Sample records for antibacterial protein lysozyme

  1. The antibacterial protein lysozyme identified as the termite egg recognition pheromone.

    PubMed

    Matsuura, Kenji; Tamura, Takashi; Kobayashi, Norimasa; Yashiro, Toshihisa; Tatsumi, Shingo

    2007-08-29

    Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus 'termite-ball' and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP), which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence of pathogenic

  2. The Antibacterial Protein Lysozyme Identified as the Termite Egg Recognition Pheromone

    PubMed Central

    Matsuura, Kenji; Tamura, Takashi; Kobayashi, Norimasa; Yashiro, Toshihisa; Tatsumi, Shingo

    2007-01-01

    Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus ‘termite-ball’ and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP), which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence of pathogenic

  3. [Synergistic effects of lysozyme with EDTA-2Na on antibacterial activity].

    PubMed

    Li, Xiao-man; Wang, Xiao-yan; Gao, Xue-jun

    2015-02-18

    To evaluate the synergistic antibacterial effects of lysozyme with ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) on Enterococcus faecalis (E. faecalis) and Porphyromonas endodontalis (P. endodontalis). E. faecalis and P. endodontalis were cultured and adjusted to 10(8) CFU/mL. Then 0.3, 0.5, 1, 2, 5, 10, 50, 100, 150 and 300 g/L of lysozyme were prepared with deionized water; and the lysozyme solutions were mixed with 0.5, 1.0, 2.0 g/L of EDTA-2Na, respectively. The bacteria and lysosome with/without EDTA-2Na interacted for 15 min, then water-soluble tetrazolium (WST) working solution was added and the activity of the bacteria was calculated by measuring optical densities at 450 nm and 630 nm with microplate spectrophotometer. Regarding the pure lysozyme from 0.5 g/L to 150 g/L, more E. faecalis and P. endodontalis were inhibited when the concentration of lysozyme was higher, especially for E. faecalis. There was synergistic effect of lysozyme with EDTA-2Na on antibacterial activity, which was related to the concentration of lysozyme. On E. faecalis, the antibacterial activity of lysozyme with EDTA-2Na was 1.2-3.7 folds than the pure lysozyme when the concentration of lysozyme was 0.5-50 g/L (P<0.05), and on P. endodontalis, the antibacterial activity of lysozyme with EDTA-2Na was 1.3-3.5 folds than the pure lysozyme when the concentration of lysozyme was 0.5-10 g/L (P<0.05). When the concentration of lysozyme was higher than 100 g/L, EDTA-2Na did not show synergistic effect on the antibacterial activity (P>0.05). For E. faecalis and P. endodontalis, a low concentration of lysozyme with EDTA-2Na showed significant synergistic antibacterial activity, while a high concentration of lysozyme with EDTA-2Na did not.

  4. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae.

    PubMed

    de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R

    2006-03-01

    C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.

  5. Development of lysozyme-combined antibacterial system to reduce sulfur dioxide and to stabilize Italian Riesling ice wine during aging process

    PubMed Central

    Chen, Kai; Han, Shun-yu; Zhang, Bo; Li, Min; Sheng, Wen-jun

    2015-01-01

    For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L−1 lysozyme, 177.14 mg L−1 SO2, 0.60 g L−1 polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process. PMID:26405531

  6. Chicken-type lysozyme functions in the antibacterial immunity in red swamp crayfish, Procambarus clarkii.

    PubMed

    Liao, Tian-Jiang; Gao, Jie; Wang, Jin-Xing; Wang, Xian-Wei

    2018-08-01

    Lysozymes possess antibacterial activities, making them crucial defense proteins in innate immunity. In this study, a chicken-type (c-type) lysozyme (designated PcLyzc) was cloned and characterized from red swamp crayfish Procambarus clarkii. The full-length cDNA had an open reading frame of 435 base pairs encoding a polypeptide of 144 amino acid residues. Multiple alignments and phylogenetic analysis revealed that PcLyzc shared high similarity to the other known invertebrate c-type lysozymes. PcLyzc transcripts were steadily expressed in a wide range of tissues in healthy crayfish, and were prominently up-regulated in the hepatopancreas and gills after Vibrio anguillarum or Aeromonas hydrophila challenge. Recombinant PcLyzc showed inhibitory activity in vitro against both Gram-positive bacteria, including Staphylococcus aureus, Micrococcus luteus and Bacillus thuringiensis, and Gram-negative bacteria, including A. hydrophila, V. anguillarum and Escherichia coli. By overexpressing PcLyzc through introducing exogenous recombinant protein, or silencing PcLyzc expression through injecting double strand RNA, it was found that PcLyzc could help eliminate the invading bacteria in crayfish hemolymph and could protect crayfish from death, possibly by promoting the hemocytic phagocytosis. These results indicated that PcLyzc played a role in the antibacterial immunity of crustaceans, and laid a foundation of developing new therapeutic agents in aquaculture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. [Level of selected antibacterial tear proteins in children with diabetes type 1].

    PubMed

    Moll, Agnieszka; Wyka, Krystyna; Młynarski, Wojciech; Niwald, Anna

    2011-01-01

    Antibacterial immunity in diabetes is impaired, which increases the risk of general and local infections. The aim of the study was to evaluate non-specific local antibacterial immunity based on lactoferrin and lysozyme concentration in tears in children with diabetes type 1. Children at the age of 10-18 years old were studied. Group 1. consisted of children without diabetes, group 2. included patients with new onset of diabetes and group 3. consisted of children with decade-long diabetes. Among all patients tears were collected from inferior coniunctival fornix with hematocrit glass capillaries in purpose to measure lactoferrin and lysozyme concentration. ELISA method was used in laboratory testing. Level of lactoferrin did not differ significantly among all groups. Concentration of lysozyme was statistically lower in group with decade-long diabetes (group 3.) compared to patients without diabetes. Mild correlation between lactoferrin and lysozyme levels was seen in individual patients in whole group of probands together. Diabetes type 1 in children is associated with significant changes in concentration of tear proteins, which contribute to antibacterial immunity.

  8. A comparison of the enzymatic properties of three recombinant isoforms of thrombolytic and antibacterial protein--Destabilase-Lysozyme from medicinal leech.

    PubMed

    Kurdyumov, Alexey S; Manuvera, Valentin A; Baskova, Isolda P; Lazarev, Vassili N

    2015-11-21

    Destabilase-Lysozyme (mlDL) is a multifunctional i-type enzyme that has been found in the secretions from the salivary glands of medicinal leeches. mlDL has been shown to exhibit isopeptidase, muramidase and antibacterial activity. This enzyme attracts interest because it expresses thrombolytic activity through isopeptidolysis of the ε-(γ-Glu)-Lys bonds that cross-link polypeptide chains in stabilised fibrin. To date, three isoforms of mlDL have been identified. The enzymatic properties of pure mlDL isoforms have not yet been described because only destabilase complexes containing other proteins could be isolated from the salivary gland secretion and because low product yield from the generation of recombinant proteins has made comprehensive testing difficult. In the present study, we optimised the procedures related to the expression, isolation and purification of active mlDL isoforms (mlDL-Ds1, mlDL-Ds2, mlDL-Ds3) using an Escherichia coli expression system, and we detected and compared their muramidase, lytic, isopeptidase and antimicrobial activities. After optimisation, the product yield was 30 mg per litre of culture. The data obtained in our study led to the suggestion that the recombinant mlDL isoforms isolated from inclusion bodies form stable oligomeric complexes. Analyses of the tested activities revealed that all isoforms exhibited almost identical patterns of pH and ionic strength effects on the activities. We determined that mlDL-Ds1, 2, 3 possessed non-enzymatic antibacterial activity independent of their muramidase activity. For the first time, we demonstrated the fibrinolytic activity of the recombinant mlDL and showed that only intact proteins possessed this activity, suggesting their enzymatic nature. The recombinant Destabilase-Lysozyme isoforms obtained in our study may be considered potential thrombolytic agents that act through a mechanism different from that of common thrombolytics.

  9. Biological and Clinical Implications of Lysozyme Deposition on Soft Contact Lenses

    PubMed Central

    Omali, Negar Babaei; Subbaraman, Lakshman N.; Coles-Brennan, Chantal; Fadli, Zohra; Jones, Lyndon W.

    2015-01-01

    ABSTRACT Within a few minutes of wear, contact lenses become rapidly coated with a variety of tear film components, including proteins, lipids, and mucins. Tears have a rich and complex composition, allowing a wide range of interactions and competitive processes, with the first event observed at the interface between a contact lens and tear fluid being protein adsorption. Protein adsorption on hydrogel contact lenses is a complex process involving a variety of factors relating to both the protein in question and the lens material. Among tear proteins, lysozyme is a major protein that has both antibacterial and anti-inflammatory functions. Contact lens materials that have high ionicity and high water content have an increased affinity to accumulate lysozyme during wear, when compared with other soft lens materials, notably silicone hydrogel lenses. This review provides an overview of tear film proteins, with a specific focus on lysozyme, and examines various factors that influence protein deposition on contact lenses. In addition, the impact of lysozyme deposition on various ocular physiological responses and bacterial adhesion to lenses and the interaction of lysozyme with other tear proteins are reviewed. This comprehensive review suggests that deposition of lysozyme on contact lens materials may provide a number of beneficial effects during contact lens wear. PMID:26002002

  10. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity.

    PubMed

    Wu, Tiantian; Huang, Jiaqi; Jiang, Yangyang; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Chen, Jianchu

    2018-02-01

    Novel hydrogels based on chitosan/sodium alginate (CS-ALG) were prepared to deliver and protect lysozyme while eliminating food-borne microorganisms. These hydrogels were characterized according to the zeta potential, optical microscopy, scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), fourier transform infrared (FT-IR), and small-angle X-ray scattering (SAXS). The results demonstrated that the resultant hydrogels were negatively charged and spherical in shape. In addition, the maximum swelling ratio was 45.66±7.62 for CS-ALG hydrogels loaded with lysozyme. The relative activity of the released lysozyme was 87.72±3.96%, indicating that CS-ALG hydrogels are promising matrices for enzyme loading and adsorption. Furthermore, a 100% bacterial clearance rate of CS/ALG loaded with lysozyme was observed to correspond to the superposition effect stimulated by CS and lysozyme, which improved the antibacterial activity against E. coli and S. aureus compared to CS/ALG, suggesting its potential use in the food industry as well as other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Lysozyme from Insect (Manduca sexta) is a Cold-Adapted Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotelo-Mundo,R.; Lopez-Zavala, A.; Garcia-Orozco, K.

    Enzymatic activity is dependent on temperature, although some proteins have evolved to retain activity at low temperatures at the expense of stability. Cold adapted enzymes are present in a variety of organisms and there is ample interest in their structure-function relationships. Lysozyme (E.C. 3.2.1.17) is one of the most studied enzymes due to its antibacterial activity against Gram positive bacteria and is also a cold adapted protein. In this work the characterization of lysozyme from the insect Manduca sexta and its activity at low temperatures is presented. Both M. sexta lysozymes natural and recombinant showed a higher content of {alpha}-helixmore » secondary structure compared to that of hen egg white lysozyme and a higher specific enzymatic activity in the range of 5-30 {sup o}C. These results together with measured thermodynamic activation parameters support the designation of M. sexta lysozyme as a cold adapted enzyme. Therefore, the insect recombinant lysozyme is feasible as a model for structure-function studies for cold-adapted proteins.« less

  12. The Antimicrobial Peptide Lysozyme Is Induced after Multiple Trauma

    PubMed Central

    Klüter, Tim; Fitschen-Oestern, Stefanie; Lippross, Sebastian; Weuster, Matthias; Pufe, Thomas; Tohidnezhad, Mersedeh; Beyer, Andreas; Seekamp, Andreas; Varoga, Deike

    2014-01-01

    The antimicrobial peptide lysozyme is an important factor of innate immunity and exerts high potential of antibacterial activity. In the present study we evaluated the lysozyme expression in serum of multiple injured patients and subsequently analyzed their possible sources and signaling pathways. Expression of lysozyme was examined in blood samples of multiple trauma patients from the day of trauma until 14 days after trauma by ELISA. To investigate major sources of lysozyme, its expression and regulation in serum samples, different blood cells, and tissue samples were analysed by ELISA and real-time PCR. Neutrophils and hepatocytes were stimulated with cytokines and supernatant of Staphylococcus aureus. The present study demonstrates the induction and release of lysozyme in serum of multiple injured patients. The highest lysozyme expression of all tested cells and tissues was detected in neutrophils. Stimulation with trauma-related factors such as interleukin-6 and S. aureus induced lysozyme expression. Liver tissue samples of patients without trauma show little lysozyme expression compared to neutrophils. After stimulation with bacterial fragments, lysozyme expression of hepatocytes is upregulated significantly. Toll-like receptor 2, a classic receptor of Gram-positive bacterial protein, was detected as a possible target for lysozyme induction. PMID:25258475

  13. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    PubMed

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein

  14. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    PubMed

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  15. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent

    DTIC Science & Technology

    2012-01-01

    molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water

  16. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  17. Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme

    NASA Astrophysics Data System (ADS)

    Ghosh, Kalyan Sundar; Sahoo, Bijaya Ketan; Dasgupta, Swagata

    2008-02-01

    Various reported antibacterial activities of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea prompted us to study its binding with lysozyme. This has been investigated by fluorescence, circular dichroism (CD) and protein-ligand docking. The binding parameters were determined using a modified Stern-Volmer equation. The thermodynamic parameters are indicative of an initial hydrophobic association. The complex is, however, held together predominantly by van der Waals interactions and hydrogen bonding. CD studies do not indicate any significant changes in the secondary structure of lysozyme. Docking studies revealed that specific interactions are observed with residues Trp 62 and Trp 63.

  18. Isolation and characterization of a c-type lysozyme from the nurse shark.

    PubMed

    Hinds Vaughan, Nichole; Smith, Sylvia L

    2013-12-01

    Lysozyme is a ubiquitous antibacterial enzyme that occurs in numerous invertebrate and vertebrate species. Three forms have been described c-type, g-type and i-type which differ in primary structure. Shark lysozyme has not been characterized; here we report on the isolation and characterization of lysozyme from unstimulated shark (Ginglymostoma cirratum) leukocytes and provide amino acid sequence data across the highly conserved active site of the molecule identifying it to be a c-type lysozyme. A leukocyte lysate was applied either (a) to the first of two sequential DE-52 cellulose columns or alternatively, (b) to a DEAE-Sepharose column. Lysozyme activity in lysate and active fractions was identified by zones of lysis of Micrococcus lysodeikticus cell walls on lysoplates and zones of growth inhibition in agar diffusion assays using Planococcus citreus as the target organism. SDS-PAGE analysis revealed a 14 kDa protein which was identified as lysozyme by mass spectroscopic analysis of peptides, reactivity against anti-HEWL antibodies on a Western blot, hydrolysis of M. lysodeikticus cell walls, and inhibition of growth of P. citreus on AU-gel blots in which the area of growth inhibition correlated to a 14 kDa protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Isolation of an invertebrate-type lysozyme from the nephridia of the echiura, Urechis unicinctus, and its recombinant production and activities.

    PubMed

    Oh, Hye Young; Kim, Chan-Hee; Go, Hye-Jin; Park, Nam Gyu

    2018-05-09

    Invertebrates, unlike vertebrates which have adaptive immune system, rely heavily on the innate immune system for the defense against pathogenic bacteria. Lysozymes, along with other immune effectors, are regarded as an important group in this defense. An invertebrate-type (i-type) lysozyme, designated Urechis unicinctus invertebrate-type lysozyme, Uu-ilys, has been isolated from nephridia of Urechis unicinctus using a series of high performance liquid chromatography (HPLC), and ultrasensitive radial diffusion assay (URDA) as a bioassay system. Analyses of the primary structure and cDNA cloning revealed that Uu-ilys was approximately 14 kDa and composed of 122 amino acids (AAs) of which the precursor had a total of 160 AAs containing a signal peptide of 18 AAs and a pro-sequence of 20 AAs encoded by the nucleotide sequence of 714 bp that comprises a 5' untranslated region (UTR) of 42 bp, an open reading frame (ORF) of 483 bp, and a 3' UTR of 189 bp. Multiple sequence alignment showed Uu-ilys has high homology to i-type lysozymes from several annelids. Relatively high transcriptional expression levels of Uu-ilys was detected in nephridia, anal vesicle, and intestine. The native Uu-ilys exhibited comparable lysozyme enzymatic and antibacterial activities to hen egg white lysozyme. Collectively, these data suggest that Uu-ilys, the isolated antibacterial protein, plays a role in the immune defense mechanism of U. unicinctus. Recombinant Uu-ilys (rUu-ilys) produced in a bacterial expression system showed significantly decreased lysozyme lytic activity from that of the native while its potency on radial diffusion assay detecting antibacterial activity was retained, which may indicate the non-enzymatic antibacterial capacity of Uu-ilys. Copyright © 2018. Published by Elsevier Ltd.

  20. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics.

    PubMed

    Russell, B A; Jachimska, B; Komorek, P; Mulheran, P A; Chen, Y

    2017-03-08

    The study of gold nanoclusters (AuNCs) has seen much interest in recent history due to their unique fluorescence properties and environmentally friendly synthesis method using proteins as a growth scaffold. The differences in the physicochemical properties of lysozyme encapsulated AuNCs in comparison to natural lysozyme are characterised in order to determine the effects AuNCs have on natural protein behaviour. The hydrodynamic radius (dynamic light scattering), light absorbance (UV-Vis), electrophoretic mobility, relative density, dynamic viscosity, adsorption (quartz crystal microbalance) and circular dichroism (CD) characteristics of the molecules were studied. It was found that lysozyme forms small dimer/trimer aggregates upon the synthesis of AuNCs within the protein. The diameter of Ly-AuNCs was found to be 8.0 nm across a pH range of 2-11 indicating dimer formation, but larger aggregates with diameters >20 nm were formed between pH 3 and 6. The formation of larger aggregates limits the use of Ly-AuNCs as a fluorescent probe in this pH range. A large shift in the protein's isoelectric point was also observed, shifting from 11.0 to 4.0 upon AuNC synthesis. This resulted in major changes to the adsorption characteristics of lysozyme, observed using a QCM. A monolayer of 8 nm was seen for Ly-AuNCs at pH 4, offering further evidence that the proteins form small aggregates, unlike the natural monomer form of lysozyme. The adsorption of Ly-AuNCs was seen to decrease as pH was increased; this is in major contrast to the lysozyme adsorption behaviour. A decrease in the α-helix content was observed from 25% in natural lysozyme to 1% in Ly-AuNCs. This coincided with an increase in the β-sheet content after AuNC synthesis indicating that the natural structure of lysozyme was lost. The formation of protein dimers, the change in the protein surface charge from positive to negative, and secondary structure alteration caused by the AuNC synthesis must be considered before

  1. Lysozymes in the animal kingdom.

    PubMed

    Callewaert, Lien; Michiels, Chris W

    2010-03-01

    Lysozymes (EC 3.2.1.17) are hydrolytic enzymes, characterized by their ability to cleave the beta-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, the major bacterial cell wall polymer. In the animal kingdom, three major distinct lysozyme types have been identified--the c-type (chicken or conventional type), the g-type (goose-type) and the i-type (invertebrate type) lysozyme. Examination of the phylogenetic distribution of these lysozymes reveals that c-type lysozymes are predominantly present in the phylum of the Chordata and in different classes of the Arthropoda. Moreover, g-type lysozymes (or at least their corresponding genes) are found in members of the Chordata, as well as in some bivalve mollusks belonging to the invertebrates. In general, the latter animals are known to produce i-type lysozymes. Although the homology in primary structure for representatives of these three lysozyme types is limited, their three-dimensional structures show striking similarities. Nevertheless, some variation exists in their catalytic mechanisms and the genomic organization of their genes. Regarding their biological role, the widely recognized function of lysozymes is their contribution to antibacterial defence but, additionally, some lysozymes (belonging to different types) are known to function as digestive enzymes.

  2. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens.

    PubMed

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies.

  3. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens

    PubMed Central

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies. PMID:26713728

  4. Pyroelectricity in globular protein lysozyme films

    NASA Astrophysics Data System (ADS)

    Stapleton, A.; Noor, M. R.; Haq, E. U.; Silien, C.; Soulimane, T.; Tofail, S. A. M.

    2018-03-01

    Pyroelectricity is the ability of certain non-centrosymmetric materials to generate an electric charge in response to a change in temperature and finds use in a range of applications from burglar alarms to thermal imaging. Some biological materials also exhibit pyroelectricity but the examples of the effect are limited to fibrous proteins, polypeptides, and tissues and organs of animals and plants. Here, we report pyroelectricity in polycrystalline aggregate films of lysozyme, a globular protein.

  5. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  6. Stability of actin-lysozyme complexes formed in cystic fibrosis disease.

    PubMed

    Mohammadinejad, Sarah; Ghamkhari, Behnoush; Abdolmaleki, Sarah

    2016-08-21

    Finding the conditions for destabilizing actin-lysozyme complexes is of biomedical importance in preventing infections in cystic fibrosis. In this manuscript, the effects of different charge-mutants of lysozyme and salt concentration on the stability of actin-lysozyme complexes are studied using Langevin dynamics simulation. A coarse-grained model of F-actin is used in which both its twist and bending rigidities are considered. We observe that the attraction between F-actins is stronger in the presence of wild-type lysozymes relative to the mutated lysozymes of lower charges. By calculating the potential of mean force between F-actins, we conclude that the stability of actin-lysozyme complexes is decreased by reducing the charge of lysozyme mutants. The distributions of different lysozyme charge-mutants show that wild-type (+9e) lysozymes are mostly accumulated in the center of triangles formed by three adjacent F-actins, while lysozyme mutants of charges +7e and +5e occupy the bridging regions between F-actins. Low-charge mutants of lysozyme (+3e) distribute uniformly around F-actins. A rough estimate of the electrostatic energy for these different distributions proves that the distribution in which lysozymes reside in the center of triangles leads to more stable complexes. Also our results in the presence of a salt suggest that at physiological salt concentration of airway, F-actin complexes are not formed by charge-reduced mutants of lysozyme. The findings are interesting because if we can design charge-reduced lysozyme mutants with considerable antibacterial activity, they are not sequestered inside F-actin aggregates and can play their role as antibacterial agents against airway infection.

  7. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  8. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Indresh, E-mail: iykumarindresh288@gmail.com; Aswal, V. K.; Kohlbrecher, J.

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. Themore » magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.« less

  9. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  10. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2013-07-24

    Casein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles. The lactoferrin/κ-casein ratio was constant for all micelle sizes, whereas the lactoferrin/αS-casein and lactoferrin/β-casein ratio decreased with increasing micelle size. This indicates that the lactoferrin was binding to the surface of the casein micelles. For lysozyme, higher levels bound to larger casein micelles. The lysozyme/αS-casein and lysozyme/β-casein ratios were nearly constant, whereas the lysozyme/κ-casein ratio increased with increasing micelle size, indicating that lysozyme bound to αS-casein and β-casein in the micelle core. Lactoferrin is a large protein that cannot enter the casein protein mesh; therefore, it binds to the micelle surface. The smaller lysozyme can enter the protein mesh and therefore binds to the more charged αS-casein and β-casein.

  11. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    PubMed

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme. Copyright © 2012 S. Karger AG, Basel.

  12. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications.

    PubMed

    Perevedentseva, E; Cai, P-J; Chiu, Y-C; Cheng, C-L

    2011-02-01

    Recently, nanodiamond particles have attracted increasing attention as a promising nanomaterial for its biocompatibility, easy functionalization and conjugation with biomolecules, and its superb physical/chemical properties. Nanodiamonds are mainly used as markers for cell imaging, using its fluorescence or Raman signals for detection, and as carriers for drug delivery. For the success of these applications, the biomolecule associated with the nanodiamond has to retain its functionality. In this work, the protein activities of egg white lysozyme adsorbed on nanodiamond particles of different sizes is investigated. The lysozyme nanodiamond complex is used here as a protein model for analyzing its structural conformation changes and, correspondingly, its enzymatic activity after the adsorption. Fourier-transform infrared spectroscopy (FTIR) is used for the analysis of the sensitive protein secondary structure. To access the activities of the adsorbed lysozyme, a fluorescence-based assay is used. The process of adsorption is also analyzed using UV-visible spectroscopic measurements in combination with analysis of nanodiamond properties with FTIR, Raman spectroscopy, and ζ-potential measurements. It is found that the activity of lysozyme upon adsorption depends on the nanodiamond's size and surface properties, and that the nanodiamond particles can be selected and treated, which do not alter the lysozyme functional properties. Such nanodiamonds can be considered convenient nanoparticles for various bioapplications.

  13. Complex coacervate core micelles with a lysozyme-modified corona.

    PubMed

    Danial, Maarten; Klok, Harm-Anton; Norde, Willem; Stuart, Martien A Cohen

    2007-07-17

    This paper describes the preparation, characterization, and enzymatic activity of complex coacervate core micelles (C3Ms) composed of poly(acrylic acid) (PAA) and poly(N-methyl-2-vinyl pyridinium iodide)-b-poly(ethylene oxide) (PQ2VP-PEO) to which the antibacterial enzyme lysozyme is end-attached. C3Ms were prepared by polyelectrolyte complex formation between PAA and mixtures containing different ratios of aldehyde and hydroxyl end-functionalized PQ2VP-PEO. This resulted in the formation of C3Ms containing 0-40% (w/w) of the aldehyde end-functionalized PQ2VP-PEO block copolymer (PQ2VP-PEO-CHO). Chemical conjugation of lysozyme was achieved via reductive amination of the aldehyde groups, which are exposed at the surface of the C3M, with the amine groups present in the side chains of the lysine residues of the protein. Dynamic and static light scattering indicated that the conjugation of lysozyme to C3Ms prepared using 10 and 20% (w/w) PQ2VP-PEO-CHO resulted in the formation of unimicellar particles. Multimicellar aggregates, in contrast, were obtained when lysozyme was conjugated to C3Ms prepared using 30 or 40% (w/w) PQ2VP-PEO-CHO. The enzymatic activity of the unimicellar lysozyme-C3M conjugates toward the hydrolysis of the bacterial substrate Micrococcus lysodeikticus was comparable to that of free lysozyme. For the multimicellar particles, in contrast, significantly reduced enzymatic rates of hydrolysis, altered circular dichroism, and red-shifted tryptophan fluorescence spectra were measured. These results are attributed to the occlusion of lysozyme in the interior of the multimicellar conjugates.

  14. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    PubMed

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  16. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form.

    PubMed

    Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W

    2015-07-01

    Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.

  17. Co-option of bacteriophage lysozyme genes by bivalve genomes.

    PubMed

    Ren, Qian; Wang, Chunyang; Jin, Min; Lan, Jiangfeng; Ye, Ting; Hui, Kaimin; Tan, Jingmin; Wang, Zheng; Wyckoff, Gerald J; Wang, Wen; Han, Guan-Zhu

    2017-01-01

    Eukaryotes have occasionally acquired genetic material through horizontal gene transfer (HGT). However, little is known about the evolutionary and functional significance of such acquisitions. Lysozymes are ubiquitous enzymes that degrade bacterial cell walls. Here, we provide evidence that two subclasses of bivalves (Heterodonta and Palaeoheterodonta) acquired a lysozyme gene via HGT, building on earlier findings. Phylogenetic analyses place the bivalve lysozyme genes within the clade of bacteriophage lysozyme genes, indicating that the bivalves acquired the phage-type lysozyme genes from bacteriophages, either directly or through intermediate hosts. These bivalve lysozyme genes underwent dramatic structural changes after their co-option, including intron gain and fusion with other genes. Moreover, evidence suggests that recurrent gene duplication occurred in the bivalve lysozyme genes. Finally, we show the co-opted lysozymes exhibit a capacity for antibacterial action, potentially augmenting the immune function of related bivalves. This represents an intriguing evolutionary strategy in the eukaryote-microbe arms race, in which the genetic materials of bacteriophages are co-opted by eukaryotes, and then used by eukaryotes to combat bacteria, using a shared weapon against a common enemy. © 2017 The Authors.

  18. Molecular dynamics simulations of lysozyme-lipid systems: probing the early steps of protein aggregation.

    PubMed

    Trusova, Valeriya M; Gorbenko, Galyna P

    2017-07-10

    Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein-lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.

  19. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ochije, Henry Ikechukwu

    Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.

  20. Pattern similarity study of functional sites in protein sequences: lysozymes and cystatins

    PubMed Central

    Nakai, Shuryo; Li-Chan, Eunice CY; Dou, Jinglie

    2005-01-01

    Background Although it is generally agreed that topography is more conserved than sequences, proteins sharing the same fold can have different functions, while there are protein families with low sequence similarity. An alternative method for profile analysis of characteristic conserved positions of the motifs within the 3D structures may be needed for functional annotation of protein sequences. Using the approach of quantitative structure-activity relationships (QSAR), we have proposed a new algorithm for postulating functional mechanisms on the basis of pattern similarity and average of property values of side-chains in segments within sequences. This approach was used to search for functional sites of proteins belonging to the lysozyme and cystatin families. Results Hydrophobicity and β-turn propensity of reference segments with 3–7 residues were used for the homology similarity search (HSS) for active sites. Hydrogen bonding was used as the side-chain property for searching the binding sites of lysozymes. The profiles of similarity constants and average values of these parameters as functions of their positions in the sequences could identify both active and substrate binding sites of the lysozyme of Streptomyces coelicolor, which has been reported as a new fold enzyme (Cellosyl). The same approach was successfully applied to cystatins, especially for postulating the mechanisms of amyloidosis of human cystatin C as well as human lysozyme. Conclusion Pattern similarity and average index values of structure-related properties of side chains in short segments of three residues or longer were, for the first time, successfully applied for predicting functional sites in sequences. This new approach may be applicable to studying functional sites in un-annotated proteins, for which complete 3D structures are not yet available. PMID:15904486

  1. Kinetics of Competitive Adsorption between Lysozyme and Lactoferrin on Silicone Hydrogel Contact Lenses and the Effect on Lysozyme Activity.

    PubMed

    Hall, Brad; Jones, Lyndon; Forrest, James A

    2015-05-01

    To determine the effect of competitive adsorption between lysozyme and lactoferrin on silicone hydrogel contact lenses and the effect on lysozyme activity. Three commercially available silicone hydrogel contact lens materials (senofilcon A, lotrafilcon B and balafilcon A) were examined, for time points ranging from 10 s to 2 h. Total protein deposition was determined by I(125) radiolabeling of lysozyme and lactoferrin, while the activity of lysozyme was determined by a micrococcal activity assay. Senofilcon A and balafilcon A did not show any relevant competitive adsorption between lysozyme and lactoferrin. Lotrafilcon B showed reduced protein deposition due to competitive adsorption for lactoferrin at all time points and lysozyme after 7.5 min. Co-adsorption of lactoferrin and lysozyme decreased the activity of lysozyme in solution for senofilcon A and lotrafilcon B, but co-adsorption had no effect on the surface activity of lysozyme for all lens types investigated. Competition between lysozyme and lactoferrin is material specific. Co-adsorption of lysozyme and lactoferrin does not affect the activity of surface-bound lysozyme but can reduce the activity of subsequently desorbed lysozyme.

  2. Anisotropy of the Coulomb Interaction between Folded Proteins: Consequences for Mesoscopic Aggregation of Lysozyme

    PubMed Central

    Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy

    2012-01-01

    Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950

  3. Lysozyme as a recognition element for monitoring of bacterial population.

    PubMed

    Zheng, Laibao; Wan, Yi; Yu, Liangmin; Zhang, Dun

    2016-01-01

    Bacterial infections remain a significant challenge in biomedicine and environment safety. Increasing worldwide demand for point-of-care techniques and increasing concern on their safe development and use, require a simple and sensitive bioanalysis for pathogen detection. However, this goal is not yet achieved. A design for fluorescein isothiocyanate-labeled lysozyme (FITC-LYZ), which provides quantitative binding information for gram-positive bacteria, Micrococcus luteus, and detects pathogen concentration, is presented. The functional lysozyme is used not only as the pathogenic detection platform, but also as a tracking reagent for microbial population in antibacterial tests. A nonlinear relationship between the system response and the logarithm of the bacterial concentration was observed in the range of 1.2×10(2)-1.2×10(5) cfu mL(-1). The system has a potential for further applications and provides a facile and simple method for detection of pathogenic bacteria. Meanwhile, the fluorescein isothiocyanate -labeled lysozyme is also employed as the tracking agent for antibacterial dynamic assay, which show a similar dynamic curve compared with UV-vis test. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis)

    PubMed Central

    Kong, Hailong; Lv, Min; Mao, Nian; Wang, Cheng; Cheng, Yunxia; Zhang, Lei; Jiang, Xingfu; Luo, Lizhi

    2016-01-01

    There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions. PMID:27575006

  5. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method.

    PubMed

    Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X

    2016-07-03

    Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.

  6. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    PubMed

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the

  7. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster

    PubMed Central

    Kumita, Janet R.; Helmfors, Linda; Williams, Jocy; Luheshi, Leila M.; Menzer, Linda; Dumoulin, Mireille; Lomas, David A.; Crowther, Damian C.; Dobson, Christopher M.; Brorsson, Ann-Christin

    2012-01-01

    We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w1118 Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.—Kumita, J. R., Helmfors, L., Williams, J., Luheshi, L. M., Menzer, L., Dumoulin, M., Lomas, D. A., Crowther, D. C., Dobson, C. M., Brorsson, A.-C. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster. PMID:21965601

  8. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability

    PubMed Central

    Oliveira Silva, Catarina; Petersen, Steffen B.; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N–formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a

  9. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability.

    PubMed

    Oliveira Silva, Catarina; Petersen, Steffen B; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a

  10. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme.

    PubMed

    Hamdani, Afshan Mumtaz; Wani, Idrees Ahmed; Bhat, Naseer Ahmad; Siddiqi, Raushid Ahmad

    2018-02-01

    This study was undertaken to analyze the effect of conjugation of egg-white lysozyme with guar gum. Lysozyme is an antimicrobial polypeptide that can be used for food preservation. Its antibacterial activity is limited to gram positive bacteria. Conjugation with polysaccharides like guar gum may broaden its activity against gram negatives. Conjugate was developed through Maillard reaction. Assays carried out included sugar estimation, SDS-PAGE, GPC, color, FT-IR, DSC, thermal stability, solubility, emulsifying, foaming and antioxidant activity. In addition, antimicrobial activity of the conjugate was determined against two gram positive (Staphyllococcus aureus and Enterococcus) and two gram negative pathogens (E. coli and Salmonella). Results showed higher functional properties of lysozyme-guar gum conjugate. The antioxidant properties increased from 2.02-35.80% (Inhibition of DPPH) and 1.65-4.93AAE/g (reducing power) upon guar gum conjugation. Conjugate significantly inhibited gram negative bacteria and the antibacterial activity also increased significantly against gram positive pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Disease-related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in Drosophila melanogaster.

    PubMed

    Kumita, Janet R; Helmfors, Linda; Williams, Jocy; Luheshi, Leila M; Menzer, Linda; Dumoulin, Mireille; Lomas, David A; Crowther, Damian C; Dobson, Christopher M; Brorsson, Ann-Christin

    2012-01-01

    We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.

  12. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method

    PubMed Central

    Cao, X.M.; Tian, Y.; Wang, Z.Y.; Liu, Y.W.; Wang, C.X.

    2016-01-01

    ABSTRACT Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method. PMID:27459596

  13. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  14. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  15. Effect of mobile phone use on salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein of the parotid gland.

    PubMed

    Hashemipour, M S; Yarbakht, M; Gholamhosseinian, A; Famori, H

    2014-05-01

    The possibility of side effects associated with the electromagnetic waves emitted from mobile phones is a controversial issue. The present study aimed to evaluate the effect of mobile phone use on parotid gland salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein. Stimulated salivary samples were collected simultaneously from both parotid glands of 86 healthy volunteers. Salivary flow rate and salivary concentrations of proteins, amylase, lipase, lysozyme, lactoferrin, peroxidase, C-reactive protein and immunoglobulin A, were measured. Data were analysed using t-tests and one-way analyses of variance. Salivary flow rate and parotid gland salivary concentrations of protein were significantly higher on the right side compared to the left in those that predominantly held mobile phones on the right side. In addition, there was a decrease in concentrations of amylase, lipase, lysozyme, lactoferrin and peroxidase. The side of dominant mobile phone use was associated with differences in salivary flow rate and parotid gland salivary concentrations, in right-dominant users. Although mobile phone use influenced salivary composition, the relationship was not significant.

  16. Scaling and self-organized criticality in proteins: Lysozyme c

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2009-11-01

    Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein functionality is often dominated by long-range hydro(phobic/philic) interactions, which both drive protein compaction and mediate protein-protein interactions. In contrast to previous reductionist short-range hydrophobicity scales, the holistic Moret-Zebende hydrophobicity scale [Phys. Rev. E 75, 011920 (2007)] represents a hydroanalytic tool that bioinformatically quantifies SOC in a way fully compatible with evolution. Hydroprofiling identifies chemical trends in the activities and substrate binding abilities of model enzymes and antibiotic animal lysozymes c , as well as defensins, which have been the subject of tens of thousands of experimental studies. The analysis is simple and easily performed and immediately yields insights not obtainable by traditional methods based on short-range real-space interactions, as described either by classical force fields used in molecular-dynamics simulations, or hydrophobicity scales based on transference energies from water to organic solvents or solvent-accessible areas.

  17. New sub-family of lysozyme-like proteins shows no catalytic activity: crystallographic and biochemical study of STM3605 protein from Salmonella Typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Brown, Roslyn N.; Li, Hui

    Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene frommore » Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.« less

  18. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  19. Computational study of aggregation mechanism in human lysozyme[D67H

    PubMed Central

    Patel, Dharmeshkumar

    2017-01-01

    Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it. PMID:28467454

  20. Protecting Gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Liu, Zhihong; García-Díaz, Beatriz; Catacchio, Bruno; Chiancone, Emilia; Vogel, Hans J

    2015-11-01

    Lysozymes play an important role in host defense by degrading peptidoglycan in the cell envelopes of pathogenic bacteria. Several Gram-negative bacteria can evade this mechanism by producing periplasmic proteins that inhibit the enzymatic activity of lysozyme. The Escherichia coli inhibitor of vertebrate lysozyme, Ivyc and its Pseudomonas aeruginosa homolog, Ivyp1 have been shown to be potent inhibitors of hen egg white lysozyme (HEWL). Since human lysozyme (HL) plays an important role in the innate immune response, we have examined the binding of HL to Ivyc and Ivyp1. Our results show that Ivyp1 is a weaker inhibitor of HL than Ivyc even though they inhibit HEWL with similar potency. Calorimetry experiments confirm that Ivyp1 interacts more weakly with HL than HEWL. Analytical ultracentrifugation studies revealed that Ivyp1 in solution is a monomer and forms a 30kDa heterodimer with both HL and HEWL, while Ivyc is a homodimer that forms a tetramer with both enzymes. The interaction of Ivyp1 with HL was further characterized by NMR chemical shift perturbation experiments. In addition to the characteristic His-containing Ivy inhibitory loop that binds into the active site of lysozyme, an extended loop (P2) between the final two beta-strands also participates in forming protein-protein interactions. The P2 loop is not conserved in Ivyc and it constitutes a flexible region in Ivyp1 that becomes more rigid in the complex with HL. We conclude that differences in the electrostatic interactions at the binding interface between Ivy inhibitors and distinct lysozymes determine the strength of this interaction. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Two duplicated chicken-type lysozyme genes in disc abalone Haliotis discus discus: molecular aspects in relevance to structure, genomic organization, mRNA expression and bacteriolytic function.

    PubMed

    Umasuthan, Navaneethaiyer; Bathige, S D N K; Kasthuri, Saranya Revathy; Wan, Qiang; Whang, Ilson; Lee, Jehee

    2013-08-01

    Lysozymes are crucial antibacterial proteins that are associated with catalytic cleavage of peptidoglycan and subsequent bacteriolysis. The present study describes the identification of two lysozyme genes from disc abalone Haliotis discus discus and their characterization at sequence-, genomic-, transcriptional- and functional-levels. Two cDNAs and BAC clones bearing lysozyme genes were isolated from abalone transcriptome and BAC genomic libraries, respectively and sequences were determined. Corresponding deduced amino acid sequences harbored a chicken-type lysozyme (LysC) family profile and exhibited conserved characteristics of LysC family members including active residues (Glu and Asp) and GS(S/T)DYGIFQINS motif suggested that they are LysC counterparts in disc abalone and designated as abLysC1 and abLysC2. While abLysC1 represented the homolog recently reported in Ezo abalone [1], abLysC2 shared significant identity with LysC homologs. Unlike other vertebrate LysCs, coding sequence of abLysCs were distributed within five exons interrupted by four introns. Both abLysCs revealed a broader mRNA distribution with highest levels in mantle (abLysC1) and hepatopancreas (abLysC2) suggesting their likely main role in defense and digestion, respectively. Investigation of temporal transcriptional profiles post-LPS and -pathogen challenges revealed induced-responses of abLysCs in gills and hemocytes. The in vitro muramidase activity of purified recombinant (r) abLysCs proteins was evaluated, and findings indicated that they are active in acidic pH range (3.5-6.5) and over a broad temperature range (20-60 °C) and influenced by ionic strength. When the antibacterial spectra of (r)abLysCs were examined, they displayed differential activities against both Gram positive and Gram negative strains providing evidence for their involvement in bacteriolytic function in abalone physiology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.

    PubMed

    Levitt, M; Sander, C; Stern, P S

    1985-02-05

    We have developed a new method for modelling protein dynamics using normal-mode analysis in internal co-ordinates. This method, normal-mode dynamics, is particularly well suited for modelling collective motion, makes possible direct visualization of biologically interesting modes, and is complementary to the more time-consuming simulation of molecular dynamics trajectories. The essential assumption and limitation of normal-mode analysis is that the molecular potential energy varies quadratically. Our study starts with energy minimization of the X-ray co-ordinates with respect to the single-bond torsion angles. The main technical task is the calculation of second derivative matrices of kinetic and potential energy with respect to the torsion angle co-ordinates. These enter into a generalized eigenvalue problem, and the final eigenvalues and eigenvectors provide a complete description of the motion in the basic 0.1 to 10 picosecond range. Thermodynamic averages of amplitudes, fluctuations and correlations can be calculated efficiently using analytical formulae. The general method presented here is applied to four proteins, trypsin inhibitor, crambin, ribonuclease and lysozyme. When the resulting atomic motion is visualized by computer graphics, it is clear that the motion of each protein is collective with all atoms participating in each mode. The slow modes, with frequencies of below 10 cm-1 (a period of 3 ps), are the most interesting in that the motion in these modes is segmental. The root-mean-square atomic fluctuations, which are dominated by a few slow modes, agree well with experimental temperature factors (B values). The normal-mode dynamics of these four proteins have many features in common, although in the larger molecules, lysozyme and ribonuclease, there is low frequency domain motion about the active site.

  3. Activity and immunodetection of lysozyme in earthworm Dendrobaena veneta (Annelida).

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Hułas-Stasiak, Monika; Wielbo, Jerzy

    2012-01-01

    In the present study, lysozyme-like activity against Micrococcus luteus was detected in the coelomic fluid, the extract from coelomocytes, intestine and in the homogenates from cocoons of Dendrobaena veneta. Four hours after immunization with Escherichia coli, the lysozyme activity in the coelomic fluid increased about three times and in the extract of coelomocytes - four times, in comparison to the control. In three cases: of the coelomic fluid, the homogenates from cocoons and the extract from coelomocytes, the antibody against HEWL (hen egg white lysozyme) recognized only one protein with a molecular mass of about 14.4 kDa. In the coelomic fluid, apart from the protein with molecular mass of 14.4 kDa the antibody directed against human lysozyme recognized an additional protein of 22 kDa. Using the bioautography technique after electrophoretic resolution of native proteins in acidic polyacrylamide gels, two lytic zones of M. luteus were observed in the case of the coelomic fluid and three after the analysis of the extract of coelomocytes and the egg homogenates. The results indicated the existence of several forms of lysozyme with a different electric charge in the analyzed D. veneta samples. The highest lysozyme activity in the intestine of D. veneta was observed in the midgut. The antibody directed against human lysozyme indicated a strong positive signal in epidermal and midgut cells of earthworm. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Evaluation of oriented lysozyme immobilized with monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya

    2008-12-01

    The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.

  5. Unfolding and refolding details of lysozyme in the presence of β-casein micelles.

    PubMed

    Wu, Fu-Gen; Luo, Jun-Jie; Yu, Zhi-Wu

    2011-02-28

    In this work, we selected a small globular protein, lysozyme, to study how it unfolds and refolds in the presence of micelles composed of the unstructured β-casein proteins by using microcalorimetry and circular dichroism spectroscopy. It was found that a partially unfolded structure of lysozyme starts to form when the β-casein/lysozyme molar ratio is above 0.7, and the structure forms exclusively when the β-casein/lysozyme molar ratio is above 1.6. This partially unfolded state of lysozyme loses most of its tertiary structure and after heating, the denatured lysozyme molecules are trapped in the charged coatings of β-casein micelles and cannot refold upon cooling. The thus obtained protein complex can be viewed as a kind of special polyelectrolyte complex micelle. The net charge ratios of the two proteins and the ionic strength of the dispersions can significantly modulate the electrostatic and hydrophobic interactions between the two proteins. Our present work may have implications for the nanoparticle protein engineering therapy in the biomedicine field and may provide a better understanding of the principles governing the protein-protein interactions. Besides, the heating-cooling-reheating procedure employed in this work can also be used to study the unfolding and refolding details of the target protein in other protein-protein, protein-polymer and protein-small solute systems.

  6. Effects of Purification on the Crystallization of Lysozyme

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.

    1996-01-01

    We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

  7. Locations of Halide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field

  8. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization.

    PubMed

    Herrero, María Belén; Mandal, Arabinda; Digilio, Laura C; Coonrod, Scott A; Maier, Bernhard; Herr, John C

    2005-08-01

    This study demonstrates the retention of mouse sperm lysozyme-like protein (mSLLP1) in the equatorial segment of spermatozoa following the acrosome reaction and a role for mSLLP1 in sperm-egg binding and fertilization. Treatment of cumulus intact oocytes with either recmSLLP1 or its antiserum resulted in a significant (P < or = 0.05) inhibition of fertilization. Co-incubation of zona-free mouse oocytes with capacitated mouse spermatozoa in the presence of varying concentrations of anti-recmSLLP1 serum or recmSLLP1 also inhibited sperm-oolemma binding. A complete inhibition of binding and fusion of spermatozoa to the oocyte occurred at 12.5 muM concentration of recmSLLP1, while conventional chicken and human lysozymes did not block sperm-egg binding. mSLLP1 showed receptor sites in the perivitelline space as well as on the microvillar region of the egg plasma membrane. The retention of mSLLP1 in the equatorial segment of acrosome-reacted sperm, the inhibitory effects of both recmSLLP1 and antibodies to SLLP1 on in vitro fertilization with both cumulus intact and zona-free eggs, and the definition of complementary SLLP1-binding sites on the egg plasma membrane together support the hypothesis that a c lysozyme-like protein is involved in the binding of spermatozoa to the egg plasma membrane during fertilization.

  9. Noncovalent Polymerization of Mesogens Crystallizes Lysozyme: Correlation between Nonamphiphilic Lyotropic Liquid Crystal Phase and Protein Crystal Formation

    PubMed Central

    Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung

    2011-01-01

    Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812

  10. New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins

    PubMed Central

    Dias, Susana A.; Freire, João M.; Pérez-Peinado, Clara; Domingues, Marco M.; Gaspar, Diana; Vale, Nuno; Gomes, Paula; Andreu, David; Henriques, Sónia T.; Castanho, Miguel A. R. B.; Veiga, Ana S.

    2017-01-01

    The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties. PMID:28522994

  11. Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: implication to protein stability.

    PubMed

    Shah, Dhawal; Shaikh, Abdul Rajjak

    2016-01-01

    Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein.

  12. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Yun; Zhou, Jian; Jiang, Shaoyi

    2010-02-01

    In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.

  13. Salt induced reduction of lysozyme adsorption at charged interfaces

    NASA Astrophysics Data System (ADS)

    Göhring, Holger; Paulus, Michael; Salmen, Paul; Wirkert, Florian; Kruse, Theresa; Degen, Patrick; Stuhr, Susan; Rehage, Heinz; Tolan, Metin

    2015-06-01

    A study of lysozyme adsorption below a behenic acid membrane and at the solid-liquid interface between aqueous lysozyme solution and a silicon wafer in the presence of sodium chloride is presented. The salt concentration was varied between 1 mmol L-1 and 1000 mmol L-1. X-ray reflectivity data show a clear dependence of the protein adsorption on the salt concentration. Increasing salt concentrations result in a decreased protein adsorption at the interface until a complete suppression at high concentrations is reached. This effect can be attributed to a reduced attractive electrostatic interaction between the positively charged proteins and negatively charged surfaces by charge screening. The measurements at the solid-liquid interfaces show a transition from unoriented order of lysozyme in the adsorbed film to an oriented order with the short protein axis perpendicular to the solid-liquid interface with rising salt concentration.

  14. Determination of monomer concentrations in crystallizing lysozyme solutions

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Pusey, Marc L.

    1992-01-01

    We have developed a non-optical technique for the study of aggregation in lysozyme and other protein solutions. By monitoring the rate at which lysozyme traverses a semipermeable membrane it was possible to quantitate the degree of aggregation in supersaturated solutions. Using this technique, we have measured the concentration of monomers and larger aggregates in under- and oversaturated lysozyme solutions, and in the presence of crystals, at pH 4.0 and 3 percent NaCl (0.1M NaAc). Comparison of these concentration profiles with (110) face growth rate data supports the theory that tetragonal lysozyme crystals grow by addition of preformed aggregates and not by monomer addition. The data suggest that a considerable population of aggregates larger than dimers are present at lysozyme concentrations above 22 mg/ml. Determination of dimer concentrations, and equilibrium constants for subsequent aggregation levels, are currently underway.

  15. Dynamics of Lysozyme in Trehalose solutions

    NASA Astrophysics Data System (ADS)

    Ghatty, Pavan; Uberbacher, Edward C.

    2008-03-01

    Anhydrobiosis in Tardigrades and Nematodes has been a topic of constant interest and intrigue in the scientific community. An increase in the concentration of Trehalose has been attributed to the ability of some organisms to survive extreme conditions of temperature, pressure and pH. Although there exist many experimental studies attributing this effect to Trehalose, the molecular details governing the interaction between Trehalose and proteins remains unclear. We have conducted a 20ns study of Lysozyme in varying concentrations of Trehalose in water. Strong and weak hydrogen bonds and hydrophobic interactions between water, Trehalose and protein seem to dictate the interactions in the system. We have observed a hydrogen bonded network of Trehalose around the protein entrapping a layer of water between itself and protein. Lysozyme remains in a near-native conformation throughout the simulation giving hints on the ability of Trehalose in preserving the structure of protiens.

  16. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Dominguez-Vera, Jose M.; Garcia-Ruiz, Juan M.

    2003-05-01

    Several mechanisms have been proposed to explain the interactions between proteins and mineral surfaces, among them a combination of electrostatic, stereochemical interactions and molecular recognition between the protein and the crystal surface. To identify the mechanisms of interaction in the lysozyme-calcium carbonate model system, the effect of this protein on the precipitation kinetics and morphology of calcite crystals was examined. The solution chemistry and morphology of the solid were monitored over time in a set of time-series free-drift experiments in which CaCO 3 was precipitated from solution in a closed system at 25°C and 1 atm total pressure, in the presence and absence of lysozyme. The precipitation of calcite was preceded by the precipitation of a metastable phase that later dissolved and gave rise to calcite as the sole phase. With increasing lysozyme concentration, the nucleation of both the metastable phase and calcite occurred at lower Ω calcite, indicating that lysozyme favored the nucleation of both phases. Calcite growth rate was not affected by the presence of lysozyme, at least at protein concentrations ranging from 0 mg/mL to 10 mg/mL. Lysozyme modified the habit of calcite crystals. The degree of habit modification changed with protein concentration. At lower concentrations of lysozyme, the typical rhombohedral habit of calcite crystals was modified by the expression of {110} faces, which resulted from the preferential adsorption of protein on these faces. With increasing lysozyme concentration, the growth of {110}, {100}, and finally {001} faces was sequentially inhibited. This adsorption sequence may be explained by an electrostatic interaction between lysozyme and calcite, in which the inhibition of the growth of {110}, {100}, and {001} faces could be explained by a combined effect of the density of carbonate groups in the calcite face and the specific orientation (perpendicular) of these carbonate groups with respect to the calcite

  17. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  18. Performance of the lysozyme for promoting the waste activated sludge biodegradability.

    PubMed

    He, Jun-Guo; Xin, Xiao-Dong; Qiu, Wei; Zhang, Jie; Wen, Zhi-Dan; Tang, Jian

    2014-10-01

    The fresh waste activated sludge (WAS) from a lab-scale sequencing batch reactor was used to determine the performance of the lysozyme for promoting its biodegradability. The results showed that a strict linear relationship presented between the degree of disintegration (DDM) of WAS and the lysozyme incubation time from 0 to 240min (R(2) was 0.992, 0.995 and 0.999 in accordance with the corresponding lysozyme/TS, respectively). Ratio of net SCOD increase augmented significantly by lysozyme digestion for evaluating the sludge biodegradability changes. Moreover, the protein dominated both in the EPS and SMP. In addition, the logarithm of SMP contents in supernatant presented an increasing trend similar with the ascending logarithmic relation with the lysozyme incubation time from 0 to 240min (R(2) was 0.960, 0.959 and 0.947, respectively). The SMP, especially the soluble protein, had an important contribution to the improvement of WAS biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  20. An improved 96-well turbidity assay for T4 lysozyme activity

    PubMed Central

    Toro, Tasha B.; Nguyen, Thao P.; Watt, Terry J.

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: • Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays; • Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and • Incorporates a simplified expression and purification protocol for T4 lysozyme. PMID:26150996

  1. Newly identified invertebrate-type lysozyme (Splys-i) in mud crab (Scylla paramamosain) exhibiting muramidase-deficient antimicrobial activity.

    PubMed

    Zhou, Jian; Zhao, Shu; Fang, Wen-Hong; Zhou, Jun-Fang; Zhang, Jing-Xiao; Ma, Hongyu; Lan, Jiang-Feng; Li, Xin-Cang

    2017-09-01

    Lysozymes are widely distributed immune effectors exerting muramidase activity against the peptidoglycan of the bacterial cell wall to trigger cell lysis. However, some invertebrate-type (i-type) lysozymes deficient of muramidase activity still exhibit antimicrobial activity. To date, the mechanism underlying the antimicrobial effect of muramidase-deficient i-type lysozymes remains unclear. Accordingly, this study characterized a novel i-type lysozyme, Splys-i, in the mud crab Scylla paramamosain. Splys-i shared the highest identity with the Litopenaeus vannamei i-type lysozyme (Lvlys-i2, 54% identity) at the amino acid level. Alignment analysis and 3D structure comparison show that Splys-i may be a muramidase-deficient i-type lysozyme because it lacks the two conserved catalytic residues (Glu and Asp) that are necessary for muramidase activity. Splys-i is mainly distributed in the intestine, stomach, gills, hepatopancreas, and hemocytes, and it is upregulated by Vibrio harveyi or Staphylococcus aureus challenge. Recombinant Splys-i protein (rSplys-i) can inhibit the growth of Gram-negative bacteria (V. harveyi, Vibrio alginolyticus, Vibrio parahemolyticus, and Escherichia coli), Gram-positive bacteria (S. aureus, Bacillus subtilis, and Bacillus megaterium), and the fungus Candida albicans to varying degrees. In this study, two binding assays and a bacterial agglutination assay were conducted to elucidate the potential antimicrobial mechanisms of Splys-i. Results demonstrated that rSplys-i could bind to all nine aforementioned microorganisms. It also exhibited a strong binding activity to lipopolysaccharide from E. coli and lipoteichoic acid and peptidoglycan (PGN) from S. aureus but a weak binding activity to PGN from B. subtilis and β-glucan from fungi. Moreover, rSplys-i could agglutinate these nine types of microorganisms in the presence of Ca 2+ at different protein concentrations. These results suggest that the binding activity and its triggered

  2. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  3. Protein denaturation in vacuo: intrinsic unfolding pathways associated with the native tertiary structure of lysozyme

    NASA Astrophysics Data System (ADS)

    Arteca, Gustavo A.; Tapia, O.

    Using computer-simulated molecular dynamics, we study the effect of sequence mutation on the unfolding mechanism of a native fold. The system considered is the native fold of hen egg-white lysozyme, exposed to centrifugal unfolding in vacuo. This unfolding bias elicits configurational transitions that imitate the behaviour of anhydrous proteins diffusing after electrospraying from neutral-pH solutions. By changing the sequences threaded onto the native fold of lysozyme, we probe the role of disulfide bridges and the effect of a global mutation. We find that the initial denaturing steps share common characteristics for the tested sequences. Recurrent features are: (i) the presence of dumbbell conformers with significant residual secondary structure, (ii) the ubiquitous formation of hairpins and two-stranded β-sheets regardless of disulfide bridges, and (iii) an unfolding pattern where the reduction in folding complexity is highly correlated with the decrease in chain compactness. These findings appear to be intrinsic to the shape of the native fold, suggesting that similar unfolding pathways may be accessible to many protein sequences.

  4. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state.

    PubMed

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-05-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.

  5. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidinesmore » target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.« less

  6. Unfolding mechanism of lysozyme in various urea solutions: Insights from fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Bang; Zhang, Hongjia; Xi, Wenying; Zhao, Liqing; Liang, Li; Chen, Yantao

    2014-11-01

    Fluorescence spectroscopic technique is very popular in exploring the folding/unfolding process of proteins. In this paper, unfolding process of hen egg-white lysozyme was investigated in various denaturing solutions. Firstly, polymer solution theory was employed to comprehend the dependence of fluorescence quenching effect on protein concentration, and dynamic contact concentration was suggested as a critical value for related fluorescence experiment. Secondly, it was found that urea alone could not completely unfold lysozyme but did when together with DTT or HCl. Lysozyme was destabilized in concentrated urea solution, but still could maintain its spatial structure. Phase diagram of fluorescence intensities revealed that HCl could enhance the denaturing capacity of urea, resulting in the emergence of intermediate state in the thermodynamic unfolding process of lysozyme.

  7. Destroying activity of magnetoferritin on lysozyme amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kopcansky, Peter; Siposova, Katarina; Melnikova, Lucia; Bednarikova, Zuzana; Timko, Milan; Mitroova, Zuzana; Antosova, Andrea; Garamus, Vasil M.; Petrenko, Viktor I.; Avdeev, Mikhail V.; Gazova, Zuzana

    2015-03-01

    Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.

  8. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    PubMed

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  9. Solubility of lysozyme in polyethylene glycol-electrolyte mixtures: the depletion interaction and ion-specific effects.

    PubMed

    Boncina, Matjaz; Rescic, Jurij; Vlachy, Vojko

    2008-08-01

    The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br(-), Cl(-), F(-), and H(2)PO(4)(-) (all in combination with Na(+)), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs(+), K(+), and Na(+) (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order F(-) < H(2)PO(4)(-) < Cl(-) < Br(-) (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs(+) < K(+) < Na(+)) in this situation.

  10. Effects of single-walled carbon nanotubes on lysozyme gelation.

    PubMed

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine.

    PubMed

    Dias, Rita; Vilas-Boas, Eduardo; Campos, Francisco M; Hogg, Tim; Couto, José António

    2015-08-01

    This work evaluated the effect of lysozyme on lactobacilli isolated from Port wine. Bacterial growth experiments were conducted in MRS/TJ medium and inactivation studies were performed in phosphate buffer (KH2PO4), distilled water and wine supplemented with different concentrations of lysozyme. The response of bacteria to lysozyme was found to be highly strain dependent. Some strains of Lactobacillus hilgardii together with Lactobacillus collinoides and Lactobacillus fructivorans were found to be resistant to concentrations of lysozyme as high as 2000 mg/L. It was observed that among the L. hilgardii taxon the resistant strains possess an S-layer coat. Apparently, the strains of L. collinoides and L. fructivorans studied are also S-layer producers as suggested by the total protein profile obtained by SDS-PAGE. Thus, the hypothetical protective role of the S-layer against the action of lysozyme was investigated. From the various treatments used to remove the protein from the surface of the cells, the one employing LiCl (5 M) was the most effective. LiCl pre-treated cells exposed to lysozyme (2000 mg/L) in KH2PO4 buffer maintained its resistance. However, when cells were suspended in distilled water an increased sensitivity to lysozyme was observed. Moreover, it was found that the addition of ethanol (20% v/v) to the suspension medium (distilled water) triggered a strong inactivation effect especially on cells previously treated with LiCl (reduction of >6 CFU log cycles). The results suggest that the S-layer exerts a protective effect against lysozyme and that the cell suspension medium influences the bacteriolysis efficiency. It was also noted that ethanol enhances the inactivation effect of lysozyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state

    PubMed Central

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-01-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme. PMID:18421167

  13. Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films.

    PubMed

    Mudgil, Poonam; Torres, Margaux; Millar, Thomas J

    2006-03-15

    It is believed that a lipid layer forms the outer layer of the pre-ocular tear film and this layer helps maintain tear film stability by lowering its surface tension. Proteins of the aqueous layer of the tear film (beneath the lipid layer) may also contribute to reducing surface tension by adsorbing to, or penetrating the lipid layer. The purpose of this study was to compare the penetration of lysozyme, a tear protein, into films of meibomian lipids and phospholipids held at different surface pressures to determine if lysozyme were part of the surface layer of the tear film. Films of meibomian lipids or phospholipids were spread onto the surface of a buffered aqueous subphase. Films were compressed to particular pressures and lysozyme was injected into the subphase. Changes in surface pressure were monitored to determine adsorption or penetration of lysozyme into the surface film. Lysozyme penetrated a meibomian lipid film at all pressures tested (max=20 mN/m). It also penetrated phosphatidylglycerol, phosphatidylserine or phosphatidylethanolamine lipid films up to a pressure of 20 mN/m. It was not able to penetrate a phosphatidylcholine film at pressures >or=10 mN/m irrespective of the temperature being at 20 or 37 degrees C. However, it was able to penetrate it at very low pressures (<10 mN/m). Epifluorescence microscopy showed that the protein either adsorbs to or penetrates the lipid layer and the pattern of mixing depended upon the lipid at the surface. These results indicate that lysozyme is present at the surface of the tear film where it contributes to decreasing the surface tension by adsorbing and penetrating the meibomian lipids. Thus it helps to stabilize the tear film.

  14. Metal-assisted and microwave accelerated-evaporative crystallization: Application to lysozyme protein

    NASA Astrophysics Data System (ADS)

    Mauge-Lewis, Kevin

    In response to the growing need for new crystallization techniques that afford for rapid processing times along with control over crystal size and distribution, the Aslan Research Group has recently demonstrated the use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization MA-MAEC technique in conjunction with metal nanoparticles and nanostructures for the crystallization of amino acids and organic small molecules. In this study, we have employed the newly developed MA-MAEC technique to the accelerated crystallization of chicken egg-white lysozyme on circular crystallization platforms in order to demonstrate the proof-of-principle application of the method for protein crystallization. The circular crystallization platforms are constructed in-house from poly (methyl methacrylate) (PMMA) and silver nanoparticle films (SNFs), indium tin oxide (ITO) and iron nano-columns. In this study, we prove the MA-MAEC method to be a more effective technique in the rapid crystallization of macromolecules in comparison to other conventional methods. Furthermore, we demonstrate the use of the novel iCrystal system, which incorporates the use of continuous, low wattage heating to facilitate the rapid crystallization of the lysozyme while still retaining excellent crystal quality. With the incorporation of the iCrystal system, we observe crystallization times that are even shorter than those produced by the MA-MAEC technique using a conventional microwave oven in addition to significantly improved crystal quality.

  15. Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions.

    PubMed

    Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M

    2006-05-05

    The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.

  16. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

    PubMed Central

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-01-01

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants. PMID:27821857

  17. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme.

    PubMed

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-08

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  18. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

    NASA Astrophysics Data System (ADS)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-01

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  19. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  20. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  1. Dose-dependent effect of lysozyme upon Candida albicans biofilm

    PubMed Central

    Sebaa, Sarra; Hizette, Nicolas; Boucherit-Otmani, Zahia; Courtois, Philippe

    2017-01-01

    The present study investigated the in vitro effect of lysozyme (0–1,000 µg/ml) on Candida albicans (C. albicans) biofilm development. Investigations were conducted on C. albicans ATCC 10231 and on 10 clinical isolates from dentures. Strains were cultured aerobically at 37°C in Sabouraud broth. Yeast growth was evaluated by turbidimetry. Biofilm biomass was quantified on a polystyrene support by crystal violet staining and on acrylic surfaces by counts of colony forming units. Lysozyme affected biofilm formation to a greater extent than it affected growth. For the ATCC 10231 reference strain, lysozyme acted as a biofilm promotor on polystyrene at the highest concentration tested (1,000 µg/ml, non-physiological). When the reference strain was investigated on acrylic resin support, lysozyme acted as a significant biofilm promotor on rough resin, but less on smooth resin. The attached biomass in the presence of physiological concentrations of lysozyme (10–30 µg/ml) was significantly decreased compared with the hypothetical value of 100% using a one-sample t-test, but a comparison between the different lysozyme conditions using analysis of variance and post hoc tests did not reveal significant differences. In 10 wild strains, different patterns of biofilm formation on polystyrene were observed in the presence of lysozyme. Some strains, characterized by large amounts of biofilm formation in the presence of 1,000 µg/ml lysozyme, were poor biofilm producers at low concentrations of lysozyme. In contrast, some strains that were poor biofilm producers with a high lysozyme concentration were more inhibited by low concentrations of lysozyme. The present study emphasizes the need to develop strategies for biofilm control based on in vitro experiments, and to implement these in clinical trials prior to approval of hygiene products enriched with exocrine proteins, such as lysozyme. Further studies will extend these investigations to other Candida species, and to fungi

  2. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.

    PubMed

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi

    2016-11-20

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Lysozyme in the treatment of juvenile laryngeal papillomatosis. A new concept in its etiopathogenesis].

    PubMed

    Altamar-Ríos, J

    1990-01-01

    The A. inform about the results achieved with lysozyme chlorhydrate in the treatment of 15 patients with juvenile laryngeal papillomatosis. The lysozyme is an electropositive enzyme which synthesis is related to the degree of proteins and vitamin B complex ingestion. Lysozyme is a component of the immunitary inespecific system, serving to prevent against HPV-DNA at the level of the secretory film of the mucociliary apparatus of the respiratory mucous membrane. Furthermore, lysozyme hydrolyzes the mucopolysaccharide of the connective tissue and inhibits the virus-DNA replication. 100-300 mgr daily during 30-60 days simultaneously with hyperproteic diet and vitamin B complex (after correction of the nutrimental deficiencies) brought about the evanishment of papillomatosis. The A. suggest that the predisposition to infection by virus DNA is primarily of immunitary origin, because of lysozyme deficiency, and secondary due to a low intake of proteins and vitamin B complex.

  4. Stability of Lysozyme in Aqueous Extremolyte Solutions during Heat Shock and Accelerated Thermal Conditions

    PubMed Central

    van Streun, Erwin L. P.; Frijlink, Henderik W.; Hinrichs, Wouter L. J.

    2014-01-01

    The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account. PMID:24465983

  5. Stability of lysozyme in aqueous extremolyte solutions during heat shock and accelerated thermal conditions.

    PubMed

    Avanti, Christina; Saluja, Vinay; van Streun, Erwin L P; Frijlink, Henderik W; Hinrichs, Wouter L J

    2014-01-01

    The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account.

  6. TRAIL-CM4 fusion protein shows in vitro antibacterial activity and a stronger antitumor activity than solo TRAIL protein.

    PubMed

    Sang, Ming; Zhang, Jiaxin; Li, Bin; Chen, Yuqing

    2016-06-01

    A TRAIL-CM4 fusion protein in soluble form with tumor selective apoptosis and antibacterial functions was expressed in the Escherichia coli expression system and isolated through dialysis refolding and histidine-tag Nickel-affinity purification. Fresh Jurkat cells were treated with the TRAIL-CM4 fusion protein. Trypan blue staining and MTT analyses showed that, similar to a TRAIL positive control, Jurkat cell proliferation was significantly inhibited. Flow cytometry analyses using Annexin V-fluorescein revealed that Jurkat cells treated with the TRAIL-CM4 fusion protein exhibited increased apoptosis. Laser confocal microscopy showed that APB-CM4 and the fusion protein TRAIL-CM4 can bind to Jurkat cell membranes and initiate their destruction. ABP-CM4 enhances the antitumor activity of TRAIL by targeting and damaging the tumor cell membrane. In antibacterial experiments, agar well diffusion and bacterial growth inhibition curve assays revealed concentration-dependent TRAIL-CM4 antibacterial activity against Escherichia coli K12D31. The expressed TRAIL-CM4 fusion protein exhibited enhanced antitumor and antibacterial activities. Fusion protein expression allowed the two different proteins to function in combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  8. Multifunctional Biomaterial Coating Based on Bio-Inspired Polyphosphate and Lysozyme Supramolecular Nanofilm.

    PubMed

    Xu, Xinyuan; Zhang, Dongyue; Gao, Shangwei; Shiba, Toshikazu; Yuan, Quan; Cheng, Kai; Tan, Hong; Li, Jianshu

    2018-06-11

    Current implant materials have widespread clinical applications together with some disadvantages, the majority of which are the ease with which infections are induced and difficulty in exhibiting biocompatibility. For the efficient improvement of their properties, the development of interface multifunctional modification in a simple, universal, and environmently benign approach becomes a critical challenge and has acquired the attention of numerous scientists. In this study, a lysozyme-polyphosphate composite coating was fabricated for titanium(Ti)-based biomaterial to obtain a multifunctional surface. This coating was easily formed by sequentially soaking the substrate in reduced-lysozyme and polyphosphate solution. Such a composite coating has shown predominant antibacterial activity against Gram-negative bacteria ( E. coli) and improved cell adhesion, proliferation, and differentiation, which are much better than those of the pure substrate. This facile modification endows the biomaterial with anti-infective and potential bone-regenerative performance for clinical applications of biomaterial implants.

  9. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  10. Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis).

    PubMed

    Ko, Jiyeon; Wan, Qiang; Bathige, S D N K; Lee, Jehee

    2016-11-01

    Lysozymes are a family of enzymes that catalyze the hydrolysis of bacterial cell wall, acting as antimicrobial effectors of the innate immune system. In the present study, an ortholog of goose-type lysozyme (ShLysG) from the big-belly seahorse (Hippocampus abdominalis) was identified and characterized structurally and functionally. The full-length cDNA sequence (1213 bp) of ShLysG is comprised of an open reading frame made up of 552 bp, encoding a polypeptide of 184 amino acid (aa) with a predicted molecular mass of 20 kDa. In silico analysis of ShLysG revealed the absence of signal peptide and the presence of a characteristic bacterial soluble lytic transglycosylase (SLT) domain bearing three catalytic residues (Glu 71 , Asp 84 , and Asp 95 ) and seven N-acetyl-d-glucosamine binding sites (Glu 71 , Asp 95 , Tyr 98 , His 99 , Ile 117 , Tyr 145 , and Asn 146 ). Homology analysis demonstrated that the aa sequence of ShLysG shared 60.7-67.4% identity and 72.6-79.3% similarity with the orthologs of other teleosts. Phylogenetic analysis of ShLysG indicated a closest relationship with the ortholog from Gadus morhua. In healthy seahorse, ShLysG mRNA showed a constitutive expression in all the tissues examined, with the highest expression in kidney and the least expression in liver. The ShLysG mRNA levels were also shown significant elevation upon the bacterial and pathogen-associated molecular pattern (PAMPs) challenges. Furthermore, lytic activities of ShLysG recombinant protein were detected against several Gram-negative and Gram-positive bacterial species. Taken together, these results suggest that ShLysG might possess a potential immune defensive role against invading microbial pathogens in seahorse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle.

    PubMed

    Yang, Bin; Wang, Jianwu; Tang, Bo; Liu, Yufang; Guo, Chengdong; Yang, Penghua; Yu, Tian; Li, Rong; Zhao, Jianmin; Zhang, Lei; Dai, Yunping; Li, Ning

    2011-03-16

    There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale.

  12. Characterization of Bioactive Recombinant Human Lysozyme Expressed in Milk of Cloned Transgenic Cattle

    PubMed Central

    Yang, Bin; Wang, Jianwu; Tang, Bo; Liu, Yufang; Guo, Chengdong; Yang, Penghua; Yu, Tian; Li, Rong; Zhao, Jianmin; Zhang, Lei; Dai, Yunping; Li, Ning

    2011-01-01

    Background There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. Methodology/Principal Findings We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. Conclusions/Significance Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale. PMID:21436886

  13. An intrinsically shielded hydrogel for the adsorptive recovery of lysozyme.

    PubMed

    Wang, Lu; Zhang, Rongsheng; Eisenthal, Robert; Hubble, John

    2006-07-01

    The present paper addresses the selective recovery of lysozyme from egg white using CM-dextran (carboxymethyldextran)-based hydrogels containing Cibacron Blue as an affinity ligand and co-immobilized BSA intended to act as a shielding agent to reduce non-specific adsorption. Initial studies using pure lysozyme were conducted that indicated that the adsorption capacity increased with ligand density and that adsorption was well described by a Langmuir-type isotherm. The inclusion of BSA as a putative shielding agent did not decrease the adsorption capacity for lysozyme in single-adsorbate experiments. To assess the effectiveness of the shielding strategy, subsequent experiments were conducted with both defined lysozyme/ovalbumin mixtures and hen's-egg white. From these studies, the optimal operating conditions for lysozyme recovery have been determined. These include: optimal initial egg-white concentration [a 10% (v/v) solution of native egg white in the chosen buffer], affinity-ligand density (1.86 mM) and ligand-to-shielding-agent ratio (4:1). The purity of lysozyme obtained from egg white was improved from 69% with a non-shielded hydrogel to 94% with an intrinsically shielded hydrogel. Finally, the possibility of using a protein, rather than dextran-backbone-based, hydrogel was investigated. It was found that BSA could take the place of CM-dextran as the gel backbone in a simplified synthesis, producing a gel which also proved effective for lysozyme recovery with a 30% lysozyme in egg-white solution purified to approx. 92% in a single adsorption-desorption cycle.

  14. Microbial community related to lysozyme digestion process for boosting waste activated sludge biodegradability.

    PubMed

    Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian

    2015-01-01

    Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  16. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  17. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: A Raman scattering and molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2009-12-01

    The low-frequency (ω <400 cm-1) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility χ″(ω) of lysozyme/water and lysozyme/sugar/water solutions at a concentration of 40 wt % with the χ″ of dry lysozyme suggests that the protein dynamics mostly appears in the broad peak around 60-80 cm-1 that reflects the vibrations experienced by atoms within the cage formed by their neighbors, whereas the broad shoulder around 170 cm-1 mainly stems from the intermolecular O-H⋯O stretching vibrations of water. The addition of sugars essentially induces a significant high frequency shift and intensity reduction of this band that reveal a slowing down of water dynamics and a distortion of the tetrahedral hydrogen bond network of water, respectively. Furthermore, the lysozyme vibrational densities of states (VDOS) have been determined from simulations of lysozyme in 37-60 wt % disaccharide aqueous solutions. They exhibit an additional broad peak around 290 cm-1, in line with the VDOS of globular proteins obtained in neutron scattering experiments. The influence of sugars on the computed VDOS mostly appears on the first peak as a slight high-frequency shift and intensity reduction in the low-frequency range (ω <50 cm-1), which increase with the sugar concentration and with the exposition of protein residues to the solvent. These results suggest that sugars stiffen the environment experienced by lysozyme atoms, thereby counteracting the softening of protein vibrational modes upon denaturation, observed at high temperature in the Raman susceptibility of the lysozyme/water solution and in the computed VDOS of unfolded lysozyme in water. Finally, the Raman susceptibility of sugar/water solutions and the calculated VDOS of water in the

  18. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    PubMed

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which

  19. Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces.

    PubMed

    Park, Won-Kyu; Chung, Jin-Woo; Kim, Young-Ku; Chung, Sung-Chang; Kho, Hong-Seop

    2006-10-01

    The purpose of this study was to investigate the influence of animal mucins on lysozyme activity in solution and on the surface of hydroxyapatite (HA) beads. The effects of animal mucins on lysozyme activity in solution were examined by incubating porcine gastric mucin (PGM) or bovine submaxillary mucin (BSM) with hen egg-white lysozyme (HEWL) or salivary samples. HA-immobilised animal mucins or lysozyme were used to determine the influence of animal mucins on lysozyme activity on HA surfaces. Lysozyme activity was determined by turbidity measurement of a Micrococcus lysodeikticus substrate suspension. Protein concentration was determined by ninhydrin assay. PGM inhibited the activity of HEWL and salivary lysozyme in solution. The amount of inhibition was dependent on mucin concentration, incubation time and temperature, and the structural integrity of the mucin. The inhibition of salivary lysozyme activity by PGM was greater in submandibular/sublingual saliva than in parotid saliva. The inhibition of lysozyme activity by PGM was markedly dependent on pH. However, BSM did not inhibit the in-solution lysozyme activities of HEWL and clarified saliva. Both PGM and BSM bound to HA surfaces, and HA-adsorbed animal mucins increased the subsequent adsorption of lysozyme. When HA beads were exposed to a mixture of HEWL and PGM or BSM, lysozyme activity on the HA surfaces was significantly increased. The results suggest that animal mucins affect lysozyme activity, and the effects are different on HA surfaces compared with in solution. Further research is needed to determine the effect of animal mucins on lysozyme activity in vivo.

  20. The Natural Antimicrobial Enzyme Lysozyme is Up-Regulated in Gastrointestinal Inflammatory Conditions

    PubMed Central

    Rubio, Carlos A.

    2014-01-01

    The cells that line the mucosa of the human gastrointestinal tract (GI, that is, oral cavity, oesophagus, stomach, small intestine, large intestine, and rectum) are constantly challenged by adverse micro-environmental factors, such as different pH, enzymes, and bacterial flora. With exception of the oral cavity, these microenvironments also contain remnant cocktails of secreted enzymes and bacteria from upper organs along the tract. The density of the GI bacteria varies, from 103/mL near the gastric outlet, to 1010/mL at the ileocecal valve, to 1011 to 1012/mL in the colon. The total microbial population (ca. 1014) exceeds the total number of cells in the tract. It is, therefore, remarkable that despite the prima facie inauspicious mixture of harmful secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To counteract the hostile microenvironment, the GI epithelia react by speeding cell exfoliation (the GI mucosa has a turnover time of two to three days), by increasing peristalsis, by eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial compounds, such as defensin-5 and lysozyme. Only recently, lysozyme was found up-regulated in Barrett’s oesophagitis, chronic gastritis, gluten-induced atrophic duodenitis (coeliac disease), collagenous colitis, lymphocytic colitis, and Crohn’s colitis. This up-regulation is a response directed to the special types of bacteria recently detected in these diseases. The aim of lysozyme up-regulation is to protect individual mucosal segments to chronic inflammation. The molecular mechanisms connected to the crosstalk between the intraluminal bacterial flora and the production of lysozyme released by the GI mucosae, are discussed. Bacterial resistance continues to exhaust our supply of commercial antibiotics. The potential use of lysozyme to treat infectious diseases is receiving much attention. PMID:25437608

  1. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  2. Comparative insight into surfactants mediated amyloidogenesis of lysozyme.

    PubMed

    Chaturvedi, Sumit K; Khan, Javed M; Siddiqi, Mohammad K; Alam, Parvez; Khan, Rizwan H

    2016-02-01

    Electrostatic and hydrophobic interactions have an important role in the protein aggregation. In this study, we have investigated the effect of charge and hydrophobicity of oppositely charged surfactants i.e., anionic (AOT and SDS) and cationic (CTAB and DTAB) on hen egg white lysozyme at pH 9.0 and 13.0, respectively. We have employed various methods such as turbidity measurements, Rayleigh light scattering, ThT, Congo red and ANS dye binding assays, far-UV CD, atomic force microscopy, transmission electron and fluorescence microscopy. At lower molar ratio, both anionic and cationic surfactants promote amyloid fibril formation in lysozyme at pH 9.0 and 13.0, respectively. The aggregation was proportionally increased with respect to protein concentration and hydrophobicity of surfactant. The morphology of aggregates at both the pH was fibrillar in structure, as visualized by dye binding and microscopic imaging techniques. Initially, the interaction between surfactants and lysozyme was electrostatic and then hydrophobic as investigated by ITC. This study demonstrates the crucial role of charge and hydrophobicity during amyloid fibril formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  4. Concentration dependent switch in the kinetic pathway of lysozyme fibrillation: Spectroscopic and microscopic analysis

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, E.; Prasad, Deepak Kumar; Prakash Prabhu, N.

    2017-08-01

    Formation of amyloid fibrils is found to be a general tendency of many proteins. Investigating the kinetic mechanisms and structural features of the intermediates and the final fibrillar state is essential to understand their role in amyloid diseases. Lysozyme, a notable model protein for amyloidogenic studies, readily formed fibrils in vitro at neutral pH in the presence of urea. It, however, showed two different kinetic pathways under varying urea concentrations when probed with thioflavin T (ThT) fluorescence. In 2 M urea, lysozyme followed a nucleation-dependent fibril formation pathway which was not altered by varying the protein concentration from 2 mg/ml to 8 mg/ml. In 4 M urea, the protein exhibited concentration dependent change in the mechanism. At lower protein concentrations, lysozyme formed fibrils without any detectable nuclei (nucleation-independent polymerization pathway). When the concentration of the protein was increased above 3 mg/ml, the protein followed nucleation-dependent polymerization pathway as observed in the case of 2 M urea condition. This was further verified using microscopic images of the fibrils. The kinetic parameters such as lag time, elongation rate, and fibrillation half-time, which were derived from ThT fluorescence changes, showed linear dependency against the initial protein concentration suggested that under the nucleation-dependent pathway conditions, the protein followed primary-nucleation mechanism without any significant secondary nucleation events. The results also suggested that the differences in the initial protein conformation might alter the mechanism of fibrillation; however, at the higher protein concentrations lysozyme shifted to nucleation-dependent pathway.

  5. Fluorinated ionic liquids for protein drug delivery systems: Investigating their impact on the structure and function of lysozyme.

    PubMed

    Alves, Márcia; Vieira, Nicole S M; Rebelo, Luís Paulo N; Araújo, João M M; Pereiro, Ana B; Archer, Margarida

    2017-06-30

    Since the approval of recombinant human insulin by FDA in 1982, more than 200 proteins are currently available for pharmaceutical use to treat a wide range of diseases. However, innovation is still required to develop effective approaches for drug delivery. Our aim is to investigate the potential use of fluorinated ionic liquids (FILs) as drug delivery systems (DDS) for therapeutic proteins. Some initial parameters need to be assessed before further studies can proceed. This work evaluates the impact of FILs on the stability, function, structure and aggregation state of lysozyme. Different techniques were used for this purpose, which included differential scanning fluorimetry (DSF), spectrophotometric assays, circular dichroism (CD), dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM/TEM). Ionic liquids composed of cholinium-, imidazolium- or pyridinium- derivatives were combined with different anions and analysed at different concentrations in aqueous solutions (below and above the critical aggregation concentration, CAC). The results herein presented show that the addition of ionic liquids had no significant effect on the stability and hydrolytic activity of lysozyme. Moreover, a distinct behaviour was observed in DLS experiments for non-surfactant and surfactant ionic liquids, with the latter encapsulating the protein at concentrations above the CAC. These results encourage us to further study ionic liquids as promising tools for DDS of protein drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.

    PubMed

    Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna

    2010-07-09

    Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive

  7. Lysis of grouped and ungrouped streptococci by lysozyme.

    PubMed

    Coleman, S E; van de Rijn, I; Bleiweis, A S

    1970-11-01

    Thirty strains of streptococci were tested for lysis with lysozyme, and 29 of these could be lysed by the following method: (i) suspension of the cells to a Klett reading of 200 units (no. 42 filter) in 0.01 m tris(hydroxymethyl)aminomethane buffer, pH 8.2, after washing twice with the buffer; (ii) addition of lysozyme to a final concentration of 250 mug/ml with incubation for 60 min at 37 C; (iii) addition of sodium lauryl sulfate (SLS) to a final concentration of 0.2% and incubation up to an additional 15 min at 37 C. Significant lysis was obtained only after the addition of SLS. (Strains of groups A, E, and G were treated with trypsin at a concentration of 200 mug/ml for 2 hr at 37 C before exposure to lysozyme.) These parameters for optimal lysis of streptococci by lysozyme were established by testing the group D Streptococcus faecalis strain 31 which lyses readily with lysozyme and the group H strain Challis which is less susceptible to the action of the enzyme. Viability of S. faecalis decreased 96% after 3 min of exposure to 250 mug of lysozyme per ml, whereas the more resistant strain Challis retained 27% of the initial viability after the same period. After 60 min, there was almost total loss of viability in each case. Variations of three methods of lysing streptococci with lysozyme were compared with respect to the decrease in turbidity and the release of protein and deoxyribonucleic acid (DNA) effected by each variation. The method presented in this paper allowed the greatest release of these cytoplasmic constituents from S. faecalis and strain Challis. Transformation experiments using DNA obtained from strain Challis (streptomycinresistant) by this method showed that the DNA released is biologically active.

  8. Expression of lysozyme in the life history of the house fly (Musca domestica l.).

    PubMed

    Nayduch, Dana; Joyner, Chester

    2013-07-01

    From egg to adult, all life history stages of house flies associate with septic environments teeming with bacteria. House fly lysozyme was first identified in the larval midgut, where it is used for digestion of microbe-rich meals because of its broad-spectrum activity against gram-positive and gram-negative bacteria as well as fungi. This study aimed to determine the temporal expression of lysozyme in the life history of house flies (from egg through adults) on both the mRNA and protein level, and to determine the tissue-specific expression of lysozyme in adult flies induced by feeding Staphylococcus aureus. From 30-min postoviposition through adulthood, all life history stages of the house fly express lysozyme on the mRNA level. In adult flies, lysozyme is expressed both locally in the alimentary canal and systemically in the fat body. Interestingly, we found that during the normal life history of flies, lysozyme protein was only detected in larval stages and older adults, likely because of ingestion of immune-stimulating levels of bacteria, not experienced during egg, pupa, and teneral adult stages. Constitutive expression on the mRNA level implies that this effector is a primary defense molecule in all stages of the house fly life history, and that a mechanism for posttranscriptional control of mature lysozyme enzyme expression may be present. Lysozyme active enzyme primarily serves both a digestive and defensive function in larval and adult flies, and may be a key player in the ability of Musca domestica L. to thrive in microbe-rich environments.

  9. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    PubMed

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-06

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Callow, P

    2014-02-18

    Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.

  11. Heat-Denatured Lysozyme Inactivates Murine Norovirus as a Surrogate Human Norovirus.

    PubMed

    Takahashi, Hajime; Nakazawa, Moemi; Ohshima, Chihiro; Sato, Miki; Tsuchiya, Tomoki; Takeuchi, Akira; Kunou, Masaaki; Kuda, Takashi; Kimura, Bon

    2015-07-02

    Human norovirus infects humans through the consumption of contaminated food, contact with the excrement or vomit of an infected person, and through airborne droplets that scatter the virus through the air. Being highly infectious and highly viable in the environment, inactivation of the norovirus requires a highly effective inactivating agent. In this study, we have discovered the thermal denaturing capacity of a lysozyme with known antimicrobial activity against gram-positive bacteria, as well as its inactivating effect on murine norovirus. This study is the first report on the norovirus-inactivating effects of a thermally denatured lysozyme. We observed that lysozymes heat-treated for 40 min at 100 °C caused a 4.5 log reduction in infectivity of norovirus. Transmission electron microscope analysis showed that virus particles exposed to thermally denatured lysozymes were expanded, compared to the virus before exposure. The amino acid sequence of the lysozyme was divided into three sections and the peptides of each artificially synthesised, in order to determine the region responsible for the inactivating effect. These results suggest that thermal denaturation of the lysozyme changes the protein structure, activating the region responsible for imparting an inactivating effect against the virus.

  12. Indonesian honey protein isolation Apis dorsata dorsata and Tetragonula sp. as antibacterial and antioxidant agent

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Damayanti, Vina; Azizah, Nurul; Hakamada, Kazuaki; Yohda, Masafumi; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin

    2018-02-01

    Honey is a natural product that has many properties and been widely used for many theurapeutic purposes. Research on honey has been very rapid but not yet for Indonesia. Like local Indonesian honey Apis dorsata dorsata and Tetragonula sp. which has been widely consumed by the public but not yet known for certain efficacy of each content. The function of honey as antibacterial and antioxidant has not been specifically explained by the components contained in honey. Protein is one of the content of honey that turned out to have activity as an antibacterial and antioxidant in certain types of honey because of it antimicrobial peptide. Testing of honey activity as antibacterial and antioxidant through several stages including isolation, SDS-PAGE analysis, Bradford test, antibacterial activity test with well diffusion method and antioxidant activity test by DPPH method. Bacteria used were gram-positive bacteria Staphylococcus aureus and gram negative Escherichia coli. After some experiment finally got protein isolation method that is in the form of further concentration using Millipore membrane for honey Tetragonula sp. and membrane filtration dot blot for honey Apis dorsata dorsata. The Bradford assay showed that Apis dorsata dorsata honey contains protein <5 µg / ml, while honey Tetragonula sp. has a protein content of 97 µg / ml. The characteristic profile of molecular weight of the protein showed honey Tetragonula sp. has 3 protein bands composed of 52, 96 - 61,9 kDa, 63,35 - 65,92 kDa and 86,16 - 91,4 kDa, whereas Apis dorsata dorsata honey has 5 protein bands consisting of 45,2 - 46,6 kDa, 50,2 - 50,9 kDa, 62,5 - 62,9 kDa, 73,1 - 73,9 kDa, 83,9 - 86,9 kDa. Isolate honey protein Apis dorsata dorsata has no antioxidant and antibacterial activity (Staphylococcus aureus and Escherichia coli), whereas honey protein isolates Tetragonula sp. has antibacterial activity against Escherichia coli.

  13. Detection of recombinant human lactoferrin and lysozyme produced in a bitransgenic cow.

    PubMed

    Kaiser, Germán G; Mucci, Nicolás C; González, Vega; Sánchez, Lourdes; Parrón, José A; Pérez, María D; Calvo, Miguel; Aller, Juan F; Hozbor, Federico A; Mutto, Adrián A

    2017-03-01

    Lactoferrin and lysozyme are 2 glycoproteins with great antimicrobial activity, being part of the nonspecific defensive system of human milk, though their use in commercial products is difficult because human milk is a limited source. Therefore, many investigations have been carried out to produce those proteins in biological systems, such as bacteria, yeasts, or plants. Mammals seem to be more suitable as expression systems for human proteins, however, especially for those that are glycosylated. In the present study, we developed a bicistronic commercial vector containing a goat β-casein promoter and an internal ribosome entry site fragment between the human lactoferrin and human lysozyme genes to allow the introduction of both genes into bovine adult fibroblasts in a single transfection. Embryos were obtained by somatic cell nuclear transfer, and, after 6 transferences to recipients, 3 pregnancies and 1 viable bitransgenic calf were obtained. The presence of the vector was confirmed by fluorescent in situ hybridization of skin cells. At 13 mo of life and after artificial induction of lactation, both recombinant proteins were found in the colostrum and milk of the bitransgenic calf. Human lactoferrin concentration in the colostrum was 0.0098 mg/mL and that in milk was 0.011 mg/mL; human lysozyme concentration in the colostrum was 0.0022 mg/mL and that in milk was 0.0024 mg/mL. The molar concentration of both human proteins revealed no differences in protein production of the internal ribosome entry site upstream and downstream protein. The enzymatic activity of lysozyme in the transgenic milk was comparable to that of human milk, being 6 and 10 times higher than that of bovine lysozyme present in milk. This work represents an important step to obtain multiple proteins or enhance single protein production by using animal pharming and fewer regulatory and antibiotic-resistant foreign sequences, allowing the design of humanized milk with added biological value for

  14. Amoebicidal Activity of Milk, Apo-lactoferrin, sIgA and Lysozyme

    PubMed Central

    León-Sicairos, Nidia; López-Soto, Fernando; Reyes-López, Magda; Godínez-Vargas, Delfino; Ordaz-Pichardo, Cynthia; de la Garza, Mireya

    2006-01-01

    Objectives: To identify amoebicidal components in human milk and the effect of iron on the amoebicidal activity. Design: Investigation in axenic cultures of Entamoeba histolytica trophozoites. Methods: Amoebas were treated with 5%–20% of human, bovine and swine milk, with 10% of human milk fractions (i.e., casein, proteins except casein and fat) or with 1 mg/ml of human milk apo-lactoferrin, human secretory immunoglobulin type A (sIgA) and chicken egg-white lysozyme (i.e., purified proteins). Milk proteins were detected using immunoblot. Confocal microscopy was used to define the interaction of milk proteins (100 μM each) and amoebas. Experiments were done at least three times in triplicate, and mean and standard deviations were calculated. Results: Human and bovine milk were amoebicidal showing a concentration-dependent effect. The amoebicidal effect was increased in the absence of iron. Milk protein fractions, with the exception of casein, were the components responsible for the amoebicidal activity found. Apo-lactoferrin, sIgA and lysozyme were identified in the amoebicidal milk protein fraction. Apo-lactoferrin showed the major amoebicidal effect. These proteins, either alone or in combination, showed a killing effect on the trophozoites. They bound to the amoebic membrane causing cell rounding, lipid disruption and damage. Conclusions: Milk proteins such as apo-lactoferrin, sIgA and lysozyme are able to kill Entamoeba histolytica trophozoites. This study confirms the importance of feeding breast milk to newborns. PMID:16809402

  15. Phase equilibria in the lysozyme-ammonium sulfate-water system.

    PubMed

    Moretti, J J; Sandler, S I; Lenhoff, A M

    2000-12-05

    Ternary phase diagrams were measured for lysozyme in ammonium sulfate solutions at pH values of 4 and 8. Lysozyme, ammonium sulfate, and water mass fractions were assayed independently by UV spectroscopy, barium chloride titration, and lyophilization respectively, with mass balances satisfied to within 1%. Protein crystals, flocs, and gels were obtained in different regions of the phase diagrams, and in some cases growth of crystals from the gel phase or from the supernatant after floc removal was observed. These observations, as well as a discontinuity in protein solubility between amorphous floc precipitate and crystal phases, indicate that the crystal phase is the true equilibrium state. The ammonium sulfate was generally found to partition unequally between the supernatant and the dense phase, in disagreement with an assumption often made in protein phase equilibrium studies. The results demonstrate the potential richness of protein phase diagrams as well as the uncertainties resulting from slow equilibration. Copyright 2000 John Wiley & Sons, Inc.

  16. Enterococcus faecalis Constitutes an Unusual Bacterial Model in Lysozyme Resistance▿

    PubMed Central

    Hébert, Laurent; Courtin, Pascal; Torelli, Riccardo; Sanguinetti, Maurizio; Chapot-Chartier, Marie-Pierre; Auffray, Yanick; Benachour, Abdellah

    2007-01-01

    Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The ΔEF_0783 mutant and ΔEF_0783 ΔEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and ΔEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of ΔEF_0783 and ΔEF_0783 ΔEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis. PMID:17785473

  17. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  18. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  19. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  20. Adsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface

    NASA Astrophysics Data System (ADS)

    Cheung, David L.

    2017-11-01

    As proteins contain both hydrophobic and hydrophilic amino acids, they will readily adsorb onto interfaces between water and hydrophobic fluids such as oil. This adsorption normally causes changes in the protein structure, which can result in loss of protein function and irreversible adsorption, leading to the formation of protein interfacial films. While this can be advantageous in some applications (e.g., food technology), in most cases it limits our ability to exploit protein functionality at interfaces. To understand and control protein interfacial adsorption and function, it is necessary to understand the microscopic conformation of proteins at liquid interfaces. In this paper, molecular dynamics simulations are used to investigate the adsorption and conformation of two similar proteins, lysozyme and α-lactalbumin, at a water-octane interface. While they both adsorb onto the interface, α-lactalbumin does so in a specific orientation, mediated by two amphipathic helices, while lysozyme adsorbs in a non-specific manner. Using replica exchange simulations, both proteins are found to possess a number of distinct interfacial conformations, with compact states similar to the solution conformation being most common for both proteins. Decomposing the different contributions to the protein energy at oil-water interfaces suggests that conformational change for α-lactalbumin, unlike lysozyme, is driven by favourable protein-oil interactions. Revealing these differences between the factors that govern the conformational change at interfaces in otherwise similar proteins can give insight into the control of protein interfacial adsorption, aggregation, and function.

  1. Characterization of the c-type lysozyme gene family in Anopheles gambiae.

    PubMed

    Li, Bin; Calvo, Eric; Marinotti, Osvaldo; James, Anthony A; Paskewitz, Susan M

    2005-11-07

    Seven new c-type lysozyme genes were found using the Anopheles gambiae genome sequence, increasing to eight the total number of genes in this family identified in this species. The eight lysozymes in An. gambiae have considerable variation in gene structure and expression patterns. Lys c-6 has the most unusual primary amino acid structure as the predicted protein consists of five lysozyme-like domains. Transcript abundance of each c-type lysozyme was determined by semiquantitative RT-PCR. Lys c-1, c-6 and c-7 are expressed constitutively in all developmental stages from egg to adult. Lys c-2 and c-4 also are found in all stages, but with relatively much higher levels in adults. Conversely, Lys c-3 and c-8 transcripts are highest in larvae. Lys c-1, c-6 and c-7 transcripts are found in nearly all the adult tissue samples examined while Lys c-2 and Lys c-4 are more restricted in their expression. Lys c-1 and c-2 transcripts are clearly immune responsive and are increased significantly 6-12 h post challenge with bacteria. The functional adaptive changes that may have evolved during the expansion of this gene family are briefly discussed in terms of the expression patterns, gene and protein structures.

  2. Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.

    PubMed

    Tao, Yuanyuan; Ma, Xiaoteng; Cai, Yaqian; Liu, Li; Zhao, Hanying

    2018-04-12

    Synthesis and self-assembly of bioconjugates composed of proteins and synthetic molecules have been widely studied because of the potential applications in medicine, biotechnology, and nanotechnology. One of the challenging research studies in this area is to develop organic solvent-free approaches to the synthesis and self-assembly of amphiphilic bioconjugates. In this research, dialysis-assisted approach, a method based on unimer-aggregate equilibrium, was applied in the coassembly of lysozyme and conjugate of cholesterol and glutathione (Ch-GSH). In phosphate buffer solution, amphiphilic Ch-GSH conjugate self-assembles into vesicles, and the vesicle solution is dialyzed against lysozyme solution. Negatively charged Ch-GSH unimers produced in the unimer-vesicle exchange equilibrium, diffuse across the dialysis membrane and have electrostatic interaction with positively charged lysozyme, resulting in the formation of Ch-GSH-lysozyme bioconjugate. Above a critical concentration, the three-component bioconjugate molecules self-assemble into bioactive vesicles.

  3. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis

    NASA Astrophysics Data System (ADS)

    Mariño, Laura; Pauwels, Kris; Casasnovas, Rodrigo; Sanchis, Pilar; Vilanova, Bartolomé; Muñoz, Francisco; Donoso, Josefa; Adrover, Miquel

    2015-07-01

    Protein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation. However, the anti-aggregating capacity of other heteroaromatic compounds has not been studied in any depth. We have screened the capacity of eleven different hydroxypyridines to affect the acid-induced fibrillization of hen lysozyme. Although most of the tested hydroxypyridines alter the fibrillation kinetics of HEWL, only 3-hydroxy-2-methylpyridine, 3-hydroxy-6-methylpyridine and 3-hydroxy-2,6-dimethylpyridine completely abolish fibril formation. Different biophysical techniques and several theoretical approaches are combined to elucidate their mechanism of action. O-methylated 3-hydroxypyridines bind non-cooperatively to two distinct but amyloidogenic regions of monomeric lysozyme. This stabilises the protein structure, as evidenced by enhanced thermal stability, and results in the inhibition of the conformational transition that precedes fibril assembly. Our results point to o-methylated 3-hydroxypyridines as a promising molecular scaffold for the future development of novel fibrillization inhibitors.

  4. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    NASA Astrophysics Data System (ADS)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  5. High-pressure protein crystallography of hen egg-white lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phasemore » transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.« less

  6. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  7. Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities.

    PubMed

    Zhang, Ning; Weir, Michael D; Romberg, Elaine; Bai, Yuxing; Xu, Hockin H K

    2015-07-01

    Secondary caries at the tooth-restoration margins remains a main reason for restoration failure. The objectives of this study were to: (1) combine protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) to develop a new dental adhesive with double benefits of protein-repellent and antibacterial capabilities for the first time; and (2) investigate the effects on protein adsorption, anti-biofilm activity, and dentin bond strength. MPC and DMAHDM were incorporated into Scotchbond Multi-Purpose (SBMP) primer and adhesive. Dentin shear bond strengths were measured using extracted human molars. Protein adsorption onto the adhesive resin surfaces was determined by the micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production and live/dead staining of biofilms on resins. Incorporation of 7.5% MPC and 5% DMAHDM into primer and adhesive did not adversely affect the dentin shear bond strength (p>0.1). The resin with 7.5% MPC+5% DMAHDM had protein adsorption that was nearly 20-fold less than SBMP control (p<0.05). The resin with 7.5% MPC+5% DMAHDM had much stronger antibacterial effects than using MPC or DMAHDM alone (p<0.05). Biofilm CFU counts on the resin with 7.5% MPC+5% DMAHDM were reduced by more than 4 orders of magnitude, compared to SBMP control. The use of double agents (protein-repellent MPC+antibacterial DMAHDM) in dental adhesive achieved much stronger inhibition of biofilms than using each agent alone. The novel protein-repellent and antibacterial bonding agent is promising to reduce biofilm/plaque buildup and reduce recurrent caries at the tooth-restoration margins. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods

    PubMed Central

    Chaari, Ali; Fahy, Christine; Chevillot-Biraud, Alexandre; Rholam, Mohamed

    2015-01-01

    Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils. PMID:26571264

  9. Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis.

    PubMed

    Basu, Anirban; Suresh Kumar, Gopinatha

    2017-07-25

    The binding of the common food colorant carmoisine and its inhibitory effect on amyloid fibrillation in lysozyme have been investigated. Since humans are increasingly exposed to various food colorants like carmoisine, such studies are highly relevant. In the presence of lysozyme, the carmoisine absorption spectrum exhibited hypochromic changes. The intrinsic fluorescence of lysozyme was also quenched on interaction. Time-resolved fluorescence results suggested that the binding mechanism involved ground state complexation. The binding was predominantly dominated by non-polyelectrolytic forces. The molecular distance between the donor (lysozyme) and the acceptor (carmoisine), calculated from FRET theory, was found to be 3.37 nm, indicating that carmoisine binds close to Trp-62/63 residues in the β-domain of the protein. Information on alterations in the microenvironment surrounding the Trp-residues was also obtained from synchronous fluorescence data. Carmoisine binding induced significant loss in the alpha helical organization of lysozyme. The binding, nevertheless, did not influence the thermal stability of lysozyme significantly. The binding reaction was exothermic and driven by large negative enthalpy and small but favourable entropic contributions. Thioflavin T assay, far-UV circular dichroism studies and AFM imaging profiles testified that carmoisine had a significant inhibitory effect on amyloid fibrillogenesis in lysozyme. Carmoisine also had a definitive defibrillating effect on existing fibrils. The results may provide new insights for designing new small molecule inhibitors for amyloid related diseases.

  10. A freeze-thaw method for disintegration of Escherichia coli cells producing T7 lysozyme used in pBAD expression systems.

    PubMed

    Wanarska, Marta; Hildebrandt, Piotr; Kur, Józef

    2007-01-01

    The pLysN plasmid containing the T7 lysozyme gene under control of the lac promoter was constructed to facilitate cell disintegration after expression of recombinant proteins in arabinose-induced expression systems. The usefulness of this plasmid was tested in Escherichia coli TOP10 and E. coli LMG194 cells carrying pBADMHADgeSSB plasmid containing Deinococcus geothermalis SSB protein gene under control of the araBAD promoter. The results showed that low-level expression of T7 lysozyme did not interfere with the target SSB protein production, and that the freezing-thawing treatment was sufficient for disruption of the E. coli cells producing low amounts of T7 lysozyme.

  11. Refolding of denatured/reduced lysozyme at high concentration with diafiltration.

    PubMed

    Yoshii, H; Furuta, T; Yonehara, T; Ito, D; Linko, Y Y; Linko, P

    2000-06-01

    Refolding of reduced and denatured protein in vitro has been an important issue for both basic research and applied biotechnology. Refolding at low protein concentration requires large volumes of refolding buffer. Among various refolding methods, diafiltration is very useful to control the denaturant and red/ox reagents in a refolding solution. We constructed a refolding procedure of high lysozyme concentration (0.5-10 mg/ml) based on the linear reduction of the urea concentration during diafiltration under oxygen pressure. When the urea concentration in the refolding vessel was decreased from 4 M with a rate of 0.167 M/h, the refolding yields were 85% and 63% at protein concentrations, 5 mg/ml and 10 mg/ml, respectively, after 11 h. This method gave a high productivity of 40.1,microM/h of the refolding lysozyme. The change in refolding yields during the diafiltration could be simulated using the model of Hevehan and Clark.

  12. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    PubMed

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  13. Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study.

    PubMed

    Wizert, Alicja; Iskander, D Robert; Cwiklik, Lukasz

    2017-12-01

    The tear film is a thin multilayered structure covering the cornea. Its outermost layer is a lipid film underneath of which resides on an aqueous layer. This tear film lipid layer (TFLL) is itself a complex structure, formed by both polar and nonpolar lipids. It was recently suggested that due to tear film dynamics, TFLL contains inhomogeneities in the form of polar lipid aggregates. The aqueous phase of tear film contains lachrymal-origin proteins, whereby lysozyme is the most abundant. These proteins can alter TFLL properties, mainly by reducing its surface tension. However, a detailed nature of protein-lipid interactions in tear film is not known. We investigate the interactions of lysozyme with TFLL in molecular details by employing coarse-grained molecular dynamics simulations. We demonstrate that lysozyme, due to lateral restructuring of TFLL, is able to penetrate the tear lipid film embedded in inverse micellar aggregates. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Immunization against lysozyme-like proteins affect sperm function and fertility in the rat.

    PubMed

    Narmadha, Ganapathy; Yenugu, Suresh

    2016-11-01

    Proteins of the epididymal and testicular mileu contribute to sperm maturation and a vast majority of them remain uncharacterised. In this study, the role of three Lysozyme-like (LYZL) proteins, namely LYZL1, LYZL4 and LYZL6 in sperm function was assessed using in vitro neutralization and auto antibodies generation model. Rats immunized with LYZL1, LYZL4 and LYZL6 proteins had a litter size of 5.93, 8.47 and 2.10 respectively compared to 9.96 in the control rats. The litter size was further reduced to 4.53, 7.67 and 1.23 for the corresponding proteins in the second mating conducted 14 weeks after immunization. Epididymal and testicular fluids obtained from the immunized rats displayed a very high antibody titre against all the three proteins. Sperm count was significantly reduced in rats immunized with LYZL1 or LYZL6 and to a lower extent in LYZL4 group. Acrosome reaction associated calcium release was inhibited in spermatozoa obtained from LYZL1 or LYZL4 or LYZL6 immunized rats as well as in spermatozoa incubated with antiserum against the three proteins. Impairment in path velocity, progressive velocity and track speed were observed in spermatozoa obtained from LYZL6 immunized rats. Treatment of spermatozoa with LYZL6 recombinant protein did not potentiate calcium release and acrosome reaction. Results of this study indicate a role for LYZL proteins in sperm function and further studies are warranted to explore them as potential contraceptive agents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    NASA Astrophysics Data System (ADS)

    Nakano, C. Masato; Ma, Heng; Wei, Tao

    2015-04-01

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.

  16. The Preventive Effect of L-Lysine on Lysozyme Glycation in Type 2 Diabetes.

    PubMed

    Mirmiranpour, Hossein; Khaghani, Shahnaz; Bathaie, S Zahra; Nakhjavani, Manouchehr; Kebriaeezadeh, Abbas; Ebadi, Maryam; Gerayesh-Nejad, Siavash; Zangooei, Mohammad

    2016-01-01

    Lysozyme is a bactericidal enzyme whose structure and functions change in diabetes. Chemical chaperones are small molecules including polyamines (e.g. spermine), amino acids (e.g. L-lysine) and polyols (e.g. glycerol). They can improve protein conformation in several stressful conditions such as glycation. In this study, the authors aimed to observe the effect of L-lysine as a chemical chaperone on structure and function of glycated lysozyme. In this study, in vitro and in vivo effects of L-lysine on lysozyme glycation were investigated. Lysozyme was incubated with glucose and/or L-lysine, followed by an investigation of its structure by electrophoresis, fluorescence spectroscopy, and circular dichroism spectroscopy and also assessment of its bactericidal activity against M. lysodeikticus. In the clinical trial, patients with type 2 diabetes mellitus (T2DM) were randomly divided into two groups of 25 (test and control). All patients received metformin and glibenclamide for a three months period. The test group was supplemented with 3 g/day of L-lysine. The quantity and activity of lysozyme and other parameters were then measured. Among the test group, L-lysine was found to reduce the advanced glycation end products (AGEs) in the sera of patients with T2DM and in vitro condition. This chemical chaperone reversed the alteration in lysozyme structure and function due to glycation and resulted in increased lysozyme activity. Structure and function of glycated lysozyme are significantly improved by l-lysine; therefore it can be considered an effective therapeutic supplementation in T2DM, decreasing the risk of infection in these patients.

  17. Production, crystallization and X-ray characterization of chemically glycosylated hen egg-white lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Jaramillo, F. J., E-mail: javier@lec.ugr.es; Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, E-18071; Pérez-Banderas, F.

    The feasibility of glycosylation post-purification has been demonstrated by introducing glucose into the model protein lysozyme via a novel reaction that is compatible with biological samples. The crystallization of glycoproteins is one of the challenges to be confronted by the crystallographic community in the frame of what is known as glycobiology. The state of the art for the crystallization of glycoproteins is not promising and removal of the carbohydrate chains is generally suggested since they are flexible and a source of heterogeneity. In this paper, the feasibility of introducing glucose into the model protein hen egg-white lysozyme via a post-purificationmore » glycosylation reaction that may turn any protein into a model glycoprotein whose carbohydrate fraction can be manipulated is demonstrated.« less

  18. Microcalorimetric study of thermal unfolding of lysozyme in water/glycerol mixtures: An analysis by solvent exchange model

    NASA Astrophysics Data System (ADS)

    Spinozzi, Francesco; Ortore, Maria Grazia; Sinibaldi, Raffaele; Mariani, Paolo; Esposito, Alessandro; Cinelli, Stefania; Onori, Giuseppe

    2008-07-01

    Folded protein stabilization or destabilization induced by cosolvent in mixed aqueous solutions has been studied by differential scanning microcalorimetry and related to difference in preferential solvation of native and denatured states. In particular, the thermal denaturation of a model system formed by lysozyme dissolved in water in the presence of the stabilizing cosolvent glycerol has been considered. Transition temperatures and enthalpies, heat capacity, and standard free energy changes have been determined when applying a two-state denaturation model to microcalorimetric data. Thermodynamic parameters show an unexpected, not linear, trend as a function of solvent composition; in particular, the lysozyme thermodynamic stability shows a maximum centered at water molar fraction of about 0.6. Using a thermodynamic hydration model based on the exchange equilibrium between glycerol and water molecules from the protein solvation layer to the bulk, the contribution of protein-solvent interactions to the unfolding free energy and the changes of this contribution with solvent composition have been derived. The preferential solvation data indicate that lysozyme unfolding involves an increase in the solvation surface, with a small reduction of the protein-preferential hydration. Moreover, the derived changes in the excess solvation numbers at denaturation show that only few solvent molecules are responsible for the variation of lysozyme stability in relation to the solvent composition.

  19. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    NASA Astrophysics Data System (ADS)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  20. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation

    NASA Astrophysics Data System (ADS)

    Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan

    2015-09-01

    Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim]+) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ˜30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.

  1. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation.

    PubMed

    Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan

    2015-09-28

    Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim](+)) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ∼30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.

  2. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, C. Masato; Ma, Heng; Wei, Tao, E-mail: twei@lamar.edu

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the othermore » hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.« less

  3. Crystallization of lysozyme with ( R)-, ( S)- and ( RS)-2-methyl-2,4-pentanediol

    DOE PAGES

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; ...

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with ( R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with ( R)-MPD and ( RS)-MPD the crystal contacts are made by ( R)-MPD, demonstrating that there ismore » preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less

  4. High-temperature short-time pasteurisation of human breastmilk is efficient in retaining protein and reducing the bacterial count.

    PubMed

    Klotz, Daniel; Joellenbeck, Mirjam; Winkler, Karl; Kunze, Mirjam; Huzly, Daniela; Hentschel, Roland

    2017-05-01

    Milk banks are advised to use Holder pasteurisation to inactivate the cytomegalovirus, but the process adversely affects the bioactive properties of human breastmilk. This study explored the antibacterial efficacy of an alternative high-temperature short-time (HTST) treatment of human breastmilk and its effect on marker proteins, compared with the Holder method. Breastmilk samples were obtained from 27 mothers with infants in a German neonatal intensive care unit. The samples were either heated to 62°C for five seconds using HTST or processed using Holder pasteurisation, at 63 ± 0.5°C for 30 minutes. Immunoglobulin A, lactoferrin, lysozyme, alkaline phosphatase and bile salt-stimulated lipase concentrations and bacterial colony-forming units/mL were measured before and after heating. HTST-treated samples retained higher rates of immunoglobulin A (95% versus 83%), alkaline phosphatase (6% versus 0%) and bile salt-stimulated lipase (0.8% versus 0.4%) than Holder pasteurisation samples (all p < 0.01), but not lactoferrin (32% versus 20%, p = 0.18) and lysozyme (72% versus 65%, p = 1). No difference in antibacterial efficacy was noted between the two groups (p = 0.29). Using the HTST treatment protocol retained some of the bioactive properties of human breastmilk and appeared to have similar antibacterial efficacy to Holder pasteurisation. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. RNF166 Determines Recruitment of Adaptor Proteins during Antibacterial Autophagy.

    PubMed

    Heath, Robert J; Goel, Gautam; Baxt, Leigh A; Rush, Jason S; Mohanan, Vishnu; Paulus, Geraldine L C; Jani, Vijay; Lassen, Kara G; Xavier, Ramnik J

    2016-11-22

    Xenophagy is a form of selective autophagy that involves the targeting and elimination of intracellular pathogens through several recognition, recruitment, and ubiquitination events. E3 ubiquitin ligases control substrate selectivity in the ubiquitination cascade; however, systematic approaches to map the role of E3 ligases in antibacterial autophagy have been lacking. We screened more than 600 putative human E3 ligases, identifying E3 ligases that are required for adaptor protein recruitment and LC3-bacteria colocalization, critical steps in antibacterial autophagy. An unbiased informatics approach pinpointed RNF166 as a key gene that interacts with the autophagy network and controls the recruitment of ubiquitin as well as the autophagy adaptors p62 and NDP52 to bacteria. Mechanistic studies demonstrated that RNF166 catalyzes K29- and K33-linked polyubiquitination of p62 at residues K91 and K189. Thus, our study expands the catalog of E3 ligases that mediate antibacterial autophagy and identifies a critical role for RNF166 in this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Different analytical approaches in assessing antibacterial activity and the purity of commercial lysozyme preparations for dairy application.

    PubMed

    Brasca, Milena; Morandi, Stefano; Silvetti, Tiziana; Rosi, Veronica; Cattaneo, Stefano; Pellegrino, Luisa

    2013-05-21

    Hen egg-white lysozyme (LSZ) is currently used in the food industry to limit the proliferation of lactic acid bacteria spoilage in the production of wine and beer, and to inhibit butyric acid fermentation in hard and extra hard cheeses (late blowing) caused by the outgrowth of clostridial spores. The aim of this work was to evaluate how the enzyme activity in commercial preparations correlates to the enzyme concentration and can be affected by the presence of process-related impurities. Different analytical approaches, including turbidimetric assay, SDS-PAGE and HPLC were used to analyse 17 commercial preparations of LSZ marketed in different countries. The HPLC method adopted by ISO allowed the true LSZ concentration to be determined with accuracy. The turbidimetric assay was the most suitable method to evaluate LSZ activity, whereas SDS-PAGE allowed the presence of other egg proteins, which are potential allergens, to be detected. The analytical results showed that the purity of commercially available enzyme preparations can vary significantly, and evidenced the effectiveness of combining different analytical approaches in this type of control.

  7. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.

    PubMed

    Mehta, Chirag M; White, Edward T; Litster, James D

    2013-01-01

    Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross-interactions were measured as the osmotic second virial cross-coefficients (B23 ) for the three binary protein systems involving lysozyme, ovalbumin, and α-amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross-interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross-interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers.

  8. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering

    NASA Astrophysics Data System (ADS)

    Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.

    2017-09-01

    In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.

  9. Polymorphism of Lysozyme Condensates.

    PubMed

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.

  10. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.

    PubMed

    Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi

    2015-06-01

    This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.

  11. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  12. Investigation of structural changes of β-casein and lysozyme at the gas-liquid interface during foam fractionation.

    PubMed

    Barackov, Ivana; Mause, Anika; Kapoor, Shobhna; Winter, Roland; Schembecker, Gerhard; Burghoff, Bernhard

    2012-10-15

    Purification and separation of proteins play a major role in biotechnology. Nowadays, alternatives to multistep operations suffering from low product yields and high costs are investigated closely amidst which one of the promising options is foam fractionation. The molecular behavior at the gas-liquid interface plays an important role in the formation and stabilization of enriched foam. This study for the first time correlates the physico-chemical parameters to the molecular structure in view of protein enrichment during foam fractionation of the two relatively different proteins lysozyme and β-casein employing biophysical techniques such as circular dichroism (CD) spectroscopy and infrared reflection absorption spectroscopy (IRRAS). In case of lysozyme, high enrichment was achieved at pHlysozyme molecules under favorable foaming conditions that resulted with high enrichment of foamed protein. Under these favorable conditions, CD spectra and IRRA spectra show that the unfolding of lysozyme is partially irreversible. However, the unfavorable foaming conditions, giving low enrichment, promote only minor structural changes and these changes are fully reversible. In case of β-casein, no pronounced unfolding can be observed using CD spectroscopy and IRRAS. The β-casein molecules adsorb and purely reorient at the gas-liquid interface, depending on favorable or unfavorable conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Relationship between β-relaxation and structural stability of lysozyme: Microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hédoux, Alain, E-mail: alain.hedoux@univ-lille1.fr; Paccou, Laurent; Guinet, Yannick

    Raman investigations were carried out in the low-frequency and amide I regions on lysozyme aqueous solutions in absence and presence of trehalose. Raman spectroscopy gives the unique opportunity to analyze the protein and solvent dynamics in the low-frequency range while monitoring the unfolding process by capturing the spectrum of the amide I band. From the analysis of the quasielastic intensity, a dynamic change is firstly observed in a highly hydrated protein, around 70 °C, and interpreted in relation with the denaturation mechanism of the protein. The use of heavy water and partly deuterated trehalose gives clear information on protein–trehalose interactions inmore » the native state of lysozyme (at room temperature) and during the thermal denaturation process of lysozyme. At room temperature, it was found that trehalose is preferentially excluded from the protein surface, and has a main effect on the tetrahedral local order of water molecules corresponding to a stiffening of the H-bond network in the solvent. The consequence is a significant reduction of the amplitude of fast relaxational motions, inducing a less marked dynamic transition shifted toward the high temperatures. Upon heating, interaction between trehalose and lysozyme is detected during the solvent penetration within the protein, i.e., while the native globular state softens into a molten globule (MG) state. Addition of trehalose reduces the protein flexibility in the MG state, improving the structural stability of the protein, and inhibiting the protein aggregation.« less

  14. Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo.

    PubMed

    Li, Li-Li; Wang, Hao

    2013-10-01

    Despite the fact that pathogenic infections are widely treated by antibiotics in the clinic nowadays, the increasing risk of multidrug-resistance associated with abuse of antibiotics is becoming a major concern in global public health. The increased death toll caused by pathogenic bacterial infection calls for effective antibiotic alternatives. Lysozyme-coated mesoporous silica nanoparticles (MSNs⊂Lys) are reported as antibacterial agents that exhibit efficient antibacterial activity both in vitro and in vivo with low cytotoxicity and negligible hemolytic side effect. The Lys corona provides multivalent interaction between MSNs⊂Lys and bacterial walls and consequently raises the local concentration of Lys on the surface of cell walls, which promotes hydrolysis of peptidoglycans and increases membrane-perturbation abilities. The minimal inhibition concentration (MIC) of MSNs⊂Lys is fivefold lower than that of free Lys in vitro. The antibacterial efficacy of MSNs⊂Lys is evaluated in vivo by using an intestine-infected mouse model. Experimental results indicate that the number of bacteria surviving in the colon is three orders of magnitude lower than in the untreated group. These natural antibacterial enzyme-modified nanoparticles open up a new avenue for design and synthesis of next-generation antibacterial agents as alternatives to antibiotics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions.

    PubMed

    Zhang, Ning; Weir, Michael D; Chen, Chen; Melo, Mary A S; Bai, Yuxing; Xu, Hockin H K

    2016-07-01

    White spot lesions often occur in orthodontic treatments. The objective of this study was to develop a novel resin-modified glass ionomer cement (RMGI) as an orthodontic cement with protein-repellent, antibacterial and remineralization capabilities. Protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC), antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into a RMGI. Enamel shear bond strength (SBS) was determined. Calcium (Ca) and phosphate (P) ion releases were measured. Protein adsorption onto specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model was tested. Increasing the NACP filler level increased the Ca and P ion release. Decreasing the solution pH increased the ion release. Incorporating MPC into RMGI reduced protein adsorption, which was an order of magnitude less than that of commercial controls. Adding DMAHDM and NAg into RMGI yielded a strong antibacterial function, greatly reducing biofilm viability and acid production. Biofilm CFU counts on the multifunctional orthodontic cement were 3 orders of magnitude less than that of commercial control (p<0.05). These benefits were achieved without compromising the enamel shear bond strength (p>0.1). A novel multifunctional orthodontic cement was developed with strong antibacterial and protein-repellent capabilities for preventing enamel demineralization. The new cement is promising to prevent white spot lesions in orthodontic treatments. The method of incorporating four bioactive agents may have wide applicability to the development of other bioactive dental materials to inhibit caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Repacking the Core of T4 lysozyme by automated design.

    PubMed

    Mooers, Blaine H M; Datta, Deepshikha; Baase, Walter A; Zollars, Eric S; Mayo, Stephen L; Matthews, Brian W

    2003-09-19

    Automated protein redesign, as implemented in the program ORBIT, was used to redesign the core of phage T4 lysozyme. A total of 26 buried or partially buried sites in the C-terminal domain were allowed to vary both their sequence and side-chain conformation while the backbone and non-selected side-chains remained fixed. A variant with seven substitutions ("Core-7") was identified as having the most favorable energy. The redesign experiment was repeated with a penalty for the presence of methionine residues. In this case the redesigned protein ("Core-10") had ten amino acid changes. The two designed proteins, as well as the constituent single mutants, and several single-site revertants were over-expressed in Escherichia coli, purified, and subjected to crystallographic and thermal analyses. The thermodynamic and structural data show that some repacking was achieved although neither redesigned protein was more stable than the wild-type protein. The use of the methionine penalty was shown to be effective. Several of the side-chain rotamers in the predicted structure of Core-10 differ from those observed. Rather than changing to new rotamers predicted by the design process, side-chains tend to maintain conformations similar to those seen in the native molecule. In contrast, parts of the backbone change by up to 2.8A relative to both the designed structure and wild-type. Water molecules that are present within the lysozyme molecule were removed during the design process. In the redesigned protein the resultant cavities were, to some degree, re-occupied by side-chain atoms. In the observed structure, however, water molecules were still bound at or near their original sites. This suggests that it may be preferable to leave such water molecules in place during the design procedure. The results emphasize the specificity of the packing that occurs within the core of a typical protein. While point substitutions within the core are tolerated they almost always result in a loss

  17. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.

    PubMed

    Ortiz-Aguayo, Dionisia; Del Valle, Manel

    2018-01-26

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  18. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    PubMed Central

    2018-01-01

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis. PMID:29373502

  19. The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme.

    PubMed

    Pannuru, Pavani; Rani, Anjeeta; Venkatesu, Pannuru; Lee, Ming-Jer

    2018-06-01

    To explore the mechanism of lysozyme stabilization in buffer system, we have investigated the interactions between lysozyme and the biological buffers (TRIS, TAPS, and TES) using spectroscopic techniques, including ultraviolet-visible (UV-Vis), fluorescence, thermal fluorescence, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy. From the series of spectroscopic studies, it is found that the native structure of the protein remains intact in the different concentrations (0.05, 0.1, 0.25, 0.5, and 1.0M) of the biological buffer aqueous solutions at pH7.0. Moreover, all these three investigated buffers are able to protect lysozyme against thermal denaturation, particularly in high concentration (1.0M) of the buffer aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Polyethyleneimine assisted-two-step polymerization to develop surface imprinted cryogels for lysozyme purification.

    PubMed

    Erol, Kadir; Köse, Kazım; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2016-10-01

    Surface imprinting strategy is one of the promising approaches to synthesize plastic antibodies while overcoming the problems in the protein imprinting research. In this study, we focused our attentions on developing two-step polymerization to imprint on the bare surface employing polyethyleneimine (PEI) assisted-coordination of template molecules, lysozyme. For this aim, we firstly synthesized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA) cryogels as a bare structure. Then, we immobilized PEI onto the cryogels through the addition reaction between GMA and PEI molecules. After that, we determined the amount of free amine (NH2) groups of PEI molecules, subsequently immobilized methacrylate functionalities onto the half of them and another half was used to chelate Cu(II) ions as a mediator between template, lysozyme and PEI groups. After the characterization of the materials developed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and the micro-computed tomography (μCT), we optimized the lysozyme adsorption conditions from aqueous solution. Before performing lysozyme purification from chicken egg white, we evaluated the effects of pH, interaction time, the initial lysozyme concentration, temperature and ionic strength on the lysozyme adsorption. Moreover, the selectivity of surface imprinted cryogels was examined against cytochrome c and bovine serum albumin (BSA) as the competitors. Finally, the mathematical modeling, which was applied to describe the adsorption process, showed that the experimental data is very well-fitted to the Langmuir adsorption isotherm. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Relationship between β-relaxation and structural stability of lysozyme: Microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Hédoux, Alain; Paccou, Laurent; Guinet, Yannick

    2014-06-01

    Raman investigations were carried out in the low-frequency and amide I regions on lysozyme aqueous solutions in absence and presence of trehalose. Raman spectroscopy gives the unique opportunity to analyze the protein and solvent dynamics in the low-frequency range while monitoring the unfolding process by capturing the spectrum of the amide I band. From the analysis of the quasielastic intensity, a dynamic change is firstly observed in a highly hydrated protein, around 70 °C, and interpreted in relation with the denaturation mechanism of the protein. The use of heavy water and partly deuterated trehalose gives clear information on protein-trehalose interactions in the native state of lysozyme (at room temperature) and during the thermal denaturation process of lysozyme. At room temperature, it was found that trehalose is preferentially excluded from the protein surface, and has a main effect on the tetrahedral local order of water molecules corresponding to a stiffening of the H-bond network in the solvent. The consequence is a significant reduction of the amplitude of fast relaxational motions, inducing a less marked dynamic transition shifted toward the high temperatures. Upon heating, interaction between trehalose and lysozyme is detected during the solvent penetration within the protein, i.e., while the native globular state softens into a molten globule (MG) state. Addition of trehalose reduces the protein flexibility in the MG state, improving the structural stability of the protein, and inhibiting the protein aggregation.

  2. Electrospun Lipid Binding Proteins Composite Nanofibers with Antibacterial Properties.

    PubMed

    Tomaselli, Simona; Ramirez, Diego Omar Sanchez; Carletto, Riccardo Andrea; Varesano, Alessio; Vineis, Claudia; Zanzoni, Serena; Molinari, Henriette; Ragona, Laura

    2017-04-01

    Electrospinning is here used for the first time to prepare nanofibers including a host/guest complex in a keratin/poly(ethylene oxide) matrix. The host is a lipid binding protein and the guest is an insoluble bactericidal molecule, irgasan, bound within the protein internal cavity. The obtained nanofibers, characterized by scanning electron microscopy, exhibit excellent antibacterial activity toward Gram positive and negative bacteria, even with a moderate protein/irgasan cargo. Solution NMR studies, employed to provide molecular information on the cargo system, points to a micromolar affinity, compatible with both the electrospinning process and slow guest release. The versatility of the carrier protein, capable of interacting with a variety of druggable hydrophobic molecules, is exploitable for the development of innovative biomedical devices, whose properties can be tuned by the selected guest. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antibacterial and protein-repellent orthodontic cement to combat biofilms and white spot lesions.

    PubMed

    Zhang, Ning; Chen, Chen; Weir, Michael D; Bai, Yuxing; Xu, Hockin H K

    2015-12-01

    White spot lesions are the most undesired side-effect of fixed orthodontic treatments. The objectives of this study were to combine nanoparticles of silver (NAg) with 2-methacryloyloxyethyl phosphorylcholine (MPC) to develop a modified resin-modified glass ionomer cement (RMGI) as orthodontic cement with double benefits of antibacterial and protein-repellent capabilities for the first time. NAg and MPC were incorporated into a commercial RMGI. Another commercial orthodontic adhesive also served as control. Enamel shear bond strengths (SBS) were determined. Protein adsorption was measured via a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was tested. Biofilms adherent on the cement samples and planktonic bacteria in the culture medium away from the cement surfaces were both evaluated for bacterial metabolic activity, colony-forming units (CFU), and lactic acid production. Adding 0.1% NAg and 3% MPC to RMGI, and water-aging for 30 days, did not adversely affect the SBS, compared to the unmodified RMGI control (p>0.1). The modified RMGI containing 0.1% NAg and 3% MPC achieved the greatest reduction in protein adsorption, bacterial adhesion, CFU, metabolic activity and lactic acid production. The RMGI containing 0.1% NAg and 3% MPC inhibited not only the bacteria on its surface, but also the bacteria away from the surface in the culture medium. The incorporation of double agents (antibacterial NAg+protein-repellent MPC) into RMGI achieved much stronger inhibition of biofilms than using each agent alone. The novel antibacterial and protein-repellent RMGI with substantially-reduced biofilm acids is promising as an orthodontic cement to combat white spot lesions in enamel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antibacterial and protein-repellent orthodontic cement to combat biofilms and white spot lesions

    PubMed Central

    Zhang, Ning; Chen, Chen; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2016-01-01

    Objectives White spot lesions are the most undesired side-effect of fixed orthodontic treatments. The objectives of this study were to combine nanoparticles of silver (NAg) with 2-methacryloyloxyethyl phosphorylcholine (MPC) to develop a modified resin-modified glass ionomer cement (RMGI) as orthodontic cement with double benefits of antibacterial and protein-repellent capabilities for the first time. Methods NAg and MPC were incorporated into a commercial RMGI. Another commercial orthodontic adhesive also served as control. Enamel shear bond strengths (SBS) were determined. Protein adsorption was measured via a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was tested. Biofilms adherent on the cement samples and planktonic bacteria in the culture medium away from the cement surfaces were both evaluated for bacterial metabolic activity, colony-forming units (CFU), and lactic acid production. Results Adding 0.1% NAg and 3% MPC to RMGI, and water-aging for 30 days, did not adversely affect the SBS, compared to the unmodified RMGI control (p>0.1). The modified RMGI containing 0.1% NAg and 3% MPC achieved the greatest reduction in protein adsorption, bacterial adhesion, CFU, metabolic activity and lactic acid production. The RMGI containing 0.1% NAg and 3% MPC inhibited not only the bacteria on its surface, but also the bacteria away from the surface in the culture medium. Conclusions The incorporation of double agents (antibacterial NAg + protein-repellent MPC) into RMGI achieved much stronger inhibition of biofilms than using each agent alone. The novel antibacterial and protein-repellent RMGI with substantially-reduced biofilm acids is promising as an orthodontic cement to combat white spot lesions in enamel. PMID:26427311

  5. Quinopeptide formation associated with the disruptive effect of epigallocatechin-gallate on lysozyme fibrils.

    PubMed

    Cao, Na; Zhang, Yu-Jie; Feng, Shuang; Zeng, Cheng-Ming

    2015-01-01

    Numerous studies demonstrate that natural polyphenols can inhibit amyloid formation and disrupt preformed amyloid fibrils. In the present study, the fibril-disruptive effects of epigallocatechin-3-gallate (EGCG) were examined using lysozyme as a model protein. The results indicated that EGCG dose dependently inhibited lysozyme fibrillation and modified the peptide chains with quinonoid moieties under acidic conditions, as measured by ThT fluorescence, transmission electron microscopy, and an NBT-staining assay. Moreover, EGCG transformed the preformed lysozyme fibrils to amorphous aggregates through quinopeptide formation. The thiol blocker, N-ethylmaleimide, inhibited the disruptive effect of EGCG on preformed fibrils, suggesting that thiol groups are the binding sites for EGCG. We propose that the formation of quinone intermediates via oxidation and subsequent binding to lysozyme chains are the main processes driving the inhibition of amyloid formation and disruption of preformed fibrils by EGCG. The information presented in this study may provide fresh insight into the link between the antioxidant capacity and anti-amyloid activity of polyphenols. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles

    PubMed Central

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R. Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of “protein-capped” silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties. PMID:26226385

  7. Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

    PubMed Central

    Jiang, Ming Feng; Hu, Ming Jun; Ren, Hong Hui; Wang, Li

    2015-01-01

    Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector pPICZαA and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity. PMID:26580446

  8. A study on the nature of interactions of mixed-mode ligands HEA and PPA HyperCel using phenylglyoxal modified lysozyme.

    PubMed

    Pezzini, J; Cabanne, C; Dupuy, J-W; Gantier, R; Santarelli, X

    2014-06-01

    Mixed mode chromatography, or multimodal chromatography, involves the exploitation of combinations of several interactions in a controlled manner, to facilitate the rapid capture of proteins. Mixed-mode ligands like HEA and PPA HyperCel™ facilitate different kinds of interactions (hydrophobic, ionic, etc.) under different conditions. In order to better characterize the nature of this multi-modal interaction, we sought to study a protein, lysozyme, which is normally not retained by these mixed mode resins under normal binding conditions. Lysozyme was modified specifically at Arginine residues by the action of phenylglyoxal, and was extensively studied in this work to better characterize the mixed-mode interactions of HEA HyperCel™ and PPA HyperCel™ chromatographic supports. We show here that the adsorption behaviour of lysozyme on HEA and PPA HyperCel™ mixed mode sorbents varies depending on the degree of charge modification at the surface of the protein. Experiments using conventional cation exchange and hydrophobic interaction chromatography confirm that both charge and hydrophobicity modification occurs at the surface of the protein after lysozyme reaction with phenylglyoxal. The results emanating from this work using HEA and PPA HyperCel sorbents strongly suggest that mixed mode chromatography can efficiently separate closely related proteins of only minor surface charge and/or hydrophobicity differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A.

    PubMed

    Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Morbidelli, Massimo

    2010-08-27

    A model for the adsorption equilibrium of proteins in ion-exchange chromatography explicitly accounting for the effect of pH and salt concentration in the limit of highly diluted systems was developed. It is based on the use of DLVO theory to estimate the electrostatic interactions between the charged surface of the ion-exchanger and the proteins. The corresponding charge distributions were evaluated as a function of pH and salt concentration using a molecular approach. The model was verified for the adsorption equilibrium of lysozyme, chymotrypsinogen A and four industrial monoclonal antibodies on two strong cation-exchangers. The adsorption equilibrium constants of these proteins were determined experimentally at various pH values and salt concentrations and the model was fitted with a good agreement using three adjustable parameters for each protein in the whole range of experimental conditions. Despite the simplifications of the model regarding the geometry of the protein-ion-exchanger system, the physical meaning of the parameters was retained. 2010 Elsevier B.V. All rights reserved.

  10. Orthorhombic lysozyme crystallization at acidic pH values driven by phosphate binding.

    PubMed

    Plaza-Garrido, Marina; Salinas-Garcia, M Carmen; Camara-Artigas, Ana

    2018-05-01

    The structure of orthorhombic lysozyme has been obtained at 298 K and pH 4.5 using sodium chloride as the precipitant and in the presence of sodium phosphate at a concentration as low as 5 mM. Crystals belonging to space group P2 1 2 1 2 1 (unit-cell parameters a = 30, b = 56, c = 73 Å, α = β = γ = 90.00°) diffracted to a resolution higher than 1 Å, and the high quality of these crystals permitted the identification of a phosphate ion bound to Arg14 and His15. The binding of this ion produces long-range conformational changes affecting the loop containing Ser60-Asn74. The negatively charged phosphate ion shields the electrostatic repulsion of the positively charged arginine and histidine residues, resulting in higher stability of the phosphate-bound lysozyme. Additionally, a low-humidity orthorhombic variant was obtained at pH 4.5, and comparison with those previously obtained at pH 6.5 and 9.5 shows a 1.5 Å displacement of the fifth α-helix towards the active-site cavity, which might be relevant to protein function. Since lysozyme is broadly used as a model protein in studies related to protein crystallization and amyloid formation, these results indicate that the interaction of some anions must be considered when analysing experiments performed at acidic pH values.

  11. Salivary lysozyme in smoking alcohol dependent persons.

    PubMed

    Waszkiewicz, Napoleon; Zalewska-Szajda, Beata; Zalewska, Anna; Waszkiewicz, Magdalena; Szajda, Slawomir Dariusz; Repka, Bernadeta; Szulc, Agata; Kepka, Alina; Minarowska, Alina; Ladny, Jerzy Robert; Zwierz, Krzysztof

    2012-01-01

    The purpose of this study was to evaluate the effect of chronic alcohol intoxication and smoking on the concentration and output of salivary lysozyme. Thirty seven men participated in the study, including 17 male smoking alcohol-dependent patients after chronic alcohol intoxication (AS), and 20 control non-smoking male social drinkers (CNS) with no history of alcohol abuse or smoking. The level of lysozyme was assessed by the radial immunodiffusion method. Significantly lower lysozyme output in the AS group compared to the CNS group was found. Moreover, gingival index was significantly higher in AS than in the CNS group. It appeared that the reduced salivary lysozyme output was more likely the result of ethanol action than smoking. In conclusion, persons addicted to alcohol and nicotine have a poorer periodontal status than non-smoking social drinkers, which may partially be due to the diminished protective effects of lysozyme present in the saliva.

  12. The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme.

    PubMed

    Ligtenberg, Antoon J M; Brand, Henk S; van den Keijbus, Petra A M; Veerman, Enno C I

    2015-11-01

    Saliva secretion is regulated by the autonomic nervous system. Parasympathic stimuli increase the secretion of water and mucin MUC5B, whereas sympathetic stimuli such as physical exercise increase the secretion of amylase and other proteins. In the present study we investigated the effect of physical exercise, as a sympathetic stimulus, on salivary flow rate and output of MUC5B, amylase, lysozyme and total protein. Unstimulated whole saliva was collected before exercise (1), after 10 min exercise with moderate intensity by running with a heart rate around 130 beats per minute (2), followed by 10 min exercise with high intensity by running to exhaustion (3) and after 30 min recovery (4). Salivary flow rate, protein and MUC5B concentration, and amylase and lysozyme activity were determined. Saliva protein composition was analysed using SDS-PAGE and immunoblotting. Salivary flow rate, protein and lysozyme secretion increased after exercise with moderate intensity and increased further after exercise with high intensity (p<0.01). Amylase and MUC5B increased after exercise with moderate intensity (p<0.0001), but did not differ significantly between moderate and high exercise intensity. SDS-PAGE analysis and immunoblotting showed that, especially after exercise with high intensity, the concentrations of several other salivary proteins, including MUC7, albumin, and extra-parotid glycoprotein, also increased. Exercise may not only lead to the anticipated increase in amylase and protein secretion, but also to an increase in salivary flow rate and MUC5B secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.

    The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a proteinmore » drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.« less

  14. Purification and identification of an antibacterial protein from the symbiotic bacteria associated with novel entomopathogenic nematode, Rhabditis (Oscheius) sp.

    PubMed

    Anju, K M; Archana, M M; Mohandas, C; Nambisan, Bala

    2015-04-01

    Entomopathogenic nematodes (EPN) belonging to the families steinernematidae and heterorhabditidae and their symbiotic bacteria Xenorhabdus and Photorhabdus are well-known as biological control agents and are found to produce a wide range of bioactive secondary metabolites. Studies carried out at the Central Tuber Crops Research Institute (CTCRI) on entomopathogenic nematodes resulted in the identification of novel EPN belonging to the family Rhabditidae. This study reports the purification of a high molecular weight antibacterial protein from culture filtrates of a bacterium (Bacillus cereus) symbiotically associated with a novel entomopathogenic nematode Rhabditis (Oscheius) species, maintained at CTCRI laboratory. Fermentation conditions were standardized and optimum antibacterial activity was observed in tryptic soy broth after 48 h incubation at 30 °C. The aqueous extracts yielded antibacterial proteins which were purified by ammonium sulfate precipitation followed by ion exchange chromatography and size exclusion chromatography. Native gel electrophoresis indicated an active protein of molecular mass 220KDa which resolved into a major band of 90 kDa and a minor band of about 40 kDa on SDS-PAGE. The 90 kDa protein showed antibacterial activity and was further analysed by MALDI TOF-MS/MS. The protein was identified as a TQXA (Threonine-glutamine dipeptide) domain containing protein from Bacillus cereus. The protein was found to be active against Bacillus subtilis MTCC2756, Staphylococus aureus MTCC902 and Escherichia coli MTCC 2622 and was thermally stable.

  15. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme.

    PubMed

    Basu, Anirban; Suresh Kumar, Gopinatha

    2017-02-16

    Interaction of two food colorant dyes, amaranth and tartrazine, with lysozyme was studied employing multiple biophysical techniques. The dyes exhibited hypochromic changes in the presence of lysozyme. The intrinsic fluorescence of lysozyme was quenched by both dyes; amaranth was a more efficient quencher than tartrazine. The equilibrium constant of amaranth was higher than that of tartarzine. From FRET analysis, the binding distances for amaranth and tartrazine were calculated to be 4.51 and 3.93 nm, respectively. The binding was found to be dominated by non-polyelectrolytic forces. Both dyes induced alterations in the microenvironment surrounding the tryptophan and tyrosine residues of the protein, with the alterations being comparatively higher for the tryptophans than the tyrosines. The interaction caused significant loss in the helicity of lysozyme, the change being higher with amaranth. The binding of both dyes was exothermic. The binding of amaranth was enthalpy driven, while that of tartrazine was predominantly entropy driven. Amaranth delayed lysozyme fibrillation at 25 μM, while tartrazine had no effect even at 100 μM. Nevertheless, both dyes had a significant inhibitory effect on fibrillogenesis. The present study explores the potential antiamyloidogenic property of these azo dyes used as food colorants.

  16. The influence of size, structure and hydrophilicity of model surfactants on the adsorption of lysozyme to oil-water interface--interfacial shear measurements.

    PubMed

    Baldursdottir, Stefania G; Jorgensen, Lene

    2011-10-01

    The flexibility and aggregation of proteins can cause adsorption to oil-water interfaces and thereby create challenges during formulation and processing. Protein adsorption is a complex process and the presence of surfactants further complicates the system, in which additional parameters need to be considered. The purpose of this study is to scrutinize the influence of surfactants on protein adsorption to interfaces, using lysozyme as a model protein and sorbitan monooleate 80 (S80), polysorbate 80 (T80), polyethylene-block-poly(ethylene glycol) (PE-PEG) and polyglycerol polyricinoleate (PG-PR) as model surfactants. Rheological properties, measured using a TA AR-G2 rheometer equipped with a double wall ring (DWR) geometry, were used to compare the efficacy of the surfactant in hindering lysozyme adsorption. The system consists of a ring and a Delrin® trough with a circular channel (interfacial area=1882.6 mm(2)). Oscillatory shear measurements were conducted at a constant frequency of 0.1 Hz, a temperature of 25°C, and with strain set to 1%. The adsorption of lysozyme to the oil-water interface results in the formation of a viscoelastic film. This can be prevented by addition of surfactants, in a manner depending on the concentration and the type of surfactant. The more hydrophilic surfactants are more effective in hindering lysozyme adsorption to oil-water interfaces. Additionally, the larger surfactants are more persistent in preventing film formation, whereas the smaller ones eventually give space for the lysozyme on the interface. The addition of a mixture of two different surfactants was only beneficial when the two hydrophilic surfactants were mixed, in which case a delay in the multilayer formation was detected. The method is able to detect the interfacial adsorption of lysozyme and thus the hindering of film formation by model surfactants. It can therefore aid in processing of any delivery systems for proteins in which the protein is introduced to oil

  17. Degradable Polymer with Protein Resistance in a Marine Environment.

    PubMed

    Ma, Jielin; Ma, Chunfeng; Zhang, Guangzhao

    2015-06-16

    Protein resistance is the central issue in marine antibiofouling. We have prepared poly(ε-caprolactone) (PCL)-based polyurethane with 2-(dimethylamino) ethyl methacrylate (DEM) as pendant groups by a combination of the thiol-ene click reaction and the condensation reaction. By the use of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR), we have investigated the adsorption of fibrinogen, bovine serum albumin (BSA), and lysozyme on the polymer surface. The polymer exhibits protein resistance in seawater but not in fresh water because DEM pendant groups carry net neutral charges in the former. The evaluation of antibacterial adhesion of the polymer by using Micrococcus luteus demonstrates that the polymer can effectively inhibit the settlement of marine bacteria. Our studies also show that the polymer is degradable in marine environments.

  18. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows.

    PubMed

    Lu, Dan; Liu, Shen; Ding, Fangrong; Wang, Haiping; Li, Jing; Li, Ling; Dai, Yunping; Li, Ning

    2016-03-10

    Human lysozyme is an important natural non-specific immune protein that is highly expressed in breast milk and participates in the immune response of infants against bacterial and viral infections. Considering the medicinal value and market demand for human lysozyme, an animal model for large-scale production of recombinant human lysozyme (rhLZ) is needed. In this study, we generated transgenic cloned cows with the marker-free vector pBAC-hLF-hLZ, which was shown to efficiently express rhLZ in cow milk. Seven transgenic cloned cows, identified by polymerase chain reaction, Southern blot, and western blot analyses, produced rhLZ in milk at concentrations of up to 3149.19 ± 24.80 mg/L. The purified rhLZ had a similar molecular weight and enzymatic activity as wild-type human lysozyme possessed the same C-terminal and N-terminal amino acid sequences. The preliminary results from the milk yield and milk compositions from a naturally lactating transgenic cloned cow 0906 were also tested. These results provide a solid foundation for the large-scale production of rhLZ in the future.

  19. A lysozyme and magnetic bead based method of separating intact bacteria.

    PubMed

    Diler, Ebru; Obst, Ursula; Schmitz, Katja; Schwartz, Thomas

    2011-07-01

    As a response to environmental stress, bacterial cells can enter a physiological state called viable but noncultivable (VBNC). In this state, bacteria fail to grow on routine bacteriological media. Consequently, standard methods of contamination detection based on bacteria cultivation fail. Although they are not growing, the cells are still alive and are able to reactivate their metabolism. The VBNC state and low bacterial densities are big challenges for cultivation-based pathogen detection in drinking water and the food industry, for example. In this context, a new molecular-biological separation method for bacteria using point-mutated lysozymes immobilised on magnetic beads for separating bacteria is described. The immobilised mutated lysozymes on magnetic beads serve as bait for the specific capture of bacteria from complex matrices or water due to their remaining affinity for bacterial cell wall components. Beads with bacteria can be separated using magnetic racks. To avoid bacterial cell lysis by the lysozymes, the protein was mutated at amino acid position 35, leading to the exchange of the catalytic glutamate for alanine (LysE35A) and glutamine (LysE35Q). As proved by turbidity assay with reference bacteria, the muramidase activity was knocked out. The mutated constructs were expressed by the yeast Pichia pastoris and secreted into expression medium. Protein enrichment and purification were carried out by SO(3)-functionalised nanoscale cationic exchanger particles. For a proof of principle, the proteins were biotinylated and immobilised on streptavidin-functionalised, fluorescence dye-labelled magnetic beads. These constructs were used for the successful capture of Syto9-marked Microccocus luteus cells from cell suspension, as visualised by fluorescence microscopy, which confirmed the success of the strategy.

  20. Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields.

    PubMed

    Eleftheriou, Maria; Germain, Robert S; Royyuru, Ajay K; Zhou, Ruhong

    2006-10-18

    Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al. Science 2002, 295, 1719-1722; Nature 2003, 424, 783-788). Detailed results also reveal that the single mutation TRP62GLY first induces the loss of native contacts in the beta-domain region of the lysozyme protein at high temperatures, and then the unfolding process spreads into the alpha-domain region through Helix C. Even though the OPLSAA force field in general shows a more stable protein structure than does the CHARMM force field at high temperatures, the two force fields examined here display qualitatively similar results for the misfolding process, indicating that the thermal denaturing of the single mutation is robust and reproducible with various modern force fields.

  1. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    PubMed

    Jin, Qingwen; Chen, Hong; Wang, Xingxia; Zhao, Liandong; Xu, Qingchen; Wang, Huijuan; Li, Guanyu; Yang, Xiaofan; Ma, Hongming; Wu, Haoquan; Ji, Xiaohui

    2015-01-01

    Insertion of T4 lysozyme (T4L) into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed. We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects. Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1) infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5. Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  2. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration.

    PubMed

    Lerbret, Adrien; Affouard, Frédéric

    2017-10-12

    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, T g , of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.

  3. Influence of protein deposition on bacterial adhesion to contact lenses.

    PubMed

    Subbaraman, Lakshman N; Borazjani, Roya; Zhu, Hua; Zhao, Zhenjun; Jones, Lyndon; Willcox, Mark D P

    2011-08-01

    The aim of the study is to determine the adhesion of Gram positive and Gram negative bacteria onto conventional hydrogel (CH) and silicone hydrogel (SH) contact lens materials with and without lysozyme, lactoferrin, and albumin coating. Four lens types (three SH-balafilcon A, lotrafilcon B, and senofilcon A; one CH-etafilcon A) were coated with lysozyme, lactoferrin, or albumin (uncoated lenses acted as controls) and then incubated in Staphylococcus aureus (Saur 31) or either of two strains of Pseudomonas aeruginosa (Paer 6294 and 6206) for 24 h at 37 °C. The total counts of the adhered bacteria were determined using the H-thymidine method and viable counts by counting the number of colony-forming units on agar media. All three strains adhered significantly lower to uncoated etafilcon A lenses compared with uncoated SH lenses (p < 0.05). Lysozyme coating on all four lens types increased binding (total and viable counts) of Saur 31 (p < 0.05). However, lysozyme coating did not influence P. aeruginosa adhesion (p > 0.05). Lactoferrin coating on lenses increased binding (total and viable counts) of Saur 31 (p < 0.05). Lactoferrin-coated lenses showed significantly higher total counts (p < 0.05) but significantly lower viable counts (p < 0.05) of adhered P. aeruginosa strains. There was a significant difference between the total and viable counts (p < 0.05) that were bound to lactoferrin-coated lenses. Albumin coating of lenses increased binding (total and viable counts) of all three strains (p < 0.05). Lysozyme deposited on contact lenses does not possess antibacterial activity against certain bacterial strains, whereas lactoferrin possess an antibacterial effect against strains of P. aeruginosa.

  4. Technology Optimization of Lysozyme's Fresh Maintaining Effect on Apple.

    PubMed

    Jun-Hong, Liu; Kun-Yu, Wang

    2016-10-03

    Lysozyme is a kind of alkaline globin, which functions well in the degradation of the cell wall of microbe. Currently, lysozyme is widely used in various fields, such as medicine, fruit, and vegetable industry, dairy industry, and so on. Therefore, the exploitation and utilization of lysozyme is of significant economic benefit. Taking apple as material, weight loss ratio and reducing sugar content as objectives, this paper studied the fresh-keeping effect of lysozyme. Influential factors, lysozyme concentration, soaking time, modified temperature, and reaction time were discussed in detail. The results showed that reducing sugar content was 2.043% and the weight loss ratio was the minimum in the presence of soaking time of 2 min, modified temperature of 65 °C, reaction time of 4 d, and lysozyme concentration of 0.5 g/L. © 2016 Institute of Food Technologists®.

  5. Hereditary Lysozyme Amyloidosis Variant p.Leu102Ser Associates with Unique Phenotype

    PubMed Central

    Nasr, Samih H.; Dasari, Surendra; Mills, John R.; Theis, Jason D.; Zimmermann, Michael T.; Fonseca, Rafael; Vrana, Julie A.; Lester, Steven J.; McLaughlin, Brooke M.; Gillespie, Robert; Highsmith, W. Edward; Lee, John J.; Dispenzieri, Angela

    2017-01-01

    Lysozyme amyloidosis (ALys) is a rare form of hereditary amyloidosis that typically manifests with renal impairment, gastrointestinal (GI) symptoms, and sicca syndrome, whereas cardiac involvement is exceedingly rare and neuropathy has not been reported. Here, we describe a 40-year-old man with renal impairment, cardiac and GI symptoms, and peripheral neuropathy. Renal biopsy specimen analysis revealed amyloidosis with extensive involvement of glomeruli, vessels, and medulla. Amyloid was also detected in the GI tract. Echocardiographic and electrocardiographic findings were consistent with cardiac involvement. Proteomic analysis of Congo red–positive renal and GI amyloid deposits detected abundant lysozyme C protein. DNA sequencing of the lysozyme gene in the patient and his mother detected a heterozygous c.305T>C alteration in exon 3, which causes a leucine to serine substitution at codon 102 (Human Genome Variation Society nomenclature: p.Leu102Ser; legacy designation: L84S). We also detected the mutant peptide in the proband’s renal and GI amyloid deposits. PolyPhen analysis predicted that the mutation damages the encoded protein. Molecular dynamics simulations suggested that the pathogenesis of ALys p.Leu102Ser is mediated by shifting the position of the central β-hairpin coordinated with an antiparallel motion of the C-terminal helix, which may alter the native-state structural ensemble of the molecule, leading to aggregation-prone intermediates. PMID:28049649

  6. Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces.

    PubMed

    Samaranayake, Y H; Cheung, B P K; Parahitiyawa, N; Seneviratne, C J; Yau, J Y Y; Yeung, K W S; Samaranayake, L P

    2009-02-01

    Denture related oral candidiasis is a recalcitrant fungal infection not easily resolved by topical antifungals. The antimycotic protein lysozyme, in saliva is an important host defense mechanism although its activity against Candida biofilms on denture acrylic has not been evaluated. (i) To establish a clinically relevant denture acrylic assay model to develop standardized Candida albicans biofilms, and (ii) assess the inhibitory effects of lysozyme alone and, the latter combined with antifungals (nystatin, amphotericin B, ketoconazole and 5-fluorocytosine) on sessile Candida cells and, finally (iii) to visualize the accompanying ultrastructural changes. The rotating-disc biofilm reactor was used to develop standardized 48 h Candida biofilms on acrylic discs in YNB/100 mM glucose medium and the biofilm metabolic activity was monitored using a tetrazolium reduction assay. The biofilm metabolic activity was similar in 18 identical denture acrylic discs (p<0.05) thus validating the rotating-disc biofilm model. Very low concentrations of lysozyme (6.25 microg/ml) significantly (p<0.01) inhibited Candida biofilm formation indicating that lysozyme may likely regulate intra-oral Candida biofilm development. Although 100 microg/ml lysozyme killed 45% of sessile Candida cells, further increasing its concentration (up to 240 microg/ml) had no such effect. Nystatin, amphotericin B, and ketoconazole in association with 100 microg/ml lysozyme exhibited effective synergistic killing of biofilm Candida in comparison to drug-free controls. Scanning electron and confocal scanning laser microscopy analysis confirmed the latter trends. Our results indicate that agents found in biological fluids such as lysozyme could be a safe adjunct to antifungals in future treatment strategies for recalcitrant candidal infections.

  7. Dynamics of Lysozyme in a Glycerol-Water system

    NASA Astrophysics Data System (ADS)

    Ghatty, Pavan; Carri, Gustavo

    2007-03-01

    Bio-preservation of proteins is of great commercial and academic interest. A variety of sugars have been found to be effective in preserving the structure of proteins. This has been attributed and in some cases proved to their ability to form strong hydrogen bonds with proteins thus restricting their motion. The work presented here explores the hypothesis that glycerol, a tri-alcohol curbs the motion of protein. We have carried out a 10ns Molecular Dynamics simulation to study the phenomenon. The structure of Lysozyme (PDB code 193L) has been studied in three solutions of 10, 20 and 30 % by weight of glycerol in water. Glycerol molecules in all three solutions have shown a tendency to agglomerate around the protein. Strong hydrogen bonding has also been observed between glycerol molecules and the protein. With increasing time, the g(r) of glycerol molecules around proteins shows two peaks with increasing prominence suggesting the movement of glycerol cluster to positions closer to the protein surface.

  8. The Effects of Acetate Buffer Concentration on Lysozyme Solubility

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Pusey, Marc L.

    1996-01-01

    The micro-solubility column technique was employed to systematically investigate the effects of buffer concentration on tetragonal lysozyme solubility. While keeping the NaCl concentrations constant at 2%, 3%, 4%, 5% and 7%, and the pH at 4.0, we have studied the solubility of tetragonal lysozyme over an acetate buffer concentration range of 0.01M to 0.5M as a function of temperature. The lysozyme solubility decreased with increasing acetate concentration from 0.01M to 0.1M. This decrease may simply be due to the net increase in solvent ionic strength. Increasing the acetate concentration beyond 0.1M resulted in an increase in the lysozyme solubility, which reached a peak at - 0.3M acetate concentration. This increase was believed to be due to the increased binding of acetate to the anionic binding sites of lysozyme, preventing their occupation by chloride. In keeping with the previously observed reversal of the Hoffmeister series for effectiveness of anions in crystallizing lysozyme, acetate would be a less effective precipitant than chloride. Further increasing the acetate concentration beyond 0.3M resulted in a subsequent gradual decrease in the lysozyme solubility at all NaCl concentrations.

  9. An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme.

    PubMed

    Wang, Minghua; Zhai, Shuyong; Ye, Zihan; He, Linghao; Peng, Donglai; Feng, Xiaozhong; Yang, Yanqin; Fang, Shaoming; Zhang, Hongzhong; Zhang, Zhihong

    2015-04-14

    A sensitive aptasensor based on a nanocomposite of hollow titanium dioxide nanoball, three-dimensional reduced graphene oxide, and polypyrrole (TiO2/3D-rGO/PPy) was developed for lysozyme detection. A lysozyme aptamer was easily immobilized onto the TiO2/3D-rGO/PPy nanocomposite matrix by assembling the aptamer onto graphene through simple π-stacking interactions and electrostatic interactions between PPy molecular chains and aptamer strands. In the presence of lysozyme, the aptamer on the adsorbent layer catches the target on the electrode interface, which generates a barrier for electrons and inhibits electron transfer, subsequently resulting in decreased electrochemically differential pulse voltammetric signals of a gold electrode modified with TiO2/3D-rGO/PPy. Using this strategy, a low limit of detection of 0.085 ng mL(-1) (5.5 pM) for detecting lysozyme was observed within the detection range of 0.1-50 ng mL(-1) (0.007-3.5 nM). The aptasensor also presents high specificity for lysozyme, which is unaffected by the coexistence of other proteins. Such an aptasensor opens a rapid, selective, and sensitive route to lysozyme detection. This finding indicates that the TiO2/3D-rGO/PPy nanocomposite could be used as an electrochemical biosensor for detecting proteins in the biomedical field.

  10. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements.

    PubMed Central

    Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M

    1997-01-01

    The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232

  11. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity.

    PubMed Central

    Curtis, N A; Orr, D; Ross, G W; Boulton, M G

    1979-01-01

    The affinities of a range of penicillins and cephalosporins for ther penicillin-binding proteins of Escherichia coli K-12 have been studied, and the results were compared with the antibacterial activity of the compounds against E. coli K-12 and an isogenic permeability mutant. Different penicillins and cephalosporins exhibited different affinities for the "essential" penicillin-binding proteins of E. coli K-12, in a manner which directly correlated with their observed effects upon bacterial morphology. Furthermore, the affinities of the compounds for their "primary" lethal penicillin-binding protein targets showed close agreement with their antibacterial activities against the permeability mutant. Images PMID:393164

  12. In Vitro Effect of Lysozyme on Albumin Deposition to Hydrogel Contact Lens Materials.

    PubMed

    Babaei Omali, Negar; Subbaraman, Lakshman N; Heynen, Miriam; Fadli, Zohra; Coles-Brennan, Chantal; Jones, Lyndon W

    2017-11-01

    Albumin deposition on contact lenses could be detrimental to contact lens (CL) wear because this may increase the risk of bacterial binding and reduce comfort. Lysozyme deposition on selected lens materials would reduce albumin deposition on lenses. This study aims to determine if lysozyme deposition on CLs could act as a barrier against subsequent albumin adsorption, using an in vitro model. Six hydrogel CL materials (etafilcon A, polymacon, nelfilcon A, omafilcon A, ocufilcon B, and nesofilcon A) were evaluated. Four CLs of each type were soaked in lysozyme solution for 16 hours at 37°C. Lysozyme-coated lenses were then placed in vials with 1.5 mL of artificial tear solution containing I-labeled albumin for 16 hours at 37°C with shaking. Four uncoated lenses of each type were used as controls. Lenses soaked in radiolabeled albumin were rinsed in a phosphate-buffered saline solution, and radioactive counts were measured directly on lenses using a gamma counter. Albumin uptake on lenses was measured using a calibration curve by plotting radioactive counts versus protein concentration. Results are reported as mean ± SD. Lysozyme-coated etafilcon A lenses exhibited lower levels of deposited albumin than uncoated etafilcon A lenses (58 ± 12 vs. 84 ± 5 ng/lens; P < .05). There were no differences in albumin adsorption between control (uncoated) and lysozyme-coated polymacon (105 ± 10 vs. 110 ± 34 ng/lens), nelfilcon A (51 ± 7 vs. 42 ± 20 ng/lens), omafilcon A (90 ± 20 vs. 80 ± 38 ng/lens), ocufilcon B (87 ± 20 vs. 115 ± 50 ng/lens), and nesofilcon A (170 ± 29 vs. 161 ± 10 ng/lens) lens materials (P > .05). Uncoated nesofilcon A lenses deposited the highest amount of albumin when compared with other uncoated lenses (P < .05). This study demonstrates that lysozyme deposited onto etafilcon A resists the deposition of albumin, which may potentially be beneficial to CL wearers.

  13. Hen Egg-White Lysozyme Crystallisation: Protein Stacking and Structure Stability Enhanced by a Tellurium(VI)-Centred Polyoxotungstate

    PubMed Central

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-01

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson–Evans-type polyoxometalate (POM), specifically Na6[TeW6O24]⋅22 H2O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid–liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein–protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  14. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    PubMed

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration

  15. Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study

    NASA Astrophysics Data System (ADS)

    Torreggiani, A.; Di Foggia, M.; Manco, I.; De Maio, A.; Markarian, S. A.; Bonora, S.

    2008-11-01

    A multidisciplinary study of the thermal denaturation of lysozyme in the presence of three sulfoxides with different length in hydrocarbon chain (DMSO, DESO, and DPSO) was carried out by means of DSC, Raman spectroscopy, and SDS-PAGE techniques. In particular, the Td and Δ H values obtained from the calorimetric measurements showed that lysozyme is partially unfolded by sulfoxides but most of the conformation holds native state. The sulfoxide denaturing ability increases in the order DPSO > DESO > DMSO. Moreover, only DMSO and DESO have a real effect in preventing the heat-induced inactivation of the protein and their maximum heat-protective ability is reached when the DMSO and DESO amount is ⩾25% w/w. The sulfoxide ability to act as effective protective agents against the heat-induced inactivation was confirmed by the protein analysis. The enzymatic activity, as well as the SDS-PAGE analysis, suggested that DESO, having a low hydrophobic character and a great ability to stabilise the three-dimensional water structure, is the most heat-protective sulfoxide. An accurate evaluation of the heat-induced conformational changes of the lysozyme structure before and after sulfoxide addition was obtained by the analysis of the Raman spectra. The addition of DMSO or DESO in low concentration resulted to sensitively decrease the heat-induced structural modifications of the protein.

  16. Carnosine's Effect on Amyloid Fibril Formation and Induced Cytotoxicity of Lysozyme

    PubMed Central

    Wu, Josephine W.; Liu, Kuan-Nan; How, Su-Chun; Chen, Wei-An; Lai, Chia-Min; Liu, Hwai-Shen; Hu, Chaur-Jong; Wang, Steven S. -S.

    2013-01-01

    Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases. PMID:24349167

  17. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emadi, Saeed, E-mail: emadi@iasbs.ac.ir; Behzadi, Maliheh

    Highlights: • Lysozyme aggregated in guanidine thiocyanate (1.0 and 2.0 M). • Lysozyme aggregated in guanidine hydrochloride (4 and 5 M). • Lysozyme did not aggregated at any concentration (0.5–5 M) of urea. • Unfolding pathway is more important than unfolding per se in aggregation. - Abstract: Protein aggregation and its subsequent deposition in different tissues culminate in a diverse range of diseases collectively known as amyloidoses. Aggregation of hen or human lysozyme depends on certain conditions, namely acidic pH or the presence of additives. In the present study, the effects on the aggregation of hen egg-white lysozyme via incubationmore » in concentrated solutions of three different chaotropic agents namely guanidine thiocyanate, guanidine hydrochloride and urea were investigated. Here we used three different methods for the detection of the aggregates, thioflavin T fluorescence, circular dichroism spectroscopy and atomic force microscopy. Our results showed that upon incubation with different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0 M) of the chemical denaturants, lysozyme was aggregated at low concentrations of guanidine thiocyanate (1.0 and 2.0 M) and at high concentrations of guanidine hydrochloride (4 and 5 M), although no fibril formation was detected. In the case of urea, no aggregation was observed at any concentration.« less

  18. Study on the interaction between cinnamic acid and lysozyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Mei; Chen, Jian; Zhou, Qiu-Hua; Shi, Yue-Qin; Wang, Yan-Qing

    2011-02-01

    The interaction between lysozyme and cinnamic acid was investigated systematically by ultraviolet-vis absorbance, circular dichroism, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques at pH 7.40. The binding constants, quenching mechanism, and the number of binding sites were determined by the quenching of lysozyme fluorescence in presence of cinnamic acid. The results showed that the fluorescence quenching of lysozyme by cinnamic acid was a result of the formation of cinnamic acid-lysozyme complex. The hydrophobic and electrostatic interactions played major roles in stabilizing the complex; the distance r between donor and acceptor was obtained to be 2.07 nm according to Förster's theory; the effect of cinnamic acid on the conformation of lysozyme was analyzed using synchronous fluorescence, circular dichroism and three-dimensional fluorescence spectra.

  19. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters.

    PubMed

    Borana, Mohanish S; Mishra, Pushpa; Pissurlenkar, Raghuvir R S; Hosur, Ramakrishna V; Ahmad, Basir

    2014-03-01

    Interaction of small molecule inhibitors with protein aggregates has been studied extensively, but how these inhibitors modulate aggregation kinetic parameters is little understood. In this work, we investigated the ability of two potential aggregation inhibiting drugs, curcumin and kaempferol, to control the kinetic parameters of aggregation reaction. Using thioflavin T fluorescence and static light scattering, the kinetic parameters such as amplitude, elongation rate constant and lag time of guanidine hydrochloride-induced aggregation reactions of hen egg white lysozyme were studied. We observed a contrasting effect of inhibitors on the kinetic parameters when aggregation reactions were measured by these two probes. The interactions of these inhibitors with hen egg white lysozyme were investigated using fluorescence quench titration method and molecular dynamics simulations coupled with binding free energy calculations. We conclude that both the inhibitors prolong nucleation of amyloid aggregation through binding to region of the protein which is known to form the core of the protein fibril, but once the nucleus is formed the rate of elongation is not affected by the inhibitors. This work would provide insight into the mechanism of aggregation inhibition by these potential drug molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Molecular Dynamics Simulation of the Human Lysozyme – Camelid VHH HL6 Antibody System

    PubMed Central

    Su, Zhi-Yuan; Wang, Yeng-Tseng

    2009-01-01

    Amyloid diseases such as Alzheimer’s and thrombosis are characterized by an aberrant assembly of specific proteins or protein fragments into fibrils and plaques that are deposited in various tissues and organs. The single-domain fragment of a camelid antibody was reported to be able to combat against wild-type human lysozyme for inhibiting in-vitro aggregations of the amyloidogenic variant (D67H). The present study is aimed at elucidating the unbinding mechanics between the D67H lysozyme and VHH HL6 antibody fragment by using steered molecular dynamics (SMD) simulations on a nanosecond scale with different pulling velocities. The results of the simulation indicated that stretching forces of more than two nano Newton (nN) were required to dissociate the proteinantibody system, and the hydrogen bond dissociation pathways were computed. PMID:19468335

  1. Antibacterial Activity of Probiotic Lactobacillus plantarum HK01: Effect of Divalent Metal Cations and Food Additives on Production Efficiency of Antibacterial Compounds.

    PubMed

    Sharafi, Hakimeh; Alidost, Leila; Lababpour, Abdolmajid; Shahbani Zahiri, Hossein; Abbasi, Habib; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2013-06-01

    One hundred and sixty lactic acid bacteria, isolated from Iranian traditional dairy products, were screened for antibacterial potential. Among them, an isolate showing remarkable antibacterial activity against both Staphylococcus aureus (PTCC 1112) and Escherichia coli (PTCC 1338) was selected based on minimum inhibitory concentration (AU/mL). The morphological and biochemical characteristics of the isolate matched the literature description about genus Lactobacillus. Partial sequencing of 16S rRNA gene and its alignment with other Lactobacillus strains revealed that the isolate was closely related to the Lactobacillus plantarum. The isolate also exhibited the highest similarity (>99 %) to L. plantarum. We thus tentatively classified the bacterial isolate as L. plantarum HK01. The antibacterial active compound from HK01 strain remained stable for 45 min at 121 °C, and it reached a maximum activity at the end of log phase and the early part of stationary phase. The antibacterial activity of the test isolate, its probiotic properties and production efficacy through addition of some divalent metal cations and food additives were studied as well. The study of bile salt hydrolase (BSH) activity as a function of growth revealed that HK01 strain hydrolysing up to 5 % of sodium salt of glycodeoxycholic acid, correlated with the presence of bsh gene in the isolate. HK01 strain showed high resistance to lysozyme, good adaptation to simulated gastric juice and a moderate bile tolerance. Results obtained from simulated gastric juice conditions showed no significant difference occured during the 70 min. HK01 strain was classified as a strain with low hydrophobicity (34.2 %). Addition of trisodium citrate dehydrates as a food-grade chelator of divalent cations restored antibacterial compound production in MRS broth. Antibacterial compounds of L. plantarum HK01 endured treatment with 10 g/L of SDS, Tween 20, Tween 80 and urea. Concerning food additives, the results

  2. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/ormore » production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.« less

  3. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk.

    PubMed

    Lu, Dan; Liu, Shen; Shang, Shengzhe; Wu, Fangfang; Wen, Xiao; Li, Zhiyuan; Li, Yan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Qiuyan; Li, Ning

    2015-01-01

    Human lysozyme is a natural non-specific immune factor in human milk that plays an important role in the defense of breastfed infants against pathogen infection. Although lysozyme is abundant in human milk, there is only trace quantities in pig milk. Here, we successfully generated transgenic cloned pigs with the expression vector pBAC-hLF-hLZ-Neo and their first generation hybrids (F1). The highest concentration of recombinant human lysozyme (rhLZ) with in vitro bioactivity was 2759.6 ± 265.0 mg/L in the milk of F0 sows. Compared with wild-type milk, rhLZ milk inhibited growth of Escherichia coli K88 during the exponential growth phase. Moreover, rhLZ in milk from transgenic sows was directly absorbed by the intestine of piglets with no observable anaphylactic reaction. Our strategy may provide a powerful tool for large-scale production of this important human protein in pigs to improve resistance to pathogen infection.

  4. [Cloning, prokaryotic expression and antibacterial assay of Tenecin gene encoding an antibacterial peptide from Tenebrio molitor].

    PubMed

    Liu, Ying; Jiang, Yu-xin; Li, Chao-pin

    2011-12-01

    To clone tenecin gene, an antibacterial peptide gene, from Tenebrio molitor for its prokaryotic expression and explore the molecular mechanism for regulating the expression of antibacterial peptide in Tenebrio molitor larvae. The antibacterial peptide was induced from the larvae of Tenebrio molitor by intraperitoneal injection of Escherichia coli DH-5α (1×10(8)/ml). RT-PCR was performed 72 h after the injection to clone Tenecin gene followed by sequencing and bioinformatic analysis. The recombinant expression vector pET-28a(+)-Tenecin was constructed and transformed into E. coli BL21(DE3) cells and the expression of tenecin protein was observed after IPTG induction. Tenecin expression was detected in transformed E.coli using SDS-PAGE after 1 mmol/L IPTG induction. Tenecin gene, which was about 255 bp in length, encoded Tenecin protein with a relative molecular mass of 9 kD. Incubation of E.coli with 80, 60, 40, and 20 µg/ml tenecin for 18 h resulted in a diameter of the inhibition zone of 25.1∓0.03, 20.7∓0.06, 17.2∓0.11 and 9.3∓0.04 mm, respectively. Tenecin protein possesses strong antibacterial activity against E. coli DH-5α, which warrants further study of this protein for its potential as an antibacterial agent in clinical application.

  5. Protein-Lipid Interactions and Mechanisms of Antioxidant Activity of Proteins.

    DTIC Science & Technology

    1984-06-25

    lysozyme and peroxidizing methyl fatty acid esters 3 F.~~~ ~ ~ -: 7 7-7777- 77.:1 71 7: .and decreases lipid hydroperoxide and malonadelhyde...freeze-dried emulsions of methyl linoleate with chicken egg lysozyme and other proteins, and in solution with amino acids and several aldehydes. Generation...4 Z,. ..- : , , , , . .:: . . ,.. -. , . . . .b - ? . Egg lecithin liposomes with hen- egg lysozyme localized either inside or outside the vesicles

  6. Consuming Transgenic Goats' Milk Containing the Antimicrobial Protein Lysozyme Helps Resolve Diarrhea in Young Pigs

    PubMed Central

    Cooper, Caitlin A.; Garas Klobas, Lydia C.; Maga, Elizabeth A.; Murray, James D.

    2013-01-01

    Childhood diarrhea is a significant problem in many developing countries and E. coli is a main causative agent of diarrhea in young children. Lysozyme is an antimicrobial protein highly expressed in human milk, but not ruminant milk, and is thought to help protect breastfeeding children against diarrheal diseases. We hypothesized that consumption of milk from transgenic goats which produce human lysozyme (hLZ-milk) in their milk would accelerate recovery from bacterial-induced diarrhea. Young pigs were used as a model for children and infected with enterotoxigenic E. coli. Once clinical signs of diarrhea developed, pigs were fed hLZ-milk or non-transgenic control goat milk three times a day for two days. Clinical observations and complete blood counts (CBC) were performed. Animals were euthanized and samples collected to assess differences in histology, cytokine expression and bacterial translocation into the mesenteric lymph node. Pigs consuming hLZ-milk recovered from clinical signs of infection faster than pigs consuming control milk, with significantly improved fecal consistency (p = 0.0190) and activity level (p = 0.0350). The CBC analysis showed circulating monocytes (p = 0.0413), neutrophils (p = 0.0219), and lymphocytes (p = 0.0222) returned faster to pre-infection proportions in hLZ-milk fed pigs, while control-fed pigs had significantly higher hematocrit (p = 0.027), indicating continuing dehydration. In the ileum, pigs fed hLZ-milk had significantly lower expression of pro-inflammatory cytokine IL-8 (p = 0.0271), longer intestinal villi (p<0.0001), deeper crypts (p = 0.0053), and a thinner lamina propria (p = 0.0004). These data demonstrate that consumption of hLZ-milk helped pigs recover from infection faster, making hLZ-milk an effective treatment of E. coli-induced diarrhea. PMID:23516474

  7. Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.

    2012-01-01

    Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.

  8. Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film.

    PubMed

    Bhatia, Sugandha; Bharti, Anoop

    2015-06-01

    The pleothera of micro organisms obtained from contaminated food cultured in a starch broth was effectively tested against antibacterial agents, i.e. nisin, lysozyme and chelating agent EDTA. A variety of combination treatments of these antimicrobial agents and their incorporation in Starch based active packaging film according to their permissibility standards was done. 4 variables of Nisin concentration (ranging from 0 to 750 IU/ml), 3 variables of lysozyme concentration (ranging from 0 to 500 IU/ml) and 3 variables of EDTA concentration from (0 to 20 μM) were chosen. Bacterial inhibition by combination of different levels of different factors without antimicrobial films was evaluated using a liquid incubation method. The samples were assayed for turbidity at interval of 2, 4 and 24 h to check effectiveness of combined effects of antimicrobial agents which proved a transitory bactericidal effect for short incubation times. Zone of Inhibition was observed in the antimicrobial films prepared by agar diffusion method. Statistical analysis of experimental data for their antimicrobial spectrum was carried out by multi regression analysis and ANOVA using Design-Expert software to plot the final equation in terms of coded factors as antimicrobial agents. The experimental data indicated that the model was highly significant. Results were also evaluated graphically using response surface showing interactions between two factors, keeping other factor fixed at values at the center of domain. Synergy was also determined among antibacterial agents using the fractional inhibitory concentration (FIC) index which was observed to be 0.56 supporting the hypothesis that nisin and EDTA function as partial synergistically. The presented work aimed to screen in quick fashion the combinatorial effect of three antimicrobial agents and evaluating their efficacy in anti microbial film development.

  9. Determination of protein secondary structure and solvent accessibility using site-directed fluorescence labeling. Studies of T4 lysozyme using the fluorescent probe monobromobimane.

    PubMed

    Mansoor, S E; McHaourab, H S; Farrens, D L

    1999-12-07

    We report an investigation of how much protein structural information could be obtained using a site-directed fluorescence labeling (SDFL) strategy. In our experiments, we used 21 consecutive single-cysteine substitution mutants in T4 lysozyme (residues T115-K135), located in a helix-turn-helix motif. The mutants were labeled with the fluorescent probe monobromobimane and subjected to an array of fluorescence measurements. Thermal stability measurements show that introduction of the label is substantially perturbing only when it is located at buried residue sites. At buried sites (solvent surface accessibility of <40 A(2)), the destabilizations are between 3 and 5.5 kcal/mol, whereas at more exposed sites, DeltaDeltaG values of < or = 1.5 kcal/mol are obtained. Of all the fluorescence parameters that were explored (excitation lambda(max), emission lambda(max), fluorescence lifetime, quantum yield, and steady-state anisotropy), the emission lambda(max) and the steady-state anisotropy values most accurately reflect the solvent surface accessibility at each site as calculated from the crystal structure of cysteine-less T4 lysozyme. The parameters we identify allow the classification of each site as buried, partially buried, or exposed. We find that the variations in these parameters as a function of residue number reflect the sequence-specific secondary structure, the determination of which is a key step for modeling a protein of unknown structure.

  10. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants.

    PubMed

    Cabrefiga, Jordi; Montesinos, Emilio

    2017-02-17

    Fire blight is an important disease affecting rosaceous plants. The causal agent is the bacteria Erwinia amylovora which is poorly controlled with the use of conventional bactericides and biopesticides. Antimicrobial peptides (AMPs) have been proposed as a new compounds suitable for plant disease control. BP100, a synthetic linear undecapeptide (KKLFKKILKYL-NH 2 ), has been reported to be effective against E. amylovora infections. Moreover, BP100 showed bacteriolytic activity, moderate susceptibility to protease degradation and low toxicity. However, the peptide concentration required for an effective control of infections in planta is too high due to some inactivation by tissue components. This is a limitation beause of the high cost of synthesis of this compound. We expected that the combination of BP100 with lysozyme may produce a synergistic effect, enhancing its activity and reducing the effective concentration needed for fire blight control. The combination of a synhetic multifunctional undecapeptide (BP100) with lysozyme produces a synergistic effect. We showed a significant increase of the antimicrobial activity against E. amylovora that was associated to the increase of cell membrane damage and to the reduction of cell metabolism. Combination of BP100 with lysozyme reduced the time required to achieve cell death and the minimal inhibitory concentration (MIC), and increased the activity of BP100 in the presence of leaf extracts even when the peptide was applied at low doses. The results obtained in vitro were confirmed in leaf infection bioassays. The combination of BP100 with lysozyme showed synergism on the bactericidal activity against E. amylovora and provide the basis for developing better formulations of antibacterial peptides for plant protection.

  11. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  12. Crystallization of chicken egg white lysozyme from assorted sulfate salts

    NASA Astrophysics Data System (ADS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4°C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15°C were generally tetragonal, with space group P4 32 12. Crystallization at 20°C typically resulted in the formation of orthorhombic crystals, space group P2 12 12 1. The tetragonal ↔ orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20°C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3 12 1, a= b=87.4, c=73.7, γ=120°, which diffracted to 2.8 Å. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form, space group C2, a=65.6, b=95.0, c=41.2, β=119.2°. A crystal of ˜0.2×0.2×0.5 mm grown from bulk solution diffracted to ˜3.5 Å.

  13. Lipoprotein LprI of Mycobacterium tuberculosis Acts as a Lysozyme Inhibitor.

    PubMed

    Sethi, Deepti; Mahajan, Sahil; Singh, Chaahat; Lama, Amrita; Hade, Mangesh Dattu; Gupta, Pawan; Dikshit, Kanak L

    2016-02-05

    Mycobacterium tuberculosis executes numerous defense strategies for the successful establishment of infection under a diverse array of challenges inside the host. One such strategy that has been delineated in this study is the abrogation of lytic activity of lysozyme by a novel glycosylated and surface-localized lipoprotein, LprI, which is exclusively present in M. tuberculosis complex. The lprI gene co-transcribes with the glbN gene (encoding hemoglobin (HbN)) and both are synchronously up-regulated in M. tuberculosis during macrophage infection. Recombinant LprI, expressed in Escherichia coli, exhibited strong binding (Kd ≤ 2 nm) with lysozyme and abrogated its lytic activity completely, thereby conferring protection to fluorescein-labeled Micrococcus lysodeikticus from lysozyme-mediated hydrolysis. Expression of the lprI gene in Mycobacterium smegmatis (8-10-fold) protected its growth from lysozyme inhibition in vitro and enhanced its phagocytosis and survival during intracellular infection of peritoneal and monocyte-derived macrophages, known to secrete lysozyme, and in the presence of exogenously added lysozyme in secondary cell lines where lysozyme levels are low. In contrast, the presence of HbN enhanced phagocytosis and intracellular survival of M. smegmatis only in the absence of lysozyme but not under lysozyme stress. Interestingly, co-expression of the glbN-lprI gene pair elevated the invasion and survival of M. smegmatis 2-3-fold in secondary cell lines in the presence of lysozyme in comparison with isogenic cells expressing these genes individually. Thus, specific advantage against macrophage-generated lysozyme, conferred by the combination of LprI-HbN during invasion of M. tuberculosis, may have vital implications on the pathogenesis of tuberculosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function.

    PubMed

    Irwin, D M

    1995-09-01

    Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.

  15. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations

    USDA-ARS?s Scientific Manuscript database

    Lysozyme was attached through an amide linkage between protein aspartate and glutamate residues to amino-glycine-cellulose (AGC), which was prepared by esterification of glycine to preparations of cotton nanocrystals (CNC). The nanocrystalline preparations were produced through acid hydrolysis and ...

  16. Antibacterial activity of antileukoprotease.

    PubMed Central

    Hiemstra, P S; Maassen, R J; Stolk, J; Heinzel-Wieland, R; Steffens, G J; Dijkman, J H

    1996-01-01

    Antileukoprotease (ALP), or secretory leukocyte proteinase inhibitor, is an endogenous inhibitor of serine proteinases that is present in various external secretions. ALP, one of the major inhibitors of serine proteinases present in the human lung, is a potent reversible inhibitor of elastase and, to a lesser extent, of cathepsin G. In equine neutrophils, an antimicrobial polypeptide that has some of the characteristics of ALP has been identified (M. A. Couto, S. S. L. Harwig, J. S. Cullor, J. P. Hughes, and R. I. Lehrer, Infect. Immun. 60:5042-5047, 1992). This report, together with the cationic nature of ALP, led us to investigate the antimicrobial activity of ALP. ALP was shown to display marked in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. On a molar basis, the activity of ALP was lower than that of two other cationic antimicrobial polypeptides, lysozyme and defensin. ALP comprises two homologous domains: its proteinase-inhibitory activities are known to be located in the second COOH-terminal domain, and the function of its first NH2-terminal domain is largely unknown. Incubation of intact ALP or its isolated first domain with E. coli or S. aureus resulted in killing of these bacteria, whereas its second domain displayed very little antibacterial activity. Together these data suggest a putative antimicrobial role for the first domain of ALP and indicate that its antimicrobial activity may equip ALP to contribute to host defense against infection. PMID:8890201

  17. Incorporation of impurity to a tetragonal lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo

    1999-01-01

    Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.

  18. Adsorption Kinetics, Conformation, and Mobility of the Growth Hormone and Lysozyme on Solid Surfaces, Studied with TIRF

    PubMed

    Buijs; Hlady

    1997-06-01

    Interactions of recombinant human growth hormone and lysozyme with solid surfaces are studied using total internal reflection fluorescence (TIRF) and monitoring the protein's intrinsic tryptophan fluorescence. The intensity, spectra, quenching, and polarization of the fluorescence emitted by the adsorbed proteins are monitored and related to adsorption kinetics, protein conformation, and fluorophore rotational mobility. To study the influence of electrostatic and hydrophobic interactions on the adsorption process, three sorbent surfaces are used which differ in charge and hydrophobicity. The chemical surface groups are silanol, methyl, and quaternary amine. Results indicate that adsorption of hGH is dominated by hydrophobic interactions. Lysozyme adsoption is strongly affected by the ionic strength. This effect is probably caused by an ionic strength dependent conformational state in solution which, in turn, influences the affinity for adsorption. Both proteins are more strongly bound to hydrophobic surfaces and this strong interaction is accompanied by a less compact conformation. Furthermore, it was seen that regardless of the characteristics of the sorbent surface, the rotational mobility of both proteins' tryptophans is largely reduced upon adsorption.

  19. Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity.

    PubMed

    Serna, Naroa; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Unzueta, Ugutz; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio

    2017-09-15

    The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections

  20. Molecular basis of the osmolyte effect on protein stability: a lesson from the mechanical unfolding of lysozyme.

    PubMed

    Adamczak, Beata; Wieczór, Miłosz; Kogut, Mateusz; Stangret, Janusz; Czub, Jacek

    2016-10-15

    Osmolytes are a class of small organic molecules that shift the protein folding equilibrium. For this reason, they are accumulated by organisms under environmental stress and find applications in biotechnology where proteins need to be stabilized or dissolved. However, despite years of research, debate continues over the exact mechanisms underpinning the stabilizing and denaturing effect of osmolytes. Here, we simulated the mechanical denaturation of lysozyme in different solvent conditions to study the molecular mechanism by which two biologically relevant osmolytes, denaturing (urea) and stabilizing (betaine), affect the folding equilibrium. We found that urea interacts favorably with all types of residues via both hydrogen bonds and dispersion forces, and therefore accumulates in a diffuse solvation shell around the protein. This not only provides an enthalpic stabilization of the unfolded state, but also weakens the hydrophobic effect, as hydrophobic forces promote the association of urea with nonpolar residues, facilitating the unfolding. In contrast, we observed that betaine is excluded from the protein backbone and nonpolar side chains, but is accumulated near the basic residues, yielding a nonuniform distribution of betaine molecules at the protein surface. Spatially resolved solvent-protein interaction energies further suggested that betaine behaves in a ligand- rather than solvent-like manner and its exclusion from the protein surface arises mostly from the scarcity of favorable binding sites. Finally, we found that, in the presence of betaine, the reduced ability of water molecules to solvate the protein results in an additional enthalpic contribution to the betaine-induced stabilization. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Native and dry-heated lysozyme interactions with membrane lipid monolayers: Lipid packing modifications of a phospholipid mixture, model of the Escherichia coli cytoplasmic membrane.

    PubMed

    Derde, Melanie; Nau, Françoise; Guérin-Dubiard, Catherine; Lechevalier, Valérie; Paboeuf, Gilles; Jan, Sophie; Baron, Florence; Gautier, Michel; Vié, Véronique

    2015-04-01

    Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  3. Binding patterns and structure-affinity relationships of food azo dyes with lysozyme: a multitechnique approach.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Jiang, Yu-Ting; Zhang, Li

    2013-12-18

    Food dyes serve to beguile consumers: they are often used to imitate the presence of healthful, colorful food produce such as fruits and vegetables. But considering the hurtful impact of these chemicals on the human body, it is time to thoroughly uncover the toxicity of these food dyes at the molecular level. In the present contribution, we have examined the molecular reactions of protein lysozyme with model food azo compound Color Index (C.I.) Acid Red 2 and its analogues C.I. Acid Orange 52, Solvent Yellow 2, and the core structure of azobenzene using a combination of biophysical methods at physiological conditions. Fluorescence, circular dichroism (CD), time-resolved fluorescence, UV-vis absorption as well as computer-aided molecular modeling were used to analyze food dye affinity, binding mode, energy transfer, and the effects of food dye complexation on lysozyme stability and conformation. Fluorescence emission spectra indicate complex formation at 10(-5) M dye concentration, and this corroborates time-resolved fluorescence results showing the diminution in the tryptophan (Trp) fluorescence mainly via a static type (KSV = 1.505 × 10(4) M(-1)) and Förster energy transfer. Structural analysis displayed the participation of several amino acid residues in food dye protein adducts, with hydrogen bonds, π-π and cation-π interactions, but the conformation of lysozyme was unchanged in the process, as derived from fluorescence emission, far-UV CD, and synchronous fluorescence spectra. The overall affinity of food dye is 10(4) M(-1) and there exists only one kind of binding domain in protein for food dye. These data are consistent with hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement, and molecular modeling manifesting the food dye binding patch was near to Trp-62 and Trp-63 residues of lysozyme. On the basis of the computational analyses, we determine that the type of substituent on the azobenzene structure has a powerful influence on the

  4. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future.

    PubMed

    Cooper, Caitlin A; Maga, Elizabeth A; Murray, James D

    2015-08-01

    Genetic engineering, which was first developed in the 1980s, allows for specific additions to animals' genomes that are not possible through conventional breeding. Using genetic engineering to improve agricultural animals was first suggested when the technology was in the early stages of development by Palmiter et al. (Nature 300:611-615, 1982). One of the first agricultural applications identified was generating transgenic dairy animals that could produce altered or novel proteins in their milk. Human milk contains high levels of antimicrobial proteins that are found in low concentrations in the milk of ruminants, including the antimicrobial proteins lactoferrin and lysozyme. Lactoferrin and lysozyme are both part of the innate immune system and are secreted in tears, mucus, and throughout the gastrointestinal (GI) tract. Due to their antimicrobial properties and abundance in human milk, multiple lines of transgenic dairy animals that produce either human lactoferrin or human lysozyme have been developed. The focus of this review is to catalogue the different lines of genetically engineered dairy animals that produce either recombinant lactoferrin or lysozyme that have been generated over the years as well as compare the wealth of research that has been done on the in vitro and in vivo effects of the milk they produce. While recent advances including the development of CRISPRs and TALENs have removed many of the technical barriers to predictable and efficient genetic engineering in agricultural species, there are still many political and regulatory hurdles before genetic engineering can be used in agriculture. It is important to consider the substantial amount of work that has been done thus far on well established lines of genetically engineered animals evaluating both the animals themselves and the products they yield to identify the most effective path forward for future research and acceptance of this technology.

  5. Regenerated cellulose fiber and film immobilized with lysozyme

    USDA-ARS?s Scientific Manuscript database

    The present work reports an initial engineering approach for fabricating lysozyme-bound regenerated cellulose fiber and film. Glycine-esterified cotton was dissolved in an ionic liquid solvent 1–Butyl–3–methylimidazolium Chloride (BMIMCl) in which lysozyme was activated and covalently attached to c...

  6. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease.

    PubMed

    Helmfors, Linda; Boman, Andrea; Civitelli, Livia; Nath, Sangeeta; Sandin, Linnea; Janefjord, Camilla; McCann, Heather; Zetterberg, Henrik; Blennow, Kaj; Halliday, Glenda; Brorsson, Ann-Christin; Kågedal, Katarina

    2015-11-01

    The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease. Copyright © 2015. Published by Elsevier Inc.

  7. Protein crowding in solution, frozen and freeze-dried states: small-angle neutron and X-ray scattering study of lysozyme/sorbitol/water systems

    NASA Astrophysics Data System (ADS)

    Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi

    2015-03-01

    For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.

  8. A population-based study of salivary lysozyme concentrations and candidal counts.

    PubMed

    Yeh, C K; Dodds, M W; Zuo, P; Johnson, D A

    1997-01-01

    The relationship between salivary lysozyme concentration and oral candida load was examined in 595 adults. Unstimulated whole saliva, and citrate-stimulated parotid and submandibular/sublingual saliva were collected from each participant. Candida colony-forming units (c.f.u.) in unstimulated whole saliva were determined. An enzyme-linked immunosorbent assay for lysozyme using commercially available antibodies was developed. This assay showed a linear relation of salivary lysozyme concentrations from 0.5 to 4.0 ng/ml. Significant negative relations were observed between lysozyme concentration and flow rate: r = -0.16 (p < 0.001) for stimulated parotid and r = -0.22 (p < 0.0001) for stimulated submandibular/sublingual saliva. The lysozyme concentration in stimulated submandibular/sublingual saliva was higher in males than in female, but no sex difference was observed for stimulated parotid saliva. The lysozyme concentration of stimulated parotid saliva was positively correlated with candida counts (r = 0.18: p < 0.005). Further study of groups according to their levels of candida in whole saliva revealed that lysozyme concentrations were higher in the high candida (> or = 1000 c.f.u./ml) group than in the zero and moderate candida categories in stimulated parotid saliva (p < 0.001): there were no concentration differences in stimulated submandibular/sublingual saliva. These results suggest that parotid lysozyme concentration increases as candida load increases.

  9. Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme.

    PubMed

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Ma, Lin; Yang, Xin-Ling; Zhang, Li; Sun, Ying

    2012-04-01

    Malachite green is a triphenylmethane dye that is used extensively in many industrial and aquacultural processes, generating environmental concerns and health problems to human being. In this contribution, the complexation between lysozyme and malachite green was verified by means of computer-aided molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) approaches. The precise binding patch of malachite green in lysozyme has been identified from molecular modeling and ANS displacement, Trp-62, Trp-63, and Trp-108 residues of lysozyme were earmarked to possess high-affinity for this dye, the principal forces in the lysozyme-malachite green adduct are hydrophobic and π-π interactions. Steady state fluorescence proclaimed the complex of malachite green with lysozyme yields quenching through static type, which substantiates time-resolved fluorescence measurements that lysozyme-malachite green conjugation formation has an affinity of 10(3)M(-1). Moreover, via molecular modeling and also CD data, we can safely arrive at a conclusion that the polypeptide chain of lysozyme partially destabilized upon complexation with malachite green. The data emerged here will help to further understand the toxicological action of malachite green in human body. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The relationship between target-class and the physicochemical properties of antibacterial drugs

    PubMed Central

    Mugumbate, Grace; Overington, John P.

    2015-01-01

    The discovery of novel mechanism of action (MOA) antibacterials has been associated with the concept that antibacterial drugs occupy a differentiated region of physicochemical space compared to human-targeted drugs. With, in broad terms, antibacterials having higher molecular weight, lower log P and higher polar surface area (PSA). By analysing the physicochemical properties of about 1700 approved drugs listed in the ChEMBL database, we show, that antibacterials for whose targets are riboproteins (i.e., composed of a complex of RNA and protein) fall outside the conventional human ‘drug-like’ chemical space; whereas antibacterials that modulate bacterial protein targets, generally comply with the ‘rule-of-five’ guidelines for classical oral human drugs. Our analysis suggests a strong target-class association for antibacterials—either protein-targeted or riboprotein-targeted. There is much discussion in the literature on the failure of screening approaches to deliver novel antibacterial lead series, and linkage of this poor success rate for antibacterials with the chemical space properties of screening collections. Our analysis suggests that consideration of target-class may be an underappreciated factor in antibacterial lead discovery, and that in fact bacterial protein-targets may well have similar binding site characteristics to human protein targets, and questions the assumption that larger, more polar compounds are a key part of successful future antibacterial discovery. PMID:25975639

  11. Protein deposition on a lathe-cut silicone hydrogel contact lens material.

    PubMed

    Subbaraman, Lakshman N; Woods, Jill; Teichroeb, Jonathan H; Jones, Lyndon

    2009-03-01

    To determine the quantity of total protein, total lysozyme, and the conformational state of lysozyme deposited on a novel, lathe-cut silicone hydrogel (SiHy) contact lens material (sifilcon A) after 3 months of wear. Twenty-four subjects completed a prospective, bilateral, daily-wear, 9-month clinical evaluation in which the subjects were fitted with a novel, custom-made, lathe-cut SiHy lens material. The lenses were worn for three consecutive 3-month periods, with lenses being replaced after each period of wear. After 3 months of wear, the lenses from the left eye were collected and assessed for protein analysis. The total protein deposited on the lenses was determined by a modified Bradford assay, total lysozyme using Western blotting and the lysozyme activity was determined using a modified micrococcal assay. The total protein recovered from the custom-made lenses was 5.3 +/- 2.3 microg/lens and the total lysozyme was 2.4 +/- 1.2 microg/lens. The denatured lysozyme found on the lenses was 1.9 +/- 1.0 microg/lens and the percentage of lysozyme denatured was 80 +/- 10%. Even after 3 months of wear, the quantity of protein and the conformational state of lysozyme deposited on these novel lens materials was very similar to that found on similar surface-coated SiHy lenses after 2 to 4 weeks of wear. These results indicate that extended use of the sifilcon A material is not deleterious in terms of the quantity and quality of protein deposited on the lens.

  12. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate.

    PubMed

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-19

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. Preliminary crystallographic examination of a novel fungal lysozyme from Chalaropsis

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Lyne, James E.; Stubbs, Gerald; Hash, John H.

    1990-01-01

    The lysozyme from the fungus of the Chalaropsis species has been crystallized. This lysozyme displays no sequence homology with avian, phage, or mammalian lysozymes, however, preliminary studies indicate significant sequence homology with the bacterial lysozyme from Streptomyces. Both enzymes are unusual in possessing beta-1,4-N-acetylmuramidase and beta-1,4-N,6-O-diacetylmuramidase activity. The crystals grow from solutions of ammonium sulfate during growth periods from several months to a year. The space group is P2(1)2(1)2(1) with a = 34.0 A, b = 42.6 A, c = 122.1 A. Preliminary data indicate that there is 1 molecule/asymmetric unit.

  14. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  15. Preliminary Work in Obtaining Site-Directed Mutants of Hen Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, Leonard D.

    1996-01-01

    Protein crystal growth studies are recognized as a critical endeavor in the field of molecular biotechnology. The scientific applications of this field include the understanding of how enzymes function and the accumulation of accurate information of atomic structures, a key factor in the process of rational drug design. NASA has committed substantial investment and resources to the field of protein crystal growth and has conducted many microgravity protein crystal growth experiments aboard shuttle flights. Crystals grown in space tend to be larger, denser and have a more perfect habit and geometry. These improved properties gained in the microgravity environment of space result largely from the reduction of solutal convection, and the elimination of sedimentation at the growing crystal surface. Shuttle experiments have yielded many large, high quality crystals that are suitable for high resolution X-ray diffraction analysis. Examples of biologically important macromolecules which have been successfully crystallized during shuttle missions include: lysozyme, isocitrate lyase, gamma-interferon, insulin, human serum albumin and canavalin. Numerous other examples are also available. In addition to obtaining high quality crystals, investigators are also interested in learning the mechanisms by which the growth events take place. Crystallization experiments indicate that for the enzyme HEWL, measured growth rates do not follow mathematical models for 2D nucleation and dislocation-led growth of tetragonal protein crystals. As has been suggested by the laboratory of Marc L. Pusey, a possible explanation for the disagreement between observation and data is that HEWL tetraconal crystals form by aggregated units of lysozyme in supersaturated solutions. Surface measurement data was shown to fit very well with a model using an octamer unit cell as the growth unit. According to this model, the aggregation pathway and subsequent crystal growth is described by: monomer

  16. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  17. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  18. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1995-01-01

    During the fourth semi-annual period under this grant we have pursued the following activities: (1) crystal growth morphology and kinetics studies with tetragonal lysozyme. These clearly revealed the influence of higher molecular weight protein impurities on interface shape; (2) characterization of the purity and further purification of lysozyme solutions. These efforts have, for the first time, resulted in lysozyme free of higher molecular weight components; (3) continuation of the salt repartitioning studies with Seikagaku lysozyme, which has a lower protein impurity content that Sigma stock. These efforts confirmed our earlier findings of higher salt contents in smaller crystals. However, less salt is in corporated into the crystals grown from Seikagaku stock. This strongly suggests a dependence of salt repartitioning on the concentration of protein impurities in lysozyme. To test this hypothesis, repartitioning studies with the high purity lysozyme prepared in-house will be begun shortly; (4) numerical modelling of the interaction between bulk transport and interface kinetics. These simulations have produced interface shapes which are in good agreement with out experimental observations; and (5) light scattering studies on under- and supersaturated lysozyme solutions. A consistent interpretation of the static and dynamic data leaves little doubt that pre-nucleation clusters, claimed to exist even in undersaturated solutions, are not present. The article: 'Growth morphology response to nutrient and impurity nonuniformities' is attached.

  19. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  20. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE PAGES

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun; ...

    2015-12-18

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  1. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  2. Time-resolved forward-light-scattering monitoring of protein–lysozyme aggregation in precrystalline solutions

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Onoda, Takashi; Ogata, Makoto

    2018-05-01

    An in situ measurement method of monitoring protein aggregation in precrystalline solutions is presented. The method is based on a small-angle forward static light scattering (F-SLS) technique. This technique uses an accurate optical arrangement of a combination of a collimating lens and a CCD to obtain an F-SLS pattern from an aggregate-containing protein solution in one shot. The real-time observation of a crystallizing lysozyme captured the formation of fractal aggregates in the initial formation stage.

  3. Towards absolute quantification of allergenic proteins in food--lysozyme in wine as a model system for metrologically traceable mass spectrometric methods and certified reference materials.

    PubMed

    Cryar, Adam; Pritchard, Caroline; Burkitt, William; Walker, Michael; O'Connor, Gavin; Burns, Duncan Thorburn; Quaglia, Milena

    2013-01-01

    Current routine food allergen quantification methods, which are based on immunochemistry, offer high sensitivity but can suffer from issues of specificity and significant variability of results. MS approaches have been developed, but currently lack metrological traceability. A feasibility study on the application of metrologically traceable MS-based reference procedures was undertaken. A proof of concept involving proteolytic digestion and isotope dilution MS for quantification of protein allergens in a food matrix was undertaken using lysozyme in wine as a model system. A concentration of lysozyme in wine of 0.95 +/- 0.03 microg/g was calculated based on the concentrations of two peptides, confirming that this type of analysis is viable at allergenically meaningful concentrations. The challenges associated with this promising method were explored; these included peptide stability, chemical modification, enzymatic digestion, and sample cleanup. The method is suitable for the production of allergen in food certified reference materials, which together with the achieved understanding of the effects of sample preparation and of the matrix on the final results, will assist in addressing the bias of the techniques routinely used and improve measurement confidence. Confirmation of the feasibility of MS methods for absolute quantification of an allergenic protein in a food matrix with results traceable to the International System of Units is a step towards meaningful comparison of results for allergen proteins among laboratories. This approach will also underpin risk assessment and risk management of allergens in the food industry, and regulatory compliance of the use of thresholds or action levels when adopted.

  4. Size Exclusion Chromatography Studies of the Initial Self-Association Steps of Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia; Donovan, David; Pusey, Marc

    2000-01-01

    Nucleation is one of the least understood aspects of crystallogenesis. In the case of macromolecule nucleation, this understanding is further hampered by uncertainty over what precisely is being discussed. We define the process of solute self-association (aggregation, oligomerization, interaction, clustering, etc.) whereby n-mers (n > or = 2) having a crystallographic or nascent crystallographic arrangement leading to the critical nucleus reversibly form in the solution, to be part of the nucleation process. This reversible self-association process is a fundamental part of the nucleation process, and occurs as a function of the solute concentration. In the case of chicken egg white lysozyme, a considerable body of experimental evidence leads us to the conclusion that it also forms the crystal growth units. Size exclusion chromatography is a simple and direct method for determining the equilibrium constants for the self-association process. A Pharmacia FPLC system was used to provide accurate solution flow rates. The column, injection valve, and sample loop were all mounted within a temperature-controlled chamber. Chromatographically re-purified lysozyme was first dialyzed against the column equilibration buffer, with injection onto the column after several hours pre-incubation at the running temperature. Preliminary experiments, were carried out using a Toyopearl HW-50F column (1 x 50cm), equilibrated with 0.1 M sodium acetate, 5% sodium chloride, pH 4.6, at 15C. Protein concentrations from 0.1 to 4 mg/ml were employed (C(sub sat) = 1.2 mg/ml). The data from several different protein preparations consistently shows a progressively decreasing elution volume with increasing protein concentration, indicating that reversible self-association is occurring. The dotted line indicates the monomeric lysozyme elution volume. However, lysozyme interacts with the column matrix in these experiments, which complicates data analysis.Accordingly, we are testing silica-based HPLC

  5. Chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozyme.

    PubMed

    Yamada, H; Fukumura, T; Ito, Y; Imoto, T

    1985-04-01

    Preparation of chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozymes and its application to separation of N-bromosuccinimide-oxidized lysozymes are described. By pH gradient elution, two diastereomers of oxindolealanine-62-lysozyme, delta 1-acetoxytryptophan-62-lysozyme (intermediate product in the reaction in acetate buffer), and native lysozyme were all separated within 40 min.

  6. Functionalization of multiwalled carbon nanotubes by microwave irradiation for lysozyme attachment: comparison of covalent and adsorption methods by kinetics of thermal inactivation

    NASA Astrophysics Data System (ADS)

    Puentes-Camacho, Daniel; Velázquez, Enrique F.; Rodríguez-Félix, Dora E.; Castillo-Ortega, Mónica; Sotelo-Mundo, Rogerio R.; del Castillo-Castro, Teresa

    2017-12-01

    Proteins suffer changes in their tertiary structure when they are immobilized, and enzymatic activity is affected due to the low biocompatibility of some supporting materials. In this work immobilization of lysozyme on carbon nanotubes previously functionalized by microwave irradiation was studied. The effectiveness of the microwave-assisted acid treatment of carbon nanotubes was evaluated by XPS, TEM, Raman and FTIR spectroscopy. The carboxylic modification of nanotube surfaces by this fast, simple and feasible method allowed the physical adsorption and covalent linking of active lysozyme onto the carbonaceous material. Thermal inactivation kinetics, thermodynamic parameters and storage stability were studied for adsorbed and covalent enzyme complexes. A major stability was found for lysozyme immobilized by the covalent method, the activation energy for inactivation of the enzyme was higher for the covalent method and it was stable after 50 d of storage at 4 °C. The current study highlights the effect of protein immobilization method on the biotechnological potential of nanostructured biocatalysts.

  7. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis

    NASA Astrophysics Data System (ADS)

    Booth, David R.; Sunde, Margaret; Bellotti, Vittorio; Robinson, Carol V.; Hutchinson, Winston L.; Fraser, Paul E.; Hawkins, Philip N.; Dobson, Christopher M.; Radford, Sheena E.; Blake, Colin C. F.; Pepys, Mark B.

    1997-02-01

    Tissue deposition of soluble proteins as amyloid fibrils underlies a range of fatal diseases. The two naturally occurring human lysozyme variants are both amyloidogenic, and are shown here to be unstable. They aggregate to form amyloid fibrils with transformation of the mainly helical native fold, observed in crystal structures, to the amyloid fibril cross-β fold. Biophysical studies suggest that partly folded intermediates are involved in fibrillogenesis, and this may be relevant to amyloidosis generally.

  8. Terahertz absorption of lysozyme in solution

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2017-08-01

    Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.

  9. Interaction of lactoferrin and lysozyme with casein micelles.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2011-11-14

    On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.

  10. The oxadiazole antibacterials.

    PubMed

    Janardhanan, Jeshina; Chang, Mayland; Mobashery, Shahriar

    2016-10-01

    The oxadiazoles are a class of antibacterials discovered by in silico docking and scoring of compounds against the X-ray structure of a penicillin-binding protein. These antibacterials exhibit activity against Gram-positive bacteria, including against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). They show in vivo efficacy in murine models of peritonitis/sepsis and neutropenic thigh MRSA infection. They are bactericidal and orally bioavailable. The oxadiazoles show promise in treatment of MRSA infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi

  12. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  13. Novel dental adhesive with triple benefits of calcium phosphate recharge, protein-repellent and antibacterial functions.

    PubMed

    Xie, Xianju; Wang, Lin; Xing, Dan; Zhang, Ke; Weir, Michael D; Liu, Huaibing; Bai, Yuxing; Xu, Hockin H K

    2017-05-01

    A new adhesive containing nanoparticles of amorphous calcium phosphate (NACP) with calcium (Ca) and phosphate (P) ion rechargeability was recently developed; however, it was not antibacterial. The objectives of this study were to: (1) develop a novel adhesive with triple benefits of Ca and P ion recharge, protein-repellent and antibacterial functions via dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC); and (2) investigate dentin bond strength, protein adsorption, Ca and P ion concentration, microcosm biofilm response and pH properties. MPC, DMAHDM and NACP were mixed into a resin consisting of ethoxylated bisphenol A dimethacrylate (EBPADMA), pyromellitic glycerol dimethacrylate (PMGDM), 2-hydroxyethyl methacrylate (HEMA) and bisphenol A glycidyl dimethacrylate (BisGMA). Protein adsorption was measured using a micro bicinchoninic acid method. A human saliva microcosm biofilm model was tested on resins. Colony-forming units (CFU), live/dead assay, metabolic activity, Ca and P ion concentration and biofilm culture medium pH were determined. The adhesive with 5% MPC+5% DMAHDM+30% NACP inhibited biofilm growth, reducing biofilm CFU by 4 log, compared to control (p<0.05). Dentin shear bond strengths were similar (p>0.1). Biofilm medium became a Ca and P ion reservoir having ion concentration increasing with NACP filler level. The adhesive with 5% MPC+5% DMAHDM+30% NACP maintained a safe pH>6, while commercial adhesive had a cariogenic pH of 4. The new adhesive with triple benefits of Ca and P ion recharge, protein-repellent and antibacterial functions substantially reduced biofilm growth, reducing biofilm CFU by 4 orders of magnitude, and yielding a much higher pH than commercial adhesive. This novel adhesive is promising to protect tooth structures from biofilm acids. The method of using NACP, MPC and DMAHDM is promising for application to other dental materials to combat caries. Copyright © 2017 The Academy of Dental

  14. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  15. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages.

    PubMed

    Gröbner, Sabine; Fritz, Evelyn; Schoch, Friederike; Schaller, Martin; Berger, Alexander C; Bitzer, Michael; Autenrieth, Ingo B

    2010-10-01

    Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential DeltaPsi(m). Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.

  16. Assessment of antibacterial properties and the active ingredient of plant extracts and its effect on the performance of crucian carp (Carassius auratus gibelio var. E'erqisi, Bloch).

    PubMed

    Lu, Chunxia; Luo, Xiaoling; Luo, Ruifeng; Chen, Xia; Xing, Lijie; Tang, Zonggui; Li, Hongmin

    2013-03-15

    In this study, the antibacterial properties and active ingredient of plant extracts and its effect on the performance of crucian carp (Carassius auratus gibelio var. E'erqisi, Bloch) were assessed. The transmission electron microscopy and flow cytometric analysis showed that the antibacterial activity of plant extracts is due to the disruption of the cell membrane and the leakage of cytoplasmic contents. The UPLC-MS/MS analysis showed that the contents of gallic acid, (-)-epigallocatechin, (+)-catechin, (-)-epigallocatechin gallate, (-)-epicatechin gallate, aloe-emodin, rhein, emodin, chrysophanol, and physcion, were 5.27%, 3.30%, 1.08%, 19.32%, 5.46%, 0.23%, 0.56%, 1.28%, 0.75% and 0.39% in plant extracts, respectively. Results of feeding experiment showed that feeding crucian carp with 1.0% and 2.0% plant extracts significantly enhanced specific growth rate, serum total protein, lysozyme, catalase and superoxide dismutase activities, and decreased the feed conversion rate, malondialdehyde contents and the mortality rate (P < 0.05). It can be concluded that plant extracts added to fish feed can act as natural antimicrobial and immunostimulants to prevent pathogenic infection, enhance immune response, and promote growth of the fish. © 2012 Society of Chemical Industry.

  17. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis.

    PubMed

    Jadhav, Ankush; Shanmugham, Buvaneswari; Rajendiran, Anjana; Pan, Archana

    2014-10-01

    Food and waterborne diseases are a growing concern in terms of human morbidity and mortality worldwide, even in the 21st century, emphasizing the need for new therapeutic interventions for these diseases. The current study aims at prioritizing broad-spectrum antibacterial targets, present in multiple food and waterborne bacterial pathogens, through a comparative genomics strategy coupled with a protein interaction network analysis. The pathways unique and common to all the pathogens under study (viz., methane metabolism, d-alanine metabolism, peptidoglycan biosynthesis, bacterial secretion system, two-component system, C5-branched dibasic acid metabolism), identified by comparative metabolic pathway analysis, were considered for the analysis. The proteins/enzymes involved in these pathways were prioritized following host non-homology analysis, essentiality analysis, gut flora non-homology analysis and protein interaction network analysis. The analyses revealed a set of promising broad-spectrum antibacterial targets, present in multiple food and waterborne pathogens, which are essential for bacterial survival, non-homologous to host and gut flora, and functionally important in the metabolic network. The identified broad-spectrum candidates, namely, integral membrane protein/virulence factor (MviN), preprotein translocase subunits SecB and SecG, carbon storage regulator (CsrA), and nitrogen regulatory protein P-II 1 (GlnB), contributed by the peptidoglycan pathway, bacterial secretion systems and two-component systems, were also found to be present in a wide range of other disease-causing bacteria. Cytoplasmic proteins SecG, CsrA and GlnB were considered as drug targets, while membrane proteins MviN and SecB were classified as vaccine targets. The identified broad-spectrum targets can aid in the design and development of antibacterial agents not only against food and waterborne pathogens but also against other pathogens. Copyright © 2014 Elsevier B.V. All rights

  18. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  19. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel; Pusey, Marc

    1998-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk'solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 4(sub 3) axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to greater than 500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 yields PHE or ALA and ASN 113 yields ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 4(sub 3) helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  20. Antimicrobial peptide lysozyme has the potential to promote mouse hair follicle growth in vitro.

    PubMed

    Su, Yongsheng; Liu, Hui; Wang, Jin; Lin, Bojie; Miao, Yong; Hu, Zhiqi

    2015-10-01

    Lysozyme is a well-known antimicrobial peptide that exists widely in mammalian skin and it is also expressed by pilosebaceous units. However, the exact location of lysozyme in hair follicles and whether it exerts any direct effects on hair follicle growth are unclear. To determine whether lysozyme affected hair growth in vitro, micro-dissected mouse vibrissae follicles (VFs) were treated in serum-free organ culture for 3 days with lysozyme (1-10μg/ml). After that, the effects of lysozyme on dermal papilla (DP) cells were also investigated. Lysozyme was mainly identified in DP and dermal sheath regions of VF by immunochemistry. In addition, 5-10μg/ml lysozyme had a promoting effect on shaft production. It was also associated with significant proliferation of matrix keratinocytes by immunofluorescence observation. Furthermore, lysozyme promoted hair growth by increasing the levels of alkaline phosphatase and lymphoid enhancer factor 1 in DP, as determined by Western blotting. These results indicate that lysozyme is a promoter of VF growth via enhancing the hair-inductive capacity of DP cells during organ culture. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Bacteriolytic Activity Of Human Interleukin-2, Chicken Egg Lysozyme In The Presence Of Potential Effectors

    PubMed Central

    Levashov, P. A.; Matolygina, D. A.; Ovchinnikova, E. D.; Atroshenko, D. L.; Savin, S. S.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2017-01-01

    The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM. PMID:28740730

  2. Heterogeneity Determination and Purification of Commercial Hen Egg-White Lysozyme

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    Hen egg-white lysozyme (HEWL) is widely used as a model protein, although its purity has not been adequately characterized by modern biochemical techniques. We have identified and quantified the protein heterogeneities in three commercial HEWL preparations by sodium dodecyl sulfate polyacrylamide gel electrophoresis with enhanced silver staining, reversed-phase fast protein liquid chromatography (FPLC) and immunoblotting with comparison to authentic protein standards. Depending on the source, the contaminating proteins totalled 1-6%(w/w) and consisted of ovotransferrin, ovalbumin, HEWL dimers, and polypeptides with approximate M(sub r) of 39 and 18 kDa. Furthermore, we have obtained gram quantities of electrophoretically homogeneous [> 99.9%(w/w)] HEWL by single-step semi-preparative scale cation-exchange FPLC with a yield of about 50%. Parallel studies of crystal growth kinetics, salt repartitioning and crystal perfection with this highly purified material showed fourfold increases in the growth-step velocities and significant enhancement in the structural homogeneity of HEWL crystals.

  3. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of

  4. Local pH at the surface of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Kobayashi, Kaito; Yamaguchi, Shoichi

    2018-02-01

    The microenvironment at the surface of hen-egg-white lysozyme (HEWL) was examined by analyzing the change in pKa of fluorescein isothiocyanate (FITC) upon binding to the N-terminus of HEWL. The result showed that the local pH at the HEWL surface is higher than the bulk pH. Furthermore, the data showed that the difference between the local and bulk pH becomes larger with decreasing pH, suggesting HEWL repels more protons at lower pH. Because the local pH affects the protonation states of functional amino-acids at the protein surface, the results provide the fundamental insight into the microenvironment at the protein surface.

  5. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    PubMed

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  6. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  7. Understanding the poor iontophoretic transport of lysozyme across the skin: when high charge and high electrophoretic mobility are not enough.

    PubMed

    Dubey, S; Kalia, Y N

    2014-06-10

    The original aim of the study was to investigate the transdermal iontophoretic delivery of lysozyme and to gain further insight into the factors controlling protein electrotransport. Initial experiments were done using porcine skin. Lysozyme transport was quantified by using an activity assay based on the lysis of Micrococcus lysodeikticus and was corrected for the release of endogenous enzyme from the skin during current application. Cumulative iontophoretic permeation of lysozyme during 8h at 0.5mA/cm(2) (0.7mM; pH6) was surprisingly low (5.37±3.46μg/cm(2) in 8h) as compared to electrotransport of cytochrome c (Cyt c) and ribonuclease A (RNase A) under similar conditions (923.0±496.1 and 170.71±92.13μg/cm(2), respectively) - despite its having a higher electrophoretic mobility. The focus of the study then became to understand and explain the causes of its poor iontophoretic transport. Lowering formulation pH to 5 increased histidine protonation in the protein and decreased the ionisation of fixed negative charges in the skin (pI ~4.5) and resulted in a small but statistically significant increase in permeation. Co-iontophoresis of acetaminophen revealed a significant inhibition of electroosmosis; inhibition factors of 12-16 were indicative of strong lysozyme binding to skin. Intriguingly, lidocaine electrotransport, which is due almost exclusively to electromigration, was also decreased (approximately 2.7-fold) following skin pre-treatment by lysozyme iontophoresis (cf. iontophoresis of buffer solution) - suggesting that lysozyme was also able to influence subsequent cation electromigration. In order to elucidate the site of skin binding, different porcine skin models were tested (dermatomed skin with thicknesses of 250 and 750μm, tape-stripped skin and heat-separated dermis). Although no difference was seen between permeation across 250 and 750μm dermatomed skin (13.57±12.20 and 5.37±3.46μg/cm(2), respectively), there was a statistically significant

  8. Interactions in Undersaturated and Supersaturated Lysozyme Solutions: Static and Dynamic Light Scattering Results

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1995-01-01

    We have performed multiangle static and dynamic light scattering studies of lysozyme solutions at pH=4.7. The Rayleigh ratio R(sub g) and the collective diffusion coefficient D(sub c) were determined as function of both protein concentration c(sub p) and salt concentration c(sub s) with two different salts. At low salt concentrations, the scattering ratio K(sub c)(sub p)/R(sub theta) and diffusivity increased with protein concentration above the values for a monomeric, ideal solution. With increasing salt concentration this trend was eventually reversed. The hydrodynamic interactions of lysozyme in solution, extracted from the combination of static and dynamic scattering data, decreased significantly with increasing salt concentration. These observations reflect changes in protein interactions, in response to increased salt screening, from net repulsion to net attraction. Both salts had the same qualitative effect, but the quantitative behavior did not scale with the ionic strength of the solution. This indicates the presence of salt specific effects. At low protein concentrations, the slopes of K(sub c)(sub p)/R(sub theta) and D(sub c) vs c(sub p) were obtained. The dependence of the slopes on ionic strength was modeled using a DLVO potential for colloidal interactions of two spheres, with the net protein charge Z(sub e) and Hamaker constant A(sub H) as fitting parameters. The model reproduces the observed variations with ionic strength quite well. Independent fits to the static and dynamic data, however, led to different values of the fitting parameters. These and other shortcomings suggest that colloidal interaction models alone are insufficient to explain protein interactions in solutions.

  9. Surface versus bulk activity of lysozyme deposited on hydrogel contact lens materials in vitro.

    PubMed

    Omali, Negar Babaei; Subbaraman, Lakshman N; Heynen, Miriam; Ng, Alan; Coles-Brennan, Chantal; Fadli, Zohra; Jones, Lyndon

    2018-04-30

    To determine and compare the levels of surface versus bulk active lysozyme deposited on several commercially available hydrogel contact lens materials. Hydrogel contact lens materials [polymacon, omafilcon A, nelfilcon A, nesofilcon A, ocufilcon and etafilcon A with polyvinylpyrrolidone (PVP)] were incubated in an artificial tear solution for 16 h. Total activity was determined using a standard turbidity assay. The surface activity of the deposited lysozyme was determined using a modified turbidity assay. The amount of active lysozyme present within the bulk of the lens material was calculated by determining the difference between the total and surface active lysozyme. The etafilcon A materials showed the highest amount of total lysozyme activity (519 ± 8 μg/lens, average of Moist and Define), followed by the ocufilcon material (200 ± 5 μg/lens) and these two were significantly different from each other (p < 0.05). The amount of surface active lysozyme on etafilcon and ocufilcon lens materials was significantly higher than that found on all other lenses (p < 0.05). There was no active lysozyme quantified in the bulk of the nelfilcon material, as all of the active lysozyme was found on the surface (1.7 ± 0.3 μg/lens). In contrast, no active lysozyme was quantified on the surface of polymacon, with all of the active lysozyme found in the bulk of the lens material (0.6 ± 0.6 μg/lens). The surface and bulk activity of lysozyme deposited on contact lenses is material dependent. Lysozyme deposited on ionic, high water content lens materials such as etafilcon A show significantly higher surface and bulk activity than many other hydrogel lens materials. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  10. The Effect of Complex Solvents on the Structure and Dynamics of Protein Solutions: the case of Lysozyme in Trehalose/Water Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattyvenkatakrishna, Pavan K; Carri, Gustavo A.

    We present a Molecular Dynamics simulation study of the effect of trehalose concentration on the structure and dynamics of individual proteins immersed in trehalose/water mixtures. Hen Egg White Lysozyme is used in this study and trehalose concentrations of 0%, 10%, 20%, 30% and 100% by weight are explored. Surprisingly, we have found that changes in trehalose concentration do not change the global structural characteristics of the protein as measured by standard quantities like the mean square deviation, radius of gyration, solvent accessible surface area, inertia tensor and asphericity. Only in the limit of pure trehalose these metrics change significantly. Specifically,more » we found that the protein is compressed by 2% when immersed in pure trehalose. At the amino acid level there is noticeable rearrangement of the surface residues due to the change in polarity of the surrounding environment with the addition of trehalose. From a dynamic perspective, our computation of the Incoherent Intermediate Scattering Function shows that the protein slows down with increasing trehalose concentration; however, this slowdown is not monotonic. Finally, we also report in-depth results for the hydration layer around the protein including its structure, hydrogen- bonding characteristics and dynamic behavior at different length scales.« less

  11. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  12. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  13. Protein crystals as scanned probes for recognition atomic force microscopy.

    PubMed

    Wickremasinghe, Nissanka S; Hafner, Jason H

    2005-12-01

    Lysozyme crystal growth has been localized at the tip of a conventional silicon nitride cantilever through seeded nucleation. After cross-linking with glutaraldehyde, lysozyme protein crystal tips image gold nanoparticles and grating standards with a resolution comparable to that of conventional tips. Force spectra between the lysozyme crystal tips and surfaces covered with antilysozyme reveal an adhesion force that drops significantly upon blocking with free lysozyme, thus confirming that lysozyme crystal tips can detect molecular recognition interactions.

  14. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.

    PubMed

    Wu, Peng; Zhao, Ting; Tian, Yunfei; Wu, Lan; Hou, Xiandeng

    2013-06-03

    Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle-protein hybrids with tailored functionality, water solubility, and tunable frameworks with well-defined structure. In this work, we report a protein-templated synthesis of Mn-doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn-doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual-channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn-doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn-doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM, respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual-channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA-lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn-doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria.

    PubMed

    Guzzo, F; Cappello, M S; Azzolini, M; Tosi, E; Zapparoli, G

    2011-08-15

    The lysozyme of hen's egg white is used in winemaking to control spontaneous lactic acid bacteria (LAB). A total of eight LAB strains, isolated from grape must and wine, were used to assess the inhibitory effects of wine phenolics on lysozyme activity. The presence of phenolics, extracted from grape pomace, in growth medium reduced the mortality rate due to the lysozyme activity. This effect was especially clear in the case of strains belonging to Lactobacillus uvarum, Pediococcus parvulus and Oenococccus oeni, which are more sensitive to lysozyme than L. plantarum and L. hilgardii strains. Cell lysis assays carried out on four strains sensitive to lysozyme and Micrococcus lysodeikticus ATCC 4698, used as a reference strain, confirmed the inhibition of grape pomace phenolics on the muramidase. There was no interference from non-flavonoids, flavanols and flavonol compounds, when they were tested individually, on the lysozyme activity against the strains. Anthocyanins extracted from grape skins slightly inhibited the activity only against M. lysodeikticus. However, proanthocyanidins extracted from seed berries, strongly inhibited the lysozyme. In this extract, dimers were the predominant oligomers of flavan-3-ol. The study demonstrated that the effectiveness of lysozyme against LAB in red winemaking is related to the amount of low molecular weight proanthocyanidins that are released when the grapes are macerating. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A study of the interaction between malachite green and lysozyme by steady-state fluorescence.

    PubMed

    Ding, Fei; Liu, Wei; Liu, Feng; Li, Zhi-Yuan; Sun, Ying

    2009-09-01

    The interaction of a N-methylated diaminotriphenylmethane dye, malachite green, with lysozyme was investigated by fluorescence spectroscopic techniques under physiological conditions. The binding parameters have been evaluated by fluorescence quenching methods. The results revealed that malachite green caused the fluorescence quenching of lysozyme through a static quenching procedure. The thermodynamic parameters like DeltaH and DeltaS were calculated to be -15.33 kJ mol(-1) and 19.47 J mol(-1) K(-1) according to van't Hoff equation, respectively, which proves main interaction between malachite green and lysozyme is hydrophobic forces and hydrogen bond contact. The distance r between donor (lysozyme) and acceptor (malachite green) was obtained to be 3.82 nm according to Frster's theory. The results of synchronous fluorescence, UV/vis and three-dimensional fluorescence spectra showed that binding of malachite green with lysozyme can induce conformational changes in lysozyme. In addition, the effects of common ions on the constants of lysozyme-malachite green complex were also discussed.

  17. Lysozyme activity and nitroblue-tetrazolium reduction in leukaemic cells

    PubMed Central

    Catovsky, D.; Galton, D. A. G.

    1973-01-01

    The cytochemical methods for lysozyme and nitroblue-tetrazolium reduction have been used to study the blast cells of acute myeloid leukaemia. Both proved useful in characterizing the cases with predominant monocytic differentiation. The demonstration of lysozyme activity helped to define two main groups: (a) with predominantly lysozyme-negative cells (myeloblastic-promyelocytic), and (b) with considerable numbers of positive cells (monoblastic-monocytic). In addition this test was also of value in the differentiation of other leukaemic disorders. Reduction of nitroblue-tetrazolium was also a feature of monocytic differentiation. The combination of these two methods with those for myeloperoxidase and non-specific esterase activity contributes to the cytological characterization of acute myeloid leukaemia. Images PMID:4511938

  18. The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials.

    PubMed

    Weeks, Andrea; Boone, Adrienne; Luensmann, Doerte; Jones, Lyndon; Sheardown, Heather

    2013-09-01

    Conventional and silicone hydrogels as models for contact lenses were prepared to determine the effect of the presence of hyaluronic acid on lysozyme sorption and denaturation. Hyaluronic acid was loaded into poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) hydrogels, which served as models for conventional and silicone hydrogel contact lens materials. The hyaluronic acid was cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide in the presence of dendrimers. Active lysozyme was quantified using a Micrococcus lysodeikticus assay while total lysozyme was determined using 125-I radiolabeled protein. To examine the location of hyaluronic acid in the gels, 6-aminofluorescein labeled hyaluronic acid was incorporated into the gels using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide chemistry and the gels were examined using confocal laser scanning microscopy. Hyaluronic acid incorporation significantly reduced lysozyme sorption in poly(2-hydroxyethyl methacrylate) (p < 0.00001) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.001) hydrogels, with the modified materials sorbing only 20% and 16% that of the control, respectively. More importantly, hyaluronic acid also decreased lysozyme denaturation in poly(2-hydroxyethyl methacrylate) (p < 0.005) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.02) hydrogels. The confocal laser scanning microscopy results showed that the hyaluronic acid distribution was dependent on both the material type and the molecular weight of hyaluronic acid. This study demonstrates that hyaluronic acid incorporated as a wetting agent has the potential to reduce lysozyme sorption and denaturation in contact lens applications. The distribution of hyaluronic acid within hydrogels appears to affect denaturation, with more surface mobile, lower

  19. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways.

    PubMed

    Gharibyan, Anna L; Zamotin, Vladimir; Yanamandra, Kiran; Moskaleva, Olesya S; Margulis, Boris A; Kostanyan, Irina A; Morozova-Roche, Ludmilla A

    2007-02-02

    Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.

  20. Protein nanoparticle electrostatic interaction: size dependent counterions induced conformational change of hen egg white lysozyme.

    PubMed

    Ghosh, Goutam; Panicker, Lata; Barick, K C

    2014-06-01

    In our earlier paper (Ghosh et al., 2013), we have shown that (i) the positively charged hen egg white lysozyme (HEWL), dispersed in water, binds electrostatically with the negatively functionalized iron oxide nanoparticles (IONPs), and (ii) the Na(+) counterions, associated with functionalized IONPs, diffuse into bound proteins and irreversibly unfold them. Having this information, we have extended our investigation and report here the effect of the size and the charge of alkaline metal counterions on the conformational modification of HEWL. In order to obtain a negative functional 'shell' on IONPs and the counterions of different size and charge we have functionalized IONPs with different derivatives of citrate, namely, tri-lithium citrate (TLC, Li3C6H5O7), tri-sodium citrate (TSC, Na3C6H5O7), tri-potassium citrate (TKC, K3C6H5O7) and tri-magnesium citrate (TMC, Mg3C12H10O14). The size of counterions varies as Mg(2+)protein conformation (and, the functionality) via protein-nanoparticle electrostatic interaction is a new finding, and be useful for an alternative medical therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Coping with uncertainty: nutrient deficiencies motivate insect migration at a cost to immunity.

    PubMed

    Srygley, Robert B; Lorch, Patrick D

    2013-12-01

    Migration often is associated with movement away from areas with depleted nutrients or other resources, and yet migration itself is energetically demanding. Migrating Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae) lack nutrients, and supplementation of deficient nutrients slows migratory movements and enhances specific aspects of their immune systems. Migrants deficient in proteins have less spontaneous phenoloxidase (PO) activity, whereas those deficient in carbohydrates have lower lysozyme-like anti-bacterial titers with a proposed compromise between migratory and anti-bacterial activities. To investigate the relationship between diet, movement, and immunity further, we removed Mormon crickets from a migratory band and offered each cricket one of five diets: high protein, high carbohydrate, equal weight of proteins and carbohydrates (P + C), vitamins only, or water only for 1 h. We then attached a radio, returned each to the migratory band, and recaptured them 18-24 h later. Mormon crickets fed protein moved the furthest, those with only water or only vitamins moved less, and those fed carbohydrates or P + C moved the least. Standard intake trials also indicated that the Mormon crickets were deficient in carbohydrates. Consistent with a previous study, lysozyme-like anti-bacterial activity was greatest in those fed carbohydrates, and there was no difference between those fed water, protein, or P + C. Crickets were removed from the same migratory band and fed one of four diets: high P, high C, P + C, or vitamins only, for 1 h. Then the crickets were held in captivity with water only for 4 or 24 h before blood was drawn. Immunity measures did not differ between times of draw. Diet treatments had no effect on anti-bacterial activity of captive Mormon crickets, whereas total PO was greater in those fed protein. These results support the hypothesis of a direct compromise between migratory and anti-bacterial activities, whereas PO is compromised by low

  2. Probabilistic approach to lysozyme crystal nucleation kinetics.

    PubMed

    Dimitrov, Ivaylo L; Hodzhaoglu, Feyzim V; Koleva, Dobryana P

    2015-09-01

    Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.

  3. Resolving Single Molecule Lysozyme Dynamics with a Carbon Nanotube Electronic Circuit

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Moody, Issa S.; Perez, Israel; Sheps, Tatyana; Weiss, Gregory A.; Collins, Philip G.

    2011-03-01

    High resolution, real-time monitoring of a single lysozyme molecule is demonstrated by fabricating nanoscale electronic devices based on single-walled carbon nanotubes (SWCNT). In this sensor platform, a biomolecule of interest is attached to a single SWCNT device. The electrical conductance transduces chemical events with single molecule sensitivity and 10 microsecond resolution. In this work, enzymatic turnover by lysozyme is investigated, because the mechanistic details for its processivity and dynamics remain incompletely understood. Stochastically distributed binding events between a lysozyme and its binding substrate, peptidoglycan, are monitored via the sensor conductance. Furthermore, the magnitude and repetition rate of these events varies with pH and the presence of inhibitors or denaturation agents. Changes in the conductance signal are analyzed in terms of lysozyme's internal hinge motion, binding events, and enzymatic processing.

  4. Production of recombinant human lysozyme in the milk of transgenic pigs.

    PubMed

    Tong, Jia; Wei, HengXi; Liu, XiaoFang; Hu, WenPing; Bi, MingJun; Wang, YuanYuan; Li, QiuYan; Li, Ning

    2011-04-01

    In the swine industry pathogenic infections have a significant negative impact on neonatal survival. Piglets fed with human lysozyme, a natural antibiotic, might be more resistant to gastrointestinal infections. Here we describe the generation of transgenic swine expressing recombinant human lysozyme by somatic cell nuclear transfer. Three cloned female pigs were born, one of which expressed rhLZ at 0.32 ± 0.01 μg/ml in milk, 50-fold higher than that of the pig native lysozyme. Both the transgenic gilts and their progeny appear healthy. Introducing human lysozyme into pigs' milk has a potential to benefit the piglets by enhancing immune function and defending against pathogenic bacteria, thereby increasing the new born survival rate. This advance could be of great value to commercial swine producers.

  5. Variability of lysozyme and lactoferrin bioactive protein concentrations in equine milk in relation to LYZ and LTF gene polymorphisms and expression.

    PubMed

    Cieslak, Jakub; Wodas, Lukasz; Borowska, Alicja; Sadoch, Jan; Pawlak, Piotr; Puppel, Kamila; Kuczynska, Beata; Mackowski, Mariusz

    2017-05-01

    Equine milk is considered to be an interesting product for human nutrition, mainly owing to its low allergenicity and significant amounts of bioactive proteins, including lysozyme (LYZ) and lactoferrin (LTF). The present study assessed the effect of genetic factors on LYZ and LTF concentration variability in mare's milk. Significant effects of horse breed and lactation stage on milk LYZ and LTF contents were observed. The highest level of LTF and the lowest concentration of LYZ were recorded for the Polish Warmblood Horse breed. The highest amounts of both proteins were found for the earliest investigated time point of lactation (5th week). Altogether 13 (nine novel) polymorphisms were found in the 5'-flanking regions of both genes, but they showed no significant relationship with milk LYZ and LTF contents. Several associations were found between selected SNPs and the LYZ gene relative transcript level. While the present study indicated the existence of intra- and interbreed variability of LYZ and LTF contents in mare's milk, this variation is rather unrelated to the 5'-flanking variants of genes encoding both proteins. This study is a good introduction for broader investigations focused on the genetic background for variability of bioactive protein contents in mare's milk. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate.

    PubMed

    Werner, Albert; Blaschke, Tim; Hasse, Hans

    2012-08-07

    Adsorption of native as well as mono-, di-, and tri-PEGylated lysozyme on Toyopearl PPG-600M, a mildly hydrophobic resin is studied by isothermal titration calorimetry and by independent adsorption equilibrium measurements in sodium phosphate buffer at pH 7.0 and 25 °C. For PEGylation two different PEG sizes are used (5 and 10 kDa) which leads to six different forms of PEGylated lysozyme all of which are systematically studied. Additionally, the adsorption of five pure PEGs is explored. The ammonium sulfate concentration is varied from 600 to 1200 mM. The molar enthalpy of adsorption Δh(p)(ads) is determined from the calorimetric and the adsorption equilibrium data. It is found to be endothermic in all experiments. The comparison of the adsorption of different PEGylated forms shows that the adsorption of PEGylated lysozyme is driven by the adsorption of the PEG chain. The results provide insight into the adsorption mechanisms of polymer-modified proteins on hydrophobic chromatographic resins.

  7. Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal Populations

    PubMed Central

    Desai, Prerak T.; Weimer, Bart C.; Dao, Nguyet; Kültz, Dietmar; Murray, James D.

    2012-01-01

    Human milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes (Clostridia) declined whereas those of Bacteroidetes increased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P < 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (Bifidobacteriaceae and Lactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae, Streptococcaceae, Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community. PMID:22752159

  8. Optimization of cold-adapted lysozyme production from the psychrophilic yeast Debaryomyces hansenii using statistical experimental methods.

    PubMed

    Wang, Quanfu; Hou, Yanhua; Yan, Peisheng

    2012-06-01

    Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes. © 2012 Institute of Food Technologists®

  9. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  10. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  11. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding.

    PubMed

    Danilov, Sergei M; Lünsdorf, Heinrich; Akinbi, Henry T; Nesterovitch, Andrew B; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V; Piegeler, Tobias; Golukhova, Elena Z; Schwartz, David E; Dull, Randal O; Minshall, Richard D; Kost, Olga A; Garcia, Joe G N

    2016-10-13

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.

  12. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding

    PubMed Central

    Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.

    2016-01-01

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897

  13. Sequential /sup 1/H NMR assignments and secondary structure of hen egg white lysozyme in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redfield, C.; Dobson, C.M.

    Assignments of /sup 1/H NMR resonances of 121 of the 129 residues of hen egg white lysozyme have been obtained by sequence-specific methods. Spin systems were identified with phase-sensitive two-dimensional (2-D) correlated spectroscopy and single and double relayed coherence transfer spectroscopy. For key types of amino acid residues, particularly alanine, threonine, valine, and glycine, complete spin systems were identified. For other residues a less complete definition of the spin system was found to be adequate for the purpose of sequential assignment. Sequence-specific assignments were achieved by phase-sensitive 2-D nuclear Overhauser enhancement spectroscopy (NOESY). Exploitation of the wide range of hydrogenmore » exchange rates found in lysozyme was a useful approach to overcoming the problem of spectral overlap. The sequential assignment was built up from 21 peptide segments ranging in length from 2 to 13 residues. The NOESY spectra were also used to provide information about the secondary structure of the protein in solution. Three helical regions and two regions of ..beta..-sheet were identified from the NOESY data; these regions are identical with those found in the X-ray structure of hen lysozyme. Slowly exchanging amides are generally correlated with hydrogen bonding identified in the X-ray structure; a number of exceptions to this general trend were, however, found. The results presented in this paper indicate that highly detailed information can be obtained from 2-D NMR spectra of a protein that is significantly larger than those studies previously.« less

  14. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies.

    PubMed

    Basu, Anirban; Bhattacharya, Subhash Chandra; Kumar, Gopinatha Suresh

    2018-02-01

    Many proteins can abnormally fold to form pathological amyloid deposits/aggregates that are responsible for various degenerative disorders called amyloidosis. Here we have examined the anti-amyloidogenic potency of an ionic liquid, 1-butyl-3-methylimidazolium bromide, using lysozyme as a model system. Thioflavin T fluorescence assay demonstrated that the ionic liquid suppressed the formation of lysozyme fibrils significantly. This observation was further confirmed by the Congo red assay. Fluorescence microscopy, intrinsic fluorescence studies, nile red fluorescence assay, ANS binding assay and circular dichroism studies also testified diminishing of the fibrillogenesis in the presence of ionic liquid. Formation of amyloid fibrils was also characterized by α to β conformational transition. From far-UV circular dichroism studies it was observed that the β-sheet content of the lysozyme samples decreased in the presence of the ionic liquid which in turn implied that fibrillogenesis was supressed by the ionic liquid. Atomic force microscopy imaging unequivocally established that the ionic liquid attenuated fibrillogenesis in lysozyme. These results may be useful for the development of more effective therapeutics for amyloidosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry.

    PubMed

    Zhang, Yanyan; Zhao, Jianlin; Di, Jianglei; Jiang, Hongzhen; Wang, Qian; Wang, Jun; Guo, Yunzhu; Yin, Dachuan

    2012-07-30

    We report a real-time measurement method of the solution concentration variation during the growth of protein-lysozyme crystals based on digital holographic interferometry. A series of holograms containing the information of the solution concentration variation in the whole crystallization process is recorded by CCD. Based on the principle of double-exposure holographic interferometry and the relationship between the phase difference of the reconstructed object wave and the solution concentration, the solution concentration variation with time for arbitrary point in the solution can be obtained, and then the two-dimensional concentration distribution of the solution during crystallization process can also be figured out under the precondition which the refractive index is constant through the light propagation direction. The experimental results turns out that it is feasible to in situ, full-field and real-time monitor the crystal growth process by using this method.

  16. Understanding the interfacial behavior of lysozyme on Au (111) surfaces with multiscale simulations

    NASA Astrophysics Data System (ADS)

    Samieegohar, Mohammadreza; Ma, Heng; Sha, Feng; Jahan Sajib, Md Symon; Guerrero-García, G. Iván; Wei, Tao

    2017-02-01

    The understanding of the adsorption and interfacial behavior of proteins is crucial to the development of novel biosensors and biomaterials. By using bottom-up atomistic multiscale simulations, we study here the adsorption of lysozyme on Au(111) surfaces in an aqueous environment. Atomistic simulations are used to calculate the inhomogeneous polarization of the gold surface, which is induced by the protein adsorption, and by the presence of an interfacial layer of water molecules and monovalent salts. The corresponding potential of mean force between the protein and the gold surface including polarization effects is used in Langevin Dynamics simulations to study the time dependent behavior of proteins at finite concentration. These simulations display a rapid adsorption and formation of a first-layer of proteins at the interface. Proteins are initially adsorbed directly on the gold surface due to the strong protein-surface attractive interaction. A subsequent interfacial weak aggregation of proteins leading to multilayer build-up is also observed at long times.

  17. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  18. Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles.

    PubMed

    Ergul Yilmaz, Zeynep; Cordonnier, Thomas; Debuigne, Antoine; Calvignac, Brice; Jerome, Christine; Boury, Frank

    2016-11-20

    Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ precipitation of calcium carbonate particles prepared by a process based on supercritical CO 2 and using a new type of degradable well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and polyphosphoester blocks acting as templating agent for the calcium carbonate. For this study, lysozyme was chosen as a model for therapeutic protein for its availability and ease of detection. It was found that by this green process, loading into the CaCO 3 microparticles with a diameter about 2μm can be obtained as determined by scanning electron microscopy. A protein loading up to 6.5% active lysozyme was measured by a specific bioassay (Micrococcus lysodeikticus). By encapsulating fluorescent-labelled lysozyme (lysozyme-FITC), the confocal microscopy images confirmed its encapsulation and suggested a core-shell distribution of lysozyme into CaCO 3 , leading to a release profile reaching a steady state at 59% of release after 90min. Copyright © 2016. Published by Elsevier B.V.

  19. Role of cavities and hydration in the pressure unfolding of T4 lysozyme

    PubMed Central

    Nucci, Nathaniel V.; Fuglestad, Brian; Athanasoula, Evangelia A.; Wand, A. Joshua

    2014-01-01

    It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A–benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins. PMID:25201963

  20. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  1. The solubility of hen egg-white lysozyme

    NASA Technical Reports Server (NTRS)

    Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.

    1988-01-01

    The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.

  2. Multiple antibacterial histone H2B proteins are expressed in tissues of American oyster.

    PubMed

    Seo, Jung-Kil; Stephenson, Jeana; Noga, Edward J

    2011-03-01

    We have previously identified a histone H2B isomer (cvH2B-1) from tissue extracts of the bivalve mollusk, the American oyster (Crassostrea virginica). In this paper, we isolate an additional three antibacterial proteins from acidified gill extract by preparative acid-urea-polyacrylamide gel electrophoresis and reversed-phase high performance liquid chromatography. Extraction of these proteins from tissue was best accomplished by briefly boiling the tissues in a weak acetic acid solution. Addition of protease inhibitors while boiling resulted in somewhat lower yields, with one protein being totally absent with this method. Via mass spectrometry, the masses of one of these purified proteins was 13607.0Da (peak 2), which is consistent with the molecular weight of histone H2B. In addition, via western-blotting using anti-calf histone H2B antibody, all three proteins were positive and were thus named cvH2B-2, cvH2B-3 and cvH2B-4. The antibacterial activity of cvH2B-2 was similar to that of cvH2B-1, with activity against a Gram-positive bacterium (Lactococcus lactis subsp. lactis; minimum effective concentration [MEC] 52-57μg/mL) but inactive against Staphylococcus aureus (MEC>250μg/mL). However, both proteins had relatively potent activity against the Gram-negative oyster pathogen Vibrio parahemolyticus (MEC 11.5-14μg/mL) as well as the human pathogen Vibrio vulnificus (MEC 21.3-25.3μg/mL). cvH2B-3 and cvH2B-4 also had similarly strong activity against Vibrio vulnificus. These data provide further evidence for the antimicrobial function of histone H2B isomers in modulating bacterial populations in oyster tissues. The combined estimated concentrations of these histone H2B isomers were far above the inhibitory concentrations for the tested vibrios, including human pathogens. Our results indicate that the highly conserved histone proteins might be important components not only of immune defenses in oysters but have the potential to influence the abundance of a

  3. Surface Plasmon Resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces.

    PubMed

    Vasilescu, Alina; Gáspár, Szilveszter; Gheorghiu, Mihaela; David, Sorin; Dinca, Valentina; Peteu, Serban; Wang, Qian; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2017-03-15

    Lysozyme is an enzyme found in biological fluids, which is upregulated in leukemia, renal diseases as well as in a number of inflammatory gastrointestinal diseases. We present here the development of a novel lysozyme sensing concept based on the use of Micrococcus lysodeikticus whole cells adsorbed on graphene oxide (GO)-coated Surface Plasmon Resonance (SPR) interfaces. M. lysodeikticus is a typical enzymatic substrate for lysozyme. Unlike previously reported sensors which are based on the detection of lysozyme through bioaffinity interactions, the bioactivity of lysozyme will be used here for sensing purposes. Upon exposure to lysozyme containing serum, the integrity of the bacterial cell wall is affected and the cells detach from the GO based interfaces, causing a characteristic decrease in the SPR signal. This allows sensing the presence of clinically relevant concentrations of lysozyme in undiluted serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.

    PubMed

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-21

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  5. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  6. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1998-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.

  7. Förster Resonance Energy Transfer Evidence for Lysozyme Oligomerization in Lipid Environment

    PubMed Central

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Sarkar, Pabak; Luchowski, Rafal; Akopova, Irina; Patsenker, Leonid D.; Klochko, Oleksii; Tatarets, Anatoliy L.; Kudriavtseva, Yuliia O.; Terpetschnig, Ewald A.; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2012-01-01

    Intermolecular time-resolved and single-molecule Förster resonance energy transfer (FRET) have been applied to detect quantitatively the aggregation of polycationic protein lysozyme (Lz) in the presence of lipid vesicles composed of phosphatidylcholine (PC) and its mixture with 5, 10, 20, or 40 mol % of phosphatidylglycerol (PG) (PG5, PG10, PG20, or PG40, respectively). Upon binding to PC, PG5, or PG10 model membranes, Lz was found to retain its native monomeric conformation, while increasing content of anionic lipid up to 20 or 40 mol % resulted in the formation of Lz aggregates. The structural parameters of protein self-association (the degree of oligomerization, the distance between the monomers in protein assembly, and the fraction of donors present in oligomers) have been derived. The crucial role of the factors such as lateral density of the adsorbed protein and electrostatic and hydrophobic Lz–lipid interactions in controlling the protein self-association behavior has been proposed. PMID:21126034

  8. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.

    PubMed

    Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna

    2016-09-01

    The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  10. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    PubMed

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  11. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents

    PubMed Central

    Ghanbari, Raheleh; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2012-01-01

    Actinopyga lecanora, a type of sea cucumber commonly known as stone fish with relatively high protein content, was explored as raw material for bioactive peptides production. Six proteolytic enzymes, namely alcalase, papain, pepsin, trypsin, bromelain and flavourzyme were used to hydrolyze A. lecanora at different times and their respective degrees of hydrolysis (DH) were calculated. Subsequently, antibacterial activity of the A. lecanora hydrolysates, against some common pathogenic Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas sp.) were evaluated. Papain hydrolysis showed the highest DH value (89.44%), followed by alcalase hydrolysis (83.35%). Bromelain hydrolysate after one and seven hours of hydrolysis exhibited the highest antibacterial activities against Pseudomonas sp., P. aeruginosa and E. coli at 51.85%, 30.07% and 30.45%, respectively compared to the other hydrolysates. Protein hydrolysate generated by papain after 8 h hydrolysis showed maximum antibacterial activity against S. aureus at 20.19%. The potent hydrolysates were further fractionated using RP-HPLC and antibacterial activity of the collected fractions from each hydrolysate were evaluated, wherein among them only three fractions from the bromelain hydrolysates exhibited inhibitory activities against Pseudomonas sp., P. aeruginosa and E. coli at 24%, 25.5% and 27.1%, respectively and one fraction of papain hydrolysate showed antibacterial activity of 33.1% against S. aureus. The evaluation of the relationship between DH and antibacterial activities of papain and bromelain hydrolysates revealed a meaningful correlation of four and six order functions. PMID:23222684

  12. Protein-lipid interactions at the air/water interface.

    PubMed

    Lad, Mitaben D; Birembaut, Fabrice; Frazier, Richard A; Green, Rebecca J

    2005-10-07

    Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.

  13. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    with respect to its concentration at saturation in order to apply growth rate models to this process. The measured growth rates were then compared with the predicted ones from several dislocation and 2D nucleation growth models, employing tetramer and octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. For the (110) face, the calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units. For the (101) face, it is not possible to obtain a clear agreement between the predicted and measured growth rates for a single growth unit as done for the (110) face. However, the calculations do indicate that the average size of the growth unit is between a tetramer and an octamer. This suggests that tetramers, octamers and other intermediate size growth units all participate in the growth process for this face. These calculations show that it is possible to model the macroscopic protein crystal growth rates if the molecular level processes can be account for, particularly protein aggregation processes in the bulk solution. Our recent investigations of tetragonal lysozyme crystals employing high resolution atomic force microscopy scans have further confirmed the growth of these crystals by aggregate growth units corresponding to 4(sub 3) helices.

  14. Establishment of lysozyme gene RNA interference systemand its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus).

    PubMed

    Tian, Yi; Jiang, Yanan; Shang, Yanpeng; Zhang, Yu-Peng; Geng, Chen-Fan; Wang, Li-Qiang; Chang, Ya-Qing

    2017-06-01

    The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K + and Cl - concentration after lysozyme RNAi injection was lower than in the PC and NC group. Copyright © 2017

  15. Mechanical Insight into Resistance of Betaine to Urea-Induced Protein Denaturation.

    PubMed

    Chen, Jiantao; Gong, Xiangjun; Zeng, Chaoxi; Wang, Yonghua; Zhang, Guangzhao

    2016-12-08

    It is known that urea can induce protein denaturation that can be inhibited by osmolytes. Yet, experimental explorations on this mechanism at the molecular level are still lacking. We have investigated the resistance of betaine to the urea-induced denaturation of lysozyme in aqueous solutions using low-field NMR. Our study demonstrates that urea molecules directly interact with lysozyme, leading to denaturation. However, betaine molecules interacting with urea more strongly than lysozyme can pull the bound urea molecules from lysozyme so that the protein is protected from denaturation. The number of urea molecules bound to a betaine molecule is given under different conditions. Proton NMR spectroscopy ( 1 H-NMR) and Fourier transform infrared spectroscopy reveal that the interaction between betaine and urea is through hydrogen bonding.

  16. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  17. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  18. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.

    PubMed

    Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-11-26

    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.

  19. Modeling the SHG activities of diverse protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.

    2012-10-18

    A symmetry-additiveab initiomodel for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within themore » crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ~84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less

  20. Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Stangret, Janusz

    2013-10-03

    Results concerning the thermostability of hen egg white lysozyme in aqueous solutions with stabilizing osmolytes, trimethylamine-N-oxide (TMAO), glycine (Gly), and its N-methyl derivatives, N-methylglycine (NMG), N,N-dimethylglycine (DMG), and N,N,N-trimethylglycine (betaine, TMG), have been presented. The combination of spectroscopic (IR) and calorimetric (DSC) data allowed us to establish a link between osmolytes' influence on water structure and their ability to thermally stabilize protein molecule. Structural and energetic characteristics of stabilizing osmolytes' and lysozyme's hydration water appear to be very similar. The osmolytes increase lysozyme stabilization in the order bulk water < TMAO < TMG < Gly < DMG < NMG, which is consistent with the order corresponding to the value of the most probable oxygen-oxygen distance of water molecules affected by osmolytes in their surrounding. Obtained results verified the hypothesis concerning the role of water molecules in protein stabilization, explained the osmophobic effect, and finally helped to bring us nearer to the exact mechanism of protein stabilization by osmolytes.

  1. Preferential solvation of lysozyme in dimethyl sulfoxide/water binary mixture probed by terahertz spectroscopy.

    PubMed

    Das, Dipak Kumar; Patra, Animesh; Mitra, Rajib Kumar

    2016-09-01

    We report the changes in the hydration dynamics around a model protein hen egg white lysozyme (HEWL) in water-dimethyl sulfoxide (DMSO) binary mixture using THz time domain spectroscopy (TTDS) technique. DMSO molecules get preferentially solvated at the protein surface, as indicated by circular dichroism (CD) and Fourier transform infrared (FTIR) study in the mid-infrared region, resulting in a conformational change in the protein, which consequently modifies the associated hydration dynamics. As a control we also study the collective hydration dynamics of water-DMSO binary mixture and it is found that it follows a non-ideal behavior owing to the formation of DMSO-water clusters. It is observed that the cooperative dynamics of water at the protein surface does follow the DMSO-mediated conformational modulation of the protein. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    PubMed

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Study on the interactions between toxic nitroanilines and lysozyme by spectroscopic approaches and molecular modeling.

    PubMed

    Gu, Yunlan; Wang, Yanqing; Zhang, Hongmei

    2018-05-05

    Being exogenous environmental pollutants, nitroanilines (NAs) are highly toxic and have mutagenic and carcinogenic activity. Being lack of studies on interactions between NAs and lysozyme at molecular level, the binding interactions of lysozyme with o-nitroaniline (oNA), m-nitroaniline (mNA) and p-nitroaniline (pNA) were investigated by means of steady-state fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy, as well as molecular modeling. The experimental results revealed that the fluorescence of lysozyme is quenched by oNA and mNA through a static quenching, while the fluorescence quenching triggered by pNA is a combined dynamic and static quenching. The number of binding sites (n) and the binding constant (K b ) corresponding thermodynamic parameters ΔH ⊖ , ΔS ⊖ , ΔG ⊖ at different temperatures were calculated. The reactions between NAs and lysozyme were spontaneous and entropy driven and the binding of NAs to lysozyme induced conformation changes of lysozyme. The difference of the position of -NO 2 group affected the binding and the binding constants K b decreased in the following pattern: K b (pNA) >K b (mNA) >K b (oNA). Molecular docking studies were performed to reveal the most favorable binding sites of NAs on lysozyme. Our recently results could offer mechanistic insights into the nature of the binding interactions between NAs and lysozyme and provide information about the toxicity risk of NAs to human health. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Potential of mean force for human lysozyme camelid vhh hl6 antibody interaction studies

    NASA Astrophysics Data System (ADS)

    Wang, Yeng-Tseng; Liao, Jun-Min; Chen, Cheng-Lung; Su, Zhi-Yuan; Chen, Chang-Hung; Hu, Jeu-Jiun

    2008-04-01

    Calculating antigen-antibody interaction energies is crucial for understanding antigen-antibody associations in immunology. To shed further light into this equation, we study a separation of human lysozyme-camelid vhh hl6 antibody (cAb-HuL6) complex. The c-terminal end-to-end stretching of the lysozyme-antibody complex structures have been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) and explicit water model. For the lysozyme-antibody complex, there are six important intermediates in the c-terminal extensions process. Inclusion of our simulations may help to understand the binding mechanics of lysozyme-cAb-HuL6 antibody complex.

  5. Modeling the SHG activities of diverse protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J., E-mail: gsimpson@purdue.edu

    2012-11-01

    The origins of the diversity in the SHG signal from protein crystals are investigated and potential protein-crystal coverage by SHG microscopy is assessed. A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much ofmore » the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less

  6. Small angle neutron scattering study on the structural variation of lysozyme in bioprotectants

    NASA Astrophysics Data System (ADS)

    Koda, Shota; Takayama, Haruki; Shibata, Tomohiko; Mori, Tatsuya; Kojima, Seiji; Park, In-Sung; Shin, Tae-Gyu

    2015-05-01

    The thermal denaturation and subsequent structural variation of lysozyme in various bioprotectant candidate solutions such as trehalose and choline acetate have been investigated by using small angle neutron scattering and differential scanning calorimetry. The gyration radius shows little change with the addition of additives in a native state at room temperature. On heating the lysozyme solution, a remarkable increase in the gyration radius is observed at temperatures above the denaturation temperature without any bioprotectants. Such an increase is suppressed by the additives owing to the intermolecular interactions between the lysozyme molecules and the bioprotectants of trehalose and choline acetate. The fractal dimension of lysozyme varies slightly with the addition of the bioprotectant solutions, and shows a remarkable drop in the vicinity of the denaturation temperature for all the solutions.

  7. Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences.

    PubMed

    Panja, Sudipta; Halder, Mintu

    2016-08-01

    Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in

  8. Crystallization of proteins by dynamic control of supersaturation. Ph.D. Thesis Semiannual Status Report, 21 Mar. - 20 Sep. 1990

    NASA Technical Reports Server (NTRS)

    Wilson, Lori June

    1990-01-01

    The growth of protein crystals is known to be the limiting factor in the determination of the three-dimensional structures of most proteins. It is expected that the kinetics of supersaturation, which is directly related to solvent evaporation, will affect protein crystal growth and nucleation and accordingly determine the quality, number, size, and morphology of the crystals. With a technique that controls the evaporation of solvent from a protein solution with N2(g) it is possible to determine the effect of different evaporation profiles on hen egg white lysozyme crystals. Hen egg white lysozyme was chosen as the model protein because it crystallizes easily and has solubility data available for most salt, pH, and temperature ranges. Commercially available lysozyme was further purified by a number of methods. Crystals grown with the purified lysozyme and with the unpurified lysozyme in citrate buffer were different shapes but were found to be of the same symmetry space group by precession photos. Differences were seen in the lysozyme crystals grown using different evaporation rates. At three of the four initial conditions for lysozyme crystal growth, longer evaporation times yielded better crystals. The evaporation times required to see a change in the appearance of the crystals was much longer than expected. The number of rates studied so far represent only a small fraction of the ones now available with the gas evaporation device. The technique also provides for control of both solution pH and temperature which are related to the solubilities of proteins.

  9. Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study

    NASA Astrophysics Data System (ADS)

    Bernard, C.; Leduc, A.; Barbeau, J.; Saoudi, B.; Yahia, L'H.; DeCrescenzo, G.

    2006-08-01

    Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty.

  10. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin

    2012-01-01

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116

  11. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces in nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs eac...

  12. [Fecal sIgS and lysozyme excretion in breast feeding and formula feeding].

    PubMed

    Eschenburg, G; Heine, W; Peters, E

    1990-05-01

    The bioavailability of sIgA and lysozyme from human milk was investigated in a total of 41 infants by radial immunodiffusion and by the Micrococcus lysodeicticus method, respectively. In four different pools of human milk used for balance studies the sIgA concentrations ranged between 2,200 and 17,850 mg/l. The lysozyme concentration varied from 64.5 to 283.5 mg/l. On human milk feeding the excretion of sIgA in 19 infants was 3,200 (0-8,200) mg per litre and 9.7 (0-131) mg lysozyme per litre, respectively. Corresponding values on formula feeding in 22 infants were 1030 (0-6400) and 2.6 (0-9) mg/l. Fecal sIgA excretion was significantly higher on human milk than on formula feeding. Balances of sIgA and lysozyme intake and excretion as performed in 9 infants revealed a less than 1% fecal excretion of both the protective substances. In vitro digestion of raw human milk with pepsin at pH 2 and 3 resulted in a rapid disappearance of immunologically reactive sIgA within 30 minutes after starting the incubation, while no changes in sIgA content were detectable at pH 4. Lysozyme proved to be resistant against peptic digestion. Tryptic digestion at pH 8 did not result in a decrease of human milk sIgA within 120 minutes of incubation at 37 degrees C while under analogous conditions lysozyme concentration approached to 0. These results point at the full bioavailability of both sIgA and lysozyme from human milk. The differing resistance of these protective substances against pepsin and trypsin is apparently adapted to physiological particularities of the digestive tract in early infancy.

  13. Protein Crystal Growth Dynamics and Impurity Incorporation

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Thomas, Bill

    2000-01-01

    The general concepts and theories of crystal growth are proven to work for biomolecular crystallization. This allowed us to extract basic parameters controlling growth kinetics - free surface energy, alpha, and kinetic coefficient, beta, for steps. Surface energy per molecular site in thermal units, alpha(omega)(sup 2/3)/kT approx. = 1, is close to the one for inorganic crystals in solution (omega is the specific molecular volume, T is the temperature). Entropic restrictions on incorporation of biomolecules into the lattice reduce the incorporation rate, beta, by a factor of 10(exp 2) - 10(exp 3) relative to inorganic crystals. A dehydration barrier of approx. 18kcal/mol may explain approx. 10(exp -6) times difference between frequencies of adding a molecule to the lattice and Brownian attempts to do so. The latter was obtained from AFM measurements of step and kink growth rates on orthorhombic lysozyme. Protein and many inorganic crystals typically do not belong to the Kossel type, thus requiring a theory to account for inequivalent molecular positions within its unit cell. Orthorhombic lysozyme will serve as an example of how to develop such a theory. Factors deteriorating crystal quality - stress and strain, mosaicity, molecular disorder - will be reviewed with emphasis on impurities. Dimers in ferritin and lysozyme and acetylated lysozyme, are microheterogeneous i.e. nearly isomorphic impurities that are shown to be preferentially trapped by tetragonal lysozyme and ferritin crystals, respectively. The distribution coefficient, K defined as a ratio of the (impurity/protein) ratios in crystal and in solution is a measure of trapping. For acetylated lysoyzme, K = 2.15 or, 3.42 for differently acetylated forms, is independent of both the impurity and the crystallizing protein concentration. The reason is that impurity flux to the surface is constant while the growth rate rises with supersaturation. About 3 times lower dimer concentration in space grown ferritin and

  14. Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose

    PubMed Central

    Corradini, Dario; Strekalova, Elena G.; Stanley, H. Eugene; Gallo, Paola

    2013-01-01

    In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling. PMID:23390573

  15. Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose.

    PubMed

    Corradini, Dario; Strekalova, Elena G; Stanley, H Eugene; Gallo, Paola

    2013-01-01

    In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling.

  16. Isolation, cDNA cloning and gene expression of an antibacterial protein from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros.

    PubMed

    Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M

    1998-08-01

    An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.

  17. Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome.

    PubMed

    O'Mahony, Mark M; Henneberger, Ruth; Selvin, Joseph; Kennedy, Jonathan; Doohan, Fiona; Marchesi, Julian R; Dobson, Alan D W

    2015-01-01

    A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B. subtilis DSM10. Further analysis of the deduced amino acid sequence of AbgT revealed moderate homology to esterases, suggesting that the protein may possess hydrolytic activity. Weak lipolytic activity was detected; however the clone did not appear to produce any β-lactamase activity. Phylogenetic analysis revealed the protein is a member of the family VIII group of lipase/esterases and clusters with a number of proteins of metagenomic origin. The abgT gene was sub-cloned into a protein expression vector and when introduced into the abgT transposon mutant clones restored the ability of the clones to inhibit the growth of B. subtilis DSM10, clearly indicating that the abgT gene is involved in the antibacterial activity. While the precise role of this protein has yet to fully elucidated, it may be involved in the generation of free fatty acid with antibacterial properties. Thus functional metagenomic approaches continue to provide a significant resource for the discovery of novel functional proteins and it is clear that hydrolytic enzymes, such as AbgT, may be a potential source for the development of future antimicrobial therapies.

  18. Solubility of lysozyme in the presence of aqueous chloride salts: common-ion effect and its role on solubility and crystal thermodynamics.

    PubMed

    Annunziata, Onofrio; Payne, Andrew; Wang, Ying

    2008-10-08

    Understanding protein solubility is important for a rational design of the conditions of protein crystallization. We report measurements of lysozyme solubility in aqueous solutions as a function of NaCl, KCl, and NH4Cl concentrations at 25 degrees C and pH 4.5. Our solubility results are directly compared to preferential-interaction coefficients of these ternary solutions determined in the same experimental conditions by ternary diffusion. This comparison has provided new important insight on the dependence of protein solubility on salt concentration. We remark that the dependence of the preferential-interaction coefficient as a function of salt concentration is substantially shaped by the common-ion effect. This effect plays a crucial role also on the observed behavior of lysozyme solubility. We find that the dependence of solubility on salt type and concentration strongly correlates with the corresponding dependence of the preferential-interaction coefficient. Examination of both preferential-interaction coefficients and second virial coefficients has allowed us to demonstrate that the solubility dependence on salt concentration is substantially affected by the corresponding change of protein chemical potential in the crystalline phase. We propose a simple model for the crystalline phase based on salt partitioning between solution and the hydrated protein crystal. A novel solubility equation is reported that quantitatively explains the observed experimental dependence of protein solubility on salt concentration.

  19. Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH.

    PubMed

    Baumgartner, Kai; Galm, Lara; Nötzold, Juliane; Sigloch, Heike; Morgenstern, Josefine; Schleining, Kristina; Suhm, Susanna; Oelmeier, Stefan A; Hubbuch, Jürgen

    2015-02-01

    Knowledge of protein phase behavior is essential for downstream process design in the biopharmaceutical industry. Proteins can either be soluble, crystalline or precipitated. Additionally liquid-liquid phase separation, gelation and skin formation can occur. A method to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale was developed. For lysozyme from chicken egg white, human lysozyme, glucose oxidase and glucose isomerase phase diagrams were generated at four different pH values – pH 3, 5, 7 and 9. Sodium chloride, ammonium sulfate, polyethylene glycol 300 and polyethylene glycol 1000 were used as precipitants. Crystallizing conditions could be found for lysozyme from chicken egg white using sodium chloride, for human lysozyme using sodium chloride or ammonium sulfate and glucose isomerase using ammonium sulfate. PEG caused destabilization of human lysozyme and glucose oxidase solutions or a balance of stabilizing and destabilizing effects for glucose isomerase near the isoelectric point. This work presents a systematic generation and extensive study of phase diagrams of proteins. Thus, it adds to the general understanding of protein behavior in liquid formulation and presents a convenient methodology applicable to any protein solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Composite cryogels for lysozyme purification.

    PubMed

    Baydemir, Gözde; Türkoğlu, Emir Alper; Andaç, Müge; Perçin, Işık; Denizli, Adil

    2015-01-01

    Beads-embedded novel composite cryogel was synthesized to purify lysozyme (Lyz) from chicken egg white. The poly(hydroxyethyl methacrylate-N-methacryloyl-L-phenylalanine) (PHEMAPA) beads of smaller than 5 µm size were synthesized by suspension polymerization and then embedded into a poly(hydroxyethyl methacrylate) (PHEMA)-based cryogel column. The PHEMAPA bead-embedded cryogel (BEC) column was characterized by swelling tests, scanning electron microscopy (SEM), surface area measurements by the Brunauer-Emmett-Teller (BET) method, elemental analysis, and flow dynamics. The specific surface area of the PHEMAPA BEC was found as 41.2 m(2) /g using BET measurements. Lyz-binding experiments were performed using aqueous solutions in different conditions such as initial Lyz concentration, pH, flow rate, temperature, and NaCl concentration of an aqueous medium. The PHEMAPA BEC column could be used after 10 adsorption-desorption studies without any significant loss in adsorption capacity of Lyz. The PHEMAPA BEC column was used to purify Lyz from chicken egg white, and gel electrophoresis was used to estimate the purity of Lyz. The chromatographic application of the PHEMAPA BEC column was also performed using fast protein liquid chromatography. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  1. Rapid localized crystallization of lysozyme by laser trapping.

    PubMed

    Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki

    2018-02-28

    Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.

  2. Effect of mechanical denaturation on surface free energy of protein powders.

    PubMed

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effective interactions in lysozyme aqueous solutions: a small-angle neutron scattering and computer simulation study.

    PubMed

    Abramo, M C; Caccamo, C; Costa, D; Pellicane, G; Ruberto, R; Wanderlingh, U

    2012-01-21

    We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r(-6) potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions. © 2012 American Institute of Physics

  4. Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis.

    PubMed

    Tang, Wenting; Zhang, Hui; Wang, Li; Qian, Haifeng; Qi, Xiguang

    2015-02-01

    Anchovy (Engraulis japonicus) cooking wastewater (ACWW) is a by-product resulted from the production of boiled-dried anchovies in the seafood processing industry. In this study, the protein hydrolysate of ACWW (ACWWPH) was found to have antimicrobial activity after enzymatic hydrolysis with Protamex. For the targeted screening of antibacterial peptides, liposomes constructed from Staphylococcus aureus membrane lipids were used in an equilibrium dialysis system. The hydrolysate was further purified by liposome equilibrium dialysis combined with high performance liquid chromatography. The purified antimicrobial peptide (ACWWP1) was determined to be GLSRLFTALK, with a molecular weight of 1104.6622Da. The peptide exhibited no haemolytic activity up to a concentration of 512μg/ml. It displayed a dose-dependent bactericidal effect in reconstituted milk. The change in cell surface hydrophobicity and membrane-permeable action of the purified ACWWP1 may have contributed to the antibacterial effect. This study suggests that liposome equilibrium dialysis can be used for the targeted screening of antimicrobial peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Influence of Different Type of Surfactant on Bacteriolytic Activity of Lysozyme].

    PubMed

    Ivanov, R A; Soboleva, O A; Smirnov, S A; Levashov, P A

    2015-01-01

    The influence ofvarious surfactants (anionic sodium dodecyl sulfate, SDS, cationic dodecyltrimethylarnmonium bromide, DTAB, and zwitterionic cocoamidopropylbetaine, CAPB) on the activity of the chicken egg lysozyme is investigated. Lysis of Gram-positive bacteria by the enzyme was carried out at pH 7.2 and ionic strength of 0.15 M. It was found that at low SDS and DTAB concentrations (less than 1 x 10(-5) M) the bacteriolytic activity increases by 30-140%. At higher concentrations (1 x 10(-5) - 1 x 10(4) M) the activity returns to the level observed in the absence of the surfactants. The elevated activity correlated with the formation of hydrophobic lysozyme-surfactant complexes. Introduction of CAPB at concentrations above 1 x 10(-5) M sig, nificantly diminished the bacteriolytic activity due to CAPB induced aggregation of lysozyme.

  6. Biospecific protein immobilization for rapid analysis of weak protein interactions using self-interaction nanoparticle spectroscopy.

    PubMed

    Bengali, Aditya N; Tessier, Peter M

    2009-10-01

    "Reversible" protein interactions govern diverse biological behavior ranging from intracellular transport and toxic protein aggregation to protein crystallization and inactivation of protein therapeutics. Much less is known about weak protein interactions than their stronger counterparts since they are difficult to characterize, especially in a parallel format (in contrast to a sequential format) necessary for high-throughput screening. We have recently introduced a highly efficient approach of characterizing protein self-association, namely self-interaction nanoparticle spectroscopy (SINS; Tessier et al., 2008; J Am Chem Soc 130:3106-3112). This approach exploits the separation-dependent optical properties of gold nanoparticles to detect weak self-interactions between proteins immobilized on nanoparticles. A limitation of our previous work is that differences in the sequence and structure of proteins can lead to significant differences in their affinity to adsorb to nanoparticle surfaces, which complicates analysis of the corresponding protein self-association behavior. In this work we demonstrate a highly specific approach for coating nanoparticles with proteins using biotin-avidin interactions to generate protein-nanoparticle conjugates that report protein self-interactions through changes in their optical properties. Using lysozyme as a model protein that is refractory to characterization by conventional SINS, we demonstrate that surface Plasmon wavelengths for gold-avidin-lysozyme conjugates over a range of solution conditions (i.e., pH and ionic strength) are well correlated with lysozyme osmotic second virial coefficient measurements. Since SINS requires orders of magnitude less protein and time than conventional methods (e.g., static light scattering), we envision this approach will find application in large screens of protein self-association aimed at either preventing (e.g., protein aggregation) or promoting (e.g., protein crystallization) these

  7. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot

  8. Osmotic pressures and second virial coefficients for aqueous saline solutions of lysozyme

    DOE PAGES

    Moon, Y. U.; Anderson, C. O.; Blanch, H. W.; ...

    2000-03-27

    Experimental data at 25 °C are reported for osmotic pressures of aqueous solutions containing lysozyme and any one of the following salts: ammonium sulfate, ammonium oxalate and ammonium phosphate at ionic strength 1 or 3M. Data were obtained using a Wescor Colloid Membrane Osmometer at lysozyme concentrations from about 4 to 20 grams per liter at pH 4, 7 or 8. Osmotic second virial coefficients for lysozyme were calculated from the osmotic-pressure data. All coefficients were negative, increasing in magnitude with ionic strength. Furthermore, tesults are insensitive to the nature of the anion, but rise slightly in magnitude as themore » size of the anion increases.« less

  9. Antibacterial activity of antibacterial cutting boards in household kitchens.

    PubMed

    Kounosu, Masayuki; Kaneko, Seiichi

    2007-12-01

    We examined antibacterial cutting boards with antibacterial activity values of either "2" or "4" in compliance with the JIS Z 2801 standard, and compared their findings with those of cutting boards with no antibacterial activity. These cutting boards were used in ten different households, and we measured changes in the viable cell counts of several types of bacteria with the drop plate method. We also identified the detected bacterial flora and measured the minimum antimicrobial concentrations of several commonly used antibacterial agents against the kinds of bacteria identified to determine the expected antibacterial activity of the respective agents. Cutting boards with activity values of both "2" and "4" proved to be antibacterial in actual use, although no correlation between the viable cell counts and the antibacterial activity values was observed. In the kitchen environment, large quantities of Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were detected, and it was confirmed that common antibacterial agents used in many antibacterial products are effective against these bacterial species. In addition, we measured the minimum antimicrobial concentrations of the agents against lactobacillus, a typical good bacterium, and discovered that this bacterium is less sensitive to these antibacterial agents compared to more common bacteria.

  10. Sulfanilic acid-modified chitosan mini-spheres and their application for lysozyme purification from egg white.

    PubMed

    Hirsch, Daniela B; Baieli, María F; Urtasun, Nicolás; Lázaro-Martínez, Juan M; Glisoni, Romina J; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2018-03-01

    A cation exchange matrix with zwitterionic and multimodal properties was synthesized by a simple reaction sequence coupling sulfanilic acid to a chitosan based support. The novel chromatographic matrix was physico-chemically characterized by ss-NMR and ζ potential, and its chromatographic performance was evaluated for lysozyme purification from diluted egg white. The maximum adsorption capacity, calculated according to Langmuir adsorption isotherm, was 50.07 ± 1.47 mg g -1 while the dissociation constant was 0.074 ± 0.012 mg mL -1 . The process for lysozyme purification from egg white was optimized, with 81.9% yield and a purity degree of 86.5%, according to RP-HPLC analysis. This work shows novel possible applications of chitosan based materials. The simple synthesis reactions combined with the simple mode of use of the chitosan matrix represents a novel method to purify proteins from raw starting materials. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:387-396, 2018. © 2017 American Institute of Chemical Engineers.

  11. Modulation of physiological and pathological activities of lysozyme by biological membranes.

    PubMed

    Trusova, Valeriya

    2012-09-01

    The molecular details of interactions between lipid membranes and lysozyme (Lz), a small polycationic protein with a wide range of biological activities, have long been the focus of numerous studies. The biological consequences of this process are considered to embrace at least two aspects: i) correlation between antimicrobial and membranotropic properties of this protein, and ii) lipid-mediated Lz amyloidogenesis. The mechanisms underlying the lipid-assisted protein fibrillogenesis and membrane disruption exerted by Lz in bacterial cells are believed to be similar. The present investigation was undertaken to gain further insight into Lz-lipid interactions and explore the routes by which Lz exerts its antimicrobial and amyloidogenic actions. Binding and Förster resonance energy transfer studies revealed that upon increasing the content of anionic lipids in lipid vesicles, Lz forms aggregates in a membrane environment. Total internal reflection fluorescence microscopy and pyrene excimerization reaction were employed to study the effect of Lz on the structural and dynamic properties of lipid bilayers. It was found that Lz induces lipid demixing and reduction of bilayer free volume, the magnitude of this effect being much more pronounced for oligomeric protein.

  12. Chicken-type lysozyme in channel catfish: expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection

    USDA-ARS?s Scientific Manuscript database

    To understand whether chicken-type lysozyme (Lys-c) in channel catfish was induced by infection of Aeromonas hydrophila, the transcriptional levels of Lys-c in skin, gut, liver, spleen, posterior kidney, and blood cells in healthy channel catfish was compared to that in channel catfish infected with...

  13. Chicken-type lysozyme in channel catfish: Expression analysis, lysozyme activity and efficacy as immunostimulant against Aeromonas hydrophila infection

    USDA-ARS?s Scientific Manuscript database

    To understand whether chicken-type lysozyme (Lys-c) in channel catfish was induced by infection of Aeromonas hydrophila, the transcriptional levels of Lys-c in skin, gut, liver, spleen, posterior kidney, and blood cells in healthy channel catfish was compared to that in channel catfish infected with...

  14. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and

  15. [Inactivating Effect of Heat-Denatured Lysozyme on Murine Norovirus in Bread Fillings].

    PubMed

    Takahashi, Michiko; Yasuda, Yuka; Takahashi, Hajime; Takeuchi, Akira; Kuda, Takashi; Kimura, Bon

    2018-01-01

    In this study, we investigated the viability of murine norovirus strain 1 (MNV-1), a surrogate for human norovirus, in bread fillings used for making stuffed buns and pastries. The inactivating effect of heat-denatured lysozyme, which was recently reported to have an antiviral effect, on MNV-1 contaminating the bread fillings was also examined. MNV-1 was inoculated into two types of fillings (chocolate cream, marmalade jam) at 4.5 log PFU/g, and the bread fillings were stored at 4℃ for 5 days. MNV-1 remained viable in the bread fillings during storage. However, addition of 1% heat-denatured lysozyme to the fillings resulted in a decrease of MNV-1 infectivity immediately after inoculation, in both fillings. On the fifth day of storage, MNV-1 infectivity was decreased by 1.2 log PFU/g in chocolate cream and by 0.9 log PFU/g in marmalade jam. Although the mechanism underlying the anti-norovirus effect of heat-denatured lysozyme has not been clarified, our results suggest that heat-denatured lysozyme can be used as an inactivating agent against norovirus in bread fillings.

  16. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration.

    PubMed

    Ibrahim, Hisham R; Imazato, Kenta; Ono, Hajime

    2011-09-28

    Human milk lysozyme is thought to be a key defense factor in protecting the gastrointestinal tract of newborns against bacterial infection. Recently, evidence was found that pepsin, under conditions relevant to the newborn stomach, cleaves chicken lysozyme (cLZ) at specific loops to generate five antimicrobial peptide motifs. This study explores the antimicrobial role of the corresponding peptides of human lysozyme (hLZ), the actual protein in breast milk. Five peptide motifs of hLZ, one helix-loop-helix (HLH), its two helices (H1 and H2), and two helix-sheet motifs, H2-β-strands 1-2 (H2-S12) or H2-β-strands 1-3 (H2-S13), were synthesized and examined for antimicrobial action. The five peptides of hLZ exhibit microbicidal activity to various degrees against several bacterial strains. The HLH peptide and its N-terminal helix (H1) were significantly the most potent bactericidal to Gram-positive and Gram-negative bacteria and the fungus Candida albicans . Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its N-terminal helix (H1) kill bacteria by crossing the outer membrane of Gram-negative bacteria via self-promoted uptake and are able to dissipate the membrane potential-dependent respiration of Gram-positive bacteria. This finding is the first to describe that hLZ possesses multiple antimicrobial peptide motifs within its N-terminal domain, providing insight into new classes of antibiotic peptides with potential use in the treatment of infectious diseases.

  17. Two Goose-Type Lysozymes in Mytilus galloprovincialis: Possible Function Diversification and Adaptive Evolution

    PubMed Central

    Wang, Qing; Zhang, Linbao; Zhao, Jianmin; You, Liping; Wu, Huifeng

    2012-01-01

    Two goose-type lysozymes (designated as MGgLYZ1 and MGgLYZ2) were identified from the mussel Mytilus galloprovincialis. MGgLYZ1 mRNA was widely expressed in the examined tissues and responded sensitively to bacterial challenge in hemocytes, while MGgLYZ2 mRNA was predominately expressed and performed its functions in hepatopancreas. However, immunolocalization analysis showed that both these lysozymes were expressed in all examined tissues with the exception of adductor muscle. Recombinant MGgLYZ1 and MGgLYZ2 could inhibit the growth of several Gram-positive and Gram-negative bacteria, and they both showed the highest activity against Pseudomonas putida with the minimum inhibitory concentration (MIC) of 0.95–1.91 µM and 1.20–2.40 µM, respectively. Protein sequences analysis revealed that MGgLYZ2 had lower isoelectric point and less protease cutting sites than MGgLYZ1. Recombinant MGgLYZ2 exhibited relative high activity at acidic pH of 4–5, while MGgLYZ1 have an optimum pH of 6. These results indicated MGgLYZ2 adapted to acidic environment and perhaps play an important role in digestion. Genomic structure analysis suggested that both MGgLYZ1 and MGgLYZ2 genes are composed of six exons with same length and five introns, indicating these genes were conserved and might originate from gene duplication during the evolution. Selection pressure analysis showed that MGgLYZ1 was under nearly neutral selection while MGgLYZ2 evolved under positive selection pressure with three positively selected amino acid residues (Y102, L200 and S202) detected in the mature peptide. All these findings suggested MGgLYZ2 perhaps served as a digestive lysozyme under positive selection pressure during the evolution while MGgLYZ1 was mainly involved in innate immune responses. PMID:23028813

  18. An electron microscopy study of the diversity of Streptococcus sanguinis cells induced by lysozyme in vitro.

    PubMed

    Hao, Yuqing; Li, Li; Li, Wei; Zhou, Xuedong; Lu, Junjun

    2010-01-01

    Bacterial virulence could be altered by the antimicrobial agents of the host. Our aim was to identify the damage and survival of Streptococcus sanguinis induced by lysozymes in vitro and to analyse the potential of oral microorganisms to shirk host defences, which cause infective endocarditis. S. sanguinis ATCC 10556 received lysozyme at concentrations of 12.5, 25, 50 and 100 microg/ml. Cells were examined by electron microscopy. The survival was assessed by colony counting and construction of a growth curve. Challenged by lysozymes, cells mainly exhibited cell wall damage, which seemed to increase with increasing lysozyme concentration and longer incubation period in the presence of ions. Cells with little as well as apparent lesion were observed under the same treatment set, and anomalous stick and huge rotund bodies were occasionally observed. After the removal of the lysozyme, some damaged cells could be reverted to its original form with brain heart infusion (BHI), and their growth curve was similar to the control cells. After further incubation in BHI containing lysozyme, S. sanguinis cell damage stopped progressing, and their growth curve was also similar to the control cells. The results suggested that the S. sanguinis lesions caused by the lysozyme in the oral cavity may be nonhomogeneous and that some damaged cells could self-repair and survive. It also indicated that S. sanguinis with damaged cell walls may survive and be transmitted in the bloodstream.

  19. Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2

    NASA Astrophysics Data System (ADS)

    Yang, Hongchao; Li, Jingjuan; Cui, Lin; Ren, Yanqing; Niu, Liying; Wang, Xinguo; Huang, Yun; Cui, Lijian

    2018-03-01

    The influences of caffeine, lysozyme and the joint application of them on the hepatoma cell line HepG2 proliferation inhibition and cell apoptosis were observed by 3-(4, 5-dimethyl-2-thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and Hoechst 33342, which showed the proliferation inhibition rate of the joint application on HepG2 cells was 47.21%, significantly higher than caffeine or lysozyme, and the joint application promoted the apoptosis of HepG2 cells obviously. Van't Hoff classical thermodynamics formula, the Föster theory of non-radiation energy transfer and fluorescence phase diagram were used to manifest that the process of lysozyme binding to caffeine followed a two-state model, which was spontaneous at low temperature driven by enthalpy change, and the predominant intermolecular force was hydrogen bonding or Van der Waals force to stabilize caffeine-lysozyme complex with the distance 5.86 nm. The attenuated total reflection-Fourier transform infrared spectra indicated that caffeine decreased the relative contents of α-helix and β-turn, which inferred the structure of lysozyme tended to be "loose". Synchronous fluorescence spectra and ultraviolet spectra supported the above conclusion. The amino acid residues in the cleft of lysozyme were exposed and electropositivity was increased attributing to the loose structure, which were conducive to increasing caffeine concentration on the HepG2 cell surface by electrostatic interaction to show synergistic effect. The great quantities of microvilli on the liver cancer cell membrane surface, is beneficial for the lysozyme-caffeine compound to aggregate on cell surface to increase the concentration of caffeine to play stronger physiological role by electrostatic effect.

  20. Protein-Mediated Precipitation of Calcium Carbonate

    PubMed Central

    Polowczyk, Izabela; Bastrzyk, Anna; Fiedot, Marta

    2016-01-01

    Calcium carbonate is an important component in exoskeletons of many organisms. The synthesis of calcium carbonate was performed by mixing dimethyl carbonate and an aqueous solution of calcium chloride dihydrate. The precipitation product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. In addition, the turbidity of the reaction solution was acquired to monitor the kinetics of the calcium carbonate structure’s growth in the investigated system. In this study, samples of CaCO3 particles obtained with individual proteins, such as ovalbumin, lysozyme, and a mixture of the proteins, were characterized and compared with a control sample, i.e., synthesized without proteins. The obtained data indicated that the addition of ovalbumin to the reaction changed the morphology of crystals from rhombohedral to ‘stack-like’ structures. Lysozyme, however, did not affect the morphology of calcium carbonate, yet the presence of the protein mixture led to the creation of more complex composites in which the calcium carbonate crystals were constructed in protein matrices formed by the ovalbumin-lysozyme interaction. It was also observed that in the protein mixture, ovalbumin has a major influence on the CaCO3 formation through a strong interaction with calcium ions, which leads to the coalescence and creation of a steric barrier reducing particle growth. The authors proposed a mechanism of calcium carbonate grain growth in the presence of both proteins, taking into account the interaction of calcium ions with the protein. PMID:28774065

  1. Impact of lysozyme on stability mechanism of nanozirconia aqueous suspension

    NASA Astrophysics Data System (ADS)

    Szewczuk-Karpisz, Katarzyna; Wiśniewska, Małgorzata

    2016-08-01

    The effect of lysozyme (LSZ) presence on the zirconium(IV) oxide (ZrO2) aqueous suspension stability was examined. The applied zirconia contains mesopores (with a diameter about 30 nm) and its mean particle size is about 100 nm. To determine the stability mechanism of ZrO2 suspension in the biopolymer presence, the adsorption and electrokinetic (surface charge density and zeta potential) measurements were performed in the pH range 3-10. The lysozyme adsorption on the nanozirconia surface proceeds mainly through electrostatic forces. Under solid-polymer repulsion conditions, there is no adsorption of lysozyme (pH < 6, CNaCl 0.01 mol/dm3). The increase of solution ionic strength to 0.2 mol/dm3 causes screening of unfavourable forces and biopolymer adsorption becomes possible. The LSZ addition to the ZrO2 suspension influences its stability. At pH 3, 4.6 and 7.6, slight improvement of the system stability was obtained. In turn, at pH 9 considerable destabilization of nanozirconia particles covered by polymeric layers occurs.

  2. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  3. The use of lysozyme modified with fluorescein for the detection of Gram-positive bacteria.

    PubMed

    Arabski, Michał; Konieczna, Iwona; Tusińska, Ewa; Wąsik, Sławomir; Relich, Inga; Zając, Krzysztof; Kamiński, Zbigniew J; Kaca, Wiesław

    2015-01-01

    Lysozyme (1,4-β-N-acetylmuramidase) is commonly applied in the food, medical, and pharmaceutical industries. In this study, we tested a novel application of fluorescein-modified lysozyme (using carboxyfluorescein with a triazine-based coupling reagent) as a new tool for the detection of Gram-positive soil bacteria. The results, obtained by cultivation methods, fluorescence analysis, and laser interferometry, showed that, after optimization, fluorescein-modified lysozyme could be used to evaluate the prevalence of Gram-positive bacteria essential in bioremediation of soils with low pH, such as those degraded by sulfur. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Actin - Lysozyme Interactions in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Sanders, Lori; Slimmer, Scott; Angelini, Thomas; Wong, Gerard C. L.

    2003-03-01

    Cystic fibrosis sputum is a complex fluid consisting of mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems containing actin, lysozyme, and KCl were created to simulate CF sputum in vitro. These model systems were studied using small angle x-ray scattering and confocal fluorescence microscopy. Preliminary results will be presented. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  5. Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium.

    PubMed

    Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal

    2015-09-07

    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions

  6. Membrane surface engineering for protein separations: experiments and simulations.

    PubMed

    Liu, Zizhao; Du, Hongbo; Wickramasinghe, S Ranil; Qian, Xianghong

    2014-09-09

    A bisphosphonate derived ligand was successfully synthesized and grafted from the surface of regenerated cellulose membrane using atom transfer radical polymerization (ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further improve specific protein adsorption. The polymerization of bisphosphonate derivatives was successful for the first time using ATRP. Static and dynamic binding capacities were determined for binding and elution of Arg rich lysozyme. The interaction mechanism between the copolymer ligand and lysozyme was elucidated using classical molecular dynamics (MD) simulations.

  7. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish

    PubMed Central

    Hall, Chris; Flores, Maria Vega; Storm, Thilo; Crosier, Kathy; Crosier, Phil

    2007-01-01

    Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation. PMID:17477879

  8. Molecular dynamics study of unfolding of lysozyme in water and its mixtures with dimethyl sulfoxide.

    PubMed

    Sedov, Igor A; Magsumov, Timur I

    2017-09-01

    All-atom explicit solvent molecular dynamics was used to study the process of unfolding of hen egg white lysozyme in water and mixtures of water with dimethyl sulfoxide at different compositions. We have determined the kinetic parameters of unfolding at a constant temperature 450K. For each run, the time of disruption of the tertiary structure of lysozyme t u was defined as the moment when a certain structural criterion computed from the trajectory reaches its critical value. A good agreement is observed between the results obtained using several different criteria. The secondary structure according to DSSP calculations is found to be partially unfolded to the moment of disruption of tertiary structure, but some of its elements keep for a long time after that. The values of t u averaged over ten 30ns-long trajectories for each solvent composition are shown to decrease very rapidly with addition of dimethyl sulfoxide, and rather small amounts of dimethyl sulfoxide are found to change the pathway of unfolding. In pure water, despite the loss of tertiary contacts and disruption of secondary structure elements, the protein preserves its compact globular state at least over 130ns of simulation, while even at 5mol percents of dimethyl sulfoxide it loses its compactness within 30ns. The proposed methodology is a generally applicable tool to quantify the rate of protein unfolding in simulation studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  10. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity.

    PubMed

    Cai, Xiang; Zhang, Bin; Liang, Yuanyuan; Zhang, Jinglin; Yan, Yinghui; Chen, Xiaoyin; Wu, Zhimin; Liu, Hongxi; Wen, Shuiping; Tan, Shaozao; Wu, Ting

    2015-08-01

    To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  11. Structure and Orientation of T4 Lysozyme Bound to the Small Heat Shock Protein α-Crystallin

    PubMed Central

    Claxton, Derek P.; Zou, Ping; Mchaourab, Hassane S.

    2008-01-01

    Summary We have determined the structural changes that accompany the formation of a stable complex between a destabilized mutant of T4 lysozyme (T4L) and the small heat-shock protein α-crystallin. Using pairs of fluorescence or spin label probes to fingerprint the T4L tertiary fold, we demonstrate that binding disrupts tertiary packing in the two domains as well as across the active site cleft. Furthermore, increased distances between i and i+4 residues of helices support a model in which the bound structure is not native-like but significantly unfolded. In the confines of the oligomer, T4L has a preferential orientation with residues in the more hydrophobic C-terminal domain sequestered in a buried environment while residues in the N-terminal domain are exposed to the aqueous solvent. Furthermore, EPR spectral lineshapes of sites in the N-terminal domain are narrower than in the folded, unbound T4L reflecting an unstructured backbone and an asymmetric pattern of contacts between T4L and α-crystallin. The net orientation is not affected by the location of the destabilizing mutation consistent with the notion that binding is not triggered by recognition of localized unfolding. Together, the structural and thermodynamic data indicate that the stably bound conformation of T4L is unfolded and support a model in which the two-modes of substrate binding originate from two discrete binding sites on the chaperone. PMID:18062989

  12. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.

  13. Isothermal Titration Calorimetry and Macromolecular Visualization for the Interaction of Lysozyme and Its Inhibitors

    ERIC Educational Resources Information Center

    Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.

    2015-01-01

    To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…

  14. Interactions of cisplatin analogues with lysozyme: a comparative analysis.

    PubMed

    Ferraro, Giarita; De Benedictis, Ilaria; Malfitano, Annamaria; Morelli, Giancarlo; Novellino, Ettore; Marasco, Daniela

    2017-10-01

    The biophysical characterization of drug binding to proteins plays a key role in structural biology and in the discovery and optimization of drug discovery processes. The search for optimal combinations of biophysical techniques that can correctly and efficiently identify and quantify binding of metal-based drugs to their final target is challenging, due to the physicochemical properties of these agents. Different cisplatin derivatives have shown different citotoxicities in most common cancer lines, suggesting that they exert their biological activity via different mechanisms of action. Here we carried out a comparative analysis, by studying the behaviours of three Pt-compounds under the same experimental conditions and binding assays to properly deepen the determinants of the different MAOs. Indeed we compared the results obtained using surface plasmon resonance, isothermal titration calorimetry, fluorescence spectroscopy and thermal shift assays based on circular dichroism experiments in the characterization of the formation of adducts obtained upon reaction of cisplatin, carboplatin and iodinated analogue of cisplatin, cis-Pt (NH 3 ) 2 I 2 , with the model protein hen egg white lysozyme, both at neutral and acid pHs. Further we reasoned on the applicability of employed techniques for the study the thermodynamics and kinetics of the reaction of a metallodrug with a protein and to reveal which information can be obtained using a combination of these analyses. Data were discussed on the light of the existing structural data collected on the platinated protein.

  15. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response.

    PubMed

    Derbise, Anne; Pierre, François; Merchez, Maud; Pradel, Elizabeth; Laouami, Sabrina; Ricard, Isabelle; Sirard, Jean-Claude; Fritz, Jill; Lemaître, Nadine; Akinbi, Henry; Boneca, Ivo G; Sebbane, Florent

    2013-05-15

    Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.

  16. Green Tea Consumption after Intense Taekwondo Training Enhances Salivary Defense Factors and Antibacterial Capacity

    PubMed Central

    Lin, Shiuan-Pey; Li, Chia-Yang; Suzuki, Katsuhiko; Chang, Chen-Kang; Chou, Kuei-Ming; Fang, Shih-Hua

    2014-01-01

    The aim of this study was to investigate the short-term effects of green tea consumption on selected salivary defense proteins, antibacterial capacity and anti-oxidation activity in taekwondo (TKD) athletes, following intensive training. Twenty-two TKD athletes performed a 2-hr TKD training session. After training, participants ingested green tea (T, caffeine 6 mg/kg and catechins 22 mg/kg) or an equal volume of water (W). Saliva samples were collected at three time points: before training (BT-T; BT-W), immediately after training (AT-T; AT-W), and 30 min after drinking green tea or water (Rec-T; Rec-W). Salivary total protein, immunoglobulin A (SIgA), lactoferrin, α-amylase activity, free radical scavenger activity (FRSA) and antibacterial capacity were measured. Salivary total protein, lactoferrin, SIgA concentrations and α-amylase activity increased significantly immediately after intensive TKD training. After tea drinking and 30 min rest, α-amylase activity and the ratio of α-amylase to total protein were significantly higher than before and after training. In addition, salivary antibacterial capacity was not affected by intense training, but green tea consumption after training enhanced salivary antibacterial capacity. Additionally, we observed that salivary FRSA was markedly suppressed immediately after training and quickly returned to pre-exercise values, regardless of which fluid was consumed. Our results show that green tea consumption significantly enhances the activity of α-amylase and salivary antibacterial capacity. PMID:24498143

  17. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.

    PubMed

    Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito

    2010-03-01

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.

  18. Gold nanoparticles on titanium and interaction with prototype protein.

    PubMed

    Padmos, J Daniel; Duchesne, Paul; Dunbar, Michael; Zhang, Peng

    2010-10-01

    Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti-AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti-AuNPs. To study the interaction of Ti-AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HS--R--COOH)-functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro-BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 x 10(4), 2.3 x 10(4), and 5.7 x 10(4) microg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  19. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGES

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  20. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) early in the parr-smolt transformation

    USGS Publications Warehouse

    Schrock, R.M.; Smith, S.D.; Maule, A.G.; Doulos, S.K.; Rockowski, J.J.

    2001-01-01

    Mucous lysozyme concentrations were determined in juvenile coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) to establish reference levels during the time associated with the parr-smolt transformation. The first reported naris and vent mucous lysozyme levels are provided for spring chinook salmon and coho salmon. Naris mucous lysozyme levels ranged between 300 and 700 ??g ml-1, vent mucous lysozyme from 100 to 300 ??g ml-1, and skin mucous lysozyme levels were below 130 ??g ml-1. Lysozyme levels in the two species showed the same relationship with the highest levels in naris mucous, and the lowest in skin mucous. A seasonal decrease occurred in both species with a significant decrease in naris mucous lysozyme between February and March. Gill ATPase levels used to monitor smolt development during the same period did not reach ranges reported for smolts for either species during emigration. Identification of seasonal levels of lysozyme activity in mucous provides an alternative determination of developmental status prior to release of fish from the hatchery when salmonids are still undergoing the parr-smolt transformation. ?? 2001 Elsevier Science B.V.

  1. The disruptive effect of lysozyme on the bacterial cell wall explored by an in-silico structural outlook.

    PubMed

    Primo, Emiliano D; Otero, Lisandro H; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter

    2018-01-01

    The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall and disrupt the bacterial life cycle by cleaving the linkage between the NAG and NAM carbohydrates. Lab exercises focused on the effects of lysozyme on the bacterial cell wall are frequently incorporated in biochemistry classes designed for undergraduate students in diverse fields as biology, microbiology, chemistry, agronomy, medicine, and veterinary medicine. Such exercises typically do not include structural data. We describe here a sequence of computer tasks designed to illustrate and reinforce both physiological and structural concepts involved in lysozyme effects on the bacterial cell-wall structure. This lab class usually lasts 3.5 hours. First, the instructor presents introductory concepts of the bacterial cell wall and the effect of lysozyme on its structure. Then, students are taught to use computer modeling to visualize the three-dimensional structure of a lysozyme in complex with bacterial cell-wall fragments. Finally, the lysozyme inhibitory effect on a bacterial culture is optionally proposed as a simple microbiological assay. The computer lab exercises described here give students a realistic understanding of the disruptive effect of lysozymes on the bacterial cell wall, a crucial component in bacterial survival. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):83-90, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. Characterization of protein hydration by solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wand, Joshua

    A comprehensive understanding of the interactions between protein molecules and hydration water remains elusive. Solution nuclear magnetic resonance (NMR) spectroscopy has been proposed as a means to characterize these interactions but is plagued with artifacts when employed in bulk aqueous solution. Encapsulation of proteins in reverse micelles prepared in short chain alkane solvents can overcome these technical limitations. Application of this approach has revealed that the interaction of water with the surface of protein molecules is quite heterogeneous with some regions of the protein having long-lived interactions while other regions show relatively transient hydration. Results from several proteins will be presented including ubiquitin, staphylococcal nuclease, interleukin 1beta, hen egg white lysozyme (HEWL) and T4 lysozyme. Ubiquitin and interleukin 1beta are signaling proteins and interact with other proteins through formation of dry protein-protein interfaces. Interestingly, the protein surfaces of the free proteins show relatively slowed (restricted) motion at the surface, which is indicative of low residual entropy. Other regions of the protein surface have relatively high mobility water. These results are consistent with the idea that proteins have evolved to maximize the hydrophobic effect in optimization of binding with protein partners. As predicted by simulation and theory, we find that hydration of internal hydrophobic cavities of interleukin 1beta and T4 lysozyme is highly disfavored. In contrast, the hydrophilic polar cavity of HEWL is occupied by water. Initial structural correlations suggest that hydration of alpha helical structure is characterized by relatively mobile water while those of beta strands and loops are more ordered and slowed. These and other results from this set of proteins reveals that the dynamical and structural character of hydration of proteins is heterogeneous and complex. Supported by the National Science Foundation.

  3. Films based on soy protein-agar blends for wound dressing: Effect of different biopolymer proportions on the drug release rate and the physical and antibacterial properties of the films.

    PubMed

    Rivadeneira, Josefina; Audisio, M C; Gorustovich, Alejandro

    2018-04-01

    No single material can provide all requirements for wound dressings. Here, we evaluated the influence of different soy protein isolate and agar proportions (3:1, 1:1, and 1:3) in blend films on some of their physical-chemical and antibacterial properties to elucidate their potential as wound dressings. The films were synthesized by the gel casting method and ciprofloxacin hydrochloride was incorporated into the films. Films were characterized based on their surface morphology, water uptake ability, and weight loss profile. Also, the ciprofloxacin hydrochloride release kinetics was quantified spectrophotometrically. The antibacterial effect was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa strains. The soy protein isolate-agar ratio affected the water uptake of the films and the release profile of ciprofloxacin hydrochloride but not the weight loss profile. The amount of drug released decreased near 80% because of the decrease in agar content in the films. The release kinetics of ciprofloxacin hydrochloride data best fitted to the Korsmeyer-Peppas model, suggesting that the mechanism of drug release was mainly of the diffusion type. All ciprofloxacin hydrochloride-releasing soy protein isolate-agar films strongly inhibited the cell viability of the bacterial strains studied. We concluded that water uptake and ciprofloxacin hydrochloride release can be controlled by changing the soy protein isolate-agar proportion. The proportions did not lead to changes in the antibacterial strength of the films.

  4. Biophysical insights into the interaction of hen egg white lysozyme with therapeutic dye clofazimine: modulation of activity and SDS induced aggregation of model protein.

    PubMed

    Ajmal, Mohammad Rehan; Chaturvedi, Sumit Kumar; Zaidi, Nida; Alam, Parvez; Zaman, Masihuz; Siddiqi, Mohammad Khursheed; Nusrat, Saima; Jamal, Mohammad Sarwar; Mahmoud, Mohamed H; Badr, Gamal; Khan, Rizwan Hasan

    2017-08-01

    The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (K b ) in the order of 1.57 × 10 4 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.

  5. Thermal preparation of lysozyme-imprinted microspheres by using ionic liquid as a stabilizer.

    PubMed

    Qian, Li-Wei; Hu, Xiao-Ling; Guan, Ping; Gao, Bo; Wang, Dan; Wang, Chao-Li; Li, Ji; Du, Chun-Bao; Song, Wen-Qi

    2014-11-01

    Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting.

  6. Lysozyme adsorption onto mesoporous materials: effect of pore geometry and stability of adsorbents.

    PubMed

    Vinu, Ajayan; Miyahara, Masahiko; Hossain, Kazi Zakir; Takahashi, Motoi; Balasubramanian, Veerappan Vaithilingam; Mori, Toshiyuki; Ariga, Katsuhiko

    2007-03-01

    In this paper, adsorption of lysozyme onto two kinds of mesoporous adsorbents (KIT-5 and AISBA-15) has been investigated and the results on the effects of pore geometry and stability of the adsorbents are also discussed. The KIT-5 mesoporous silica materials possess cage-type pore geometry while the AISBA-15 adsorbent has mesopores of cylindrical type with rather large diameter (9.7 nm). Adsorption of lysozyme onto AISBA-15 aluminosilicate obeys a Langmuir isotherm, resulting in pore occupation of 25 to 30%. In contrast, the KIT-5 adsorbents showed very small adsorption capacities for the lysozyme adsorption, typically falling in 6 to 13% of pore occupation. The cage-type KIT-5 adsorbents have narrow channel (4 to 6 nm) where penetration of the lysozyme (3 x 3 x 4.5 nm) might be restricted. The KIT-5 adsorbent tends to collapse after long-time immersion in water, as indicated by XRD patterns, while the AISBA-15 adsorbent retains its regular structure even after immersion in basic water for 4 days. These facts confirm superiority of the AISBA-15 as an adsorbent as compared with the KIT-5 mesoporous silicates. This research strikingly demonstrates the selection of mesoporous materials is crucial to achieve efficient immobilization of biomaterials in aqueous environment.

  7. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  8. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua.

    PubMed

    Kobbi, Sabrine; Nedjar, Naima; Chihib, Nourdine; Balti, Rafik; Chevalier, Mickael; Silvain, Amandine; Chaabouni, Semia; Dhulster, Pascal; Bougatef, Ali

    2018-02-01

    In this work we evaluated the mode of action of six new synthesized peptides (Met-Asp-Asn; Glu-leu-Ala-Ala-Ala-Cys; Leu-Arg-Asp-Asp-Phe; Gly-Asn-Ala-Pro-Gly-Ala-Val-Ala; Ala-Leu-Arg-Met-Ser-Gly and Arg-Asp-Arg-Phe-Leu), previously identified, from the most active peptide fractions of RuBisCO peptic hydrolysate against Listeria innocua via a membrane damage mechanism. Antibacterial effect and the minimum inhibitory concentrations (MIC) of these peptides were evaluated against six strains and their hemolytic activities towards bovine erythrocytes were determined. Prediction of the secondary structure of peptides indicated that these new antibacterial peptides are characterized by a short peptide chains (3-8 amino acid) and a random coli structure. Moreover, it was observed that one key characteristic of antibacterial peptides is the presence of specific amino acids such as cysteine, glycine, arginine and aspartic acid. In addition the determination of the extracellular potassium concentration revealed that treatment with pure RuBisCO peptides could cause morphological changes of L. innocua and destruction of the cell integrity via irreversible membrane damage. The results could provide information for investigating the antibacterial model of antibacterial peptides derived from RuBisCO protein hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stable sugar-based protein formulations by supercritical fluid drying.

    PubMed

    Jovanović, Natasa; Bouchard, Andréanne; Sutter, Marc; Van Speybroeck, Michiel; Hofland, Gerard W; Witkamp, Geert-Jan; Crommelin, Daan J A; Jiskoot, Wim

    2008-01-04

    The aim of this work was to produce stable, sugar-containing protein formulations by supercritical fluid (SCF) drying. Lysozyme solutions with and without added sucrose or trehalose were dried by spraying them in an SCF composed of CO(2) and ethanol or CO(2) only. The protein-to-sugar ratio was varied between 1:0 and 1:10 (w/w). Dried formulations were stored at 4 degrees C for three months and analyzed by Karl Fischer titration, scanning electron microscopy, X-ray powder diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy. Lysozyme stability after reconstitution was determined by an enzymatic activity assay, UV/Vis spectroscopy, and SDS-PAGE. Smooth, spherical particles of 1-25 microm size were obtained. All formulations were initially amorphous. Crystallization during storage only occurred with a protein-to-sugar ratio of 1:10 and could be avoided by performing SCF drying without ethanol. Absence of residual ethanol in dried trehalose formulations increased the glass transition temperature up to 120 degrees C. Lysozyme in dried formulations was structurally stable, with exception of the 1:0 and 1:1 protein-to-sugar ratios, where reversible protein aggregation occurred. The results show that by avoiding ethanol, which up to now has been considered mandatory for efficient drying of aqueous solutions, and by choosing the proper protein-to-sugar ratio, it is possible to obtain stable, sugar-based protein formulations through SCF drying.

  10. 21 CFR 862.1490 - Lysozyme (muramidase) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lysozyme (muramidase) test system. 862.1490 Section 862.1490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  11. Effect of Flash-Heat Treatment on Antimicrobial Activity of Breastmilk

    PubMed Central

    Wiedeman, Jean; Buehring, Gertrude; Peerson, Janet M.; Hayfron, Kweku; K'Aluoch, Okumu; Lonnerdal, Bo; Israel-Ballard, Kiersten; Coutsoudis, Anna; Abrams, Barbara

    2011-01-01

    Abstract Background and Objectives The World Health Organization recommends human immunodeficiency virus (HIV)-positive mothers in resource-poor regions heat-treat expressed breastmilk during periods of increased maternal-to-child transmission risk. Flash-heat, a “low tech” pasteurization method, inactivates HIV, but effects on milk protein bioactivity are unknown. The objectives were to measure flash-heat's effect on antimicrobial properties of lactoferrin, lysozyme, and whole milk and on the digestive resistance of lactoferrin and lysozyme. Methods Flash-heated and unheated breastmilk aliquots from HIV-positive mothers in South Africa were “spiked” with Staphylococcus aureus and Escherichia coli and then cultured for 0, 3, and 6 hours. Lysozyme and lactoferrin activities were determined by lysis of Micrococcus luteus cells and inhibition of enteropathogenic E. coli, respectively, measured spectrophotometrically. Percentages of proteins surviving in vitro digestion, lactoferrin and lysozyme activity, and bacteriostatic activity of whole milk in heated versus unheated samples were compared. Results There was no difference in rate of growth of E. coli or S. aureus in flash-heated versus unheated whole milk (p = 0.61 and p = 0.96, respectively). Mean (95% confidence interval) antibacterial activity of lactoferrin was diminished 11.1% (7.8%, 14.3%) and that of lysozyme by up to 56.6% (47.1%, 64.5%) by flash-heat. Digestion of lysozyme was unaffected (p = 0.12), but 25.4% less lactoferrin survived digestion (p < 0.0001). Conclusions In summary, flash-heat resulted in minimally decreased lactoferrin and moderately decreased lysozyme bioactivity, but bacteriostatic activity of whole milk against representative bacteria was unaffected. This suggests flash-heated breastmilk likely has a similar profile of resistance to bacterial contamination as that of unheated milk. Clinical significance of the decreased bioactivity should be tested in clinical

  12. Effect of flash-heat treatment on antimicrobial activity of breastmilk.

    PubMed

    Chantry, Caroline J; Wiedeman, Jean; Buehring, Gertrude; Peerson, Janet M; Hayfron, Kweku; K'Aluoch, Okumu; Lonnerdal, Bo; Israel-Ballard, Kiersten; Coutsoudis, Anna; Abrams, Barbara

    2011-06-01

    The World Health Organization recommends human immunodeficiency virus (HIV)-positive mothers in resource-poor regions heat-treat expressed breastmilk during periods of increased maternal-to-child transmission risk. Flash-heat, a "low tech" pasteurization method, inactivates HIV, but effects on milk protein bioactivity are unknown. The objectives were to measure flash-heat's effect on antimicrobial properties of lactoferrin, lysozyme, and whole milk and on the digestive resistance of lactoferrin and lysozyme. Flash-heated and unheated breastmilk aliquots from HIV-positive mothers in South Africa were "spiked" with Staphylococcus aureus and Escherichia coli and then cultured for 0, 3, and 6 hours. Lysozyme and lactoferrin activities were determined by lysis of Micrococcus luteus cells and inhibition of enteropathogenic E. coli, respectively, measured spectrophotometrically. Percentages of proteins surviving in vitro digestion, lactoferrin and lysozyme activity, and bacteriostatic activity of whole milk in heated versus unheated samples were compared. There was no difference in rate of growth of E. coli or S. aureus in flash-heated versus unheated whole milk (p = 0.61 and p = 0.96, respectively). Mean (95% confidence interval) antibacterial activity of lactoferrin was diminished 11.1% (7.8%, 14.3%) and that of lysozyme by up to 56.6% (47.1%, 64.5%) by flash-heat. Digestion of lysozyme was unaffected (p = 0.12), but 25.4% less lactoferrin survived digestion (p < 0.0001). In summary, flash-heat resulted in minimally decreased lactoferrin and moderately decreased lysozyme bioactivity, but bacteriostatic activity of whole milk against representative bacteria was unaffected. This suggests flash-heated breastmilk likely has a similar profile of resistance to bacterial contamination as that of unheated milk. Clinical significance of the decreased bioactivity should be tested in clinical trials.

  13. Volume properties and spectroscopy: A terahertz Raman investigation of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Sassi, Paola; Perticaroli, Stefania; Comez, Lucia; Giugliarelli, Alessandra; Paolantoni, Marco; Fioretto, Daniele; Morresi, Assunta

    2013-12-01

    The low frequency depolarized Raman spectra of 100 mg/ml aqueous solutions of hen egg white lysozyme (HEWL) have been collected in the 25-85 °C range. Short and long exposures to high temperatures have been used to modulate the competition between the thermally induced reversible and irreversible denaturation processes. A peculiar temperature evolution of spectra is evidenced under prolonged exposure of the protein solution at temperatures higher than 65 °C. This result is connected to the self-assembling of polypeptide chains and testifies the sensitivity of the technique to the properties of both protein molecule and its surrounding. Solvent free spectra have been obtained after subtraction of elastic and solvent components and assigned to a genuine vibrational contribution of hydrated HEWL. A straight similarity is observed between the solvent-free THz Raman feature and the vibrational density of states as obtained by molecular dynamics simulations; according to this, we verify the relation between this spectroscopic observable and the effective protein volume, and distinguish the properties of this latter respect to those of the hydration shell in the pre-melting region.

  14. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  15. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis.

    PubMed

    Nakayama, Motokazu; Shimatani, Kanami; Ozawa, Tadahiro; Shigemune, Naofumi; Tomiyama, Daisuke; Yui, Koji; Katsuki, Mao; Ikeda, Keisuke; Nonaka, Ai; Miyamoto, Takahisa

    2015-01-01

    Catechins are a class of polyphenols and have high anti-bacterial activity against various microorganisms. Here, we report the mechanism for antibacterial activity of epigallocatechin gallate (EGCg) against Gram-positive bacteria Bacillus subtilis, which is highly sensitive to EGCg. Transmission electron microscope analysis revealed that deposits containing EGCg were found throughout the cell envelope from the outermost surface to the outer surface of cytoplasmic membrane. Aggregating forms of proteins and EGCg were identified as spots that disappeared or showed markedly decreased intensity after the treatment with EGCg compared to the control by two-dimensional electrophoresis. Among the identified proteins included 4 cell surface proteins, such as oligopeptide ABC transporter binding lipoprotein, glucose phosphotransferase system transporter protein, phosphate ABC transporter substrate-binding protein, and penicillin-binding protein 5. Observations of glucose uptake of cells and cell shape B. subtilis after the treatment with EGCg suggested that EGCg inhibits the major functions of these proteins, leading to growth inhibition of B. subtilis.

  16. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme.

    PubMed

    Dinca, Valentina; Zaharie-Butucel, Diana; Stanica, Luciana; Brajnicov, Simona; Marascu, Valentina; Bonciu, Anca; Cristocea, Andra; Gaman, Laura; Gheorghiu, Mihaela; Astilean, Simion; Vasilescu, Alina

    2018-02-01

    Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL -1 , in a fast and simple manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities

    NASA Astrophysics Data System (ADS)

    Yao, Yuyu; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2016-03-01

    The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)- d-GlcNAc, a single chain variable fragment and α- d-Gal-(1→2)-[α- d-Abe-(1→3)]-α- d-Man-OCH3, cholera toxin B subunit homopentamer with β- d-Gal-(1→3)-β- d-GalNAc-(1→4)[α- d-Neu5Ac-(2→3)]-β- d-Gal-(1→4)-β- d-Glc, and a fragment of galectin 3 and α- l-Fuc-(1→2)-β- d-Gal-(1→3)-β- d-GlcNAc-(1→3)-β- d-Gal-(1→4)-β- d-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

  18. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities.

    PubMed

    Yao, Yuyu; Richards, Michele R; Kitova, Elena N; Klassen, John S

    2016-03-01

    The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-D-GlcNAc, a single chain variable fragment and α-D-Gal-(1→2)-[α-D-Abe-(1→3)]-α-D-Man-OCH3, cholera toxin B subunit homopentamer with β-D-Gal-(1→3)-β-D-GalNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal-(1→4)-β-D-Glc, and a fragment of galectin 3 and α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

  19. What Makes a Natural Clay Antibacterial?

    PubMed Central

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  20. Some probiotic and antibacterial properties of Lactobacillus acidophilus cultured from dahi a native milk product.

    PubMed

    Mahmood, Talat; Masud, Tariq; Sohail, Asma

    2014-08-01

    In this study, different strains of Lactobacillus acidophilus from dahi were analyzed for certain probiotic and antibacterial properties. Initially, these strains were confirmed by the amplification of 16S rRNA regions and then screened for antibacterial activities against food borne pathogens. The phenotypic relationship between apparent antibacterial activity and cell wall proteins were established by cluster analysis. It was observed that those strains, which have prominent bands having size 22-25 kDa possess antibacterial activity. On the basis of wide spectrum of killing pattern, a strain LA06FT was further characterized that showed no change in its behavior when subjected to the antibiotic protected environment and grow well in acid-bile conditions. The bacteriocin produced by this strain has specific antibacterial activity of 5369.13 AU mg(-1). It remained stable at 60-90 °C and pH range of 4.5-6.5 while proteolytic enzymes inactivate the bacteriocin that confirm its proteinic nature having molecular weight of ≤8.5 kDa.

  1. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    DOE PAGES

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    2016-01-08

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe 2+ and Al 3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show thatmore » Al 3+ misfolds cell membrane proteins, while Fe 2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe 3+-oxides as biomolecular damage proceeds. In conclusion, discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents.« less

  2. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe 2+ and Al 3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show thatmore » Al 3+ misfolds cell membrane proteins, while Fe 2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe 3+-oxides as biomolecular damage proceeds. In conclusion, discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents.« less

  3. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    PubMed Central

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    2016-01-01

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe2+ and Al3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show that Al3+ misfolds cell membrane proteins, while Fe2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe3+-oxides as biomolecular damage proceeds. Discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents. PMID:26743034

  4. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program

  5. Self perceived work related stress and the relation with salivary IgA and lysozyme among emergency department nurses

    PubMed Central

    Yang, Y; Koh, D; Ng, V; Lee, C; Chan, G; Dong, F; Goh, S; Anantharaman, V; Chia, S

    2002-01-01

    Aims: To assess and compare the self perceived work related stress among emergency department (ED) and general ward (GW) nurses, and to investigate its relation with salivary IgA and lysozyme. Methods: One hundred and thirty two of 208 (63.5%) registered female ED and GW nurses participated in the study. A modified mental health professional stress scale (PSS) was used to measure self perceived stress. ELISA methods were used to determine the salivary IgA and lysozyme levels. Results: On PSS, ED nurses had higher scores (mean 1.51) than GW nurses (1.30). The scores of PSS subscales such as organisational structure and processes (OS), lack of resources (RES), and conflict with other professionals (COF) were higher in ED than in GW nurses. ED nurses had lower secretion rates of IgA (geometric mean (GM) 49.1 µg/min) and lysozyme (GM 20.0 µg/min) than GW nurses (68.2 µg/min, 30.5 µg/min). Significant correlations were observed between PSS and log IgA and lysozyme secretion rates. OS, RES, and COF were correlated with log IgA and lysozyme levels. Conclusion: ED nurses, who reported a higher level of professional stress, showed significantly lower secretion rates of salivary IgA and lysozyme compared to GW nurses. Salivary IgA and lysozyme were inversely correlated with self perceived work related stress. As these salivary biomarkers are reflective of the mucosal immunity, results support the inverse relation between stress and mucosal immunity. PMID:12468751

  6. Triclinic lysozyme at 0.65 angstrom resolution.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Dauter, M.; Alkire, R.

    The crystal structure of triclinic hen egg-white lysozyme (HEWL) has been refined against diffraction data extending to 0.65 {angstrom} resolution measured at 100 K using synchrotron radiation. Refinement with anisotropic displacement parameters and with the removal of stereochemical restraints for the well ordered parts of the structure converged with a conventional R factor of 8.39% and an R{sub free} of 9.52%. The use of full-matrix refinement provided an estimate of the variances in the derived parameters. In addition to the 129-residue protein, a total of 170 water molecules, nine nitrate ions, one acetate ion and three ethylene glycol molecules weremore » located in the electron-density map. Eight sections of the main chain and many side chains were modeled with alternate conformations. The occupancies of the water sites were refined and this step is meaningful when assessed by use of the free R factor. A detailed description and comparison of the structure are made with reference to the previously reported triclinic HEWL structures refined at 0.925 {angstrom} (at the low temperature of 120 K) and at 0.95 {angstrom} resolution (at room temperature).« less

  7. Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe.

    PubMed

    Ioffe, Valeriya M; Gorbenko, Galyna P; Deligeorgiev, Todor; Gadjev, Nikolai; Vasilev, Aleksey

    2007-06-01

    The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.

  8. Optimization of protein solution by a novel experimental design method using thermodynamic properties.

    PubMed

    Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon

    2012-09-01

    In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.

  9. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique.

    PubMed

    Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan

    2014-01-01

    This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Study on the conformation changes of Lysozyme induced by Hypocrellin A: The mechanism investigation

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Huang, He-Yong; Zhou, Lin; Yang, Chao; Zhou, Jia-Hong; Liu, Zheng-Ming

    2012-11-01

    The interactions between Lysozyme and Hypocrellin A are investigated in details using time-resolved fluorescence, fourier transform infrared spectroscopy (FTIR), circular dichroism spectroscopy (CD), three-dimensional fluorescence spectra, and thermal gravimetric analysis (TGA) techniques. The results of time-resolved fluorescence suggest that the quenching mechanism is static quenching. FTIR and CD spectroscopy provide evidences of the reducing of α-helix after interaction. Hypocrellin A could change the micro-environmental of Lysozyme according to hydrophobic interaction between the aromatic ring and the hydrophobic amino acid residues, and the altered polypeptide backbone structures induce the reduction of α-helical structures. Moreover, TGA study further demonstrates the structure changes of Lysozyme on the effect of Hypocrellin A. This study could provide some important information for the derivatives of HA in pharmacy, pharmacology and biochemistry.

  11. LYZL6, an acidic, bacteriolytic, human sperm-related protein, plays a role in fertilization

    PubMed Central

    Huang, Peng; Li, Wenshu; Yang, Zhifang; Zhang, Ning; Xu, Yixin; Bao, Jianying; Jiang, Deke; Dong, Xianping

    2017-01-01

    Lysozyme-like proteins (LYZLs) belong to the c-type lysozyme/α-lactalbumin family and are selectively expressed in the mammalian male reproductive tract. Two members, human sperm lysozyme-like protein (SLLP) -1 and mouse LYZL4, have been reported to contribute to fertilization but show no bacteriolytic activity. Here, we focused on the possible contribution of LYZL6 to immunity and fertilization. In humans, LYZL6 was selectively expressed by the testis and epididymis and became concentrated on spermatozoa. Native LYZL6 isolated from sperm extracts exhibited bacteriolytic activity against Micrococcus lysodeikticus. Recombinant LYZL6 (rLYZL6) reached its peak activity at pH 5.6 and 15 mM of Na+, and could inhibit the growth of Gram-positive, but not Gram-negative bacteria. Nevertheless, the bacteriolytic activity of rLYZL6 proved to be much lower than that of human lysozyme under physiological conditions. Immunodetection with a specific antiserum localized the LYZL6 protein on the postacrosomal membrane of mature spermatozoa. Immunoneutralization of LYZL6 significantly decreased the numbers of human spermatozoa fused with zona-free hamster eggs in a dose-dependent manner in vitro. Thus, we report here for the first time that LYZL6, an acidic, bacteriolytic and human sperm-related protein, is likely important for fertilization but not for the innate immunity of the male reproductive tract. PMID:28182716

  12. The Effect of Lysozyme on Reducing Biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: An In Vitro Examination.

    PubMed

    Hukić, Mirsada; Seljmo, Dzenita; Ramovic, Amra; Ibrišimović, Monia Avdić; Dogan, Serkan; Hukic, Jasna; Bojic, Elma Feric

    2018-05-01

    Two basic questions about lysozyme activities on the selected microorganisms were investigated, namely whether lysozyme inhibits biofilm production and which concentrations of the enzyme have the ability to change the natural biofilm producing capacity of different strains of Staphylococcus aureus (methicillin sensitive and resistant), Streptococcus pyogenes, Pseudomonas aeruginosa, and Gardnerella vaginalis. The effect of lysozyme on biofilm formation capacities of 16 strains of selected microorganisms was investigated, whereby four testing replicates have been performed in vitro using the Test Tube method, and the potential of lysozyme to change biofilm forming capacities depending on its concentration, species, and strains of microorganisms is demonstrated. A lysozyme concentration of 30 μg/ml indicated to have the highest inhibiting effect on all tested microorganisms. Furthermore, G. vaginalis was the most sensitive of them all, as its biofilm formation was inhibited in the presence of as low as 2.5 μg/ml of lysozyme. At enzyme concentrations of 7.5-50 μg/ml (with the exception of 30 μg/ml) the biofilm forming capacities of P. aeruginosa were enhanced. Depending on the strain of P. aeruginosa, the total biofilm quantity was either reduced or unaffected at lysozyme concentrations of 2.5, 5, 7.5, and 30 μg/ml. In contrast, lysozyme concentrations below 15 or 20 μg/ml did not affect or increase the volume of biofilm formation, while higher concentrations (15, 20, 25 μg/ml) reduced biofilm formation by 50% (3/6) and 30 μg/ml of biofilm reduced biofilm forming capacity of S. aureus by 100% (6/6). The results of this study are a strong foundation for further research on lysozyme as a modulator of the biofilm forming capacity of different species with the potential to aid in the development of new drugs for the treatment of oral and vaginal infections.

  13. The interaction of flavonoid-lysozyme and the relationship between molecular structure of flavonoids and their binding activity to lysozyme.

    PubMed

    Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo

    2012-11-01

    In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.

  14. [The estimation of systemic chemotherapy treatment administered in breast cancer on lysozyme activity in tears--preliminary report].

    PubMed

    Wojciechowska, Katarzyna; Jurowski, Piotr; Wieckowska-Szakiel, Marzena; Rózalska, Barbara

    2012-01-01

    Estimation of cytostatics influence used in breast cancer treatment on lysozyme activity in human tears depend on time of treatment. 8 women were treated at the base of chemotherapy schema: docetaxel with doxorubicin and 4 women treated with schema CMF: cyclophosphamide, methotrexate, 5-fluorouracil. Lysozyme activity in tears was assessed by measurement of diameter zone of Micrococcus lysodeicticus growth inhibition. It was revealed that both chemotherapy schema caused statistically significant reduction of diameter zone of M. lysodeicticus growth inhibition, after first and second course of chemotherapy treatment. After second chemotherapy course CMF schema induced loss of lysozyme activity in patient's tears (zero mm of M. lysodeicticus diameter zone growth inhibition). Systemic chemotherapy administered in breast cancer induce reduction of lysozyme activity in tears, that may cause higher morbidity of ocular surface infections caused by Gram-positive bacteria.

  15. Surface conjugation of poly (dimethyl siloxane) with itaconic acid-based materials for antibacterial effects

    NASA Astrophysics Data System (ADS)

    Birajdar, Mallinath S.; Cho, Hyunjoo; Seo, Youngmin; Choi, Jonghoon; Park, Hansoo

    2018-04-01

    Poly (dimethyl siloxane) (PDMS) is widely used in various biomedical applications. However, the PDMS surface is known to cause bacterial adhesion and protein absorption issues due to its high hydrophobicity. Therefore, the development of antibacterial and anti-protein products is necessary to prevent these problems. In this study, to improve its antibacterial property and prevent protein adsorption, PDMS surfaces were conjugated with itaconic acid (IA) and poly (itaconic acid) (PIA) via a chemical method. Additionally, IA and PIA were physically blended with PDMS to compare the antibacterial properties of these materials with those of the chemically conjugated PDMS surfaces. The successful synthesis of the PIA polymer structure was confirmed by proton nuclear magnetic resonance (1H NMR) spectroscopy. The successful conjugation of IA and PIA on PDMS was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle measurements, and microbicinchoninic acid (BCA) protein assay analyses. The PDMS surfaces functionalized with IA and PIA by the conjugation method better prevented protein adsorption than the bare PDMS. Therefore, these surface-conjugated PDMS can be used in various biomedical applications.

  16. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  17. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.

    PubMed

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.

  18. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [18 O]-labeling oxygen and nLC-MS/MS.

    PubMed

    Marques, Emerson Finco; Medeiros, Marisa H G; Di Mascio, Paolo

    2017-11-01

    Singlet molecular oxygen ( 1 O 2 ) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1 O 2 , and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1 O 2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [ 18 O]-labeled 1 O 2 released from thermolabile endoperoxides in association with nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC-MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [ 18 O]-labeling atoms in different amino acids. Copyright © 2017 John Wiley & Sons, Ltd.

  19. In Silico Characterization of the Binding Affinity of Dendrimers to Penicillin-Binding Proteins (PBPs): Can PBPs be Potential Targets for Antibacterial Dendrimers?

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Ramesh, Muthusamy; Kalhapure, Rahul; Suleman, Nadia; Govender, Thirumala

    2016-04-01

    We have shown that novel silver salts of poly (propyl ether) imine (PETIM) dendron and dendrimers developed in our group exhibit preferential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus. This led us to examine whether molecular modeling methods could be used to identify the key structural design principles for a bioactive lead molecule, explore the mechanism of binding with biological targets, and explain their preferential antibacterial activity. The current article reports the conformational landscape as well as mechanism of binding of generation 1 PETIM dendron and dendrimers to penicillin-binding proteins (PBPs) in order to understand the antibacterial activity profiles of their silver salts. Molecular dynamics at different simulation protocols and conformational analysis were performed to elaborate on the conformational features of the studied dendrimers, as well as to create the initial structure for further binding studies. The results showed that for all compounds, there were no significant conformational changes due to variation in simulation conditions. Molecular docking calculations were performed to investigate the binding theme between the studied dendrimers and PBPs. Interestingly, in significant accordance with the experimental data, dendron and dendrimer with aliphatic cores were found to show higher activity against S. aureus than the dendrimer with an aromatic core. The latter showed higher activity against MRSA. The findings from this computational and molecular modeling report together with the experimental results serve as a road map toward designing more potent antibacterial dendrimers against resistant bacterial strains.

  20. The Mucus of Actinia equina (Anthozoa, Cnidaria): An Unexplored Resource for Potential Applicative Purposes.

    PubMed

    Stabili, Loredana; Schirosi, Roberto; Parisi, Maria Giovanna; Piraino, Stefano; Cammarata, Matteo

    2015-08-19

    The mucus produced by many marine organisms is a complex mixture of proteins and polysaccharides forming a weak watery gel. It is essential for vital processes including locomotion, navigation, structural support, heterotrophic feeding and defence against a multitude of environmental stresses, predators, parasites, and pathogens. In the present study we focused on mucus produced by a benthic cnidarian, the sea anemone Actinia equina (Linnaeus, 1758) for preventing burial by excess sedimentation and for protection. We investigated some of the physico-chemical properties of this matrix such as viscosity, osmolarity, electrical conductivity, protein, carbohydrate, and total lipid contents. Some biological activities such as hemolytic, cytotoxic, and antibacterial lysozyme-like activities were also studied. The A. equina mucus is mainly composed by water (96.2% ± 0.3%), whereas its dry weight is made of 24.2% ± 1.3% proteins and 7.8% ± 0.2% carbohydrates, with the smallest and largest components referable to lipids (0.9%) and inorganic matter (67.1%). The A. equina mucus matrix exhibited hemolytic activity on rabbit erythrocytes, cytotoxic activity against the tumor cell line K562 (human erythromyeloblastoid leukemia) and antibacterial lysozyme-like activity. The findings from this study improve the available information on the mucus composition in invertebrates and have implications for future investigations related to exploitation of A. equina and other sea anemones' mucus as a source of bioactive compounds of high pharmaceutical and biotechnological interest.

  1. Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus.

    PubMed

    Kapalschinski, N; Seipp, H M; Kückelhaus, M; Harati, K K; Kolbenschlag, J J; Daigeler, A; Jacobsen, F; Lehnhardt, M; Hirsch, T

    2017-04-02

    The influence of proteins on the efficacy of antiseptic solutions has been rarely investigated even though exudate can contain high levels of protien. The aim of this study was to analyse the antibacterial efficacy of commonly used solutions in the presence of albumin protein. Using Staphylococcus aureus in a standardised quantitative suspension assay, the antibacterial effects of poly (1-(2-oxo-1-pyrrolidinyl) ethylene)-iodine (PVP-I) and octenidin-dihydrochloride/phenoxyethanol (OCT/PE) were analysed in the presence of 0-3% bovine serum albumin (BSA). These were compared with previous results obtained with polyhexamethylene biguanide hydrochloride (PHMB). Presence of albumin caused a significant (p<0.001) decrease in antibacterial effect in the analysed solutions. The concentrations of albumin that provoked highly significant decreases in the bacterial reduction factors of the study agents were: 0.01875 % for PVP-I, followed by 0.75 % for OCT/PE. After addition of 3 % albumin, adequate antimicrobial effects were ensured for titrations to 5 % PVP-I and 8 % OCT/PE. As we could show before, it is not possible to titrate PHMB in order to assure adequate potency. This study demonstrates that albumin induces a significant decrease of the antibacterial potency of the analysed solutions.

  2. A Discontinuous Potential Model for Protein-Protein Interactions.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-01-01

    Protein-protein interactions play an important role in many biologic and industrial processes. In this work, we develop a two-bead-per-residue model that enables us to account for protein-protein interactions in a multi-protein system using discontinuous molecular dynamics simulations. This model deploys discontinuous potentials to describe the non-bonded interactions and virtual bonds to keep proteins in their native state. The geometric and energetic parameters are derived from the potentials of mean force between sidechain-sidechain, sidechain-backbone, and backbone-backbone pairs. The energetic parameters are scaled with the aim of matching the second virial coefficient of lysozyme reported in experiment. We also investigate the performance of several bond-building strategies.

  3. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine if lysozyme in nursery diets improved growth performance and gastrointestinal health of pigs weaned from the sow at 24 d of age. Two replicates of 96 pigs (192 total 96 males,...

  4. Lysozyme as an alternative to antibiotics improves performance in nursery pigs during an indirect immune challenge

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on growth performance and immune response during an indirect immune challenge. Two replicates of 600 pigs each were weaned from the sow at 2...

  5. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella).

    PubMed

    Zhao, Hua-Fu; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-05-01

    An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P < 0.05). In addition, appropriate dietary choline significantly decreased the oxidative damage, which might be partly due to increase copper, zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) activities and increased glutathione content in the gills of fish (P < 0.05). Moreover, appropriate dietary choline significantly up-regulated the mRNA levels of interleukin 10 and transforming growth factor β1, Zonula occludens 1, Occludin, Claudin-b, c, 3 and 12, inhibitor of κBα, target of rapamycin, Cu/Zn-SOD, CAT, GR, GPx, GST and NF-E2-related factor 2 in the gills of fish (P < 0.05). Conversely, appropriate dietary choline significantly down-regulated the mRNA levels of pro-inflammatory cytokines, tumor necrosis factor α, interleukin 8, interferon γ, interleukin 1β, and related signaling factors, nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, myosin light chain kinase and Kelch-like-ECH-associated protein 1a (Keap1a) in the gills of fish (P < 0.05). However, choline did not have a significant effect on the mRNA levels of IκB kinase α, Claudin-15 and Keap1b in the gills of fish. Collectively, appropriate dietary choline levels improved gill antibacterial properties and relative gene expression levels of tight junction proteins, and decreased inflammatory status, as well as up-regulated the mRNA levels of related signaling molecules in the gills of fish. Based on gill C3 content and AHR activity

  6. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  7. Protein Structural Perturbation and Aggregation on Homogeneous Surfaces

    PubMed Central

    Sethuraman, Ananthakrishnan; Belfort, Georges

    2005-01-01

    We have demonstrated that globular proteins, such as hen egg lysozyme in phosphate buffered saline at room temperature, lose native structural stability and activity when adsorbed onto well-defined homogeneous solid surfaces. This structural loss is evident by α-helix to turns/random during the first 30 min and followed by a slow α-helix to β-sheet transition. Increase in intramolecular and intermolecular β-sheet content suggests conformational rearrangement and aggregation between different protein molecules, respectively. Amide I band attenuated total reflection/Fourier transformed infrared (ATR/FTIR) spectroscopy was used to quantify the secondary structure content of lysozyme adsorbed on six different self-assembled alkanethiol monolayer surfaces with –CH3, –OPh, –CF3, –CN, –OCH3, and –OH exposed functional end groups. Activity measurements of adsorbed lysozyme were in good agreement with the structural perturbations. Both surface chemistry (type of functional groups, wettability) and adsorbate concentration (i.e., lateral interactions) are responsible for the observed structural changes during adsorption. A kinetic model is proposed to describe secondary structural changes that occur in two dynamic phases. The results presented in this article demonstrate the utility of the ATR/FTIR spectroscopic technique for in situ characterization of protein secondary structures during adsorption on flat surfaces. PMID:15542559

  8. In vitro evaluation of a mammary gland specific expression vector encoding recombinant human lysozyme for development of transgenic dairy goat embryos.

    PubMed

    Gui, Tao; Zhang, Meiling; Chen, Jianwen; Zhang, Yuanliang; Zhou, Naru; Zhang, Yu; Tao, Jia; Sui, Liucai; Li, Yunsheng; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2012-08-01

    A vector expressing human lysozyme (pBC1-hLYZ-GFP-Neo) was evaluated for gene and protein expression following liposome-mediated transformation of C-127 mouse mammary cancer cells. Cultures of G418-resistant clones were harvested 24-72 h after induction with prolactin, insulin and hydrocortisone. Target gene expression was analyzed by RT-PCR and Western blot and recombinant human lysozyme (rhLYZ) bacteriostatic activity was also evaluated. The hLYZ gene was correctly transcribed and translated in C-127 cells and hLYZ inhibited gram-positive bacterial growth, indicating the potential of this expression vector for development of a mammary gland bioreactor in goats. Guanzhong dairy goat skin fibroblasts transfected with pBC1-hLYZ-GFP-Neo were used to construct a goat embryo transgenically expressing rhLYZ by somatic nuclear transplantation with a blastocyst rate of 9.0 ± 2.8 %. These data establish the basis for cultivation of mastitis-resistant hLYZ transgenic goats.

  9. Antibacterial activity of Litsea cubeba (Lauraceae, May Chang) and its effects on the biological response of common carp Cyprinus carpio challenged with Aeromonas hydrophila.

    PubMed

    Nguyen, H V; Caruso, D; Lebrun, M; Nguyen, N T; Trinh, T T; Meile, J-C; Chu-Ky, S; Sarter, S

    2016-08-01

    The aims of this study were to characterize the antibacterial activity and the chemotype of Litsea cubeba leaf essential oil (EO) harvested in North Vietnam and to investigate the biological effects induced by the leaf powder on growth, nonspecific immunity and survival of common carp (Cyprinus carpio) challenged with Aeromonas hydrophila. The EO showed the prevalence of linalool (95%, n = 5). It was bactericidal against the majority of tested strains, with minimum inhibitory concentrations ranging from 0·72 to 2·89 mg ml(-1) (Aer. hydrophila, Edwarsiella tarda, Vibrio furnissii, Vibrio parahaemolyticus, Streptococcus garvieae, Escherichia coli, Salmonella Typhimurium). The fish was fed with 0 (control), 2, 4 and 8% leaf powder supplementation diets for 21 days. Nonspecific immunity parameters (lysozyme, haemolytic and bactericidal activities of plasma) were assessed 21 days after feeding period and before the experimental infection. Weight gain, specific growth rate and feed conversion ratio were improved by supplementation of L. cubeba in a dose-related manner, and a significant difference appeared at the highest dose (8%) when compared to the control. The increase in plasma lysozyme was significant for all the treated groups. Haemolysis activity was higher for the groups fed with 4 and 8% plant powder. Antibacterial activity increased significantly for the 8% dose only. Litsea cubeba leaf powder increased nonspecific immunity of carps in dose-related manner. After infection with Aer. hydrophila, survivals of fish fed with 4 and 8% L. cubeba doses were significantly higher than those fed with 2% dose and the control. A range of 4-8% L. cubeba leaf powder supplementation diet (from specific linalool-rich chemotype) can be used in aquaculture to reduce antibiotic burden and impacts of diseases caused by Aer. hydrophila. © 2016 The Society for Applied Microbiology.

  10. In vitro antibacterial activity of Hibiscus rosa-sinensis flower extract against human pathogens

    PubMed Central

    Ruban, P; Gajalakshmi, K

    2012-01-01

    Objective To access the in vitro antibacterial activity of Hibiscus rosa-sinensis (H. rosa- sinensis) flower extract against human pathogens. Methods Antibacterial activity was evaluated by using disc and agar diffusion methods. The protein was run through poly acrylmide gel electrophoresis to view their protein profile. Results The results showed that the cold extraction illustrates a maximum zone of inhibition against Bacillus subtillis (B. subtillis), Escherichia coli (E. coli) viz., (17.00 ± 2.91), (14.50 ± 1.71) mm, followed by hot extraction against, E. coli, Salmonella sp. as (11.66 ± 3.14), (10.60 ± 3.09) mm. In methanol extraction showed a highest zone of inhibition recorded against B. subtillis, E. coli as (18.86 ± 0.18), (18.00 ± 1.63) mm pursued by ethanol extraction showed utmost zone of inhibition recorded against Salmonella sp. at (20.40 ± 1.54) mm. The crude protein from flower showed a maximum inhibitory zone observed against Salmonella sp., E. coli viz., (16.55 ± 1.16), (14.30 ± 2.86) mm. The flower material can be taken as an alternative source of antibacterial agent against the human pathogens. Conclusions The extracts of the H. rosa-sinensis are proved to have potential antibacterial activity, further studies are highly need for the drug development. PMID:23569938

  11. Science Study Aids 6: Lysozyme - The Cooperative Enzyme.

    ERIC Educational Resources Information Center

    Boeschen, John; Alderton, Gordon

    This publication is the sixth of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grade levels 10 through 12. It is concerned with the crystallization of an enzyme, lysozyme, from egg white. The first part of this guide…

  12. Baicalin promotes the bacteriostatic activity of lysozyme on S. aureus in mammary glands and neutrophilic granulocytes in mice

    PubMed Central

    Zhang, Zecai; Shen, Peng; Yang, Zhengtao; Zhang, Naisheng

    2017-01-01

    Staphylococcus aureus causes mastitis as a result of community-acquired or nosocomial infections. Lysozyme (LYSO) is an enzyme that is upregulated in many organisms during the innate immune response against infection by bacterial pathogens. Baicalin is a bioactive flavonoid that can bind to enzymes, often to potentiate their effect. Here we tested the effects of baicalin on the activity of LYSO using the S. aureus mastitis mouse model and neutrophilic granulocyte model of S. aureus infection. In our experiments, S. aureus counts decreased with increasing baicalin concentration. Furthermore, qPCR and western blot analyses showed that LYSO expression was unaffected by baicalin, while fluorescence quenching and UV fluorescence spectral analyses showed that baicalin binds to LYSO. To test whether this binding increased LYSO activity, we assessed LYSO-induced bacteriostasis in the presence of baicalin. Our results showed that LYSO-induced S. aureus bacteriostasis increased with increasing concentrations of baicalin, and that baicalin binding to LYSO synergistically increased the antibacterial activity of LYSO. These results demonstrate that baicalin enhances LYSO-induced bacteriostasis during the innate immune response to S. aureus. They suggest baicalin is a potentially useful therapeutic agent for the treatment of bacterial infections. PMID:28184027

  13. Interaction between rose bengal and different protein components.

    PubMed

    Tseng, S C; Zhang, S H

    1995-07-01

    Bindings of rose bengal to several proteins were determined by Sephadex G-75 chromatography. Their respective blocking effect against dye uptake was demonstrated in an assay using a rabbit corneal epithelial cell layer. The total binding capacity of nonmucin proteins was measured using fluorometry and Scatchard analysis. The results showed that albumin, lactoferrin, transferrin, and lysozyme could--but serum prealbumin, IgA, carboxymethyl cellulose (CMC), and Sepharose 4B-purified porcine stomach mucin (PSM) could not--bind rose bengal. Lysozyme formed precipitates with rose bengal. Sufficient concentrations of albumin, lactoferrin, transferrin, or lysozyme premixed with rose bengal could block dye uptake by cells, but IgA and serum prealbumin could not. Premixed PSM was not as effective as precoated PSM in blocking dye uptake. The dissociation constant (Kd) was 1.2 x 10(-7) M, 3.6 x 10(-7) M, 3.9 x 10(-7) M, and 1.6 x 10(-6) M for albumin, transferrin, lactoferrin, and lysozyme, respectively. Based on these values, the total maximal binding capacity of nonmucin proteins in normal 7-microliters tears was extrapolated to be 0.249 micrograms rose bengal, which is too small to explain the negative staining of rose bengal on the normal ocular surface. Rose bengal, but not fluorescein, could interact with carbohydrate-containing Sephadex, CMC, and PSM to slow down its elution via Sephadex column chromatography. Therefore, the normal negative staining to rose bengal might be caused by the blocking effect of preocular mucus tear layer, which serves as a diffusion barrier. Rose bengal remains a unique dye for detecting the protective function of the preocular mucus tear.

  14. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  15. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  16. Effect of salt entropy on protein solubility and Hofmeister series

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    We present a theory of salt effects on protein solubility that accounts for salting-in, salting-out, and the Hofmeister series. We represent protein charge by the first order multipole expansion to include attractive and repulsive electrostatic interactions in the model. Our model also includes non-electrostatic protein-ion interactions, and ion-solvent interactions via an effective solvated ion radius. We find that the finite size of the ions has significant effects on the translational entropy of the salt, which accounts for the changes in the protein solubility. At low salt the dominant effect comes from the entropic cost of confining ions within the aggregate. At high concentrations the salt drives a depletion attraction that favors aggregation. Our theory explains the reversal in the Hofmeister series observed in lysozyme cloud point measurements and semi-quantitatively describes the solubility of lysozyme and chymosin crystals.

  17. Effect of urea on protein-ligand association.

    PubMed

    Stepanian, Lora; Son, Ikbae; Chalikian, Tigran V

    2017-12-01

    We combine experimental and theoretical approaches to investigate the influence of a cosolvent on a ligand-protein association event. We apply fluorescence measurements to determining the affinity of the inhibitor tri-N-acetylglucosamine [(GlcNAc) 3 ] for lysozyme at urea concentrations ranging from 0 to 8M. Notwithstanding that, at room temperature and neutral pH, lysozyme retains its native conformation up to the solubility limit of urea, the affinity of (GlcNAc) 3 for the protein steadily decreases as the concentration of urea increases. We analyze the urea dependence of the binding free energy within the framework of a simplified statistical thermodynamics-based model that accounts for the excluded volume effect and direct solute-solvent interactions. The analysis reveals that the detrimental action of urea on the inhibitor-lysozyme binding originates from competition between the free energy contributions of the excluded volume effect and direct solute-solvent interactions. The free energy contribution of direct urea-solute interactions narrowly overcomes the excluded volume contribution thereby resulting in urea weakening the protein-ligand association. More broadly, the successful application of the simple model employed in this work points to the possibility of its use in quantifying the stabilizing/destabilizing action of individual cosolvents on biochemical folding and binding reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Combined pulmonary involvement in hereditary lysozyme amyloidosis with associated pulmonary sarcoidosis: a case report.

    PubMed

    McCarthy, Cormac; Deegan, Alexander P; Garvey, John F; McDonnell, Timothy J

    2013-12-17

    Sarcoidosis is a multisystem inflammatory disorder of unknown cause which can affect any organ system. Autosomal dominant lysozyme amyloidosis is a very rare form of hereditary amyloidosis. The Arg64 variant is extraordinarily rare with each family showing a particular pattern of organ involvement, however while Sicca syndrome, gastrointestinal involvement and renal failure are common, lymph node involvement is very rare. In this case report we describe the first reported case of sarcoidosis in association with hereditary lysozyme amyloidosis.

  19. In-line Fourier-transform infrared spectroscopy as a versatile process analytical technology for preparative protein chromatography.

    PubMed

    Großhans, Steffen; Rüdt, Matthias; Sanden, Adrian; Brestrich, Nina; Morgenstern, Josefine; Heissler, Stefan; Hubbuch, Jürgen

    2018-04-27

    Fourier-transform infrared spectroscopy (FTIR) is a well-established spectroscopic method in the analysis of small molecules and protein secondary structure. However, FTIR is not commonly applied for in-line monitoring of protein chromatography. Here, the potential of in-line FTIR as a process analytical technology (PAT) in downstream processing was investigated in three case studies addressing the limits of currently applied spectroscopic PAT methods. A first case study exploited the secondary structural differences of monoclonal antibodies (mAbs) and lysozyme to selectively quantify the two proteins with partial least squares regression (PLS) giving root mean square errors of cross validation (RMSECV) of 2.42 g/l and 1.67 g/l, respectively. The corresponding Q 2 values are 0.92 and, respectively, 0.99, indicating robust models in the calibration range. Second, a process separating lysozyme and PEGylated lysozyme species was monitored giving an estimate of the PEGylation degree of currently eluting species with RMSECV of 2.35 g/l for lysozyme and 1.24 g/l for PEG with Q 2 of 0.96 and 0.94, respectively. Finally, Triton X-100 was added to a feed of lysozyme as a typical process-related impurity. It was shown that the species could be selectively quantified from the FTIR 3D field without PLS calibration. In summary, the proposed PAT tool has the potential to be used as a versatile option for monitoring protein chromatography. It may help to achieve a more complete implementation of the PAT initiative by mitigating limitations of currently used techniques. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit.

    PubMed

    Takahashi, Michiko; Okakura, Yumiko; Takahashi, Hajime; Imamura, Minami; Takeuchi, Akira; Shidara, Hiroyuki; Kuda, Takashi; Kimura, Bon

    2018-02-02

    Hepatitis A virus (HAV) is well known worldwide as a causative virus of acute hepatitis. In recent years, numerous cases of HAV infection caused by HAV-contaminated berries have occurred around the world. Because berries are often consumed without prior heating, reliable disinfection of the raw fruit is important in order to prevent HAV outbreaks. Previous studies have found that murine norovirus strain 1 (MNV-1) and human norovirus GII.4 were inactivated in heat-denatured lysozyme solution. In this study, we investigated whether or not heat-denatured lysozyme is effective in inactivating HAV and whether it could be an effective disinfectant for berries contaminated with HAV or MNV-1. We examined the inactivating effect of heat-denatured lysozyme on three strains of HAV and found that it reduced the infectivity of all three strains. We then immersed blueberries and mixed berries into solutions of HAV or MNV-1, and disinfected them by soaking them in 1% heat-denatured lysozyme for 1min. Consequently, the infectious HAV and MNV-1 contaminating the berries were decreased by >3.1 log units in all samples. Our results demonstrate that heat-denatured lysozyme effectively inactivates HAV and suggest that heat-denatured lysozyme may be an effective disinfectant for berry fruit, which is a potential source of HAV food poisoning. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ultrasensitive detection of lysozyme in droplet-based microfluidic devices.

    PubMed

    Giuffrida, Maria Chiara; Cigliana, Giovanni; Spoto, Giuseppe

    2018-05-01

    Lysozyme (LYS) is a bacteriolytic enzyme, available in secretions such as saliva, tears and human milk. LYS is an important defence molecule of the innate immune system, and its overexpression can be a consequence of diseases such as leukemia, kidney disease and sarcoidosis. This paper reports on a digital microfluidic-based approach that combines the gold nanoparticle-enhanced chemiluminescence with aptamer interaction to detect human lysozyme into droplets 20 nanoliters in volume. The described method allows identifying LYS with a 44.6 femtomolar limit of detection, using sample volume as low as 1μL and detection time in the range of 10min. We used luminol to generate the chemiluminescence and demonstrated that the compartmentalization of LYS in droplets also comprising gold nanoparticles provided enhanced luminescence. We functionalized the gold nanoparticles with a thiolated aptamer to achieve the required selectivity that allowed us to detect LYS in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Combining the Physical Adsorption Approach and the Covalent Attachment Method to Prepare a Bifunctional Bioreactor

    PubMed Central

    Dong, Mengxing; Wu, Zhuofu; Lu, Ming; Wang, Zhi; Li, Zhengqiang

    2012-01-01

    Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N2 adsorption-desorption and thermogravimetric (TG) analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR) and UV/VIS measurement. With o-dianisidine and H2O2 as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme. PMID:23109864

  3. Protein instability toward organic solvent/water emulsification: implications for protein microencapsulation into microspheres.

    PubMed

    Sah, H

    1999-01-01

    The objective of this study was to investigate the behavior of three proteins at an organic solvent/water interface. To simulate the first microencapsulation step of a water-in-oil-in-water emulsion technique, a water-in-oil emulsion was prepared by emulsifying an aqueous protein solution in either methylene chloride or ethyl acetate. Phase separation was then followed to collect protein samples from the aqueous phase and the organic solvent/water interface. Their properties were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion-HPLC. Bovine serum albumin was relatively unharmed during emulsification, compared to other proteins such as ovalbumin and lysozyme. In particular, the methylene chloride treatment on ovalbumin led to the formation of a large quantity of water-insoluble, solid-like aggregates and changes in the composition of monomeric and dimeric ovalbumin species. With regard to the question of ovalbumin recovery, only 9.74 approximately 37.72% of the used ovalbumin was present in the aqueous phases after emulsification. Similar penchant was noted with lysozyme. Water-insoluble aggregates brought with by emulsification were found to be covalently bound. Interestingly, less emulsification-induced denaturing effects were observed with ethyl acetate. Our study clearly demonstrated the emulsification-induced adverse events that were detrimental to the integrity of proteins and the importance of preserving protein stability toward microencapsulation.

  4. The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long

    2011-06-01

    As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.

  5. A step towards long-wavelength protein crystallography: subjecting protein crystals to a vacuum

    PubMed Central

    Panjikar, Santosh; Thomsen, Lars; O’Donnell, Kane Michael; Riboldi-Tunnicliffe, Alan

    2015-01-01

    Using the UHV experimental endstation on the soft X-ray beamline at the Australian Synchrotron, lysozyme and proteinase K crystals have been exposed to a vacuum of 10−5 mbar, prior to flash-cooling in a bath of liquid nitrogen. Subsequent data collection on the MX2 beamline at the Australian Synchrotron demonstrated that, for lysozyme and proteinase K, it is possible to subject these mounted crystals to a vacuum pressure of 10−5 mbar without destroying the crystal lattice. Despite the lower data quality of the vacuum-pumped crystals compared with control crystals, it is demonstrated that the protein crystals can survive in a vacuum under suitable conditions. PMID:26089765

  6. The efficiency of contact lens care regimens on protein removal from hydrogel and silicone hydrogel lenses

    PubMed Central

    Heynen, Miriam; Liu, Lina; Sheardown, Heather; Jones, Lyndon

    2010-01-01

    Purpose To investigate the efficiency of lysozyme and albumin removal from silicone hydrogel and conventional contact lenses, using a polyhexamethylene biguanide multipurpose solution (MPS) in a soaking or rubbing/soaking application and a hydrogen peroxide system (H2O2). Methods Etafilcon A, lotrafilcon B and balafilcon A materials were incubated in protein solutions for up to 14 days. Lenses were either placed in radiolabeled protein to quantify the amount deposited or in fluorescent-conjugated protein to identify its location, using confocal laser scanning microscopy (CLSM). Lenses were either rinsed with PBS or soaked overnight in H2O2 or MPS with and without lens rubbing. Results After 14 days lysozyme was highest on etafilcon A (2,200 μg) >balafilcon A (50 µg) >lotrafilcon B (9.7 µg) and albumin was highest on balafilcon A (1.9 µg) =lotrafilcon B (1.8 µg) >etafilcon A (0.2 µg). Lysozyme removal was greatest for balafilcon A >etafilcon A >lotrafilcon B, with etafilcon A showing the most change in protein distribution. Albumin removal was highest from etafilcon A >balafilcon A >lotrafilcon B. H2O2 exhibited greater lysozyme removal from etafilcon A compared to both MPS procedures (p<0.001) but performed similarly for lotrafilcon B and balafilcon A lenses (p>0.62). Albumin removal was solely material specific, while all care regimens performed to a similar degree (p>0.69). Conclusions Protein removal efficiency for the regimens evaluated depended on the lens material and protein type. Overall, lens rubbing with MPS before soaking did not reduce the protein content on the lenses compared to nonrubbed lenses (p=0.89). PMID:20098668

  7. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review

    NASA Astrophysics Data System (ADS)

    Shapiro, Adam B.

    2016-06-01

    This review covers the uses of fluorescence polarization and anisotropy for the investigation of bacterial penicillin binding proteins (PBPs), which are the targets of β-lactam antibacterial drugs (penicillins, cephalosporins, carbapenems, and monobactams), and of the β-lactamase enzymes that destroy these drugs and help to render bacterial pathogens resistant to them. Fluorescence polarization and anisotropy-based methods for quantitation of β-lactam drugs are also reviewed. A particular emphasis is on methods for quantitative measurement of the interactions of β-lactams and other inhibitors with PBPs and β-lactamases.

  8. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  9. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-03-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  10. Interaction mechanism between berberine and the enzyme lysozyme

    NASA Astrophysics Data System (ADS)

    Cheng, Ling-Li; Wang, Mei; Wu, Ming-Hong; Yao, Si-De; Jiao, Zheng; Wang, Shi-Long

    2012-11-01

    In the present paper, the interaction between model protein lysozyme (Lys) and antitumorigenic berberine (BBR) was investigated by spectroscopic methods, for finding an efficient and safe photosensitizer with highly active transient products using in photodynamic therapy study. The fluorescence data shows that the binding of BBR could change the environment of the tryptophan (Trp) residues of Lys, and form a new complex. Static quenching is the main fluorescence quenching mechanism between Lys and BBR, and there is one binding site in Lys for BBR and the type of binding force between them was determined to be hydrophobic interaction. Furthermore, the possible interaction mechanism between BBR and Lys under the photoexcitation was studied by laser flash photolysis method, the results demonstrated that BBR neutral radicals (BBR(-H)•) react with Trp (K = 3.4 × 109 M-1 s-1) via electron transfer to give the radical cation (Trp/NH•+) and neutral radical of Trp (TrpN•). Additionally BBR selectively oxidize the Trp residues of Lys was also observed by comparing the transient absorption spectra of their reaction products. Through thermodynamic calculation, the reaction mechanisms between 3BBR∗ and Trp or Lys were determined to be electron transfer process.

  11. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property.

    PubMed

    Li, Jiwei; Ma, Jianwei; Chen, Shaojuan; Huang, Yudong; He, Jinmei

    2018-08-01

    The large-scale applications of lysozyme in the pharmaceutical industry and food industry require more efficient and cost-effective techniques for its separation/purification. In the present study, graphene oxide (GO) was encapsulated into environmentally benign sodium alginate (SA) to prepare a Ca 2+ crosslinked alginate/graphene oxide composite gel beads (Ca-SA/GO) which were then used to adsorb lysozyme from aqueous solutions. Compared with pure Ca 2+ crosslinked alginate gel beads (Ca-SA), the as-prepared Ca-SA/GO has a lower swelling degree, an improved gel stability in salt solutions, and a higher mechanical performance. This can be explained by the uniform distribution of GO sheets in the Ca-SA matrix and the existence of hydrogen bonding and high interfacial adhesion between GO filler and SA matrix demonstrated by SEM, FTIR, XRD, and TGA. Batch adsorption experiments found that the lysozyme adsorption capacity of Ca-SA/GO can reach 278.28 mg g -1 and it can be regenerated and reused at least 4 times. Moreover, in column adsorption, the Ca-SA/GO showed excellent dynamic adsorption property. With good stability, adsorption capacity, and regeneration ability, the Ca-SA/GO could be a promising adsorbent for lysozyme from aqueous solutions. Copyright © 2018. Published by Elsevier B.V.

  12. Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion

    NASA Astrophysics Data System (ADS)

    Guadarrama-Zempoalteca, Yesica; Díaz-Gómez, Luis; Meléndez-Ortiz, H. Iván; Concheiro, Angel; Alvarez-Lorenzo, Carmen; Bucio, Emilio

    2016-09-01

    The aim of the present work was to functionalize poly(vinyl chloride) (PVC) urinary catheters with grafted copolymers that can improve the biocompatibility and serve as binding points of lysozyme. PVC catheters were modified by grafting a mixture of N-vinylcaprolactam (NVCL) and 2-hydroxyethylmethacrylate (HEMA) applying a gamma-ray pre-irradiation method. The effect of absorbed dose, monomer concentration, temperature, and reaction time on the grafting percentage was evaluated. The grafted catheters were characterized regarding surface composition (FTIR-ATR spectroscopy), thermal properties (DSC and TGA) and swelling in aqueous medium. Lysozyme was directly coupled onto PVC-g-(NVCL/HEMA) previously activated using carbonyldiimidazole. Antimicrobial lytic activity of the modified catheters over time was tested against Micrococcus lysodeikticus. Lysozyme diminished the adhesion of Staphylococcus aureus onto the functionalized catheters, which may be suitable to prevent biofilm formation.

  13. Antibacterial Efficacy of Polysaccharide Capped Silver Nanoparticles Is Not Compromised by AcrAB-TolC Efflux Pump

    PubMed Central

    Mishra, Mitali; Kumar, Satish; Majhi, Rakesh K.; Goswami, Luna; Goswami, Chandan; Mohapatra, Harapriya

    2018-01-01

    Antibacterial therapy is of paramount importance in treatment of several acute and chronic infectious diseases caused by pathogens. Over the years extensive use and misuse of antimicrobial agents has led to emergence of multidrug resistant (MDR) and extensive drug resistant (XDR) pathogens. This drastic escalation in resistant phenotype has limited the efficacy of available therapeutic options. Thus, the need of the hour is to look for alternative therapeutic approaches to mitigate healthcare concerns caused due to MDR bacterial infections. Nanoparticles have gathered much attention as potential candidates for antibacterial therapy. Equipped with advantages of, wide spectrum bactericidal activity at very low dosage, inhibitor of biofilm formation and ease of permeability, nanoparticles have been considered as leading therapeutic candidates to curtail infections resulting from MDR bacteria. However, substrate non-specificity of efflux pumps, particularly those belonging to resistance nodulation division super family, have been reported to reduce efficacy of many potent antibacterial therapeutic drugs. Previously, we had reported antibacterial activity of polysaccharide-capped silver nanoparticles (AgNPs) toward MDR bacteria. We showed that AgNPs inhibits biofilm formation and alters expression of cytoskeletal proteins FtsZ and FtsA, with minimal cytotoxicity toward mammalian cells. In the present study, we report no reduction in antibacterial efficacy of silver nanoparticles in presence of AcrAB-TolC efflux pump proteins. Antibacterial tests were performed according to CLSI macrobroth dilution method, which revealed that both silver nanoparticles exhibited bactericidal activity at very low concentrations. Further, immunoblotting results indicated that both the nanoparticles modulate the transporter AcrB protein expression. However, expression of the membrane fusion protein AcrA did show a significant increase after exposure to AgNPs. Our results indicate that both

  14. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment.

    PubMed

    Bílek, František; Křížová, Táňa; Lehocký, Marián

    2011-11-01

    Low-density polyethylene (LDPE) samples were treated in air plasma discharge, coated by polyallyamine brush thought copolymeric grafting surface-from reaction and deposited four common antibacterial agents (benzalkonium chloride, bronopol, chlorhexidine and triclosan) to gain material with active antibacterial properties. Surface characteristics were evaluated by static contact angle measurement with surface energy evaluation ATR-FTIR, X-ray Photoelectron Spectroscopy (XPS) and SEM analysis. Inhibition zone on agar was used as in vitro test of antibacterial properties on two representative gram positive Staphylococcus aureus (S. aureus) and gram negative Escherichia coli (E. coli) strains. It was confirmed, that after grafting of polyallyamine, more antibacterial agent is immobilized on the surface. The highest increase of antibacterial activity was observed by the sample containing triclosan. Samples covered by bronopol did not show significant antibacterial activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Chemical composition and antibacterial activities of lupin seeds extracts.

    PubMed

    Lampart-Szczapa, Eleonora; Siger, Aleksander; Trojanowska, Krystyna; Nogala-Kalucka, Małgorzata; Malecka, Maria; Pacholek, Bogdan

    2003-10-01

    Determination of influence of lupin natural phenolic compounds on antibacterial properties of its seeds was carried out. Raw material were seeds of Lupinus albus, L. luteus, and L. angustifolius. The methods included the determination of the content of proteins, total phenolic compounds, free phenolic acids, and tannins as well as antibacterial properties with ethanol extracts. The content of total phenolic compounds was smaller in testas than in cotyledons and the highest levels are observed in bitter cultivars of Lupinus albus cv. Bac and L. angustifolius cv. Mirela. Lupin tannins mainly occurred in cotyledons of the white lupin, predominantly in the bitter cultivar Bac. Free phenolic acids were mainly found in testas. Only extracts from the testas displayed antibacterial properties, which excludes the possibility of alkaloid influence on the results. The results suggest that inhibition of test bacteria growth depended mainly upon the content of the total phenolic compounds.

  16. Probing protein-lipid interactions by FRET between membrane fluorophores

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  17. Trehalose and Magnesium Chloride Exert a Common Anti-amyloidogenic Effect Towards Hen Egg White Lysozyme.

    PubMed

    Chatterjee, Rupsa; Kolli, Vidyalatha; Sarkar, Nandini

    2017-04-01

    Many degenerative disorder such as Parkinsons, Alzheimers, Huntingtons disease, etc are caused due to the deposition of amyloid fibrils, formed due to the ordered aggregation of misfolded/unfolded proteins. Misfolded or unfolded proteins aggregate mostly through hydrophobic interactions which are unexposed in native state, but become exposed upon unfolding. To counteract amyloid related diseases, inhibition of the protein self assembly into fibril is a potential therapeutic strategy. The study aims at investigating the effect of selected compounds, namely trehalose and magnesium chloride hexahydrate towards inhibition and disaggregation of amyloid fibrils using Hen Egg White Lysozyme as a model. We further attempted to understand the mechanism of action with the help of various biophysical, microscopic as well as computational studies. A common mechanism of action was identified where the selected compounds exert their anti-amyloidogenic effects by altering HEWL conformations characterized by reduction in the beta sheet content and decrease in exposed hydrophobic surfaces. The altered conformation seems to have lesser amyloidogenic propensity leading to inhibition as well as disaggregation of amyloids.

  18. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase.

    PubMed

    Kim, Jihoon; Chang, Ji-Youn; Kim, Yoon-Young; Kim, Moon-Jong; Kho, Hong-Seop

    2018-05-01

    To investigate the effects of the molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase in solution and on the hydroxyapatite surface. Hyaluronic acids of four different molecular weights (10 kDa, 100 kDa, 1 MDa, and 2 MDa), hen egg-white lysozyme, bovine lactoperoxidase, and human whole saliva were used. Viscosity values of hyaluronic acids were measured using a cone-and-plate viscometer at six different concentrations (0.1-5.0 mg/mL). Enzymatic activities of lysozyme and peroxidase were examined by hydrolysis of fluorescein-labeled Micrococcus lysodeikticus and oxidation of fluorogenic 2',7'-dichlorofluorescein to fluorescing 2',7'-dichlorofluorescein, respectively. In solution assays, only 2 MDa-hyaluronic acid significantly inhibited lysozyme activities in saliva. In surface assays, hyaluronic acids inhibited lysozyme and peroxidase activities; the inhibitory activities were more apparent with high-molecular-weight ones in saliva than in purified enzymes. The 100 kDa-hyaluronic acid at 5.0 mg/mL, 1 MDa-one at 0.5 mg/mL, and 2 MDa-one at 0.2 mg/mL showed viscosity values similar to those of human whole saliva at a shear rate range required for normal oral functions. The differences among the influences of the three conditions on the enzymatic activities were not statistically significant. High-molecular-weight hyaluronic acids at low concentration and low-molecular-weight ones at high concentration showed viscosity values similar to those of human whole saliva. Inhibitory effects of hyaluronic acids on lysozyme and peroxidase activities were more significant with high-molecular-weight ones on the surface and in saliva compared with in solution and on purified enzymes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.

    PubMed

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-03-03

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  20. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  1. Control of Bacteriophage T4 Tail Lysozyme Activity During the Infection Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanamaru, Shuji; Ishiwata, Yasutaka; Suzuki, Toshiharu

    2010-07-19

    Bacteriophage T4 has an efficient mechanism for injecting the host Escherichia coli cell with genomic DNA. Its gene product 5 (gp5) has a needle-like structure attached to the end of a tube through which the DNA passes on its way out of the head and into the host. The gp5 needle punctures the outer cell membrane and then digests the peptidoglycan cell wall in the periplasmic space. gp5 is normally post-translationally cleaved between residues 351 and 352. The function of this process in controlling the lysozyme activity of gp5 has now been investigated. When gp5 is over-expressed in E. coli,more » two mutants (S351H and S351A) showed a reduction of cleavage products and five other mutants (S351L, S351K, S351Y, S351Q, and S351T) showed no cleavage. Furthermore, in a complementation assay at 20 C, the mutants that had no cleavage of gp5 produced a reduced number of plaques compared to wild-type T4. The crystal structure of the non-cleavage phenotype mutant of gp5, S351L, complexed with gene product 27, showed that the 18 residues in the vicinity of the potential cleavage site (disordered in the wild-type structure) had visible electron density. The polypeptide around the potential cleavage site is exposed, thus allowing access for an E. coli protease. The lysozyme activity is inhibited in the wild-type structure by a loop from the adjacent gp5 monomer that binds into the substrate-binding site. The same inhibition is apparent in the mutant structure, showing that the lysozyme is inhibited before gp5 is cleaved and, presumably, the lysozyme is activated only after gp5 has penetrated the outer membrane.« less

  2. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  3. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection.

    PubMed

    Hu, Z W; Thomas, B R; Chernov, A A

    2001-06-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  4. Cellular but not humoral antibacterial activity of earthworms is inhibited by Aroclor 1254.

    PubMed

    Roch, P; Cooper, E L

    1991-12-01

    Earthworms, Eisenia fetida andrei and Lumbricus terrestris, exposed to Aroclor 1254, followed by infestation with Aeromonas hydrophila, elicited two types of responses. First, in E. fetida, there was no change in the LD50 nor in the in vitro antibacterial growth capacity of cell-free coelomic fluid. Thus, Aroclor exerts no influence on antibacterial proteins nor on the chloragogue cells responsible for their release. Second, in L. terrestris, both a high LD50 value and no antibacterial activity indicate that A. hydrophila was not pathogenic. The 10(4) times higher sensitivity of exposed L. terrestris suggests that Aroclor inhibits leukocyte activity since E. fetida eliminates nonpathogenic bacteria by a cellular mechanism.

  5. Allergenicity of milk of different animal species in relation to human milk.

    PubMed

    Pastuszka, Robert; Barłowska, Joanna; Litwińczuk, Zygmunt

    2016-12-31

    Protein content in cow milk (with over 20 proteins, and peptides may also occur as a result of enzymatic hydrolysis) ranges from 2.5% to 4.2% and is about 1.5-2 times higher than in human milk. Its most important allergens are considered to be β-lactoglobulin (absent in human milk) and αs1-casein. The most similar in composition to human milk is horse and donkey milk. It contains considerably more whey proteins (35-50%) than cow milk (about 20%), and the concentration of the most allergenic casein fraction αs1 is 1.5-2.5 g/l. In comparison, the content of αs1-casein in cow milk is about 10 g/l. β-lactoglobulin present in donkey milk is a monomer, while in milk of ruminants it is a dimer. Like human milk, it contains a substantial amount of lactose (about 7%), which determines its flavour and facilitates calcium absorption. The high lysozyme content (about 1 g/l) gives it antibacterial properties (compared to trace amounts in ruminants). Camel milk is also more digestible and induces fewer allergic reactions, because it lacks β-lactoglobulin, and its β-casein has a different structure. It also contains (compared to cow milk) more antibacterial substances such as lysozyme, lactoferrin and immunoglobulins, and furthermore the number of immunoglobulins is compatible with human ones. Goat milk components have a higher degree of assimilability as compared to cow milk. Its main protein is β-casein, with total protein content depending on the αs1-casein genetic variant. Goats with the '0' variant do not synthesize this allergenic protein. Clinical and immunochemical studies indicate, however, that it cannot be a substitute for cow milk without the risk of an anaphylactic reaction.

  6. Freezing-induced phase separation and spatial microheterogeneity in protein solutions.

    PubMed

    Dong, Jinping; Hubel, Allison; Bischof, John C; Aksan, Alptekin

    2009-07-30

    Amid decades of research, the basic mechanisms of lyo-/cryostabilization of proteins and more complex organisms have not yet been fully established. One major bottleneck is the inability to probe into and control the molecular level interactions. The molecular interactions are responsible for the significant differences in the outcome of the preservation processes. (1) In this communication, we have utilized confocal Raman microspectroscopy to quantify the freezing-induced microheterogeneity and phase separation (solid and liquid) in a frozen solution composed of a model protein (lysozyme) and a lyo-/cryoprotectant (trehalose), which experienced different degrees of supercooling. Detailed quantitative spectral analysis was performed across the ice, the freeze-concentrated liquid (FCL) phases, and the interface region between them. It was established that the characteristics of the microstructures observed after freezing depended not only on the concentration of trehalose in the solution but also on the degree of supercooling. It was shown that, when samples were frozen after high supercooling, small amounts of lysozyme and trehalose were occluded in the ice phase. Lysozyme preserved its native-like secondary structure in the FCL region but was denatured in the ice phase. Also, it was observed that induction of freezing after a high degree of supercooling of high trehalose concentrations resulted in aggregation of the sugar and the protein.

  7. Absolute binding free energies between T4 lysozyme and 141 small molecules: calculations based on multiple rigid receptor configurations

    PubMed Central

    Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.

    2017-01-01

    We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432

  8. Isolation of the Entomopathogenic Fungal Strain Cod-MK1201 from a Cicada Nymph and Assessment of Its Antibacterial Activities.

    PubMed

    Sangdee, Kusavadee; Nakbanpote, Woranan; Sangdee, Aphidech

    2015-01-01

    The entomopathogenic fungus Cod-MK1201 was isolated from a dead cicada nymph. Three regions of ribosomal nuclear DNA, the internal transcribed spacers of nuclear ribosomal DNA repeats (ITS), the partial small subunit of rDNA (nrSSU) , and the partial large subunit of rDNA (nrLSU), and two protein-coding regions, the elongation factor 1α (EF-1α), and the largest subunit of the RNA polymerase II (rpb1) gene, were sequenced and used for fungal identification. The phylogenetic analysis of the ITS and the combined data set of the five genes indicated that the fungal isolate Cod-MK1201 is a new strain of Cordyceps sp. that is closely related to Cordyceps nipponica and C. kanzashiana. Crude extracts of mycelium-cultured Cod-MK1201 were obtained using distilled water and 50% (v/v) ethanol, and the antibacterial activity of each was determined. Both extracts had activity against Gram-positive and Gram-negative bacteria, but the ethanol extract was the more potent of the two. The antibacterial activity of the protein fractions of these extracts was also determined. The protein fraction from the ethanol extract was more antibacterial than the protein fraction from the aqueous extract. Three antibacterial constituents including adenosine, the total phenolic content (TPC), and the total flavonoid content (TFC) was also determined. The results showed that the adenosine content, the TPC, and the TFC of the ethanol extract were more active than those of the aqueous extract. Moreover, synergism was detected between these antibacterial constituents. In conclusion, the entomopathogenic fungal isolate Cod-MK1201 represents a natural source of antibacterial agents.

  9. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation.

    PubMed

    Morshedi, Dina; Ebrahim-Habibi, Azadeh; Moosavi-Movahedi, Ali Akbar; Nemat-Gorgani, Mohsen

    2010-04-01

    Studies on the aggregation of mutant proteins have provided new insights into the genetics of amyloid diseases and the role of the net charge of the protein on the rate, extent, and type of aggregate formation. In the present work, hen egg white lysozyme (HEWL) was employed as the model protein. Acetylation and (separately) citraconylation were employed to neutralize the charge on lysine residues. Acetylation of the lysine residues promoted amyloid formation, resulting in more pronounced fibrils and a dramatic decline in the nucleation time. In contrast, citraconylation produced the opposite effect. In both cases, native secondary and tertiary structures appeared to be retained. Studies on the effect of pH on aggregation suggested greater possibilities for amorphous aggregate formation rather than fibrillation at pH values closer to neutrality, in which the protein is known to take up a conformation more similar to its native form. This is in accord with reports in the literature suggesting that formation of amorphous aggregates is more favored under relatively more native conditions. pH 5 provided a critical environment in which a mixture of amorphous and fibrillar structures were observed. Use of Tango and Aggrescan software which describe aggregation tendencies of different parts of a protein structure suggested critical importance of some of the lysine residues in the aggregation process. Results are discussed in terms of the importance of the net charge in control of protein-protein interactions leading to aggregate formation and possible specific roles of lysine residues 96 and 97. Copyright 2009 Elsevier B.V. All rights reserved.

  10. An energy landscape approach to protein aggregation

    NASA Astrophysics Data System (ADS)

    Buell, Alexander; Knowles, Tuomas

    2012-02-01

    Protein aggregation into ordered fibrillar structures is the hallmark of a class of diseases, the most prominent examples of which are Alzheimer's and Parkinson's disease. Recent results (e.g. Baldwin et al. J. Am. Chem. Soc. 2011) suggest that the aggregated state of a protein is in many cases thermodynamically more stable than the soluble state. Therefore the solubility of proteins in a cellular context appears to be to a large extent under kinetic control. Here, we first present a conceptual framework for the description of protein aggregation ( see AK Buell et al., Phys. Rev. Lett. 2010) that is an extension to the generally accepted energy landscape model for protein folding. Then we apply this model to analyse and interpret a large set of experimental data on the kinetics of protein aggregation, acquired mainly with a novel biosensing approach (see TPJK Knowles et al, Proc. Nat. Acad. Sc. 2007). We show how for example the effect of sequence modifications on the kinetics and thermodynamics of human lysozyme aggregation can be understood and quantified (see AK Buell et al., J. Am. Chem. Soc. 2011). These results have important implications for therapeutic strategies against protein aggregation disorders, in this case lysozyme systemic amyloidosis.

  11. Quantifying Main Trends in Lysozyme Nucleation: The Effects of Precipitant Concentration, Supersaturation and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Leardi, Riccardo; Judge, Russell A.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Full factorial experimental design incorporating multi-linear regression analysis of the experimental data allows quick identification of main trends and effects using a limited number of experiments. In this study these techniques were employed to identify the effect of precipitant concentration, supersaturation, and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal forin of chicken egg white lysozyme. Decreasing precipitant concentration, increasing supers aturation, and increasing impurity, were found to increase crystal numbers. The crystal axial ratio decreased with increasing precipitant concentration, independent of impurity.

  12. The adsorptive behavior of albumin and lysozyme proteins on rod-shaped and plate-shaped hydroxyapatite.

    PubMed

    Ozeki, K; Hoshino, T; Aoki, H; Masuzawa, T

    2013-01-01

    The adsorption behavior of albumin (BSA) and lysozyme (LSZ) on rod-shaped and plate-shaped hydroxyapatite (HA) was investigated to evaluate the influence of crystal orientation and morphology on the selective protein adsorption of HA. The rod-shaped HA was prepared by hydrothermal treatment from β-tricalcium phosphate (β-TCP) in H3PO4 solution (pH 2.0 and 4.0 for HA-pH 2.0 and HA-pH 4.0). The plate-shaped HA was synthesized by hydrolysis of CaHPO4-2H2O (DCPD) in NaOH solution at 40°C and 80°C (HA-40°C and HA-80°C). The synthesized HA was characterized using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). HA-pH 2.0 and HA-pH 4.0 produced rod-shaped crystals that were highly oriented to the a-face plane, whereas HA-40°C and HA-80°C showed a plate-like shape and a c-face preferred orientation. The peak intensity ratio I(300)/I(002) (a/c intensity ratio) from the XRD patterns increased in the following order: HA-80°C, HA-40°C, HA-pH 2.0 and HA-pH 4.0. It also increased as the Ca/P ratio decreased. The amount of adsorbed BSA increased in the following order: HA-pH 4.0, HA-pH 2.0, HA-40°C and HA-80°C. The amount of adsorbed LSZ on HA increased in the following order--HA-pH 2.0, HA-pH 4.0, HA-40°C and HA-80°C--with a corresponding decrease in the a/c intensity ratio. The BSA/LSA adsorption ratio increased with the a/c intensity ratio in the range of 3.3-8.9, and the BSA and LSZ were selectively adsorbed on HA, depending on the crystal shape.

  13. Electrochemical study on the corrosion resistance of plasma nanocoated 316L stainless steel in albumin- and lysozyme-containing electrolytes

    PubMed Central

    Jones, John Eric; Chen, Meng; Chou, Ju; Yu, Qingsong

    2017-01-01

    The physiological corrosion resistance of plasma nanocoated 316L stainless steel was studied in protein-containing electrolytes using electrochemical methods. Plasma nanocoatings with thicknesses of 20–30 nm were deposited onto 316L stainless steel coupons in a glow discharge of trimethylsilane (TMS) or its mixture with oxygen gas under various gas ratios. The surface chemistries of the plasma nanocoatings were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Corrosion properties of the plasma nanocoated 316L stainless steel coupons were assessed using potentiodynamic polarization, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) in phosphate-buffered saline (PBS) electrolytes that contain bovine serum albumin (BSA) or lysozyme. It was found that BSA adsorption on the plasma nanocoated 316L coupons was heavily favored. BSA adsorption on the plasma nanocoating surfaces could block charge-transfer reactions between the electrolyte and 316L substrate, and thus stabilize the 316L substrates from further corrosion. In contrast, lysozyme adsorption on the plasma nanocoated specimens was not as pronounced and mildly influenced the corrosion properties of the plasma nanocoated 316L stainless steel. PMID:29422723

  14. The impact of particle preparation methods and polymorphic stability of lipid excipients on protein distribution in microparticles.

    PubMed

    Liu, Jingying; Christophersen, Philip C; Yang, Mingshi; Nielsen, Hanne M; Mu, Huiling

    2017-12-01

    The present study aimed at elucidating the influence of polymorphic stability of lipid excipients on the physicochemical characters of different solid lipid microparticles (SLM), with the focus on the alteration of protein distribution in SLM. Labeled lysozyme was incorporated into SLM prepared with different excipients, i.e. trimyristin (TG14), glyceryl distearate (GDS), and glyceryl monostearate (GMS), by water-oil-water (w/o/w) or solid-oil-water (s/o/w) method. The distribution of lysozyme in SLM and the release of the protein from SLM were evaluated by confocal laser scanning microscopy. The storage stability of SLM was characterized by HPLC, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. Lysozyme was displayed as small scattered domains inside GDS and GMS SLM, whereas it was incorporated in the core of TG14 SLM formulated by the w/o/w method or evenly distributed in TG14 SLM prepared by the s/o/w method. Stability study at 37 °C revealed that only TG14 SLM made by the w/o/w method was able to maintain the lysozyme amount both on the particle surface and released from the SLM. Elevated storage temperature induced polymorphic transition of lipids in GDS and GMS SLM, which was, however, not remarkable for the TG14 SLM. Lipid excipients and particle preparation methods were found to differently affect the lysozyme distribution in SLM, owning to varied storage stabilities of the lipids. The present study provides updated knowledge for rational development of lipid-based formulations for oral delivery of peptide or protein drugs.

  15. Antibacterial and antibiofouling clay nanotube-silicone composite.

    PubMed

    Boyer, C J; Ambrose, J; Das, S; Humayun, A; Chappidi, D; Giorno, R; Mills, D K

    2018-01-01

    Invasive medical devices are used in treating millions of patients each day. Bacterial adherence to their surface is an early step in biofilm formation that may lead to infection, health complications, longer hospital stays, and death. Prevention of bacterial adherence and biofilm development continues to be a major healthcare challenge. Accordingly, there is a pressing need to improve the anti-microbial properties of medical devices. Polydimethylsiloxane (PDMS) was doped with halloysite nanotubes (HNTs), and the PDMS-HNT composite surfaces were coated with PDMS-b-polyethylene oxide (PEO) and antibacterials. The composite material properties were examined using SEM, energy dispersive spectroscopy, water contact angle measurements, tensile testing, UV-Vis spectroscopy, and thermal gravimetric analysis. The antibacterial potential of the PDMS-HNT composites was compared to commercial urinary catheters using cultures of E. coli and S. aureus . Fibrinogen adsorption studies were also performed on the PDMS-HNT-PEO composites. HNT addition increased drug load during solvent swelling without reducing material strength. The hydrophilic properties provided by PEO were maintained after HNT addition, and the composites displayed protein-repelling properties. Additionally, composites showed superiority over commercial catheters at inhibiting bacterial growth. PDMS-HNT composites showed superiority regarding their efficacy at inhibiting bacterial growth, in comparison to commercial antibacterial catheters. Our data suggest that PDMS-HNT composites have potential as a coating material for anti-bacterial invasive devices and in the prevention of institutional-acquired infections.

  16. Antibacterial and antibiofouling clay nanotube–silicone composite

    PubMed Central

    Boyer, CJ; Ambrose, J; Das, S; Humayun, A; Chappidi, D; Giorno, R; Mills, DK

    2018-01-01

    Introduction Invasive medical devices are used in treating millions of patients each day. Bacterial adherence to their surface is an early step in biofilm formation that may lead to infection, health complications, longer hospital stays, and death. Prevention of bacterial adherence and biofilm development continues to be a major healthcare challenge. Accordingly, there is a pressing need to improve the anti-microbial properties of medical devices. Materials and Methods Polydimethylsiloxane (PDMS) was doped with halloysite nanotubes (HNTs), and the PDMS-HNT composite surfaces were coated with PDMS-b-polyethylene oxide (PEO) and antibacterials. The composite material properties were examined using SEM, energy dispersive spectroscopy, water contact angle measurements, tensile testing, UV-Vis spectroscopy, and thermal gravimetric analysis. The antibacterial potential of the PDMS-HNT composites was compared to commercial urinary catheters using cultures of E. coli and S. aureus. Fibrinogen adsorption studies were also performed on the PDMS-HNT-PEO composites. Results HNT addition increased drug load during solvent swelling without reducing material strength. The hydrophilic properties provided by PEO were maintained after HNT addition, and the composites displayed protein-repelling properties. Additionally, composites showed superiority over commercial catheters at inhibiting bacterial growth. Conclusion PDMS-HNT composites showed superiority regarding their efficacy at inhibiting bacterial growth, in comparison to commercial antibacterial catheters. Our data suggest that PDMS-HNT composites have potential as a coating material for anti-bacterial invasive devices and in the prevention of institutional-acquired infections. PMID:29713206

  17. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the effect of a purified granulated lysozyme, compared to antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-...

  18. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the efficacy of granulated lysozyme, compared to antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-eight pigs ...

  19. Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption

    NASA Astrophysics Data System (ADS)

    Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi

    2016-08-01

    We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N‧-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6‧-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.

  20. Surface charge effects in protein adsorption on nanodiamonds.

    PubMed

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.