufficiently purified GO behaved as an antibacterial material due to the presence of soluble acidic impurities, that could be removed by extended purification or neutralisation by alkaline substrates. A standardised protocol is proposed for the generation of clean GO, so it becomes suitable for biological experiments. Our findings emphasise the importance of GO purification status when dealing with biological systems as the true effect of material can be masked by the impact of impurities.

  13. Mucoadhesive 4-carboxybenzenesulfonamide-chitosan with antibacterial properties.

    PubMed

    Suvannasara, Phruetchika; Juntapram, Kotchakorn; Praphairaksit, Nalena; Siralertmukul, Krisana; Muangsin, Nongnuj

    2013-04-15

    The mucoadhesive property of chitosan, especially in an acidic (antibacterial activity against Escherichia coli and Staphlyococcus aureus as model gram-negative and gram-positive bacteria, respectively. PMID:23544535

  14. Antibacterial Effect of Diclofenac Sodium on Enterococcus faecalis

    PubMed Central

    Salem-Milani, Amin; Balaei-Gajan, Esrafil; Rahimi, Saeed; Moosavi, Zohreh; Abdollahi, Ardalan; Zakeri-Milani, Parvin; Bolourian, Mehrdad

    2013-01-01

    Objective: Non-steroidal anti-inflammatory drugs (NSAIDs) have shown antibacterial activity in some recent studies. The aim of this study was to evaluate the antibacterial effect of diclofenac against Enterococcus faecalis (E. faecalis) as a resistant endodontic bacterium in comparison with ibuprofen, calcium hydroxide and amoxicillin. Materials and Methods: The antibacterial activity of materials was evaluated using agar diffusion test and tube dilution method. Mixtures of 400 mg/ml of materials were prepared. The bacteria were seeded on 10 Muller-Hinton agar culture plates. Thirty microliter of each test material was placed in each well punched in agar plates. After incubation, the zone of bacterial inhibition was measured. Minimum inhibitory concentration (MIC) of the test materials was determined by agar dilution method. One-way Analysis of Variance (ANOVA) followed by Sidak post hoc test was used to compare the mean zone of microbial growth in the groups. Results: There were significant differences between the two groups (p< 0.05). Results of the agar diffusion test showed that antibiotics (amoxicillin, gentamycin) had the greatest antibacterial activity followed by NSAIDs (ibuprofen, diclofenac). Ca(OH)2 failed to show antibacterial activity. Diclofenac and ibuprofen showed distinct antibacterial activity against E. faecalis in 50 μg/ml and above concentrations. Conclusion: Within the limitations of this in vitro study, it is concluded that diclofenac and ibuprofen have significantly more pronounced antibacterial activity against E. faecalis in comparison with Ca(OH)2. PMID:23724199

  15. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling

    NASA Astrophysics Data System (ADS)

    Holešová, Sylva; Valášková, Marta; Hlaváč, Dominik; Madejová, Jana; Samlíková, Magda; Tokarský, Jonáš; Pazdziora, Erich

    2014-06-01

    Clay minerals are commonly used materials in pharmaceutical production both as inorganic carriers or active agents. The purpose of this study is the preparation and characterization of clay/antibacterial drug hybrids which can be further included in drug delivery systems for treatment oral infections. Novel nanocomposites with antibacterial properties were successfully prepared by ion exchange reaction from two types of kaolinite/urea intercalates and chlorhexidine diacetate. Intercalation compounds of kaolinite were prepared by reaction with solid urea in the absence of solvents (dry method) as well as with urea aqueous solution (wet method). The antibacterial activity of two prepared samples against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was evaluated by finding the minimum inhibitory concentration (MIC). Antibacterial studies of both samples showed the lowest MIC values (0.01%, w/v) after 1 day against E. faecalis, E. coli and S. aureus. A slightly worse antibacterial activity was observed against P. aeruginosa (MIC 0.12%, w/v) after 1 day. Since samples showed very good antibacterial activity, especially after 1 day of action, this means that these samples can be used as long-acting antibacterial materials. Prepared samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental data are supported by results of molecular modelling.

  16. Synthesis, molecular modeling and biological evaluation of β-ketoacyl-acyl carrier protein synthase III (FabH) as novel antibacterial agents.

    PubMed

    Zhang, Hong-Jia; Zhu, Di-Di; Li, Zi-Lin; Sun, Juan; Zhu, Hai-Liang

    2011-08-01

    A series of novel cinnamic acid secnidazole ester derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3n showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC₅₀ of 2.5 μM. Docking simulation was performed to position compound 3n into the E. coli FabH active site to determine the probable binding conformation. PMID:21741250

  17. Spectrum-Effect Relationships Between Chemical Fingerprints and Antibacterial Effects of Lonicerae Japonicae Flos and Lonicerae Flos Base on UPLC and Microcalorimetry.

    PubMed

    Shi, Zhilong; Liu, Zhenjie; Liu, Chunsheng; Wu, Mingquan; Su, Haibin; Ma, Xiao; Zang, Yimei; Wang, Jiabo; Zhao, Yanling; Xiao, Xiaohe

    2016-01-01

    The traditional Chinese medicines Lonicerae Japonicae Flos (LJF, Jinyinhua in Chinese) and Lonicerae Flos (LF, Shanyinhua in Chinese) refer to the flower buds of five plants belonging to the Caprifoliaceae family. Until 2000, all of these were officially listed as a single item, LJF (Jinyinhua), in the Chinese Pharmacopoeia. However, there have recently been many academic controversies concerning the separation and combination of LJF and LF in administrative regulation. Till now there has been little work completed evaluating the relationships between biological activity and chemical properties among these drugs. Microcalorimetry and UPLC were used along with principal component analysis (PCA), hierarchical cluster analysis (HCA), and canonical correlation analysis (CCA) to investigate the relationships between the chemical ingredients and the antibacterial effects of LJF and LF. Using multivariate statistical analysis, LJF and LF could be initially separated according to their chemical fingerprints, and the antibacterial effects of the two herbal drugs were divided into two clusters. This result supports the disaggregation of LJF and LF by the Pharmacopoeia Committee. However, the sample of Lonicera fulvotomentosa Hsu et S. C. Cheng turned out to be an intermediate species, with similar antibacterial efficacy as LJF. The results of CCA indicated that chlorogenic acid and 3,4-Dicaffeoylquinic acid were the major components generating antibacterial effects. Furthermore, 3,4-Dicaffeoylquinic acid could be used as a new marker ingredient for quality control of LJF and LF. PMID:26869929

  18. Spectrum-Effect Relationships Between Chemical Fingerprints and Antibacterial Effects of Lonicerae Japonicae Flos and Lonicerae Flos Base on UPLC and Microcalorimetry

    PubMed Central

    Shi, Zhilong; Liu, Zhenjie; Liu, Chunsheng; Wu, Mingquan; Su, Haibin; Ma, Xiao; Zang, Yimei; Wang, Jiabo; Zhao, Yanling; Xiao, Xiaohe

    2016-01-01

    The traditional Chinese medicines Lonicerae Japonicae Flos (LJF, Jinyinhua in Chinese) and Lonicerae Flos (LF, Shanyinhua in Chinese) refer to the flower buds of five plants belonging to the Caprifoliaceae family. Until 2000, all of these were officially listed as a single item, LJF (Jinyinhua), in the Chinese Pharmacopoeia. However, there have recently been many academic controversies concerning the separation and combination of LJF and LF in administrative regulation. Till now there has been little work completed evaluating the relationships between biological activity and chemical properties among these drugs. Microcalorimetry and UPLC were used along with principal component analysis (PCA), hierarchical cluster analysis (HCA), and canonical correlation analysis (CCA) to investigate the relationships between the chemical ingredients and the antibacterial effects of LJF and LF. Using multivariate statistical analysis, LJF and LF could be initially separated according to their chemical fingerprints, and the antibacterial effects of the two herbal drugs were divided into two clusters. This result supports the disaggregation of LJF and LF by the Pharmacopoeia Committee. However, the sample of Lonicera fulvotomentosa Hsu et S. C. Cheng turned out to be an intermediate species, with similar antibacterial efficacy as LJF. The results of CCA indicated that chlorogenic acid and 3,4-Dicaffeoylquinic acid were the major components generating antibacterial effects. Furthermore, 3,4-Dicaffeoylquinic acid could be used as a new marker ingredient for quality control of LJF and LF. PMID:26869929

  19. Antibacterial properties of tropical plants from Puerto Rico.

    PubMed

    Meléndez, P A; Capriles, V A

    2006-03-01

    In an effort to document the antibacterial properties of plants commonly used by the people of Puerto Rico, we studied the effects of 172 plant species, utilizing the disc diffusion method, against Escherichia coli and Staphylococcus aureus. The methanolic extracts of 14 species showed antibacterial activities during this preliminary screen. These positive plant extracts were tested successively over 15 additional species. The results showed that extracts from Citrus aurantifolia (Rutaceae), Citrus aurantium (Rutaceae), Punica granatum (Punicaceae), Phyllanthus acidus (Euphorbiaceae) and Tamarindus indica (Caesalpiniaceae) possess strong in vitro antibacterial activity against the bacteria tested. PMID:16492531

  20. Cyclohexane triones, novel membrane-active antibacterial agents.

    PubMed Central

    Lloyd, W J; Broadhurst, A V; Hall, M J; Andrews, K J; Barber, W E; Wong-Kai-In, P

    1988-01-01

    The cyclohexane triones are a novel group of synthetic antibacterial agents that are active against gram-positive bacteria, Haemophilus influenzae, and Mycobacterium smegmatis. In general, these compounds behaved in a manner similar to that of hexachlorophene, inhibiting the transport of low-molecular-weight hydrophilic substances into bacteria. Unlike cationic detergents, such as chlorhexidine, they did not cause disruption of the bacterial cytoplasmic membrane over a short time period. The most potent antibacterial cyclohexane trione studied had a reduced ability to inhibit solute transport in comparison with certain less active analogs. Cyclohexane triones may express more than a single type of antibacterial effect. PMID:3137860

  1. Synthesis and antibacterial properties of copper nanoparticles for Salmonella typhi

    NASA Astrophysics Data System (ADS)

    Jaiswal, Anamika; Gaherwal, S.; Lodhi, Pavitra Devi; Singh, Jaiveer; Kaurav, Netram; Shrivastava, M. M. P.

    2016-05-01

    In this study, the antibacterial properties of Cu nanoparitcles (Cu-NPs) were investigated against Salmonella typhi. The Cu-NPs were prepared by the reduction of cupper acetate with the help of ethylene glycol (EG), then sample was characterized by XRD for its average particle size identification. The antibacterial activity assessed by well diffusion and disc diffusion method on different concentration of nanoparticles. It was found that these Cu-NPs showed antibacterial activity in form of zone inhibition, wherein, zone of inhibition increased with increase in concentration of Cu-NPs.

  2. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets.

    PubMed

    Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO₂ hydration, with kcat values in the range of (3.4-8.3) × 10⁵ s(-1) and kcat/KM values of (4.7-8.5) × 10⁷ M(-1)·s(-1). In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3-90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2-88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  3. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    PubMed Central

    Supuran, Claudiu T.

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM values of (4.7–8.5) × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  4. PHARMACOLOGICAL ACTIVITIES OF PROTOCATECHUIC ACID.

    PubMed

    Khan, Abida Kalsoom; Rashid, Rehana; Fatima, Nighat; Mahmood, Sadaf; Mir, Sadullah; Khan, Sara; Jabeen, Nyla; Murtaza, Ghulam

    2015-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a simple phenolic acid. It is found in a large variety of edible plants and possesses various pharmacological activities. This article aims to review the modern trends in phytochemical isolation and extraction of PCA from plants and other natural resources. Moreover, this article also encompasses pharmacological and biological activities of PCA. It is well known to have anti-inflammatory, antioxidant, anti-hyperglycemia, antibacterial, anticancer, anti-ageing, anti-athro- genic, anti-tumoral, anti-asthma, antiulcer, antispasmodic and neurological properties. PMID:26647619

  5. Effect of surface treatments on the surface morphology, corrosion property, and antibacterial property of Ti-10Cu sintered alloy.

    PubMed

    Zhang, Erlin; Liu, Cong

    2015-08-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility in vitro and in vivo, displaying potential application as an implant material. Surface treatments are always applied to implants to improve the surface biocompatibility. In this paper, several typically used surface treatments, including sandblasting (SB), sandblasted and large-grits acid etching (SLA), and alkaline heat treatment (AH) were chosen to modify the Ti-10Cu. A cp-Ti (commercially pure titanium) sample was used as control sample. The effect of surface treatments on the corrosion properties and antibacterial properties of the Ti-10Cu sintered alloy was investigated. After SB and SLA treatments, a rough surface with a TiO2 layer was formed on the surface, which reduced the corrosion resistance and enhanced the Ti and Cu ion release. After AH treatment, a smooth but microporous surface with a TiO2/titanate layer was formed, which improved slightly the corrosion resistance. However, the Cu ion and Ti ion release from the Ti-10Cu sample was promoted by AH treatment due to the fact that more Ti2Cu phases were exposed on the AH-treated Ti-10Cu sample. It was demonstrated that the Ti-10Cu samples after surface treatments still exhibited good antibacterial properties against S. aureus, which indicated that the surface treatment did not reduce the antibacterial activity. The control mechanism was thought to be related to the high Cu ion release even after surface treatments. It was expected that the surface treatments provided Ti-10Cu sintered alloy with good surface bioactivity without reduction in antibacterial activity. PMID:26201969

  6. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination.

    PubMed

    Bag, Anwesa; Chattopadhyay, Rabi Ranjan

    2015-01-01

    The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf), cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity -guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative) of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50) and antioxidant (CI : 0.79) activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 - 0.917) as well as antioxidant capacity (R2 = 0.828) was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69%) and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was identified as p

  7. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination

    PubMed Central

    Bag, Anwesa; Chattopadhyay, Rabi Ranjan

    2015-01-01

    The present study was carried out to evaluate the possible synergistic interactions on antibacterial and antioxidant efficacy of essential oils of some selected spices and herbs [bay leaf, black pepper, coriander (seed and leaf), cumin, garlic, ginger, mustard, onion and turmeric] in combination. Antibacterial combination effect was evaluated against six important food-borne bacteria (Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) using microbroth dilution, checkerboard titration and time-kill methods. Antioxidant combination effect was assessed by DPPH free radical scavenging method. Total phenolic content was measured by Folin-Ciocalteu method. Bioactivity –guided fractionation of active essential oils for isolation of bioactive compounds was done using TLC-bioautography assay and chemical characterization (qualitative and quantitative) of bioactive compounds was performed using DART-MS and HPLC analyses. Cytotoxic potential was evaluated by brine shrimp lethality assay as well as MTT assay using human normal colon cell line. Results showed that among the possible combinations tested only coriander/cumin seed oil combination showed synergistic interactions both in antibacterial (FICI : 0.25-0.50) and antioxidant (CI : 0.79) activities. A high positive correlation between total phenolic content and antibacterial activity against most of the studied bacteria (R2 = 0.688 – 0.917) as well as antioxidant capacity (R2 = 0.828) was also observed. TLC-bioautography-guided screening and subsequent combination studies revealed that two compounds corresponding to Rf values 0.35 from coriander seed oil and 0.53 from cumin seed oil exhibited both synergistic antibacterial and antioxidant activities. The bioactive compound corresponding to Rf 0.35 from coriander seed oil was identified as linalool (68.69%) and the bioactive compound corresponding to Rf 0.53 from cumin seed oil was identified

  8. Antibacterial and antioxidant activities in Sideritis italica (Miller) Greuter et Burdet essential oils.

    PubMed

    Basile, Adriana; Senatore, Felice; Gargano, Rosalba; Sorbo, Sergio; Del Pezzo, Marisa; Lavitola, Alfredo; Ritieni, Alberto; Bruno, Maurizio; Spatuzzi, Daniela; Rigano, Daniela; Vuotto, Maria Luisa

    2006-09-19

    Sideritis italica (Miller) Greuter et Burdet is a widespread Lamiacea in the Mediterranean region used in traditional medicine. Essential oils were antibacterial against nine ATCC and as many clinically isolated Gram-positive and Gram-negative bacterial strains. Antibacterial activity was also found against Helicobacter pylori: a dose-dependant inhibition was shown between 5 and 25 microg/ml. The antibacterial activity of the oils was expressed as MICs (minimum inhibitory concentrations) and MBCs (minimum bactericidal concentrations). At a concentration between 3.9 and 250 microg/ml the oils showed a significant antibacterial effect against both Gram-negative and Gram-positive bacteria. In particular the ATCC strains Pseudomonas aeruginosa (MIC=3.9 microg/ml and 7.8 for flowerheads and leaves, respectively), Proteus mirabilis (MIC=15.6 and 7.8 microg/ml), Salmonella typhi (MIC=7.8 microg/ml) and Proteus vulgaris (MIC=15.6 microg/ml) were the most inhibited. Only Pseudomonas aeruginosa showed MBC at a concentration between 62.6 and 125 microg/ml. The antioxidant activity of the essential oils was evaluated by two cell free colorimetric methods: ABTS and DMPD; leaf oil is more active (4.29 +/- 0.02 trolox equivalents and 4.53 +/- 0.67 ascorbic acid equivalents by ABTS and DMPD, respectively). Finally the antioxidant activity of the essential oils was also evaluated by their effects on human whole blood leukocytes (WB) and on isolated polymorphonucleate (PMN) chemiluminescence. Comparing the effects of the oils from leaves and flowerheads on both PMN and WB chemiluminescence emission, we found no significant differences. Essential oils showed a dose-dependent and linear inhibitory activity on isolated PMN as well as on WB CL emission when PMA-stimulated. On the contrary, the inhibitory activity on resting cells was nonlinear. Our data represent an answer to the continual demand for new antibiotics and antioxidants for the continuous emergence of antibiotic

  9. Antibacterial Mechanisms of Polymyxin and Bacterial Resistance

    PubMed Central

    Qin, Wangrong; Fang, Shisong; Qiu, Juanping

    2015-01-01

    Multidrug resistance in pathogens is an increasingly significant threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial clinical therapy. In many such cases, polymyxins are the last option available, although their use increases the risk of developing resistant strains. This review mainly aims to discuss advances in unraveling the mechanisms of antibacterial activity of polymyxins and bacterial tolerance together with the description of polymyxin structure, synthesis, and structural modification. These are expected to help researchers not only develop a series of new polymyxin derivatives necessary for future medical care, but also optimize the clinical use of polymyxins with minimal resistance development. PMID:25664322

  10. New antibacterial peptide derived from bovine hemoglobin.

    PubMed

    Daoud, Rachid; Dubois, Veronique; Bors-Dodita, Loredana; Nedjar-Arroume, Naima; Krier, Francois; Chihib, Nour-Eddine; Mary, Patrice; Kouach, Mostafa; Briand, Gilbert; Guillochon, Didier

    2005-05-01

    Peptic digestion of bovine hemoglobin at low degree of hydrolysis yields an intermediate peptide fraction exhibiting antibacterial activity against Micrococcus luteus A270, Listeria innocua, Escherichia coli and Salmonella enteritidis after separation by reversed-phase HPLC. From this fraction a pure peptide was isolated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). This peptide correspond to the 107-136 fragment of the alpha chain of bovine hemoglobin. The minimum inhibitory concentrations (MIC) towards the four strains and its hemolytic activity towards bovine erythrocytes were determined. A MIC of 38 microM was reported against L. innocua and 76 microM for other various bacterial species. This peptide had no hemolytic activity up to 380 microM concentration. PMID:15808900

  11. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  12. Cationic nanofibrillar cellulose with high antibacterial properties.

    PubMed

    Chaker, Achraf; Boufi, Sami

    2015-10-20

    Cationic nanofibrillar cellulose (C-NFC) has been prepared via a high pressure homogenization using quaternized cellulose fibers with glycidyltrimethylammonium chloride. It has been shown that the quaternization of dried softwood pulp facilitated the defibrillation processes and prevented clogging of the homogenizer. The effects of the trimethylammonium chloride content on the fibrillation yield, the transparency degree of the gel, the rheological behavior of the NFC suspension and their electrokinetic properties were investigated. AFM observation showed that the NFC suspension consisted of individualized cellulose I nanofibrils 4-5nm in width and length in the micronic scale. In addition to their strong reinforcing potential, the inclusion of C-NFC into a polymer matrix was shown to efficiently enhance the antibacterial activity. The reinforcing potential of C-NFC, studied by dynamic mechanical analysis (DMA), was compared to anionic NFC and the difference was explained in terms of the nanofibrils capacities to build up a strong networks held by hydrogen bonding. PMID:26256179

  13. Antibacterial activity of aquatic gliding bacteria.

    PubMed

    Sangnoi, Yutthapong; Anantapong, Theerasak; Kanjana-Opas, Akkharawit

    2016-01-01

    The study aimed to screen and isolate strains of freshwater aquatic gliding bacteria, and to investigate their antibacterial activity against seven common pathogenic bacteria. Submerged specimens were collected and isolated for aquatic gliding bacteria using four different isolation media (DW, MA, SAP2, and Vy/2). Gliding bacteria identification was performed by 16S rRNA gene sequencing and phylogenetic analysis. Crude extracts were obtained by methanol extraction. Antibacterial activity against seven pathogenic bacteria was examined by agar-well diffusion assay. Five strains of aquatic gliding bacteria including RPD001, RPD008, RPD018, RPD027 and RPD049 were isolated. Each submerged biofilm and plastic specimen provided two isolates of gliding bacteria, whereas plant debris gave only one isolate. Two strains of gliding bacteria were obtained from each DW and Vy/2 isolation medium, while one strain was obtained from the SAP2 medium. Gliding bacteria strains RPD001, RPD008 and RPD018 were identified as Flavobacterium anhuiense with 96, 82 and 96 % similarity, respectively. Strains RPD049 and RPD027 were identified as F. johnsoniae and Lysobacter brunescens, respectively, with similarity equal to 96 %. Only crude extract obtained from RPD001 inhibited growth of Listeria monocytogenes (MIC 150 µg/ml), Staphylococcus aureus (MIC 75 µg/ml) and Vibrio cholerae (MIC 300 µg/ml), but showed weak inhibitory effect on Salmonella typhimurium (MIC > 300 µg/ml). Gliding bacterium strain RPD008 should be considered to a novel genus separate from Flavobacterium due to its low similarity value. Crude extract produced by RPD001 showed potential for development as a broad antibiotic agent. PMID:26885469

  14. Antibacterial properties of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile.

    PubMed

    Rajamuthiah, Rajmohan; Jayamani, Elamparithi; Majed, Hiwa; Conery, Annie L; Kim, Wooseong; Kwon, Bumsup; Fuchs, Beth Burgwyn; Kelso, Michael J; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-11-15

    The emergence of multidrug-resistant bacterial strains has heightened the need for new antimicrobial agents based on novel chemical scaffolds that are able to circumvent current modes of resistance. We recently developed a whole-animal drug-screening methodology in pursuit of this goal and now report the discovery of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC) as a novel antibacterial effective against resistant nosocomial pathogens. The minimum inhibitory concentrations (MIC) of PSPC against Staphylococcus aureus and Enterococcus faecium were 4 μg/mL and 8 μg/mL, respectively, whereas the MICs were higher against the Gram-negative bacteria Klebsiella pneumoniae (64 μg/mL), Acinetobacter baumannii (32 μg/mL), Pseudomonas aeruginosa (>64 μg/mL), and Enterobacter spp. (>64 μg/mL). However, co-treatment of PSPC with the efflux pump inhibitor phenylalanine arginyl β-naphthylamide (PAβN) or with sub-inhibitory concentrations of the lipopeptide antibiotic polymyxin B reduced the MICs of PSPC against the Gram-negative strains by >4-fold. A sulfide analog of PSPC (PSPC-1S) showed no antibacterial activity, whereas the sulfoxide analog (PSPC-6S) showed identical activity as PSPC across all strains, confirming structure-dependent activity for PSPC and suggesting a target-based mechanism of action. PSPC displayed dose dependent toxicity to both Caenorhabditis elegans and HEK-293 mammalian cells, culminating with a survival rate of 16% (100 μg/mL) and 8.5% (64 μg/mL), respectively, at the maximum tested concentration. However, PSPC did not result in hemolysis of erythrocytes, even at a concentration of 64 μg/mL. Together these results support PSPC as a new chemotype suitable for further development of new antibiotics against Gram-positive and Gram-negative bacteria. PMID:26459212

  15. Antibacterial Effects of Blackberry Extract Target Periodontopathogens

    PubMed Central

    González, Octavio A.; Escamilla, Carolina; Danaher, Robert J.; Dai, Jin; Ebersole, Jeffrey L.; Mumper, Russell J.; Miller, Craig S.

    2013-01-01

    Background and Objective Antimicrobial agents provide valuable adjunctive therapy for prevention and control of oral diseases. Limitations in their prolonged use have stimulated the search for new natural occurring agents with more specific activity and fewer adverse effects. Here we sought to determine the anti-bacterial properties of blackberry extract (BBE) in vitro against oral bacterial commensals and periodontopathogens. Material and Methods Effects of whole and fractionated BBE on the metabolism of 10 different oral bacteria were evaluated by colorimetric water-soluble tetrazolium-1 (WST-1) assay. Bactericidal effects of whole BBE against F. nucleatum were determined by quantitating colony forming units (CFUs). Cytotoxicity was determined in oral epithelial (OKF6) cells. Results BBE at 350-1,400 μg/mL reduced the metabolic activity of P. gingivalis, F. nucleatum and S. mutans. The reduced metabolic activity observed for F. nucleatum corresponded to a reduction in CFUs following exposure to BBE for as little as 1 hour, indicative of its bactericidal properties. An anthocyanin-enriched fraction of BBE reduced the metabolic activity of F. nucleatum but not P. gingivalis or S. mutans, suggesting the contribution of species specific agents in the whole BBE. Oral epithelial cell viability was not reduced following ≤ 6 h exposures to whole BBE (2.24-1400 μg/mL). Conclusion BBE alters the metabolic activity of oral periodontopathogens while demonstrating minimal effect on commensals. The specific antibacterial properties of BBE shown in this study along with its anti-inflammatory and antiviral properties previously demonstrated make this natural extract a promising target as an adjunct for prevention and/or complementary therapy of periodontal infections. PMID:22812456

  16. Phytochemical constituents and antibacterial activity of some green leafy vegetables

    PubMed Central

    Bhat, Ramesa Shafi; Al-Daihan, Sooad

    2014-01-01

    Objective To investigate the antibacterial activity and photochemicals of five green leafy vegetables against a panel of five bacteria strains. Methods Disc diffusion method was used to determine the antibacterial activity, while kanamycin was used as a reference antibiotic. The phytochemical screening of the extracts was performed using standard methods. Results All methanol extracts were found active against all the test bacterial strains. Overall maximum extracts shows antibacterial activity which range from 6 to 15 mm. Proteins and carbohydrates was found in all the green leaves, whereas alkaloid, steroids, saponins, flavonoids, tannins were found in most of the test samples. Conclusions The obtain result suggests that green leafy vegetables have moderate antibacterial activity and contain various pharmacologically active compounds and thus provide the scientific basis for the traditional uses of the studied vegetables in the treatment of bacterial infections. PMID:25182436

  17. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    NASA Astrophysics Data System (ADS)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  18. Alkalization is responsible for antibacterial effects of corroding magnesium.

    PubMed

    Rahim, Muhammad Imran; Eifler, Rainer; Rais, Bushra; Mueller, Peter P

    2015-11-01

    Magnesium alloys are presently investigated as potential medical implant materials for temporary applications. Magnesium has been reported to have antibacterial activities and could therefore be used to prevent antibiotic treatment-resistant bacterial implant infections. For characterizing the effects of magnesium on infectious bacteria, bioluminescent S. aureus or P. aeruginosa were employed. The proliferation of both types of bacteria was suppressed in the presence of metallic magnesium and also in aqueous magnesium corrosion extracts. Of the two soluble corrosion products, magnesium ions were well tolerated while antibacterial activities correlated with increased pH levels of the supernatants. The alkaline pH alone was sufficient for the antibacterial effects which were completely abolished when the pH of the corrosion supernatants was neutralized. These results demonstrate that pH increases are necessary and sufficient for the antibacterial activity of metallic magnesium. In an animal model magnesium implants showed an enhanced but variable resistance to bacterial colonization. PMID:25974048

  19. Application of SBDD to the discovery of new antibacterial drugs.

    PubMed

    Finn, John

    2012-01-01

    The emergence of bacteria that are multiply resistant to commonly used antibiotics has created the medical need for novel classes of antibacterial agents. The unique challenges to the discovery of new antibacterial drugs include the following: spectrum, selectivity, low emergence of new resistance, and high potency. With the emergence of genomic information, dozens of antibacterial targets have been pursued over the last 2 decades often using SBDD. This chapter reviews the application of structure-based drug design approaches on a selected group of antibacterial targets (DHFR, DHNA, PDF, and FabI) where significant progress has been made. We compare and contrast the different approaches and evaluate the results in terms of the biological profiles of the leads produced. Several common themes have emerged from this survey, resulting in a set of recommendations. PMID:22222458

  20. Antibacterial activity in the hemolymph of myriapods (Arthropoda).

    PubMed

    Xylander, W E; Nevermann, L

    1990-09-01

    The hemolymphs of two diplopod (Chicobolus sp. and Rhapidostreptus virgator) and two chilopod species (Lithobius forficatus and Scolopendra cingulata) were tested for the presence of antibacterial substances using Petri dish tests. The native hemolymph of all species had substances acting on living Micrococcus luteus, whereas only Rhapidostreptus, Scolopendra, and Lithobius were effective against lyophilized Micrococcus. The antibacterial activity against living Micrococcus increased after inoculation with bacteria (Enterobacter cloacae beta-12) in Chicobolus and Rhapidostreptus and also against lyophilized Micrococcus in the latter. Thus, these effects appear to be inducible. None of the myriapods tested had any bacteriostatic effect on Escherichia coli D-31 whereas the growth of gram-negative E. cloacae was inhibited. The antibacterial substances in the diplopod species were unstable when heated but were resistant to freezing. At least two antibacterial substances (a lysozyme-like one and another substance) are considered to occur in Myriapoda. PMID:2273286

  1. The antibacterial paradox: essential drugs, effectiveness, and cost.

    PubMed Central

    Fasehun, F.

    1999-01-01

    The concept proposed by WHO of an essential drugs list that should comprise drugs corresponding to the health needs of the majority of the people has been embraced by countries, which have adapted it to their needs. In this study, the essential antibacterial drug lists of 16 countries chosen from the six WHO regions are reviewed. Most of these countries include 73% of WHO-recommended essential antibacterials on their lists. However, most are lacking reserve antibacterials, and even some main list antibacterials, which are essential when empirical therapy fails in cases of bacterial resistance. Many factors that may be responsible for the lack of selection of these drugs, not least cost considerations, are discussed. PMID:10212510

  2. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules

    PubMed Central

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  3. Enhanced HIV-1 Reverse Transcriptase Inhibitory and Antibacterial Properties in Callus of Catha edulis Forsk.

    PubMed

    Kumari, Aloka; Baskaran, Ponnusamy; Van Staden, Johannes

    2015-06-01

    Developing tissue culture systems for medicinal plants is important in that they may offer an alternative to protect wild populations. However, analysis of bioactivity for tissue culture developed plant tissues is required to offer support and allow acceptance in traditional medicine. The use of propagated callus could provide potential material for therapeutic purposes. This study was aimed at evaluating the anti-HIV and antibacterial properties of a three-month-old tissue culture-derived calli and leaves of cultivated mother plants of Catha edulis Forsk. The calli were derived from leaf explants using different plant growth regulators. The calli obtained from callus cultured on 9.8 μM indole-3-butyric acid plus 2.7 μM naphthalene acetic acid exhibited the highest HIV-1 reverse transcriptase inhibitory effects when compared with other treatments and the mother plants. Different extracts of callus exhibited high antibacterial activity (<1 mg/mL: minimum inhibitory concentration from 0.098 to 0.78 mg/mL) against both gram-positive and gram-negative bacteria. Leaf acetone extracts showed moderate activity (minimum inhibitory concentration of 0.78 mg/mL) against Staphylococcus aureus. The present study indicated that tissue culture-derived calli could be used as therapeutic agents for traditional medicine. The choice of treatment used in the tissue culture system and the age of the callus for production of biomass may significantly influence its therapeutic potential. PMID:25753483

  4. Preparation of antibacterial silk fibroin membranes via tyrosinase-catalyzed coupling of ε-polylysine.

    PubMed

    Wang, Ping; Deng, Chao; Yuan, Jiugang; Yu, Yuanyuan; Cui, Li; Su, Mengting; Wang, Qiang; Fan, Xuerong

    2016-03-01

    Silk fibroins have good biocompatibility and could be used to form a variety of regenerated functional biomaterials. In this study, enzymatic oxidization of silk fibroins with tyrosinase (TYR) was carried out, followed by coupling of ε-polylysine (ε-PLL) for improving antibacterial ability of the fibroin-based biomaterial. Trinitrobenzene sulfonic acid (TNBS) was selectively used to incubate with silk fibroins prior to TYR treatment, aiming at preventing the self-crosslinking of silk fibroins during enzymatic oxidation. The results indicated that tyrosine residues in silk fibroins could be converted to reactive dioxyphenylalanine and o-quinone residues TYR successively. TNBS pretreatment inhibited the self-crosslinks of silk fibroins and promoted the successive coupling of ε-PLL to fibroin proteins with high graft yield. The combined use of TNBS, TYR, and ε-PLL treatments endowed fibroin membrane with satisfactory antibacterial ability against Staphylococcus aureus, and the obtained durability was also acceptable. The changes in surface potential and amine acid composition for the fibroin membranes verified the favorable actions of the combined treatment. The present method could be potentially utilized for enzymatic functionalization of various fibroin-based biomaterials. PMID:25757371

  5. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    PubMed

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  6. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils.

    PubMed

    Gennaro, R; Skerlavaj, B; Romeo, D

    1989-10-01

    Extracts of granules of bovine neutrophils are known to exhibit a marked antibacterial activity in vitro. By a simple, two-step chromatographic procedure, we have resolved two peptide components of the antibacterial system. They were named Bac-5 and Bac-7 from the general term bactenecin and had molecular masses of about 5 and 7 kilodaltons, respectively. Over 45 and 20% of the amino acid residues in the two bactenecins are proline and arginine, respectively. The remaining amino acids are mainly hydrophobic (isoleucine, leucine, and phenylalanine). Both Bac-5 and Bac-7 efficiently kill Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae. They also arrest the growth of Enterobacter cloacae (MICs, 25 to 200 micrograms/ml) but not of Proteus vulgaris, Staphylococcus aureus, and Streptococcus agalactiae (MIC, greater than 200 micrograms/ml). Finally, Bac-7 but not Bac-5 has MICs of less than or equal to 200 micrograms/ml for Pseudomonas aeruginosa and Staphylococcus epidermidis. From the comparison between the efficient bactericidal concentrations in vitro and the estimated content of bactenecins in neutrophils (125 ng of Bac-5 and Bac-7 each per 10(6) cells), it is reasonable to conclude that the two cationic peptides may exert a major role in host defense against at least some microorganisms. PMID:2777377

  7. Antibacterial interactions of monolaurin with commonly used antimicrobials and food components.

    PubMed

    Zhang, Hui; Wei, Hewen; Cui, Yinan; Zhao, Guoqun; Feng, Fengqin

    2009-09-01

    Monolaurin is a nontraditional antimicrobial agent that possesses better antimicrobial activities but causes no health problems to consumers, but the use of monolaurin in the food industry as a preservative is still limited. Using a microtiter plate assay, the minimum inhibitory concentrations for monolaurin were 25 microg/mL against Escherichia coli, 12.5 microg/mL against Staphylococcus aureus, and 30 microg/mL against Bacillus subtilis. The interaction with commonly used antimicrobials revealed that monolaurin and nisin acted synergistically against the test microorganisms, monolaurin in combination with sodium dehydroacetate or ethylenediaminetetraacetic acid was synergistic against E. coli and B. subtilis but not S. aureus, and monolaurin combined with calcium propionate or sodium lactate showed no synergistic effects against any test microorganism. The interaction with food components revealed that the antibacterial effectiveness of monolaurin was reduced by fat or starch while the monolaurin activity remained unchanged in the presence of protein. This study contributes to a better understanding on the use of monolaurin as a nontraditional preservative in food products. Results from this study suggest the potential use of monolaurin as a nontraditional preservative in combination with commonly used antimicrobials, such as nisin, sodium dehydroacetate, or ethylenediaminetetraacetic acid, and suggest that the antibacterial effectiveness of monolaurin may be reduced significantly in high-fat or low-starch food products. PMID:19895490

  8. [Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives].

    PubMed

    Toda, M; Okubo, S; Ikigai, H; Shimamura, T

    1990-03-01

    Among catechins tested, (-)epigallocatechin (EGC), (-)epicatechin gallate (ECg), (-) epigallocatechin gallate (EGCg) inhibited the growth of Staphylococcus aureus, Vibrio cholerae O1 classical Inaba 569B and El Tor Inaba V86. S. aureus was more sensitive than V. cholerae O1 to these compounds. EGCg showed also a bactericidal activity against V. cholerae O1 569B. Pyrogallol showed a stronger antibacterial activity against S. aureus and V. cholerae O1 than tannic and gallic acid. Rutin or caffein had no effect on them. ECg and EGCg showed the most potent anti-hemolysin activity against S. aureus alpha-toxin, Vibrio parahaemolyticus thermostable direct hemolysin (Vp-TDH) and cholera hemolysin. Among catechin relatives, only tannic acid had a potent anti-hemolysin activity against alpha-toxin. These results suggest that the catechol and pyrogallol groups are responsible for the antibacterial and bactericidal activities, while the conformation of catechins might play an important role in the anti-hemolysin activity. PMID:2381042

  9. Antibiotic susceptibility, antibacterial activity and characterisation of Enterococcus faecium strains isolated from breast milk

    PubMed Central

    Kıvanç, Sertaç Argun; Kıvanç, Merih; Yiğit, Tülay

    2016-01-01

    Enterococci, which have useful biotechnological applications, produce bacteriocins, including those that exert anti-Listerial activity. The present study aimed to determine the antibiotic susceptibility patterns and antimicrobial activity of Enterococcus faecium strains isolated from human breast milk. The strains were identified using carbohydrate fermentation tests and ribotyping. Subsequently, the antibacterial activity of the isolates was investigated, and the quantities of lactic acid and hydrogen peroxide produced, and the proteolytic activity of E. faecium, were determined. In addition, biofilm formation by E. faecium strains was assessed. E. faecium strains exhibited antimicrobial activity against food-borne and clinical bacterial isolates. Furthermore, following 24 h incubation, the tested strains exhibited resistance to a pH range of 2.0–9.5 and tolerance of bile acid, lysozyme activity and phenol. Supernatants of the E. faecium TM13, TM15, TM17 and TM18 strains were shown to be effective against Listeria monocytogenes, and were also resistant to heat. Further studies are required in order to determine whether certain strains of E. faecium may be used for the development of novel antibacterial agents. PMID:27602088

  10. Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria

    PubMed Central

    Dong, Hongling; Zhu, Chaoyang; Chen, Jingyi; Ye, Xing; Huang, Yu-Ping

    2015-01-01

    Maltocin P28 is a phage-tail like bacteriocin produced by Stenotrophomonas maltophilia P28. The ORF8 of maltocin P28 gene cluster is predicted to encode an endolysin and we name it endolysin P28. Sequence analysis revealed that it contains the lysozyme_like superfamily conserved domain. Endolysin P28 has the four consensus motifs as that of Escherichia coli phage lambda gpR. In this study, endolysin P28 was expressed in E. coli BL21 (DE3) and purified with a C-terminal oligo-histidine tag. The antibacterial activity of endolysin P28 increased as the temperature rose from 25 to 45°C. Thermostability assays showed that endolysin P28 was stable up to 50°C, while its residual activity was reduced by 55% after treatment at 70°C for 30 min. Acidity and high salinity could enhance its antibacterial activity. Endolysin P28 exhibited a broad antibacterial activity against 14 out of 16 tested Gram-positive and Gram-negative bacteria besides S. maltophilia. Moreover, it could effectively lyse intact Gram-negative bacteria in the absence of ethylenediaminetetraacetic acid as an outer membrane permeabilizer. Therefore, the characteristics of endolysin P28 make it a potential therapeutic agent against multi-drug-resistant pathogens. PMID:26635765

  11. ANTIBACTERIAL ACTIVITY OF LEAF EXTRACT OF Abutilon indicum

    PubMed Central

    Poonkothai, M.

    2006-01-01

    Chloroform, ethanol and aqueous extracts of the leaves of Abutilon indicum were investigated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among the various extracts, maximum antibacterial activity was exhibited by ethanol extract (14, 25, 14, 25, 17, 18 mm) followed by chloroform extract (13, 17, 8, 15, 15, 20 mm) while aqueous extract, showed no activity. PMID:22557222

  12. ANTIBACTERIAL ACTIVITY OF LEAF EXTRACT OF Abutilon indicum.

    PubMed

    Poonkothai, M

    2006-07-01

    Chloroform, ethanol and aqueous extracts of the leaves of Abutilon indicum were investigated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among the various extracts, maximum antibacterial activity was exhibited by ethanol extract (14, 25, 14, 25, 17, 18 mm) followed by chloroform extract (13, 17, 8, 15, 15, 20 mm) while aqueous extract, showed no activity. PMID:22557222

  13. Evaluation of antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols.

    PubMed

    Batovska, Daniela; Todorova, Iva; Parushev, Stoyan; Tsvetkova, Iva; Najdenski, Hristo; Ubukata, Makoto

    2008-01-01

    The antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols (MAGs) was studied against two human pathogens: Staphylococcus aureus and Escherichia coli. The active compounds inhibited selectively S. aureus. The most active compounds amongst them were those with medium size aliphatic chain and aromatic MAGs with electron withdrawing substituents at the aryl ring. The introduction of one or two-carbon spacer between the aryl ring and the carboxylic function did not influence antibacterial effectiveness. PMID:19004249

  14. Antibacterial effect of some leaf extracts on Salmonella typhi.

    PubMed

    Gehlot, D; Bohra, A

    2000-03-01

    Aqueous and methanol extracts of fresh leaves of twenty desert plants of Rajasthan state were tested for their antibacterial activity against human pathogenic bacteria Salmonella typhi, causal organism of typhoid fever in human beings. 10% concentrate extracts of leaves of various plant species were used for testing antibacterial potential. Five plant species were found to have inhibitory effect against the organism. Fagonia cretica leaf extracts were found most effective against Salmonella typhi. PMID:11227613

  15. Antibacterial activity of two plant extracts on eight burn pathogens.

    PubMed

    Gnanamani, A; Priya, K Shanmuga; Radhakrishnan, N; Babu, Mary

    2003-05-01

    Antibacterial activity of crude alcoholic extract of Datura alba and Celosia argentea leaves were studied against pathogens isolated from infected burn patients. The disc-diffusion method showed significant zone of lysis against all the pathogens studied and the results are comparable to the conventional antibiotic cream namely Silver Sulphadiazine (SSD). On comparing the efficiency of the two extracts, extract of D. alba exhibited more than 50% increase in antibacterial activity compared to C. argentea. PMID:12686442

  16. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    PubMed Central

    Verma, A. K.; Singh, R. R.

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis. PMID:21695004

  17. Antibacterial and antifungal activity of Indonesian ethnomedical plants.

    PubMed

    Goun, E; Cunningham, G; Chu, D; Nguyen, C; Miles, D

    2003-09-01

    Methylene chloride and methanol extracts of 20 Indonesian plants with ethnomedical uses have been assessed for in vitro antibacterial and antifungal properties by disk diffusion method. Extracts of the six plants: Terminalia catappa, Swietenia mahagoni Jacq., Phyllanthus acuminatus, Ipomoea spp., Tylophora asthmatica and Hyptis brevipes demonstrated high activity in this bioassay system. These findings should stimulate the search for novel, natural product such as new antibacterial and antifungal agents. PMID:12946723

  18. [Bases of the antibacterial effect of beta lactam antibiotics].

    PubMed

    Hof, H

    1991-12-01

    The primary antibacterial effect of betalactam antibiotics is due to the inhibition of cell-wall synthesis. Prerequisites for good antibacterial activity of such an antibiotic are --rapid penetration across the bacterial cell wall, --strong binding to the proper targets in the cytoplasmic membrane, i.e. the penicillin-binding proteins, --resistance to betalactamases which may be produced by the bacterial cell. PMID:1802833

  19. One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity.

    PubMed

    Chen, Yuemei; Deng, Yuanming; Pu, Yitao; Tang, Bijun; Su, Yikun; Tang, Jiaoning

    2016-08-01

    We report a simple "one-pot" solvothermal preparation of silver nanoparticles (Ag NPs) decorated mesoporous titania (TiO2) microspheres as an effective antibacterial agent. TBOT as Ti source was hydrolyzed and crystallized in media composed of acetic acid and ethanol, in which esterification catalyzed by TBOT occurred for in-situ "controlled water release". AgNO3 as Ag source was reduced by ethanol to form Ag NPs embedded in the TiO2 microspheres. The effect of AgNO3 and HAc on the morphology of Ag/TiO2 was investigated. The Ag/TiO2 with various Ag content showed excellent antibacterial activities with extremely low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli and Staphylococcus aureus when compared with colloidal Ag NPs. PMID:27157724

  20. Antibacterial activity of nanocomposites of copper and cellulose.

    PubMed

    Pinto, Ricardo J B; Daina, Sara; Sadocco, Patrizia; Pascoal Neto, Carlos; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. PMID:24455681

  1. Nanofibers based antibacterial drug design, delivery and applications.

    PubMed

    Ulubayram, Kezban; Calamak, Semih; Shahbazi, Reza; Eroglu, Ipek

    2015-01-01

    Infections caused by microorganisms like bacteria, fungi, etc. are the main obstacle in healing processes. Conventional antibacterial administration routes can be listed as oral, intravenous/intramuscular, topical and inhalation. These kinds of drug administrations are faced with critical vital issues such as; more rapid delivery of the drug than intended which can result in bacterial resistance, dose related systemic toxicity, tissue irritation and finally delayed healing process that need to be tackled. Recently, studies have been focused on new drug delivery systems, overcoming resistance and toxicological problems and finally localizing the molecules at the site of action in a proper dose. In this regard, many nanotechnological approaches such as nanoparticulate therapeutic systems have been developed to address accompanying problems mentioned above. Among them, drug loaded electrospun nanofibers propose main advantages like controlled drug delivery, high drug loading capacity, high encapsulation efficiency, simultaneous delivery of multiple drugs, ease of production and cost effectiveness for pharmaceutical and biomedical applications. Therefore, some particular attention has been devoted to the design of electrospun nanofibers as promising antibacterial drug carrier systems. A variety of antibacterials e.g., biocides, antibiotics, quaternary ammonium salts, triclosan, metallic nanoparticles (silver, titanium dioxide, and zinc oxide) and antibacterial polymers (chitosan, polyethyleneimine, etc.) have been impregnated by various techniques into nanofibers that exhibit strong antibacterial activity in standard assays. This review highlights the design and delivery of antibacterial drug loaded nanofibers with particular focus on their function in the fields of drug delivery, wound healing, tissue engineering, cosmetics and other biomedical applications. PMID:25732666

  2. Antibacterial properties and mechanisms of gold-silver nanocages

    NASA Astrophysics Data System (ADS)

    Wang, Yulan; Wan, Jiangshan; Miron, Richard J.; Zhao, Yanbin; Zhang, Yufeng

    2016-05-01

    Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics.

  3. Antibacterial properties and mechanisms of gold-silver nanocages.

    PubMed

    Wang, Yulan; Wan, Jiangshan; Miron, Richard J; Zhao, Yanbin; Zhang, Yufeng

    2016-06-01

    Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics. PMID:27180869

  4. Distribution and significance of heterotrophic marine bacteria with antibacterial activity.

    PubMed Central

    Nair, S; Simidu, U

    1987-01-01

    Bacteria with antibacterial activity were isolated from seawater, sediments, phytoplankton, and zooplankton of Suruga, Sagami, and Tokyo Bays and from soft corals and sponges collected from the Taiwan coast. Of the 726 strains isolated, 37 showed antibacterial activity against either Vibrio parahaemolyticus (ATCC 17802) or Staphylococcus aureus (P209). Sediment harbored the lowest number of these forms of bacteria, and those from Tokyo Bay did not show any activity. Attached isolates showed greater activity compared with free-living forms. Relatively high numbers of strains with antibacterial activity were associated with phytoplankton. Among the zooplankton isolates, cladocerans harbored the maximum number of antibacterial strains. Isolates were more inhibitory to gram-positive test cultures. Autoinhibition was observed only among 8% of the isolates. Marine nonproducers were more susceptible. Pseudomonas/Alteromonas species made up 81.0% of isolates, of which 30% were pigmented strains. The absence or reduction in number of bacteria with antibacterial activity in Tokyo Bay is attributed to its eutrophic nature, which may tend to moderate the production of antibacterial compounds. PMID:3435149

  5. Antibacterial Activity of Nanocomposites of Copper and Cellulose

    PubMed Central

    Pinto, Ricardo J. B.; Daina, Sara; Neto, Carlos Pascoal; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings. PMID:24455681

  6. Antibacterial properties of modified biodegradable PHB non-woven fabric.

    PubMed

    Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V

    2016-08-01

    The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. PMID:27157763

  7. Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents

    PubMed Central

    Xu, Dong; Wang, Qingyun; Yang, Tao; Cao, Jianzhong; Lin, Qinlu; Yuan, Zhiqin; Li, Le

    2016-01-01

    Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable silver nanoclusters by altering PEI molecular weight from 0.6 kDa to 25 kDa and characterized them by UV-Vis absorption and fluorescence spectroscopy and high resolution transmission electron microscopy. The sizes of AgNCs were around 2 nm in diameter and were little influenced by the molecular weight of PEIs. The antibacterial abilities of the four PEI-AgNCs were explored on agar plate and in liquid systems. Our results revealed that the antibacterial activity of PEI-AgNCs is excellent and the reduction of PEI molecular weight could result in the increased antibacterial capacity of PEI-AgNCs. Such proposed new materials might be useful as efficient antibacterial agents in practical clinical applications. PMID:26999183

  8. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound

    NASA Astrophysics Data System (ADS)

    Seil, Justin T.; Webster, Thomas J.

    2012-12-01

    Using Staphylococcus aureus (S. aureus), the present study investigated the antibacterial effect of ZnO nanoparticles both in the absence and presence of ultrasound stimulation. While the antibacterial effect of control nanoparticle chemistries (Al2O3) alone was either weak or unobservable under the conditions tested, the antibacterial effect of ZnO alone was significant, providing over a four log reduction (equivalent to antibiotics) compared to no treatment after just 8 h. The antibacterial effect was enhanced as ZnO particle diameter decreased. Specifically, when testing the antibacterial effect against bacteria populations relevant to infection, a 500 μg ml-1 dose of zinc oxide nanoparticles with a diameter of 20 nm reduced S. aureus populations by four orders of magnitude after 8 and 24 h, compared to control groups with no nanoparticles. This was accomplished without the use of antibiotics, to which bacteria are developing a resistance anyway. The addition of ultrasound stimulation further reduced the number of viable colony-forming units present in a planktonic cell suspension by 76% compared to nanoparticles alone. Lastly, this study provided a mechanism for how ZnO nanoparticles in the presence of ultrasound decrease bacteria functions by demonstrating greater hydrogen peroxide generation by S. aureus compared to controls. These results indicated that small-diameter ZnO nanoparticles exhibited strong antibacterial properties that can be additionally enhanced in the presence of ultrasound and, thus, should be further studied for a wide range of medical device anti-infection applications.

  9. Residues of antibacterial drugs in honey from the Italian market.

    PubMed

    Baggio, A; Gallina, A; Benetti, C; Mutinelli, F

    2009-01-01

    Antibacterial drugs are used worldwide for the control of American and, less often, European foulbrood. Their administration is mostly uncontrolled and applied without approved protocols and instructions for use as well as precautionary recommendations. Consequently, this practice is responsible for the contamination of beehive products and contributes to the problem of food safety. According to this situation, 4672 analyses were carried out on 5303 honeys collected from 2001 to 2007. These samples were investigated for antibacterial residues of tetracyclines, sulphonamides, streptomycin, chloramphenicol and tylosin. Honeys were classified according to their origin: imported honey and honey from the Italian market. In the last group (only for samples collected from 2001 to 2004), another type of honey was distinguished: that of local honey. A total of 6.3% of all samples were positive for the antibacterial drugs analysed; in particular, 6.8% of imported honeys and 6.1% of honeys on the Italian market. Only 1.7% of local honey had antibacterial residues. These results are indicative of a rather frequent presence of antibacterial drug residues in both Italian and imported honeys. Furthermore, the data showed that among the active substances analysed, sulphonamides are the most used antibacterial substance followed by tetracyclines, streptomycin, tylosin, and chloramphenicol. Finally, a continuous monitoring programme is needed, accompanied by an education programme to beekeepers on proper hive management. PMID:24784967

  10. Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L.

    PubMed

    Patra, Jayanta Kumar; Das, Gitishree; Baek, Kwang-Hyun

    2015-01-01

    Laminaria japonica L. is among the most commonly consumed seaweeds in northeast Asia. In the present study, L. japonica essential oil (LJEO) was extracted by microwave-hydrodistillation and analyzed by gas chromatography and mass spectroscopy. LJEO contained 21 volatile compounds, comprising 99.76% of the total volume of the essential oil, primarily tetradeconoic acid (51.75%), hexadecanoic acid (16.57%), (9Z,12Z)-9,12-Octadecadienoic acid (12.09%), and (9Z)-hexadec-9-enoic acid (9.25%). Evaluation of the antibacterial potential against three foodborne pathogens, Bacillus cereus ATCC 10876, Escherichia coli O157:H7 ATCC 43890, and Staphylococcus aureus ATCC 49444, revealed that LJEO at a concentration of 25 mg/paper disc exerted high antibacterial activity against S. aureus (11.5 ± 0.58 mm inhibition zone) and B. cereus (10.5 ± 0.57 mm inhibition zone), but no inhibition of E. coli O157:H7. LJEO also displayed DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity (80.45%), superoxide anion scavenging activity (54.03%), and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical and hydroxyl radical scavenging at 500 µg/mL. Finally, LJEO showed high inhibition of lipid peroxidation with strong reducing power. In conclusion, LJEO from edible seaweed is an inexpensive but favorable resource with strong antibacterial capacity as well as free radical scavenging and antioxidant activity; therefore, it has the potential for use in the food, cosmetics, and pharmaceutical industries. PMID:26147582

  11. Applicability of preparative overpressured layer chromatography and direct bioautography in search of antibacterial chamomile compounds.

    PubMed

    Móricz, Agnes M; Ott, Péter G; Alberti, Agnes; Böszörményi, Andrea; Lemberkovics, Eva; Szoke, Eva; Kéry, Agnes; Mincsovics, Emil

    2013-01-01

    In situ sample preparation and preparative overpressured layer chromatography (OPLC) fractionation on a 0.5 mm thick adsorbent layer of chamomile flower methanol extract prepurified by conventional gravitation accelerated column chromatography were applied in searching for bioactive components. Sample cleanup in situ on the adsorbent layer subsequent to sample application was performed using mobile phase flow in the opposite direction (the input and output of the eluent was exchanged). The antibacterial effect of the fractions obtained from the stepwise gradient OPLC separation with the flow in the normal direction was evaluated by direct bioautography against two Gram-negative bacteria: the luminescence gene tagged plant pathogenic Pseudomonas syringae pv. maculicola, and the naturally luminescent marine bacterium Vibrio fischeri. The fractions having strong activity were analyzed by SPME-GC/MS and HPLC/MS/MS. Mainly essential oil components, coumarins, flavonoids, phenolic acids, and fatty acids were tentatively identified in the fractions. PMID:24645496

  12. Antibacterial properties of the Vietnamese cajeput oil and ocimum oil in combination with antibacterial agents.

    PubMed

    Jedlicková, Z; Mottl, O; Serý, V

    1992-01-01

    Main antibacterially active agents obtained from plants-Cajeput essential oil--1,8 cineol, linalool, alpha-terpineol and terpinen-4-ol, for example from Melalleuce leucadendron (Myrtaceae) as well as essential oil from Ocimum gratissimum (Labiatae) were combined in tests in vitro with selected antibiotics. Above mentioned plant products were found to be effective medicaments for local application in modern medical practice. Combinations with antibiotics potentiated their therapeutical action. On the basis of tests in vitro the synergistic action of these two kinds of medicaments, i.e., preparations traditionally used for a few last decades--antibiotics--might be well applied for therapeutical needs. PMID:1293213

  13. Antibacterial Nanostructured Polyhydroxybutyrate Membranes for Guided Bone Regeneration.

    PubMed

    Karahaliloğlu, Zeynep; Ercan, Batur; Taylor, Erik N; Chung, Stanley; Denkbaş, Emir B; Webster, Thomas J

    2015-12-01

    The principle of guided bone regeneration (GBR) in orthopedic, cranio-maxillofacial and dental tissue engineering applications is to create a secluded space for the treatment of large bone defects while excluding fibrous connective tissue formation at the defect area. In dental surgeries, a GBR membrane is placed near the dental implant in post-extraction sockets to grow new bone at the implant site, along with inhibiting infection due to the microbial nature of the mouth flora. Poly[(R)-3-hydroxybutyric acid] (PHB) is a natural polyester synthesized by a wide variety of microorganisms which has been proposed for various biomedical applications. In this study, to improve the performance of PHB as a GBR, a NaOH based alkaline treatment was designed to create nanofeatured PHB membranes. The newly fabricated nanofeatured PHB membranes were investigated for GBR applications. The results showed that a quick, simple, and inexpensive sodium hydroxide treatment modified the nanostructured surface morphology and chemistry of the PHB membranes by inducing hydrolysis of the ester bonds in the PHB backbone creating carboxylic surface functional groups, which increased the hydrophilicity of the PHB surfaces. Cytocompatibility studies showed increased proliferation of human osteoblasts (bone forming cells) on the NaOH treated PHB membranes compared to the untreated ones. Importantly, in vitro bacterial studies with Staphylococcus aureus (S. aureus) indicated that the NaOH-treated PHB surfaces inhibited S. aureus growth more than 60% after 48 hours of culture compared to the untreated PHB membrane. Thus, this study, for the first time, showed that nanofeatured PHB membranes modified with a NaOH treatment may be a useful anti-bacterial, osteoconductive GBR membrane for numerous orthopedic, cranio-maxillofacial and dental tissue engineering applications. PMID:26510318

  14. Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities

    PubMed Central

    2012-01-01

    Background Withania somnifera, also known as ashwagandha, is an important herb in ayurvedic and indigenous medical systems. The present study was designed to evaluate the antioxidant and antibacterial activities of an 80% aqueous methanolic extract of W. somnifera roots (WSREt), fruits (WSFEt) and leaves (WSLEt). Methods Several assays were performed to determine the antioxidant properties of this herb including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), ferrous chelation and inhibition of β-carotene bleaching. Results The values for DPPH, FRAP, ferrous chelation and inhibition of β carotene bleaching for the three types of extracts ranged from 101.73-801.93 μg/ml, 2.26-3.29 mM Fe/kg, 0.22-0.65 mg/ml and 69.87-79.67%, respectively, indicating that W. somnifera, particularly the leaves, possesses significant antioxidant properties. The mean ascorbic acid content was 20.60-62.60 mg/100 g, and the mean anthocyanin content was 2.86-12.50 mg/100 g. Antibacterial activities were measured using the agar well diffusion method and five pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhi, Citrobacter freundii, Pseudomonas aeruginosa and Klebsiella pneumoniae. The leaf extracts displayed the highest activity against S. typhi (32.00 ± 0.75 mm zone of inhibition), whereas the lowest activity was against K. pneumoniae (19.00 ± 1.48 mm zone of inhibition). The lowest minimum inhibitory concentration value was 6.25 mg/ml, which was against S. typhi, followed by 12.5 mg/ml against E. coli. Conclusion In addition to its antioxidant properties, W. somnifera exhibited significant antibacterial activities against Gram-negative bacteria, particularly S. typhi. PMID:23039061

  15. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    PubMed Central

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P< 0.05). Dose dependent FIC and FRAP activities were exhibited by all the peel extracts. All extracts also exhibited high inhibition (>50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively

  16. Antibacterial effects of several current orthodontic materials against Streptococcus mutans.

    PubMed

    Catalbaş, B; Kamak, H; Demir, A; Nur, M; Hadimli, H H

    2012-11-01

    The aim of this study was to examine the antibacterial effect of several current orthodontic materials against a certain oral bacterium. The antibacterial activities of six orthodontic composite resins (Transbond LR, Light Cure Retainer (LCR), Light Bond, System 1+, Kurasper F, Transbond XT adhesive), two orthodontic bonding materials (Transbond XT primer and System 1+ activator) and two glass ionomer cements (GIC) [Multicure Glass Ionomer and Ketac Cem GIC] were evaluated against Streptococcus mutans. The hard materials were put into the Teflon mould. The liquid materials were put on a paper disc. All materials were handled under aseptic conditions and placed on agar culture plates. All plates were incubated at 5% CO2 and 37 degrees C for 48 hours. The bacterial growth inhibition zones including the diameter of the sample were measured in millimetres. As a result of this study, the multicure GIC showed the highest antibacterial effectiveness, but no inhibition zones were noted for ketac cem GIC. The light bond adhesive of the Reliance orthodontic bonding system produced high antibacterial effect against S mutans, while the Reliance composite (LCR) did not show any antibacterial effect (p < 0.05). Both composite and primer of the transbond XT system demonstrated significant antibacterial effect against the test bacterium when compared to transbond LR (p < 0.05). Among the materials tested, kurasper F, Ormco system 1+ and system 1+ activator showed slight or no inhibitory effect against the test bacterium in this study In patients who have relatively high salivary levels of Streptococci mutans before treatment, the multicure GIC, the Reliance light bond adhesive, and transbond XT system which had high level antibacterial properties could be applied. PMID:23757904

  17. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    PubMed Central

    Nijampatnam, Bhavitavya; Nadkarni, Dwayaja H.; Wu, Hui; Velu, Sadanandan E.

    2015-01-01

    Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity. PMID:25767719

  18. Activation of antibacterial autophagy by NADPH oxidases

    PubMed Central

    Huang, Ju; Canadien, Veronica; Lam, Grace Y.; Steinberg, Benjamin E.; Dinauer, Mary C.; Magalhaes, Marco A. O.; Glogauer, Michael; Grinstein, Sergio; Brumell, John H.

    2009-01-01

    Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR ligands. Engagement of either TLRs or the Fcγ receptors (FcγRs) during phagocytosis induced recruitment of the autophagy protein LC3 to phagosomes with similar kinetics. Both receptors are known to activate the NOX2 NADPH oxidase, which plays a central role in microbial killing by phagocytes through the generation of reactive oxygen species (ROS). We found that NOX2-generated ROS are necessary for LC3 recruitment to phagosomes. Antibacterial autophagy in human epithelial cells, which do not express NOX2, was also dependent on ROS generation. These data reveal a coupling of oxidative and nonoxidative killing activities of the NOX2 NADPH oxidase in phagocytes through autophagy. Furthermore, our results suggest a general role for members of the NOX family in regulating autophagy. PMID:19339495

  19. Antibacterial titanium surfaces for medical implants.

    PubMed

    Ferraris, S; Spriano, S

    2016-04-01

    Bacterial contamination is a critical problem in different fields (ranging from everyday life to space missions, and from medicine to biosensing). Specifically, in the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. These problems can in turn lead to the necessity of a prolonged antibiotic therapy (which can last for years) and eventually to the removal of the device, with a consequent significant increase in the hospitalization times and costs, together with a stressful, painful and critical situation for the patient. Commercially pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone, and the prevention of infections on their surface is therefore a crucial challenge for orthopaedic and dental surgeons. The problem of the bacterial contamination of medical implants is briefly described in the first part of the present review. Then the most important inorganic antibacterial agents (Ag, Cu and Zn) are described, and this is followed by a review of the reported attempts of their introduction onto the surface of Ti-based substrates. PMID:26838926

  20. Mechanism of antibacterial activity of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Chakraborty, Ruchira; Basu, Tarakdas

    2014-04-01

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu2+ ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.

  1. Therapeutic potential of cationic steroid antibacterials.

    PubMed

    Salmi, Chanaz; Brunel, Jean M

    2007-08-01

    Antibiotics were one of the great health successes of the 20th century. Antibiotics, both naturally derived and synthetic, have resulted in huge decreases in both morbidity and mortality from bacterial infections. As a consequence, the 'antibiotic age' has changed public expectations about the results of infectious disease. However, this has led to high levels of inappropriate prescribing, where antibiotics may be administered to fulfil patient expectations rather than for clinical benefit. Along with unwise uses in agriculture and elsewhere, this has contributed to recent rises in numbers of antibiotic-resistant bacteria. As a result, many commentators have described this as the end of the antibiotic age and the term 'superbug' has entered the common vocabulary for multi-drug-resistant bacteria such as vancomycin-resistant Enterococcus, multi-drug-resistant Staphylococcus aureus and multi-drug-resistant Pseudomonas aeruginosa. In this context, an attractive approach for the development of antibacterial agents is the use of a new class of cationic steroidal compounds mimicking polymyxin activities. The permeabilization properties of these agents of the outer membranes of Gram-negative bacteria are reported in this review, as well as a discussion of literature results. PMID:17685865

  2. Development of remineralizing, antibacterial dental materials.

    PubMed

    Mehdawi, Idris; Neel, Ensanya A Abou; Valappil, Sabeel P; Palmer, Graham; Salih, Vehid; Pratten, Jonathan; Spratt, Dave A; Young, Anne M

    2009-09-01

    Light curable methacrylate dental monomers containing reactive calcium phosphate filler (monocalcium phosphate monohydrate (MCPM) with particle diameter of 29 or 90microm) and beta-tricalcium phosphate (beta-TCP) at 1:1 weight ratio in a powder:liquid ratio (PLR) of 1:1 or 3:1 and chlorhexidine diacetate (0 or 5 wt.%), were investigated. Upon light exposure, approximately 90% monomer conversion was gained irrespective of the formulation. Increasing the PLR promoted water sorption by the set material, induced expansion and enhanced calcium, phosphate and chlorhexidine release. Concomitantly, a decline in compressive and biaxial flexural strengths occurred. With a reduction in MCPM particle diameter, however, calcium and phosphate release was reduced and less deterioration in strength observed. After 24h, the remaining MCPM had reacted with water and beta-TCP, forming, within the set materials, brushite of lower solubility. This provided a novel means to control water sorption, component release and strength properties. Measurable chlorhexidine release was observed for 6weeks. Both diffusion rate and total percentage of chlorhexidine release decreased with lowering PLR or by adding buffer to the storage solutions. Higher chlorhexidine release was associated with reduced bacterial growth on agar plates and in a biofilm fermenter. In cell growth media, brushite and hydroxyapatite crystals precipitated on the composite material surfaces. Cells spread on both these crystals and the exposed polymer composite surfaces, indicating their cell compatibility. These formulations could be suitable antibacterial, biocompatible and remineralizing dental adhesives/liners. PMID:19410530

  3. Antibacterial polyelectrolyte micelles for coating stainless steel.

    PubMed

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  4. Towards squalamine mimics: synthesis and antibacterial activities of head-to-tail dimeric sterol-polyamine conjugates.

    PubMed

    Chen, Wen-Hua; Wennersten, Christine; Moellering, Robert C; Regen, Steven L

    2013-03-01

    Four dimeric sterol-polyamine conjugates have been synthesized from the homo- and hetero-connection of monomeric sterol-polyamine analogs in a head-to-tail manner. These dimeric conjugates show strong antibacterial activity against a broad spectrum of Gram-positive bacteria, whereas their corresponding activities against Gram-negative bacteria are relatively moderate. Though no significant difference was observed in the activities of these conjugates, cholic acid-containing dimeric conjugates generally exhibit higher activities than the corresponding deoxycholic acid-derived analogs. This is in contrast to the finding that a monomeric deoxycholic acid-spermine conjugate was more active than the corresponding cholic acid-derived analog. PMID:23495155

  5. [The history of the development and changes of quinolone antibacterial agents].

    PubMed

    Takahashi, Hisashi; Hayakawa, Isao; Akimoto, Takeshi

    2003-01-01

    The quinolones, especially the new quinolones (the 6-fluoroquinolones), are the synthetic antibacterial agents to rival the Beta-lactam and the macrolide antibacterials for impact in clinical usage in the antibacterial therapeutic field. They have a broad antibacterial spectrum of activity against Gram-positive, Gram-negative and mycobacterial pathogens as well as anaerobes. Further, they show good-to-moderate oral absorption and tissue penetration with favorable pharmacokinetics in humans resulting in high clinical efficacy in the treatment of many kinds of infections. They also exhibit excellent safety profiles as well as those of oral Beta-lactam antibiotics. The bacterial effects of quinolones inhibit the function of bacterial DNA gyrase and topoisomerase IV. The history of the development of the quinolones originated from nalidixic acid (NA), developed in 1962. In addition, the breakthrough in the drug design for the scaffold and the basic side chains have allowed improvements to be made to the first new quinolone, norfloxacin (NFLX), patented in 1978. Although currently more than 10,000 compounds have been already synthesized in the world, only two percent of them were developed and tested in clinical studies. Furthermore, out of all these compounds, only twenty have been successfully launched into the market. In this paper, the history of the development and changes of the quinolones are described from the first quinolone, NA, via, the first new quinolone (6-fluorinated quinolone) NFLX, to the latest extended-spectrum quinolone antibacterial agents against multi-drug resistant bacterial infections. NA has only modest activity against Gram-negative bacteria and low oral absorption, therefore a suitable candidate for treatment of systemic infections (UTIs) is required. Since the original discovery of NA, a series of quinolones, which are referred to as the old quinolones, have been developed leading to the first new quinolone, NFLX, with moderate improvements

  6. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    PubMed Central

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy. PMID:27324288

  7. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

    PubMed

    Ahmad, Ayyaz; Qureshi, Abdul Sattar; Li, Li; Bao, Jie; Jia, Xin; Xu, Yisheng; Guo, Xuhong

    2016-07-01

    We report the simple one pot synthesis of iron-silver (FeAg) bimetallic nanoparticles with different compositions on graphene support. The nanoparticles are well dispersed on the graphene sheet as revealed by the TEM, XRD, and Raman spectra. The antibacterial activity of graphene-FeAg nanocomposite (NC) towards Bacillus subtilis, Escherichia coli, and Staphylococcus aureus was investigated by colony counting method. Graphene-FeAg NC demonstrates excellent antibacterial activity as compared to FeAg bimetallic without graphene. To understand the antibacterial mechanism of the NC, oxidative stress caused by reactive oxygen species (ROS) and the glutathione (GSH) oxidation were investigated in the system. It has been observed that ROS production and GSH oxidation are concentration dependent while the increase in silver content up to 50% generally enhances the ROS production while ROS decreases on further increase in silver content. Graphene loaded FeAg NC demonstrates higher GSH oxidation capacity than bare FeAg bimetallic nanocomposite. The mechanism study suggests that the antibacterial activity is probably due to membrane and oxidative stress produced by the nanocomposites. The possible antibacterial pathway mainly includes the non-ROS oxidative stress (GSH oxidation) while ROS play minor role. PMID:27038914

  8. Antibacterial activities of extracts from Nigerian chewing sticks.

    PubMed

    Taiwo, O; Xu, H X; Lee, S F

    1999-12-01

    Ten aqueous extracts from wooden chewing sticks widely used in Nigeria for teeth cleaning were studied for antibacterial activities against 25 different bacteria using an agar diffusion assay. The extracts from five sticks, namely Garcinia kola, Anogeissus leiocarpus, Terminalia glaucescens, Sorindeia warneckei and Vitex doniana, exhibited strong activities against a wide spectrum of bacteria including medically and dentally relevant bacteria. Notably, these five chewing stick extracts showed potent activities against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and multidrug-resistant Burkholderia cepacia and Pseudomonas aeruginosa. Extracts from Vernonia amygdalina, Fagara zanthoxyloides and Massularia acuminata also showed activities against bacteria significant to periodontal disease. Methanol extracts prepared from G. kola, A. leiocarpus and V. doniana were further fractionated by solvent extraction. Results showed that the antibacterial activities were distributed into different fractions suggesting that the sticks contain different active antibacterial principles. In conclusion, the results showed that most of the Nigerian chewing sticks do contain antibacterial activities which may contribute to the reported anticaries effect of chewing sticks. These sticks may be sources for new lead antibacterial agents for therapeutic or preventive applications. PMID:10594937

  9. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity.

    PubMed

    Shahzadi, Irum; Shah, Mohammad M

    2015-01-01

    Wild marigold (Tagetes minuta), a flowering plant of the family Asteraceae contains compounds of pharmaceutical and nutritional importance especially essential oils and flavonols. Identification, characterization of flavonols and determination of their antibacterial activity were major objectives of the current study. The isolation and purification of flavonols was accomplished using chromatographic techniques while structural elucidation was completed by LC-MS and NMR spectroscopy. The extracts and purified compounds were tested against various bacterial strains for antibacterial activity. A total of 19 flavonols were isolated from this species. Of these, 17 were of butanol and two of ethyl acetate extracts. Based on the concentration and purity, eight potential flavonols were selected and structurally elucidated. Four flavonols, 6-hydroxyquercetin 7-O-β-(6''-galloylglucopyranoside; 2), 6-hydroxykaempferol 7-O-β-glucopyranoside (5), 6-hydroxykaempferol 7-O-β-(6''-galloylglucopyranoside; 7), 6-hydroxyquercetin 7-O-β-(6''-caffeoylglucopyranoside; 9), were identified for the first time from T. minuta. Butanol and ethyl acetate extracts of flowers and seeds showed significant antibacterial activity against Micrococcus leteus, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas pikettii. Among the isolated flavonols only 1, 2, and 18 were found to possess significant antibacterial activity against M. luteus. The extracts and purified flavonols from T. minuta can be potential candidates for antibacterial drug discovery and support to ethnopharmacological use. PMID:26441652

  10. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity

    PubMed Central

    Shahzadi, Irum; Shah, Mohammad M.

    2015-01-01

    Wild marigold (Tagetes minuta), a flowering plant of the family Asteraceae contains compounds of pharmaceutical and nutritional importance especially essential oils and flavonols. Identification, characterization of flavonols and determination of their antibacterial activity were major objectives of the current study. The isolation and purification of flavonols was accomplished using chromatographic techniques while structural elucidation was completed by LC–MS and NMR spectroscopy. The extracts and purified compounds were tested against various bacterial strains for antibacterial activity. A total of 19 flavonols were isolated from this species. Of these, 17 were of butanol and two of ethyl acetate extracts. Based on the concentration and purity, eight potential flavonols were selected and structurally elucidated. Four flavonols, 6-hydroxyquercetin 7-O-β-(6′′-galloylglucopyranoside; 2), 6-hydroxykaempferol 7-O-β-glucopyranoside (5), 6-hydroxykaempferol 7-O-β-(6′′-galloylglucopyranoside; 7), 6-hydroxyquercetin 7-O-β-(6′′-caffeoylglucopyranoside; 9), were identified for the first time from T. minuta. Butanol and ethyl acetate extracts of flowers and seeds showed significant antibacterial activity against Micrococcus leteus, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas pikettii. Among the isolated flavonols only 1, 2, and 18 were found to possess significant antibacterial activity against M. luteus. The extracts and purified flavonols from T. minuta can be potential candidates for antibacterial drug discovery and support to ethnopharmacological use. PMID:26441652

  11. Small Peptides Derived from Penetratin as Antibacterial Agents.

    PubMed

    Parravicini, Oscar; Somlai, Csaba; Andujar, Sebastián A; Garro, Adriana D; Lima, Beatriz; Tapia, Alejandro; Feresin, Gabriela; Perczel, Andras; Tóth, Gabor; Cascales, Javier López; Rodríguez, Ana M; Enriz, Ricardo D

    2016-04-01

    The synthesis, in vitro evaluation and conformational study of several small-size peptides acting as antibacterial agents are reported. Among the compounds evaluated, the peptides Arg-Gln-Ile-Lys-Ile-Trp-Arg-Arg-Met-Lys-Trp-Lys-Lys-NH2 , Arg-Gln-Ile-Lys-Ile-Arg-Arg-Met-Lys-Trp-Arg-NH2 , and Arg-Gln-Ile-Trp-Trp-Trp-Trp-Gln-Arg-NH2 exhibited significant antibacterial activity. These were found to be very active antibacterial compounds, considering their small molecular size. In order to better understand the antibacterial activity obtained for these peptides, an exhaustive conformational analysis was performed, using both theoretical calculations and experimental measurements. Molecular dynamics simulations using two different media (water and trifluoroethanol/water) were employed. The results of these theoretical calculations were corroborated by experimental circular dichroism measurements. A brief discussion on the possible mechanism of action of these peptides at molecular level is also presented. Some of the peptides reported here constitute very interesting structures to be used as starting compounds for the design of new small-size peptides possessing antibacterial activity. PMID:26972341

  12. Cationic polymers and their self-assembly for antibacterial applications.

    PubMed

    Deka, Smriti Rekha; Sharma, Ashwani Kumar; Kumar, Pradee

    2015-01-01

    The present article focuses on the amphiphilic cationic polymers as antibacterial agents. These polymers undergo self-assembly in aqueous conditions and impart biological activity by efficiently interacting with the bacterial cell wall, hence, used in preparing chemical disinfectants and biocides. Both cationic charge as well as hydrophobic segments facilitate interactions with the bacterial cell surface and initiate its disruption. The perturbation in transmembrane potential causes leakage of cytosolic contents followed by cell death. Out of two categories of macromolecules, peptide oligomers and cationic polymers, which have extensively been used as antibacterials, we have elaborated on the current advances made in the area of cationic polymer-based (naturally occurring and commonly employed synthetic polymers and their modified analogs) antibacterial agents. The development of polymer-based antibacterials has helped in addressing challenges posed by the drug-resistant bacterial infections. These polymers provide a new platform to combat such infections in the most efficient manner. This review presents concise discussion on the amphiphilic cationic polymers and their modified analogs having low hemolytic activity and excellent antibacterial activity against array of fungi, bacteria and other microorganisms. PMID:25858132

  13. New antibacterial agents: patent applications published in 2010.

    PubMed

    Stokes, Suzanne S; Morningstar, Marshall; Kocis, Helena; Verheijen, Jeroen C

    2012-11-01

    This review summarizes patent applications from 2010 for small molecules for which there is a claim of antibacterial activity. The primary criterion for inclusion in this analysis was reporting of cellular antibacterial activity data (MICs) for at least one compound. Patent applications are reviewed according to their biological target and antibacterial class. Protein synthesis inhibitors disclosed in this period include inhibitors of the 50S ribosome subunit (oxazolidinones, macrolides/ketolides and pleuromutilins), 30S ribosome subunit (aminoglycosides and tetracyclines) and nonribosomal targets (PDF inhibitors). DNA synthesis inhibitors include inhibitors of GyrA/ParC and GyrB/ParE. Cell envelope disruptors disclosed in 2010 cover both inhibitors of cell-envelope synthesis (LpxC inhibitors, β-lactams and glycopeptides), as well as membrane disruptors (lipopeptides and polymyxins). Other antibacterial classes covered in this review include rifamycins and antibacterial peptides. Patent applications for compounds aimed at overcoming resistance mechanisms (efflux inhibitors and β-lactamase inhibitors) are also described. PMID:24236928

  14. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-06-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy.

  15. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy.

    PubMed

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy. PMID:27324288

  16. Propolis induced antibacterial activity and other technical properties of cotton textiles.

    PubMed

    Sharaf, S; Higazy, A; Hebeish, A

    2013-08-01

    Propolis is a gum gathered by honey bees from various plants; the honey bees use propolis to seal holes in their honey combs, smooth out the internal wall and protect the entrance against intruders. It is composed of 50% resin (flavonoids and related phenolic acid), 30% wax, 10% essential oils, 5% pollen and 5% various organic components. As a natural mixture, propolis is widely used in medicine, cosmetics and food. So far no attempts have been yet made to make use of propolis in the realm of textile finishing. Current work presents the first systemic study targeted to build up a scientific basis for production of cotton textiles having antibacterial activity and other useful properties by making use of propolis as eco-friendly finish within the scope of green strategy. Propolis extract solution (70/30 ethanol/water) of 10% concentration was prepared as the stock. Different amounts of the latter were used along with a crosslinking agent and catalyst for treatment of cotton fabrics as per pad-dry-cure technique. Antibacterial activity of the so treated fabrics was obtained through monitoring the efficiency of the interaction of propolis with cotton cellulose. This interaction was expressed as inhibition zone diameter after the treated fabrics were exposed to (G+ve) and (G-ve) bacteria. Other properties include crease recovery, tensile strength and elongation at break. Factors affecting these properties such as type, nature and concentration of the crosslinking agent, concentration of propolis, and conditions of curing were investigated. In addition characterization of the propolis containing modified cotton fabrics including demonstration of the antibacterial activity, SEM, FTIR, durability to washing, UV protection and water repellency were performed. Based on results obtained, it is concluded that application of propolis along with glyoxal and Al2(SO4)3catalyst using pad-dry (3min/80°C), cure (5/140°C) bring about cotton textile with superior antibacterial

  17. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent

  18. New developments in antibacterial choice for lower respiratory tract infections in elderly patients.

    PubMed

    Ferrara, Anna Maria; Fietta, Anna Maria

    2004-01-01

    Elderly patients are at increased risk of developing lower respiratory tract infections compared with younger patients. In this population, pneumonia is a serious illness with high rates of hospitalisation and mortality, especially in patients requiring admission to intensive care units (ICUs). A wide range of pathogens may be involved depending on different settings of acquisition and patient's health status. Streptococcus pneumoniae is the most common bacterial isolate in community-acquired pneumonia, followed by Haemophilus influenzae, Moraxella catarrhalis and atypical pathogens such as Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae. However, elderly patients with comorbid illness, who have been recently hospitalised or are residing in a nursing home, may develop severe pneumonia caused by multidrug resistant staphylococci or pneumococci, and enteric Gram-negative bacilli, including Pseudomonas aeruginosa. Moreover, anaerobes may be involved in aspiration pneumonia. Timely and appropriate empiric treatment is required in order to enhance the likelihood of a good clinical outcome, prevent the spread of antibacterial resistance and reduce the economic impact of pneumonia. International guidelines recommend that elderly outpatients and inpatients (not in ICU) should be treated for the most common bacterial pathogens and the possibility of atypical pathogens. The algorithm for therapy is to use either a selected beta-lactam combined with a macrolide (azithromycin or clarithromycin), or to use monotherapy with a new anti-pneumococcal quinolone, such as levofloxacin, gatifloxacin or moxifloxacin. Oral (amoxicillin, amoxicillin/clavulanic acid, cefuroxime axetil) and intravenous (sulbactam/ampicillin, ceftriaxone, cefotaxime) beta-lactams are agents of choice in outpatients and inpatients, respectively. For patients with severe pneumonia or aspiration pneumonia, the specific algorithm is to use either a macrolide or a quinolone in combination

  19. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate.

    PubMed

    Zhu, Hongji; Sheng, Kai; Yan, Erfu; Qiao, Jianjun; Lv, Feng

    2012-04-01

    To contribute towards effective exploitation and utilization of spent mushroom substrate (SMS), a water-soluble polysaccharide named PL was isolated and purified from SMS. The total sugar content and monosaccharide composition were analyzed by phenol-sulfuric acid method and capillary electrophoresis, and infrared spectroscopy was also performed for structure characterization. The results showed that the total sugar content of crude polysaccharide from SMS was about 25.8%, the polysaccharide contained two fractions (PL1 and PL2), which was mainly composed of glucose, rhamnose and mannose with a molar ratio of 1:3.13:1.16. The attributions of the main absorptions of both PL1 and PL2 were characteristic of glycosidic structures, and the FT-IR spectra of PL2 and lentinan were very similar. Escherichia coli, Staphylococcus aureus and Sarcina lutea were used to study the antibacterial activity and minimal inhibitory concentrations (MICs) of the polysaccharide. The antibacterial activity of polysaccharide from SMS against E. coli was the strongest, while the weakest against S. lutea, and the MICs of PL2 were 12.5, 25 and 100 μg/mL, respectively. PMID:22138450

  20. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11.

    PubMed

    Xu, Gaoge; Zhao, Yuxin; Du, Liangcheng; Qian, Guoliang; Liu, Fengquan

    2015-05-01

    Lysobacter enzymogenes is an important biocontrol agent with the ability to produce a variety of lytic enzymes and novel antibiotics. Little is known about their regulatory mechanisms. Understanding these will be helpful for improving biocontrol of crop diseases and potential medical application. In the present study, we generated an hfq (encoding a putative ribonucleic acid chaperone) deletion mutant, and then utilized a new genomic marker-free method to construct an hfq-complemented strain. We showed for the first time that Hfq played a pleiotropic role in regulating the antibacterial antibiotic biosynthesis and extracellular lytic enzyme activity in L. enzymogenes. Mutation of hfq significantly increased the yield of WAP-8294A2 (an antibacterial antibiotic) as well as the transcription of its key biosynthetic gene, waps1. However, inactivation of hfq almost abolished the extracellular chitinase activity and remarkably decreased the activity of both extracellular protease and cellulase in L. enzymogenes. We further showed that the regulation of hfq in extracellular chitinase production was in part through the impairment of the secretion of chitinase A. Collectively, our results reveal the regulatory roles of hfq in antibiotic metabolite and extracellular lytic enzymes in the underexplored genus of Lysobacter. PMID:25683974

  1. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion. PMID:26902395

  2. Antibacterial and anti-inflammatory finishing of cotton by microencapsulation using three marine organisms.

    PubMed

    El-Rafie, H M; El-Rafie, M H; AbdElsalam, H M; El-Sayed, W A

    2016-05-01

    This work is a small effort in the production of an eco-friendly natural based antibacterial and anti-inflammatory finished cotton fabrics using the ethanolic extracts (Ex) of the sea grass Halophila stipulacea (H. stipulacea) and marine macroalgae [Colbomenia sinuosa (C. sinuosa) and Ulva fasciata (U. fasciata)]. The extracts were phytochemically screened for their constituents. These extracts were used to finish cotton fabrics by a variety of methods. Concerning this, fabrics (F) were singly treated with ethanolic extracts (ExF) of these marine organisms by the dip technique and the extract encapsulated with sodium alginate or meypro gum. The encapsulated fabric (EnF) was further finished individually with citric acid (CA), (EnF/CA) and mono-tert-butyl ether of glycerol (MTBG) binder (EnF/Bin) by the pad-dry-cure technique. The fabrics so-finished were evaluated for their antibacterial and anti-inflammatory activities without washing (control) and after different washing cycles. The results obtained showed that, both EnF/CA and EnF/Bin inhibit the bacterial growth by about 90% after 10 washing cycles for both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The anti-inflammatory activity, the potency% reached to 88.3% for the fabric encapsulated with microcapsules of sodium alginate/H. stipulacea sea grass and the EnF/CA. PMID:26776873

  3. Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper.

    PubMed

    Wei, Dafu; Chen, Yan; Zhang, Youwei

    2016-01-20

    Taking advantage of the self-assembly between the components, novel stable antibacterial nanoparticles were efficiently fabricated via a facile one-step co-polymerization of acrylic acid (AA) and N,N'-methylenebisacrylamide (MBA) on a mixed aqueous solution of poly(hexamethylene guanidine hydrochloride) (PHMG) and hydroxyethylcellulose (HEC). The z-average hydrodynamic diameters of the nanoparticles ranged from 220 nm to 450 nm. The inner layer of the nanoparticles is composed of water-insoluble interpolymer complexes of PHMG and PAA networks, while the outer layer is composed of PHMG and HEC. The nanoparticles are stabilized by electrostatic interactions, hydrogen bonding interactions, and the chemical bonds. The nanoparticle solution remained stable in a wide pH range of 2.0-12.0 and at salt concentrations below 0.25 mol/L. The nanoparticles were incorporated into handsheets using a dipping treatment. The resulted handsheets exhibited excellent antimicrobial activities even after multiple water washing treatments. The nanoparticles are promising in fabricating paper, water-based coatings and textiles with permanent antibacterial activity. PMID:26572386

  4. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans.

    PubMed

    Todorov, Svetoslav D; Wachsman, Mónica B; Knoetze, Hendriëtte; Meincken, Martina; Dicks, Leon M T

    2005-06-01

    Enterococcus mundtii ST4V, isolated from soya beans, produces a 3950Da antibacterial peptide active against Gram-positive and Gram-negative bacteria, including Enterococcus faecalis, Streptococcus spp., Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae and Staphylococcus aureus. The peptide also inactivated the herpes simplex viruses HSV-1 (strain F) and HSV-2 (strain G), a polio virus (PV3, strain Sabin) and a measles virus (strain MV/BRAZIL/001/91, an attenuated strain of MV). MV, HSV-1 and HSV-2 were 95.5%-99.9% inactivated by peptide ST4V at 400 microg/ml. Monkey kidney Vero cells were not inactivated, even at four times the level peptide ST4V displayed antiviral activity, indicating that the effect was not due to cytotoxicity. Complete inactivation or significant reduction in antimicrobial activity was observed after treatment of peptide ST4V with Proteinase K, pronase, pepsin and trypsin. No change in antimicrobial activity was recorded after treatment with alpha-amylase, suggesting that peptide ST4V was not glycosylated. This is the first description of an antibacterial and antiviral peptide with such broad-spectrum of activity, produced by a lactic acid bacterium. PMID:15869868

  5. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK.

    PubMed

    Ouyang, Liping; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Li, Jinhua; Qiao, Yuqin; Ning, Congqin; Zhang, Xianlong; Chu, Paul K; Liu, Xuanyong

    2016-03-01

    Polyetheretherketone (PEEK) is desirable in orthopedic and dental applications because its mechanical properties are similar to those of natural bones but the bioinertness and inferior osteoconduction of PEEK have hampered many clinical applications. In this work, PEEK is sulfonated by concentrated sulfuric acid to fabricate a three-dimensional (3D) network. A hydrothermal treatment is subsequently conducted to remove the residues and the temperature is adjusted to obtain different sulfur concentrations. In vitro cell proliferation and real-time PCR analyses disclose enhanced proliferation and osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) on the samples with small sulfur concentrations. The in vitro antibacterial evaluation reveals that all the sulfonated samples possess excellent resistance against Staphylococcus aureus and Escherichia coli. The in vivo rat femur implantation model is adopted and X-ray, micro-CT, and histological analyses indicate that not only the premeditated injected bacteria cells are sterilized, but also new bone forms around the samples with small sulfur concentrations. The in vitro and in vivo results reveal that the samples subjected to the hydrothermal treatment to remove excess sulfur have better osseointegration and antibacterial ability and PEEK modified by sulfonation and hydrothermal treatment is promising in orthopedic and dental applications. PMID:26773668

  6. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles.

    PubMed

    Alarcon, Emilio I; Udekwu, Klas; Skog, Mårten; Pacioni, Natalia L; Stamplecoskie, Kevin G; González-Béjar, María; Polisetti, Naresh; Wickham, Abeni; Richter-Dahlfors, Agneta; Griffith, May; Scaiano, Juan C

    2012-06-01

    Spherical 3.5 nm diameter silver nanoparticles (AgNP) stabilized in type I collagen (AgNP@collagen) were prepared in minutes (5-15 min) at room temperature by a photochemical method initiated by UVA irradiation of a water-soluble non-toxic benzoin. This biocomposite was examined to evaluate its biocompatibility and its anti-bacterial properties and showed remarkable properties. Thus, while keratinocytes and fibroblasts were not affected by AgNP@collagen, it was bactericidal against Bacillus megaterium and E. coli but only bacteriostatic against S. epidermidis. In particular, the bactericidal properties displayed by AgNP@collagen were proven to be due to AgNP in AgNP@collagen, rather than to released silver ions, since equimolar concentrations of Ag are about four times less active than AgNP@collagen based on total Ag content. This new biocomposite was stable over a remarkable range of NaCl, phosphate, and 2-(N-morpholino)ethanesulfonic acid concentrations and for over one month at 4 °C. Circular dichroism studies show that the conformation of collagen in AgNP@collagen remains intact. Finally, we have compared the properties of AgNP@collagen with a similar biocomposite prepared using α-poly-L-Lysine and also with citrate stabilized AgNP; neither of these materials showed comparable biocompatibility, stability, or anti-bacterial activity. PMID:22494887

  7. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M.

    2016-06-01

    Nanomedicine utilizes biocompatible nanomaterials for diagnostic and therapeutic purposes. The present study reports the use of Helicteres isora root extract for the synthesis of silver nanoparticles (AgNPs). The synthesized AgNPs were initially noticed through visual color change from yellow to reddish brown and further confirmed by surface plasmonic resonance (SPR) band at 450 nm using UV-visible spectroscopy. Morphology and size of AgNPs were determined by transmission electron microscopy (TEM) analysis. X-ray diffraction (XRD) study revealed crystalline nature of AgNPs. The prolonged stability of AgNPs was due to capping of oxidized polyphenols and carboxyl protein which was established by Fourier transform infrared spectroscopy (FTIR) study. In addition, the synthesized AgNPs were tested for antioxidant and antibacterial activities. It showed good antioxidant activity as compared to butylated hydroxytoluene (BHT) and ascorbic acid as standard antioxidant. It could be concluded that H. isora root extract can be used efficiently in the production of potential antioxidant and antibacterial AgNPs for commercial application.

  8. Rapid Synthesis, RNA Binding, and Antibacterial Screening of a Peptidic-Aminosugar (PA) Library

    PubMed Central

    Jiang, Liuwei; Watkins, Derrick; Jin, Yi; Gong, Changjun; King, Ada; Washington, Arren Z.; Green, Keith D.; Garneau-Tsodikova, Sylvie; Oyelere, Adegboyega K.; Arya, Dev P.

    2016-01-01

    A 215-member mono- and diamino acid peptidic-aminosugar (PA) library, with neomycin as the model aminosugar, was systematically and rapidly synthesized via solid phase synthesis. Antibacterial activities of the PA library, on 13 bacterial strains (seven Gram-positive and six Gram-negative bacterial strains), and binding affinities of the PA library for a 27-base model of the bacterial 16S ribosomal A-site RNA were evaluated using high-throughput screening. The results of the two assays were correlated using Ribosomal Binding-Bacterial Inhibition Plot (RB-BIP) analysis to provide structure–activity relationship (SAR) information. From this work, we have identified PAs that can discriminate the E. coli A-site from the human A-site by up to a 28-fold difference in binding affinity. Aminoglycoside-modifying enzyme activity studies indicate that APH(2″)-Ia showed nearly complete removal of activity with a number of PAs. The synthesis of the compound library and screening can both be performed rapidly, allowing for an iterative process of aminoglycoside synthesis and screening of PA libraries for optimal binding and antibacterial activity for lead identification. PMID:25706406

  9. Evaluation of the antibacterial activity of Piperaceae extracts and nisin on Alicyclobacillus acidoterrestris.

    PubMed

    Ruiz, Suelen P; Anjos, Márcia Maria Dos; Carrara, Vanessa S; Delima, Juliana N; Cortez, Diógenes Aparício G; Nakamura, Tânia U; Nakamura, Celso V; de Abreu Filho, Benício A

    2013-11-01

    Alicyclobacillus acidoterrestris is a gram-positive aerobic bacterium. This bacterium resists pasteurization temperatures and low pH and is usually involved in the spoilage of juices and acidic drinks. The objective of this study was to evaluate the antibacterial activities of nisin and the species Piper (Piperaceae) on A. acidoterrestris. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by the broth microdilution method. The species Piper aduncum had the lowest MIC and an MBC of 15.6 μg/mL and was selected for fractionation. Six fractions were obtained, and the dichloromethane fraction (F.3) had the lowest MIC/MBC (7.81 μg/mL). The dichloromethane fraction was again fractionized, and a spectral analysis revealed that the compound was prenylated chromene (F.3.7). The checkerboard method demonstrated that the crude extract (CE) of P. aduncum plus nisin had a synergistic interaction (fractional inhibitory concentration [FIC] = 0.24). The bactericidal activity of (F.3.7) was confirmed by the time-kill curve. P. aduncum, nisin, and prenylated chromene exhibited strong antibacterial activity against the spores and vegetative cells of A. acidoterrestris. The results of this study suggest that extracts of the genus Piper may provide an alternative to the use of thermal processing for controlling A. spoilage. PMID:24138211

  10. Absorption, distribution, metabolism, and excretion of the novel antibacterial prodrug tedizolid phosphate.

    PubMed

    Ong, Voon; Flanagan, Shawn; Fang, Edward; Dreskin, Howard J; Locke, Jeffrey B; Bartizal, Kenneth; Prokocimer, Philippe

    2014-08-01

    Tedizolid phosphate is a novel antibacterial prodrug with potent activity against Gram-positive pathogens. In vitro and in vivo studies demonstrated that the prodrug is rapidly converted by nonspecific phosphatases to the biologically active moiety tedizolid. Single oral dose radiolabeled (14)C-tedizolid phosphate kinetic studies in human subjects (100 µCi in 204 mg tedizolid phosphate free acid) confirmed a rapid time to maximum tedizolid concentration (Tmax, 1.28 hours), a long terminal half-life (10.6 hours), and a Cmax of 1.99 µg/ml. Metabolite analysis of plasma, fecal, and urine samples from rats, dogs, and humans confirmed that tedizolid is the only measurable metabolite in plasma after intravenous (in animals only) or oral administration and that tedizolid sulfate is the major metabolite excreted from the body. Excellent mass balance recovery was achieved and demonstrated that fecal excretion is the predominant (80-90%) route of elimination across species, primarily as tedizolid sulfate. Urine excretion accounted for the balance of drug elimination but contained a broader range of minor metabolites. Glucuronidation products were not detected. Similar results were observed in rats and dogs after both intravenous and oral administration. The tedizolid metabolites showed less potent antibacterial activity than tedizolid. The observations from these studies support once daily dosing of tedizolid phosphate and highlight important metabolism and excretion features that differentiate tedizolid phosphate from linezolid. PMID:24875463

  11. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11

    PubMed Central

    Xu, Gaoge; Zhao, Yuxin; Du, Liangcheng; Qian, Guoliang; Liu, Fengquan

    2015-01-01

    Lysobacter enzymogenes is an important biocontrol agent with the ability to produce a variety of lytic enzymes and novel antibiotics. Little is known about their regulatory mechanisms. Understanding these will be helpful for improving biocontrol of crop diseases and potential medical application. In the present study, we generated an hfq (encoding a putative ribonucleic acid chaperone) deletion mutant, and then utilized a new genomic marker-free method to construct an hfq-complemented strain. We showed for the first time that Hfq played a pleiotropic role in regulating the antibacterial antibiotic biosynthesis and extracellular lytic enzyme activity in L. enzymogenes. Mutation of hfq significantly increased the yield of WAP-8294A2 (an antibacterial antibiotic) as well as the transcription of its key biosynthetic gene, waps1. However, inactivation of hfq almost abolished the extracellular chitinase activity and remarkably decreased the activity of both extracellular protease and cellulase in L. enzymogenes. We further showed that the regulation of hfq in extracellular chitinase production was in part through the impairment of the secretion of chitinase A. Collectively, our results reveal the regulatory roles of hfq in antibiotic metabolite and extracellular lytic enzymes in the underexplored genus of Lysobacter. PMID:25683974

  12. Conjugation with polyamines enhances the antibacterial and anticancer activity of chloramphenicol

    PubMed Central

    Kostopoulou, Ourania N.; Kouvela, Ekaterini C.; Magoulas, George E.; Garnelis, Thomas; Panagoulias, Ioannis; Rodi, Maria; Papadopoulos, Georgios; Mouzaki, Athanasia; Dinos, George P.; Papaioannou, Dionissios; Kalpaxis, Dimitrios L.

    2014-01-01

    Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself. PMID:24939899

  13. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Arola, Dwayne D.; Zhou, Xuedong; Xu, Hockin H. K.

    2013-01-01

    Objectives The main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties. Methods Scotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured. Results Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p<0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p<0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p<0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength. Conclusions A new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives. PMID:23353068

  14. [Fibrin-collagen substance as a vehicle for local application of antibacterial agents].

    PubMed

    Gorskiĭ, V A; Gertsog, A A; Leonenko, I V; Shamanek, T P; Sokov, B N

    2002-01-01

    Inhibitory activity of fibrin-collagen substance (FCS) impregnated by various antibacterial agents against various microorganisms was investigated. It was demonstrated that antibacterials bind well with FCS, providing its sufficient antibacterial activity. Determination of growth-inhibition zones showed that antibacterial agents diffuse into medium well and demonstrated the same activity as discs with antibiotics. For clinical practice it is recommended to use for impregnation the following drugs: gentamycin, meropenem, cefriaxone and ciprofloxacin. PMID:12422648

  15. Proteomics Evidence for the Activity of the Putative Antibacterial Plant Alkaloid (-)-Roemerine: Mainstreaming Omics-Guided Drug Discovery.

    PubMed

    Gokgoz, Nilay Budeyri; Akbulut, Berna Sariyar

    2015-08-01

    Discovery of new antibacterials with novel mechanisms is important to counteract the ingenious resistance mechanisms of bacteria. In this connection, omics-guided drug discovery offers a rigorous method in the quest of new antibacterials. (-)-Roemerine is a plant alkaloid that has been reported to possess putative antibacterial activity against Escherichia coli, Bacillus subtilis, and Salmonella typhimurium. The aim of the present study was to characterize the activity of (-)-roemerine in Escherichia coli TB1 using proteomics tools. With (-)-roemerine treatment, we found limited permeability through the outer membrane and repression of transport proteins involved in carbohydrate metabolism, resulting in poor carbon source availability. The shortfall of intracellular carbon sources in turn led to impaired cell growth. The reduction in the abundance of proteins related to translational machinery, amino acid biosynthesis, and metabolism was accompanied by a nutrient-limited state. The latter finding could suggest a metabolic shutdown in E. coli cells. High osmolarity was clearly not one of the reasons of bacterial death by (-)-roemerine. These observations collectively attest to the promise of plant omics and profiling of putative drug candidates using proteomics tools. Omics-guided drug discovery deserves greater attention in mainstream pharmacology so as to better understand the plants' medicinal potentials. PMID:26230533

  16. Characterization of the antibacterial activity and the chemical components of the volatile oil of the leaves of Rubus parvifolius L.

    PubMed

    Cai, Yongqing; Hu, Xiaogang; Huang, Mingchun; Sun, Fengjun; Yang, Bo; He, Juying; Wang, Xianfeng; Xia, Peiyuan; Chen, Jianhong

    2012-01-01

    Rubus parvifolius L. (Rp) is a medicinal herb that possesses antibacterial activity. In this study, we extracted the volatile oil from the leaves of Rp to assess its antibacterial activity and analyze its chemical composition. A uniform distribution design was used to optimize the extraction procedure, which yielded 0.36% (w/w) of light yellowish oil from the water extract of Rp leaves. We found that the extracted oil effectively inhibited the growth of a wide range of Gram positive and negative bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae, and Klebsiella pneumoniae. We further analyzed the components contained in the hydro-distillated Rp volatile oil by gas chromatography-mass spectroscopy. Twenty nine compounds were identified, including 4-hydroxy-3-methoxystyrene (66%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (10%) and 4-tert-butylbenzoic acid (2%). Our results suggest that one or multiple constituents contained in Rp volatile oil may account for its antibacterial activity. PMID:22732887

  17. A disk-diffusion-based target identification platform for antibacterials (TIPA): an inducible assay for profiling MOAs of antibacterial compounds.

    PubMed

    Silva, Isba; Real, Lilian J; Ward, Matthew S; Xu, H Howard

    2014-06-01

    One of the challenges in antibiotic lead discovery is the difficulty and time-consuming task of determining the mechanism of action (MOA) of antibacterial compounds. In this report, we describe the development and validation of a facile and inexpensive assay system utilizing disk diffusion of inhibitors on solid agar medium embedded with mixed pools of a comprehensive collection of Escherichia coli clones each containing a plasmid-borne inducible essential gene from E. coli. From individual clones, pilot small-scale (48 or 50 clones) assays, to full-scale target identification platform for antibacterials (TIPA) system, involving a variety of assay formats (liquid vs solid media, individual vs mix clones), we demonstrate that elevated resistance phenotypes of relevant cell clones were highly specific. In particular, the TIPA system was able to reveal cellular targets of several known antibacterial inhibitors: cerulenin, diazaborine, indolmycin, phosphomycin, and triclosan. Complementary to several existing MOA profiling schemes, the TIPA system offers a simple and low-cost method for elucidating the target proteins of antibacterial inhibitors, thus will facilitate discovery and development of novel antibacterial compounds to combat multidrug-resistant bacterial pathogens. PMID:24622888

  18. Antibacterial Meroterpenoids from the South China Sea Sponge Dysidea sp.

    PubMed

    Zhang, Xia; Xu, Hong-Yan; Huang, Ai-Mei; Wang, Lei; Wang, Qiang; Cao, Peng-Yun; Yang, Pei-Min

    2016-07-01

    Chemical investigation of the sponge Dysidea sp. afforded three new sesquiterpene phenols (1-3) and one new sesquiterpene aminoquinone (4), together with four known sesquiterpene derivatives (5-8). The structures of all compounds were unambiguously elucidated by extensive spectroscopic analysis, as well as by comparison with the literature. The absolute configurations of compounds 1-4 were determined by electron capture detector (ECD) calculations and circular dichroism (CD) spectrum analysis. Their antibacterial activity against Escherichia coli (25922), Bacillus subtilis (6633), and Staphylococcus aureus (25923) were evaluated. Compounds 1 and 3 showed weak antibacterial activity against the above three strains, whereas compounds 4-8 showed potent antibacterial activities with minimum inhibitory concentration (MIC) values in the range of 3.125 to 12.5 µg/mL. PMID:27109501

  19. Modified bamboo rayon-copper nanoparticle composites as antibacterial textiles.

    PubMed

    Teli, M D; Sheikh, Javed

    2013-10-01

    In the current study the bamboo rayon fabric grafted with acrylamide was utilized as a backbone to immobilize copper nanoprticles. The grafted bamboo rayon was first treated with CuSO4 followed by chemical reduction. The modified product was characterized using FTIR, TGA and SEM. The characteristic color developed after reduction was measured spectrophotometrically. The grafted bamboo rayon with Cu nanoparticles was then evaluated for antibacterial activity against both gram positive and gram negative bacteria and the durability of their antibacterial activity after washing. The product showed antibacterial activity against both types of bacterias which was found to be durable till 50 washes. The material can be claimed as suitable candidate for medical textile applications to prevent cross-infections. PMID:23916646

  20. Characterization of enhanced antibacterial effects of novel silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shrivastava, Siddhartha; Bera, Tanmay; Roy, Arnab; Singh, Gajendra; Ramachandrarao, P.; Dash, Debabrata

    2007-06-01

    In the present study, we report the preparation of silver nanoparticles in the range of 10-15 nm with increased stability and enhanced anti-bacterial potency. The morphology of the nanoparticles was characterized by transmission electron microscopy. The antibacterial effect of silver nanoparticles used in this study was found to be far more potent than that described in the earlier reports. This effect was dose dependent and was more pronounced against gram-negative bacteria than gram-positive organisms. Although bacterial cell lysis could be one of the reasons for the observed antibacterial property, nanoparticles also modulated the phosphotyrosine profile of putative bacterial peptides, which could thus affect bacterial signal transduction and inhibit the growth of the organisms.