Science.gov

Sample records for antibodies reveals potential

  1. Plasmodium falciparum Gametocyte-Specific Antibody Profiling Reveals Boosting through Natural Infection and Identifies Potential Markers of Gametocyte Exposure.

    PubMed

    Skinner, Jeff; Huang, Chiung-Yu; Waisberg, Michael; Felgner, Philip L; Doumbo, Ogobara K; Ongoiba, Aissata; Kayentao, Kassoum; Traore, Boubacar; Crompton, Peter D; Williamson, Kim C

    2015-11-01

    Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure. PMID:26283330

  2. Harnessing the protective potential of HIV-1 neutralizing antibodies

    PubMed Central

    Smith, S Abigail; Derdeyn, Cynthia A

    2016-01-01

    Recent biological, structural, and technical advances are converging within the HIV-1 vaccine field to harness the power of antibodies for prevention and therapy. Numerous monoclonal antibodies with broad neutralizing activity against diverse HIV-1 isolates have now been identified, revealing at least five sites of vulnerability on the envelope (Env) glycoproteins. While there are practical and technological barriers blocking a clear path from broadly neutralizing antibodies (bNAb) to a protective vaccine, this is not a dead end. Scientists are revisiting old approaches with new technology, cutting new trails through unexplored territory, and paving new roads in the hopes of preventing HIV-1 infection. Other promising avenues to capitalize on the power of bNAbs are also being pursued, such as passive antibody immunotherapy and gene therapy approaches. Moreover, non-neutralizing antibodies have inhibitory activities that could have protective potential, alone or in combination with bNAbs. With a new generation of bNAbs, and a clinical trial that associated antibodies with reduced acquisition, the field is closer than ever to developing strategies to use antibodies against HIV-1. PMID:26918160

  3. Erbb2 DNA vaccine combined with regulatory T cell deletion enhances antibody response and reveals latent low-avidity T cells: potential and limits of its therapeutic efficacy.

    PubMed

    Rolla, Simona; Ria, Francesco; Occhipinti, Sergio; Di Sante, Gabriele; Iezzi, Manuela; Spadaro, Michela; Nicolò, Chiara; Ambrosino, Elena; Merighi, Irene Fiore; Musiani, Piero; Forni, Guido; Cavallo, Federica

    2010-06-01

    Rat (r)Erbb2 transgenic BALB-neuT mice genetically predestined to develop multiple invasive carcinomas allow an assessment of the potential of a vaccine against the stages of cancer progression. Because of rErbb2 expression in the thymus and its overexpression in the mammary gland, CD8(+) T cell clones reacting at high avidity with dominant rErbb2 epitopes are deleted in these mice. In BALB-neuT mice with diffuse and invasive in situ lesions and almost palpable carcinomas, a temporary regulatory T cells depletion combined with anti-rErbb2 vaccine markedly enhanced the anti-rErbb2 Ab response and allowed the expansion of latent pools of low-avidity CD8(+) T cells bearing TCRs repertoire reacting with the rErbb2 dominant peptide. This combination of a higher Ab response and activation of a low-avidity cytotoxic response persistently blocked tumor progression at stages in which the vaccine alone was ineffective. However, when diffuse and invasive microscopic cancers become almost palpable, this combination was no longer able to secure a significant extension of mice survival. PMID:20435927

  4. Antibody protection reveals extended epitopes on the human TSH receptor.

    PubMed

    Latif, Rauf; Teixeira, Avelino; Michalek, Krzysztof; Ali, M Rejwan; Schlesinger, Max; Baliram, Ramkumarie; Morshed, Syed A; Davies, Terry F

    2012-01-01

    Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity. PMID:22957097

  5. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential

    PubMed Central

    Diebolder, Philipp; Keller, Armin; Haase, Stephanie; Schlegelmilch, Anne; Kiefer, Jonathan D; Karimi, Tamana; Weber, Tobias; Moldenhauer, Gerhard; Kehm, Roland; Eis-Hübinger, Anna M; Jäger, Dirk; Federspil, Philippe A; Herold-Mende, Christel; Dyckhoff, Gerhard; Kontermann, Roland E; Arndt, Michaela AE; Krauss, Jürgen

    2014-01-01

    The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential. PMID:24256717

  6. Extensive Antibody Cross-reactivity among Infectious Gram-negative Bacteria Revealed by Proteome Microarray Analysis *

    PubMed Central

    Keasey, Sarah L.; Schmid, Kara E.; Lee, Michael S.; Meegan, James; Tomas, Patricio; Minto, Michael; Tikhonov, Alexander P.; Schweitzer, Barry; Ulrich, Robert G.

    2009-01-01

    Antibodies provide a sensitive indicator of proteins displayed by bacteria during sepsis. Because signals produced by infection are naturally amplified during the antibody response, host immunity can be used to identify biomarkers for proteins that are present at levels currently below detectable limits. We developed a microarray comprising ∼70% of the 4066 proteins contained within the Yersinia pestis proteome to identify antibody biomarkers distinguishing plague from infections caused by other bacterial pathogens that may initially present similar clinical symptoms. We first examined rabbit antibodies produced against proteomes extracted from Y. pestis, Burkholderia mallei, Burkholderia cepecia, Burkholderia pseudomallei, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, and Escherichia coli, all pathogenic Gram-negative bacteria. These antibodies enabled detection of shared cross-reactive proteins, fingerprint proteins common for two or more bacteria, and signature proteins specific to each pathogen. Recognition by rabbit and non-human primate antibodies involved less than 100 of the thousands of proteins present within the Y. pestis proteome. Further antigen binding patterns were revealed that could distinguish plague from anthrax, caused by the Gram-positive bacterium Bacillus anthracis, using sera from acutely infected or convalescent primates. Thus, our results demonstrate potential biomarkers that are either specific to one strain or common to several species of pathogenic bacteria. PMID:19112181

  7. New Insights into the Functional Behavior of Antibodies as Revealed by Binding Studies on an Anti-Uranium Monoclonal Antibody

    SciTech Connect

    Blake, Diane A.; Xia Li; Haini Yu; Blake, Robert C.

    2004-03-17

    As part of an ongoing effort to develop immunoassays for chelated uranium(VI) on a hand-held flow fluorimeter, an anti-uranium monoclonal antibody designated as 8A11 was fluorescently labeled using two different strategies. When 8A11 was coupled via reactive lysines to either ALEXATM 488 or Cy5TM, the resulting fluorescent antibody conjugate exhibited positive cooperativity in the presence of its antigen, U(VI) chelated with 2,9-dicarboxy-1,10-phenanthroline (U(VI)-DCP). That is, when one of the two binding sites on the covalently modified 8A11 was occupied with bound antigen, the affinity of the remaining site on the antibody for U(VI)-DCP appeared to increase. Unmodified 8A11 bound U(VI)-DCP with the expected hyperbolic dependence on the concentration of antigen, consistent with independent and equal binding of ligand at both sites. Proteolytic cleavage of the fluorescently conjugated 8A11 to produce the fluorescent monovalent Fab fragment yielded an active preparation that now bound U(VI)-DCP with no evidence of positive cooperativity. Although, in principle, any divalent antibody has the potential to exhibit positive cooperativity in its binding interactions with its antigen, very little literature precedent for this type of behavior exists. Native 8A11 was also noncovalently labeled with highly fluorescent ZENONTM reagents. These reagents are fluorescently-labeled Fab fragments of goat anti-mouse antibodies that bind to the Fc portion of 8A11. These high-affinity, monovalent fluorescent reagents permitted the intact 8A11 mouse antibody to be labeled in situ with no covalent modifications. Incubation of the 8A11 with ZENON 647 produced a fluorescent protein complex that showed an 8-fold higher affinity for U(VI)-DCP than did the free 8A11 alone. Again, very few literature precedents exist for this phenomenon, where agents that bind to the Fc portion of an intact antibody change the affinity of the antibody for the antigen at the structurally distant Fab portion

  8. Human-derived natural antibodies: biomarkers and potential therapeutics

    PubMed Central

    Xu, Xiaohua; Ng, Sher May; Hassouna, Eamonn; Warrington, Arthur; Oh, Sang-Hyun; Rodriguez, Moses

    2015-01-01

    The immune system generates antibodies and antigen-specific T-cells as basic elements of the immune networks that differentiate self from non-self in a finely tuned manner. The antigen-specific nature of immune responses ensures that normal immune activation contains non-self when tolerating self. Here we review the B-1 subset of lymphocytes which produce self-reactive antibodies. By analyzing the IgM class of natural antibodies that recognize antigens from the nervous system, we emphasize that natural antibodies are biomarkers of how the immune system monitors the host. The immune response activated against self can be detrimental when triggered in an autoimmune genetic background. In contrast, tuning immune activity with natural antibodies is a potential therapeutic strategy. PMID:25678860

  9. HLA incompatible combined liver-kidney transplantation: dynamics of antibody modulation revealed by a novel approach to HLA antibody characterisation.

    PubMed

    Lowe, David; Shabir, Shazia; Buckels, John; Muiesan, Paolo; Hayden, Geoffrey; Holt, Andrew; Hamsho, Ahmed; Skordilis, Kassi; Lipkin, Graham; Borrows, Richard; Briggs, David

    2014-01-01

    This case report confirms the utility of simultaneous liver transplantation in allowing successful kidney transplantation in the face of preformed, high levels of DSA, which would under normal circumstances be associated with hyperacute rejection and kidney graft failure. Antibody characterisation in terms of epitope specificity is more accurate and informative than antibodies described as "antigen-specific" and we suggest a method for identifying and tracking these antibodies; i.e. follow the epitope reaction not the antigen reactions. We consider that this will give a better insight into the behaviour and pathogenicity of HLA-specific sera. In the case presented here this approach has revealed some novel features of the post transplant antibody response in a sensitised recipient. These illustrate three phenomena which challenge current dogmas; an early resynthesis of DSA does not necessarily cause AMR, high levels of DSA can spontaneously modulate, and measurement of antibodies in terms of antigen specificity can give misleading results. PMID:24239533

  10. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

    SciTech Connect

    Wu, Xueling; Zhou, Tongqing; Zhu, Jiang; Zhang, Baoshan; Georgiev, Ivelin; Wang, Charlene; Chen, Xuejun; Longo, Nancy S.; Louder, Mark; McKee, Krisha; O’Dell, Sijy; Perfetto, Stephen; Schmidt, Stephen D.; Shi, Wei; Wu, Lan; Yang, Yongping; Yang, Zhi-Yong; Yang, Zhongjia; Zhang, Zhenhai; Bonsignori, Mattia; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Haynes, Barton F.; Simek, Melissa; Burton, Dennis R.; Koff, Wayne C.; Doria-Rose, Nicole A.; Connors, Mark; Mullikin, James C.; Nabel, Gary J.; Roederer, Mario; Shapiro, Lawrence; Kwong, Peter D.; Mascola, John R.

    2013-03-04

    Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.

  11. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers.

    PubMed

    Miller, Jeremy C; Zhou, Heping; Kwekel, Joshua; Cavallo, Robert; Burke, Jocelyn; Butler, E Brian; Teh, Bin S; Haab, Brian B

    2003-01-01

    We developed a practical strategy for serum protein profiling using antibody microarrays and applied the method to the identification of potential biomarkers in prostate cancer serum. Protein abundances from 33 prostate cancer and 20 control serum samples were compared to abundances from a common reference pool using a two-color fluorescence assay. Robotically spotted microarrays containing 184 unique antibodies were prepared on two different substrates: polyacrylamide based hydrogels on glass and poly-1-lysine coated glass with a photoreactive cross-linking layer. The hydrogel substrate yielded an average six-fold higher signal-to-noise ratio than the other substrate, and detection of protein binding was possible from a greater number of antibodies using the hydrogels. A statistical filter based on the correlation of data from "reverse-labeled" experiment sets accurately predicted the agreement between the microarray measurements and enzyme-linked immunosorbent assay measurements, showing that this parameter can serve to screen for antibodies that are functional on microarrays. Having defined a set of reliable microarray measurements, we identified five proteins (von Willebrand Factor, immunoglobulinM, Alpha1-antichymotrypsin, Villin and immunoglobulinG) that had significantly different levels between the prostate cancer samples and the controls. These developments enable the immediate use of high-density antibody and protein microarrays in biomarker discovery studies. PMID:12548634

  12. Ubiquitin Chain Editing Revealed By Polyubiquitin Linkage-Specific Antibodies

    SciTech Connect

    Newton, K.; Matsumoto, M.L.; Wertz, I.E.; Kirkpatrick, D.S.; Lill, J.R.; Tan, J.; Dugger, D.; Gordon, N.; Sidhu, S.S.; Fellouse, F.A.; Komuves, L.; French, D.M.; Ferrando, R.E.; Lam, C.; Compaan, D.; Yu, C.; Bosanac, I.; Hymowitz, S.G.; Kelley, R.F.; Dixit, V.M.

    2009-05-22

    Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have developed linkage-specific antibodies that recognize polyubiquitin chains joined through lysine 63 (K63) or 48 (K48). A cocrystal structure of an anti-K63 linkage Fab bound to K63-linked diubiquitin provides insight into the molecular basis for specificity. We use these antibodies to demonstrate that RIP1, which is essential for tumor necrosis factor-induced NF-{kappa}B activation, and IRAK1, which participates in signaling by interleukin-1{beta} and Toll-like receptors, both undergo polyubiquitin editing in stimulated cells. Both kinase adaptors initially acquire K63-linked polyubiquitin, while at later times K48-linked polyubiquitin targets them for proteasomal degradation. Polyubiquitin editing may therefore be a general mechanism for attenuating innate immune signaling.

  13. A key role for galectin-1 in sprouting angiogenesis revealed by novel rationally designed antibodies.

    PubMed

    van Beijnum, Judy R; Thijssen, Victor L; Läppchen, Tilman; Wong, Tse J; Verel, Iris; Engbersen, Maurits; Schulkens, Iris A; Rossin, Raffaella; Grüll, Holger; Griffioen, Arjan W; Nowak-Sliwinska, Patrycja

    2016-08-15

    Galectins are carbohydrate binding proteins that function in many key cellular processes. We have previously demonstrated that galectins are essential for tumor angiogenesis and their expression is associated with disease progression. Targeting galectins is therefore a potential anti-angiogenic and anti-cancer strategy. Here, we used a rational approach to generate antibodies against a specific member of this conserved protein family, i.e. galectin-1. We characterized two novel mouse monoclonal antibodies that specifically react with galectin-1 in human, mouse and chicken. We demonstrate that these antibodies are excellent tools to study galectin-1 expression and function in a broad array of biological systems. In a potential diagnostic application, radiolabeled antibodies showed specific targeting of galectin-1 positive tumors. In a therapeutic setting, the antibodies inhibited sprouting angiogenesis in vitro and in vivo, underscoring the key function of galectin-1 in this process. PMID:27062254

  14. Development of new versions of anti-human CD34 monoclonal antibodies with potentially reduced immunogenicity

    SciTech Connect

    Qian Weizhu; Wang Ling; Li Bohua; Wang Hao; Hou Sheng; Hong Xueyu; Zhang Dapeng; Guo Yajun

    2008-03-07

    Despite the widespread clinical use of CD34 antibodies for the purification of human hematopoietic stem/progenitor cells, all the current anti-human CD34 monoclonal antibodies (mAbs) are murine, which have the potential to elicit human antimouse antibody (HAMA) immune response. In the present study, we developed three new mouse anti-human CD34 mAbs which, respectively, belonged to class I, class II and class III CD34 epitope antibodies. In an attempt to reduce the immunogenicity of these three murine mAbs, their chimeric antibodies, which consisted of mouse antibody variable regions fused genetically to human antibody constant regions, were constructed and characterized. The anti-CD34 chimeric antibodies were shown to possess affinity and specificity similar to that of their respective parental murine antibodies. Due to the potentially better safety profiles, these chimeric antibodies might become alternatives to mouse anti-CD34 antibodies routinely used for clinical application.

  15. Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies.

    PubMed

    Oyelaran, Oyindasola; Li, Qian; Farnsworth, David; Gildersleeve, Jeffrey C

    2009-07-01

    Antigen arrays have become important tools for profiling complex mixtures of proteins such as serum antibodies. These arrays can be used to better understand immune responses, discover new biomarkers, and guide the development of vaccines. Nevertheless, they are not perfect and improved array designs would enhance the information derived from this technology. In this study, we describe and evaluate a strategy for varying antigen density on an array and then use the array to study binding of lectins, monoclonal antibodies, and serum antibodies. To vary density, neoglycoproteins containing differing amounts of carbohydrate were synthesized and used to make a carbohydrate microarray with variations in both structure and density. We demonstrate that this method provides variations in density on the array surface within a range that is relevant for biological recognition events. The array was used to evaluate density dependent binding properties of three lectins (Vicia villosa lectin B4, Helix pomatia agglutinin, and soybean agglutinin) and three monoclonal antibodies (HBTn-1, B1.1, and Bric111) that bind the tumor-associated Tn antigen. In addition, serum antibodies were profiled from 30 healthy donors. The results show that variations in antigen density are required to detect the full spectrum of antibodies that bind a particular antigen and can be used to reveal differences in antibody populations between individuals that are not detectable using a single antigen density. PMID:19366269

  16. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  17. The Combining Sites of Anti-lipid A Antibodies Reveal a Widely Utilized Motif Specific for Negatively Charged Groups.

    PubMed

    Haji-Ghassemi, Omid; Müller-Loennies, Sven; Rodriguez, Teresa; Brade, Lore; Grimmecke, Hans-Dieter; Brade, Helmut; Evans, Stephen V

    2016-05-01

    Lipopolysaccharide dispersed in the blood by Gram-negative bacteria can be a potent inducer of septic shock. One research focus has been based on antibody sequestration of lipid A (the endotoxic principle of LPS); however, none have been successfully developed into a clinical treatment. Comparison of a panel of anti-lipid A antibodies reveals highly specific antibodies produced through distinct germ line precursors. The structures of antigen-binding fragments for two homologous mAbs specific for lipid A, S55-3 and S55-5, have been determined both in complex with lipid A disaccharide backbone and unliganded. These high resolution structures reveal a conserved positively charged pocket formed within the complementarity determining region H2 loops that binds the terminal phosphates of lipid A. Significantly, this motif occurs in unrelated antibodies where it mediates binding to negatively charged moieties through a range of epitopes, including phosphorylated peptides used in diagnostics and therapeutics. S55-3 and S55-5 have combining sites distinct from anti-lipid A antibodies previously described (as a result of their separate germ line origin), which are nevertheless complementary both in shape and charge to the antigen. S55-3 and S55-5 display similar avidity toward lipid A despite possessing a number of different amino acid residues in their combining sites. Binding of lipid A occurs independent of the acyl chains, although the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains their inability to recognize LPS. Despite their lack of therapeutic potential, the observed motif may have significant immunological implications as a tool for engineering recombinant antibodies. PMID:26933033

  18. Defensins Potentiate a Neutralizing Antibody Response to Enteric Viral Infection

    PubMed Central

    Treuting, Piper M.; Bromme, Beth A.; Wilson, Sarah S.; Wiens, Mayim E.; Lu, Wuyuan; Ouellette, André J.; Spindler, Katherine R.; Parks, William C.; Smith, Jason G.

    2016-01-01

    α-defensins are abundant antimicrobial peptides with broad, potent antibacterial, antifungal, and antiviral activities in vitro. Although their contribution to host defense against bacteria in vivo has been demonstrated, comparable studies of their antiviral activity in vivo are lacking. Using a mouse model deficient in activated α-defensins in the small intestine, we show that Paneth cell α-defensins protect mice from oral infection by a pathogenic virus, mouse adenovirus 1 (MAdV-1). Survival differences between mouse genotypes are lost upon parenteral MAdV-1 infection, strongly implicating a role for intestinal defenses in attenuating pathogenesis. Although differences in α-defensin expression impact the composition of the ileal commensal bacterial population, depletion studies using broad-spectrum antibiotics revealed no effect of the microbiota on α-defensin-dependent viral pathogenesis. Moreover, despite the sensitivity of MAdV-1 infection to α-defensin neutralization in cell culture, we observed no barrier effect due to Paneth cell α-defensin activation on the kinetics and magnitude of MAdV-1 dissemination to the brain. Rather, a protective neutralizing antibody response was delayed in the absence of α-defensins. This effect was specific to oral viral infection, because antibody responses to parenteral or mucosal ovalbumin exposure were not affected by α-defensin deficiency. Thus, α-defensins play an important role as adjuvants in antiviral immunity in vivo that is distinct from their direct antiviral activity observed in cell culture. PMID:26933888

  19. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein

    PubMed Central

    Sehgal, Kapil; Sylvester, Marc; Skubal, Magdalena; Josten, Michele; Steinhäuser, Christian; De Koninck, Paul; Theis, Martin

    2016-01-01

    Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future. PMID:26915047

  20. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein.

    PubMed

    Kaczmarczyk, Lech; Labrie-Dion, Étienne; Sehgal, Kapil; Sylvester, Marc; Skubal, Magdalena; Josten, Michele; Steinhäuser, Christian; De Koninck, Paul; Theis, Martin

    2016-01-01

    Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3'UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future. PMID:26915047

  1. Multi-donor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for Effective HIV-1 Neutralization by VRCO1-class Antibodies

    PubMed Central

    Zhou, Tongqing; Zhu, Jiang; Wu, Xueling; Moquin, Stephanie; Zhang, Baoshan; Acharya, Priyamvada; Georgiev, Ivelin S.; Altae-Tran, Han R.; Chuang, Gwo-Yu; Joyce, M. Gordon; Kwon, Young Do; Longo, Nancy S.; Louder, Mark K.; Luongo, Timothy; McKee, Krisha; Schramm, Chaim A.; Skinner, Jeff; Yang, Yongping; Yang, Zhongjia; Zhang, Zhenhai; Zheng, Anqi; Bonsignori, Mattia; Haynes, Barton F.; Scheid, Johannes F.; Nussenzweig, Michel C.; Simek, Melissa; Burton, Dennis R.; Koff, Wayne C.; Mullikin, James C.; Connors, Mark; Shapiro, Lawrence; Nabel, Gary J.; Mascola, John R.; Kwong, Peter D.

    2014-01-01

    Summary Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >1012 antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few—likely one—ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population. PMID:23911655

  2. Antibody repertoire deep sequencing reveals antigen-independent selection in maturing B cells

    PubMed Central

    Kaplinsky, Joseph; Li, Anthony; Sun, Amy; Coffre, Maryaline; Koralov, Sergei B.; Arnaout, Ramy

    2014-01-01

    Antibody repertoires are known to be shaped by selection for antigen binding. Unexpectedly, we now show that selection also acts on a non–antigen-binding antibody region: the heavy-chain variable (VH)–encoded “elbow” between variable and constant domains. By sequencing 2.8 million recombined heavy-chain genes from immature and mature B-cell subsets in mice, we demonstrate a striking gradient in VH gene use as pre-B cells mature into follicular and then into marginal zone B cells. Cells whose antibodies use VH genes that encode a more flexible elbow are more likely to mature. This effect is distinct from, and exceeds in magnitude, previously described maturation-associated changes in heavy-chain complementarity determining region 3, a key antigen-binding region, which arise from junctional diversity rather than differential VH gene use. Thus, deep sequencing reveals a previously unidentified mode of B-cell selection. PMID:24927543

  3. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  4. Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies.

    PubMed

    Herrera, Cristina; Tremblay, Jacqueline M; Shoemaker, Charles B; Mantis, Nicholas J

    2015-11-13

    Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors. PMID:26396190

  5. The development of potential antibody-based therapies for myeloma

    PubMed Central

    Sherbenou, Daniel W.; Behrens, Christopher R.; Su, Yang; Wolf, Jeffrey L.; Martin, Thomas G.; Liu, Bin

    2015-01-01

    With optimal target antigen selection antibody-based therapeutics can be very effective agents for hematologic malignancies, but none have yet been approved for myeloma. Rituximab and brentuximab vedotin are examples of success for the naked antibody and antibody–drug conjugate classes, respectively. Plasma cell myeloma is an attractive disease for antibody-based targeting due to target cell accessibility and the complementary mechanism of action with approved therapies. Initial antibodies tested in myeloma were disappointing. However, recent results from targeting well-characterized antigens have been more encouraging. In particular, the CD38 and CD138 targeted therapies are showing single-agent activity in early phase clinical trials. Here we will review the development pipeline for naked antibodies and antibody–drug conjugates for myeloma. There is clear clinical need for new treatments, as myeloma inevitably becomes refractory to standard agents. The full impact is yet to be established, but we are optimistic that the first FDA-approved antibody therapeutic(s) for this disease will emerge in the near future. PMID:25294123

  6. Epitope-specificity of recombinant antibodies reveals promiscuous peptide-binding properties

    PubMed Central

    Olsson, Niclas; Wallin, Stefan; James, Peter; Borrebaeck, Carl A K; Wingren, Christer

    2012-01-01

    Protein–peptide interactions are a common occurrence and essential for numerous cellular processes, and frequently explored in broad applications within biology, medicine, and proteomics. Therefore, understanding the molecular mechanism(s) of protein–peptide recognition, specificity, and binding interactions will be essential. In this study, we report the first detailed analysis of antibody–peptide interaction characteristics, by combining large-scale experimental peptide binding data with the structural analysis of eight human recombinant antibodies and numerous peptides, targeting tryptic mammalian and eukaryote proteomes. The results consistently revealed that promiscuous peptide-binding interactions, that is, both specific and degenerate binding, were exhibited by all antibodies, and the discovery was corroborated by orthogonal data, indicating that this might be a general phenomenon for low-affinity antibody–peptide interactions. The molecular mechanism for the degenerate peptide-binding specificity appeared to be executed through the use of 2–3 semi-conserved anchor residues in the C-terminal part of the peptides, in analogue to the mechanism utilized by the major histocompatibility complex–peptide complexes. In the long-term, this knowledge will be instrumental for advancing our fundamental understanding of protein–peptide interactions, as well as for designing, generating, and applying peptide specific antibodies, or peptide-binding proteins in general, in various biotechnical and medical applications. PMID:23034898

  7. Structures of protective antibodies reveal sites of vulnerability on Ebola virus

    PubMed Central

    Murin, Charles D.; Fusco, Marnie L.; Bornholdt, Zachary A.; Qiu, Xiangguo; Olinger, Gene G.; Zeitlin, Larry; Kobinger, Gary P.; Ward, Andrew B.; Saphire, Erica Ollmann

    2014-01-01

    Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks. PMID:25404321

  8. The heterogeneity of human antibody responses to vaccinia virus revealed through use of focused protein arrays.

    PubMed

    Duke-Cohan, Jonathan S; Wollenick, Kristin; Witten, Elizabeth A; Seaman, Michael S; Baden, Lindsey R; Dolin, Raphael; Reinherz, Ellis L

    2009-02-18

    The renewed interest in strategies to combat infectious agents with epidemic potential has led to a re-examination of vaccination protocols against smallpox. To help define which antigens elicit a human antibody response, we have targeted proteins known or predicted to be presented on the surface of the intracellular mature virion (IMV) or the extracellular enveloped virion (EEV). The predicted ectodomains were expressed in a mammalian in vitro coupled transcription/translation reaction using tRNA(lys) precharged with lysine-epsilon-biotin followed by solid phase immobilization on 384-well neutravidin-coated plates. The generated array is highly specific and sensitive in a micro-ELISA format. By comparison of binding of vaccinia-immune sera to the reticulocyte lysate-produced proteins and to secreted post-translationally modified proteins, we demonstrate that for several proteins including the EEV proteins B5 and A33, proper recognition is dependent upon appropriate folding, with little dependence upon glycosylation per se. We further demonstrate that the humoral immune response to vaccinia among different individuals is not uniform in specificity or strength, as different IMV and EEV targets predominate within the group of immunogenic proteins. This heterogeneity likely results from the diversity of HLA Class II alleles and CD4 T helper cell epitopes stimulating B cell antibody production. Our findings have important implications both for design of new recombinant subunit vaccines as well as for methods of assaying the human antibody response utilizing recombinant proteins produced in vitro. PMID:19146908

  9. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy.

    PubMed

    Ido, Shinichiro; Kimiya, Hirokazu; Kobayashi, Kei; Kominami, Hiroaki; Matsushige, Kazumi; Yamada, Hirofumi

    2014-03-01

    The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays. PMID:24441879

  10. Potential of palladium-109-labeled antimelanoma monoclonal antibody for tumor therapy

    SciTech Connect

    Fawwaz, R.A.; Wang, T.S.T.; Srivastava, S.C.; Rosen, J.M.; Ferrone, S.; Hardy, M.A.; Alderson, P.O.

    1984-07-01

    Palladium-109, a beta-emitting radionuclide, was chelated to the monoclonal antibody 225.28S to the high molecular weight antigen associated with human melanoma. Injection of the radiolabeled monoclonal antibody into nude mice bearing human melanoma resulted in significant accumulation of the radiolabel in the tumors: 19% injected dose/g; 38:1 and 61:1 tumor-to-blood ratios at 24 and 48 hr, respectively. The localization of the radiolabeled antibody in liver and kidney also was high, but appreciably lower than that achieved in tumor. These results suggest Pd-109-labeled monoclonal antibody to tumor-associated antigens may have potential applications in tumor immunotherapy.

  11. Depletion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity

    PubMed Central

    Zhang, Pei; Zhong, Lilin; Struble, Evi Budo; Watanabe, Hisayoshi; Kachko, Alla; Mihalik, Kathleen; Virata-Theimer, Maria Luisa; Alter, Harvey J.; Feinstone, Stephen; Major, Marian

    2009-01-01

    Using human immune globulins made from antihepatitis C virus (HCV)-positive plasma, we recently identified two antibody epitopes in the E2 protein at residues 412–426 (epitope I) and 434–446 (epitope II). Whereas epitope I is highly conserved among genotypes, epitope II varies. We discovered that epitope I was implicated in HCV neutralization whereas the binding of non-neutralizing antibody to epitope II disrupted virus neutralization mediated by antibody binding at epitope I. These findings suggested that, if this interfering mechanism operates in vivo during HCV infection, a neutralizing antibody against epitope I can be restrained by an interfering antibody, which may account for the persistence of HCV even in the presence of an abundance of neutralizing antibodies. We tested this hypothesis by affinity depletion and peptide-blocking of epitope-II-specific antibodies in plasma of a chronically HCV-infected patient and recombinant E1E2 vaccinated chimpanzees. We demonstrate that, by removing the restraints imposed by the interfering antibodies to epitope-II, neutralizing activity can be revealed in plasma that previously failed to neutralize viral stock in cell culture. Further, cross-genotype neutralization could be generated from monospecific plasma. Our studies contribute to understanding the mechanisms of antibody-mediated neutralization and interference and provide a practical approach to the development of more potent and broadly reactive hepatitis C immune globulins. PMID:19380744

  12. Potential of mean force for human lysozyme camelid vhh hl6 antibody interaction studies

    NASA Astrophysics Data System (ADS)

    Wang, Yeng-Tseng; Liao, Jun-Min; Chen, Cheng-Lung; Su, Zhi-Yuan; Chen, Chang-Hung; Hu, Jeu-Jiun

    2008-04-01

    Calculating antigen-antibody interaction energies is crucial for understanding antigen-antibody associations in immunology. To shed further light into this equation, we study a separation of human lysozyme-camelid vhh hl6 antibody (cAb-HuL6) complex. The c-terminal end-to-end stretching of the lysozyme-antibody complex structures have been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) and explicit water model. For the lysozyme-antibody complex, there are six important intermediates in the c-terminal extensions process. Inclusion of our simulations may help to understand the binding mechanics of lysozyme-cAb-HuL6 antibody complex.

  13. Antibodies and Their Receptors: Different Potential Roles in Mucosal Defense

    PubMed Central

    Horton, Rachel E.; Vidarsson, Gestur

    2013-01-01

    Over recent years it has become increasingly apparent that mucosal antibodies are not only restricted to the IgM and IgA isotypes, but that also other isotypes and particularly IgG can be found in significant quantities at some mucosal surfaces, such as in the genital tract. Their role is more complex than traditionally believed with, among other things, the discovery of novel function of mucosal immunoglobulin receptors. A thorough knowledge in the source and function and mucosal immunoglobulins is particularly important in development of vaccines providing mucosal immunity, and also in the current climate of microbicide development, to combat major world health issues such as HIV. We present here a comprehensive review of human antibody mediated mucosal immunity. PMID:23882268

  14. Antibody-Dependent NK Cell Activation Is Associated with Late Kidney Allograft Dysfunction and the Complement-Independent Alloreactive Potential of Donor-Specific Antibodies.

    PubMed

    Legris, Tristan; Picard, Christophe; Todorova, Dilyana; Lyonnet, Luc; Laporte, Cathy; Dumoulin, Chloé; Nicolino-Brunet, Corinne; Daniel, Laurent; Loundou, Anderson; Morange, Sophie; Bataille, Stanislas; Vacher-Coponat, Henri; Moal, Valérie; Berland, Yvon; Dignat-George, Francoise; Burtey, Stéphane; Paul, Pascale

    2016-01-01

    Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs). The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR) of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK) cells as innate immune effectors of antibody-dependent cellular cytotoxicity (ADCC), but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT) was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1(+) cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years). Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate over a 1-year period (hazard ratio: 2.83). In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration of

  15. Antibody-Dependent NK Cell Activation Is Associated with Late Kidney Allograft Dysfunction and the Complement-Independent Alloreactive Potential of Donor-Specific Antibodies

    PubMed Central

    Legris, Tristan; Picard, Christophe; Todorova, Dilyana; Lyonnet, Luc; Laporte, Cathy; Dumoulin, Chloé; Nicolino-Brunet, Corinne; Daniel, Laurent; Loundou, Anderson; Morange, Sophie; Bataille, Stanislas; Vacher-Coponat, Henri; Moal, Valérie; Berland, Yvon; Dignat-George, Francoise; Burtey, Stéphane; Paul, Pascale

    2016-01-01

    Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs). The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR) of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK) cells as innate immune effectors of antibody-dependent cellular cytotoxicity (ADCC), but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT) was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years). Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate over a 1-year period (hazard ratio: 2.83). In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration of

  16. Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis.

    PubMed

    Na, Chan Hyun; Jones, Drew R; Yang, Yanling; Wang, Xusheng; Xu, Yanji; Peng, Junmin

    2012-09-01

    Protein ubiquitination is an essential post-translational modification regulating neurodevelopment, synaptic plasticity, learning, and memory, and its dysregulation contributes to the pathogenesis of neurological diseases. Here we report a systematic analysis of ubiquitinated proteome (ubiquitome) in rat brain using a newly developed monoclonal antibody that recognizes the diglycine tag on lysine residues in trypsinized peptides (K-GG peptides). Initial antibody specificity analysis showed that the antibody can distinguish K-GG peptides from linear GG peptides or pseudo K-GG peptides derived from iodoacetamide. To evaluate the false discovery rate of K-GG peptide matches during database search, we introduced a null experiment using bacterial lysate that contains no such peptides. The brain ubiquitome was then analyzed by this antibody enrichment with or without strong cation exchange (SCX) prefractionation. During SCX chromatography, although the vast majority of K-GG peptides were detected in the fractions containing at least three positive charged peptides, specific K-GG peptides with two positive charges (e.g., protein N-terminal acetylated and C-terminal non-K/R peptides) were also identified in early fractions. The reliability of C-terminal K-GG peptides was also extensively investigated. Finally, we collected a data set of 1786 K-GG sites on 2064 peptides in 921 proteins and estimated their abundance by spectral counting. The study reveals a wide range of ubiquitination events on key components in presynaptic region (e.g., Bassoon, NSF, SNAP25, synapsin, synaptotagmin, and syntaxin) and postsynaptic density (e.g., PSD-95, GKAP, CaMKII, as well as receptors for NMDA, AMPA, GABA, serotonin, and acetylcholine). We also determined ubiquitination sites on amyloid precursor protein and alpha synuclein that are thought to be causative agents in Alzhermer's and Parkinson's disorders, respectively. As K-GG peptides can also be produced from Nedd8 or ISG15 modified

  17. Structural aspects of antibody-antigen interaction revealed through small random peptide libraries.

    PubMed

    Slootstra, J W; Puijk, W C; Ligtvoet, G J; Langeveld, J P; Meloen, R H

    1996-02-01

    Two small random peptide libraries, one composed of 4550 dodecapeptides and one of 8000 tripeptides, were synthesized in newly developed credit-card format miniPEPSCAN cards (miniPEPSCAN libraries). Each peptide was synthesized in a discrete well (455 peptides/card). The two miniPEPSCAN libraries were screened with three different monoclonal antibodies (Mabs). Two other random peptide libraries, expressed on the wall of bacteria (recombinant libraries) and composed of 10(7) hexa- and octapeptides, were screened with the same three Mabs. The aim of this study was to compare the amino acid sequence of peptides selected from small and large pools of random peptides and, in this way, investigate the potential of small random peptide libraries. The screening of the two miniPEPSCAN libraries resulted in the identification of a surprisingly large number of antibody-binding peptides, while the screening of the large recombinant libraries, using the same Mabs, resulted in the identification of only a small number of peptides. The large number of peptides derived from the small random peptide libraries allowed the determination of consensus sequences. These consensus sequences could be related to small linear and nonlinear parts of the respective epitopes. The small number of peptides derived from the large random peptide libraries could only be related to linear epitopes that were previously mapped using small libraries of overlapping peptides covering the antigenic protein. Thus, with respect to the cost and speed of identifying peptides that resemble linear and nonlinear parts of epitopes, small diversity libraries based on synthetic peptides appear to be superior to large diversity libraries based on expression systems. PMID:9237197

  18. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching.

    PubMed

    Horns, Felix; Vollmers, Christopher; Croote, Derek; Mackey, Sally F; Swan, Gary E; Dekker, Cornelia L; Davis, Mark M; Quake, Stephen R

    2016-01-01

    Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state. PMID:27481325

  19. Validation of Endothelin B Receptor Antibodies Reveals Two Distinct Receptor-related Bands on Western Blot

    PubMed Central

    Barr, Travis P.; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R.

    2014-01-01

    Antibodies are important tools for the study of protein expression, but are often used without full validation. In this study, we use Western blots to characterize antibodies targeted to the N- (NT) or C-termini (CT) and the second (IL2) or third intracellular (IL3) loops of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50kD band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37 kD band, but failed to detect endogenous ETB in rat brain. Bands detected by the CT-targeted or IL3-targeted antibodies were found to be unrelated to ETB. Our findings show that functional ETB receptors can be detected at 50 kD or 37 kD on Western blot, with drastic differences in antibody affinity for these bands. The 37 kD band likely reflects ETB receptor processing, which appears to be dependent on cell type and/or culture condition. PMID:25232999

  20. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    SciTech Connect

    Duan, Hongying; Takagi, Akira; Kayano, Hidekazu; Koyama, Isamu; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell

  1. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching

    PubMed Central

    Horns, Felix; Vollmers, Christopher; Croote, Derek; Mackey, Sally F; Swan, Gary E; Dekker, Cornelia L; Davis, Mark M; Quake, Stephen R

    2016-01-01

    Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state. DOI: http://dx.doi.org/10.7554/eLife.16578.001 PMID:27481325

  2. 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography

    PubMed Central

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-01-01

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions. PMID:25940394

  3. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    SciTech Connect

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  4. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE PAGESBeta

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  5. Antiphospholipid antibodies in localized scleroderma: the potential role of screening tests for the detection of antiphospholipid syndrome

    PubMed Central

    Brzezińska-Wcisło, Ligia; Arasiewicz, Hubert; Bergler-Czop, Beata

    2014-01-01

    Introduction The presence of antiphospholipid antibodies (aPL) is associated with infections, drugs and autoimmune disorders. Those antibodies are also detected in approximately 5–20% of the healthy population. The presence of aPL can lead to the occurrence of thrombotic events or abortion, which define the antiphospholipid syndrome (APS). Aim To evaluate the potential role of aPL in diagnosing APS in patients with localized scleroderma (LoS). Material and methods Serum samples from 45 patients with various forms of LoS were examined. They were screened with the commercially-available immunodot assay Anti-Phospholipid 10 Dot (GA Generic Assays GmbH, Dahlewitz, Germany). A number of clinical and laboratory parameters, especially APS symptoms, were assessed in patients with positive aPL: arterial and venous thrombotic events, obstetric complications, thrombocytopenia and neurological symptoms. Results The following profile of aPL IgG or IgM was obtained from patients with LoS: cardiolipin 15/45, phosphatidic acid 41/45, phosphatidyl-choline 0/45, -ethanolamine 6/45, -glycerole 1/45 (patient with Lyme disease), -inositol 7/45, -serine 14/45, annexin V 34/45, β2GPI 21/45, prothrombin 30/45. Antiphospholipid antibodies profile screening in these individuals revealed two cases of suspected secondary laboratory APS. However, no such clinical and laboratory parameters were found in other LoS patients with positive aPL. Similarly, no association was found between the presence of aPL and either thrombotic events or other APS symptoms. Conclusions Antiphospholipid antibodies are commonly found in patients with LoS but the exact role of these antibodies remains unclear. Clinical manifestations of APS are not frequently seen during LoS. PMID:25097470

  6. A Diverse Panel of Hepatitis C Virus Glycoproteins for Use in Vaccine Research Reveals Extremes of Monoclonal Antibody Neutralization Resistance

    PubMed Central

    Urbanowicz, Richard A.; McClure, C. Patrick; Brown, Richard J. P.; Tsoleridis, Theocharis; Persson, Mats A. A.; Krey, Thomas; Irving, William L.; Tarr, Alexander W.

    2015-01-01

    ABSTRACT Despite significant advances in the treatment of hepatitis C virus (HCV) infection, the need to develop preventative vaccines remains. Identification of the best vaccine candidates and evaluation of their performance in preclinical and clinical development will require appropriate neutralization assays utilizing diverse HCV isolates. We aimed to generate and characterize a panel of HCV E1E2 glycoproteins suitable for subsequent use in vaccine and therapeutic antibody testing. Full-length E1E2 clones were PCR amplified from patient-derived serum samples, cloned into an expression vector, and used to generate viral pseudoparticles (HCVpp). In addition, some of these clones were used to generate cell culture infectious (HCVcc) clones. The infectivity and neutralization sensitivity of these viruses were then determined. Bioinformatic and HCVpp infectivity screening of approximately 900 E1E2 clones resulted in the assembly of a panel of 78 functional E1E2 proteins representing distinct HCV genotypes and different stages of infection. These HCV glycoproteins differed markedly in their sensitivity to neutralizing antibodies. We used this panel to predict antibody efficacy against circulating HCV strains, highlighting the likely reason why some monoclonal antibodies failed in previous clinical trials. This study provides the first objective categorization of cross-genotype patient-derived HCV E1E2 clones according to their sensitivity to antibody neutralization. It has shown that HCV isolates have clearly distinguishable neutralization-sensitive, -resistant, or -intermediate phenotypes, which are independent of genotype. The panel provides a systematic means for characterization of the neutralizing response elicited by candidate vaccines and for defining the therapeutic potential of monoclonal antibodies. IMPORTANCE Hepatitis C virus (HCV) has a global burden of more than 170 million people, many of whom cannot attain the new, expensive, direct-acting antiviral

  7. Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes.

    PubMed

    Bruder, S P; Caplan, A I

    1990-01-01

    Monoclonal antibodies against the surface of embryonic osteogenic cells have been used to characterize the sequence of transitions involved in the osteoblastic cell lineage. These previous data identified distinct cell stages within the osteogenic lineage, but were incomplete. To further refine and extend these observations, additional monoclonal antibodies were generated against the surface of osteogenic cells by immunizing mice with a heterogeneous population of chick embryonic bone cells. Supernatants from growing hybridoma colonies were immunohistochemically screened against frozen sections of stage 35 (day 9.5) chick tibiae. One cell line, SB-5, which secretes an antibody against the surface of osteogenic cells was successfully cloned, stabilized, and immortalized. Studies on the developmental progression of osteogenesis in the embryonic chick tibia reveal that cells within the lineage stages from Pre-Osteoblast to Secretory Osteoblast were never observed to react with antibody SB-5 at any time. By contrast, strong cell surface immunoreactivity was present on mature osteoblastic cells as they became Osteocytes. Furthermore, in cultures of osteogenic cells derived from embryonic calvaria or tibiae, cells possessing the SB-5 antigen on their surface displayed a morphology remarkably similar to that of Osteocytes found in situ. Double immunofluorescent staining of developing chick tibiae with SB-5 and SB-2, a monoclonal antibody directed against the surface of Secretory Osteoblasts, indicates that these cells proceed through an intermediate lineage step before becoming terminally differentiated Osteocytes. This transitory cell state is characterized by the simultaneous cell surface binding of antibodies SB-2 and SB-5, and is referred to as the Osteocytic Osteoblast stage.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2202356

  8. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    NASA Astrophysics Data System (ADS)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  9. Imaging of primary and metastatic colorectal carcinoma with monoclonal antibody 791T/36 and the therapeutic potential of antibody-drug conjugates

    SciTech Connect

    Pimm, M.V.; Armitage, N.C.; Ballantyne, K.; Baldwin, R.W.; Perkins, A.C.; Durrant, L.G.; Garnett, M.C.; Hardcastle, J.D.

    1987-01-01

    Monoclonal antibody 791T/36, prepared against a tumor-associated 72,000 dalton glycoprotein, reacted with cells from primary and metastatic colorectal carcinomas. I-131 or In-111-labelled antibody localized in xenografts of colorectal carcinomas established from in vitro clonogenic populations. Clinically, with I-131-labelled antibody, 8/11 colonic tumors imaged positively. Imaging was negative in four patients with benign colon disease. 5/11 rectal tumors were positively imaged, but excreted I-131 in the bladder obscured tumors in several studies. In-111-labelled antibody gave superior images and positively imaged primary and metastatic sites in 13/14 patients. Prospectively in the detection of recurrent disease, I-131 or In-111-antibody detected 29/33 separate sites in 24 patients. Seven negative patients remain disease free. There were 3 false positives; overall sensitivity was 88%, with 70% specificity. Specific localization of radiolabel was confirmed immunochemically and by counting radioactivity in resected specimens. Antibody conjugates with methotrexate, vindesine and daunomycin retained drug activity and antibody function, including xenograft localization and conjugates were therapeutically effective against xenografts. 791T/36 antibody has potential for immunodetection of primary and recurrent colorectal carcinoma and for targeting of therapeutic agents.

  10. Immunoproteomics of Brucella abortus reveals differential antibody profiles between S19-vaccinated and naturally infected cattle.

    PubMed

    Pajuaba, Ana C A M; Silva, Deise A O; Almeida, Karine C; Cunha-Junior, Jair P; Pirovani, Carlos P; Camillo, Luciana R; Mineo, José R

    2012-03-01

    Brucella abortus is a Gram-negative intracellular bacterium that causes infectious abortion in food-producing animals and chronic infection in humans. This study aimed to characterize a B. abortus S19 antigen preparation obtained by Triton X-114 (TX-114) extraction through immunoproteomics to differentiate infected from vaccinated cattle. Three groups of bovine sera were studied: GI, 30 naturally infected cows; GII, 30 S19-vaccinated heifers; and GIII, 30 nonvaccinated seronegative cows. One-dimensional (1D) and two-dimensional electrophoretic profiles of TX-114 hydrophilic phase antigen revealed a broad spectrum of polypeptides (10-79 kDa). 1D immunoblot showed widespread seroreactivity profile in GI compared with restricted profile in GII. Three antigenic components (10, 12, 17 kDa) were recognized exclusively by GI sera, representing potential markers of infection and excluding vaccinal response. The proteomic characterization revealed 56 protein spots, 27 of which were antigenic spots showing differential seroreactivity profile between GI and GII, especially polypeptides <20 kDa that were recognized exclusively by GI. MS/MS analysis identified five B. abortus S19 proteins (Invasion protein B, Sod, Dps, Ndk, and Bfr), which were related with antigenicity in naturally infected cattle. In conclusion, immunoproteomics of this new antigen preparation enabled the characterization of proteins that could be used as tools to develop sensitive and specific immunoassays for serodiagnosis of bovine brucellosis, with emphasis on differentiation between S19 vaccinated and infected cattle. PMID:22539433

  11. Depigmented Allergoids Reveal New Epitopes with Capacity to Induce IgG Blocking Antibodies

    PubMed Central

    López-Matas, M. Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo

    2013-01-01

    Background. The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Methods. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Results. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Conclusions. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT. PMID:24222901

  12. Accurate and High-Coverage Immune Repertoire Sequencing Reveals Characteristics of Antibody Repertoire Diversification in Young Children with Malaria

    NASA Astrophysics Data System (ADS)

    Jiang, Ning

    Accurately measuring the immune repertoire sequence composition, diversity, and abundance is important in studying repertoire response in infections, vaccinations, and cancer immunology. Using molecular identifiers (MIDs) to tag mRNA molecules is an effective method in improving the accuracy of immune repertoire sequencing (IR-seq). However, it is still difficult to use IR-seq on small amount of clinical samples to achieve a high coverage of the repertoire diversities. This is especially challenging in studying infections and vaccinations where B cell subpopulations with fewer cells, such as memory B cells or plasmablasts, are often of great interest to study somatic mutation patterns and diversity changes. Here, we describe an approach of IR-seq based on the use of MIDs in combination with a clustering method that can reveal more than 80% of the antibody diversity in a sample and can be applied to as few as 1,000 B cells. We applied this to study the antibody repertoires of young children before and during an acute malaria infection. We discovered unexpectedly high levels of somatic hypermutation (SHM) in infants and revealed characteristics of antibody repertoire development in young children that would have a profound impact on immunization in children.

  13. Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins

    PubMed Central

    Byrne, Barry; Stack, Edwina; Gilmartin, Niamh; O'Kennedy, Richard

    2009-01-01

    Antibody-based sensors permit the rapid and sensitive analysis of a range of pathogens and associated toxins. A critical assessment of the implementation of such formats is provided, with reference to their principles, problems and potential for ‘on-site’ analysis. Particular emphasis is placed on the detection of foodborne bacterial pathogens, such as Escherichia coli and Listeria monocytogenes, and additional examples relating to the monitoring of fungal pathogens, viruses, mycotoxins, marine toxins and parasites are also provided. PMID:22408533

  14. Free-Energy Simulations Reveal that Both Hydrophobic and Polar Interactions Are Important for Influenza Hemagglutinin Antibody Binding

    PubMed Central

    Xia, Zhen; Huynh, Tien; Kang, Seung-gu; Zhou, Ruhong

    2012-01-01

    Antibodies binding to conserved epitopes can provide a broad range of neutralization to existing influenza subtypes and may also prevent the propagation of potential pandemic viruses by fighting against emerging strands. Here we propose a computational framework to study structural binding patterns and detailed molecular mechanisms of viral surface glycoprotein hemagglutinin (HA) binding with a broad spectrum of neutralizing monoclonal antibody fragments (Fab). We used rigorous free-energy perturbation (FEP) methods to calculate the antigen-antibody binding affinities, with an aggregate underlying molecular-dynamics simulation time of several microseconds (∼2 μs) using all-atom, explicit-solvent models. We achieved a high accuracy in the validation of our FEP protocol against a series of known binding affinities for this complex system, with <0.5 kcal/mol errors on average. We then introduced what to our knowledge are novel mutations into the interfacial region to further study the binding mechanism. We found that the stacking interaction between Trp-21 in HA2 and Phe-55 in the CDR-H2 of Fab is crucial to the antibody-antigen association. A single mutation of either W21A or F55A can cause a binding affinity decrease of ΔΔG > 4.0 kcal/mol (equivalent to an ∼1000-fold increase in the dissociation constant Kd). Moreover, for group 1 HA subtypes (which include both the H1N1 swine flu and the H5N1 bird flu), the relative binding affinities change only slightly (< ±1 kcal/mol) when nonpolar residues at the αA helix of HA mutate to conservative amino acids of similar size, which explains the broad neutralization capability of antibodies such as F10 and CR6261. Finally, we found that the hydrogen-bonding network between His-38 (in HA1) and Ser-30/Gln-64 (in Fab) is important for preserving the strong binding of Fab against group 1 HAs, whereas the lack of such hydrogen bonds with Asn-38 in most group 2 HAs may be responsible for the escape of antibody

  15. Polyclonal B-cell activation reveals antibodies against human immunodeficiency virus type 1 (HIV-1) in HIV-1-seronegative individuals.

    PubMed Central

    Jehuda-Cohen, T; Slade, B A; Powell, J D; Villinger, F; De, B; Folks, T M; McClure, H M; Sell, K W; Ahmed-Ansari, A

    1990-01-01

    Identification of human immunodeficiency virus type 1 (HIV-1)-infected individuals is of paramount importance for the control of the spread of AIDS worldwide. Currently, the vast majority of screening centers throughout the world rely on serological techniques. As such, clinically asymptomatic but HIV-infected, seronegative individuals are rarely identified. In this report we show that 18% (30/165) of seronegative individuals who were considered to be a unique cohort of patients at high risk for HIV infection had circulating B cells that, upon in vitro polyclonal activation with pokeweed mitogen, produced antibodies reactive with HIV. Furthermore, polymerase chain reaction analysis of DNA obtained from aliquots of the peripheral blood mononuclear cells from these seronegative but pokeweed mitogen assay-positive individuals tested revealed the presence of HIV-specific sequences in a significant number of samples. In addition, depletion of CD8+ T cells from peripheral blood mononuclear cells of HIV-1-seronegative individuals prior to in vitro culture with pokeweed mitogen resulted in increased sensitivity for detecting HIV-reactive antibodies. This assay has obvious epidemiological implications, especially in the case of high-risk groups, and also provides a simple technique to enhance detection of HIV-infected individuals. Of further interest is the determination of the mechanisms related to the lack of HIV-specific antibodies in the serum of these infected individuals. Images PMID:2111024

  16. Optimization of microchip-based electrophoresis for monoclonal antibody product quality analysis revealed needs for extra surfactants during denaturation.

    PubMed

    Cai, Hui; Song, Yuanli; Zhang, Jian; Shi, Ting; Fu, Ya; Li, Rong; Mussa, Nesredin; Li, Zheng Jian

    2016-02-20

    Microchip-based electrophoresis has gained increasing popularity in biopharmaceutical development and testing laboratories because of its automation and rapid analysis capabilities. One application of microchip-based electrophoresis is the assessment of size-based variants for product purity analysis. However, monoclonal antibodies analyzed by this technique sometimes exhibited different electrophoretic behaviors. In this study, when three IgG1 and five IgG4 were analyzed using microchip-based electrophoresis under reducing conditions, one of the IgG1s, denoted as mAb1, exhibited an atypical profile attributed to its specific heterogeneity resulting in separation of its heavy chain into two main species. During investigation of the atypical profile, several parameters that were critical to optimal resolution were evaluated, and the data pointed toward incomplete denaturation of mAb1 due to lack of sufficient surfactant in the vendor provided sample buffer (0.7% surfactant). Denaturation studies demonstrated that, although typical antibody profiles could be achieved at 0.7% surfactant for most antibodies analyzed, five out of eight antibodies were not fully denatured until the surfactant concentration reached 0.9% or higher, and mAb1 required a surfactant concentration of 1.3% for complete denaturation. Molecular modeling analysis revealed features in surface charge, hydrophobicity, and structure from mAb1 that led to its unique surfactant concentration-dependent electrophoretic behaviors observed. The optimized method was further evaluated for specificity, linearity, precision, and limit of quantitation for mAb1, and compared with that of conventional CE-SDS. PMID:26704629

  17. Diagnostic Potential of Zymogen Granule Glycoprotein 2 Antibodies as Serologic Biomarkers in Chinese Patients With Crohn Disease

    PubMed Central

    Zhang, Shulan; Wu, Ziyan; Luo, Jing; Ding, Xuefeng; Hu, Chaojun; Li, Ping; Deng, Chuiwen; Zhang, Fengchun; Qian, Jiaming; Li, Yongzhe

    2015-01-01

    Abstract The need for reliable biomarkers for distinguishing Crohn disease (CD) from ulcerative colitis (UC) is increasing. This study aimed at evaluating the diagnostic potential of anti-GP2 antibodies as a biomarker in Chinese patients with CD. In addition, a variety of autoantibodies, including anti-saccharomyces cerevisiae antibodies (ASCA), perinuclear anti-neutrophil cytoplasmic antibodies (PANCA), anti-intestinal goblet cell autoantibodies (GAB), and anti-pancreatic autoantibodies (PAB), were evaluated. A total of 91 subjects were prospectively enrolled in this study, including 35 patients with CD, 35 patients with UC, 13 patients with non-IBD gastrointestinal diseases as disease controls (non-IBD DC), and 8 healthy controls (HC). The diagnosis of IBD was determined based on the Lennard-Jones criteria, and the clinical phenotypes of the IBD patients were determined based on the Montreal Classification. Anti-GP2 IgG antibodies were significantly elevated in patients with CD, compared with patients with UC (P = 0.0038), HC (P = 0.0055), and non-IBD DC (P = 0.0063). The prevalence of anti-GP2 IgG, anti-GP2 IgA and anti-GP2 IgA, or IgG antibodies in patients with CD was 40.0%, 37.1%, and 54.3%, respectively, which were higher than those in non-IBD DC (anti-GP2 IgG, 15.4%; anti-GP2 IgA, 7.7%; and anti-GP2 IgA or IgG, 23.1%) and those in patients with UC (anti-GP2 IgG, 11.4%; anti-GP2 IgA, 2.9%; and anti-GP2 IgA or IgG, 14.3%). For distinguishing CD from UC, the sensitivity, specificity, positive predictive value (PPV) and positive likelihood ratios (LR+) were 40%, 88.6%, 77.8%, and 3.51 for anti-GP2 IgG, 37.1%, 97.1%, 92.9%, and 13.0 for anti-GP2 IgA, and 54.3%, 85.3%, 79.2%, and 3.69 for anti-GP2 IgA or IgG. For CD diagnosis, the combination of anti-GP2 antibodies with ASCA IgA increased the sensitivity to 68.6% with moderate loss of specificity to 74.3%. Spearman's rank of order revealed a significantly positive correlation of anti-GP2 IgG with

  18. Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination

    PubMed Central

    Misaghi, Shahram; Senger, Kate; Sai, Tao; Qu, Yan; Sun, Yonglian; Hamidzadeh, Kajal; Nguyen, Allen; Jin, Zhaoyu; Zhou, Meijuan; Yan, Donghong; Lin, Wei Yu; Lin, Zhonghua; Lorenzo, Maria N.; Sebrell, Andrew; Ding, Jiabing; Xu, Min; Caplazi, Patrick; Austin, Cary D.; Balazs, Mercedesz; Roose-Girma, Merone; DeForge, Laura; Warming, Søren; Lee, Wyne P.; Dixit, Vishva M.; Zarrin, Ali A.

    2013-01-01

    Preceding antibody constant regions are switch (S) regions varying in length and repeat density that are targets of activation-induced cytidine deaminase. We asked how participating S regions influence each other to orchestrate rearrangements at the IgH locus by engineering mice in which the weakest S region, Sε, is replaced with prominent recombination hotspot Sμ. These mice produce copious polyclonal IgE upon challenge, providing a platform to study IgE biology and therapeutic interventions. The insertion enhances ε germ-line transcript levels, shows a preference for direct vs. sequential switching, and reduces intraswitch recombination events at native Sμ. These results suggest that the sufficiency of Sμ to mediate IgH rearrangements may be influenced by context-dependent cues. PMID:24019479

  19. Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination.

    PubMed

    Misaghi, Shahram; Senger, Kate; Sai, Tao; Qu, Yan; Sun, Yonglian; Hamidzadeh, Kajal; Nguyen, Allen; Jin, Zhaoyu; Zhou, Meijuan; Yan, Donghong; Lin, Wei Yu; Lin, Zhonghua; Lorenzo, Maria N; Sebrell, Andrew; Ding, Jiabing; Xu, Min; Caplazi, Patrick; Austin, Cary D; Balazs, Mercedesz; Roose-Girma, Merone; DeForge, Laura; Warming, Søren; Lee, Wyne P; Dixit, Vishva M; Zarrin, Ali A

    2013-09-24

    Preceding antibody constant regions are switch (S) regions varying in length and repeat density that are targets of activation-induced cytidine deaminase. We asked how participating S regions influence each other to orchestrate rearrangements at the IgH locus by engineering mice in which the weakest S region, Sε, is replaced with prominent recombination hotspot Sμ. These mice produce copious polyclonal IgE upon challenge, providing a platform to study IgE biology and therapeutic interventions. The insertion enhances ε germ-line transcript levels, shows a preference for direct vs. sequential switching, and reduces intraswitch recombination events at native Sμ. These results suggest that the sufficiency of Sμ to mediate IgH rearrangements may be influenced by context-dependent cues. PMID:24019479

  20. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition.

    PubMed

    Luo, Ting; Krüger, Thomas; Knüpfer, Uwe; Kasper, Lydia; Wielsch, Natalie; Hube, Bernhard; Kortgen, Andreas; Bauer, Michael; Giamarellos-Bourboulis, Evangelos J; Dimopoulos, George; Brakhage, Axel A; Kniemeyer, Olaf

    2016-08-01

    During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera. PMID:27386892

  1. Burkholderia pseudomallei Capsular Polysaccharide Recognition by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis.

    PubMed

    Marchetti, Roberta; Dillon, Michael J; Burtnick, Mary N; Hubbard, Mark A; Kenfack, Marielle Tamigney; Blériot, Yves; Gauthier, Charles; Brett, Paul J; AuCoin, David P; Lanzetta, Rosa; Silipo, Alba; Molinaro, Antonio

    2015-10-16

    Burkholderia pseudomallei is the bacterium responsible for melioidosis, an infectious disease with high mortality rates. Since melioidosis is a significant public health concern in endemic regions and the organism is currently classified as a potential biothreat agent, the development of effective vaccines and rapid diagnostics is a priority. The capsular polysaccharide (CPS) expressed by B. pseudomallei is a highly conserved virulence factor and a protective antigen. Because of this, CPS is considered an attractive antigen for use in the development of both vaccines and diagnostics. In the present study, we describe the interactions of CPS with the murine monoclonal antibody (mAb) 4C4 using a multidisciplinary approach including organic synthesis, molecular biology techniques, surface plasmon resonance, and nuclear magnetic spectroscopy. Using these methods, we determined the mode of binding between mAb 4C4 and native CPS or ad hoc synthesized capsular polysaccharide fragments. Interestingly, we demonstrated that the O-acetyl moiety of CPS is essential for the interaction of the CPS epitope with mAb 4C4. Collectively, our results provide important insights into the structural features of B. pseudomallei CPS that enable antibody recognition that may help the rational design of CPS-based vaccine candidates. In addition, our findings confirm that the mAb 4C4 is suitable for use in an antibody-based detection assay for diagnosis of B. pseudomallei infections. PMID:26198038

  2. Autologous red blood cells potentiate antibody synthesis by unfractionated human mononuclear cell cultures.

    PubMed

    Rugeles, M T; La Via, M; Goust, J M; Kilpatrick, J M; Hyman, B; Virella, G

    1987-08-01

    We have tried to determine the most favourable conditions for the in vitro induction of specific antibody (Ab) responses to tetanus toxoid (TT) and keyhole limpet haemocyanin (KLH). Human peripheral blood mononuclear cells (PBMNC) were obtained from normal volunteers and stimulated with PWM, TT, KLH, and mixtures of PWM and antigens in the presence or absence of autologous red blood cells (RBC) (1:50 ratio of PBMNC/RBC). The cultures were harvested on day 11; immunoglobulins were determined immunonephelometrically and Ab levels by ELISA with human antibodies used for calibration. While anti-TT responses were easy to induce with PBMNC from recently boosted individuals, the production of anti-TT from PBMNC obtained from non-recently boosted individuals was only possible when PBMNC were stimulated with TT and PWM in the presence of autologous RBC. Similarly, anti-KLH responses were easier to induce with PBMNC from an immune donor; maximal response was observed after stimulation with PWM + KLH in the presence of autologous RBC. Stimulation of primary anti-KLH responses with PBMNC from non-immune donors was only successful when the cells were stimulated with KLH + PWM in the presence of autologous RBC. The potentiation of human B-cell responses with autologous RBC can be abrogated by pretreatment of PBMNC with anti-CD2 antibodies and is associated with increased expression of IL-2 receptors and increased production of gamma interferon (IFN-gamma). However, addition of IFN-gamma in different doses and at different times to PWM-stimulated PBMNC cultures was not as effective as addition of RBC in enhancing the production of immunoglobulin and antibody. PMID:3114872

  3. TCGA bladder cancer study reveals potential drug targets

    Cancer.gov

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  4. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    PubMed Central

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C.; Julien, Jean-Philippe; Wilson, Ian A.; Burton, Dennis R.; Crotty, Shane; Schief, William R.

    2016-01-01

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. PMID:27013733

  5. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung.

    PubMed

    Lafkas, Daniel; Shelton, Amy; Chiu, Cecilia; de Leon Boenig, Gladys; Chen, Yongmei; Stawicki, Scott S; Siltanen, Christian; Reichelt, Mike; Zhou, Meijuan; Wu, Xiumin; Eastham-Anderson, Jeffrey; Moore, Heather; Roose-Girma, Meron; Chinn, Yvonne; Hang, Julie Q; Warming, Søren; Egen, Jackson; Lee, Wyne P; Austin, Cary; Wu, Yan; Payandeh, Jian; Lowe, John B; Siebel, Christian W

    2015-12-01

    Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation. PMID:26580007

  6. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. PMID:27013733

  7. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    SciTech Connect

    Fanning, Sean W.; Horn, James R.

    2014-03-05

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.

  8. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody.

    PubMed

    Miyata, T; Nakajima, K; Mikoshiba, K; Ogawa, M

    1997-05-15

    Cerebellar Purkinje cells are generated in the ventricular zone, migrate outward, and finally form a monolayer in the cortex. In reeler mice, however, most Purkinje cells cluster abnormally in subcortical areas. Reelin, the candidate reeler gene product recognized by the CR-50 monoclonal antibody, is concentrated in a cortical zone along which Purkinje cells are aligned linearly, implying that it may regulate their alignment. We used an in vitro system and a transplantation approach to analyze the function of Reelin. Explant culture for 7 d of cerebella isolated from wild-type and reeler mice at embryonic day 13 (E13) reproduced in a phenotype-dependent manner the two distinct arrangement patterns (linear vs clustered) of Purkinje cells. Extensive CR-50 binding to wild-type explants converted the linear pattern into a reeler-like, clustered pattern. On the other hand, when reeler explants lacking Reelin were crowned with an artificial layer of Reelin+ granule cells, some Reelin molecules were distributed into a superficial zone of the reeler explants, and Purkinje cells formed a linear pattern along the Reelin-rich overlay. This "rescue" effect was also inhibited by CR-50. Hence, Reelin is involved in the Purkinje cell alignment, and the lack of this activity may explain the malformation in reeler cerebella. We further injected Reelin+ granule cells into the fourth ventricle of E12-13 mice. Extensive incorporation of the injected Reelin+ cells into the ventricular zone, but not of Reelin- cells, forced Purkinje cells of the host cerebella to form an aberrant layer, suggesting that premigratory Purkinje cells may already be responsive to Reelin or Reelin-related signals. PMID:9133383

  9. CpG oligodeoxynucleotides potentiate the antitumor activity of anti-BST2 antibody.

    PubMed

    Hiramatsu, Kosuke; Serada, Satoshi; Kobiyama, Kouji; Nakagawa, Satoshi; Morimoto, Akiko; Matsuzaki, Shinya; Ueda, Yutaka; Fujimoto, Minoru; Yoshino, Kiyoshi; Ishii, Ken J; Enomoto, Takayuki; Kimura, Tadashi; Naka, Tetsuji

    2015-10-01

    Numerous monoclonal antibodies (mAb) targeting tumor antigens have recently been developed. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) via effector cells such as tumor-infiltrating natural killer (NK) cells and macrophages are often involved in mediating the antitumor activity of mAb. CpG oligodeoxynucleotides (ODN) have a potent antitumor activity and are considered to increase tumor infiltration of NK cells and macrophages. Our group previously reported significant antitumor activity of anti-bone marrow stromal antigen 2 (BST2) mAb against BST2-positive endometrial cancer cells through ADCC. In this study, we evaluated the synergistic antitumor activity of combination therapy with anti-BST-2 mAb and CpG ODN using SCID mice and elucidated the mechanisms underlying this activity. Anti-BST2 mAb and CpG ODN monotherapy had a significant dose-dependent antitumor activity (P = 0.0135 and P = 0.0196, respectively). Combination therapy with anti-BST2 mAb and CpG ODN had a significant antitumor activity in SCID mice (P < 0.01), but not in NOG mice. FACS analysis revealed significantly increased numbers of NK cells and macrophages in tumors treated with a combination of anti-BST2 mAb and CpG ODN and with CpG ODN alone in SCID mice (P < 0.05 and P < 0.01, respectively). These results suggested that the combination therapy with anti-BST2 mAb and CpG ODN has a significant antitumor activity and induces tumor infiltration of NK cells and macrophages. Combination therapy with CpG ODN and anti-BST2 mAb or other antitumor mAb depending on ADCC may represent a new treatment option for cancer. PMID:26498112

  10. A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules

    SciTech Connect

    Zhang, Andrew X.; Murelli, Ryan P.; Barinka, Cyril; Michel, Julien; Cocleaza, Alexandra; Jorgensen, William L.; Lubkowski, Jacek; Spiegel, David A.

    2010-09-27

    Prostate specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase overexpressed in many forms of prostate cancer. Our laboratory has recently disclosed a class of small molecules, called ARM-Ps (antibody-recruiting molecule targeting prostate cancer) that are capable of enhancing antibody-mediated immune recognition of prostate cancer cells. Interestingly, during the course of these studies, we found ARM-Ps to exhibit extraordinarily high potencies toward PSMA, compared to previously reported inhibitors. Here, we report in-depth biochemical, crystallographic, and computational investigations which elucidate the origin of the observed affinity enhancement. These studies reveal a previously unreported arene-binding site on PSMA, which we believe participates in an aromatic stacking interaction with ARMs. Although this site is composed of only a few amino acid residues, it drastically enhances small molecule binding affinity. These results provide critical insights into the design of PSMA-targeted small molecules for prostate cancer diagnosis and treatment; more broadly, the presence of similar arene-binding sites throughout the proteome could prove widely enabling in the optimization of small molecule-protein interactions.

  11. Crystal Structure of the HSV-1 Fc Receptor Bound to Fc Reveals a Mechanism for Antibody Bipolar Bridging

    SciTech Connect

    Sprague, E.R.; Wang, C.; Baker, D.; Bjorkman, P.J.; /Caltech /Howard Hughes Med. Inst.

    2007-08-08

    Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-{angstrom} CgE structure. A 5-{angstrom} gE-gI/Fc crystal structure, which was independently verified by a theoretical prediction method, reveals that CgE binds Fc at the C{sub H}2-C{sub H}3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response.

  12. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    NASA Astrophysics Data System (ADS)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  13. Network analysis reveals potential markers for pediatric adrenocortical carcinoma

    PubMed Central

    Kulshrestha, Anurag; Suman, Shikha; Ranjan, Rakesh

    2016-01-01

    Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. Accurate and timely diagnosis of the disease requires identification of new markers for pediatric ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was constructed. Hub gene detection and enrichment analysis of functional modules were performed. Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregulated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were identified as the common hubs of PPI and GGI networks. All the four common hub genes were also part of modules of the PPI network. Moreover, all the four genes were also present in the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, although experimental studies are required to authenticate our findings. PMID:27555782

  14. Fluorescent nanohybrids based on quantum dot-chitosan-antibody as potential cancer biomarkers.

    PubMed

    Mansur, Alexandra A P; Mansur, Herman S; Soriano-Araújo, Amanda; Lobato, Zélia I P

    2014-07-23

    Despite undeniable advances in medicine in recent decades, cancer is still one of the main challenges faced by scientists and professionals in the health sciences as it remains one of the world's most devastating diseases with millions of fatalities and new cases every year. Thus, in this work, we endeavored to synthesize and characterize novel multifunctional immunoconjugates composed of quantum dots (QDs) as the fluorescent inorganic core and antibody-modified polysaccharide as the organic shell, focusing on their potential applications for in vitro diagnosis of non-Hodgkin lymphoma (NHL) cancer tumors. Chitosan was covalently conjugated with anti-CD20 polyclonal antibody (pAbCD20) via formation of amide bonds between amines and carboxyl groups. In the sequence, these biopolymer-antibody immunoconjugates were utilized as direct capping ligands for biofunctionalization of CdS QDs (CdS/chitosan-pAbCD20) using a single-step process in aqueous medium at room temperature. The nanostructures were characterized by UV-vis spectroscopy, photoluminescence spectroscopy (PL), FTIR, and transmission electron microscopy (TEM) with selected area electron diffraction. The TEM images associated with the UV-vis optical absorption results indicated formation of ultrasmall nanocrystals with average diameters in the range of 2.5-3.0 nm. Also, the PL results demonstrated that the immunoconjugates exhibited "green" fluorescent activity under ultraviolet excitation. Moreover, using in vitro laser light scattering immunoassay (LIA), the QDs/immunoconjugates have shown binding affinity against antigen CD20 (aCD20) expressed by lymphocyte-B cancer cells. In summary, innovative fluorescent nanoimmunoconjugate templates were developed with promising perspectives to be used in the future for detection and imaging of cancer tumors. PMID:24956063

  15. Potential cross-reactivity of monoclonal antibodies against clinically relevant mycobacteria

    PubMed Central

    Flores-Moreno, K; Celis-Meneses, J S; Meneses-Ruiz, D M; Castillo-Rodal, A I; Orduña, P; Montiel, B A; López-Vidal, Y

    2014-01-01

    Tuberculosis is a disease caused by the Mycobacterium tuberculosis complex (MTb). In 2011, global mortality due to tuberculosis was 1·4 million individuals. The only available vaccine is the attenuated M. bovis [bacillus Calmette–Guérin (BCG)] strain, which confers variable protection against pulmonary tuberculosis. Some widely distributed non-tuberculous mycobacteria (NTM), such as M. avium and M. arupense, are also potential pathogens for humans. This work aimed to produce and characterize monoclonal antibodies against the M. bovis BCG Mexico strain of the MTb, M. avium subs. hominissuis and the M. arupense strain from NTM. Hybridomas were produced from splenocytes of BALB/c female mice immunized with radiation-inactivated mycobacteria, and the immunoglobulin (Ig)G2a antibody-producing clones with the highest antigenic recognition were selected. The selected clones, Mbv 2A10 for M. bovis BCG Mexico, Mav 3H1 for M. avium and Mar 2D10 for M. arupense, were used in further studies. Enzyme-linked immunosorbent assay (ELISA) and immune proteomics analyses characterized the clones as having the highest cross-reactivity with mycobacteria. Using mass spectrometry, a number of proteins recognized by the monoclonal antibody (mAb) clones were identified. These proteins had roles in metabolic processes, hypoxia, cell cycle and dormancy. In addition, a Clustal W and Immune Epitope Database (IEDB) in-silico analysis was performed in protein sequences that result in the conserved regions within probability epitopes that could be recognized for Mbv2A10 and Mav3H1 clones. PMID:24580144

  16. Historical forest baselines reveal potential for continued carbon sequestration

    PubMed Central

    Rhemtulla, Jeanine M.; Mladenoff, David J.; Clayton, Murray K.

    2009-01-01

    One-third of net CO2 emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC. The spatial distribution of AGC, however, has shifted significantly. Former savanna ecosystems in the south now store more AGC because of fire suppression and forest ingrowth, despite the fact that most of the region remains in agriculture, whereas northern forests still store much less carbon than before settlement. Across the state, continued sequestration in existing forests has the potential to contribute an additional 69 TgC. Reforestation of agricultural lands, in particular, the formerly high C-density forests in the north-central region that are now agricultural lands less optimal than those in the south, could contribute 150 TgC. Restoring historical carbon stocks across the landscape will therefore require reassessing overall land-use choices, but a range of options can be ranked and considered under changing needs for ecosystem services. PMID:19369213

  17. Historical forest baselines reveal potential for continued carbon sequestration.

    PubMed

    Rhemtulla, Jeanine M; Mladenoff, David J; Clayton, Murray K

    2009-04-14

    One-third of net CO(2) emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC. The spatial distribution of AGC, however, has shifted significantly. Former savanna ecosystems in the south now store more AGC because of fire suppression and forest ingrowth, despite the fact that most of the region remains in agriculture, whereas northern forests still store much less carbon than before settlement. Across the state, continued sequestration in existing forests has the potential to contribute an additional 69 TgC. Reforestation of agricultural lands, in particular, the formerly high C-density forests in the north-central region that are now agricultural lands less optimal than those in the south, could contribute 150 TgC. Restoring historical carbon stocks across the landscape will therefore require reassessing overall land-use choices, but a range of options can be ranked and considered under changing needs for ecosystem services. PMID:19369213

  18. The human oral metaproteome reveals potential biomarkers for caries disease.

    PubMed

    Belda-Ferre, Pedro; Williamson, James; Simón-Soro, Áurea; Artacho, Alejandro; Jensen, Ole N; Mira, Alex

    2015-10-01

    Tooth decay is considered the most prevalent human disease worldwide. We present the first metaproteomic study of the oral biofilm, using different mass spectrometry approaches that have allowed us to quantify individual peptides in healthy and caries-bearing individuals. A total of 7771 bacterial and 853 human proteins were identified in 17 individuals, which provide the first available protein repertoire of human dental plaque. Actinomyces and Coryneybacterium represent a large proportion of the protein activity followed by Rothia and Streptococcus. Those four genera account for 60-90% of total diversity. Healthy individuals appeared to have significantly higher amounts of L-lactate dehydrogenase and the arginine deiminase system, both implicated in pH buffering. Other proteins found to be at significantly higher levels in healthy individuals were involved in exopolysaccharide synthesis, iron metabolism and immune response. We applied multivariate analysis in order to find the minimum set of proteins that better allows discrimination of healthy and caries-affected dental plaque samples, detecting seven bacterial and five human protein functions that allow determining the health status of the studied individuals with an estimated specificity and sensitivity over 96%. We propose that future validation of these potential biomarkers in larger sample size studies may serve to develop diagnostic tests of caries risk that could be used in tooth decay prevention. PMID:26272225

  19. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    SciTech Connect

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  20. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography.

    PubMed

    He, Wanzhong; Ladinsky, Mark S; Huey-Tubman, Kathryn E; Jensen, Grant J; McIntosh, J Richard; Björkman, Pamela J

    2008-09-25

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient unidirectional transport of IgG, because FcRn binds IgG at pH 6.0-6.5 but not at pH 7 or more. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking. PMID:18818657

  1. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography

    PubMed Central

    He, Wanzhong; Ladinsky, Mark S.; Huey-Tubman, Kathryn E.; Jensen, Grant J.; McIntosh, J. Richard; Björkman, Pamela J.

    2009-01-01

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers1,2, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rodents, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates efficient unidirectional transport of IgG, since FcRn binds IgG at pH 6.0-6.5 but not pH ≥7 1,2. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum, jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum)3-6. We used electron tomography to directly visualize jejunal transcytosis in space and time, developing new labeling and detection methods to map individual nanogold-labeled Fc within transport vesicles7 and to simultaneously characterize these vesicles by immunolabeling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine if a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moved through networks of entangled tubular and irregular vesicles, only some of which were microtubule-associated, as it migrated to the basolateral surface. New features of transcytosis were elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis via clathrin-coated pits. Markers for early, late, and recycling endosomes each labeled vesicles in different and overlapping morphological classes, revealing unexpected spatial complexity in endo-lysosomal trafficking. PMID:18818657

  2. VLA Reveals a Close Pair of Potential Planetary Systems

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Planets apparently can form in many more binary-star systems than previously thought, according to astronomers who used the National Science Foundation's Very Large Array (VLA) radio telescope to image protoplanetary disks around a close pair of stars. "Most stars in the universe are not alone, like our Sun, but are part of double or triple systems, so this means that the number of potential planets is greater than we realized," said Luis Rodriguez, of the National Autonomous University in Mexico City, who led an international observing team that made the discovery. The astronomers announced their results in the Sept. 24 issue of the scientific journal Nature. The researchers used the VLA to study a stellar nursery - a giant cloud of gas and dust - some 450 light-years distant in the constellation Taurus, where stars the size of the Sun or smaller are being formed. They aimed at one particular object, that, based on previous infrared and radio observations, was believed to be a very young star. The VLA observations showed that the object was not a single young star but a pair of young stars, separated only slightly more than the Sun and Pluto. The VLA images show that each star in the pair is surrounded by an orbiting disk of dust, extending out about as far as the orbit of Saturn. Such dusty disks are believed to be the material from which planets form. Similar disks are seen around single stars, but the newly-discovered disks around the stars in the binary system are about ten times smaller, their size limited by the gravitational effect of the other, nearby star. Their existence indicates, however, that such protoplanetary disks, though truncated in size, still can survive in such a close double-star system. "It was surprising to see these disks in a binary system with the stars so close together," said Rodriguez. "Each of these disks contains enough mass to form a solar system like our own," said David Wilner, of the Harvard-Smithsonian Center for Astrophysics

  3. Unexplained in-vitro fertilization failure: implication of acrosomes with a small reacting region, as revealed by a monoclonal antibody.

    PubMed

    Albert, M; Gallo, J M; Escalier, D; Parseghian, N; Jouannet, P; Schrevel, J; David, G

    1992-10-01

    To determine the acrosomal characteristics related to in-vitro fertilization (IVF) outcome, spermatozoa from 50 men whose wives had resorted to IVF have been studied by indirect immunofluorescence microscopy with anti-human pro-acrosin monoclonal antibody 4D4 (mAb 4D4), prior to and after incubation in a capacitating medium. The antibody labelled only the acrosomal principal region (APR), revealing its shape (i.e. normal, small or amorphous) and its status (i.e. unreacted, partially or totally reacted). The IVF outcome distinguished: (i) spermatozoa which were able to fertilize at least one oocyte in vitro (group I; n = 25) and (ii) spermatozoa which failed to fertilize any oocyte in vitro (group II; n = 25). The semen characteristics of the two sperm groups, including the acrosome morphology, were similar according to conventional analysis. The mAb 4D4 detected in both the whole and the swim-up sperm cell fractions a lower percentage of normal APR in group II (< 50% for 10 patients in group II versus one patient from group I), which was related to a higher percentage of small APR. Moreover, after 21 h incubation, group II had a lower acrosomal loss index. The spermatozoa of five patients of this infertile group II did not undergo acrosomal modification whereas spermatozoa of all group I patients underwent the acrosomal reaction. The data showed that the relationship between acrosomal anomalies and IVF failure is mainly due to an increased incidence of acrosomes with a reduced size of the region involved in the acrosome reaction. Immunodiagnosis of this acrosomal region by means of mAb 4D4 is informative for IVF outcome. PMID:1479007

  4. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis.

    PubMed

    Vincent, Angela; Buckley, Camilla; Schott, Jonathan M; Baker, Ian; Dewar, Bonnie-Kate; Detert, Niels; Clover, Linda; Parkinson, Abigail; Bien, Christian G; Omer, Salah; Lang, Bethan; Rossor, Martin N; Palace, Jackie

    2004-03-01

    Patients presenting with subacute amnesia are frequently seen in acute neurological practice. Amongst the differential diagnoses, herpes simplex encephalitis, Korsakoff's syndrome and limbic encephalitis should be considered. Limbic encephalitis is typically a paraneoplastic syndrome with a poor prognosis; thus, identifying those patients with potentially reversible symptoms is important. Voltage-gated potassium channel antibodies (VGKC-Ab) have recently been reported in three cases of reversible limbic encephalitis. Here we review the clinical, immunological and neuropsychological features of 10 patients (nine male, one female; age range 44-79 years), eight of whom were identified in two centres over a period of 15 months. The patients presented with 1-52 week histories of memory loss, confusion and seizures. Low plasma sodium concentrations, initially resistant to treatment, were present in eight out of 10. Brain MRI at onset showed signal change in the medial temporal lobes in eight out of 10 cases. Paraneoplastic antibodies were negative, but VGKC-Ab ranged from 450 to 5128 pM (neurological and healthy controls <100 pM). CSF oligoclonal bands were found in only one, but bands matched with those in the serum were found in six other patients. VGKC-Abs in the CSF, tested in five individuals, varied between <1 and 10% of serum values. Only one patient had neuromyotonia, which was excluded by electromyography in seven of the others. Formal neuropsychology testing showed severe and global impairment of memory, with sparing of general intellect in all but two patients, and of nominal functions in all but one. Variable regimes of steroids, plasma exchange and intravenous immunoglobulin were associated with variable falls in serum VGKC-Abs, to values between 2 and 88% of the initial values, together with marked improvement of neuropsychological functioning in six patients, slight improvement in three and none in one. The improvement in neuropsychological functioning in

  5. Radiolabeled monoclonal antibodies for imaging and therapy: Potential, problems, and prospects: Scientific highlights

    SciTech Connect

    Srivastava, S.C.; Buraggi, G.L.

    1986-01-01

    This meeting focused on areas of research on radiolabeled monoclonal antibodies. Topics covered included the production, purification, and fragmentation of monoclonal antibodies and immunochemistry of hybridomas; the production and the chemistry of radionuclides; the radiohalogenation and radiometal labeling techniques; the in-vivo pharmacokinetics of radiolabeled antibodies; the considerations of immunoreactivity of radiolabeled preparations; the instrumentation and imaging techniques as applied to radioimmunodetection; the radiation dosimetry in diagnostic and therapeutic use of labeled antibodies; the radioimmunoscintigraphy and radioimmunotherapy studies; and perspectives and directions for future research. Tutorial as well as scientific lectures describing the latest research data on the above topics were presented. Three workshop panels were convened on ''Methods for Determining Immunoreactivity of Radiolabeled Monoclonal Antibodies - Problems and Pitfalls,'' Radiobiological and Dosimetric Considerations for Immunotherapy with Labeled Antibodies,'' and ''The Human Anti-Mouse Antibody Response in Patients.''

  6. Monoclonal antibodies reveal cell-type-specific antigens in the sexually dimorphic olfactory system of Manduca sexta. I. Generation of monoclonal antibodies and partial characterization of the antigens.

    PubMed

    Hishinuma, A; Hockfield, S; McKay, R; Hildebrand, J G

    1988-01-01

    The olfactory system of the moth Manduca sexta is sexually dimorphic. Male moths possess a male-specific olfactory "subsystem," comprising olfactory receptor cells (ORCs) and CNS neurons and synaptic areas associated with the detection of female sex pheromones, in addition to elements common to males and females. In order to explore the molecular differences between cells that subserve the sexual dimorphism and odor-specificity of components of the olfactory system, we generated monoclonal antibodies (Mabs) against tissue of the olfactory system of the moth. In 2 fusions, we screened 1105 hybridoma lines and obtained 272 lines that secreted antibodies against Manduca nervous tissue, as assayed immunocytochemically on sections of the primary olfactory center (the antennal lobe) in the brain of Manduca. We describe here 3 classes of Mabs exemplifying the several cell-type-specific antibodies obtained through the screening procedure. Seven hybridoma lines secrete antibodies that specifically recognize cell bodies, axons, and initial segments of dendrites of many or all ORCs of both males and females (classified as olfactory-specific antibodies, OSAs). Electron-microscopic studies of 2 of the Mabs in this class showed that they recognize antigens associated with the cell membrane and that the immunoreactive ORC axons are bundled together in fascicles in the antennal nerve. On immunoblots, one of the OSA Mabs recognizes 3 distinct protein bands of apparent Mrs 42,000, 59,000, and 66,000 Da. When tissue samples enriched in either receptor cell bodies, dendrites, and initial segments of axons or in distal segments of axons and their terminals and synapses were extracted separately, different patterns of bands were detected--42,000 and 59,000 Da bands from cell bodies and initial segments of axons and dendrites, and 42,000 and 66,000 Da bands from distal segments of axons and their terminals--suggesting that the 59,000 Da protein is modified to the 66,000 Da protein during

  7. Structure of a Potential Therapeutic Antibody Bound to Interleukin-16 (IL-16): MECHANISTIC INSIGHTS AND NEW THERAPEUTIC OPPORTUNITIES.

    PubMed

    Hall, Gareth; Cullen, Eilish; Sawmynaden, Kovilen; Arnold, Joanne; Fox, Simon; Cowan, Richard; Muskett, Frederick W; Matthews, David; Merritt, Andrew; Kettleborough, Catherine; Cruikshank, William; Taylor, Debra; Bayliss, Richard; Carr, Mark D

    2016-08-01

    Interleukin-16 (IL-16) is reported to be a chemoattractant cytokine and modulator of T-cell activation, and has been proposed as a ligand for the co-receptor CD4. The secreted active form of IL-16 has been detected at sites of TH1-mediated inflammation, such as those seen in autoimmune diseases, ischemic reperfusion injury (IRI), and tissue transplant rejection. Neutralization of IL-16 recruitment to its receptor, using an anti-IL16 antibody, has been shown to significantly attenuate inflammation and disease pathology in IRI, as well as in some autoimmune diseases. The 14.1 antibody is a monoclonal anti-IL-16 antibody, which when incubated with CD4(+) cells is reported to cause a reduction in the TH1-type inflammatory response. Secreted IL-16 contains a characteristic PDZ domain. PDZ domains are typically characterized by a defined globular structure, along with a peptide-binding site located in a groove between the αB and βB structural elements and a highly conserved carboxylate-binding loop. In contrast to other reported PDZ domains, the solution structure previously reported for IL-16 reveals a tryptophan residue obscuring the recognition groove. We have solved the structure of the 14.1Fab fragment in complex with IL-16, revealing that binding of the antibody requires a conformational change in the IL-16 PDZ domain. This involves the rotation of the αB-helix, accompanied movement of the peptide groove obscuring tryptophan residue, and consequent opening up of the binding site for interaction. Our study reveals a surprising mechanism of action for the antibody and identifies new opportunities for the development of IL-16-targeted therapeutics, including small molecules that mimic the interaction of the antibody. PMID:27231345

  8. Impaired Haemophilus influenzae Type b Transplacental Antibody Transmission and Declining Antibody Avidity through the First Year of Life Represent Potential Vulnerabilities for HIV-Exposed but -Uninfected Infants

    PubMed Central

    Rakhola, Jeremy T.; Onyango-Makumbi, Carolyne; Mubiru, Michael; Westcott, Jamie E.; Krebs, Nancy F.; Asturias, Edwin J.; Fowler, Mary Glenn; McFarland, Elizabeth; Janoff, Edward N.

    2014-01-01

    To determine whether immune function is impaired among HIV-exposed but -uninfected (HEU) infants born to HIV-infected mothers and to identify potential vulnerabilities to vaccine-preventable infection, we characterized the mother-to-infant placental transfer of Haemophilus influenzae type b-specific IgG (Hib-IgG) and its levels and avidity after vaccination in Ugandan HEU infants and in HIV-unexposed U.S. infants. Hib-IgG was measured by enzyme-linked immunosorbent assay in 57 Ugandan HIV-infected mothers prenatally and in their vaccinated HEU infants and 14 HIV-unexposed U.S. infants at birth and 12, 24, and 48 weeks of age. Antibody avidity at birth and 48 weeks of age was determined with 1 M ammonium thiocyanate. A median of 43% of maternal Hib-IgG was transferred to HEU infants. Although its level was lower in HEU infants than in U.S. infants at birth (P < 0.001), Hib-IgG was present at protective levels (>1.0 μg/ml) at birth in 90% of HEU infants and all U.S. infants. HEU infants had robust Hib-IgG responses to a primary vaccination. Although Hib-IgG levels declined from 24 to 48 weeks of age in HEU infants, they were higher than those in U.S. infants (P = 0.002). Antibody avidity, comparable at birth, declined by 48 weeks of age in both populations. Early vaccination of HEU infants may limit an initial vulnerability to Hib disease resulting from impaired transplacental antibody transfer. While initial Hib vaccine responses appeared adequate, the confluence of lower antibody avidity and declining Hib-IgG levels in HEU infants by 12 months support Hib booster vaccination at 1 year. Potential immunologic impairments of HEU infants should be considered in the development of vaccine platforms for populations with high maternal HIV prevalence. PMID:25298109

  9. Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer

    PubMed Central

    Zamarin, Dmitriy; Wolchok, Jedd D

    2014-01-01

    Identification of the immune suppressive mechanisms active within the tumor microenvironment led to development of immunotherapeutic strategies aiming to reverse the immunosuppression and to enhance the function of tumor-infiltrating lymphocytes. Of those, cancer therapy with antibodies targeting the immune costimulatory and coinhibitory receptors has demonstrated significant promise in the recent years, with multiple antibodies entering clinical testing. The responses to these agents, however, have not been universal and have not been observed in all cancer types, calling for identification of appropriate predictive biomarkers and development of combinatorial strategies. Pre-existing immune infiltration in tumors has been demonstrated to have a strong association with response to immunotherapies, with the type I interferon (IFN) pathway emerging as a key player in tumor innate immune recognition and activation of adaptive immunity. These findings provide a rationale for evaluation of strategies targeting the type I IFN pathway as a means to enhance tumor immune recognition and infiltration, which could potentially make them susceptible to therapeutics targeting the cosignaling receptors. To this end in particular, oncolytic viruses (OVs) have been demonstrated to enhance tumor recognition by the immune system through multiple mechanisms, which include upregulation of major histocompatibility complex and costimulatory molecules on cancer cells, immunogenic cell death and antigen release, and activation of the type I IFN pathway. Evidence is now emerging that combination therapies using OVs and agents targeting immune cosignaling receptors such as 4-1BB, PD-1, and CTLA-4 may work in concert to enhance antitumor immunity and therapeutic efficacy. Our evolving understanding of the interplay between OVs and the immune system demonstrates that the virus-induced antitumor immune responses can be harnessed to drive the efficacy of the agents targeting cosignaling

  10. A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve.

    PubMed

    Fu, Ying; Zhang, Zhen; Sheehan, Jared; Avnir, Yuval; Ridenour, Callie; Sachnik, Thomas; Sun, Jiusong; Hossain, M Jaber; Chen, Li-Mei; Zhu, Quan; Donis, Ruben O; Marasco, Wayne A

    2016-01-01

    Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of 'universal' influenza vaccine strategies. PMID:27619409

  11. Wide-scale quantitative phosphoproteomic analysis reveals that cold treatment of T cells closely mimics soluble antibody stimulation

    PubMed Central

    Ji, Qinqin; Salomon, Arthur R.

    2015-01-01

    The activation of T-lymphocytes through antigen-mediated T-cell receptor (TCR) clustering is vital in regulating the adaptive-immune response. Although T cell receptor signaling has been extensively studied, the fundamental mechanisms for signal initiation are not fully understood. Reduced temperature initiated some of the hallmarks of TCR signaling such as increased phosphorylation and activation on ERK and calcium release from the endoplasmic reticulum as well as coalesce T-cell membrane microdomains. The precise mechanism of TCR signaling initiation due to temperature change remains obscure. One critical question is whether signaling initiated by cold treatment of T cells differs from signaling initiated by crosslinking of the T cell receptor. To address this uncertainty, a wide-scale, quantitative mass spectrometry-based phosphoproteomic analysis was performed on T cells stimulated either by temperature shift or through crosslinking of the TCR. Careful statistical comparison between the two stimulations revealed a striking level of identity between the subset of 339 sites that changed significantly with both stimulations. This study demonstrates for the first time, at unprecedented detail, that T cell cold treatment was sufficient to initiate signaling patterns nearly identical to soluble antibody stimulation, shedding new light on the mechanism of activation of these critically important immune cells. PMID:25839225

  12. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    PubMed

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike

    2010-01-01

    β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for

  13. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies

    PubMed Central

    Ciferri, Claudio; Chandramouli, Sumana; Leitner, Alexander; Donnarumma, Danilo; Cianfrocco, Michael A.; Gerrein, Rachel; Friedrich, Kristian; Aggarwal, Yukti; Palladino, Giuseppe; Aebersold, Ruedi; Norais, Nathalie; Settembre, Ethan C.; Carfi, Andrea

    2015-01-01

    Human Cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer) are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS) coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM) and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV. PMID:26485028

  14. A comparative antibody analysis of pannexin1 expression in four rat brain regions reveals varying subcellular localizations.

    PubMed

    Cone, Angela C; Ambrosi, Cinzia; Scemes, Eliana; Martone, Maryann E; Sosinsky, Gina E

    2013-01-01

    Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and

  15. A Comparative Antibody Analysis of Pannexin1 Expression in Four Rat Brain Regions Reveals Varying Subcellular Localizations

    PubMed Central

    Cone, Angela C.; Ambrosi, Cinzia; Scemes, Eliana; Martone, Maryann E.; Sosinsky, Gina E.

    2012-01-01

    Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and

  16. Structures of HIV-1-Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design

    PubMed Central

    Gorman, Jason; Soto, Cinque; Yang, Max M.; Davenport, Thaddeus M.; Guttman, Miklos; Bailer, Robert T.; Chambers, Michael; Chuang, Gwo-Yu; DeKosky, Brandon J.; Doria-Rose, Nicole A.; Druz, Aliaksandr; Ernandes, Michael J.; Georgiev, Ivelin S.; Jarosinski, Marissa C.; Joyce, M. Gordon; Lemmin, Thomas M.; Leung, Sherman; Louder, Mark K.; McDaniel, Jonathan R.; Narpala, Sandeep; Pancera, Marie; Stuckey, Jonathan; Wu, Xueling; Yang, Yongping; Zhang, Baoshan; Zhou, Tongqing; Mullikin, James C.; Baxa, Ulrich; Georgiou, George; McDermott, Adrian B.; Bonsignori, Mattia; Haynes, Barton F.; Moore, Penny L.; Morris, Lynn; Lee, Kelly K.; Shapiro, Lawrence; Mascola, John R.; Kwong, Peter D.

    2016-01-01

    Broadly neutralizing antibodies (bNAbs) against HIV-1-Env V1V2 arise in multiple donors. However, atomic-level interactions had only been determined with antibodies from a single donor, making commonalities in recognition uncertain. Here we report the co-crystal structure of V1V2 with antibody CH03 from a second donor and model Env interactions of antibody CAP256-VRC26 from a third. These V1V2-directed bNAbs utilized strand-strand interactions between a protruding antibody loop and a V1V2 strand, but differed in their N-glycan recognition. Ontogeny analysis indicated protruding loops to develop early, with glycan interactions maturing over time. Altogether, the multidonor information suggested V1V2-directed bNAbs to form an ‘extended class’, for which we engineered ontogeny-specific antigens: Env trimers with chimeric V1V2s that interacted with inferred ancestor and intermediate antibodies. The ontogeny-based design of vaccine antigens described here may provide a general means for eliciting antibodies of a desired class. PMID:26689967

  17. Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design.

    PubMed

    Gorman, Jason; Soto, Cinque; Yang, Max M; Davenport, Thaddeus M; Guttman, Miklos; Bailer, Robert T; Chambers, Michael; Chuang, Gwo-Yu; DeKosky, Brandon J; Doria-Rose, Nicole A; Druz, Aliaksandr; Ernandes, Michael J; Georgiev, Ivelin S; Jarosinski, Marissa C; Joyce, M Gordon; Lemmin, Thomas M; Leung, Sherman; Louder, Mark K; McDaniel, Jonathan R; Narpala, Sandeep; Pancera, Marie; Stuckey, Jonathan; Wu, Xueling; Yang, Yongping; Zhang, Baoshan; Zhou, Tongqing; Mullikin, James C; Baxa, Ulrich; Georgiou, George; McDermott, Adrian B; Bonsignori, Mattia; Haynes, Barton F; Moore, Penny L; Morris, Lynn; Lee, Kelly K; Shapiro, Lawrence; Mascola, John R; Kwong, Peter D

    2016-01-01

    Broadly neutralizing antibodies (bNAbs) against HIV-1 Env V1V2 arise in multiple donors. However, atomic-level interactions had previously been determined only with antibodies from a single donor, thus making commonalities in recognition uncertain. Here we report the cocrystal structure of V1V2 with antibody CH03 from a second donor and model Env interactions of antibody CAP256-VRC26 from a third donor. These V1V2-directed bNAbs used strand-strand interactions between a protruding antibody loop and a V1V2 strand but differed in their N-glycan recognition. Ontogeny analysis indicated that protruding loops develop early, and glycan interactions mature over time. Altogether, the multidonor information suggested that V1V2-directed bNAbs form an 'extended class', for which we engineered ontogeny-specific antigens: Env trimers with chimeric V1V2s that interacted with inferred ancestor and intermediate antibodies. The ontogeny-based design of vaccine antigens described here may provide a general means for eliciting antibodies of a desired class. PMID:26689967

  18. Revealing a quantum feature of dimensionless uncertainty in linear and quadratic potentials by changing potential intervals

    NASA Astrophysics Data System (ADS)

    Kheiri, R.

    2016-09-01

    As an undergraduate exercise, in an article (2012 Am. J. Phys. 80 780–14), quantum and classical uncertainties for dimensionless variables of position and momentum were evaluated in three potentials: infinite well, bouncing ball, and harmonic oscillator. While original quantum uncertainty products depend on {{\\hslash }} and the number of states (n), a dimensionless approach makes the comparison between quantum uncertainty and classical dispersion possible by excluding {{\\hslash }}. But the question is whether the uncertainty still remains dependent on quantum number n. In the above-mentioned article, there lies this contrast; on the one hand, the dimensionless quantum uncertainty of the potential box approaches classical dispersion only in the limit of large quantum numbers (n\\to ∞ )—consistent with the correspondence principle. On the other hand, similar evaluations for bouncing ball and harmonic oscillator potentials are equal to their classical counterparts independent of n. This equality may hide the quantum feature of low energy levels. In the current study, we change the potential intervals in order to make them symmetric for the linear potential and non-symmetric for the quadratic potential. As a result, it is shown in this paper that the dimensionless quantum uncertainty of these potentials in the new potential intervals is expressed in terms of quantum number n. In other words, the uncertainty requires the correspondence principle in order to approach the classical limit. Therefore, it can be concluded that the dimensionless analysis, as a useful pedagogical method, does not take away the quantum feature of the n-dependence of quantum uncertainty in general. Moreover, our numerical calculations include the higher powers of the position for the potentials.

  19. Anti-cysticercus antibody detection in saliva as a potential diagnostic tool for neurocysticercosis

    PubMed Central

    Saha, Rumpa; Roy, Priyamvada; Das, Shukla; Shah, Dheeraj; Agarwal, Sunil; Kaur, Iqbal Rajinder

    2016-01-01

    Objectives: This study was planned to determine the usefulness of anti-cysticercus IgG antibody detection in saliva for neurocysticercosis (NCC) diagnosis, along with serum C-reactive protein (CRP) level to serve as a surrogate marker. Materials and Methods: In this prospective study of 14 months duration, blood and saliva samples were collected from 40 patients suspected to be suffering from NCC and were subjected to anti-cysticercus IgG antibody detection by ELISA. Serum CRP levels were estimated as acute-phase reactant by high sensitivity CRP ELISA. Results: Anti-cysticercus IgG was detected in serum and saliva of 34 and 30 patients, respectively. Cases positive for salivary antibody were positive for serum antibody and their serum CRP level was higher than normal. Cases negative for salivary antibody had low serum CRP levels. Anti-cysticercus IgG detection in saliva was 88.24% sensitive, 100% specific, and had a positive predictive value of 100% and negative predictive value of 60%. Positive salivary anti-cysticercus IgG and high serum CRP level showed a significant association. Difference between CRP levels of patients positive for anti-cysticercus antibody in both serum and saliva, and patients positive for antibody in serum but not saliva was highly significant. Conclusions: Saliva, being painless and noninvasive, can be used as alternative to serum for NCC diagnosis. PMID:27570404

  20. Monoclonal Antibodies Specific for STAT3β Reveal Its Contribution to Constitutive STAT3 Phosphorylation in Breast Cancer

    PubMed Central

    Bharadwaj, Uddalak; Kasembeli, Moses M.; Eckols, T. Kris; Kolosov, Mikhail; Lang, Paul; Christensen, Kurt; Edwards, Dean P.; Tweardy, David J.

    2014-01-01

    Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3β, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p) Stat3β homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3β acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3β proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3β (CT7) and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3β protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3β may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3β from proteolytic Stat3β and Stat3α will provide new insights into the contribution of Stat3β vs. Stat3α to oncogenesis, as well as other biological and pathological processes. PMID:25268166

  1. Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential.

    PubMed

    Lohmueller, Jason J; Sato, Shuji; Popova, Lana; Chu, Isabel M; Tucker, Meghan A; Barberena, Roberto; Innocenti, Gregory M; Cudic, Mare; Ham, James D; Cheung, Wan Cheung; Polakiewicz, Roberto D; Finn, Olivera J

    2016-01-01

    MUC1 is a shared tumor antigen expressed on >80% of human cancers. We completed the first prophylactic cancer vaccine clinical trial based on a non-viral antigen, MUC1, in healthy individuals at-risk for colon cancer. This trial provided a unique source of potentially effective and safe immunotherapeutic drugs, fully-human antibodies affinity-matured in a healthy host to a tumor antigen. We purified, cloned, and characterized 13 IgGs specific for several tumor-associated MUC1 epitopes with a wide range of binding affinities. These antibodies bind hypoglycosylated MUC1 on human cancer cell lines and tumor tissues but show no reactivity against fully-glycosylated MUC1 on normal cells and tissues. We found that several antibodies activate complement-mediated cytotoxicity and that T cells carrying chimeric antigen receptors with the antibody variable regions kill MUC1(+) target cells, express activation markers, and produce interferon gamma. Fully-human and tumor-specific, these antibodies are candidates for further testing and development as immunotherapeutic drugs. PMID:27545199

  2. Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential

    PubMed Central

    Lohmueller, Jason J.; Sato, Shuji; Popova, Lana; Chu, Isabel M.; Tucker, Meghan A.; Barberena, Roberto; Innocenti, Gregory M.; Cudic, Mare; Ham, James D.; Cheung, Wan Cheung; Polakiewicz, Roberto D.; Finn, Olivera J.

    2016-01-01

    MUC1 is a shared tumor antigen expressed on >80% of human cancers. We completed the first prophylactic cancer vaccine clinical trial based on a non-viral antigen, MUC1, in healthy individuals at-risk for colon cancer. This trial provided a unique source of potentially effective and safe immunotherapeutic drugs, fully-human antibodies affinity-matured in a healthy host to a tumor antigen. We purified, cloned, and characterized 13 IgGs specific for several tumor-associated MUC1 epitopes with a wide range of binding affinities. These antibodies bind hypoglycosylated MUC1 on human cancer cell lines and tumor tissues but show no reactivity against fully-glycosylated MUC1 on normal cells and tissues. We found that several antibodies activate complement-mediated cytotoxicity and that T cells carrying chimeric antigen receptors with the antibody variable regions kill MUC1+ target cells, express activation markers, and produce interferon gamma. Fully-human and tumor-specific, these antibodies are candidates for further testing and development as immunotherapeutic drugs. PMID:27545199

  3. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    PubMed Central

    Alvarenga, Larissa M.; Zahid, Muhammad; di Tommaso, Anne; Juste, Matthieu O.; Aubrey, Nicolas; Billiald, Philippe; Muzard, Julien

    2014-01-01

    Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety. PMID:25153256

  4. Paleotopographic Reconstruction of the Tharsis Magmatic Complex Reveals Potential Ancient Drainage Basin/Aquifer System

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Ferris, J.; Anderson, R. C.; Baker, V.; Hare, T.; Barlow, N. G.; Strom, R. G.; Tanaka, K. L.; Scott, D. H.

    2001-01-01

    Paleotopographic reconstructions reveal the potential existence of an enormous Noachian drainage basin in the eastern part of the Tharsis region of significant geologic and paleohydrologic implications. Additional information is contained in the original extended abstract.

  5. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  6. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    SciTech Connect

    Kumeta, Masahiro; Hirai, Yuya; Yoshimura, Shige H.; Horigome, Tsuneyoshi; Takeyasu, Kunio

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do not take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.

  7. Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library.

    PubMed

    Hoogenboom, H R; Lutgerink, J T; Pelsers, M M; Rousch, M J; Coote, J; Van Neer, N; De Bruïne, A; Van Nieuwenhoven, F A; Glatz, J F; Arends, J W

    1999-03-01

    To generate antibodies to defined cell-surface antigens, we used a large phage antibody fragment library to select on cell transfectants expressing one of three chosen receptors. First, in vitro panning procedures and phage antibody screening ELISAs were developed using whole live cells stably expressing the antigen of interest. When these methodologies were applied to Chinese hamster ovary (CHO) cells expressing one of the receptors for a neuropeptide, somatostatin, using either direct cell panning or a strategy of depletion or ligand-directed elution, many different pan-CHO-cell binders were selected, but none was receptor specific. However, when using direct panning on CHO-cells expressing the human membrane protein CD36, an extraordinary high frequency of antigen-specific phage antibodies was found. Panning on myoblasts expressing the rat homologue of CD36 revealed a similar selection dominance for anti-(CD36). Binding of all selected 20 different anti-(CD36) phage was surprisingly inhibited by one anti-(CD36) mAb CLB-IVC7, which recognizes a functional epitope that is also immunodominant in vivo. Similar inhibition was found for seven anti-(rat) CD36 that cross-reacted with human CD36. Our results show that, although cells can be used as antigen carriers to select and screen phage antibodies, the nature of the antigen target has a profound effect on the outcome of the selection. PMID:10103007

  8. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses.

    PubMed

    Grandea, Andres G; Olsen, Ole A; Cox, Thomas C; Renshaw, Mark; Hammond, Philip W; Chan-Hui, Po-Ying; Mitcham, Jennifer L; Cieplak, Witold; Stewart, Shaun M; Grantham, Michael L; Pekosz, Andrew; Kiso, Maki; Shinya, Kyoko; Hatta, Masato; Kawaoka, Yoshihiro; Moyle, Matthew

    2010-07-13

    Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. PMID:20615945

  9. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses

    PubMed Central

    Grandea, Andres G.; Olsen, Ole A.; Cox, Thomas C.; Renshaw, Mark; Hammond, Philip W.; Chan-Hui, Po-Ying; Mitcham, Jennifer L.; Cieplak, Witold; Stewart, Shaun M.; Grantham, Michael L.; Pekosz, Andrew; Kiso, Maki; Shinya, Kyoko; Hatta, Masato; Kawaoka, Yoshihiro; Moyle, Matthew

    2010-01-01

    Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG+ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. PMID:20615945

  10. Cross-species immunoreactivity of airway mucin as revealed by monoclonal antibodies directed against mucins from human, hamster, and rat.

    PubMed

    Shin, C Y; Lee, W J; Kim, D J; Park, C S; Choi, E Y; Ko, K H

    2000-10-01

    Airway mucin plays crucial role in host-defense and has been implicated in pathophysiology of various airway diseases including asthma and cystic fibrosis. The analysis of airway mucin has been hampered mostly by the lack of specific and efficient methods for the detection of mucin. Recent production of antibodies against airway mucin from several species and also the development of immunoassay procedures make it more efficient to study the airway mucin. However, the cross-species immunoreactivity of antibodies against airway mucin has not been clearly demonstrated and this prompted us to investigate the cross-species immunoreactivity of monoclonal antibodies against human (HM02), hamster (HTA), and rat airway mucin (RT03), which is three most widely used species in the study of mucin. All the monoclonal antibodies (MAbs) used in this study is IgM isotype and recognizes N-acetyl-galactosamine-linked carbohydrate core or backbone portion of airway mucin. In enzyme-linked immunoadsorbent assay (ELISA), Western blot, immunoprecipitation, and immunohistochemical staining experiments, it was demonstrated that human and hamster airway mucin showed strong cross-species immunoreactivity. However, rat airway mucin did not show any cross-species immunoreactivity against human and hamster airway mucin. Endotoxin-induced secretory cell metaplasia and hence the increase in mucin release from hamster airway mucin could be detected with antibodies against hamster and human airway mucin in vivo and in vitro. However, the same increase from rat airway could only be detected with antibody against rat airway mucin but not with antibodies against human and hamster airway mucin. In addition, the increase in mucin release from asthmatic patients could be detected with antibodies against human and hamster airway mucin but not with the antibody against rat airway mucin. The data from the present study implicates that the carbohydrate chain of human and hamster airway mucin, but not that

  11. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates

    PubMed Central

    Turner, Kendrick B.; Naciri, Jennifer; Liu, Jinny L.; Anderson, George P.; Goldman, Ellen R.; Zabetakis, Dan

    2016-01-01

    Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency. PMID:26895405

  12. A hybrid protein-polymer nanoworm potentiates apoptosis better than a monoclonal antibody.

    PubMed

    Aluri, Suhaas Rayudu; Shi, Pu; Gustafson, Joshua A; Wang, Wan; Lin, Yi-An; Cui, Honggang; Liu, Shuanglong; Conti, Peter S; Li, Zibo; Hu, Peisheng; Epstein, Alan L; MacKay, John Andrew

    2014-03-25

    B-cell lymphomas continue to occur with a high incidence. The chimeric antibody known as Rituximab (Rituxan) has become a vital therapy for these patients. Rituximab induces cell death via binding and clustering of the CD20 receptor by Fcγ expressing effector cells. Because of the limited mobility of effector cells, it may be advantageous to cluster CD20 directly using multivalent nanostructures. To explore this strategy, this manuscript introduces a nanoparticle that assembles from a fusion between a single chain antibody and a soluble protein polymer. These hybrid proteins express in Escherichia coli and do not require bioconjugation between the antibody and a substrate. Surprisingly a fusion between an anti-CD20 single chain antibody and a soluble protein polymer assemble worm-like nanostructures, which were characterized using light scattering and cryogenic transmission electron microscopy. These nanoworms competitively bind CD20 on two B-cell lymphoma cell lines, exhibit concentration-dependent induction of apoptosis, and induce apoptosis better than Rituximab alone. Similar activity was observed in vivo using a non-Hodgkin lymphoma xenograft model. In comparison to Rituximab, systemic nanoworms significantly slowed tumor growth. These findings suggest that hybrid nanoworms targeted at CD20 may be useful treatments for B-cell related malignancies. Because of the ubiquity of antibody therapeutics, related nanoworms may have uses against other molecular targets. PMID:24484356

  13. Laser-capture microdissection of plasma cells from subacute sclerosing panencephalitis brain reveals intrathecal disease-relevant antibodies

    PubMed Central

    Burgoon, Mark P.; Keays, Kathryne M.; Owens, Gregory P.; Ritchie, Alanna M.; Rai, Pradeep R.; Cool, Carlyne D.; Gilden, Donald H.

    2005-01-01

    Increased IgG and oligoclonal bands are found in cerebrospinal fluid of humans with chronic infectious CNS disease. Studies have shown that these oligoclonal bands are antibodies directed against the agent that causes disease. Laser-capture microdissection was used to isolate individual CD38+ plasma cells from the brain of a patient with subacute sclerosing panencephalitis, and single-cell RT-PCR was used to analyze individual IgG heavy and light chains expressed by each cell. Based on overrepresented IgG sequences, we constructed functional recombinant antibodies (recombinant IgGs) and determined their specificities. Five of eight recombinant IgGs recognized measles virus, the cause of subacute sclerosing panencephalitis. These results demonstrate that overrepresented IgG sequences in postmortem brains can be used to produce functional recombinant antibodies that recognize their target antigens. This strategy can be used to identify disease-relevant antigens in CNS inflammatory diseases of unknown etiology. PMID:15883366

  14. Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody.

    PubMed

    Shashidharan, P; Huntley, G W; Murray, J M; Buku, A; Moran, T; Walsh, M J; Morrison, J H; Plaitakis, A

    1997-10-31

    Neuronal regulation of glutamate homeostasis is mediated by high-affinity sodium-dependent and highly hydrophobic plasma membrane glycoproteins which maintain low levels of glutamate at central synapses. To further elucidate the molecular mechanisms that regulate glutamate metabolism and glutamate flux at central synapses, a monoclonal antibody was produced to a synthetic peptide corresponding to amino acid residues 161-177 of the deduced sequence of the human neuron-specific glutamate transporter III (EAAC1). Immunoblot analysis of human and rat brain total homogenates and isolated synaptosomes from frontal cortex revealed that the antibody immunoreacted with a protein band of apparent Mr approximately 70 kDa. Deglycosylation of immunoprecipitates obtained using the monoclonal antibody yielded a protein with a lower apparent Mr (approximately 65 kDa). These results are consistent with the molecular size of the human EAAC1 predicted from the cloned cDNA. Analysis of the transfected COS-1 cells by immunocytochemistry confirmed that the monoclonal antibody is specific for the neuron-specific glutamate transporter. Immunocytochemical studies of rat cerebral cortex, hippocampus, cerebellum, substantia nigra and spinal cord revealed intense labeling of neuronal somata, dendrites, fine-caliber fibers and puncta. Double-label immunofluorescence using antibody to glial fibrillary acidic protein as a marker for astrocytes demonstrated that astrocytes were not co-labeled for EAAC1. The localization of EAAC1 immunoreactivity in dendrites and particularly in cell somata suggests that this transporter may function in the regulation of other aspects of glutamate metabolism in addition to terminating the action of synaptically released glutamate at central synapses. PMID:9409715

  15. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1

    SciTech Connect

    Pejchal, Robert; Walker, Laura M.; Stanfield, Robyn L.; Phogat, Sanjay K.; Koff, Wayne C.; Poignard, Pascal; Burton, Dennis R.; Wilson, Ian A.

    2010-11-15

    Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize {approx}80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 {angstrom} resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue 'specificity loop' on the 'hammerhead' subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 {angstrom} facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.

  16. Antibody-based magneto-elastic biosensors: potential devices for detection of pathogens and associated toxins.

    PubMed

    Menti, C; Henriques, J A P; Missell, F P; Roesch-Ely, M

    2016-07-01

    This work describes the design and development process of an immunosensor. The creation of such devices goes through various steps, which complement each other, and choosing an efficient immobilization method that binds to a specific target is essential to achieve satisfactory diagnostic results. In this perspective, the emphasis here is on developing biosensors based on binding antigens/antibodies on particular surfaces of magneto-elastic sensors. Different aspects leading to the improvement of these sensors, such as the antibody structure, the chemical functionalization of the surface, and cross-linking antibody reticulation were summarized and discussed. This paper deals with the progress of magneto-elastic immunosensors to detect bacterial pathogens and associated toxins. Biologically modified surface characterization methods are further considered. Thus, research opportunities and trends of future development in these areas are finally discussed. PMID:27245676

  17. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation.

    PubMed

    Salama, Apolline; Evanno, Gwénaëlle; Harb, Jean; Soulillou, Jean-Paul

    2015-01-01

    Human beings do not synthesize the glycolyl form of the sialic acid (Neu5Gc) and only express the acetylated form of the sugar, whereas a diet-based intake of Neu5Gc provokes a natural immunization and production of anti-Neu5Gc antibodies in human serum. However, Neu5Gc is expressed on mammal glycoproteins and glycolipids in most organs and cells. We review here the relevance of Neu5Gc and anti-Neu5Gc antibodies in the context of xenotransplantation and the use of animal-derived molecules and products, as well as the possible consequences of a long-term exposure to anti-Neu5Gc antibodies in recipients of xenografts. In addition, the importance of an accurate estimation of the anti-Neu5Gc response following xenotransplantation and the future contribution of knockout animals mimicking the human situation are also assessed. PMID:25308416

  18. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics.

    PubMed

    Verhoef, Johan J F; Carpenter, John F; Anchordoquy, Thomas J; Schellekens, Huub

    2014-12-01

    Conjugation of polyethylene glycol (PEG) to therapeutics has proven to be an effective approach to increase the serum half-life. However, the increased use of PEGylated therapeutics has resulted in unexpected immune-mediated side-effects. There are claims that these are caused by anti-PEG antibodies inducing rapid clearance. These claims are however hampered by the lack of standardized and well-validated antibody assays. PEGylation has also been associated with the activation of the complement system causing severe hypersensitivity reactions. Here, we critically review the clinical and analytical tools used. In addition, we propose an explanation of the immune-mediated side-effects of PEGylated products based on the haptogenic properties of PEG, responsible for complement activation and the induction of anti-PEG antibodies. PMID:25205349

  19. Characterization and immunotherapeutic potential of a monoclonal antibody against a ras oncogene transformed cell line

    SciTech Connect

    Ames, R.S. Jr.

    1986-01-01

    Transformed cells express cell surface antigens not present, or present in diminished amounts on normal cells. Monoclonal antibodies can be used to identify and biochemically characterize tumor-associated antigens. Monoclonal antibody (MoAb) 45-2D9 was produced by immunization of BALB/c mice with a transformed cell line (45-2D9) induced by transfection of NIH 3T3 cells with a c-H-ras oncogene in DNA isolated from a human lung carcinoma. By immunoperoxidase staining, this antibody binds to the 45-342 cells as well as to the ras transformed primary and 3 secondary transfectants, including the one used to induce 45-342, but not to other ras transformed cell lines. Murine tumors as well as human fetal and most normal adult tissues are not stained. This antibody does bind to a variety of human tumors, including lung adenocarcinomas, as well as breast, colon and esophageal carcinomas. The ability of MoAb 45-2D9 to target ricin toxin A chain (RTA) and radio-isotopes to gp74 expressing cells was investigated. An immunotoxin generated by conjugating RTA to MoAb 45-2D9 inhibits protein and DNA synthesis by the 45-342 cells. Radiolabeled antibody specifically localizes to and can be used to image subcutaneous and pulmonary gp74 expressing tumors in nu/nu mice. Monoclonal antibodies against oncogene transformed cell lines may be useful for the detection and characterization of tumor-associated antigens as well as for the development of new tumor therapeutic and diagnostic reagents.

  20. A humanised antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors1

    PubMed Central

    Paixão-Cavalcante, Danielle; Torreira, Eva; Lindorfer, Margaret A.; de Cordoba, Santiago Rodriguez; Morgan, B. Paul; Taylor, Ronald P.; Llorca, Oscar; Harris, Claire L.

    2014-01-01

    Dysregulation of the complement alternative pathway (AP) can cause disease in various organs that may be life-threatening. Severe AP dysregulation can be triggered by autoantibodies to the C3 convertase, termed nephritic factors, which cause pathological stabilisation of the convertase enzyme and confer resistance to innate control mechanisms; unregulated complement consumption followed by deposition of C3 fragments in tissues ensues. The monoclonal antibody, 3E7, and its humanised derivative, H17, have been shown previously to specifically bind activated C3 and prevent binding of both the activating protein, factor B, and the inhibitor, factor H, opposite effects that complicate its potential for therapy. Using ligand binding assays, functional assays and electron microscopy, we show that these antibodies bind C3b via a site which overlaps the binding site on C3 for the Ba domain within factor B, thereby blocking an interaction essential for convertase formation. Both antibodies also bind the preformed convertase, C3bBb, and provide powerful inhibition of complement activation by preventing cleavage of C3. Critically, the antibodies also bound and inhibited C3 cleavage by the nephritic factor-stabilised convertase. We suggest that by preventing enzyme formation and/or cleavage of C3 to its active downstream fragments, H17 may be an effective therapy for conditions caused by severe dysregulation of the C3 convertase, and in particular those involving nephritic factors, such as dense deposit disease. PMID:24729617

  1. A novel site contributing to growth-arrest-specific gene 6 binding to its receptors as revealed by a human monoclonal antibody

    PubMed Central

    2004-01-01

    Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164–44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a

  2. Structure of Antibody F425-B4e8 in Complex With a V3 Peptide Reveals a New Binding Mode for Hiv-1 Neutralization

    SciTech Connect

    Bell, C.H.; Pantophlet, R.; Schiefner, A.; Cavacini, L.A.; Stanfield, R.L.; Burton, D.R.; Wilson, I.A.

    2009-05-11

    F425-B4e8 (B4e8) is a monoclonal antibody isolated from a human immunodeficiency virus type 1 (HIV-1)-infected individual that recognizes the V3 variable loop on the gp120 subunit of the viral envelope spike. B4e8 neutralizes a subset of HIV-1 primary isolates from subtypes B, C and D, which places this antibody among the very few human anti-V3 antibodies with notable cross-neutralizing activity. Here, the crystal structure of the B4e8 Fab fragment in complex with a 24-mer V3 peptide (RP142) at 2.8 A resolution is described. The complex structure reveals that the antibody recognizes a novel V3 loop conformation, featuring a five-residue alpha-turn around the conserved GPGRA apex of the beta-hairpin loop. In agreement with previous mutagenesis analyses, the Fab interacts primarily with V3 through side-chain contacts with just two residues, Ile(P309) and Arg(P315), while the remaining contacts are to the main chain. The structure helps explain how B4e8 can tolerate a certain degree of sequence variation within V3 and, hence, is able to neutralize an appreciable number of different HIV-1 isolates.

  3. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    PubMed Central

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  4. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform.

    PubMed

    Klarenbeek, Alex; El Mazouari, Khalil; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  5. Antibody microarray profiling of osteosarcoma cell serum for identifying potential biomarkers.

    PubMed

    Zhu, Zi-Qiang; Tang, Jin-Shan; Gang, Duan; Wang, Ming-Xing; Wang, Jian-Qiang; Lei, Zhou; Feng, Zhou; Fang, Ming-Liang; Yan, Lin

    2015-07-01

    The aim of the present study was to identify biomarkers in osteosarcoma (OS) cell serum by antibody microarray profiling, which may be used for OS diagnosis and therapy. An antibody microarray was used to detect the expression levels of cytokines in serum samples from 20 patients with OS and 20 healthy individuals. Significantly expressed cytokines in OS serum were selected when P<0.05 and fold change >2. An enzyme-linked immunosorbent assay (ELISA) was used to validate the antibody microarray results. Finally, classification accuracy was calculated by cluster analysis. Twenty one cytokines were significantly upregulated in OS cell serum samples compared with control samples. Expression of interleukin-6, monocyte chemoattractant protein-1, tumor growth factor-β, growth-related oncogene, hepatocyte growth factor, chemokine ligand 16, Endoglin, matrix metalloproteinase-9 and platelet-derived growth factor-AA was validated by ELISAs. OS serum samples and control samples were distinguished by significantly expressed cytokines with an accuracy of 95%. The results demonstrated that expressed cytokines identified by antibody microarray may be used as biomarkers for OS diagnosis and therapy. PMID:25815525

  6. Application of a multiplex immunoassay for detection of salivary antibody responses to selected potentially waterborne pathogens

    EPA Science Inventory

    Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Pathogen-specific antibodies in saliva can be used as bioindicators of recent or ongoing infection. Because collection of saliva is easy and painless, i...

  7. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential

    PubMed Central

    Zhao, Qi; Ahmed, Mahiuddin; Tassev, Dimiter V.; Hasan, Aisha; Kuo, Tzu-Yun; Guo, Hong-fen; O’Reilly, Richard J.; Cheung, Nai-Kong V.

    2016-01-01

    WT1126 (RMFPNAPYL) is a human leukocyte antigen-A2 (HLA-A2) restricted peptide derived from Wilms tumor protein (WT1), which is widely expressed in a broad spectrum of leukemias, lymphomas and solid tumors. A novel T-cell-receptor (TCR)-like single chain variable fragment (scFv) antibody specific for the T cell epitope consisting of the WT1/HLA-A2 complex was isolated from a human scFv phage library. This scFv was affinity-matured by mutagenesis combined with yeast display, and structurally analyzed using a homology model. This monovalent scFv showed a 100-fold affinity improvement (dissociation constant [KD]= 3nM) and exquisite specificity towards its targeted epitope or HLA-A2+/WT1+ tumor cells. Bivalent scFv-huIgG1-Fc fusion protein demonstrated an even higher avidity (KD = 2pM) binding to the T cell epitope and to tumor targets, and was capable of mediating antibody-dependent cell-mediated cytotoxicity or tumor lysis by chimeric antigen receptor (CAR)-expressing human T or NK-92-MI transfected cells. This antibody demonstrated specific and potent cytotoxicity in vivo towards WT1-positive leukemia xenograft that was HLA-A2 restricted. In summary, T cell epitopes can provide novel targets for antibody-based therapeutics. By combining phage and yeast displays and scFv-Fc fusion platforms, a strategy for developing high affinity TCR-like antibodies could be rapidly explored for potential clinical development. PMID:25987253

  8. Definite differences between in vitro actin-myosin sliding and muscle contraction as revealed using antibodies to myosin head.

    PubMed

    Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo

    2014-01-01

    Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly

  9. Continuous separation of cells of high osteoblastic differentiation potential from mesenchymal stem cells on an antibody-immobilized column.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-05-01

    Here, we report that two distinctive cell populations with osteoblastic differentiation ability were found in adherent cell populations from bone marrow. Mesenchymal stem cells (MSCs) were conventionally isolated by using adherent property of bone marrow cells onto a plastic culture dish. MSCs enriched on the basis of their adherent property were considered phenotypically and functionally heterogeneous. We developed a ligand-immobilized surface for separating subpopulation of adherent cells derived from bone marrow by the cell rolling process. We successfully isolate two cell populations with high differentiation ability for osteoblasts in adherent bone marrow cells by using the anti-CD34 antibody-immobilized column. The antibody was covalently conjugated with polyacrylic acid and introduced onto the inner surface of a silicone tube. When cell suspension of MSCs was injected into the antibody-immobilized column, different cell populations were isolated. After the cultivation of isolated cells in the osteoblastic differentiation medium for 1 week, few sub-populations were strongly induced to form osteoblastic cells. This study revealed that the ligand-immobilized surface can be used to continually separate cell populations under a labeling-free condition. PMID:20185169

  10. Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor protein-specific antibodies.

    PubMed

    Höfling, Corinna; Morawski, Markus; Zeitschel, Ulrike; Zanier, Elisa R; Moschke, Katrin; Serdaroglu, Alperen; Canneva, Fabio; von Hörsten, Stephan; De Simoni, Maria-Grazia; Forloni, Gianluigi; Jäger, Carsten; Kremmer, Elisabeth; Roßner, Steffen; Lichtenthaler, Stefan F; Kuhn, Peer-Hendrik

    2016-10-01

    Alzheimer's disease (AD) is histopathologically characterized by neurodegeneration, the formation of intracellular neurofibrillary tangles and extracellular Aβ deposits that derive from proteolytic processing of the amyloid precursor protein (APP). As rodents do not normally develop Aβ pathology, various transgenic animal models of AD were designed to overexpress human APP with mutations favouring its amyloidogenic processing. However, these mouse models display tremendous differences in the spatial and temporal appearance of Aβ deposits, synaptic dysfunction, neurodegeneration and the manifestation of learning deficits which may be caused by age-related and brain region-specific differences in APP transgene levels. Consequentially, a comparative temporal and regional analysis of the pathological effects of Aβ in mouse brains is difficult complicating the validation of therapeutic AD treatment strategies in different mouse models. To date, no antibodies are available that properly discriminate endogenous rodent and transgenic human APP in brains of APP-transgenic animals. Here, we developed and characterized rat monoclonal antibodies by immunohistochemistry and Western blot that detect human but not murine APP in brains of three APP-transgenic mouse and one APP-transgenic rat model. We observed remarkable differences in expression levels and brain region-specific expression of human APP among the investigated transgenic mouse lines. This may explain the differences between APP-transgenic models mentioned above. Furthermore, we provide compelling evidence that our new antibodies specifically detect endogenous human APP in immunocytochemistry, FACS and immunoprecipitation. Hence, we propose these antibodies as standard tool for monitoring expression of endogenous or transfected APP in human cells and APP expression in transgenic animals. PMID:27470171

  11. Structural and Functional Characterization of Anti-A33 Antibodies Reveal a Potent Cross-Species Orthopoxviruses Neutralizer

    PubMed Central

    Matho, Michael H.; Schlossman, Andrew; Meng, Xiangzhi; Benhnia, Mohammed Rafii-El-Idrissi; Kaever, Thomas; Buller, Mark; Doronin, Konstantin; Parker, Scott; Peters, Bjoern; Crotty, Shane; Xiang, Yan; Zajonc, Dirk M.

    2015-01-01

    Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus. PMID:26325270

  12. Structural and Functional Characterization of Anti-A33 Antibodies Reveal a Potent Cross-Species Orthopoxviruses Neutralizer.

    PubMed

    Matho, Michael H; Schlossman, Andrew; Meng, Xiangzhi; Benhnia, Mohammed Rafii-El-Idrissi; Kaever, Thomas; Buller, Mark; Doronin, Konstantin; Parker, Scott; Peters, Bjoern; Crotty, Shane; Xiang, Yan; Zajonc, Dirk M

    2015-09-01

    Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus. PMID:26325270

  13. Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation.

    PubMed

    Pfeffer, Martin; Maurer, Michael; Stadlmann, Johannes; Grass, Josephine; Delic, Marizela; Altmann, Friedrich; Mattanovich, Diethard

    2012-03-01

    Protein translation, translocation, folding, processing, and secretion in eukaryotic cells are complex and not always straightforward processes, e.g., different routes of secretion and degradation exist. Formation of malfolded proteins in the endoplasmic reticulum (ER) can be one of the major bottlenecks for recombinant protein production. In this regard, an in-depth analysis of the interactions of a secreted protein during its pathway through the cell may be beneficial, as realized in this study for the methylotrophic yeast Pichia pastoris. The antibody fragment Fab3H6 used here is the anti-idiotype to the HIV neutralizing antibody 2F5 and is known to be intracellularly degraded in significant amounts when expressed in P. pastoris. The interactome of Fab3H6 was analyzed by using a pull-down mass spectrometry approach, and 23 proteins were found to bind specifically to the antibody fragment. Those allowed concluding that Fab3H6 is post-translationally translocated into the ER and degraded via the proteasome as well as the vacuole. In line with this, the expression of Fab3H6 increased the proteasomal activities by over 20%. Partial inhibition of the proteasome resulted in a significant increase of extracellular Fab3H6. Thus, it seems that ER quality control overshoots its requirements for the recombinant protein expressed and that more than just terminally malfolded protein is degraded by ER-associated degradation. This work will further facilitate our understanding how recombinant proteins behave in the secretory pathway. PMID:22350260

  14. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism.

    PubMed

    Karim-Silva, Sabrina; Moura, Juliana de; Noiray, Magali; Minozzo, Joao Carlos; Aubrey, Nicolas; Alvarenga, Larissa M; Billiald, Philippe

    2016-08-01

    Loxosceles spider bites often lead to serious envenomings and no definite therapy has yet been established. In such a context, it is of interest to consider an antibody-based targeted therapy. We have previously prepared a murine monoclonal IgG (LiMab7) that binds to 32-35kDa components of Loxosceles intermedia venom and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a recombinant diabody. The protein was produced in bacteria and then it was functionally characterized. It proved to be efficient at neutralizing sphingomyelinase and hemolytic activities of the crude venom despite the slightly altered binding kinetic constants and the limited stability of the dimeric configuration. This is the first report of a specific recombinant antibody for a next-generation of Loxosceles antivenoms. PMID:27288291

  15. Qualification and application of a surface plasmon resonance-based assay for monitoring potential HAHA responses induced after passive administration of a humanized anti Lewis-Y antibody.

    PubMed

    Szolar, O H J; Stranner, S; Zinoecker, I; Mudde, G C; Himmler, G; Waxenecker, G; Nechansky, A

    2006-06-16

    A sensitive, surface plasmon resonance (SPR)-based assay monitoring potential human-anti-human antibody (HAHA) reactions against the monoclonal antibody (mAb) IGN311 is presented. The latter is a fully humanized Lewis-Y carbohydrate specific mAb that is currently tested in a passive immune therapy approach in a clinical phase I trial. For the SPR experiments a BIACORE 3000 analyzer was used. The ligand IGN311 was covalently coupled to the carboxy-methylated dextran matrix of a CM5 research grade chip (BIACORE). In the course of a fully nested experimental design, a four parameter logistic equation was identified as appropriate calibration model ranging from 0.3 microg/mL (lower limit of quantitation, LLOQ) to 200 microg/mL (upper limit of quantitation, ULOQ) using an anti-idiotypic mAb ('HAHA mimic') as calibrator. The bias ranged from -2.4% to 5.5% and the intermediate precision expressed as 95% CI revealed values from 5.6% to 8.3%. Specificity was evaluated using six human serum matrices from healthy donors spiked with calibrator at the limit of quantitation (LOQ) with >80% of values being recovered with less than 25% relative error. The qualified assay was applied to monitor potentially induced HAHA reactivity in 11 patients from a clinical phase I trial with passively administered IGN311. Of the 11 patients, one high HAHA responder and several low responders were identified. Protein-G depletion experiments with human serum samples revealed that the observed response is predominantly caused by IgG binding to the ligand. The characteristics of these HAHA responses were all of the so-called 'Type I' which is defined by a peak response around day 15 that decreases from this point steadily suggesting that some kind of tolerance is established. Therefore, this type of HAHA response is regarded as non critical for the patient's safety. PMID:16644171

  16. Serum Zta antibody of Epstein-Barr virus exerts potential function in the diagnosis of nasopharyngeal cancer.

    PubMed

    Zhang, Xiaoyan; Zhang, Yun; Nie, Yunqiang; Wang, Shoufeng; Chen, Yanlin; Sun, Dezhong

    2014-07-01

    The diagnosis of nasopharyngeal cancer (NPC) remains a clinical challenge. Many studies have assessed the diagnostic potential of Zta antibody of the Epstein-Barr virus (EBV) in NPC patients but with controversial results. This study aims to summarize the overall diagnostic performance of EBV Zta antibody in NPC. Based on a comprehensive search of the Pubmed and Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), Wanfang Databases and China Citation Databases, we identified outcome data from all articles estimating diagnostic accuracy of EBV Zta antibody for NPC. A summary estimation for sensitivity, specificity, and other diagnostic indexes were pooled using a bivariate model. The overall measure of accuracy was calculated using summary receiver operating characteristic curve and the area under curve (AUC) was calculated. According to our inclusion criteria, 17 studies with 11,822 subjects (1,645 NPC cases, 10,177 controls) were included. The summary estimates were: sensitivity 0.87 (95 % confidence interval [CI] = 0.86-0.89), specificity 0.94 (95 % CI = 0.93-0.94), positive likelihood ratio 8.05 (95 % CI = 5.59-11.59), negative likelihood ratio 0.16 (95 % CI = 0.12-0.21), diagnostic odds ratio 52.93 (95 % CI = 29.95-93.56), the AUC and Q* index were 0.9352 and 0.8714, respectively. In conclusion, serum EBV Zta had a better diagnostic performance for NPC. Further studies should be performed to confirm our findings. PMID:24737587

  17. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    PubMed Central

    Petters, Edyta; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek

    2015-01-01

    Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer. PMID:26307975

  18. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule.

    PubMed

    Petters, Edyta; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek

    2015-01-01

    Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer. PMID:26307975

  19. A Conformational Switch in Human Immunodeficiency Virus gp41 Revealed by the Structures of Overlapping Epitopes Recognized by Neutralizing Antibodies

    PubMed Central

    Pejchal, Robert; Gach, Johannes S.; Brunel, Florence M.; Cardoso, Rosa M.; Stanfield, Robyn L.; Dawson, Philip E.; Burton, Dennis R.; Zwick, Michael B.; Wilson, Ian A.

    2009-01-01

    The membrane-proximal external region (MPER) of the human immunodeficiency virus (HIV) envelope glycoprotein (gp41) is critical for viral fusion and infectivity and is the target of three of the five known broadly neutralizing HIV type 1 (HIV-1) antibodies, 2F5, Z13, and 4E10. Here, we report the crystal structure of the Fab fragment of Z13e1, an affinity-enhanced variant of monoclonal antibody Z13, in complex with a 12-residue peptide corresponding to the core epitope (W670NWFDITN677) at 1.8-Å resolution. The bound peptide adopts an S-shaped conformation composed of two tandem, perpendicular helical turns. This conformation differs strikingly from the α-helical structure adopted by an overlapping MPER peptide bound to 4E10. Z13e1 binds to an elbow in the MPER at the membrane interface, making relatively few interactions with conserved aromatics (Trp672 and Phe673) that are critical for 4E10 recognition. The comparison of the Z13e1 and 4E10 epitope structures reveals a conformational switch such that neutralization can occur by the recognition of the different conformations and faces of the largely amphipathic MPER. The Z13e1 structure provides significant new insights into the dynamic nature of the MPER, which likely is critical for membrane fusion, and it has significant implications for mechanisms of HIV-1 neutralization by MPER antibodies and for the design of HIV-1 immunogens. PMID:19515770

  20. Diagnostic Potential of Recombinant scFv Antibodies Generated Against Hemagglutinin Protein of Influenza A Virus

    PubMed Central

    Rajput, Roopali; Sharma, Gaurav; Rawat, Varsha; Gautam, Anju; Kumar, Binod; Pattnaik, B.; Pradhan, H. K.; Khanna, Madhu

    2015-01-01

    Human influenza A viruses have been the cause of enormous socio-economic losses worldwide. In order to combat such a notorious pathogen, hemagglutinin protein (HA) has been a preferred target for generation of neutralizing-antibodies as potent therapeutic/diagnostic agents. In the present study, recombinant anti-HA single chain variable fragment antibodies were constructed using the phage-display technology to aid in diagnosis and treatment of human influenza A virus infections. Spleen cells of mice hyper-immunized with A/New Caledonia/20/99 (H1N1) virus were used as the source for recombinant antibody (rAb) production. The antigen-binding phages were quantified after six rounds of bio-panning against A/New Caledonia/20/99 (H1N1), A/California/07/2009 (H1N1)-like, or A/Udorn/307/72(H3N2) viruses. The maximum phage yield was for the A/New Caledonia/20/99 (H1N1), however, considerable cross-reactivity was observed for the other virus strains as well. The HA-specific polyclonal rAb preparation was subjected to selection of single clones for identification of high reactive relatively conserved epitopes. The high-affinity rAbs were tested against certain known conserved HA epitopes by peptide ELISA. Three recombinant mAbs showed reactivity with both the H1N1 strains and one (C5) showed binding with all the three viral strains. The C5 antibody was thus used for development of an ELISA test for diagnosis of influenza virus infection. Based on the sample size in the current analysis, the ELISA test demonstrated 83.9% sensitivity and 100% specificity. Thus, the ELISA, developed in our study, may prove as a cheaper alternative to the presently used real time RT–PCR test for detection of human influenza A viruses in clinical specimens, which will be beneficial, especially in the developing countries. PMID:26388868

  1. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    NASA Astrophysics Data System (ADS)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  2. Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptors and reveal the Ca/sup 2 +/ channel structure

    SciTech Connect

    Vandaele, S.; Fosset, M.; Galizzi, J.P.; Lazdunski, M.

    1987-01-13

    Monoclonal hybridoma cell lines secreting antibodies against the (+)-PN 200-110 and the (-)-demethoxyverapamil binding components of the voltage-dependent calcium channel from rabbit transverse-tubule membranes have been isolated. The specificity of these monoclonal antibodies was established by their ability to coimmunoprecipitate (+)-(/sup 3/H)PN 200-110 and (-)-(/sup 3/H)demethoxyverapamil receptors. Monoclonal antibodies described in this work cross-reacted with rat, mouse, chicken, and frog skeletal muscle Ca/sup 2 +/ channels but not with crayfish muscle Ca/sup 2 +/ channels. Cross-reactivity was also detected with membranes prepared from rabbit heart, brain, and intestinal smooth muscle. These antibodies were used in immunoprecipitation experiments with /sup 125/I-labeled detergent (3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS) and digitonin) solubilized membranes. They revealed a single immunoprecipitating component of molecular weight (M/sub r/) 170,000 in nonreducing conditions. After disulfide bridge reduction the CHAPS-solubilized (+)-PN 200-110-(-)-demethoxyverapamil binding component gave rise to a large peptide of M/sub r/ 140,000 and to smaller polypeptides of M/sub r/ 30,000 and 26,000 whereas the digitonin-solubilized receptor appeared with subunits at M/sub r/ 170,000, 140,000, 30,000, and 26,000. All these results taken together are interpreted as showing that both the 1,4-dihydropyridine and the phenylalkylamine receptors are part of a single polypeptide chain of M/sub r/ 170,000.

  3. A solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands.

    PubMed

    Enríquez-Navas, Pedro M; Marradi, Marco; Padro, Daniel; Angulo, Jesús; Penadés, Soledad

    2011-02-01

    The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-), with the broadly neutralizing anti-HIV-1 antibody 2G12 (HIV=human immunodeficiency virus) have been investigated in solution by using ligand-based NMR techniques, specifically saturation transfer difference (STD) NMR spectroscopy and transferred NOE experiments. Linear oligomannosides show similar binding modes to the antibody, with the nonreducing terminal disaccharide Manα(1→2)Man (Man=mannose) making the closest protein/ligand contacts in the bound state. In contrast, the branched pentamannoside shows two alternate binding modes, involving both ligand arms (D2- and D3-like), a dual binding description of the molecular recognition of this ligand by 2G12 in solution that differs from the single binding mode deduced from X-ray studies. On the contrary, the antibody shows an unexpected selectivity for one arm (D1-like) of the other branched ligand (heptamannoside). This result explains the previously reported lack of affinity enhancement relative to that of the D1-like tetramannoside. Single-ligand STD NMR titration experiments revealed noticeable differences in binding affinities among the linear and branched ligands in solution, with the latter showing decreased affinity. Among the analyzed series of ligands, the strongest 2G12 binders were the linear tri- and tetramannosides because both show similar affinity for the antibody. These results demonstrate that NMR spectroscopic techniques can deliver abundant structural, dynamics, and affinity information for the characterization of oligomannose-2G12 binding in solution, thus complementing, and, as in the case of the pentamannoside, extending, the structural view from X-ray crystallography. This information is of key importance for the development of multivalent synthetic gp120 high-mannose glycoconjugate mimics in the context of vaccine development. PMID:21268157

  4. Monoclonal antibody to single-stranded DNA: a potential tool for DNA repair studies.

    PubMed

    Cooke, M S; Patel, K; Ahmad, J; Holloway, K; Evans, M D; Lunec, J

    2001-06-01

    Growing evidence suggests that DNA repair capacity is an important factor in cancer risk and is therefore essential to assess. Immunochemical assays are amenable to the detection of repair products in complex matrices, such as urine, facilitating noninvasive measurements, although diet and extra-DNA sources of lesion can confound interpretation. The production of single-stranded, lesion-containing DNA oligomers characterises nucleotide excision repair (NER) and hence defines the repair pathway from which a lesion may be derived. Herein we describe the characterisation of a monoclonal antibody which recognises guanine moieties in single-stranded DNA. Application of this antibody in ELISA, demonstrated such oligomers in supernatants from repair-proficient cells post-insult. Testing of urine samples from volunteers demonstrated a relationship between oligomer levels and two urinary DNA damage products, thymine dimers and 8-oxo-2'-deoxyguanosine, supporting our hypothesis that NER gives rise to lesion-containing oligomers which are specific targets for the investigation of DNA repair. PMID:11374895

  5. Multiplex Evaluation of Influenza Neutralizing Antibodies with Potential Applicability to In-Field Serological Studies

    PubMed Central

    Terregino, Calogero; Rahman, Rafat; Cattoli, Giovanni

    2014-01-01

    The increased number of outbreaks of H5 and H7 LPAI and HPAI viruses in poultry has major public and animal health implications. The continuous rapid evolution of these subtypes and the emergence of new variants influence the ability to undertake effective surveillance. Retroviral pseudotypes bearing influenza haemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins represent a flexible platform for sensitive, readily standardized influenza serological assays. We describe a multiplex assay for the study of neutralizing antibodies that are directed against both influenza H5 and H7 HA. This assay permits the measurement of neutralizing antibody responses against two antigenically distinct HAs in the same serum/plasma sample thus increasing the amount and quality of serological data that can be acquired from valuable sera. Sera obtained from chickens vaccinated with a monovalent H5N2 vaccine, chickens vaccinated with a bivalent H7N1/H5N9 vaccine, or turkeys naturally infected with an H7N3 virus were evaluated in this assay and the results correlated strongly with data obtained by HI assay. We show that pseudotypes are highly stable under basic cold-chain storage conditions and following multiple rounds of freeze-thaw. We propose that this robust assay may have practical utility for in-field serosurveillance and vaccine studies in resource-limited regions worldwide. PMID:25101305

  6. Multiplex evaluation of influenza neutralizing antibodies with potential applicability to in-field serological studies.

    PubMed

    Molesti, Eleonora; Wright, Edward; Terregino, Calogero; Rahman, Rafat; Cattoli, Giovanni; Temperton, Nigel J

    2014-01-01

    The increased number of outbreaks of H5 and H7 LPAI and HPAI viruses in poultry has major public and animal health implications. The continuous rapid evolution of these subtypes and the emergence of new variants influence the ability to undertake effective surveillance. Retroviral pseudotypes bearing influenza haemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins represent a flexible platform for sensitive, readily standardized influenza serological assays. We describe a multiplex assay for the study of neutralizing antibodies that are directed against both influenza H5 and H7 HA. This assay permits the measurement of neutralizing antibody responses against two antigenically distinct HAs in the same serum/plasma sample thus increasing the amount and quality of serological data that can be acquired from valuable sera. Sera obtained from chickens vaccinated with a monovalent H5N2 vaccine, chickens vaccinated with a bivalent H7N1/H5N9 vaccine, or turkeys naturally infected with an H7N3 virus were evaluated in this assay and the results correlated strongly with data obtained by HI assay. We show that pseudotypes are highly stable under basic cold-chain storage conditions and following multiple rounds of freeze-thaw. We propose that this robust assay may have practical utility for in-field serosurveillance and vaccine studies in resource-limited regions worldwide. PMID:25101305

  7. Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease.

    PubMed

    Kandalaft, Hiba; Hussack, Greg; Aubry, Annie; van Faassen, Henk; Guan, Yonghong; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Logan, Susan M; Tanha, Jamshid

    2015-10-01

    Clostridium difficile is a leading cause of death from gastrointestinal infections in North America. Antibiotic therapy is effective, but the high incidence of relapse and the rise in hypervirulent strains warrant the search for novel treatments. Surface layer proteins (SLPs) cover the entire C. difficile bacterial surface, are composed of high-molecular-weight (HMW) and low-molecular-weight (LMW) subunits, and mediate adherence to host cells. Passive and active immunization against SLPs has enhanced hamster survival, suggesting that antibody-mediated neutralization may be an effective therapeutic strategy. Here, we isolated a panel of SLP-specific single-domain antibodies (VHHs) using an immune llama phage display library and SLPs isolated from C. difficile hypervirulent strain QCD-32g58 (027 ribotype) as a target antigen. Binding studies revealed a number of VHHs that bound QCD-32g58 SLPs with high affinity (K D = 3-6 nM) and targeted epitopes located on the LMW subunit of the SLP. The VHHs demonstrated melting temperatures as high as 75 °C, and a few were resistant to the gastrointestinal protease pepsin at physiologically relevant concentrations. In addition, we demonstrated the binding specificity of the VHHs to the major C. difficile ribotypes by whole cell ELISA, where all VHHs were found to bind 001 and 027 ribotypes, and a subset of antibodies were found to be broadly cross-reactive in binding cells representative of 012, 017, 023, and 078 ribotypes. Finally, we showed that several of the VHHs inhibited C. difficile QCD-32g58 motility in vitro. Targeting SLPs with VHHs may be a viable therapeutic approach against C. difficile-associated disease. PMID:25936376

  8. Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies.

    PubMed

    Stobiecka, Magdalena; Chalupa, Agata; Dworakowska, Beata

    2016-10-15

    The anti-apoptotic protein survivin (Sur) plays an important role in the regulation of cell division and inducing the chemotherapeutic drug resistance. The Sur protein and its mRNA have recently been studied as cancer biomarkers and potential targets for cancer therapy. In this work, we have focused on the design of immunosensors for the detection of Sur based on buried positive-potential barrier layer structure and anti-survivin antibody. The modification of solid AuQC piezoelectrodes was monitored by recording the resonance frequency shift and electrochemical measurements during each step of the sensor preparation. Our results indicate that the immunosensor with covalently bound monoclonal anti-survivin antibody can detect Sur with the limit of detection, LOD=1.7nM (S/N=3σ). The immunosensor applicability for the analysis of real samples was assessed by testing samples of cell lysate solutions obtained from human astrocytoma (glioblastoma) U-87MG cell line, with the experiments performed using the standard addition method. The good linearity of the calibration curves for PBS and lysate solutions at low Sur concentrations confirm the high specificity of the proposed biosensor and good discrimination against nonspecific interactions with lysate components. The calculations indicate that there is still room to increase the Sur capture capacity for Sur while miniaturizing the sensor. The important advantage of the sensor is that it can be reused by a simple regeneration procedure. PMID:26507667

  9. Possible therapeutic potential of a recombinant group 2 grass pollen allergen-specific antibody fragment.

    PubMed

    Gadermaier, E; Flicker, S; Blatt, K; Valent, P; Valenta, R

    2014-02-01

    The induction of blocking IgG antibodies that compete with IgE for allergen binding is one important mechanism of allergen-specific immunotherapy. The application of blocking antibodies may be an alternative treatment strategy. A synthetic gene coding for a single-chain fragment (ScFv) specific for the major timothy grass pollen allergen Phl p 2 was inserted into plasmid pCANTAB 5 E, and the recombinant ScFv was expressed in Escherichia coli and purified by affinity chromatography. The ScFv was tested for allergen binding by ELISA, and its association and dissociation were measured by surface plasmon resonance (Biacore) technology. The ability of the ScFv to inhibit allergic patients' IgE binding to Phl p 2 and Phl p 2-induced basophil degranulation was studied by ELISA competition and basophil activation (CD203c) assays. We report the expression, purification, biochemical and immunological characterization of a monomeric single-chain fragment (ScFv) of human origin specific for the major timothy grass pollen allergen, Phl p 2. The Phl p 2-ScFv showed high affinity binding to the allergen and blocked the binding of allergic patients' polyclonal IgE to Phl p 2 up to 98%. Furthermore, it inhibited allergen-induced basophil activation. The Phl p 2-ScFv inhibited allergic patients' IgE binding to Phl p 2 as well as Phl p 2-induced basophil activation and might be useful for passive immunotherapy of grass pollen allergy. PMID:24251384

  10. Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry.

    PubMed

    Zhang, Qian; Noble, Kyle A; Mao, Yuan; Young, Nicolas L; Sathe, Shridhar K; Roux, Kenneth H; Marshall, Alan G

    2013-07-01

    The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model. PMID:23681851

  11. Rapid Screening for Potential Epitopes Reactive with a Polycolonal Antibody by Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Noble, Kyle A.; Mao, Yuan; Young, Nicolas L.; Sathe, Shridhar K.; Roux, Kenneth H.; Marshall, Alan G.

    2013-07-01

    The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.

  12. Diagnostic potential of monoclonal antibodies against the capsid protein of chikungunya virus for detection of recent infection.

    PubMed

    Damle, R G; Jayaram, N; Kulkarni, S M; Nigade, K; Khutwad, K; Gosavi, S; Parashar, D

    2016-06-01

    Chikungunya fever is self-limiting. However, neurological and hemorrhagic complications have been seen in recent outbreaks. The clinical manifestations of this disease are similar to those of dengue virus infection, indicating the need for differential diagnosis in areas such as India, which are endemic for both viruses. The aim of the present study was to develop monoclonal antibodies (MAbs) against Chikungunya virus (CHIKV) and assess their use in MAb-based IgM capture ELISA (MAC ELISA). The ELISA detects CHIKV-specific IgM antibodies, a marker of recent infection, in a patient's serum. One IgG1 and two IgM isotype hybrids were obtained. All of the subclones derived from the IgG1 hybrid recognized the C protein of CHIKV. The anti-C MAb ClVE4/D9 was the most promising as a detector antibody in MAC ELISA (C-MAb ELISA) yielding higher positive-to-negative (P/N) ratios. When compared with the CHIKV MAC ELISA kit developed by the National Institute of Virology (NIV), Pune (NIV MAC ELISA), the sensitivity of the test was 87.01 % with 100 % specificity. The positive and negative predictive values (PPV and NPV) were 100 % and 94.47 %, respectively. In precision testing, standard deviation (SD) and coefficient of variation (% CV) values of the C-MAb ELISA were within acceptable limits. The C-MAb ELISA detected anti-CHIKV IgM in serum of patients up to five months after the onset of infection, indicating that anti-C MAbs have strong potential for use in MAC ELISA to detect recent CHIKV infection. PMID:27016930

  13. Characterization of a Monoclonal Antibody Directed against Mytilus spp Larvae Reveals an Antigen Involved in Shell Biomineralization.

    PubMed

    Calvo-Iglesias, Juan; Pérez-Estévez, Daniel; Lorenzo-Abalde, Silvia; Sánchez-Correa, Beatriz; Quiroga, María Isabel; Fuentes, José M; González-Fernández, África

    2016-01-01

    The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels. PMID:27008638

  14. Characterization of a Monoclonal Antibody Directed against Mytilus spp Larvae Reveals an Antigen Involved in Shell Biomineralization

    PubMed Central

    Calvo-Iglesias, Juan; Pérez-Estévez, Daniel; Lorenzo-Abalde, Silvia; Sánchez-Correa, Beatriz; Quiroga, María Isabel; Fuentes, José M.; González-Fernández, África

    2016-01-01

    The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels. PMID:27008638

  15. Reshaping Antibody Diversity

    PubMed Central

    Wang, Feng; Ekiert, Damian C.; Ahmad, Insha; Yu, Wenli; Zhang, Yong; Bazirgan, Omar; Torkamani, Ali; Raudsepp, Terje; Mwangi, Waithaka; Criscitiello, Michael F.; Wilson, Ian A.; Schultz, Peter G.; Smider, Vaughn V.

    2014-01-01

    Summary Unlike humans or mice, some species have limited genome encoded combinatorial diversity potential, yet mount a robust antibody response. Cows are unusual in having exceptionally long CDR H3 loops and few V-regions, but the mechanism for creating diversity is not understood. Deep sequencing revealed that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded mini-domains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a β-strand “stalk” that supports a structurally diverse, disulfide-bonded, “knob” domain. Sequence analysis suggests that diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias towards mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of CDR H3s of unprecedented length that fold into a diversity of mini-domains generated through combinations of somatically generated disulfides. PMID:23746848

  16. High throughput chromatography strategies for potential use in the formal process characterization of a monoclonal antibody.

    PubMed

    Petroff, Matthew G; Bao, Haiying; Welsh, John P; van Beuningen-de Vaan, Miranda; Pollard, Jennifer M; Roush, David J; Kandula, Sunitha; Machielsen, Peter; Tugcu, Nihal; Linden, Thomas O

    2016-06-01

    High throughput experimental strategies are central to the rapid optimization of biologics purification processes. In this work, we extend common high throughput technologies towards the characterization of a multi-column chromatography process for a monoclonal antibody (mAb). Scale-down strategies were first evaluated by comparing breakthrough, retention, and performance (yields and clearance of aggregates and host cell protein) across miniature and lab scale columns. The process operating space was then evaluated using several integrated formats, with batch experimentation to define process testing ranges, miniature columns to evaluate the operating space, and comparison to traditional scale columns to establish scale-up correlations and verify the determined operating space. When compared to an independent characterization study at traditional lab column scale, the high throughput approach identified the same control parameters and similar process sensitivity. Importantly, the high throughput approach significantly decreased time and material needs while improving prediction robustness. Miniature columns and manufacturing scale centerpoint data comparisons support the validity of this approach, making the high throughput strategy an attractive and appropriate scale-down tool for the formal characterization of biotherapeutic processes in the future if regulatory acceptance of the miniature column data can be achieved. Biotechnol. Bioeng. 2016;113: 1273-1283. © 2015 Wiley Periodicals, Inc. PMID:26639315

  17. The potential role of anti-PCSK9 monoclonal antibodies in the management of hypercholesterolemia.

    PubMed

    Lepor, Norman E; Contreras, Laurn; Desai, Chirag; Kereiakes, Dean J

    2014-01-01

    Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and disability in developed nations, and it is rising rapidly in other parts of the developing world. Levels of low-density lipoprotein cholesterol (LDL-C) are directly correlated with atherogenic risk, and statin-based therapy is the most common management for these patients. However, many patients exhibit resistance to and/or adverse effects from statin therapy, and there is a need for adjunctive therapies or statin alternatives for these patients. The recently discovered human protein proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in LDL-C metabolism. PCSK9 promotes LDL receptor (LDL-R) degradation with a consequent reduction in LDL-R density and an increase in LDL-C levels. Consequently, PCSK9 inhibition to reduce LDL-C levels has become a primary focus for drug development. Numerous clinical trials focusing on monoclonal antibodies against PCSK9 have demonstrated efficacy equal to or greater than statin therapy for lowering LDL-C levels. Long-term trials are underway to assess safety, tolerability, and ability to reduce ASCVD. PMID:25662924

  18. Development of a novel anti-canine CD20 monoclonal antibody with diagnostic and therapeutic potential

    PubMed Central

    Ito, Daisuke; Brewer, Susan; Modiano, Jaime F.; Beall, Melissa J.

    2016-01-01

    In humans, passive immunotherapy with anti-CD20 monoclonal antibodies (mAbs) has created immeasurable improvements in outcomes of patients with B-cell malignancies. However, the lack of comparable reagents has precluded development of this approach in dogs. We developed a novel anti-canine CD20 mAb designated as 6C8. 6C8 recognized the extracellular domain of canine CD20 and showed high-affinity binding to canine CD20 in solution, as well as in its native conformation on canine B-cells. The 6C8 target was expressed invariably in B-cell lineage cells, but not in T-cells or in myeloid cells. 6C8 promoted phagocytosis of B-cell lymphoma cells by macrophages, but in its current framework, it did not induce direct cytotoxicity or complement dependent cytotoxicity. In summary, we have established a novel anti-canine CD20 mAb that is useful as a diagnostic tool to phenotype B-cells, and which could be integrated as a tool for passive immunotherapy to treat dogs with B-cell disorders. PMID:24724777

  19. Diagnostic potential of antibody titres against Candida cell wall β-glucan in Kawasaki disease

    PubMed Central

    Ishibashi, K; Fukazawa, R; Miura, N N; Adachi, Y; Ogawa, S; Ohno, N

    2014-01-01

    Kawasaki disease (KD) is an acute vasculitis syndrome of unknown aetiology in children. The administration of Candida cell wall antigens induced KD-like coronary vasculitis in mice. However, the responses of KD patients to Candida cell wall antigen are unknown. In this study, we examined the response of KD patients to β-glucan (BG), one of the major fungal cell wall antigens, by measuring the anti-BG titre. In KD patients, the anti-C. albicans cell wall BG titre was higher than that in normal children. The anti-BG titre was also higher in KD patients compared to children who served as control subjects. The efficacy of intravenous immunoglobulin (IVIG) therapy in KD is well established. We categorized the KD patients into three groups according to the therapeutic efficacy of intravenous immunoglobulin (IVIG) and compared the anti-BG titre among these groups. Anti-BG titres were similar in the control group and the non-responsive group. In the fully responsive group, the anti-BG titre showed higher values than those in the normal children. This study demonstrated clinically that KD patients have high antibody titres to Candida cell wall BG, and suggested the involvement of Candida cell wall BG in the pathogenesis of KD. The relationship between IVIG therapy and anti-BG titre was also shown. These results provide valuable insights into the therapy and diagnosis of KD. PMID:24635107

  20. Serum Antibodies to HPV16 Early Proteins Warrant Investigation as Potential Biomarkers for Risk Stratification and Recurrence of HPV-Associated Oropharyngeal Cancer.

    PubMed

    Fakhry, Carole; Qualliotine, Jesse R; Zhang, Zhe; Agrawal, Nishant; Gaykalova, Daria A; Bishop, Justin A; Subramaniam, Rathan M; Koch, Wayne M; Chung, Christine H; Eisele, David W; Califano, Joseph; Viscidi, Raphael P

    2016-02-01

    Human papillomavirus (HPV) is responsible for increasing incidence of oropharyngeal cancer. At present, there are no biomarkers in the surveillance algorithm for HPV-positive oropharyngeal cancer (HPV-OPC). HPV16 E6 antibody precedes oropharyngeal cancer diagnosis. If HPV16 E6 indeed precedes primary diagnosis, it is similarly expected to precede disease recurrence and may have a potential role as a biomarker for surveillance of HPV-OPC. To determine whether HPV antibody titers have a potential role as early markers of disease recurrence or prognosis, a retrospective pilot study was designed to determine whether HPV16 early antibody titers E6, E7, E1, and E2 decrease after treatment of HPV16-positive OPC. Trends in pretreatment, early (≤6 months after treatment), and late posttreatment (>6 months after treatment) HPV16 antibody titers were examined. There were 43, 34, and 52 subjects with serum samples available for pretreatment, early, and late posttreatment intervals. Mean pretreatment antibody levels were higher than posttreatment antibody levels. Average antibody levels decreased significantly over time for E6 (Ptrend = 0.001) and E7 (Ptrend < 0.001). Six disease recurrences were observed during the follow-up period (median, 4.4 years). In univariate analysis, a log-unit increase in pretreatment E6 titer was significantly associated with increased risk of disease recurrence (HR, 5.42; 95% CI, 1.1-25.7; P = 0.03). Therefore, levels of antibodies to HPV16 early oncoproteins decline after therapy. Higher E6 titers at diagnosis are associated with significant increases in the risk of recurrence. These data support the prospective evaluation of HPV16 antibodies as markers of surveillance and for risk stratification at diagnosis. PMID:26701665

  1. HIV-1 Vaccine-elicited Antibodies Reverted to Their Inferred Naive Germline Reveal Associations between Binding Affinity and in vivo Activation

    PubMed Central

    Dai, Kaifan; Khan, Salar N; Wang, Yimeng; He, Linling; Guenaga, Javier; Ingale, Jidnyasa; Sundling, Christopher; O’Dell, Sijy; McKee, Krisha; Phad, Ganesh; Corcoran, Martin; Wilson, Richard; Mascola, John R; Zhu, Jiang; Li, Yuxing; Hedestam, Gunilla B Karlsson; Wyatt, Richard T

    2016-01-01

    The elicitation of HIV-1 broadly neutralizing antibodies following envelope glycoprotein (Env) vaccination is exceedingly difficult. Suboptimal engagement of naïve B cells is suggested to limit these low frequency events, especially at the conserved CD4bs. Here, we analyzed CD4bs-directed monoclonal antibodies (mAbs) elicited by YU2 gp140-foldon trimers in a non-human primate by selective sorting using CD4bs “knock out” trimers. Following two inoculations, the CD4bs-directed mAbs efficiently recognized the eliciting immunogen in their affinity-maturing state but did not recognize CD4bs-defective probes. We reverted these mAbs to their most likely inferred germline (igL) state, leaving the HCDR3 unaltered, to establish correlates of in vitro affinity to in vivo activation. Most igL-reverted mAbs bound the eliciting gp140 immunogen, indicating that CD4bs-directed B cells possessing reasonable affinity existed in the naïve repertoire. We detected relatively high affinities for the majority of the igL mAbs to gp120 and of Fabs to gp140, which, as expected, increased when the antibodies ‘matured’ following vaccination. Affinity increases were associated with slower off-rates as well as with acquisition of neutralizing capacity. These data reveal in vitro binding properties associated with in vivo activation that result in functional archiving of antigen-specific B cells elicited by a complex glycoprotein antigen following immunization. PMID:26879974

  2. Antigenic Fingerprinting following Primary RSV Infection in Young Children Identifies Novel Antigenic Sites and Reveals Unlinked Evolution of Human Antibody Repertoires to Fusion and Attachment Glycoproteins

    PubMed Central

    Fuentes, Sandra; Coyle, Elizabeth M.; Beeler, Judy; Golding, Hana; Khurana, Surender

    2016-01-01

    Respiratory Syncytial Virus (RSV) is the major cause of pneumonia among infants. Here we elucidated the antibody repertoire following primary RSV infection and traced its evolution through adolescence and adulthood. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes in the RSV fusion protein (F) and attachment protein (G) were used for unbiased epitope profiling of infant sera prior to and following RSV infection. F-GFPDL analyses demonstrated modest changes in the anti-F epitope repertoires post-RSV infection, while G-GFPDL analyses revealed 100-fold increase in number of bound phages. The G-reactive epitopes spanned the N- and C-terminus of the G ectodomain, along with increased reactivity to the central conserved domain (CCD). Panels of F and G antigenic sites were synthesized to evaluate sera from young children (<2 yr), adolescents (14–18 yr) and adults (30–45 yr) in SPR real-time kinetics assays. A steady increase in RSV-F epitope repertoires from young children to adults was observed using peptides and F proteins. Importantly, several novel epitopes were identified in pre-fusion F and an immunodominant epitope in the F-p27. In all age groups, antibody binding to pre-fusion F was 2–3 folds higher than to post-fusion form. For RSV-G, antibody responses were high following early RSV infection in children, but declined significantly in adults, using either G proteins or peptides. This study identified unlinked evolution of anti-F and anti G responses and supportive evidence for immune pressure driven evolution of RSV-G. These findings could help development of effective countermeasures including vaccines. PMID:27100289

  3. HIV-1 Vaccine-elicited Antibodies Reverted to Their Inferred Naive Germline Reveal Associations between Binding Affinity and in vivo Activation.

    PubMed

    Dai, Kaifan; Khan, Salar N; Wang, Yimeng; He, Linling; Guenaga, Javier; Ingale, Jidnyasa; Sundling, Christopher; O'Dell, Sijy; McKee, Krisha; Phad, Ganesh; Corcoran, Martin; Wilson, Richard; Mascola, John R; Zhu, Jiang; Li, Yuxing; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2016-01-01

    The elicitation of HIV-1 broadly neutralizing antibodies following envelope glycoprotein (Env) vaccination is exceedingly difficult. Suboptimal engagement of naïve B cells is suggested to limit these low frequency events, especially at the conserved CD4bs. Here, we analyzed CD4bs-directed monoclonal antibodies (mAbs) elicited by YU2 gp140-foldon trimers in a non-human primate by selective sorting using CD4bs "knock out" trimers. Following two inoculations, the CD4bs-directed mAbs efficiently recognized the eliciting immunogen in their affinity-maturing state but did not recognize CD4bs-defective probes. We reverted these mAbs to their most likely inferred germline (igL) state, leaving the HCDR3 unaltered, to establish correlates of in vitro affinity to in vivo activation. Most igL-reverted mAbs bound the eliciting gp140 immunogen, indicating that CD4bs-directed B cells possessing reasonable affinity existed in the naïve repertoire. We detected relatively high affinities for the majority of the igL mAbs to gp120 and of Fabs to gp140, which, as expected, increased when the antibodies 'matured' following vaccination. Affinity increases were associated with slower off-rates as well as with acquisition of neutralizing capacity. These data reveal in vitro binding properties associated with in vivo activation that result in functional archiving of antigen-specific B cells elicited by a complex glycoprotein antigen following immunization. PMID:26879974

  4. Development and characterization of a potential diagnostic monoclonal antibody against capsid protein VP1 of the chicken anemia virus

    PubMed Central

    Lien, Yi-Yang; Huang, Chi-Hung; Sun, Fang-Chun; Sheu, Shyang-Chwen; Lu, Tsung-Chi; Lee, Meng-Shiunn; Hsueh, Shu-Chin; Chen, Hsi-Jien

    2012-01-01

    Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. In this study, a potential diagnostic monoclonal antibody against the CAV VP1 protein was developed which can precisely recognize the CAV antigen for diagnostic and virus recovery purposes. The VP1 gene of CAV encoding the N-terminus-deleted VP1 protein, VP1Nd129, was cloned into an Escherichia (E.) coli expression vector. After isopropyl-β-D-thiogalactopyronoside induction, VP1Nd129 protein was shown to be successfully expressed in the E. coli. By performing an enzyme-linked immunoabsorbent assay using two coating antigens, purified VP1Nd129 and CAV-infected liver tissue lysate, E3 monoclonal antibody (mAb) was found to have higher reactivity against VP1 protein than the other positive clones according to the result of limiting dilution method from 64 clones. Using immunohistochemistry, the presence of the VP1-specific mAb, E3, was confirmed using CAV-infected liver and thymus tissues as positive-infected samples. Additionally, CAV particle purification was also performed using an immunoaffinity column containing E3 mAb. The monoclonal E3 mAb developed in this study will not only be very useful for detecting CAV infection and performing histopathology studies of infected chickens, but may also be used to purify CAV particles in the future. PMID:22437539

  5. In vitro characterization of 211 At-labeled antibody A33--a potential therapeutic agent against metastatic colorectal carcinoma.

    PubMed

    Almqvist, Ylva; Orlova, Anna; Sjöström, Anna; Jensen, Holger J; Lundqvist, Hans; Sundin, Anders; Tolmachev, Vladimir

    2005-10-01

    The humanized antibody A33 binds to the A33 antigen, expressed in 95% of primary and metastatic colorectal carcinomas. The restricted pattern of expression in normal tissue makes this antigen a possible target for radioimmunotherapy of colorectal micrometastases. In this study, the A33 antibody was labeled with the therapeutic nuclide (211)At using N-succinimidyl para-(tri-methylstannyl)benzoate (SPMB). The in vitro characteristics of the (211)At-benzoate-A33 conjugate ((211)At-A33) were investigated and found to be similar to those of (125)I-benzoate-A33 ((125)I-A33) in different assays. Both conjugates bound with high affinity to SW1222 cells (K(d) = 1.7 +/- 0.2 nM, and 1.8 +/- 0.1 nM for (211)At-A33 and (125)I-A33, respectively), and both showed good intracellular retention (70% of the radioactivity was still cell associated after 20 hours). The cytotoxic effect of (211)At-A33 was also confirmed. After incubation with (211)At-A33, SW1222 cells had a survival of approximately 0.3% when exposed to some 150 decays per cell (DPC). The cytotoxic effect was found to be dose-dependent, as cells exposed to only 56 DPC had a survival of approximately 5%. The (211)At-A33 conjugate shows promise as a potential radioimmunotherapy agent for treatment of micrometastases originating from colorectal carcinoma. PMID:16248767

  6. Conservation of arthropod midline netrin accumulation revealed with a cross-reactive antibody provides evidence for midline cell homology

    PubMed Central

    Simanton, Wendy; Clark, Stephanie; Clemons, Anthony; Jacowski, Caitlin; Farrell-VanZomeren, Adrienne; Beach, Paul; Browne, William E.; Duman-Scheel, Molly

    2009-01-01

    SUMMARY Although many similarities in arthropod CNS development exist, differences in axonogenesis and the formation of midline cells, which regulate axon growth, have been observed. For example, axon growth patterns in the ventral nerve cord of Artemia franciscana differ from that of Drosophila melanogaster. Despite such differences, conserved molecular marker expression at the midline of several arthropod species indicates that midline cells may be homologous in distantly related arthropods. However, data from additional species are needed to test this hypothesis. In this investigation, nerve cord formation and the putative homology of midline cells were examined in distantly related arthropods, including: long- and short-germ insects (D. melanogaster, Aedes aeygypti, and Tribolium castaneum), branchiopod crustaceans (A. franciscana and Triops longicauditus), and malacostracan crustaceans (Porcellio laevis and Parhyale hawaiensis). These comparative analyses were aided by a cross-reactive antibody generated against the Netrin (Net) protein, a midline cell marker and regulator of axonogenesis. The mechanism of nerve cord formation observed in Artemia is found in Triops, another branchiopod, but is not found in the other arthropods examined. Despite divergent mechanisms of midline cell formation and nerve cord development, Net accumulation is detected in a well-conserved subset of midline cells in branchiopod crustaceans, malacostracan crustaceans, and insects. Notably, the Net accumulation pattern is also conserved at the midline of the amphipod P. hawaiensis, which undergoes split germ-band development. Conserved Net accumulation patterns indicate that arthropod midline cells are homologous, and that Nets function to regulate commissure formation during CNS development of Tetraconata. PMID:19469853

  7. Antibody-Induced Conformational Changes in Herpes Simplex Virus Glycoprotein gD Reveal New Targets for Virus Neutralization

    PubMed Central

    Lazear, Eric; Whitbeck, J. Charles; Ponce-de-Leon, Manuel; Cairns, Tina M.; Willis, Sharon H.; Zuo, Yi; Krummenacher, Claude; Cohen, Gary H.

    2012-01-01

    As the receptor-binding protein of herpes simplex virus (HSV), gD plays an essential role in virus entry. In its native state, the last 56 amino acids of the ectodomain C terminus (C-term) occlude binding to its receptors, herpesvirus entry mediator (HVEM) and nectin-1. Although it is clear that movement of the C-term must occur to permit receptor binding, we believe that this conformational change is also a key event for triggering later steps leading to fusion. Specifically, gD mutants containing disulfide bonds that constrain the C-term are deficient in their ability to trigger fusion following receptor binding. In this report, we show that two newly made monoclonal antibodies (MAbs), MC2 and MC5, have virus-neutralizing activity but do not block binding of gD to either receptor. In contrast, all previously characterized neutralizing anti-gD MAbs block binding of gD to a receptor(s). Interestingly, instead of blocking receptor binding, MC2 significantly enhances the affinity of gD for both receptors. Several nonneutralizing MAbs (MC4, MC10, and MC14) also enhanced gD-receptor binding. While MC2 and MC5 recognized different epitopes on the core of gD, these nonneutralizing MAbs recognized the gD C-term. Both the neutralizing capacity and rate of neutralization of virus by MC2 are uniquely enhanced when MC2 is combined with MAb MC4, MC10, or MC14. We suggest that MC2 and MC5 prevent gD from performing a function that triggers later steps leading to fusion and that the epitope for MC2 is normally occluded by the C-term of the gD ectodomain. PMID:22130533

  8. Antibody-induced conformational changes in herpes simplex virus glycoprotein gD reveal new targets for virus neutralization.

    PubMed

    Lazear, Eric; Whitbeck, J Charles; Ponce-de-Leon, Manuel; Cairns, Tina M; Willis, Sharon H; Zuo, Yi; Krummenacher, Claude; Cohen, Gary H; Eisenberg, Roselyn J

    2012-02-01

    As the receptor-binding protein of herpes simplex virus (HSV), gD plays an essential role in virus entry. In its native state, the last 56 amino acids of the ectodomain C terminus (C-term) occlude binding to its receptors, herpesvirus entry mediator (HVEM) and nectin-1. Although it is clear that movement of the C-term must occur to permit receptor binding, we believe that this conformational change is also a key event for triggering later steps leading to fusion. Specifically, gD mutants containing disulfide bonds that constrain the C-term are deficient in their ability to trigger fusion following receptor binding. In this report, we show that two newly made monoclonal antibodies (MAbs), MC2 and MC5, have virus-neutralizing activity but do not block binding of gD to either receptor. In contrast, all previously characterized neutralizing anti-gD MAbs block binding of gD to a receptor(s). Interestingly, instead of blocking receptor binding, MC2 significantly enhances the affinity of gD for both receptors. Several nonneutralizing MAbs (MC4, MC10, and MC14) also enhanced gD-receptor binding. While MC2 and MC5 recognized different epitopes on the core of gD, these nonneutralizing MAbs recognized the gD C-term. Both the neutralizing capacity and rate of neutralization of virus by MC2 are uniquely enhanced when MC2 is combined with MAb MC4, MC10, or MC14. We suggest that MC2 and MC5 prevent gD from performing a function that triggers later steps leading to fusion and that the epitope for MC2 is normally occluded by the C-term of the gD ectodomain. PMID:22130533

  9. Structures of a pan-specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody–antigen interactions

    PubMed Central

    Moulin, Aaron; Mathieu, Magali; Lawrence, Catherine; Bigelow, Russell; Levine, Mark; Hamel, Christine; Marquette, Jean-Piere; Le Parc, Josiane; Loux, Christophe; Ferrari, Paul; Capdevila, Cecile; Dumas, Jacques; Dumas, Bruno; Rak, Alexey; Bird, Julie; Qiu, Huawei; Pan, Clark Q; Edmunds, Tim; Wei, Ronnie R

    2014-01-01

    Various important biological pathways are modulated by TGFβ isoforms; as such they are potential targets for therapeutic intervention. Fresolimumab, also known as GC1008, is a pan-TGFβ neutralizing antibody that has been tested clinically for several indications including an ongoing trial for focal segmental glomerulosclerosis. The structure of the antigen-binding fragment of fresolimumab (GC1008 Fab) in complex with TGFβ3 has been reported previously, but the structural capacity of fresolimumab to accommodate tight interactions with TGFβ1 and TGFβ2 was insufficiently understood. We report the crystal structure of the single-chain variable fragment of fresolimumab (GC1008 scFv) in complex with target TGFβ1 to a resolution of 3.00 Å and the crystal structure of GC1008 Fab in complex with TGFβ2 to 2.83 Å. The structures provide further insight into the details of TGFβ recognition by fresolimumab, give a clear indication of the determinants of fresolimumab pan-specificity and provide potential starting points for the development of isoform-specific antibodies using a fresolimumab scaffold. 4KV5; 4KXZ PMID:25209176

  10. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics. PMID:25445515

  11. Anti-Endosialin Antibody-Drug Conjugate: Potential in Sarcoma and Other Malignancies.

    PubMed

    Rouleau, Cecile; Gianolio, Diego A; Smale, Robert; Roth, Stephanie D; Krumbholz, Roy; Harper, Jay; Munroe, Kenneth J; Green, Tessa L; Horten, Bruce C; Schmid, Steven M; Teicher, Beverly A

    2015-09-01

    Endosialin/TEM1/CD248 is a cell surface protein expressed at high levels by the malignant cells of about 50% of sarcomas and neuroblastomas. The antibody-drug conjugate (ADC) anti-endosialin-MC-VC-PABC-MMAE was selectively cytotoxic to endosialin-positive cells in vitro and achieved profound and durable antitumor efficacy in preclinical human tumor xenograft models of endosialin-positive disease. MC-VC-PABC-MMAE was conjugated with anti-endosialin with 3-4 MMAE molecules per ADC. The anti-endosialin-MC-VC-PABC-MMAE conjugate was tested for activity in four human cell lines with varied endosialin levels. The HT-1080 fibrosarcoma cells do not express endosialin, A-673 Ewing sarcoma cells and SK-N-AS neuroblastoma cells are moderate expressers of endosialin, and SJSA-1 osteosarcoma cells express very high levels of endosialin. To determine whether endosialin expression was maintained in vivo, A-673 Ewing sarcoma, SK-N-AS neuroblastoma, and SJSA-1 osteosarcoma cells were grown as xenograft tumors in nude mice. The SK-N-AS neuroblastoma and the A-673 Ewing sarcoma lines were selected for in vivo efficacy testing of the anti-endosialin-MC-VC-PABC-MMAE conjugate. The treatment groups included a vehicle control, unconjugated anti-endosialin, an admix control consisting of anti-endosialin and a dose of free MMAE equivalent to the dose administered as the ADC, and the anti-endosialin-MC-VC-PABC-MMAE conjugate. The unconjugated anti-endosialin had no antitumor activity and resulted in similar tumor growth as the vehicle control. The admix control produced a modest tumor growth delay. Administration of the anti-endosialin-MC-VC-PABC-MMAE conjugate resulted in a marked prolonged tumor response of both xenograts. These proof-of-concept results break new ground and open a promising drug discovery approach to these rare and neglected tumors. PMID:26184481

  12. Educational games for brain health: revealing their unexplored potential through a neurocognitive approach

    PubMed Central

    Fissler, Patrick; Kolassa, Iris-Tatjana; Schrader, Claudia

    2015-01-01

    Educational games link the motivational nature of games with learning of knowledge and skills. Here, we go beyond effects on these learning outcomes. We review two lines of evidence which indicate the currently unexplored potential of educational games to promote brain health: First, gaming with specific neurocognitive demands (e.g., executive control), and second, educational learning experiences (e.g., studying foreign languages) improve brain health markers. These markers include cognitive ability, brain function, and brain structure. As educational games allow the combination of specific neurocognitive demands with educational learning experiences, they seem to be optimally suited for promoting brain health. We propose a neurocognitive approach to reveal this unexplored potential of educational games in future research. PMID:26257697

  13. Antibodies to Hepatitis B Surface Antigen Potentiate the Response of Human T Lymphocyte Clones to the Same Antigen

    NASA Astrophysics Data System (ADS)

    Celis, Esteban; Chang, Tse Wen

    1984-04-01

    Human T-helper lymphocyte clones specific for hepatitis B virus surface antigen (HBsAg) proliferate on stimulation with HBsAg in vitro. Antibodies specific for HBsAg, but no other antibodies, augment this proliferative response. In the presence of antibodies to HBsAg, the maximum response could be achieved at HBsAg concentrations that were 1 percent of those required in the absence of the antibodies. These findings suggest that antigen-specific antibodies exert regulatory controls on T cells that recognize the same antigens.

  14. Tuberculosis in Elephants: Antibody Responses to Defined Antigens of Mycobacterium tuberculosis, Potential for Early Diagnosis, and Monitoring of Treatment

    PubMed Central

    Lyashchenko, Konstantin P.; Greenwald, Rena; Esfandiari, Javan; Olsen, John H.; Ball, Ray; Dumonceaux, Genevieve; Dunker, Freeland; Buckley, Carol; Richard, Michael; Murray, Suzan; Payeur, Janet B.; Andersen, Peter; Pollock, John M.; Mikota, Susan; Miller, Michele; Sofranko, Denise; Waters, W. Ray

    2006-01-01

    Tuberculosis (TB) in elephants is a re-emerging zoonotic disease caused primarily by Mycobacterium tuberculosis. Current diagnosis relies on trunk wash culture, the only officially recognized test, which has serious limitations. Innovative and efficient diagnostic methods are urgently needed. Rapid identification of infected animals is a crucial prerequisite for more effective control of TB, as early diagnosis allows timely initiation of chemotherapy. Serology has diagnostic potential, although key antigens have not been identified and optimal immunoassay formats are not established. To characterize the humoral responses in elephant TB, we tested 143 serum samples collected from 15 elephants over time. These included 48 samples from five culture-confirmed TB cases, of which four were in Asian elephants infected with M. tuberculosis and one was in an African elephant with Mycobacterium bovis. Multiantigen print immunoassay (MAPIA) employing a panel of 12 defined antigens was used to identify serologic correlates of active disease. ESAT-6 was the immunodominant antigen recognized in elephant TB. Serum immunoglobulin G antibodies to ESAT-6 and other proteins were detected up to 3.5 years prior to culture of M. tuberculosis from trunk washes. Antibody levels to certain antigens gradually decreased in response to antitubercular therapy, suggesting the possibility of treatment monitoring. In addition to MAPIA, serum samples were evaluated with a recently developed rapid test (RT) based on lateral flow technology (ElephantTB STAT-PAK). Similarly to MAPIA, infected elephants were identified using the RT up to 4 years prior to positive culture. These findings demonstrate the potential for TB surveillance and treatment monitoring using the RT and MAPIA, respectively. PMID:16829608

  15. [The immunotherapy potential of agonistic anti-CD137 (4-1BB) monoclonal antibodies for malignancies and chronic viral diseases].

    PubMed

    Alfaro, C; Murillo, O; Tirapu, I; Azpilicueta, A; Huarte, E; Arina, A; Arribillaga, L; Pérez-Gracia, J L; Bendandi, M; Prieto, J; Lasarte, J J; Melero, I

    2006-01-01

    Pharmacological intervention on the immune system to achieve more intense lymphocyte responses has potential application in tumour immunology and in the treatment of chronic viral diseases. Immunostimulating monoclonal antibodies are defined as a new family of drugs that augment cellular immune responses. They interact as artificial ligands with functional proteins of the immune system, either activating or inhibiting their functions. There are humanized monoclonal antibodies directed to the inhibitory receptor CD152 (CTLA-4) that are being tested in clinical trials with evidence of antitumoural activity. As a drawback, anti-CTLA-4 monoclonal antibodies induce severe autoimmunity reactions in a fraction of the patients. Anti-CD137 monoclonal antibodies have the ability to induce potent immune responses mainly mediated by cytotoxic lymphocytes with the result of frequent complete tumour eradications in mice. Comparative studies in experimental models indicate that the antitumour activity of anti-CD137 monoclonal antibodies is superior to that of anti-CD152. CD137 (4-1BB) is a leukocyte differentiation antigen selectively expressed on the surface of activated T and NK lymphocytes, as well as on dendritic cells. Monoclonal antibodies acting as artificial stimulatory ligands of this receptor (anti-CD137 agonist antibodies) enhance cellular antitumoural and antiviral immunity in a variety of mouse models. Paradoxically, anti-CD137 monoclonal antibodies are therapeutic or preventive in the course of model autoimmune diseases in mice. In light of these experimental results, a number of research groups have humanized antibodies against human CD137 and early clinical trials are about to start. PMID:16670731

  16. Revealing potential molecular targets bridging colitis and colorectal cancer based on multidimensional integration strategy

    PubMed Central

    Hu, Yongfei; Li, Xiaobo; Wang, Xishan; Fan, Huihui; Wang, Guiyu; Wang, Dong

    2015-01-01

    Chronic inflammation may play a vital role in the pathogenesis of inflammation-associated tumors. However, the underlying mechanisms bridging ulcerative colitis (UC) and colorectal cancer (CRC) remain unclear. Here, we integrated multidimensional interaction resources, including gene expression profiling, protein-protein interactions (PPIs), transcriptional and post-transcriptional regulation data, and virus-host interactions, to tentatively explore potential molecular targets that functionally link UC and CRC at a systematic level. In this work, by deciphering the overlapping genes, crosstalking genes and pivotal regulators of both UC- and CRC-associated functional module pairs, we revealed a variety of genes (including FOS and DUSP1, etc.), transcription factors (including SMAD3 and ETS1, etc.) and miRNAs (including miR-155 and miR-196b, etc.) that may have the potential to complete the connections between UC and CRC. Interestingly, further analyses of the virus-host interaction network demonstrated that several virus proteins (including EBNA-LP of EBV and protein E7 of HPV) frequently inter-connected to UC- and CRC-associated module pairs with their validated targets significantly enriched in both modules of the host. Together, our results suggested that multidimensional integration strategy provides a novel approach to discover potential molecular targets that bridge the connections between UC and CRC, which could also be extensively applied to studies on other inflammation-related cancers. PMID:26461477

  17. Molecular interaction of 2-mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor.

    PubMed

    Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong

    2014-12-01

    2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment possesses a potential risk to human health. In this work, the toxic interaction of MBI with the important antioxidant enzyme catalase (CAT) was investigated using spectroscopic and molecular docking methods under physiological conditions. MBI can spontaneously bind with CAT with one binding site through hydrogen bonds and van der Waals forces to form MBI-CAT complex. The molecular docking study revealed that MBI bound into the CAT interface of chains B and C, which led to some conformational and microenvironmental changes of CAT and further resulted in the inhibition of CAT activity. This present study provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme CAT. PMID:25463673

  18. Revealing Nature’s Synthetic Potential Through the Study of Ribosomal Natural Product Biosynthesis

    PubMed Central

    Dunbar, Kyle L.; Mitchell, Douglas A.

    2013-01-01

    Ribosomally synthesized posttranslationally modified peptides (RiPPs) are a rapidly growing class of natural products with diverse structures and activities. In recent years, a great deal of progress has been made in elucidating the biosynthesis of various RiPP family members. As with the study of nonribosomal peptide and polyketide biosynthetic enzymes, these investigations have led to the discovery of entirely new biological chemistry. With each unique enzyme investigated, a more complex picture of Nature’s synthetic potential is revealed. This review focuses on recent reports (since 2008) that have changed the way that we think about ribosomal natural product biosynthesis and the enzymology of complex bond-forming reactions. PMID:23286465

  19. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery.

    PubMed

    Papasaikas, Panagiotis; Tejedor, J Ramón; Vigevani, Luisa; Valcárcel, Juan

    2015-01-01

    Pre-mRNA splicing relies on the poorly understood dynamic interplay between >150 protein components of the spliceosome. The steps at which splicing can be regulated remain largely unknown. We systematically analyzed the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and used this information to reconstruct a network of functional interactions. The network accurately captures known physical and functional associations and identifies new ones, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during spliceosome assembly. In contrast with standard models of regulation at early steps of splice site recognition, factors involved in catalytic activation of the spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF, and on targets of antitumor drugs, and can be widely used to identify mechanisms of splicing regulation. PMID:25482510

  20. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Johansson, Peter; Käll, Mikael

    2011-11-01

    The understanding of interaction forces between nanoparticles in colloidal suspension is central to a wide range of novel applications and processes in science and industry. However, few methods are available for actual characterization of such forces at the single particle level. Here we demonstrate the first measurements of colloidal interactions between two individual diffusing nanoparticles using a colorimetric assay based on plasmon hybridization, that is, strong near-field coupling between localized surface plasmon resonances. The measurements are possible because individual gold nanoparticle pairs can be loosely confined in an optical potential well created by a laser tweezers. We quantify the degree of plasmon hybridization for a large number of individual particle pairs as a function of increasing salt concentration. The data reveal a considerable heterogeneity at the single particle level but the estimated average surface separations are in excellent agreements with predictions based on the classical theory of Derjaguin, Landau, Verwey, and Overbeek. PMID:21142200

  1. Multi-platform molecular profiling of a large cohort of glioblastomas reveals potential therapeutic strategies

    PubMed Central

    Xiu, Joanne; Piccioni, David; Juarez, Tiffany; Pingle, Sandeep C.; Hu, Jethro; Rudnick, Jeremy; Fink, Karen; Spetzler, David B.; Maney, Todd; Ghazalpour, Anatole; Bender, Ryan; Gatalica, Zoran; Reddy, Sandeep; Sanai, Nader; Idbaih, Ahmed; Glantz, Michael; Kesari, Santosh

    2016-01-01

    Glioblastomas (GBM) are the most aggressive and prevalent form of gliomas with abysmal prognosis and limited treatment options. We analyzed clinically relevant molecular aberrations suggestive of response to therapies in 1035 GBM tumors. Our analysis revealed mutations in 39 genes of 48 tested. IHC revealed expression of PD-L1 in 19% and PD-1 in 46%. MGMT-methylation was seen in 43%, EGFRvIII in 19% and 1p19q co-deletion in 2%. TP53 mutation was associated with concurrent mutations, while IDH1 mutation was associated with MGMT-methylation and TP53 mutation and was mutually exclusive of EGFRvIII mutation. Distinct biomarker profiles were seen in GBM compared with WHO grade III astrocytoma, suggesting different biology and potentially different treatment approaches. Analysis of 17 metachronous paired tumors showed frequent biomarker changes, including MGMT-methylation and EGFR aberrations, indicating the need for a re-biopsy for tumor profiling to direct subsequent therapy. MGMT-methylation, PR and TOPO1 appeared as significant prognostic markers in sub-cohorts of GBM defined by age. The current study represents the largest biomarker study on clinical GBM tumors using multiple technologies to detect gene mutation, amplification, protein expression and promoter methylation. These data will inform planning for future personalized biomarker-based clinical trials and identifying effective treatments based on tumor biomarkers. PMID:26933808

  2. Inferential bridging relations reveal distinct neural mechanisms: evidence from event-related brain potentials.

    PubMed

    Burkhardt, Petra

    2006-08-01

    This study investigates the online comprehension of Determiner Phrases (DPs) as a function of the given-new distinction in two-sentence texts in German and further focuses on DPs whose interpretation depends on inferential information (so-called 'bridging relations'). Previous reaction time studies report an advantage of given over new information. In the present study, this difference is reflected in distinct neural mechanisms: event-related potentials reveal that previously introduced (i.e., given) DPs elicit a reduced N400, while new DPs show an enhanced N400 followed by a P600. Crucially, inferentially bridged DPs, which are hypothesized to share properties with new and given information, first pattern with given DPs (showing an attenuated N400) and then with new DPs (showing an enhanced P600). The data demonstrate that salience relations between DPs and prior context ease DP integration and that additional cost arises from the establishment of independent reference. They further reveal that processing cost associated with the interpretation of bridged DPs results from the anaphoric complexity of introducing an independent referent. PMID:16725188

  3. Multi-platform molecular profiling of a large cohort of glioblastomas reveals potential therapeutic strategies.

    PubMed

    Xiu, Joanne; Piccioni, David; Juarez, Tiffany; Pingle, Sandeep C; Hu, Jethro; Rudnick, Jeremy; Fink, Karen; Spetzler, David B; Maney, Todd; Ghazalpour, Anatole; Bender, Ryan; Gatalica, Zoran; Reddy, Sandeep; Sanai, Nader; Idbaih, Ahmed; Glantz, Michael; Kesari, Santosh

    2016-04-19

    Glioblastomas (GBM) are the most aggressive and prevalent form of gliomas with abysmal prognosis and limited treatment options. We analyzed clinically relevant molecular aberrations suggestive of response to therapies in 1035 GBM tumors. Our analysis revealed mutations in 39 genes of 48 tested. IHC revealed expression of PD-L1 in 19% and PD-1 in 46%. MGMT-methylation was seen in 43%, EGFRvIII in 19% and 1p19q co-deletion in 2%. TP53 mutation was associated with concurrent mutations, while IDH1 mutation was associated with MGMT-methylation and TP53 mutation and was mutually exclusive of EGFRvIII mutation. Distinct biomarker profiles were seen in GBM compared with WHO grade III astrocytoma, suggesting different biology and potentially different treatment approaches. Analysis of 17 metachronous paired tumors showed frequent biomarker changes, including MGMT-methylation and EGFR aberrations, indicating the need for a re-biopsy for tumor profiling to direct subsequent therapy. MGMT-methylation, PR and TOPO1 appeared as significant prognostic markers in sub-cohorts of GBM defined by age. The current study represents the largest biomarker study on clinical GBM tumors using multiple technologies to detect gene mutation, amplification, protein expression and promoter methylation. These data will inform planning for future personalized biomarker-based clinical trials and identifying effective treatments based on tumor biomarkers. PMID:26933808

  4. Survey of activated kinase proteins reveals potential targets for cholangiocarcinoma treatment.

    PubMed

    Dokduang, Hasaya; Juntana, Sirinun; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Khuntikeo, Narong; Riggins, Gregory J; Loilome, Watcharin

    2013-12-01

    Improving therapy for patients with cholangiocarcinoma (CCA) presents a significant challenge. This is made more difficult by a lack of a clear understanding of potential molecular targets, such as deregulated kinases. In this work, we profiled the activated kinases in CCA in order to apply them as the targets for CCA therapy. Human phospho-receptor tyrosine kinases (RTKs) and phospho-kinase array analyses revealed that multiple kinases are activated in both CCA cell lines and human CCA tissues that included cell growth, apoptosis, cell to cell interaction, movement, and angiogenesis RTKs. Predominately, the kinases activated downstream were those in the PI3K/Akt, Ras/MAPK, JAK/STAT, and Wnt/β-catenin signaling pathways. Western blot analysis confirms that Erk1/2 and Akt activation were increased in CCA tissues when compared with their normal adjacent tissue. The inhibition of kinase activation using multi-targeted kinase inhibitors, sorafenib and sunitinib led to significant cell growth inhibition and apoptosis induction via suppression of Erk1/2 and Akt activation, whereas drugs with specificity to a single kinase showed less potency. In conclusion, our study reveals the involvement of multiple kinase proteins in CCA growth that might serve as therapeutic targets for combined kinase inhibition. PMID:23812726

  5. Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry

    USGS Publications Warehouse

    Chase, Nathan M.; Caldwell, Colleen A.; Carleton, Scott A.; Gould, William R.; Hobbs, James A.

    2015-01-01

    Natal origin and dispersal potential of the federally threatened Pecos bluntnose shiner (Notropis simus pecosensis) were successfully characterized using otolith microchemistry and swimming performance trials. Strontium isotope ratios (87Sr:86Sr) of otoliths within the resident plains killifish (Fundulus zebrinus) were successfully used as a surrogate for strontium isotope ratios in water and revealed three isotopically distinct reaches throughout 297 km of the Pecos River, New Mexico, USA. Two different life history movement patterns were revealed in Pecos bluntnose shiner. Eggs and fry were either retained in upper river reaches or passively dispersed downriver followed by upriver movement during the first year of life, with some fish achieving a minimum movement of 56 km. Swimming ability of Pecos bluntnose shiner confirmed upper critical swimming speeds (Ucrit) as high as 43.8 cm·s−1 and 20.6 body lengths·s−1 in 30 days posthatch fish. Strong swimming ability early in life supports our observations of upriver movement using otolith microchemistry and confirms movement patterns that were previously unknown for the species. Understanding patterns of dispersal of this and other small-bodied fishes using otolith microchemistry may help redirect conservation and management efforts for Great Plains fishes.

  6. Antibody to the nonstructural protein NS1 of Japanese encephalitis virus: potential application of mAb-based indirect ELISA to differentiate infection from vaccination.

    PubMed

    Shu, P Y; Chen, L K; Chang, S F; Yueh, Y Y; Chow, L; Chien, L J; Chin, C; Lin, T H; Huang, J H

    2001-02-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect and differentiate the antibody responses to Japanese encephalitis (JE) virus nonstructural protein NS1 between infected and vaccinated individuals. The results showed that all convalescent sera from JE patients contained NS1-specific IgG antibodies, while 65 and 40% of these sera showed detectable NS1-specific IgM and IgA antibodies, respectively. Specificity analysis showed that NS1-specific IgM and IgA antibodies from JE patients do not cross-react to dengue virus NS1 glycoprotein, while IgG antibodies from 10% of JE patients showed significant cross-reaction to dengue virus NS1 glycoprotein. To differentiate infection from vaccination, the immune sera from 24 children vaccinated with inactivated JE vaccine were analyzed. The data showed that none of these immune sera had detectable NS1-specific IgG antibodies. The results demonstrated the potential application of JE NS1-specific indirect ELISA to differentiate infection from vaccination. PMID:11166901

  7. Calreticulin, a potential cell surface receptor involved in cell penetration of anti-DNA antibodies.

    PubMed

    Seddiki, N; Nato, F; Lafaye, P; Amoura, Z; Piette, J C; Mazié, J C

    2001-05-15

    A 50-kDa protein was purified as a potential receptor, using an affinity matrix containing biotinylated F14.6 or H9.3 anti-DNA mAbs derived from autoimmune (New Zealand Black x New Zealand White)F(1) mouse and membrane extracts from cells. This protein was identified as calreticulin (CRT) by microsequencing. Confocal microscopy and FACS analysis showed that CRT was present on the surface of various cells. CRT protein was recognized by a panel of anti-DNA mAbs in ELISA. The binding of F14.6 to lymphocytes and Chinese hamster ovary cells was inhibited by soluble CRT or SPA-600. Thus, the anti-DNA mAbs used in this study bound to CRT, suggesting that CRT may mediate their penetration into the cells and play an important role in lupus pathogenesis. PMID:11342668

  8. Exploring the Potential of Monoclonal Antibody Therapeutics for HIV-1 Eradication

    PubMed Central

    Euler, Zelda

    2015-01-01

    Abstract The HIV field has seen an increased interest in novel cure strategies. In particular, new latency reversal agents are in development to reverse latency to flush the virus out of its hiding place. Combining these efforts with immunotherapeutic approaches may not only drive the virus out of latency, but allow for the rapid elimination of these infected cells in a “shock and kill” approach. Beyond cell-based approaches, growing interest lies in the potential use of functionally enhanced “killer” monoclonal therapeutics to purge the reservoir. Here we discuss prospects for a monoclonal therapeutic-based “shock and kill” strategy that may lead to the permanent elimination of replication-competent virus, making a functional cure a reality for all patients afflicted with HIV worldwide. PMID:25385703

  9. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    NASA Astrophysics Data System (ADS)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  10. Revealing the potential of Didodecyldimethylammonium bromide as efficient scaffold for fabrication of nano liquid crystalline structures.

    PubMed

    Kanwar, Rohini; Kaur, Gurpreet; Mehta, S K

    2016-03-01

    To exploit the potential of Didodecyldimethylammonium bromide (D12DAB) as a core lipidic constituent, an attempt was made to fabricate and optimize cationic nanostructured lipid carriers (cNLCs) using a cost-effective microemulsification methodology. Designed composition was optimized by studying the effect of different microemulsion components on D12DAB cNLCs characteristics. ​Spherical shaped D12DAB cNLCs were obtained with an average size of ∼160nm and zeta potential of +30.2mV. Differential Scanning Calorimetry (DSC) depicted the presence of thermotropic character, whereas polarized optical microscopy confirmed the mesophase like behavior of D12DAB based cNLCs. In addition, hemolysis analysis revealed that the toxicity was concentration dependent as LC50 was reached at a concentration of 50μg/mL of cNLCs. This class of cNLCs is expected to become a potent candidate for a broad spectrum of medicaments as carriers, targeting for pharmaceutical and medicinal purposes, due to the combination of a hard lipid with a soft lipid, where the liquid crystalline structure of the lipid co-exists. PMID:26896840

  11. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    PubMed Central

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  12. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    PubMed

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  13. Revealing the potential of squid chitosan-based structures for biomedical applications.

    PubMed

    Reys, L L; Silva, S S; Oliveira, J M; Caridade, S G; Mano, J F; Silva, T H; Reis, R L

    2013-08-01

    In recent years, much attention has been given to different marine organisms, namely as potential sources of valuable materials with a vast range of properties and characteristics. In this work, β-chitin was isolated from the endoskeleton of the giant squid Dosidicus gigas and further deacetylated to produce chitosan. Then, the squid chitosan was processed into membranes and scaffolds using solvent casting and freeze-drying, respectively, to assess their potential biomedical application. The developed membranes have shown to be stiffer and less hydrophobic than those obtained with commercial chitosan. On the other hand, the morphological characterization of the developed scaffolds, by SEM and micro-computed tomography, revealed that the matrices were formed with a lamellar structure. The findings also indicated that the treatment with ethanol prior to neutralization with sodium hydroxide caused the formation of larger pores and loss of some lamellar features. The in vitro cell culture study has shown that all chitosan scaffolds exhibited a non-cytotoxic effect over the mouse fibroblast-like cell line, L929 cells. Thus, chitosan produced from the endoskeletons of the giant squid Dosidicus gigas has proven to be a valuable alternative to existing commercial materials when considering its use as biomaterial. PMID:23715133

  14. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    PubMed Central

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  15. Bispecific antibodies.

    PubMed

    Kontermann, Roland E; Brinkmann, Ulrich

    2015-07-01

    Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development. PMID:25728220

  16. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity

    PubMed Central

    Wiersma, Valerie R; de Bruyn, Marco; Shi, Ce; Gooden, Marloes JM; Wouters, Maartje CA; Samplonius, Douwe F; Hendriks, Djoke; Nijman, Hans W; Wei, Yunwei; Zhou, Jin; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes. PMID:25760768

  17. Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application

    PubMed Central

    Czech-Zechmeister, Bozena; Könnecke, Birte; Lühder, Fred; Trendelenburg, George

    2016-01-01

    Toll-like receptors (TLRs) are central sensors for the inflammatory response in ischemia-reperfusion injury. We therefore investigated whether TLR4 inhibition could be used to treat stroke in a standard model of focal cerebral ischemia. Anti-TLR4/MD2-antibody (mAb clone MTS510) blocked TLR4-induced cell activation in vitro, as reported previously. Here, different routes of MTS510 application in vivo were used to study the effects on stroke outcome up to 2d after occlusion of the middle cerebral artery (MCAO) for 45min in adult male C57Bl/6 wild-type mice. Improved neurological performance, reduced infarct volumes, and reduced brain swelling showed that intravascular application of MTS510 had a protective effect in the model of 45min MCAO. Evaluation of potential long-term adverse effects of anti-TLR4-mAb-treament revealed no significant deleterious effect on infarct volumes nor neurological deficit after 14d of reperfusion in a mild model of stroke (15min MCAO). Interestingly, inhibition of TLR4 resulted in an altered adaptive immune response at 48 hours after reperfusion. We conclude that blocking TLR4 by the use of specific mAb is a promising strategy for stroke therapy. However, long-term studies with increased functional sensitivity, larger sampling sizes and use of other species are required before a clinical use could be envisaged. PMID:26849209

  18. Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome

    PubMed Central

    2013-01-01

    Background Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways. Results Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression. Conclusions The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21. PMID:23394617

  19. Electrophysiological Potentials Reveal Cortical Mechanisms for Mental Imagery, Mental Simulation, and Grounded (Embodied) Cognition

    PubMed Central

    Schendan, Haline E.; Ganis, Giorgio

    2012-01-01

    Grounded cognition theory proposes that cognition, including meaning, is grounded in sensorimotor processing. The mechanism for grounding cognition is mental simulation, which is a type of mental imagery that re-enacts modal processing. To reveal top-down, cortical mechanisms for mental simulation of shape, event-related potentials were recorded to face and object pictures preceded by mental imagery. Mental imagery of the identical face or object picture (congruous condition) facilitated not only categorical perception (VPP/N170) but also later visual knowledge [N3(00) complex] and linguistic knowledge (N400) for faces more than objects, and strategic semantic analysis (late positive complex) between 200 and 700 ms. The later effects resembled semantic congruity effects with pictures. Mental imagery also facilitated category decisions, as a P3 peaked earlier for congruous than incongruous (other category) pictures, resembling the case when identical pictures repeat immediately. Thus mental imagery mimics semantic congruity and immediate repetition priming processes with pictures. Perception control results showed the opposite for faces and were in the same direction for objects: Perceptual repetition adapts (and so impairs) processing of perceived faces from categorical perception onward, but primes processing of objects during categorical perception, visual knowledge processes, and strategic semantic analysis. For both imagery and perception, differences between faces and objects support domain-specificity and indicate that cognition is grounded in modal processing. Altogether, this direct neural evidence reveals that top-down processes of mental imagery sustain an imagistic representation that mimics perception well enough to prime subsequent perception and cognition. Findings also suggest that automatic mental simulation of the visual shape of faces and objects operates between 200 and 400 ms, and strategic mental simulation operates between 400 and 700

  20. Histone H3 Dynamics Reveal Domains with Distinct Proliferation Potential in the Arabidopsis Root.

    PubMed

    Otero, Sofía; Desvoyes, Bénédicte; Peiró, Ramón; Gutierrez, Crisanto

    2016-06-01

    A coordinated transition from cell proliferation to differentiation is crucial for organogenesis. We found that extensive chromatin reorganization, shown here for histone H3 proteins, characterizes cell population dynamics in the root developmental compartments. The canonical H3.1 protein, incorporated during S-phase, is maintained at high levels in cells dividing at a high rate but is massively evicted in cells undergoing their last cell cycle before exit to differentiation. A similar pattern was observed in the quadruple mutant for the H3.1-encoding genes HTR1, HTR2, HTR3, and HTR9 (htr1,2,3,9), in which H3.1 is expressed only from the HTR13 gene. H3 eviction is a fast process occurring within the G2 phase of the last cell cycle, which is longer than G2 in earlier cell cycles. This longer G2 likely contributes to lower the H3.1/H3.3 ratio in cells leaving the root meristem. The high H3.1/H3.3 ratio and H3.1 eviction process also occurs in endocycling cells before differentiation, revealing a common principle of H3 eviction in the proliferating and endocycling domains of the root apex. Mutants in the H3.1 chaperone CAF-1 (fas1-4) maintain a pattern similar to that of wild-type roots. Our studies reveal that H3 incorporation and eviction dynamics identify cells with different cell division potential during organ patterning. PMID:27207857

  1. Retinol-binding protein 4 and its potential roles in hypercholesterolemia revealed by proteomics

    PubMed Central

    Jugnam-ang, Watcharapong; Pannengpetch, Supitcha; Isarankura-Na-Ayudhya, Patcharee; Thippakorn, Chadinee; Isarankura-Na-Ayudhya, Chartchalerm; Lawung, Ratana; Prachayasittiku, Virapong

    2015-01-01

    Effects of hypercholesterolemia on alterations of serum proteins have not been fully elucidated. Herein, using two-dimensional gel electrophoresis (2-DE) in conjunction with LC-MS searching has successfully been carried out to investigate the change of protein expression profiles as consequences of raised blood cholesterol at different levels (normal group: total cholesterol 200 mg/dL; borderline high group: total cholesterol 200-239 mg/dL; and high group: total cholesterol ≥ 240 mg/dL) (n = 45). Results revealed that down-regulation of retinol-binding protein 4 (RBP4) (-2.26 fold), transthyretin (-1.25 fold) and gelsolin (-1.47 fold) was observed in the high group. Meanwhile, the other proteins such as haptoglobin, complement factor B and CD5 antigen-like protein were up-regulated upto +3.24, +1.96 and +2.04 fold, respectively. Confirmation by Western blotting revealed a significant reduction of RBP4 (approximately 50 %) in individual samples derived from the high group. Presumptive conclusion can be drawn that down-regulation of RBP4 might be attributable to the inflammation of adipocytes caused by the release of proinflammatory cytokines (e.g. tumor necrosis factor α and interleukin-1β) from adipose tissues. Moreover, the decrease of transthyretin might also be taken into accounts since it is known that the transthyretin usually forms complex with RBP4 to prevent glomerular filtration and excretion through the kidney. The suppressing effect on RBP4 should be potentiated by the increase of complement factor B and CD5 antigen-like protein, which rendered the adipose tissues to overwhelm the liberation of RBP4 to blood circulation by metabolic and inflammatory processes. Such inflammation could further modulate the induction of cytokine release (e.g. IL-6 and IL-1β), resulting in the synthesis of acute phase protein, in particular, haptoglobin and C-reactive proteins from hepatocytes. However, the mechanism of gelsolin reduction remains unclear. Among these

  2. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and

  3. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection

    PubMed Central

    Albrecht, Randy A.; Margine, Irina; Hirsh, Ariana; Bahl, Justin; Krammer, Florian

    2016-01-01

    In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9) virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo. PMID:27081859

  4. Molecular Expression Profile Reveals Potential Biomarkers and Therapeutic Targets in Canine Endometrial Lesions

    PubMed Central

    Voorwald, Fabiana Azevedo; Marchi, Fabio Albuquerque; Villacis, Rolando Andre Rios; Alves, Carlos Eduardo Fonseca; Toniollo, Gilson Hélio; Amorim, Renee Laufer

    2015-01-01

    Cystic endometrial hyperplasia (CEH), mucometra, and pyometra are common uterine diseases in intact dogs, with pyometra being a life threatening disease. This study aimed to determine the gene expression profile of these lesions and potential biomarkers for closed-cervix pyometra, the most severe condition. Total RNA was extracted from 69 fresh endometrium samples collected from 21 healthy female dogs during diestrus, 16 CEH, 15 mucometra and 17 pyometra (eight open and nine closed-cervixes). Global gene expression was detected using the Affymetrix Canine Gene 1.0 ST Array. Unsupervised analysis revealed two clusters, one mainly composed of diestrus and CEH samples and the other by 12/15 mucometra and all pyometra samples. When comparing pyometra with other groups, 189 differentially expressed genes were detected. SLPI, PTGS2/COX2, MMP1, S100A8, S100A9 and IL8 were among the top up-regulated genes detected in pyometra, further confirmed by external expression data. Notably, a particular molecular profile in pyometra from animals previously treated with exogenous progesterone compounds was observed in comparison with pyometra from untreated dogs as well as with other groups irrespective of exogenous hormone treatment status. In addition to S100A8 and S100A9 genes, overexpression of the inflammatory cytokines IL1B, TNF and IL6 as well as LTF were detected in the pyometra from treated animals. Interestingly, closed pyometra was more frequently detected in treated dogs (64% versus 33%), with IL1B, TNF, LBP and CXCL10 among the most relevant overexpressed genes. This molecular signature associated with potential biomarkers and therapeutic targets, such as CXCL10 and COX2, should guide future clinical studies. Based on the gene expression profile we suggested that pyometra from progesterone treated dogs is a distinct molecular entity. PMID:26222498

  5. Serum and Urine Metabolite Profiling Reveals Potential Biomarkers of Human Hepatocellular Carcinoma*

    PubMed Central

    Chen, Tianlu; Xie, Guoxiang; Wang, Xiaoying; Fan, Jia; Qiu, Yunping; Zheng, Xiaojiao; Qi, Xin; Cao, Yu; Su, Mingming; Wang, Xiaoyan; Xu, Lisa X.; Yen, Yun; Liu, Ping; Jia, Wei

    2011-01-01

    Hepatocellular carcinoma (HCC) is a common malignancy in the world with high morbidity and mortality rate. Identification of novel biomarkers in HCC remains impeded primarily because of the heterogeneity of the disease in clinical presentations as well as the pathophysiological variations derived from underlying conditions such as cirrhosis and steatohepatitis. The aim of this study is to search for potential metabolite biomarkers of human HCC using serum and urine metabolomics approach. Sera and urine samples were collected from patients with HCC (n = 82), benign liver tumor patients (n = 24), and healthy controls (n = 71). Metabolite profiling was performed by gas chromatography time-of-flight mass spectrometry and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry in conjunction with univariate and multivariate statistical analyses. Forty three serum metabolites and 31 urinary metabolites were identified in HCC patients involving several key metabolic pathways such as bile acids, free fatty acids, glycolysis, urea cycle, and methionine metabolism. Differentially expressed metabolites in HCC subjects, such as bile acids, histidine, and inosine are of great statistical significance and high fold changes, which warrant further validation as potential biomarkers for HCC. However, alterations of several bile acids seem to be affected by the condition of liver cirrhosis and hepatitis. Quantitative measurement and comparison of seven bile acids among benign liver tumor patients with liver cirrhosis and hepatitis, HCC patients with liver cirrhosis and hepatitis, HCC patients without liver cirrhosis and hepatitis, and healthy controls revealed that the abnormal levels of glycochenodeoxycholic acid, glycocholic acid, taurocholic acid, and chenodeoxycholic acid are associated with liver cirrhosis and hepatitis. HCC patients with alpha fetoprotein values lower than 20 ng/ml was successfully differentiated from healthy controls with an

  6. Molecular Expression Profile Reveals Potential Biomarkers and Therapeutic Targets in Canine Endometrial Lesions.

    PubMed

    Voorwald, Fabiana Azevedo; Marchi, Fabio Albuquerque; Villacis, Rolando Andre Rios; Alves, Carlos Eduardo Fonseca; Toniollo, Gilson Hélio; Amorim, Renee Laufer; Drigo, Sandra Aparecida; Rogatto, Silvia Regina

    2015-01-01

    Cystic endometrial hyperplasia (CEH), mucometra, and pyometra are common uterine diseases in intact dogs, with pyometra being a life threatening disease. This study aimed to determine the gene expression profile of these lesions and potential biomarkers for closed-cervix pyometra, the most severe condition. Total RNA was extracted from 69 fresh endometrium samples collected from 21 healthy female dogs during diestrus, 16 CEH, 15 mucometra and 17 pyometra (eight open and nine closed-cervixes). Global gene expression was detected using the Affymetrix Canine Gene 1.0 ST Array. Unsupervised analysis revealed two clusters, one mainly composed of diestrus and CEH samples and the other by 12/15 mucometra and all pyometra samples. When comparing pyometra with other groups, 189 differentially expressed genes were detected. SLPI, PTGS2/COX2, MMP1, S100A8, S100A9 and IL8 were among the top up-regulated genes detected in pyometra, further confirmed by external expression data. Notably, a particular molecular profile in pyometra from animals previously treated with exogenous progesterone compounds was observed in comparison with pyometra from untreated dogs as well as with other groups irrespective of exogenous hormone treatment status. In addition to S100A8 and S100A9 genes, overexpression of the inflammatory cytokines IL1B, TNF and IL6 as well as LTF were detected in the pyometra from treated animals. Interestingly, closed pyometra was more frequently detected in treated dogs (64% versus 33%), with IL1B, TNF, LBP and CXCL10 among the most relevant overexpressed genes. This molecular signature associated with potential biomarkers and therapeutic targets, such as CXCL10 and COX2, should guide future clinical studies. Based on the gene expression profile we suggested that pyometra from progesterone treated dogs is a distinct molecular entity. PMID:26222498

  7. Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens.

    PubMed

    Wang, Ming-Shan; Li, Yan; Peng, Min-Sheng; Zhong, Li; Wang, Zong-Ji; Li, Qi-Ye; Tu, Xiao-Long; Dong, Yang; Zhu, Chun-Ling; Wang, Lu; Yang, Min-Min; Wu, Shi-Fang; Miao, Yong-Wang; Liu, Jian-Ping; Irwin, David M; Wang, Wen; Wu, Dong-Dong; Zhang, Ya-Ping

    2015-07-01

    Much like other indigenous domesticated animals, Tibetan chickens living at high altitudes (2,200-4,100 m) show specific physiological adaptations to the extreme environmental conditions of the Tibetan Plateau, but the genetic bases of these adaptations are not well characterized. Here, we assembled a de novo genome of a Tibetan chicken and resequenced whole genomes of 32 additional chickens, including Tibetan chickens, village chickens, game fowl, and Red Junglefowl, and found that the Tibetan chickens could broadly be placed into two groups. Further analyses revealed that several candidate genes in the calcium-signaling pathway are possibly involved in adaptation to the hypoxia experienced by these chickens, as these genes appear to have experienced directional selection in the two Tibetan chicken populations, suggesting a potential genetic mechanism underlying high altitude adaptation in Tibetan chickens. The candidate selected genes identified in this study, and their variants, may be useful targets for clarifying our understanding of the domestication of chickens in Tibet, and might be useful in current breeding efforts to develop improved breeds for the highlands. PMID:25788450

  8. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species

    PubMed Central

    Lee, Kim-Chung; Tam, Emily W. T.; Lo, Ka-Ching; Tsang, Alan K. L.; Lau, Candy C. Y.; To, Kelvin K. W.; Chan, Jasper F. W.; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2015-01-01

    Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii) and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu–Glu–Leu–Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxy)benzoic acid possesses a structure similar to those of aspirin [2-(acetoxy)benzoic acid] and salicylic acid (2-hydroxybenzoic acid). Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu–Glu–Leu–Glu, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid are virulent factors of the pathogenic Aspergillus species. PMID:26090713

  9. The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics.

    PubMed

    Ronconi, Luca; Bertoni, Sara; Bellacosa Marotti, Rosilari

    2016-06-01

    Visual crowding is the difficulty in perceiving a target in the presence of nearby flankers. Most neurophysiological studies of crowding employed functional neuroimaging, but because of its low temporal resolution, no definitive answer can be given to the question: is crowding arising at the earliest or at later stages of visual processing? Here, we used a classic letters crowding paradigm in combination with electroencephalography (EEG). We manipulated the critical space between peripheral target and flankers, while ensuring a proper control of basic stimulus characteristics. Analyses were focused on event-related potentials (ERPs) and oscillatory activity in the alpha (8-12 Hz), beta (15-30 Hz) and gamma (30-80 Hz) bands. At the ERP level, we found that the first sign of a crowding-induced modulation of EEG activity was a suppression of the N1 component. Oscillatory analysis revealed an early stimulus-evoked gamma enhancement and a later alpha reduction that, however, were not influenced by the amount of crowding. Importantly, reduction in the beta band reflected the amount of crowding (i.e., stronger reduction for strong relative to mid crowding condition) and correlated with individual behavioral performance. Collectively, these findings show that crowding for complex objects emerges at later stages of visual processing, possibly as a result of large-scale network interaction. PMID:27088616

  10. Perceptual shift in bilingualism: brain potentials reveal plasticity in pre-attentive colour perception.

    PubMed

    Athanasopoulos, Panos; Dering, Benjamin; Wiggett, Alison; Kuipers, Jan-Rouke; Thierry, Guillaume

    2010-09-01

    The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour oddball detection task with Greek and English speakers, a recent study suggests that language effects may exist at early stages of perceptual integration [Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. (2009). Unconscious effects of language-specific terminology on pre-attentive colour perception. Proceedings of the National Academy of Sciences, 106, 4567-4570]. In this paper, we test whether in Greek speakers exposure to a new cultural environment (UK) with contrasting colour terminology from their native language affects early perceptual processing as indexed by an electrophysiological correlate of visual detection of colour luminance. We also report semantic mapping of native colour terms and colour similarity judgements. Results reveal convergence of linguistic descriptions, cognitive processing, and early perception of colour in bilinguals. This result demonstrates for the first time substantial plasticity in early, pre-attentive colour perception and has important implications for the mechanisms that are involved in perceptual changes during the processes of language learning and acculturation. PMID:20566193

  11. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species.

    PubMed

    Lee, Kim-Chung; Tam, Emily W T; Lo, Ka-Ching; Tsang, Alan K L; Lau, Candy C Y; To, Kelvin K W; Chan, Jasper F W; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2015-01-01

    Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii) and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu-Glu-Leu-Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxy)benzoic acid possesses a structure similar to those of aspirin [2-(acetoxy)benzoic acid] and salicylic acid (2-hydroxybenzoic acid). Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu-Glu-Leu-Glu, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid are virulent factors of the pathogenic Aspergillus species. PMID:26090713

  12. Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187

  13. Morphology-based mammalian stem cell tests reveal potential developmental toxicity of donepezil.

    PubMed

    Lau, Caroline G Y; Marikawa, Yusuke

    2014-11-01

    Various compounds, including therapeutic drugs, can adversely impact the survival and development of embryos in the uterus. Identification of such development-interfering agents is a challenging task, although multi-angle approaches--including the use of in vitro toxicology studies involving embryonic stem cells--should alleviate some of the current difficulties. In the present study, we utilized the in vitro elongation of embryoid bodies (EBs) derived from mouse embryonal carcinoma stem cell line P19C5 as a model of early embryological events, specifically that of gastrulation and axial patterning. From our study, we identified donepezil, a medication indicated for the management of Alzheimer's disease, as a potential developmental toxicant. The extent of P19C5 EB axial elongation was diminished by donepezil in a dose-dependent manner. Although donepezil is a known inhibitor of acetylcholinesterase, interference of elongation was not mediated through this enzyme. Quantitative reverse-transcriptase PCR revealed that donepezil altered the expression pattern of a specific set of developmental regulator genes involved in patterning along the anterior-posterior body axis. When tested in mouse whole embryo culture, donepezil caused morphological abnormalities including impaired somitogenesis. Donepezil also diminished elongation morphogenesis of EBs generated from human embryonic stem cells. These results suggest that donepezil interferes with axial elongation morphogenesis of early embryos by altering the expression pattern of regulators of axial development. PMID:25269881

  14. Genome-sequence analysis of Acinetobacter johnsonii MB44 reveals potential nematode-virulent factors.

    PubMed

    Tian, Shijing; Ali, Muhammad; Xie, Li; Li, Lin

    2016-01-01

    Acinetobacter johnsonii is generally recognized as a nonpathogenic bacterium although it is often found in hospital environments. However, a newly identified isolate of this species from a frost-plant-tissue sample, namely, A. johnsonii MB44, showed significant nematicidal activity against the model organism Caenorhabditis elegans. To expand our understanding of this bacterial species, we generated a draft genome sequence of MB44 and analyzed its genomic features related to nematicidal attributes. The 3.36 Mb long genome contains 3636 predicted protein-coding genes and 95 RNA genes (including 14 rRNA genes), with a G + C content of 41.37 %. Genomic analysis of the prediction of nematicidal proteins using the software MP3 revealed a total of 108 potential virulence proteins. Some of these proteins were homologous to the known virulent proteins identified from Acinetobacter baumannii, a pathogenic species of the genus Acinetobacter. These virulent proteins included the outer membrane protein A, the phospholipase D, and penicillin-binding protein 7/8. Moreover, one siderophore biosynthesis gene cluster and one capsular polysaccharide gene cluster, which were predicted to be important virulence factors for C. elegans, were identified in the MB44 genome. The current study demonstrated that A. johnsonii MB44, with its nematicidal activity, could be an opportunistic pathogen to animals. PMID:27429894

  15. Brain Signals of Face Processing as Revealed by Event-Related Potentials

    PubMed Central

    Olivares, Ela I.; Iglesias, Jaime; Saavedra, Cristina; Trujillo-Barreto, Nelson J.; Valdés-Sosa, Mitchell

    2015-01-01

    We analyze the functional significance of different event-related potentials (ERPs) as electrophysiological indices of face perception and face recognition, according to cognitive and neurofunctional models of face processing. Initially, the processing of faces seems to be supported by early extrastriate occipital cortices and revealed by modulations of the occipital P1. This early response is thought to reflect the detection of certain primary structural aspects indicating the presence grosso modo of a face within the visual field. The posterior-temporal N170 is more sensitive to the detection of faces as complex-structured stimuli and, therefore, to the presence of its distinctive organizational characteristics prior to within-category identification. In turn, the relatively late and probably more rostrally generated N250r and N400-like responses might respectively indicate processes of access and retrieval of face-related information, which is stored in long-term memory (LTM). New methods of analysis of electrophysiological and neuroanatomical data, namely, dynamic causal modeling, single-trial and time-frequency analyses, are highly recommended to advance in the knowledge of those brain mechanisms concerning face processing. PMID:26160999

  16. Evaluation of the diagnostic potential of antibodies to beta2-glycoprotein 1 domain 1 in Chinese patients with antiphospholipid syndrome

    PubMed Central

    Zhang, Shulan; Wu, Ziyan; Chen, Si; Li, Jing; Wen, Xiaoting; Li, Liubing; Zhang, Wen; Zhao, Jiuliang; Zhang, Fengchun; Li, Yongzhe

    2016-01-01

    In this study, we evaluated the clinical performance of anti-β2-glycoprotein 1 domain 1 antibodies (aβ2GP1-D1) in the diagnosis of antiphospholipid syndrome (APS). Sera from 229 subjects were tested, including 35 patients with primary APS, 51 patients with APS associated to other diseases, 30 patients with non-APS thrombosis, 32 patients with non-APS pregnancy-related morbidity, 42 patients with systemic lupus erythematosus, and 39 healthy controls (HC). Serum IgG aβ2GP1-D1, IgG/IgM anti-cardiolipin (aCL) and IgG/IgM aβ2GP1 were measured by a chemiluminescence assay. The levels of IgG aβ2GP1-D1 were significantly increased in patients with APS, compared with disease controls and HCs (p < 0.001). Significant correlation was identified between IgG aβ2GP1-D1 and IgG aβ2GP1 (p < 0.0001), indicating IgG aβ2GP1-D1 were the predominant domain-specific antibodies in IgG aβ2GP1 family. Importantly, aβ2GP1-D1, but not aβ2GP1 non-D1, was significantly correlated with thrombotic events. Interestingly, no significant correlation between IgG aβ2GP1-D1 and obstetric complications was observed. Additionally, significantly higher levels of IgG aβ2GP1-D1 were found in patients with triple aPL positivity, compared with patients with double and single aPL positivity. Our findings suggest a potential role of IgG aβ2GP1-D1 in identifying APS patients with high risk of thrombosis, shedding insight on the introduction of IgG aβ2GP1-D1 in China. PMID:27053361

  17. Evaluation of the diagnostic potential of antibodies to beta2-glycoprotein 1 domain 1 in Chinese patients with antiphospholipid syndrome.

    PubMed

    Zhang, Shulan; Wu, Ziyan; Chen, Si; Li, Jing; Wen, Xiaoting; Li, Liubing; Zhang, Wen; Zhao, Jiuliang; Zhang, Fengchun; Li, Yongzhe

    2016-01-01

    In this study, we evaluated the clinical performance of anti-β2-glycoprotein 1 domain 1 antibodies (aβ2GP1-D1) in the diagnosis of antiphospholipid syndrome (APS). Sera from 229 subjects were tested, including 35 patients with primary APS, 51 patients with APS associated to other diseases, 30 patients with non-APS thrombosis, 32 patients with non-APS pregnancy-related morbidity, 42 patients with systemic lupus erythematosus, and 39 healthy controls (HC). Serum IgG aβ2GP1-D1, IgG/IgM anti-cardiolipin (aCL) and IgG/IgM aβ2GP1 were measured by a chemiluminescence assay. The levels of IgG aβ2GP1-D1 were significantly increased in patients with APS, compared with disease controls and HCs (p < 0.001). Significant correlation was identified between IgG aβ2GP1-D1 and IgG aβ2GP1 (p < 0.0001), indicating IgG aβ2GP1-D1 were the predominant domain-specific antibodies in IgG aβ2GP1 family. Importantly, aβ2GP1-D1, but not aβ2GP1 non-D1, was significantly correlated with thrombotic events. Interestingly, no significant correlation between IgG aβ2GP1-D1 and obstetric complications was observed. Additionally, significantly higher levels of IgG aβ2GP1-D1 were found in patients with triple aPL positivity, compared with patients with double and single aPL positivity. Our findings suggest a potential role of IgG aβ2GP1-D1 in identifying APS patients with high risk of thrombosis, shedding insight on the introduction of IgG aβ2GP1-D1 in China. PMID:27053361

  18. Magnetic particle-linked anti hCG β antibody for immunoassay of human chorionic gonadotropin (hCG), potential application to early pregnancy diagnosis.

    PubMed

    Kuo, Hsiao-Ting; Yeh, Jay Z; Jiang, Chi-Ming; Wu, Ming-Chang

    2012-07-31

    The objective of this study was to develop a magnetic particle-linked monoclonal antibody to hCG β for immunosorbent assay of human chorionic gonadotropin (hCG) with improved detection sensitivity. Monoclonal antibody against hCG β was found to be optimally cross-linked to the superparamagnetic particles (SPIO) using EDC and NHS as cross-linking reagents. This superparamagnetic particle-linked monoclonal antibody was able to concentrate hCG from a tested solution for further ELISA assay using horse radish peroxidase-labeled monoclonal antibody against hCG β. This hybrid technique had greatly decreased the detection limit to 0.1 mIU/mL, making an early detection of pregnancy possible. With an improved sensitivity and simple operation, the magnetic particle-linked anti hCG β antibody for immunoassay of human chorionic gonadotropin (hCG) has a great potential to supersede the traditional ELISA for pregnancy diagnosis. PMID:22542932

  19. A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface.

    PubMed

    de Jong, Rob N; Beurskens, Frank J; Verploegen, Sandra; Strumane, Kristin; van Kampen, Muriel D; Voorhorst, Marleen; Horstman, Wendy; Engelberts, Patrick J; Oostindie, Simone C; Wang, Guanbo; Heck, Albert J R; Schuurman, Janine; Parren, Paul W H I

    2016-01-01

    IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen. PMID:26736041

  20. A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface

    PubMed Central

    Verploegen, Sandra; Strumane, Kristin; van Kampen, Muriel D.; Voorhorst, Marleen; Horstman, Wendy; Engelberts, Patrick J.; Oostindie, Simone C.; Wang, Guanbo; Heck, Albert J. R.; Schuurman, Janine; Parren, Paul W. H. I.

    2016-01-01

    IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell–expressed antigen. PMID:26736041

  1. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease.

    PubMed

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca; Götz, Jürgen

    2016-04-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, "cell-to-cell signaling and interaction" and "neurological disease." The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  2. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease*

    PubMed Central

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca

    2016-01-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, “cell-to-cell signaling and interaction” and “neurological disease.” The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  3. Relationship between natural and heme-mediated antibody polyreactivity.

    PubMed

    Hadzhieva, Maya; Vassilev, Tchavdar; Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. PMID:26926563

  4. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway.

    PubMed

    Wilding, Corina; Bell, Katharina; Beck, Sabine; Funke, Sebastian; Pfeiffer, Norbert; Grus, Franz H

    2014-01-01

    The family of synuclein proteins (α, β and γ) are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody) but also down-regulations (e.g. γ-synuclein antibody) of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5) as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15%) and decreased reactive oxygen species levels (up to -12%) of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated) and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated). These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical stainings

  5. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer

    PubMed Central

    Chernet, Brook; Levin, Michael

    2014-01-01

    Cancer may be a disease of geometry: a misregulation of the field of information that orchestrates individual cells’ activities towards normal anatomy. Recent work identified molecular mechanisms underlying a novel system of developmental control: bioelectric gradients. Endogenous spatio-temporal differences in resting potential of non-neural cells provide instructive cues for cell regulation and complex patterning during embryogenesis and regeneration. It is now appreciated that these cues are an important layer of the dysregulation of cell: cell interactions that leads to cancer. Abnormal depolarization of resting potential (Vmem) is a convenient marker for neoplasia and activates a metastatic phenotype in genetically-normal cells in vivo. Moreover, oncogene expression depolarizes cells that form tumor-like structures, but is unable to form tumors if this depolarization is artificially prevented by misexpression of hyperpolarizing ion channels. Vmem triggers metastatic behaviors at considerable distance, mediated by transcriptional and epigenetic effects of electrically-modulated flows of serotonin and butyrate. While in vivo data on voltages in carcinogenesis comes mainly from the amphibian model, unbiased genetic screens and network profiling in rodents and human tissues reveal several ion channel proteins as bona fide oncogene and promising targets for cancer drug development. However, we propose that a focus on specific channel genes is just the tip of the iceberg. Bioelectric state is determined by post-translational gating of ion channels, not only from genetically-specified complements of ion translocators. A better model is a statistical dynamics view of spatial Vmem gradients. Cancer may not originate at the single cell level, since gap junctional coupling results in multi-cellular physiological networks with multiple stable attractors in bioelectrical state space. New medical applications await a detailed understanding of the mechanisms by which organ

  6. Identification of Chronic Stress Activated Regions Reveals a Potential Recruited Circuit in Rat Brain

    PubMed Central

    Flak, Jonathan N.; Solomon, Matia B.; Jankord, Ryan; Krause, Eric G.; Herman, James P.

    2015-01-01

    Chronic stress induces pre-synaptic and post-synaptic modifications in the paraventricular nucleus of the hypothalamus (PVN) that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the PVN, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, but not RR or WM, induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g., the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems. PMID:22789020

  7. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential.

    PubMed

    White, Richard Allen; Power, Ian M; Dipple, Gregory M; Southam, Gordon; Suttle, Curtis A

    2015-01-01

    Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid, and chlorophyll biosynthesis) and carbon fixation (e.g., CO dehydrogenase). The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R (2) < 0.750) with freshwater microbial mats from Cuatro Ciénegas, Mexico, but are more similar to polar Arctic mats (R (2) > 0.900). These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale. PMID:26441900

  8. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Torsæter, Ole

    2015-02-01

    This paper presents systematic studies of hydrophilic metal oxide nanoparticles (NPs) dispersed in brine intended to reveal their potential to enhance oil recovery (EOR) in various rock wettability systems. The stability in suspension (nanofluid) of the NPs has been identified as a key factor related to their use as an EOR agent. Experimental techniques have been developed for nanofluid stability using three coupled methods: direct visual observation, surface conductivity and particle size measurements. The use of a dispersant has been investigated and has been shown to successfully improve metal oxide nanofluid stability as a function of its concentration. The dispersant alters the nanofluid properties, i.e. surface conductivity, pH and particle size distribution. A two-phase coreflood experiment was conducted by injecting the stable nanofluids as a tertiary process (nano-EOR) through core plugs with various wettabilities ranging from water-wet to oil-wet. The combination of metal oxide nanofluid and dispersant improved the oil recovery to a greater extent than either silica-based nanofluid or dispersant alone in all wettability systems. The contact angle, interfacial tension (IFT) and effluent were also measured. It was observed that metal oxide-based nanofluids altered the quartz plates to become more water-wet, and the results are consistent with those of the coreflood experiment. The particle adsorption during the transport process was identified from effluent analysis. The presence of NPs and dispersant reduced the IFT, but its reduction is sufficient to yield significant additional oil recovery. Hence, wettability alteration plays a dominant role in the oil displacement mechanism using nano-EOR.

  9. The development of control processes supporting source memory discrimination as revealed by event-related potentials.

    PubMed

    de Chastelaine, Marianne; Friedman, David; Cycowicz, Yael M

    2007-08-01

    Improvement in source memory performance throughout childhood is thought to be mediated by the development of executive control. As postretrieval control processes may be better time-locked to the recognition response rather than the retrieval cue, the development of processes underlying source memory was investigated with both stimulus- and response-locked event-related potentials (ERPs). These were recorded in children, adolescents, and adults during a recognition memory exclusion task. Green- and red-outlined pictures were studied, but were tested in black outline. The test requirement was to endorse old items shown in one study color ("targets") and to reject new items along with old items shown in the alternative study color ("nontargets"). Source memory improved with age. All age groups retrieved target and nontarget memories as reflected by reliable parietal episodic memory (EM) effects, a stimulus-locked ERP correlate of recollection. Response-locked ERPs to targets and nontargets diverged in all groups prior to the response, although this occurred at an increasingly earlier time point with age. We suggest these findings reflect the implementation of attentional control mechanisms to enhance target memories and facilitate response selection with the greatest and least success, respectively, in adults and children. In adults only, response-locked ERPs revealed an early-onsetting parietal negativity for nontargets, but not for targets. This was suggested to reflect adults' ability to consistently inhibit prepotent target responses for nontargets. The findings support the notion that the development of source memory relies on the maturation of control processes that serve to enhance accurate selection of task-relevant memories. PMID:17651003

  10. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential

    PubMed Central

    White, Richard Allen; Power, Ian M.; Dipple, Gregory M.; Southam, Gordon; Suttle, Curtis A.

    2015-01-01

    Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid, and chlorophyll biosynthesis) and carbon fixation (e.g., CO dehydrogenase). The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 < 0.750) with freshwater microbial mats from Cuatro Ciénegas, Mexico, but are more similar to polar Arctic mats (R2 > 0.900). These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale. PMID:26441900

  11. Competitive Semantic Memory Retrieval: Temporal Dynamics Revealed by Event-Related Potentials

    PubMed Central

    Hellerstedt, Robin; Johansson, Mikael

    2016-01-01

    Memories compete for retrieval when they are related to a common retrieval cue. Previous research has shown that retrieval of a target memory may lead to subsequent retrieval-induced forgetting (RIF) of currently irrelevant competing memories. In the present study, we investigated the time course of competitive semantic retrieval and examined the neurocognitive mechanisms underlying RIF. We contrasted two theoretical accounts of RIF by examining a critical aspect of this memory phenomenon, namely the extent to which it depends on successful retrieval of the target memory. Participants first studied category-exemplar word-pairs (e.g. Fruit—Apple). Next, we recorded electrophysiological measures of brain activity while the participants performed a competitive semantic cued-recall task. In this task, the participants were provided with the studied categories but they were instructed to retrieve other unstudied exemplars (e.g. Fruit—Ma__?). We investigated the event-related potential (ERP) correlates of retrieval success by comparing ERPs from successful and failed retrieval trials. To isolate the ERP correlates of continuous retrieval attempts from the ERP correlates of retrieval success, we included an impossible retrieval condition, with incompletable word-stem cues (Drinks—Wy__) and compared it with a non-retrieval presentation baseline condition (Occupation—Dentist). The participants’ memory for all the studied exemplars was tested in the final phase of the experiment. Taken together, the behavioural results suggest that RIF is independent of target retrieval. Beyond investigating the mechanisms underlying RIF, the present study also elucidates the temporal dynamics of semantic cued-recall by isolating the ERP correlates of retrieval attempt and retrieval success. The ERP results revealed that retrieval attempt is reflected in a late posterior negativity, possibly indicating construction of candidates for completing the word-stem cue and retrieval

  12. Potential new mechanisms of placental damage in celiac disease: anti-transglutaminase antibodies impair human endometrial angiogenesis.

    PubMed

    Di Simone, Nicoletta; De Spirito, Marco; Di Nicuolo, Fiorella; Tersigni, Chiara; Castellani, Roberta; Silano, Marco; Maulucci, Giuseppe; Papi, Massimiliano; Marana, Riccardo; Scambia, Giovanni; Gasbarrini, Antonio

    2013-10-01

    Celiac disease (CD) is an autoimmune enteropathy triggered by gluten ingestion and characterized by circulating anti-transglutaminase type 2 (anti-TG2) autoantibodies. An epidemiological link between maternal CD and increased risk of pregnancy failure has been established; however, the mechanism underlying this association is still poorly understood. Because proper endometrial angiogenesis and decidualization are prerequisites for placental development, we investigated the effect of anti-TG2 antibodies on the process of endometrial angiogenesis. Binding of anti-TG2 antibodies to human endometrial endothelial cells (HEECs) was evaluated by ELISA. Angiogenesis was studied in vitro on HEECs and in vivo in a murine model. In particular, we investigated the effect of anti-TG2 antibodies on HEEC matrix metalloprotease-2 (MMP-2) activity by gelatin zymography, cytoskeletal organization and membrane properties by confocal microscopy, and activation of extracellular signal-regulated kinases (ERKs) and focal adhesion kinase (FAK) by Western blot analysis. Anti-TG2 antibodies bound to HEECs and decreased newly formed vessels both in vitro and in vivo. Anti-TG2 antibodies impaired angiogenesis by inhibiting the activation of MMP-2, disarranging cytoskeleton fibers, changing the physical and mechanical properties of cell membranes, and inhibiting the intracellular phosphorylation of FAK and ERK. Anti-TG2 antibodies inhibit endometrial angiogenesis affecting the TG2-dependent migration of HEECs and extracellular matrix degradation, which are necessary to form new vessels. Our results identify pathogenic mechanisms of placental damage in CD. PMID:23966323

  13. Monoclonal antibodies and cancer therapy

    SciTech Connect

    Reisfeld, R.A.; Sell, S.

    1985-01-01

    These proceedings collect papers on the subject of monoclonal antibodies. Topics include: Monoclonal antibody, biochemical effects and cancer therapeutic potential of tunicamycin, use of monoclonal antibodies for detection of lymph node metastases, active specific immunotherapy, and applications of monoclonal antibodies to investigations of growth factors.

  14. Development of Norwalk Virus-Specific Monoclonal Antibodies with Therapeutic Potential for the Treatment of Norwalk Virus Gastroenteritis

    PubMed Central

    Sosnovtsev, Stanislav V.; Bok, Karin; Parra, Gabriel I.; Makiya, Michelle; Agulto, Liane; Purcell, Robert H.

    2013-01-01

    Passive immunoprophylaxis or immunotherapy with norovirus-neutralizing monoclonal antibodies (MAbs) could be a useful treatment for high-risk populations, including infants and young children, the elderly, and certain patients who are debilitated or immunocompromised. In order to obtain antinorovirus MAbs with therapeutic potential, we stimulated a strong adaptive immune response in chimpanzees to the prototype norovirus strain Norwalk virus (NV) (genogroup I.1). A combinatorial phage Fab display library derived from mRNA of the chimpanzees' bone marrow was prepared, and four distinct Fabs reactive with Norwalk recombinant virus-like particles (rVLPs) were recovered, with estimated binding affinities in the subnanomolar range. Mapping studies showed that the four Fabs recognized three different conformational epitopes in the protruding (P) domain of NV VP1, the major capsid protein. The epitope of one of the Fabs, G4, was further mapped to a specific site involving a key amino acid residue, Gly365. One additional specific Fab (F11) was recovered months later from immortalized memory B cells and partially characterized. The anti-NV Fabs were converted into full-length IgG (MAbs) with human γ1 heavy chain constant regions. The anti-NV MAbs were tested in the two available surrogate assays for Norwalk virus neutralization, which showed that the MAbs could block carbohydrate binding and inhibit hemagglutination by NV rVLP. By mixing a single MAb with live Norwalk virus prior to challenge, MAbs D8 and B7 neutralized the virus and prevented infection in a chimpanzee. Because chimpanzee immunoglobulins are virtually identical to human immunoglobulins, these chimpanzee anticapsid MAbs may have a clinical application. PMID:23785216

  15. Using antibodies against ATPase and microarray immunoassays for the search for potential extraterrestrial life in saline environments on Mars.

    NASA Astrophysics Data System (ADS)

    Weigl, Andreas; Gruber, Claudia; Blanco-López, Yolanda; Rivas, Luis A.; Parro, Victor; Stan-Lotter, Helga

    2010-05-01

    For the search for extraterrestrial life it is proposed to use receptors such as labelled antibodies for the detection of organic biomarkers. One of these organic molecules to be tested is the universal enzyme ATP synthase which is present in highly conserved forms in all organisms on earth. Therefore it is necessary to evaluate antibodies against ATPase respectively ATP synthase and their subunits. As it is known, that there are halite deposits on Mars the experiments in this study have been carried out with regard to halophile microorganisms and saline environments. Standard F1F0 ATPase from Escherichia coli LE 392 and Bacillus megaterium as well as haloarchaeal A-ATPase from Halorubrum saccharovorum and Halobacterium salinarum NRC-1 were used. The cultivated cells, except Bacillus, were broken by passage through a French Pressure Cell. Separation of enzyme subunits was performed by polyacrylamide gel electrophoresis. Western Blotting with antisera produced in rabbit against A-ATPase subunits A (85 kD) and subunits B (60 kD) from Halorubrrum saccharovorum (1) showed positive reactions with the membrane fraction, which should be enriched with ATPase from Halorubrum saccharovorum, Halobacterium salinarum NRC-1 and Escherichia coli LE 392. Particular attention was given to the question if ATPase subunits can be detected in whole cells. Therefore whole cell preparations of all cells and spore suspensions from Geobacillus stearothermophilus were tested against the antiserum as well as against protein-A-purified antibody against A-ATPase subunit A from Halorubrum saccharovorum. A positive immuno reaction of all cell preparations with the antiserum as well as with the purified antibody was detected. The spores of Geobacillus stearothermophilus reacted positively with the antiserum against subunit A of the A-ATPase from Hrr. saccharovorum. A commercial antibody Rabbit Anti-V-ATPase subunit A polyclonal antibody from the GenScript Corporation reacted positively with

  16. NCI Researchers Discover Exceptionally Potent Antibodies with Potential for Prophylaxis and Therapy of MERS-Coronavirus Infections | Poster

    Cancer.gov

    By Andrea Frydl, Contributing Writer In a recent article published in the Journal of Virology, Tianlei Ying, Ph.D., Dimiter Dimitrov, Ph.D., and their colleagues in the Laboratory of Experimental Immunology (LEI), Cancer and Inflammation Program, NCI Center for Cancer Research, reported the identification of three human monoclonal antibodies (m336, m337, and m338) that target the part of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) that is responsible for binding to its receptor. These antibodies are exceptionally potent inhibitors of MERS-CoV infection and also provide a basis for creating a future MERS-CoV vaccine.

  17. A mean spherical model for soft potentials: The hard core revealed as a perturbation

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Y.; Ashcroft, N. W.

    1978-01-01

    The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.

  18. Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity1

    PubMed Central

    Midgley, Claire M.; Flanagan, Aleksandra; Tran, Hai Bac; Dejnirattisai, Wanwisa; Chawansuntati, Kriangkrai; Jumnainsong, Amonrat; Wongwiwat, Wiyada; Duangchinda, Thaneeya; Mongkolsapaya, Juthathip; Grimes, Jonathan M.; Screaton, Gavin R.

    2012-01-01

    Dengue virus infections are still increasing at an alarming rate in tropical and subtropical countries underlying the need for a dengue vaccine. Although it is relatively easy to generate antibody responses to dengue virus, low avidity or low concentrations of antibody may enhance infection of Fc receptor-bearing cells with clinical impact, posing a challenge to vaccine production. In this paper we report the characterization of a monoclonal antibody, 2H12, which is cross-reactive to all four serotypes in the dengue virus group. Crystal structures of 2H12-Fab in complex with domain III of the envelope protein from three dengue serotypes have been determined. 2H12 binds to the highly conserved AB loop of domain III of the envelope protein that is poorly accessible in the mature virion. 2H12 neutralization varied between dengue serotypes and strains; in particular, dengue serotype 2 was not neutralized. As the 2H12 binding epitope was conserved, this variation in neutralization highlights differences between dengue serotypes and suggests that significant conformational changes in the virus must take place for antibody binding. Surprisingly, 2H12 facilitated little or no enhancement of infection. These data provide a structural basis for understanding antibody neutralization and enhancement of infection, which is crucial for the development of future dengue vaccines. PMID:22491255

  19. Draft Genome Sequence of the Deep-Sea Basidiomycetous Yeast Cryptococcus sp. Strain Mo29 Reveals Its Biotechnological Potential.

    PubMed

    Rédou, Vanessa; Kumar, Abhishek; Hainaut, Matthieu; Henrissat, Bernard; Record, Eric; Barbier, Georges; Burgaud, Gaëtan

    2016-01-01

    Cryptococcus sp. strain Mo29 was isolated from the Rainbow hydrothermal site on the Mid-Atlantic Ridge. Here, we present the draft genome sequence of this basidiomycetous yeast strain, which has highlighted its biotechnological potential as revealed by the presence of genes involved in the synthesis of secondary metabolites and biotechnologically important enzymes. PMID:27389259

  20. Draft Genome Sequence of the Deep-Sea Basidiomycetous Yeast Cryptococcus sp. Strain Mo29 Reveals Its Biotechnological Potential

    PubMed Central

    Rédou, Vanessa; Kumar, Abhishek; Hainaut, Matthieu; Henrissat, Bernard; Record, Eric; Barbier, Georges

    2016-01-01

    Cryptococcus sp. strain Mo29 was isolated from the Rainbow hydrothermal site on the Mid-Atlantic Ridge. Here, we present the draft genome sequence of this basidiomycetous yeast strain, which has highlighted its biotechnological potential as revealed by the presence of genes involved in the synthesis of secondary metabolites and biotechnologically important enzymes. PMID:27389259

  1. Streaming potentials reveal a short ryanodine-sensitive selectivity filter in cardiac Ca2+ release channel.

    PubMed Central

    Tu, Q; Vélez, P; Brodwick, M; Fill, M

    1994-01-01

    Single cardiac sarcoplasmic reticulum Ca2+ release channels were reconstituted into planar bilayer membranes. Streaming potentials were measured in osmotically asymmetric solutions as a shift in the reversal potential. Potential changes induced by water movement through the bilayer (concentration polarization) and reduced ion activity in the concentrated non-electrolyte solutions were determined using valinomycin. In 400 mM symmetrical CsCH3SO3, the average streaming potential was 2.74 +/- 0.2 mV (n = 5, mean +/- SE; 2 osmol/kg) and independent of the osmoticant used (sucrose or diglycine). Identical streaming potential magnitudes were obtained regardless of which side of the membrane the nonelectrolyte was placed. This suggests that the narrow part of the pore where single file diffusion occurs is relatively short (i.e., accommodates a minimum of 3 H2O molecules). This value is comparable to similar measurements in a variety of surface membrane channels. Ryanodine-modified channels had no measurable streaming potential, an increased Tris+ permeability relative to Cs+, and decreased divalent selectivity (PCs/PTris 5.1 +/- 1.1 to 1.7 +/- 0.3, n = 3; PBa/PCs 8.2 +/- 0.7 to 1.8 +/- 0.5, n = 4). Cation/anion selectivity was essentially unaltered in ryanodine-modified channels. These results suggests that the narrow region of the permeation pathway (i.e., the selectivity filter) is relatively short and widens after ryanodine modification. PMID:7696468

  2. The potential role of functional inhibition of T regulatory cells by anti-TGFβ antibody in photodynamic therapy of renal cancer

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2011-03-01

    Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of inducing tumor-directed immune response. We hypothesized that PDT could be combined with anti-transforming growth factor (TGF) beta antibody that does not significantly affect the population of cytotoxic T lymphocytes (CTL) but at the same time, has the potential to decrease the immunosuppressive effects of regulatory T-cells (Treg) mediated by TGF beta. This hypothesis was tested with aTGF-beta antibody combined with BPD-mediated PDT in a BALB/c renal cell carcinoma model. Evidence of positive benefits of the combination therapy over individual treatments alone was obtained.

  3. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities.

    PubMed

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-08-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem. PMID:26824176

  4. Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development.

    PubMed

    Bayram-Weston, Zubeyde; Jones, Lesley; Dunnett, Stephen B; Brooks, Simon P

    2016-01-01

    Huntington's disease (HD) cellular pathology is characterised by the aggregation of mutant huntingtin (mHTT) protein into inclusion bodies. The present paper compared the sensitivity of five widely used mHTT antibodies (S830; MW8; EM48; 1C2; ubiquitin) against mice from five commonly used HD mouse models (R6/1; YAC128; HdhQ92; B6 HdhQ150; B6 x129/Ola HdhQ150) at two ages to determine: the most sensitive antibodies for each model; whether mHTT antibody binding differed depending on aggregation stage (diffuse versus frank inclusion); the role of ubiquitin during aggregation as the ubiquitin proteosome system has been implicated in disease development. The models demonstrated unique profiles of antibody binding even when the models varied only by background strain (HdhQ150). MW8 was highly sensitive for detecting frank inclusions in all lines whereas EM48, ubiquitin and 1C2 demonstrated consistent staining in all models irrespective of age or form of mHTT. MW8 and S830 were the most sensitive antibodies with 1C2 the least. Ubiquitin levels were stable for each model regardless of age. Ubiquitin was particularly sensitive in young YAC128 mice that demonstrate an absence of inclusions until ~12 months of age suggesting high affinity to mHTT in its diffuse form. The data indicate that generalisations across models regarding the quantification of aggregations may not be valid and that mHTT antibody binding is unique to the mouse model and sensitive to changes in inclusion development. PMID:27196694

  5. Comparison of mHTT Antibodies in Huntington’s Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development

    PubMed Central

    Bayram-Weston, Zubeyde; Jones, Lesley; Dunnett, Stephen B.; Brooks, Simon P.

    2016-01-01

    Huntington’s disease (HD) cellular pathology is characterised by the aggregation of mutant huntingtin (mHTT) protein into inclusion bodies. The present paper compared the sensitivity of five widely used mHTT antibodies (S830; MW8; EM48; 1C2; ubiquitin) against mice from five commonly used HD mouse models (R6/1; YAC128; HdhQ92; B6 HdhQ150; B6 x129/Ola HdhQ150) at two ages to determine: the most sensitive antibodies for each model; whether mHTT antibody binding differed depending on aggregation stage (diffuse versus frank inclusion); the role of ubiquitin during aggregation as the ubiquitin proteosome system has been implicated in disease development. The models demonstrated unique profiles of antibody binding even when the models varied only by background strain (HdhQ150). MW8 was highly sensitive for detecting frank inclusions in all lines whereas EM48, ubiquitin and 1C2 demonstrated consistent staining in all models irrespective of age or form of mHTT. MW8 and S830 were the most sensitive antibodies with 1C2 the least. Ubiquitin levels were stable for each model regardless of age. Ubiquitin was particularly sensitive in young YAC128 mice that demonstrate an absence of inclusions until ~12 months of age suggesting high affinity to mHTT in its diffuse form. The data indicate that generalisations across models regarding the quantification of aggregations may not be valid and that mHTT antibody binding is unique to the mouse model and sensitive to changes in inclusion development. PMID:27196694

  6. Detection of Human Papillomavirus 16-Specific IgG and IgM Antibodies in Patient Sera: A Potential Indicator of Oral Squamous Cell Carcinoma Risk Factor.

    PubMed

    Kerishnan, Jesinda P; Gopinath, Subash C B; Kai, Sia Bik; Tang, Thean-Hock; Ng, Helen Lee-Ching; Rahman, Zainal Ariff Abdul; Hashim, Uda; Chen, Yeng

    2016-01-01

    The association between human papillomavirus type 16 (HPV16) and oral cancer has been widely reported. However, detecting anti-HPV antibodies in patient sera to determine risk for oral squamous cell carcinoma (OSCC) has not been well studied. In the present investigation, a total of 206 OSCC serum samples from the Malaysian Oral Cancer Database & Tissue Bank System, with 134 control serum samples, were analyzed by enzyme-linked immunosorbant assay (ELISA) to detect HPV16-specific IgG and IgM antibodies. In addition, nested PCR analysis using comprehensive consensus primers (PGMY09/11 and GP5(+)/6(+)) was used to confirm the presence of HPV. Furthermore, we have evaluated the association of various additional causal factors (e.g., smoking, alcohol consumption, and betel quid chewing) in HPV-infected OSCC patients. Statistical analysis of the Malaysian population indicated that OSCC was more prevalent in female Indian patients that practices betel quid chewing. ELISA revealed that HPV16 IgG, which demonstrates past exposure, could be detected in 197 (95.6%) OSCC patients and HPV16-specific IgM was found in a total of 42 (20.4%) OSCC patients, indicating current exposure. Taken together, our study suggest that HPV infection may play a significant role in OSCC (OR: 13.6; 95% CI: 3.89-47.51) and HPV16-specific IgG and IgM antibodies could represent a significant indicator of risk factors in OSCC patients. PMID:27279791

  7. Detection of Human Papillomavirus 16-Specific IgG and IgM Antibodies in Patient Sera: A Potential Indicator of Oral Squamous Cell Carcinoma Risk Factor

    PubMed Central

    Kerishnan, Jesinda P.; Gopinath, Subash C.B.; Kai, Sia Bik; Tang, Thean-Hock; Ng, Helen Lee-Ching; Rahman, Zainal Ariff Abdul; Hashim, Uda; Chen, Yeng

    2016-01-01

    The association between human papillomavirus type 16 (HPV16) and oral cancer has been widely reported. However, detecting anti-HPV antibodies in patient sera to determine risk for oral squamous cell carcinoma (OSCC) has not been well studied. In the present investigation, a total of 206 OSCC serum samples from the Malaysian Oral Cancer Database & Tissue Bank System, with 134 control serum samples, were analyzed by enzyme-linked immunosorbant assay (ELISA) to detect HPV16-specific IgG and IgM antibodies. In addition, nested PCR analysis using comprehensive consensus primers (PGMY09/11 and GP5+/6+) was used to confirm the presence of HPV. Furthermore, we have evaluated the association of various additional causal factors (e.g., smoking, alcohol consumption, and betel quid chewing) in HPV-infected OSCC patients. Statistical analysis of the Malaysian population indicated that OSCC was more prevalent in female Indian patients that practices betel quid chewing. ELISA revealed that HPV16 IgG, which demonstrates past exposure, could be detected in 197 (95.6%) OSCC patients and HPV16-specific IgM was found in a total of 42 (20.4%) OSCC patients, indicating current exposure. Taken together, our study suggest that HPV infection may play a significant role in OSCC (OR: 13.6; 95% CI: 3.89-47.51) and HPV16-specific IgG and IgM antibodies could represent a significant indicator of risk factors in OSCC patients. PMID:27279791

  8. The Art of Making Antibodies.

    ERIC Educational Resources Information Center

    Headon, Denis R.

    1986-01-01

    Provides background information for teachers on the nature and production of antibodies. Points out that the production of monoclonal antibodies blends the malignant with the beneficial to create a medical tool of exciting potential. (JN)

  9. Anti-IL-31 receptor antibody is shown to be a potential therapeutic option for treating itch and dermatitis in mice

    PubMed Central

    Kasutani, K; Fujii, E; Ohyama, S; Adachi, H; Hasegawa, M; Kitamura, H; Yamashita, N

    2014-01-01

    Background and Purpose IL-31, which is described as a pruritogenic cytokine, is linked to the itching that is associated with allergic and non-allergic eczema, but the precise pruritogenic mechanism of IL-31 and its potential as a therapeutic target for atopic dermatitis (AD) have not been determined. Experimental Approach We investigated the effects of existing drugs on the scratching behaviour induced by an i.v. injection of IL-31 to clarify whether IL-31 induced pruritus indirectly. In addition, we studied the effects of an anti-IL-31 receptor α subunit (anti-IL-31 receptor α) neutralizing antibody on chronic pruritus-inducing dermatitis in an AD-like model to determine whether IL-31 not only induces scratching behaviour, but is also the causative factor in an AD phenotype. Key Results The scratching behaviour induced by an i.v. injection of IL-31 was inhibited by pretreatment with an anti-IL-31 receptor α-neutralizing antibody. In contrast, it was not inhibited significantly by a non-sedative antihistamine (terfenadine), immunosuppressants (dexamethasone and tacrolimus), or a μ-opioid receptor antagonist (naloxone). The anti-IL-31 receptor α-neutralizing antibody reduced the ear swelling and dermatitis score in a chronic pruritus-inducing AD-like model. Moreover, treatment with the anti-IL-31 receptor α-neutralizing antibody showed therapeutic effects on the dermatitis even if it was injected after the disease had developed. Conclusions and Implications Anti-IL-31 receptor α is a potential novel therapeutic approach for escaping from the itch–scratch cycle and also a treatment for dermatitis in AD. PMID:24946165

  10. Evaluation of IgE Antibodies to Omalizumab (Xolair®) and Their Potential Correlation to Anaphylaxis.

    PubMed

    Baker, Dana L; Nakamura, Gerald R; Lowman, Henry B; Fischer, Saloumeh Kadkhodayan

    2016-01-01

    Omalizumab (Xolair®) is a recombinant humanized monoclonal antibody that selectively binds to human immunoglobulin E (IgE). Omalizumab is used to treat IgE-mediated diseases such as chronic idiopathic urticaria (CIU) and moderate to severe allergic asthma. In pre-marketing clinical trials in patients with asthma, anaphylaxis was reported in 3 of 3,507 (0.1%) patients. In post-marketing spontaneous reports, the frequency of anaphylaxis attributed to omalizumab use was estimated to be at least 0.2% of patients based on an estimated exposure of about 57,300 patients from June 2003 through December 2006. To better understand the risk of anaphylaxis in patients with allergic asthma receiving omalizumab, a post-marketing pharmacosurveillance study was initiated in 2009. As part of this study, an assay was developed to detect antibodies of IgE isotype to omalizumab. Serum samples from patients in the study were evaluated using this assay. Our results indicated that there was no observable correlation between either anaphylaxis or skin test reactivity and the presence of antibodies of IgE isotype to omalizumab. Here, we discuss the development of this assay as well as the results of the immunogenicity assessment. PMID:26340860

  11. A human anti-polysialic acid antibody as a potential treatment to improve function in multiple sclerosis patients

    PubMed Central

    Watzlawik, Jens O.; Painter, Meghan M.; Wootla, Bharath; Rodriguez, Moses

    2016-01-01

    We previously identified a human monoclonal antibody, termed HIgM12 that stimulates spontaneous locomotor activity in a chronically demyelinating mouse model of multiple sclerosis. When tested as a molecular substrate, HIgM12 stimulated neurite outgrowth in vitro. We recently reported that polysialic acid (PSA) attached to the neural cell adhesion molecule (NCAM) is one of the cellular antigens for HIgM12. Fluorescent double-labeling of astrocytes using HIgM12 and commercially available anti-PSA antibody showed dramatic co-localization. Neural tissue homogenates and primary CNS cultures from mice lacking the three major NCAM splice variants NCAM180, NCAM140 and NCAM120 (NCAM KO) were no longer able to bind HIgM12. Furthermore, enzymatic digestion of PSA on wild type (WT) glia abolished HIgM12-binding. Moreover, neurons and glia from NCAM KO animals did not attach to HIgM12-coated nitrocellulose in neurite outgrowth assays. We conclude that HIgM12 targets PSA attached to NCAM, and that the PSA moiety mediates neuronal and glial adhesion and subsequent neurite outgrowth in our in vitro assay. Therefore, this anti-PSA antibody may serve as a future therapeutic to stimulate functional improvement in multiple sclerosis patients and other neurodegenerative diseases.

  12. Seroprevalence of Antibodies against Pkn1, a Novel Potential Immunogen, in Chlamydia trachomatis-Infected Macaca nemestrina and Human Patients

    PubMed Central

    Patel, Achchhe L.; Mishra, Prashant K.; Sachdev, Divya; Chaudhary, Uma; Patton, Dorothy L.; Saluja, Daman

    2014-01-01

    Chlamydia trachomatis (CT) is an important cause of sexually transmitted genital tract infections (STIs) and trachoma. Despite major research into chlamydial pathogenesis and host immune responses, immunoprotection has been hampered by the incomplete understanding of protective immunity in the genital tract. Characterized vaccine candidates have shown variable efficacy ranging from no protection to partial protection in vivo. It is therefore a research priority to identify novel chlamydial antigens that may elicit protective immune responses against CT infection. In the present study we assessed the seroprevalence of antibodies against protein kinase1 (Pkn1), DNA ligaseA (LigA), and major outer membrane protein A (OmpA) following natural CT infection in humans and in experimentally induced CT infection in Macaca nemestrina. Antigenic stretches of Pkn1, LigA, and OmpA were identified using bioinformatic tools. Pkn1, LigA, and OmpA genes were cloned in bacterial expression vector and purified by affinity chromatography. Our results demonstrate significantly high seroprevalence of antibodies against purified Pkn1 and OmpA in sera obtained from the macaque animal model and human patients infected with CT. In contrast no significant seroreactivity was observed for LigA. The seroprevalence of antibodies against Pkn1 suggest that nonsurface chlamydial proteins could also be important for developing vaccines for C. trachomatis. PMID:25032212

  13. Mycobacterium bovis BCG priming induces a strong potentiation of the antibody response induced by recombinant BCG expressing a foreign antigen.

    PubMed Central

    Gheorghiu, M; Lagranderie, M R; Gicquel, B M; Leclerc, C D

    1994-01-01

    Several recent studies have demonstrated that strong cellular or humoral immune responses can be induced against foreign antigens expressed by recombinant Mycobacterium bovis BCG. It has therefore been suggested that BCG could represent one of the best candidate vectors for live recombinant vaccines. However, a large percentage of the human population has been immunized by BCG, and this priming could modify the immune response to future recombinant BCG vaccines. In the present study, we have therefore compared the immune responses induced in naive and BCG-primed mice by two recombinant BCG vaccines expressing either beta-galactosidase or human immunodeficiency virus type 1 Nef antigens. Our results demonstrated that BCG priming limits the growth of recombinant BCG in mouse spleen or lymph nodes. This reduction in BCG growth was associated with decreased proliferative responses against Nef or beta-galactosidase antigens. This suppression, however, never exceeded 50%. Interestingly, in contrast to these reduced T-cell responses, BCG-primed mice developed high levels of anti-beta-galactosidase antibodies after immunization with recombinant BCG expressing this antigen. This stimulation of antibody responses was not due to polyclonal stimulation or to a nonspecific adjuvant effect of BCG. The isotypic patterns of anti-beta-galactosidase antibody responses induced by the recombinant BCG were similar in naive and BCG-primed mice. These results indicate that priming with BCG will not be a limitation for the use of recombinant BCG vaccines in humans. PMID:7927686

  14. Perceptual Shift in Bilingualism: Brain Potentials Reveal Plasticity in Pre-Attentive Colour Perception

    ERIC Educational Resources Information Center

    Athanasopoulos, Panos; Dering, Benjamin; Wiggett, Alison; Kuipers, Jan-Rouke; Thierry, Guillaume

    2010-01-01

    The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour…

  15. Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current microbial source tracking (MST) methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing ...

  16. Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing.

    PubMed

    Ibekwe, A Mark; Leddy, Menu; Murinda, Shelton E

    2013-01-01

    Current microbial source tracking (MST) methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs), recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP), Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%), agricultural runoff sediment (6.52%), and Prado Park sediment (6.00%), respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78-4.08%). Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health. PMID:24278139

  17. Processing a Second Language: Late Learners' Comprehension Mechanisms as Revealed by Event-Related Brain Potentials.

    ERIC Educational Resources Information Center

    Hahne, Anja; Friederici, Angela D.

    2001-01-01

    Examines sentence comprehension in second language learners using event-related brain potentials. Japanese speakers who had learned German as a second language after puberty listened to German sentences that were either correct, semantically incorrect, syntactically incorrect or both semantically and syntactically incorrect, Brain responses were…

  18. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    PubMed

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR. PMID:26816093

  19. Event-Related Potentials Reveal Anomalous Morphosyntactic Processing in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Cantiani, Chiara; Lorusso, Maria Luisa; Perego, Paolo; Molteni, Massimo; Guasti, Maria Teresa

    2013-01-01

    In the light of the literature describing oral language difficulties in developmental dyslexia (DD), event-related potentials were used in order to compare morphosyntactic processing in 16 adults with DD (aged 20-28 years) and unimpaired controls. Sentences including subject-verb agreement violations were presented auditorily, with grammaticality…

  20. Cerebrospinal Fluid Proteomics Reveals Potential Pathogenic Changes in the Brains of SIV-infected Monkeys

    PubMed Central

    Pendyala, Gurudutt; Trauger, Sunia A.; Kalisiak, Ewa; Ellis, Ronald J.; Siuzdak, Gary; Fox, Howard S.

    2009-01-01

    The HIV-1-associated neurocognitive disorder occurs in approximately one-third of infected individuals. It has persisted in the current era of anti-retroviral therapy, and its study is complicated by the lack of biomarkers for this condition. Since the cerebrospinal fluid is the most proximal biofluid to the site of pathology, we studied the cerebrospinal fluid in a nonhuman primate model for HIV-1-associated neurocognitive disorder. Here we present a simple and efficient liquid chromatography coupled mass spectrometry based proteomics approach that utilizes small amounts of cerebrospinal fluid. First, we demonstrate the validity of the methodology using human cerebrospinal fluid. Next, using the simian immunodeficiency virus infected monkey model, we show its efficacy in identifying proteins such as alpha-1-antitrypsin, complement C3, hemopexin, IgM heavy chain and plasminogen, whose increased expression is linked to disease. Finally, we find that the increase in cerebrospinal fluid proteins is linked to increased expression of their genes in the brain parenchyma, revealing that the cerebrospinal fluid alterations identified reflect changes in the brain itself and not merely leakage of the blood-brain or blood- cerebrospinal fluid barriers. This study reveals new central nervous system alterations in lentivirus-induced neurological disease, and this technique can be applied to other systems in which limited amounts of biofluids can be obtained. PMID:19281240

  1. Secukinumab, a novel anti–IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity

    PubMed Central

    Karle, Anette; Spindeldreher, Sebastian; Kolbinger, Frank

    2016-01-01

    ABSTRACT Secukinumab is a human monoclonal antibody that selectively targets interleukin-17A and has been demonstrated to be highly efficacious in the treatment of moderate to severe plaque psoriasis, starting at early time points, with a sustained effect and a favorable safety profile. Biotherapeutics—including monoclonal antibodies (mAbs)—can be immunogenic, leading to formation of anti-drug antibodies (ADAs) that can result in unwanted effects, including hypersensitivity reactions or compromised therapeutic efficacy. To gain insight into possible explanations for the clinically observed low immunogenicity of secukinumab, we evaluated its immunogenicity potential by applying 2 different in vitro assays: T-cell activation and major histocompatibility complex–associated peptide proteomics (MAPPs). For both assays, monocyte-derived dendritic cells (DCs) from healthy donors were exposed in vitro to biotherapeutic proteins. DCs naturally process proteins and present the derived peptides in the context of human leukocyte antigen (HLA)-class II. HLA-DR–associated biotherapeutic-derived peptides, representing potential T–cell epitopes, were identified in the MAPPs assay. In the T-cell assay, autologous CD4+ T cells were co-cultured with secukinumab-exposed DCs and T-cell activation was measured by proliferation and interleukin-2 secretion. In the MAPPs analysis and T-cell activation assays, secukinumab consistently showed relatively low numbers of potential T-cell epitopes and low T-cell response rates, respectively, comparable to other biotherapeutics with known low clinical immunogenicity. In contrast, biotherapeutics with elevated clinical immunogenicity rates showed increased numbers of potential T-cell epitopes and increased T-cell response rates in T-cell activation assays, indicating an approximate correlation between in vitro assay results and clinical immunogenicity incidence. PMID:26817498

  2. Transcriptome network analysis reveals potential candidate genes for esophageal squamous cell carcinoma.

    PubMed

    Ma, Zheng; Guo, Wei; Niu, Hui-Jun; Yang, Fan; Wang, Ru-Wen; Jiang, Yao-Guang; Zhao, Yun-Ping

    2012-01-01

    The esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a poor prognosis. Understanding molecular changes in ESCC should improve identification of risk factors with different molecular subtypes and provide potential targets for early detection and therapy. Our study aimed to obtain a molecular signature of ESCC through the regulation network based on differentially expressed genes (DEGs). We used the GSE23400 series to identify potential genes related to ESCC. Based on bioinformatics we constructed a regulation network. From the results, we could establish that many transcription factors and pathways closely related with ESCC were linked by our method. STAT1 also arose as a hub node in our transcriptome network, along with some transcription factors like CCNB1, TAP1, RARG and IFITM1 proven to be related with ESCC by previous studies. In conclusion, our regulation network provided information on important genes which might be useful in investigating the complex interacting mechanisms underlying the disease. PMID:22631645

  3. RNAi Screen Reveals Potentially Novel Roles of Cytokines in Myoblast Differentiation

    PubMed Central

    Ge, Yejing; Waldemer, Rachel J.; Nalluri, Ramakrishna; Nuzzi, Paul D.; Chen, Jie

    2013-01-01

    Cytokines are cell-secreted signaling molecules that modulate various cellular functions, with the best-characterized roles in immune responses. The expression of numerous cytokines in skeletal muscle tissues and muscle cells has been reported, but their function in skeletal myogenesis, the formation of skeletal muscle, has been largely underexplored. To systematically examine the potential roles of cytokines in skeletal myogenesis, we undertook an RNAi screen of 134 mouse cytokine genes for their involvement in the differentiation of C2C12 myoblasts. Our results have uncovered 29 cytokines as strong candidates for novel myogenic regulators, potentially conferring positive and negative regulation at distinct stages of myogenesis. These candidates represent a diverse collection of cytokine families, including interleukins, TNF-related factors, and chemokines. Our findings suggest the fundamental importance of cytokines in the cell-autonomous regulation of myoblast differentiation, and may facilitate future identification of novel therapeutic targets for improving muscle regeneration and growth in health and diseases. PMID:23844157

  4. Potential Human Pathogenic Bacteria in a Mixed Urban Watershed as Revealed by Pyrosequencing

    PubMed Central

    Ibekwe, A. Mark; Leddy, Menu; Murinda, Shelton E.

    2013-01-01

    Current microbial source tracking (MST) methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs), recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP), Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%), agricultural runoff sediment (6.52%), and Prado Park sediment (6.00%), respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78–4.08%). Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health. PMID:24278139

  5. Revealing membrane potential by advanced impedance spectroscopy: theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; Bratu, D.; Olaru, A.; Polonschii, C.; Gheorghiu, E.

    2013-04-01

    In spite of recent advancement of novel optical and electrical techniques, availability of non-invasive, label-free methods to assess membrane potential of living cells is still an open issue. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell) has been pioneered in our previous studies with emphasis on the permittivity spectra. We now report on both theoretical and experimental aspects showing that whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum the decrement presented by impedance magnitude spectrum is either extremely small, or occurs (for large cells) at very low frequencies (~mHz) explaining the lack of experimental bioimpedance data on the matter. Based on the microscopic model we indicate that an appropriate design of the experiment may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We discuss the effect on the low frequency of permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i) membrane potential, (ii) size of the cells/vesicles, (iii) conductivity; II. Conductivity of the outer medium. A novel measuring set-up has recently been developed within the International Centre of Biodynamics allowing for sensitive low frequency (~10mHz) four point (bio)impedance assays. Its capability to test theoretical predictions is reported as well. The far reaching implications of this study applicability for life sciences (noninvasive access to the dynamics of relevant cell parameters) as well as for biosensing applications, e.g. assess the cytotoxicity of a wide range of stimuli, will be outlined.

  6. Frequency spectrum of transepithelial potential difference reveals transport-related oscillations.

    PubMed

    Montalbetti, Nicolás; Fischbarg, Jorge

    2009-09-16

    How epithelia transport fluid is a fundamental issue that is unresolved. Explanations offered include molecular engines, local transcellular osmosis, local paracellular osmosis, and paracellular fluid transport. On the basis of experimental and theoretical work done on corneal endothelium, a fluid transporting epithelium, we suggest electroosmotic coupling at the level of the intercellular junctions driven by the transendothelial electrical potential difference as an explanation of paracellular fluid transport. We collect frequency spectra of that potential difference in real-time. For what we believe is the first time for any epithelium, we report that, unexpectedly, the potential difference displays oscillations at many characteristic frequencies. We also show that on both stimulating cell activity and inhibiting ion transport mechanisms, there are corresponding changes in the oscillations amplitudes that mirror changes known previously in rates of fluid transport. We believe these findings provide a novel tool to study the kinetics of electrogenic elements such as channels and transporters, which from this evidence would give rise to current oscillations with characteristic periods going from 150 ms to 8 s. PMID:19751657

  7. Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function

    PubMed Central

    Li, Man-Song; Cowley, Elizabeth A; Linsdell, Paul

    2012-01-01

    BACKGROUND AND PURPOSE There is great interest in the development of potentiator drugs to increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis. We tested the ability of several anions to potentiate CFTR activity by a novel mechanism. EXPERIMENTAL APPROACH Patch clamp recordings were used to investigate the ability of extracellular pseudohalide anions (Co(CN)63−, Co(NO2)63−, Fe(CN)63−, IrCl63−, Fe(CN)64−) to increase the macroscopic conductance of mutant CFTR in intact cells via interactions with cytoplasmic blocking anions. Mutagenesis of CFTR was used to identify a possible molecular mechanism of action. Transepithelial short-circuit current recordings from human airway epithelial cells were used to determine effects on net anion secretion. KEY RESULTS Extracellular pseudohalide anions were able to increase CFTR conductance in intact cells, as well as increase anion secretion in airway epithelial cells. This effect appears to reflect the interaction of these substances with a site on the extracellular face of the CFTR protein. CONCLUSIONS AND IMPLICATIONS Our results identify pseudohalide anions as increasing CFTR function by a previously undescribed molecular mechanism that involves an interaction with an extracellular site on the CFTR protein. Future drugs could utilize this mechanism to increase CFTR activity in cystic fibrosis, possibly in conjunction with known intracellularly-active potentiators. PMID:22612315

  8. Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.

    PubMed

    Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen

    2009-09-01

    The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples. PMID:19589556

  9. Impaired cognitive reappraisal in panic disorder revealed by the late positive potential.

    PubMed

    Zhang, Bing-Wei; Xu, Jing; Chang, Yi; Wang, He; Yao, Hong; Tang, Di

    2016-01-20

    According to the cognitive model of panic disorder (PD), panic attacks are triggered and maintained by catastrophic misappraisals of bodily sensations. Clinically, PD is associated with impaired cognitive emotion regulation strategies involving cognitive reappraisal. To investigate the neural correlates and time course of cognitive reappraisal in patients with PD, event-related potentials were recorded from patients with PD and demographically matched control group during passive viewing of affective images under three conditions: (a) neutral pictures preceded by neutral descriptions, (b) unpleasant pictures preceded by negative descriptions, and (c) unpleasant pictures preceded by neutral descriptions. The late positive potential (LPP), an event-related potential component sensitive to cognitive change strategies, was examined as an index of cognitive reappraisal. Consistent with previous results, the unpleasant pictures preceded by negative descriptions had decreased valence ratings, increased arousal ratings, and increased LPP amplitudes compared with the unpleasant pictures preceded by neutral descriptions in the control group. In contrast, no reliable effect of description condition was observed for valence ratings in the PD group. The patients demonstrated differing response patterns from the control participants, with higher arousal ratings and larger LPPs during the 1000-2000 ms window when unpleasant pictures were preceded by a neutral description than when unpleasant pictures were preceded by a negative description. The present study suggests that emotion regulation is impaired in patients with PD. These findings describe the first electrophysiological correlates of abnormal cognitive reappraisal in patients with PD. PMID:26656936

  10. Production Of Human Antibodies

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Neil, Garry A.

    1993-01-01

    Process for making human monoclonal antibodies based on combination of techniques. Antibodies made active against specific antigen. Process involves in vivo immunization of human B lymphocyte cells in mice. B cells of interest enriched in vitro before fusion. Method potentially applicable to any antigen. Does not rely on use of Epstein-Barr virus at any step. Human lymphocytes taken from any source.

  11. A novel open-barrel structure of octameric translin reveals a potential RNA entryway.

    PubMed

    Eliahoo, Elad; Marx, Ailie; Manor, Haim; Alian, Akram

    2015-02-27

    The single-stranded DNA (ssDNA)/RNA binding protein translin was suggested to be involved in chromosomal translocations, telomere metabolism, and mRNA transport and translation. Oligonucleotide binding surfaces map within a closed cavity of translin octameric barrels, raising the question as to how DNA/RNA gain access to this inner cavity, particularly given that, to date, none of the barrel structures reported hint to an entryway. Here, we argue against a mechanism by which translin octamers may "dissociate and reassemble" upon RNA binding and report a novel "open"-barrel structure of human translin revealing a feasible DNA/RNA entryway into the cavity. Additionally, we report that translin not only is confined to binding of ssDNA oligonucleotides, or single-stranded extensions of double-stranded DNA (dsDNA), but also can bind single-stranded sequences internally embedded in dsDNA molecules. PMID:25433126

  12. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    PubMed

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems. PMID:25588128

  13. Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production.

    PubMed

    Gerhards, Nina; Matuschek, Marco; Wallwey, Christiane; Li, Shu-Ming

    2015-06-01

    Ergot alkaloids are important as mycotoxins or as drugs. Naturally occurring ergot alkaloids as well as their semisynthetic derivatives have been used as pharmaceuticals in modern medicine for decades. We identified 196 putative ergot alkaloid biosynthetic genes belonging to at least 31 putative gene clusters in 31 fungal species by genome mining of the 360 available genome sequences of ascomycetous fungi with known proteins. Detailed analysis showed that these fungi belong to the families Aspergillaceae, Clavicipitaceae, Arthrodermataceae, Helotiaceae and Thermoascaceae. Within the identified families, only a small number of taxa are represented. Literature search revealed a large diversity of ergot alkaloid structures in different fungi of the phylum Ascomycota. However, ergot alkaloid accumulation was only observed in 15 of the sequenced species. Therefore, this study provides genetic basis for further study on ergot alkaloid production in the sequenced strains. PMID:25796201

  14. Cross-immunoreactivity between anti-potato apyrase antibodies and mammalian ATP diphosphohydrolases: potential use of the vegetal protein in experimental schistosomiasis.

    PubMed

    Faria-Pinto, P; Meirelles, M N L; Lenzi, H L; Mota, E M; Penido, M L O; Coelho, P M Z; Vasconcelos, E G

    2006-09-01

    We have previously showed that Schistosoma mansoni ATP-diphosphohydrolase and Solanum tuberosum potato apyrase share epitopes and the vegetable protein has immunostimulatory properties. Here, it was verified the in situ cross-immunoreactivity between mice NTPDases and anti-potato apyrase antibodies produced in rabbits, using confocal microscopy. Liver samples were taken from Swiss Webster mouse 8 weeks after infection with S. mansoni cercariae, and anti-potato apyrase and TRITC-conjugated anti-rabbit IgG antibody were tested on cryostat sections. The results showed that S. mansoni egg ATP diphosphohydrolase isoforms, developed by anti-potato apyrase, are expressed in miracidial and egg structures, and not in granulomatous cells and hepatic structures (hepatocytes, bile ducts, and blood vessels). Therefore, purified potato apyrase when inoculated in rabbit generates polyclonal sera containing anti-apyrase antibodies that are capable of recognizing specifically S. mansoni ATP diphosphohydrolase epitopes, but not proteins from mammalian tissues, suggesting that autoantibodies are not induced during potato apyrase immunization. A phylogenetic tree obtained for the NTPDase family showed that potato apyrase had lower homology with mammalian NTPDases 1-4, 7, and 8. Further analysis of potato apyrase epitopes could implement their potential use in schistosomiasis experimental models. PMID:17308798

  15. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS).

    PubMed

    Mejías, Maria P; Hiriart, Yanina; Lauché, Constanza; Fernández-Brando, Romina J; Pardo, Romina; Bruballa, Andrea; Ramos, María V; Goldbaum, Fernando A; Palermo, Marina S; Zylberman, Vanesa

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome. PMID:27118524

  16. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS)

    PubMed Central

    Mejías, Maria P.; Hiriart, Yanina; Lauché, Constanza; Fernández-Brando, Romina J.; Pardo, Romina; Bruballa, Andrea; Ramos, María V.; Goldbaum, Fernando A.; Palermo, Marina S.; Zylberman, Vanesa

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome. PMID:27118524

  17. Hybrid Sequencing Approach Applied to Human Fecal Metagenomic Clone Libraries Revealed Clones with Potential Biotechnological Applications

    PubMed Central

    Džunková, Mária; D’Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be “domesticated” for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7–15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts. PMID:23082187

  18. Wavelet analysis of corneal endothelial electrical potential difference reveals cyclic operation of the secretory mechanism

    NASA Astrophysics Data System (ADS)

    Cacace, V. I.; Montalbetti, N.; Kusnier, C.; Gomez, M. P.; Fischbarg, J.

    2011-09-01

    The corneal endothelium is a fluid-transporting epithelium. As other similar tissues, it displays an electrical potential of ˜1 mV (aqueous side negative) across the entire layer [transendothelial potential difference (TEPD)]. It appears that this electrical potential is mainly the result of the transport of anions across the cell layer (from stroma to aqueous). There is substantial evidence that the TEPD is related linearly to fluid transport; hence, under proper conditions, its measure could serve as a measure of fluid transport. Furthermore, the TEPD is not steady; instead, it displays a spectrum of frequency components (0-15 Hz) recognized recently using Fourier transforms. Such frequency components appear due to charge-separating (electrogenic) processes mediated by epithelial plasma membrane proteins (both ionic channels and ionic cotransporters). In particular, the endothelial TEPD oscillations of the highest amplitude (1-2 Hz) were linked to the operation of so-called sodium bicarbonate cotransporters. However, no time localization of that activity could be obtained with the Fourier methodology utilized. For that reason we now characterize the TEPD using wavelet analysis with the aim to localize in time the variations in TEPD. We find that the mentioned high-amplitude oscillatory components of the TEPD appear cyclically during the several hours that an endothelial preparation survives in vitro. They have a period of 4.6 ± 0.4 s on average (n=4). The wavelet power value at the peak of such oscillations is 1.5 ± 0.1 mV2 Hz on average (n = 4), and is remarkably narrow in its distribution.

  19. In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment

    PubMed Central

    van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven

    2016-01-01

    An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206

  20. In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment.

    PubMed

    van Dam, Peter A; van Dam, Pieter-Jan H H; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A A; van Laere, Steven

    2016-01-19

    An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206

  1. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential

    PubMed Central

    Kolb, Philipp; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission. PMID:26352137

  2. Alteration of Electrostatic Surface Potential Enhances Affinity and Tumor Killing Properties of Anti-ganglioside GD2 Monoclonal Antibody hu3F8*

    PubMed Central

    Zhao, Qi; Ahmed, Mahiuddin; Guo, Hong-fen; Cheung, Irene Y.; Cheung, Nai-Kong V.

    2015-01-01

    Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy. PMID:25851904

  3. Alteration of Electrostatic Surface Potential Enhances Affinity and Tumor Killing Properties of Anti-ganglioside GD2 Monoclonal Antibody hu3F8.

    PubMed

    Zhao, Qi; Ahmed, Mahiuddin; Guo, Hong-fen; Cheung, Irene Y; Cheung, Nai-Kong V

    2015-05-22

    Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy. PMID:25851904

  4. Potentially novel copper resistance genes in copper-enriched activated sludge revealed by metagenomic analysis.

    PubMed

    Li, Li-Guan; Cai, Lin; Zhang, Xu-Xiang; Zhang, Tong

    2014-12-01

    In this study, we utilized the Illumina high-throughput metagenomic approach to investigate diversity and abundance of both microbial community and copper resistance genes (CuRGs) in activated sludge (AS) which was enriched under copper selective stress up to 800 mg/L. The raw datasets (~3.5 Gb for each sample, i.e., the copper-enriched AS and the control AS) were merged and normalized for the BLAST analyses against the SILVA SSU rRNA gene database and self-constructed copper resistance protein database (CuRD). Also, the raw metagenomic sequences were assembled into contigs and analyzed based on Open Reading Frames (ORFs) to identify potentially novel copper resistance genes. Among the different resistance systems for copper detoxification under the high copper stress condition, the Cus system was the most enriched system. The results also indicated that genes encoding multi-copper oxidase played a more important role than those encoding efflux proteins. More significantly, several potentially novel copper resistance ORFs were identified by Pfam search and phylogenic analysis. This study demonstrated a new understanding of microbial-mediated copper resistance under high copper stress using high-throughput shotgun sequencing technique. PMID:25081552

  5. Picocyanobacteria from a clade of marine Cyanobium revealed bioactive potential against microalgae, bacteria, and marine invertebrates.

    PubMed

    Costa, Maria Sofia; Costa, Margarida; Ramos, Vítor; Leão, Pedro N; Barreiro, Aldo; Vasconcelos, Vítor; Martins, Rosário

    2015-01-01

    The production of bioactive compounds either toxic or with pharmacological applications by cyanobacteria is well established. However, picoplanktonic forms within this group of organisms have rarely been studied in this context. In this study, the toxicological potential of picocyanobacteria from a clade of marine Cyanobium strains isolated from the Portuguese coast was examined using different biological models. First, strains were identified by applying morphological and molecular approaches and cultured under lab conditions. A crude extract and three fractions reflecting a preliminary segregation of lipophilic metabolites were tested for toxicity with the marine microalga Nannochloropsis sp., the bacteria Pseudomonas sp., the brine shrimp Artemia salina, and fertilized eggs of the sea urchin Paracentrotus lividus. No significant apparent adverse effects were noted against Artemia salina. However, significant adverse effects were found in all other assays, with an inhibition of Nannochloropsis sp. and Pseudomonas sp. growth and marked reduction in Paracentrotus lividus larvae length. The results obtained indicated that Cyanobium genus may serve as a potential source of interesting bioactive compounds and emphasize the importance of also studying smaller picoplanktonic fractions of marine cyanobacteria. PMID:25785557

  6. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets

    PubMed Central

    Santagata, Sandro; Cahill, Daniel P.; Taylor-Weiner, Amaro; Jones, Robert T.; Van Allen, Eliezer M.; Lawrence, Michael S.; Horowitz, Peleg M.; Cibulskis, Kristian; Ligon, Keith L.; Tabernero, Josep; Seoane, Joan; Martinez-Saez, Elena; Curry, William T.; Dunn, Ian F.; Paek, Sun Ha; Park, Sung-Hye; McKenna, Aaron; Chevalier, Aaron; Rosenberg, Mara; Barker, Frederick G.; Gill, Corey M.; Van Hummelen, Paul; Thorner, Aaron R.; Johnson, Bruce E.; Hoang, Mai P.; Choueiri, Toni K.; Signoretti, Sabina; Sougnez, Carrie; Rabin, Michael S.; Lin, Nancy U.; Winer, Eric P.; Stemmer-Rachamimov, Anat; Meyerson, Matthew; Garraway, Levi; Gabriel, Stacey; Lander, Eric S.; Beroukhim, Rameen; Batchelor, Tracy T.; Baselga, Jose; Louis, David N.

    2016-01-01

    Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. PMID:26410082

  7. Proteogenomic analysis of the Venturia pirina (Pear Scab Fungus) secretome reveals potential effectors.

    PubMed

    Cooke, Ira R; Jones, Dan; Bowen, Joanna K; Deng, Cecilia; Faou, Pierre; Hall, Nathan E; Jayachandran, Vignesh; Liem, Michael; Taranto, Adam P; Plummer, Kim M; Mathivanan, Suresh

    2014-08-01

    A proteogenomic analysis is presented for Venturia pirina, a fungus that causes scab disease on European pear (Pyrus communis). V. pirina is host-specific, and the infection is thought to be mediated by secreted effector proteins. Currently, only 36 V. pirina proteins are catalogued in GenBank, and the genome sequence is not publicly available. To identify putative effectors, V. pirina was grown in vitro on and in cellophane sheets mimicking its growth in infected leaves. Secreted extracts were analyzed by tandem mass spectrometry, and the data (ProteomeXchange identifier PXD000710) was queried against a protein database generated by combining in silico predicted transcripts with six frame translations of a whole genome sequence of V. pirina (GenBank Accession JEMP00000000 ). We identified 1088 distinct V. pirina protein groups (FDR 1%) including 1085 detected for the first time. Thirty novel (not in silico predicted) proteins were found, of which 14 were identified as potential effectors based on characteristic features of fungal effector protein sequences. We also used evidence from semitryptic peptides at the protein N-terminus to corroborate in silico signal peptide predictions for 22 proteins, including several potential effectors. The analysis highlights the utility of proteogenomics in the study of secreted effectors. PMID:24965097

  8. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker.

    PubMed

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are "Hepatitis C" and "cancer" signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD. PMID:25674217

  9. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker

    PubMed Central

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are “Hepatitis C” and “cancer” signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD. PMID:25674217

  10. Estimation of endotoxin inhalation from shower and humidifier exposure reveals potential risk to human health.

    PubMed

    Anderson, William B; George Dixon, D; Mayfield, Colin I

    2007-12-01

    This paper investigates potential exposure to endotoxin in drinking water through the inhalation of aerosols generated by showers and humidifiers. Adverse health effects attributable to the inhalation of airborne endotoxin in various occupational settings are summarized, as are controlled laboratory inhalation studies. Data from investigations estimating aerosolization of particulate matter by showers and humidifiers provide a basis for similar analyses with endotoxin, which like minerals in water, is nonvolatile. A theoretical assessment of the inhalation of aerosolized endotoxin showed that while the likelihood of an acute response while showering is minimal, the same is not true for humidifiers. Ultrasonic and impeller (cool mist) humidifiers efficiently produce large numbers of respirable particles. It is predicted that airway inflammation can occur if humidifier reservoirs are filled with tap water, sometimes even at typical drinking-water distribution-system endotoxin concentrations. Higher endotoxin levels occasionally found in drinking water (>1,000 EU/ml) are very likely to induce symptoms such as chills and fever if used as humidifier feed water. While it is unlikely that treated drinking water would contain extremely high endotoxin levels occasionally observed in cyanobacterial blooms (>35,000 EU/ml), the potential for serious acute health consequences exist if used in humidifiers. PMID:17878567

  11. A Five-Year Survey of Dematiaceous Fungi in a Tropical Hospital Reveals Potential Opportunistic Species

    PubMed Central

    Yew, Su Mei; Chan, Chai Ling; Lee, Kok Wei; Na, Shiang Ling; Tan, Ruixin; Hoh, Chee-Choong; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-01-01

    Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ≤1 µg/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 µg/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance. PMID:25098697

  12. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways.

    PubMed

    Ung, Timothy H; Madsen, Helen J; Hellwinkel, Justin E; Lencioni, Alex M; Graner, Michael W

    2014-11-01

    Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer. PMID:25220623

  13. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways

    PubMed Central

    Ung, Timothy H; Madsen, Helen J; Hellwinkel, Justin E; Lencioni, Alex M; Graner, Michael W

    2014-01-01

    Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer. PMID:25220623

  14. C1 inhibitor serpin domain structure reveals the likely mechanism of heparin potentiation and conformational disease.

    PubMed

    Beinrohr, László; Harmat, Veronika; Dobó, József; Lörincz, Zsolt; Gál, Péter; Závodszky, Péter

    2007-07-20

    C1 inhibitor, a member of the serpin family, is a major down-regulator of inflammatory processes in blood. Genetic deficiency of C1 inhibitor results in hereditary angioedema, a dominantly inheritable, potentially lethal disease. Here we report the first crystal structure of the serpin domain of human C1 inhibitor, representing a previously unreported latent form, which explains functional consequences of several naturally occurring mutations, two of which are discussed in detail. The presented structure displays a novel conformation with a seven-stranded beta-sheet A. The unique conformation of the C-terminal six residues suggests its potential role as a barrier in the active-latent transition. On the basis of surface charge pattern, heparin affinity measurements, and docking of a heparin disaccharide, a heparin binding site is proposed in the contact area of the serpin-proteinase encounter complex. We show how polyanions change the activity of the C1 inhibitor by a novel "sandwich" mechanism, explaining earlier reaction kinetic and mutagenesis studies. These results may help to improve therapeutic C1 inhibitor preparations used in the treatment of hereditary angioedema, organ transplant rejection, and heart attack. PMID:17488724

  15. Cardiac-Oxidized Antigens Are Targets of Immune Recognition by Antibodies and Potential Molecular Determinants in Chagas Disease Pathogenesis

    PubMed Central

    Dhiman, Monisha; Zago, Maria Paola; Nunez, Sonia; Amoroso, Alejandro; Rementeria, Hugo; Dousset, Pierre; Burgos, Federico Nunez; Garg, Nisha Jain

    2012-01-01

    Trypanosoma cruzi elicits reactive oxygen species (ROS) of inflammatory and mitochondrial origin in infected hosts. In this study, we examined ROS-induced oxidative modifications in the heart and determined whether the resultant oxidized cardiac proteins are targets of immune response and of pathological significance in Chagas disease. Heart biopsies from chagasic mice, rats and human patients exhibited, when compared to those from normal controls, a substantial increase in protein 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), carbonyl, and 3-nitrotyrosine (3-NT) adducts. To evaluate whether oxidized proteins gain antigenic properties, heart homogenates or isolated cardiomyocytes were oxidized in vitro and one- or two-dimensional gel electrophoresis (2D-GE)/Western blotting (WB) was performed to investigate the proteomic oxidative changes and recognition of oxidized proteins by sera antibodies in chagasic rodents (mice, rats) and human patients. Human cardiomyocytes exhibited LD50 sensitivity to 30 µM 4-HNE and 100 µM H2O2 at 6 h and 12 h, respectively. In vitro oxidation with 4-HNE or H2O2 resulted in a substantial increase in 4-HNE- and carbonyl-modified proteins that correlated with increased recognition of cardiac (cardiomyocytes) proteins by sera antibodies of chagasic rodents and human patients. 2D-GE/Western blotting followed by MALDI-TOF-MS/MS analysis to identify cardiac proteins that were oxidized and recognized by human chagasic sera yielded 82 unique proteins. We validated the 2D-GE results by enzyme-linked immunosorbent assay (ELISA) and WB and demonstrated that oxidation of recombinant titin enhanced its immunogenicity and recognition by sera antibodies from chagasic hosts (rats and humans). Treatment of infected rats with phenyl-α-tert-butyl nitrone (PBN, antioxidant) resulted in normalized immune detection of cardiac proteins associated with control of cardiac pathology and preservation of heart contractile function in chagasic rats. We

  16. Up-regulated expression of Ran reveals its potential role to deltamethrin stress in Kc cells.

    PubMed

    Liu, Wei; Xu, Qin; Chi, Qingping; Hu, Junli; Li, Fengliang; Cheng, Luogen

    2016-05-25

    The GTP-binding nuclear protein Ran has mostly been reported to be an essential player in nuclear transport, chromosome alignment, microtubule dynamics, centrosome duplication, kinetochore attachment of microtubules, nuclear-envelope dynamics, and phagocytosis. However, until now, there has been no report showing the involvement of Ran in DM stress. In this paper, two-dimensional electrophoresis analysis showed that the expression level of Ran in Kc cells in response to DM was higher than that in the control group. In addition, quantitative analysis using real-time PCR revealed that the expression of Ran was obviously up-regulated at various concentrations of DM. Western blot analysis showed that Ran was up-regulated 2.27-fold over the control at 48h. Because we still could not pinpoint whether Ran was actually involved in DM stress reaction, to further verify the role of Ran in stress reaction, RNA interference and cell transfection were utilized. Overexpression of Ran in cells conferred a degree of protection against DM after 72h. Furthermore, interference with Ran significantly decrease cell viability. All of the above findings strongly imply that Ran may participate in the development of stress reaction to DM. Therefore, investigating the possible role of Ran in DM stress will broaden our limited knowledge regarding DM stress inducible genes. PMID:26924245

  17. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  18. Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis

    PubMed Central

    Hynes, Ann Marie; Giles, Rachel H.; Srivastava, Shalabh; Eley, Lorraine; Whitehead, Jennifer; Danilenko, Marina; Raman, Shreya; Slaats, Gisela G.; Colville, John G.; Ajzenberg, Henry; Kroes, Hester Y.; Thelwall, Peter E.; Simmons, Nicholas L.; Miles, Colin G.; Sayer, John A.

    2014-01-01

    Nephronophthisis (NPHP) is the major cause of pediatric renal failure, yet the disease remains poorly understood, partly due to the lack of appropriate animal models. Joubert syndrome (JBTS) is an inherited ciliopathy giving rise to NPHP with cerebellar vermis aplasia and retinal degeneration. Among patients with JBTS and a cerebello-oculo-renal phenotype, mutations in CEP290 (NPHP6) are the most common genetic lesion. We present a Cep290 gene trap mouse model of JBTS that displays the kidney, eye, and brain abnormalities that define the syndrome. Mutant mice present with cystic kidney disease as neonates. Newborn kidneys contain normal amounts of lymphoid enhancer-binding factor 1 (Lef1) and transcription factor 1 (Tcf1) protein, indicating normal function of the Wnt signaling pathway; however, an increase in the protein Gli3 repressor reveals abnormal Hedgehog (Hh) signaling evident in newborn kidneys. Collecting duct cells from mutant mice have abnormal primary cilia and are unable to form spheroid structures in vitro. Treatment of mutant cells with the Hh agonist purmorphamine restored normal spheroid formation. Renal epithelial cells from a JBTS patient with CEP290 mutations showed similar impairments to spheroid formation that could also be partially rescued by exogenous stimulation of Hh signaling. These data implicate abnormal Hh signaling as the cause of NPHP and suggest that Hh agonists may be exploited therapeutically. PMID:24946806

  19. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    PubMed Central

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551

  20. Analysis of climate paths reveals potential limitations on species range shifts.

    PubMed

    Early, Regan; Sax, Dov F

    2011-11-01

    Forecasts of species endangerment under climate change usually ignore the processes by which species ranges shift. By analysing the 'climate paths' that range shifts might follow, and two key range-shift processes--dispersal and population persistence--we show that short-term climatic and population characteristics have dramatic effects on range-shift forecasts. By employing this approach with 15 amphibian species in the western USA, we make unexpected predictions. First, inter-decadal variability in climate change can prevent range shifts by causing gaps in climate paths, even in the absence of geographic barriers. Second, the hitherto unappreciated trait of persistence during unfavourable climatic conditions is critical to species range shifts. Third, climatic fluctuations and low persistence could lead to endangerment even if the future potential range size is large. These considerations may render habitat corridors ineffectual for some species, and conservationists may need to consider managed relocation and augmentation of in situ populations. PMID:21955643

  1. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance

    PubMed Central

    Shommu, Nusrat S.; Vogel, Hans J.; Storey, Douglas G.

    2015-01-01

    The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights. PMID:26217312

  2. Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25.

    PubMed

    Belt, S T; Smik, L; Brown, T A; Kim, J-H; Rowland, S J; Allen, C S; Gal, J-K; Shin, K-H; Lee, J I; Taylor, K W R

    2016-01-01

    The presence of a di-unsaturated highly branched isoprenoid (HBI) lipid biomarker (diene II) in Southern Ocean sediments has previously been proposed as a proxy measure of palaeo Antarctic sea ice. Here we show that a source of diene II is the sympagic diatom Berkeleya adeliensis Medlin. Furthermore, the propensity for B. adeliensis to flourish in platelet ice is reflected by an offshore downward gradient in diene II concentration in >100 surface sediments from Antarctic coastal and near-coastal environments. Since platelet ice formation is strongly associated with super-cooled freshwater inflow, we further hypothesize that sedimentary diene II provides a potentially sensitive proxy indicator of landfast sea ice influenced by meltwater discharge from nearby glaciers and ice shelves, and re-examination of some previous diene II downcore records supports this hypothesis. The term IPSO25-Ice Proxy for the Southern Ocean with 25 carbon atoms-is proposed as a proxy name for diene II. PMID:27573030

  3. Comparative Genomic Analysis Reveals a Possible Novel Non-Tuberculous Mycobacterium Species with High Pathogenic Potential

    PubMed Central

    Choo, Siew Woh; Dutta, Avirup; Wong, Guat Jah; Wee, Wei Yee; Ang, Mia Yang; Siow, Cheuk Chuen

    2016-01-01

    Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections. PMID:27035710

  4. Event related potentials reveal differences between morphological (prefixes) and phonological (syllables) processing of words.

    PubMed

    Domínguez, Alberto; Alija, Maira; Cuetos, Fernando; de Vega, Mauel

    2006-11-01

    Behavioral measures in visual priming tasks show opposite effects for syllables and morphemes, which indicate that they are processed by two independent systems. We used event related potentials (ERPs) to explore two priming situations in Spanish: prefix related words (reacción-REFORMA [reaction-reform]), in which prime and target words shared a first syllable that was also a prefix, and syllable related words (regalo-REFORMA [gift-reform.]), in which the shared first syllable was a pseudoprefix in the prime word. Prefix related pairs, unlike syllable related pairs, evoked a very early positivity in reaction to the target (at 150-250ms window), suggesting that the prefix information is immediately available, at a prelexical stage. By contrast, syllable related pairs showed a larger N400 effect. This late negativity may be caused by lateral inhibition among lexical candidates activated in the lexicon by the prime's first syllable. PMID:16996688

  5. Early age-related changes in episodic memory retrieval as revealed by event-related potentials.

    PubMed

    Guillaume, Cécile; Clochon, Patrice; Denise, Pierre; Rauchs, Géraldine; Guillery-Girard, Bérengère; Eustache, Francis; Desgranges, Béatrice

    2009-01-28

    Familiarity is better preserved than recollection in ageing. The age at which changes first occur and the slope of the subsequent decline, however, remain unclear. In this study, we investigated changes in episodic memory, by using event-related potentials (ERPs) in young (m=24), middle-aged (m=58) and older (m=70) adults. Although behavioural performance did not change before the age of 65 years, changes in ERP correlates were already present in the middle-aged adults. The ERP correlates of recollection and monitoring processes were the first to be affected by ageing, with a linear decrease as age increased. Conversely, the ERP correlate of familiarity remained unchanged, at least up to the age of 65 years. These results suggest a differential time course for the age effects on episodic retrieval. PMID:19104457

  6. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.

    PubMed Central

    Overturf, K.; al-Dhalimy, M.; Ou, C. N.; Finegold, M.; Grompe, M.

    1997-01-01

    Previous work has shown that adult mouse hepatocytes can divide at least 18 times in vivo. To test whether this represents the upper limit of their regenerative capacity, we performed serial transplantation of hepatocytes in the fumarylacetoacetate hydrolase deficiency murine model of liver repopulation. Hepatocytes from adult donors were serially transplanted in limiting numbers six times and resulted in complete repopulation during each cycle. This corresponds to a minimal number of 69 cell doublings or a 7.3 x 10(20)-fold expansion. No evidence for abnormal liver function or altered hepatic architecture was found in repopulated animals. We conclude that a fraction of adult mouse hepatocytes have growth potential similar to that of hematopoietic stem cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9358753

  7. Deep Sequencing and Circos Analyses of Antibody Libraries Reveal Antigen-driven Selection of Ig VH Genes during HIV-1 Infection

    PubMed Central

    Xiao, Madelyne; Ponraj, Prabakaran; Chen, Weizao; Kessing, Bailey; Dimitrov, Dimiter S.

    2013-01-01

    The vast diversity of antibody repertoires is largely attributed to heavy chain (VH) recombination of variable (V), diversity (D) and joining (J) gene segments. We used 454 sequencing information of the variable domains of the antibody heavy chain repertoires from neonates, normal adults and an HIV-1-infected individual, to analyze, with Circos software, the VDJ pairing patterns at birth, adulthood and a time-dependent response to HIV-1 infection. Our comparative analyses of the Ig VDJ repertoires from these libraries indicated that, from birth to adulthood, VDJ recombination patterns remain the same with some slight changes, whereas some VH families are selected and preferentially expressed after long-term infection with HIV-1. We also demonstrated that the immune system responds to HIV-1 chronic infection by selectively expanding certain HV families in an attempt to combat infection. Our findings may have implications for understanding immune responses in pathology as well as for development of new therapeutics and vaccines. PMID:24158018

  8. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions.

    PubMed

    Chow, Cheryl-Emiliane T; Winget, Danielle M; White, Richard A; Hallam, Steven J; Suttle, Curtis A

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant "nr" database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  9. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    PubMed Central

    Chow, Cheryl-Emiliane T.; Winget, Danielle M.; White, Richard A.; Hallam, Steven J.; Suttle, Curtis A.

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant “nr” database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  10. Genetic and genomic dissection of Prolactin revealed potential association with milk production traits in riverine buffalo.

    PubMed

    Nadeem, A; Maryam, J

    2016-08-01

    Milk yield and quality has been a major selection criterion for genetic improvement in livestock species. Role of Prolactin gene in determining milk quality in terms of protein profile, lactose, lipids and other imperative macromolecules is very important. In this context, genetic profiling of Prolactin gene in riverine buffalo of Pakistan was performed and potential genetic markers were identified illustrating worth of this gene in marker-assisted selection of superior dairy buffaloes. Series of wet and dry lab experimentation was performed starting with genomic DNA isolation from true to breed representatives of indigenous river buffalo (Nili-Ravi). After amplification of coding regions of Prolactin gene, products were eluted and sequenced by Sanger's chain termination method and aligned to get variations in genomic region. A total of 15 novel variations were identified and analyzed statistically for their significance at population level, haplotypes were constructed, and association was estimated. Phylogenetic analysis was performed to evaluate the rate of evolution for Prolactin gene in various mammalian species. Lastly, biological networking for this molecule was predicted to get the bigger pictorial of its functional machinery. Pathway analysis was performed to find its physiological mode of action in milk synthesis. This is a first report toward complete genetic screening of Prolactin gene in Pakistani buffaloes. Results of this study not only provide an insight for potential role of Prolactin gene in milk-producing abilities of buffalo but also suggest new directions for exploration of more genes that may have promising role to enhance future milk production capabilities of river buffalo breeds of Asian region through marker-assisted selection. PMID:27240674

  11. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression.

    PubMed

    Abd Hamid, Umi M; Royle, Louise; Saldova, Radka; Radcliffe, Catherine M; Harvey, David J; Storr, Sarah J; Pardo, Maria; Antrobus, Robin; Chapman, Caroline J; Zitzmann, Nicole; Robertson, John F; Dwek, Raymond A; Rudd, Pauline M

    2008-12-01

    Aberrant glycosylation on glycoproteins that are either presented on the surface or secreted by cancer cells is a potential source of disease biomarkers and provides insights into disease pathogenesis. N-Glycans of the total serum glycoproteins from advanced breast cancer patients and healthy individuals were sequenced by HPLC with fluorescence detection coupled with exoglycosidase digestions and mass spectrometry. We observed a significant increase in a trisialylated triantennary glycan containing alpha1,3-linked fucose which forms part of the sialyl Lewis x epitope. Following digestion of the total glycan pool with a combination of sialidase and beta-galactosidase, we segregated and quantified a digestion product, a monogalactosylated triantennary structure containing alpha1,3-linked fucose. We compared breast cancer patients and controls and detected a 2-fold increase in this glycan marker in patients. In 10 patients monitored longitudinally, we showed a positive correlation between this glycan marker and disease progression and also demonstrated its potential as a better indicator of metastasis compared to the currently used biomarkers, CA 15-3 and carcinoembryonic antigen (CEA). A pilot glycoproteomic study of advanced breast cancer serum highlighted acute-phase proteins alpha1-acid glycoprotein, alpha1-antichymotrypsin, and haptoglobin beta-chain as contributors to the increase in the glycan marker which, when quantified from each of these proteins, marked the onset of metastasis in advance of the CA 15-3 marker. These preliminary findings suggest that specific glycans and glycoforms of proteins may be candidates for improved markers in the monitoring of breast cancer progression. PMID:18818422

  12. Anti-gammaglobulin factors in human sera revealed by enzymatic splitting of anti-Rh antibodies. Vox Sang 1963;8:133-52.

    PubMed

    Osterland, C K; Harboe, M; Kunkel, H G

    1993-01-01

    Human sera were found that contained antibody activity which caused agglutination of red cells or particles sensitized with immunoglobulin G that had first been degraded by pepsin proteolysis. The agglutinating activity was specific for a determinant that was not present on the untreated, native immunoglobulin. It was found most frequently in sera from rheumatoid arthritis patients and its titre showed some correlation with disease activity. PMID:7685972

  13. A Cryo-Electron Microscopy Study Identifies the Complete H16.V5 Epitope and Reveals Global Conformational Changes Initiated by Binding of the Neutralizing Antibody Fragment

    PubMed Central

    Lee, Hyunwook; Brendle, Sarah A.; Bywaters, Stephanie M.; Guan, Jian; Ashley, Robert E.; Yoder, Joshua D.; Makhov, Alexander M.; Conway, James F.; Christensen, Neil D.

    2014-01-01

    ABSTRACT Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid–Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called “invading-arm” structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites. IMPORTANCE Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and “invading-arm” structures. This study advances the understanding of the neutralization mechanism used

  14. A novel panel of monoclonal antibodies against Schmallenberg virus nucleoprotein and glycoprotein Gc allows specific orthobunyavirus detection and reveals antigenic differences.

    PubMed

    Wernike, Kerstin; Brocchi, Emiliana; Cordioli, Paolo; Sénéchal, Yann; Schelp, Christian; Wegelt, Anne; Aebischer, Andrea; Roman-Sosa, Gleyder; Reimann, Ilona; Beer, Martin

    2015-01-01

    A panel of monoclonal antibodies (mAbs) specific for the nucleocapsid (N) protein or the glycoprotein Gc of Schmallenberg virus (SBV), a novel member of the Simbu serogroup (genus Orthobunyavirus, family Bunyaviridae), was produced and used to analyze antigenic differences among members of this serogroup. Reactivity with various SBV-isolates and other Simbu serogroup viruses was assessed by an indirect immunofluorescence test and by immunoblotting. The Gc-specific mAbs detected different SBV isolates as well as two closely related members of the Simbu serogroup. In addition, one mAb showed a highly specific reactivity with the homologous SBV strain only. Based on their differing reactivity with different SBV-strains, these antibodies represent a valuable novel tool to rapidly determine the phenotype of new SBV isolates. In contrast, the N-specific mAbs showed a broad reactivity spectrum and detected not only all the tested SBV-isolates, but also several other viruses of the Simbu serogroup. One out of these mAbs even recognized all of the tested Simbu serogroup viruses in the indirect immunofluorescence assay. In order to further characterize the N-specific antibodies, PepScan analysis was performed and a specific epitope could be identified. In summary, the newly generated mAbs showed differing pan-Simbu virus-, pan-SBV- as well as SBV-isolate-specific reactivity patterns. Thus, they represent valuable tools for the development of novel antigen and antibody detection systems either specific for SBV or, in a broader approach, for the pan-Simbu serogroup diagnostics. PMID:25889366

  15. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration.

    PubMed

    Liguori, Maria; Qualtieri, Antonio; Tortorella, Carla; Direnzo, Vita; Bagalà, Angelo; Mastrapasqua, Mariangela; Spadafora, Patrizia; Trojano, Maria

    2014-01-01

    The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF) proteomic profiles of Multiple Sclerosis (MS) patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS), 16 Relapsing Remitting (RR) MS, 11 Progressive (Pr) MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF) mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000-25000 Da). Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥ 1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05), whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04). Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013). Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS. PMID:25098164

  16. Digital sleep logs reveal potential impacts of modern temporal structure on class performance in different chronotypes.

    PubMed

    Smarr, Benjamin Lee

    2015-02-01

    Stability of sleep and circadian rhythms are important for healthy learning and memory. While experimental manipulations of lifestyle and learning outcomes present major obstacles, the ongoing increase in data sources allows retrospective data mining of people's sleep timing variation. Here I use digital sleep-log data generated by 1109 students in a biology lab course at the University of Washington to test the hypothesis that higher variance in time asleep and later sleep-onset times negatively correlate with class performance, used here as a real-world proxy for learning and memory. I find that sleep duration variance and mean sleep-onset times both significantly correlate with class performance. These correlations are powerful on weeknights but undetectable on Friday and Saturday nights ("free nights"). Finally, although these data come with no demographic information beyond sex, the constructed demographic groups of "larks" and "owls" within the sexes reveal a significant decrease in performance of owls relative to larks in male students, whereas the correlation of performance with sleep-onset time for all male students was only a near-significant trend. This provides a proof of concept that deeper demographic mining of digital logs in the future may identify subgroups for which certain sleep phenotypes have greater predictive value for performance outcomes. The data analyzed are consistent with known patterns, including sleep-timing delays from weeknights to free nights and sleep-timing delays in men relative to women. These findings support the hypothesis that modern schedule impositions on sleep and circadian timing have consequences for real-world learning and memory. This study also highlights the low-cost, large-scale benefits of personal, daily, digital records as an augmentation of sleep and circadian studies. PMID:25564433

  17. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients.

    PubMed

    Humphrey, Emma L; Lacey, Erica; Le, Lam T; Feng, Lucy; Sciandra, Francesca; Morris, Charlotte R; Hewitt, Jane E; Holt, Ian; Brancaccio, Andrea; Barresi, Rita; Sewry, Caroline A; Brown, Susan C; Morris, Glenn E

    2015-01-01

    We generated a novel monoclonal antibody, DAG-6F4, against alpha-dystroglycan which immunolabels the sarcolemma in human muscle biopsies. Its seven amino-acid epitope, PNQRPEL, was identified using phage-displayed peptides and is located immediately after the highly-glycosylated mucin domain of alpha-dystroglycan. On Western blots of recombinant alpha-dystroglycan, epitope accessibility was reduced, but not entirely prevented, by glycosylation. DAG-6F4 immunolabelling was markedly reduced in muscle biopsies from Duchenne muscular dystrophy patients consistent with disruption of the dystroglycan complex. In a range of dystroglycanopathy patients with reduced/altered glycosylation, staining by DAG-6F4 was often less reduced than staining by IIH6 (antibody against the glycan epitope added by LARGE and commonly used to identify glycosylated alpha-dystroglycan). Whereas IIH6 was reduced in all patients, DAG-6F4 was hardly changed in a LARGE patient, less reduced than IIH6 in limb-girdle muscular dystrophy type 2I, but as reduced as IIH6 in some congenital muscular dystrophy patients. Although absence of the LARGE-dependent laminin-binding site appears not to affect alpha-dystroglycan stability at the sarcolemma, the results suggest that further reduction in aDG glycosylation may reduce its stability. These studies suggest that DAG-6F4 may be a useful addition to the antibody repertoire for evaluating the dystroglycan complex in neuromuscular disorders. PMID:25387694

  18. Analytical characterization of a monoclonal antibody therapeutic reveals a three-light chain species that is efficiently removed using hydrophobic interaction chromatography

    PubMed Central

    Wollacott, Rachel B; Casaz, Paul L; Morin, Trevor J; Zhu, H Lily; Anderson, Roger S; Babcock, Gregory J; Que, John; Thomas Jr, William D; Ozturk, Sadettin S

    2013-01-01

    Size exclusion high performance liquid chromatography analysis of a human monoclonal antibody (mAb) showed the presence of a new species that eluted with a retention time between the dimeric and monomeric species of the antibody. Extensive characterization of this species, referred to as “shoulder,” indicated that it was a mAb containing an extra light chain and had a molecular weight of approximately 175 kDa. The extra light chain was found to be non-covalently associated with the Fab portion of the protein. The relative amount of shoulder (typically 1−3% of the total mAb present) varied with the Chinese hamster ovary cell line producing the mAb and was not influenced by the growth conditions. Our three-step mAb purification platform using protein A, anion exchange, and cation exchange process steps was successful at removing dimer and higher and lower molecular weight species, but not the shoulder impurity. It was found that hydrophobic interaction chromatography could be used in place of cation exchange to exploit the subtle differences in hydrophobicity between monomer and shoulder. We developed an antibody polishing process using Butyl Sepharose HP resin that is capable of removing the majority of high and low molecular weight impurities yielding 99% pure mAb monomer, virtually devoid of the shoulder species, with a step recovery of about 80%. PMID:23995619

  19. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    PubMed

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  20. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics

    PubMed Central

    Mo, Charlie Y.; Manning, Sara A.; Roggiani, Manuela; Culyba, Matthew J.; Samuels, Amanda N.; Sniegowski, Paul D.; Goulian, Mark

    2016-01-01

    ABSTRACT The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role

  1. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems

    PubMed Central

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui

    2015-01-01

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  2. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems.

    PubMed

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui

    2015-01-01

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  3. MicroRNA Profiling of CSF Reveals Potential Biomarkers to Detect Alzheimer`s Disease

    PubMed Central

    Denk, Johannes; Boelmans, Kai; Siegismund, Christine; Lassner, Dirk; Arlt, Sönke; Jahn, Holger

    2015-01-01

    The miRBase-21 database currently lists 1881 microRNA (miRNA) precursors and 2585 unique mature human miRNAs. Since their discovery, miRNAs have proved to present a new level of epigenetic post-transcriptional control of protein synthesis. Initial results point to a possible involvement of miRNA in Alzheimer’s disease (AD). We applied OpenArray technology to profile the expression of 1178 unique miRNAs in cerebrospinal fluid (CSF) samples of AD patients (n = 22) and controls (n = 28). Using a Cq of 34 as cut-off, we identified positive signals for 441 miRNAs, while 729 miRNAs could not be detected, indicating that at least 37% of miRNAs are present in the brain. We found 74 miRNAs being down- and 74 miRNAs being up-regulated in AD using a 1.5 fold change threshold. By applying the new explorative “Measure of relevance” method, 6 reliable and 9 informative biomarkers were identified. Confirmatory MANCOVA revealed reliable miR-100, miR-146a and miR-1274a as differentially expressed in AD reaching Bonferroni corrected significance. MANCOVA also confirmed differential expression of informative miR-103, miR-375, miR-505#, miR-708, miR-4467, miR-219, miR-296, miR-766 and miR-3622b-3p. Discrimination analysis using a combination of miR-100, miR-103 and miR-375 was able to detect AD in CSF by positively classifying controls and AD cases with 96.4% and 95.5% accuracy, respectively. Referring to the Ingenuity database we could identify a set of AD associated genes that are targeted by these miRNAs. Highly predicted targets included genes involved in the regulation of tau and amyloid pathways in AD like MAPT, BACE1 and mTOR. PMID:25992776

  4. Multi-analytical approach reveals potential microbial indicators in soil for sugarcane model systems

    DOE PAGESBeta

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui; Lehman, R. Michael

    2015-06-09

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that weremore » correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  5. Multi-analytical approach reveals potential microbial indicators in soil for sugarcane model systems

    SciTech Connect

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui; Lehman, R. Michael

    2015-06-09

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions

  6. Proteomic Analysis of Cerebrospinal Fluid in Pneumococcal Meningitis Reveals Potential Biomarkers Associated with Survival

    PubMed Central

    Goonetilleke, Upali R.; Scarborough, Matthew; Ward, Stephen A.; Gordon, Stephen B.

    2016-01-01

    Background Patients with pneumococcal meningitis often die or have severe neurological damage despite optimal antibiotic therapy. New or improved therapy is required. The delivery of new interventions will require an improved understanding of the disease pathogenesis. Our objective was to learn more about the pathophysiology of severe meningitis through the interpretation of differences in the proteomic profile of cerebrospinal fluid (CSF) from patients with meningitis. Methods Two-dimensional polyacrylamide gel electrophoresis of CSF from normal subjects (controls, n = 10) and patients with pneumococcal meningitis (n = 20) was analyzed. Spot differences were compared and identified between controls, nonsurvivors (n = 9), and survivors (n = 11). Results Protein concentration in CSF of patients with meningitis was 4-fold higher than in CSF of control subjects (7.0 mg/mL vs 0.23 mg/mL; P < .01). A mean of 2466 discrete protein spots was present in CSF of patients with meningitis. Thirty-four protein spots were differentially expressed in CSF of nonsurvivors, compared with survivors. None of these protein spots were observed in CSF of control subjects. Conclusions Proteomic screening of CSF yields potential biomarkers capable of differentiating control subjects from nonsurvivors and survivors of meningitis. Proteins involved in the inflammatory process and central metabolism were represented in the differentially expressed protein repertoire. PMID:20608875

  7. Auditory information processing during human sleep as revealed by event-related brain potentials.

    PubMed

    Atienza, M; Cantero, J L; Escera, C

    2001-11-01

    The main goal of this review is to elucidate up to what extent pre-attentive auditory information processing is affected during human sleep. Evidence from event-related brain potential (ERP) studies indicates that auditory information processing is selectively affected, even at early phases, across the different stages of sleep-wakefulness continuum. According to these studies, 3 main conclusions are drawn: (1) the sleeping brain is able to automatically detect stimulus occurrence and trigger an orienting response towards that stimulus if its degree of novelty is large; (2) auditory stimuli are represented in the auditory system and maintained for a period of time in sensory memory, making the automatic-change detection during sleep possible; and (3) there are specific brain mechanisms (sleep-specific ERP components associated with the presence of vertex waves and K-complexes) by which information processing can be improved during non-rapid eye movement sleep. However, the remarkably affected amplitude and latency of the waking-ERPs during the different stages of sleep suggests deficits in the building and maintenance of a neural representation of the stimulus as well as in the process by which neural events lead to an orienting response toward such a stimulus. The deactivation of areas in the dorsolateral pre-frontal cortex during sleep contributing to the generation of these ERP components is hypothesized to be one of the main causes for the attenuated amplitude of these ERPs during human sleep. PMID:11682341

  8. Lateralized readiness potentials reveal properties of a neural mechanism for implementing a decision threshold.

    PubMed

    van Vugt, Marieke K; Simen, Patrick; Nystrom, Leigh; Holmes, Philip; Cohen, Jonathan D

    2014-01-01

    Many perceptual decision making models posit that participants accumulate noisy evidence over time to improve the accuracy of their decisions, and that in free response tasks, participants respond when the accumulated evidence reaches a decision threshold. Research on the neural correlates of these models' components focuses primarily on evidence accumulation. Far less attention has been paid to the neural correlates of decision thresholds, reflecting the final commitment to a decision. Inspired by a model of bistable neural activity that implements a decision threshold, we reinterpret human lateralized readiness potentials (LRPs) as reflecting the crossing of a decision threshold. Interestingly, this threshold crossing preserves signatures of a drift-diffusion process of evidence accumulation that feeds in to the threshold mechanism. We show that, as our model predicts, LRP amplitudes and growth rates recorded while participants performed a motion discrimination task correlate with individual differences in behaviorally-estimated prior beliefs, decision thresholds and evidence accumulation rates. As such LRPs provide a useful measure to test dynamical models of both evidence accumulation and decision commitment processes non-invasively. PMID:24625827

  9. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    PubMed

    Desnos-Ollivier, Marie; Robert, Vincent; Raoux-Barbot, Dorothée; Groenewald, Marizeth; Dromer, Françoise

    2012-01-01

    New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites) were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes). Interestingly, geometric mean minimum inhibitory concentrations (MICs) of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001). Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens. PMID:22396754

  10. Dynamics of the spatial scale of visual attention revealed by brain event-related potentials

    NASA Technical Reports Server (NTRS)

    Luo, Y. J.; Greenwood, P. M.; Parasuraman, R.

    2001-01-01

    The temporal dynamics of the spatial scaling of attention during visual search were examined by recording event-related potentials (ERPs). A total of 16 young participants performed a search task in which the search array was preceded by valid cues that varied in size and hence in precision of target localization. The effects of cue size on short-latency (P1 and N1) ERP components, and the time course of these effects with variation in cue-target stimulus onset asynchrony (SOA), were examined. Reaction time (RT) to discriminate a target was prolonged as cue size increased. The amplitudes of the posterior P1 and N1 components of the ERP evoked by the search array were affected in opposite ways by the size of the precue: P1 amplitude increased whereas N1 amplitude decreased as cue size increased, particularly following the shortest SOA. The results show that when top-down information about the region to be searched is less precise (larger cues), RT is slowed and the neural generators of P1 become more active, reflecting the additional computations required in changing the spatial scale of attention to the appropriate element size to facilitate target discrimination. In contrast, the decrease in N1 amplitude with cue size may reflect a broadening of the spatial gradient of attention. The results provide electrophysiological evidence that changes in the spatial scale of attention modulate neural activity in early visual cortical areas and activate at least two temporally overlapping component processes during visual search.

  11. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    DOE PAGESBeta

    Ye, Hao; Ng, Hui; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-03-26

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoidsmore » that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. We find diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.« less

  12. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    PubMed Central

    Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-01-01

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process. PMID:27023590

  13. Survey of commercial Rhodiola products revealed species diversity and potential safety issues.

    PubMed

    Xin, Tianyi; Li, Xiaojin; Yao, Hui; Lin, Yulin; Ma, Xiaochong; Cheng, Ruiyang; Song, Jingyuan; Ni, Lianghong; Fan, Congzhao; Chen, Shilin

    2015-01-01

    The adulteration of herbal products is a threat to consumer safety. Here we surveyed the species composition of commercial Rhodiola products using DNA barcoding as a supervisory method. A Rhodiola dietary supplement DNA barcode database was successfully constructed using 82 voucher samples from 10 Rhodiola species. Based on the DNA barcoding standard operating procedure (SOP), we used this database to identify 100 Rhodiolae Crenulatae Radix et Rhizoma decoction piece samples that were purchased from drug stores and hospitals. The results showed that only 36 decoction piece sequences (40%) were authentic R. crenulata, which is recorded in Chinese Pharmacopeia, whereas the other samples were all adulterants and may indicate a potential safety issue. Among the adulterants, 35 sequences (38.9%) were authenticated as R. serrata, nine sequences (10%) were authenticated as R. rosea, which is documented in the United States Pharmacopeia, and the remaining samples were authenticated as other three Rhodiola species. This result indicates decoction pieces that are available in the market have complex origins and DNA barcoding is a convenient tool for market supervision. PMID:25661009

  14. Event-related potentials reveal the relations between feature representations at different levels of abstraction.

    PubMed

    Hannah, Samuel D; Shedden, Judith M; Brooks, Lee R; Grundy, John G

    2016-11-01

    In this paper, we use behavioural methods and event-related potentials (ERPs) to explore the relations between informational and instantiated features, as well as the relation between feature abstraction and rule type. Participants are trained to categorize two species of fictitious animals and then identify perceptually novel exemplars. Critically, two groups are given a perfectly predictive counting rule that, according to Hannah and Brooks (2009. Featuring familiarity: How a familiar feature instantiation influences categorization. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 63, 263-275. Retrieved from http://doi.org/10.1037/a0017919), should orient them to using abstract informational features when categorizing the novel transfer items. A third group is taught a feature list rule, which should orient them to using detailed instantiated features. One counting-rule group were taught their rule before any exposure to the actual stimuli, and the other immediately after training, having learned the instantiations first. The feature-list group were also taught their rule after training. The ERP results suggest that at test, the two counting-rule groups processed items differently, despite their identical rule. This not only supports the distinction that informational and instantiated features are qualitatively different feature representations, but also implies that rules can readily operate over concrete inputs, in contradiction to traditional approaches that assume that rules necessarily act on abstract inputs. PMID:26513169

  15. Hemispheric differences in orthographic and semantic processing as revealed by event-related potentials

    PubMed Central

    Dickson, Danielle S.; Federmeier, Kara D.

    2015-01-01

    Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. PMID:25278134

  16. A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves

    PubMed Central

    2013-01-01

    The mangroves are among the most productive and biologically important environments. The possible presence of cellulolytic enzymes and microorganisms useful for biomass degradation as well as taxonomic and functional aspects of two Brazilian mangroves were evaluated using cultivation and metagenomic approaches. From a total of 296 microorganisms with visual differences in colony morphology and growth (including bacteria, yeast and filamentous fungus), 179 (60.5%) and 117 (39.5%) were isolated from the Rio de Janeiro (RJ) and Bahia (BA) samples, respectively. RJ metagenome showed the higher number of microbial isolates, which is consistent with its most conserved state and higher diversity. The metagenomic sequencing data showed similar predominant bacterial phyla in the BA and RJ mangroves with an abundance of Proteobacteria (57.8% and 44.6%), Firmicutes (11% and 12.3%) and Actinobacteria (8.4% and 7.5%). A higher number of enzymes involved in the degradation of polycyclic aromatic compounds were found in the BA mangrove. Specific sequences involved in the cellulolytic degradation, belonging to cellulases, hemicellulases, carbohydrate binding domains, dockerins and cohesins were identified, and it was possible to isolate cultivable fungi and bacteria related to biomass decomposition and with potential applications for the production of biofuels. These results showed that the mangroves possess all fundamental molecular tools required for building the cellulosome, which is required for the efficient degradation of cellulose material and sugar release. PMID:24160319

  17. Perilipin Expression Reveals Adipogenic Potential of hADSCs inside Superporous Polymeric Cellular Delivery Systems

    PubMed Central

    Dinescu, Sorina; Galateanu, Bianca; Lungu, Adriana; Radu, Eugen; Nae, Sorin; Iovu, Horia; Costache, Marieta

    2014-01-01

    Recent progress in tissue engineering and regenerative medicine envisages the use of cell-scaffold bioconstructs to best mimic the natural in vivo microenvironment. Our aim was not only to develop novel 3D porous scaffolds for regenerative applications by the association of gelatin (G), alginate (A), and polyacrylamide (PAA) major assets but also to evaluate their in vitro potential to support human adipose-derived stem cells (hADSCs) adipogenesis. G-A-PAA biomatrix investigated in this work is an interesting substrate combining the advantages of the three individual constituents, namely, biodegradability of G, hydrophilicity of A and PAA, superior elasticity at compression with respect to the G-A and PAA controls, and the capacity to generate porous scaffolds. hADSCs inside these novel interpenetrating polymer networks (IPNs) were able to populate the entire scaffold structure and to display their characteristic spindle-like shape as a consequence of a good interaction with G component of the matrices. Additionally, hADSCs proved to display the capacity to differentiate towards mature adipocytes, to accumulate lipids inside their cytoplasm, and to express perilipin late adipogenic marker inside novel IPNs described in this study. On long term, this newly designed biomatrix aims to represent a stem cell delivery system product dedicated for modern regenerative strategies. PMID:24895615

  18. Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces

    SciTech Connect

    Shandilya, Shivender M.D.; Nalam, Madhavi N.L.; Nalivaika, Ellen A.; Gross, Phillip J.; Valesano, Johnathan C.; Shindo, Keisuke; Li, Ming; Munson, Mary; Royer, William E.; Harjes, Elena; Kono, Takahide; Matsuo, Hiroshi; Harris, Reuben S.; Somasundaran, Mohan; Schiffer, Celia A.

    2010-02-11

    APOBEC3G is a DNA cytidine deaminase that has antiviral activity against HIV-1 and other pathogenic viruses. In this study the crystal structure of the catalytically active C-terminal domain was determined to 2.25 {angstrom}. This structure corroborates features previously observed in nuclear magnetic resonance (NMR) studies, a bulge in the second {beta} strand and a lengthening of the second {alpha} helix. Oligomerization is postulated to be critical for the function of APOBEC3G. In this structure, four extensive intermolecular interfaces are observed, suggesting potential models for APOBEC3G oligomerization. The structural and functional significance of these interfaces was probed by solution NMR and disruptive variants were designed and tested for DNA deaminase and anti-HIV activities. The variant designed to disrupt the most extensive interface lost both activities. NMR solution data provides evidence that another interface, which coordinates a novel zinc site, also exists. Thus, the observed crystallographic interfaces of APOBEC3G may be important for both oligomerization and function.

  19. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  20. Temporally and functionally dissociable retrieval processing operations revealed by event-related potentials.

    PubMed

    Cruse, Damian; Wilding, Edward L

    2011-06-01

    In a pair of recent studies, frontally distributed event-related potential (ERP) indices of two distinct post-retrieval processes were identified. It has been proposed that one of these processes operates over any kinds of task relevant information in service of task demands, while the other operates selectively over recovered contextual (episodic) information. The experiment described here was designed to test this account, by requiring retrieval of different kinds of contextual information to that required in previous relevant studies. Participants heard words spoken in either a male or female voice at study and ERPs were acquired at test where all words were presented visually. Half of the test words had been spoken at study. Participants first made an old/new judgment, distinguishing via key press between studied and unstudied words. For words judged 'old', participants indicated the voice in which the word had been spoken at study, and their confidence (high/low) in the voice judgment. There was evidence for only one of the two frontal old/new effects that had been identified in the previous studies. One possibility is that the ERP effect in previous studies that was tied specifically to recollection reflects processes operating over only some kinds of contextual information. An alternative is that the index reflects processes that are engaged primarily when there are few contextual features that distinguish between studied stimuli. PMID:21382387

  1. Involvement of the N-terminal region of the human mineralocorticoid receptor hormone-binding domain in agonist and antagonist binding as revealed by a new monoclonal antibody.

    PubMed Central

    Jalaguier, S; Lupo, B; Hugon, G; Rafestin-Oblin, M E; Auzou, G

    1997-01-01

    To gain a better understanding of the mechanism of binding to the human mineralocorticoid receptor (hMR), we developed a new monoclonal antibody (mAb) raised against the hormone-binding domain (HBD). For this purpose, mice were immunized with a fusion protein including the sequence Thr729-Lys984 of hMR. After ELISA screening, mAb 18C7 was selected for its specificity towards the HBD. This antibody recognized both the denatured and native MR forms, as well as the hetero-oligomeric MR form and the transformed MR state. By using several HBD subfragments, the mAb 18C7 epitope was located in the N-terminal region of the HBD from Thr729 to Leu765. We then studied the effect of the antibody on aldosterone and progesterone binding to the hMR. When 18C7 was incubated with liganded MR, it was able to partly displace (20%) the hormone from its binding site. When 18C7 was incubated with MR before aldosterone or progesterone, the antibody inhibited 75-80% of the binding. The effect of 18C7 on the binding was similar with both hormones. A sucrose gradient analysis indicated the simultaneous presence of two kinds of receptor complexes: the steroid-MR complex and the antibody-MR complex. After its associated proteins, especially the heat-shock protein hsp90, had been cross-linked with the hMR by dimethylpimelimidate, 18C7 was still able to react with the receptor. Our results indicated that the epitope recognized by 18C7 was directly implicated in hormone binding. The lack of steroid binding of HBD mutants with the Thr729-Leu765 sequence deleted [Jalaguier, Mesnier, Léger and Auzou (1996) J. Steroid Biochem. Mol. Biol. 57, 43-50] supports this hypothesis. Because of the similar behaviours of aldosterone and progesterone, we conclude that the N-terminal Thr729-Leu765 region of the HBD is similarly involved in the binding of both hormones. PMID:9164841

  2. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization

    PubMed Central

    Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio

    2015-01-01

    The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640

  3. Plasma lipidomics reveals potential prognostic signatures within a cohort of cystic fibrosis patients.

    PubMed

    Ollero, Mario; Astarita, Giuseppe; Guerrera, Ida Chiara; Sermet-Gaudelus, Isabelle; Trudel, Stéphanie; Piomelli, Daniele; Edelman, Aleksander

    2011-05-01

    Cystic fibrosis (CF) is associated with abnormal lipid metabolism. We have recently shown variations in plasma levels of several phosphatidylcholine (PC) and lysophopshatidylcholine (LPC) species related to disease severity in CF patients. Here our goal was to search for blood plasma lipid signatures characteristic of CF patients bearing the same mutation (F508del) and different phenotypes, and to study their correlation with forced expiratory volume in 1 s (FEV1) and Pseudomonas aeruginosa chronic infection, evaluated at the time of testing (t = 0) and three years later (t = 3). Samples from 44 F508del homozygotes were subjected to a lipidomic approach based on LC-ESI-MS. Twelve free fatty acids were positively correlated with FEV1 at t = 0 (n = 29). Four of them (C20:3n-9, C20:5n-3, C22:5n-3, and C22:6n-3) were also positively correlated with FEV1 three years later, along with PC(32:2) and PC(36:4) (n = 31). Oleoylethanolamide (OEA) was negatively correlated with FEV1 progression (n = 17). Chronically infected patients at t = 0 showed lower PC(32:2), PC(38:5), and C18:3n-3 and higher cholesterol, cholesterol esters, and triacylglycerols (TAG). Chronically infected patients at t = 3 showed significantly lower levels of LPC(18:0). These results suggest a potential prognostic value for some lipid signatures in, to our knowledge, the first longitudinal study aimed at identifying lipid biomarkers for CF. PMID:21335323

  4. Proteomics Analysis Reveals a Potential Antibiotic Cocktail Therapy Strategy for Aeromonas hydrophila Infection in Biofilm.

    PubMed

    Li, Wanxin; Yao, Zujie; Sun, Lina; Hu, Wenjie; Cao, Jijuan; Lin, Wenxiong; Lin, Xiangmin

    2016-06-01

    Antibiotic fitness and acquired resistance are the two critical factors when bacteria respond to antibiotics, and the correlations and mechanisms between these two factors remain largely unknown. In this study, a TMT-labeling-based quantitative proteomics method was used to compare the differential expression of proteins between the fitness and acquired resistance to chlortetracycline in Aeromonas hydrophila biofilm. Bioinformatics analysis showed that translation-related ribosomal proteins, such as 30s ribosome subunits, increased in both factors; fatty acid biosynthesis related proteins, such as FabB, FabD, FabG, AccA, and AccD, increased in biofilm fitness, and some pathways (including propanoate-metabolism-related protein, such as PrpB, AtoB, PflB, AcsA, PrpD, and GabT) displayed decreased abundance in acquired resistance biofilm. The varieties of selected proteins involved in fatty acid biosynthesis and propanoate metabolism were further validated by q-PCR assay or Western blotting. Furthermore, the antibiotic-resistance-function assays showed that fatty-acid biosynthesis should be a protective antibiotics-resistance mechanism and a cocktail of chlortetracycline and triclosan, a fatty-acid-biosynthesis inhibitor, exhibited more efficient antimicrobial capability than did each antibiotic individually on biofilm, specifically on chlortetracycline-sensitive biofilm. We therefore demonstrate that the up-regulation of fatty acid biosynthesis may play an important role in antibiotic resistance and suggest that a cocktail of chlortetracycline and triclosan may be a potential cocktail therapy for pathogenic infections in biofilm. PMID:27110028

  5. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing

    SciTech Connect

    Wei, Hui; Wang, Wei; Alahuhta, Markus; Vander Wall, Todd; Baker, John O.; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Zhang, Min

    2014-10-16

    Background: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichoderma reesei were cloned into Yarrowia. Results: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient

  6. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing

    DOE PAGESBeta

    Wei, Hui; Wang, Wei; Alahuhta, Markus; Vander Wall, Todd; Baker, John O.; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Zhang, Min

    2014-10-16

    Background: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichodermamore » reesei were cloned into Yarrowia. Results: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient

  7. Monoclonal Antibodies.

    ERIC Educational Resources Information Center

    Killington, R. A.; Powell, K. L.

    1984-01-01

    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  8. Antimitochondrial antibody

    MedlinePlus

    ... antibodies (AMA) are substances ( antibodies ) that form against mitochondria. The mitochondria are an important part of cells. They are ... often, in people with other kinds of liver disease and some autoimmune diseases. Risks Risks for having ...

  9. Monoclonal antibodies to conformational epitopes of the surface glycoprotein of caprine arthritis-encephalitis virus: potential application to competitive-inhibition enzyme-linked immunosorbent assay for detecting antibodies in goat sera.

    PubMed

    Ozyörük, F; Cheevers, W P; Hullinger, G A; McGuire, T C; Hutton, M; Knowles, D P

    2001-01-01

    Four immunoglobulin G1 monoclonal antibodies (MAbs) to the gp135 surface envelope glycoprotein (SU) of the 79-63 isolate of caprine arthritis-encephalitis virus (CAEV), referred to as CAEV-63, were characterized and evaluated for their ability to compete with antibody from CAEV-infected goats. Three murine MAbs (MAbs GPB16A, 29A, and 74A) and one caprine MAb (MAb F7-299) were examined. All MAbs reacted in nitrocellulose dot blots with native CAEV-63 SU purified by MAb F7-299 affinity chromatography, whereas none reacted with denatured and reduced SU. All MAbs reacted in Western blots with purified CAEV-63 SU or the SU component of whole-virus lysate following denaturation in the absence of reducing agent, indicating that intramolecular disulfide bonding was essential for epitope integrity. Peptide-N-glycosidase F digestion of SU abolished the reactivities of MAbs 74A and F7-299, whereas treatment of SU with N-acetylneuraminate glycohydrolase (sialidase A) under nonreducing conditions enhanced the reactivities of all MAbs as well as polyclonal goat sera. MAbs 29A and F7-299 were cross-reactive with the SU of an independent strain of CAEV (CAEV-Co). By enzyme-linked immunosorbent assay (ELISA), the reactivities of horseradish peroxidase (HRP)-conjugated MAbs 16A and 29A with homologous CAEV-63 SU were <10% of that of HRP-conjugated MAb 74A. The reactivity of HRP-conjugated MAb 74A was blocked by sera from goats immunized with CAEV-63 SU or infected with CAEV-63. The reactivity of MAb 74A was also blocked by sera from goats infected with a CAEV-Co molecular clone, although MAb 74A did not react with CAEV-Co SU in Western blots. Thus, goats infected with either CAEV-63 or CAEV-Co make antibodies that inhibit binding of MAb 74A to CAEV-63 SU. A competitive-inhibition ELISA based on displacement of MAb 74A reactivity has potential applicability for the serologic diagnosis of CAEV infection. PMID:11139194

  10. Monoclonal antibodies reveal cell-type-specific antigens in the sexually dimorphic olfactory system of Manduca sexta. II. Expression of antigens during postembryonic development.

    PubMed

    Hishinuma, A; Hockfield, S; McKay, R; Hildebrand, J G

    1988-01-01

    Two classes of monoclonal antibodies specific to the olfactory system of Manduca sexta have been isolated: the olfactory-specific antibody (OSA), which specifically recognizes many or all olfactory receptor cells (ORCs) in both males and females, and the male olfactory-specific antibody (MOSA), which stains male-specific receptor cells (principally or exclusively sex-pheromone receptors present only in antennae of males; Hishinuma et al., 1988). In the investigation reported here, we examined the expression of the antigens during postembryonic development in order to correlate the presence of particular antigens with the status of differentiation of the ORCs or with their acquisition of particular functions. As assessed immunocytochemically, the OSA recognizes certain epithelial cells in the antennal imaginal disk of the fifth-instar larva. Later, during the first 70 hr of adult development, when differentiative cell divisions are occurring in the antennal epithelium to generate ORCs and the other cells that make up olfactory sensilla, no cells are stained. Immediately after this period of mitoses, the OSA immunoreactivity reappears exclusively in the ORCs, which begin to elaborate axons as an early event in their differentiation. On immunoblots, the OSA recognizes specific sets of molecules (distinguished on the basis of their apparent molecular weights): 53,000 and 59,000 Da antigens in the disk epithelial cells in the last-instar larva; 53,000, 59,000, and 66,000 Da antigens in the ORCs from 15 to 60% of metamorphic adult development; and 42,000, 59,000, and 66,000 Da antigens in the ORCs from 60 to 100% of adult development. The MOSA also recognizes a subset of the epithelial cells in the antennal disks in male and female larvae.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3339412

  11. Molecular Docking and In Silico ADMET Study Reveals Acylguanidine 7a as a Potential Inhibitor of β-Secretase.

    PubMed

    Nisha, Chaluveelaveedu Murleedharan; Kumar, Ashwini; Nair, Prateek; Gupta, Nityasha; Silakari, Chitrangda; Tripathi, Timir; Kumar, Awanish

    2016-01-01

    Amyloidogenic pathway in Alzheimer's disease (AD) involves breakdown of APP by β-secretase followed by γ-secretase and results in formation of amyloid beta plaque. β-secretase has been a promising target for developing novel anti-Alzheimer drugs. To test different molecules for this purpose, test ligands like acylguanidine 7a, rosiglitazone, pioglitazone, and tartaric acid were docked against our target protein β-secretase enzyme retrieved from Protein Data Bank, considering MK-8931 (phase III trial, Merck) as the positive control. Docking revealed that, with respect to their free binding energy, acylguanidine 7a has the lowest binding energy followed by MK-8931 and pioglitazone and binds significantly to β-secretase. In silico ADMET predictions revealed that except tartaric acid all other compounds had minimal toxic effects and had good absorption as well as solubility characteristics. These compounds may serve as potential lead compound for developing new anti-Alzheimer drug. PMID:27190510

  12. Molecular Docking and In Silico ADMET Study Reveals Acylguanidine 7a as a Potential Inhibitor of β-Secretase

    PubMed Central

    Nisha, Chaluveelaveedu Murleedharan; Kumar, Ashwini; Nair, Prateek; Gupta, Nityasha; Silakari, Chitrangda; Tripathi, Timir; Kumar, Awanish

    2016-01-01

    Amyloidogenic pathway in Alzheimer's disease (AD) involves breakdown of APP by β-secretase followed by γ-secretase and results in formation of amyloid beta plaque. β-secretase has been a promising target for developing novel anti-Alzheimer drugs. To test different molecules for this purpose, test ligands like acylguanidine 7a, rosiglitazone, pioglitazone, and tartaric acid were docked against our target protein β-secretase enzyme retrieved from Protein Data Bank, considering MK-8931 (phase III trial, Merck) as the positive control. Docking revealed that, with respect to their free binding energy, acylguanidine 7a has the lowest binding energy followed by MK-8931 and pioglitazone and binds significantly to β-secretase. In silico ADMET predictions revealed that except tartaric acid all other compounds had minimal toxic effects and had good absorption as well as solubility characteristics. These compounds may serve as potential lead compound for developing new anti-Alzheimer drug. PMID:27190510

  13. Deep sequencing and Circos analyses of antibody libraries reveal antigen-driven selection of Ig VH genes during HIV-1 infection.

    PubMed

    Xiao, Madelyne; Prabakaran, Ponraj; Chen, Weizao; Kessing, Bailey; Dimitrov, Dimiter S

    2013-12-01

    The vast diversity of antibody repertoires is largely attributed to heavy chain (V(H)) recombination of variable (V), diversity (D) and joining (J) gene segments. We used 454 sequencing information of the variable domains of the antibody heavy chain repertoires from neonates, normal adults and an HIV-1-infected individual, to analyze, with Circos software, the VDJ pairing patterns at birth, adulthood and a time-dependent response to HIV-1 infection. Our comparative analyses of the Ig VDJ repertoires from these libraries indicated that, from birth to adulthood, VDJ recombination patterns remain the same with some slight changes, whereas some V(H) families are selected and preferentially expressed after long-term infection with HIV-1. We also demonstrated that the immune system responds to HIV-1 chronic infection by selectively expanding certain HV families in an attempt to combat infection. Our findings may have implications for understanding immune responses in pathology as well as for development of new therapeutics and vaccines. PMID:24158018

  14. Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine

    PubMed Central

    Bartkowiak, Todd; Singh, Shailbala; Yang, Guojun; Galvan, Gloria; Haria, Dhwani; Ai, Midan; Allison, James P.; Sastry, K. Jagannadha; Curran, Michael A.

    2015-01-01

    Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15–19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV+ TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and α4-1BB promoted the highest CD8+ versus regulatory FoxP3+ T-cell ratios, elicited 2- to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies. PMID:26351680

  15. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    PubMed

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  16. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential

    PubMed Central

    Bolton, Helen; Graham, Sarah J. L.; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  17. Competition between inverse piezoelectric effect and deformation potential mechanism in undoped GaAs revealed by ultrafast acoustics

    NASA Astrophysics Data System (ADS)

    Vaudel, G.; Ruello, P.; Pezeril, T.; Gusev, V.

    2013-03-01

    By using the picosecond ultrasonics technique, piezoelectric effect in <111> GaAs undoped sample at both faces (A[111] and B[-1-1-1]) is experimentally studied. We demonstrate that piezoelectric generation of sound can dominate in <111> GaAs material over the deformation potential mechanism even in the absence of static externally applied or built-in electric field in the semiconductor material. In that case, the Dember field, caused by the separation of photo-generated electrons and holes in the process of supersonic diffusion, is sufficient for the dominance of the piezoelectric mechanism during the optoacoustic excitation. The experimental results on the sample at both faces reveal that in one case (A face), the two mechanisms, piezoelectric effect and deformation potential, can compensate each other leading to a large decrease of the measured Brillouin oscillation magnitude.

  18. Comparative Genome Analysis of Megasphaera sp. Reveals Niche Specialization and Its Potential Role in the Human Gut

    PubMed Central

    Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh S.

    2013-01-01

    With increasing number of novel bacteria being isolated from the human gut ecosystem, there is a greater need to study their role in the gut ecosystem and their effect on the host health. In the present study, we carried out in silico genome-wide analysis of two novel Megasphaera sp. isolates NM10 (DSM25563) and BL7 (DSM25562), isolated from feces of two healthy individuals and validated the key features by in vitro studies. The analysis revealed the general metabolic potential, adaptive features and the potential effects of these isolates on the host. The comparative genome analysis of the two human gut isolates NM10 and BL7 with ruminal isolate Megasphaera elsdenii (DSM20460) highlighted the differential adaptive features for their survival in human gut. The key findings include features like bile resistance, presence of various sensory and regulatory systems, stress response systems, membrane transporters and resistance to antibiotics. Comparison of the “glycobiome” based on the genomes of the ruminal isolate with the human gut isolates NM10 and BL revealed the presence of diverse and unique sets of Carbohydrate-Active enzymes (CAZymes) amongst these isolates, with a higher collection of CAZymes in the human gut isolates. This could be attributed to the difference in host diet and thereby the environment, consequently suggesting host specific adaptation in these isolates. In silico analysis of metabolic potential predicted the ability of these isolates to produce important metabolites like short chain fatty acids (butyrate, acetate, formate, and caproate), vitamins and essential amino acids, which was further validated by in vitro experiments. The ability of these isolates to produce important metabolites advocates for a potential healthy influence on the host. Further in vivo studies including transcriptomic and proteomic analysis will be required for better understanding the role and impact of these Megasphaera sp. isolates NM10 and BL7 on the human host

  19. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells

    PubMed Central

    Armitage, Emily G.; Kotze, Helen L.; Allwood, J. William; Dunn, Warwick B.; Goodacre, Royston; Williams, Kaye J.

    2015-01-01

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments. PMID:26508589

  20. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics

    PubMed Central

    Chen, Sun-Xia; Wang, Xiao-Qing; Cui, Shu-Jian; Liu, Xiao-Hui; Jiang, Ying-Hua; Wang, Jie; Zhang, Yang; Yang, Peng-Yuan; Liu, Feng

    2015-01-01

    Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC. PMID:26338966

  1. Stroma derived COL6A3 is a potential prognosis marker of colorectal carcinoma revealed by quantitative proteomics.

    PubMed

    Qiao, Jie; Fang, Cai-Yun; Chen, Sun-Xia; Wang, Xiao-Qing; Cui, Shu-Jian; Liu, Xiao-Hui; Jiang, Ying-Hua; Wang, Jie; Zhang, Yang; Yang, Peng-Yuan; Liu, Feng

    2015-10-01

    Colorectal cancer (CRC) represents the third most common cancer in males and second in females worldwide. Here, we performed a quantitative 8-plex iTRAQ proteomics analysis of the secreted proteins from five colonic fibroblast cultures and three colon cancer epithelial cell lines. We identified 1114 proteins at 0% FDR, including 587 potential secreted proteins. We further recognized 116 fibroblast-enriched proteins which were significantly associated with cell movement, angiogenesis, proliferation and wound healing, and 44 epithelial cell-enriched proteins. By interrogation of Oncomine database, we found that 20 and 8 fibroblast-enriched proteins were up- and downregulated in CRC, respectively. Western blots confirmed the fibroblast-specific secretion of filamin C, COL6A3, COL4A1 and spondin-2. Upregulated mRNA and stroma expression of COL6A3 in CRC, which were revealed by Oncomine analyses and tissue-microarray-immunohistochemistry, indicated poor prognosis. COL6A3 expression was significantly associated with Dukes stage, T stage, stage, recurrence and smoking status. Circulating plasma COL6A3 in CRC patients was upregulated significantly comparing with healthy peoples. Receiver operating characteristic curve analysis revealed that COL6A3 has better predictive performance for CRC with an area under the curve of 0.885 and the best sensitivity/specificity of 92.9%/81.3%. Thus we demonstrated that COL6A3 was a potential diagnosis and prognosis marker of CRC. PMID:26338966

  2. Increased Sialylation of Anti-Thomsen-Friedenreich Antigen (CD176) Antibodies in Patients with Gastric Cancer: A Diagnostic and Prognostic Potential

    PubMed Central

    Kurtenkov, Oleg; Izotova, Jelena; Sergeyev, Boris

    2014-01-01

    Aim. To study whether alterations in the sialylation of antibodies (Ab) specific to the Thomsen-Friedenreich (TF) glycotope have a diagnostic and prognostic potential in gastric cancer. Methods. Serum samples were taken from patients with gastric carcinoma (n = 142) and controls (n = 61). The level of TF-specific antibodies and their sialylation was detected using ELISA with synthetic TF-polyacrylamide conjugate as antigen and sialic acid-specific Sambucus nigra agglutinin (SNA). Results. The level of TF-specific IgM was significantly decreased in cancer compared with controls (P ≤ 0.001). Cancer patients showed a higher level of SNA binding to anti-TF IgM and IgA (P ≤ 0.001) irrespective of disease stage, tumor morphology, and gender. Changes in the SNA/Ab index demonstrated moderate sensitivity (66–71%) and specificity (60–73%) for stomach cancer. The best diagnostic accuracy (100%) was achieved in 29% patients with high SNA binding and low anti-TF IgM level. This subset of patients demonstrated the poorest survival. Conclusion. Our findings are the first evidence that the increased sialylation of TF-specific Abs combined with a low level of anti-TF IgM is strongly linked to gastric cancer and patients survival, which can be used as a novel biomarker for cancer detection and prognosis. PMID:25276822

  3. Spatial and temporal variations in cuticle proteins as revealed by monoclonal antibodies. Immunoblotting analysis and ultrastructural immunolocalization in a beetle, Tenebrio molitor.

    PubMed

    Lemoine, A; Millot, C; Curie, G; Delachambre, J

    1990-01-01

    A library of monoclonal antibodies (Mabs) against adult cuticle of Tenebrio was used to visualize the secretion of cuticular antigens during metamorphosis. Immunoblots of water- and urea-soluble proteins, and high resolution immunogold labelling has shown that, except in one clone, the Mabs recognize antigens in the three developmental stages. However, the MW of larval and pupal antigens are different from the adult ones, though sharing common epitopes. Blots of cuticle proteins (CPs) bound to different lectins shown few water-soluble glycosylated proteins weakly or not recognized by the Mabs, suggesting that the majority of the Mabs do not recognize glycosylated epitopes. The immunolocalization of the different antigens suggests a molecular basis for both developmental and regional variations in cuticular architecture and to the modifications due to sclerotization, which differ between pre- and postecdysial cuticles of the three developmental stages. PMID:18620297

  4. Adeno-Associated Virus Serotype 1 (AAV1)- and AAV5-Antibody Complex Structures Reveal Evolutionary Commonalities in Parvovirus Antigenic Reactivity

    PubMed Central

    Tseng, Yu-Shan; Gurda, Brittney L.; Chipman, Paul; McKenna, Robert; Afione, Sandra; Chiorini, John A.; Muzyczka, Nicholas; Olson, Norman H.; Baker, Timothy S.; Kleinschmidt, Jürgen

    2014-01-01

    ABSTRACT The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. IMPORTANCE The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that

  5. DNA immunization combined with scFv phage display identifies antagonistic GCGR specific antibodies and reveals new epitopes on the small extracellular loops.

    PubMed

    van der Woning, Bas; De Boeck, Gitte; Blanchetot, Christophe; Bobkov, Vladimir; Klarenbeek, Alex; Saunders, Michael; Waelbroeck, Magali; Laeremans, Toon; Steyaert, Jan; Hultberg, Anna; De Haard, Hans

    2016-01-01

    The identification of functional monoclonal antibodies directed against G-protein coupled receptors (GPCRs) is challenging because of the membrane-embedded topology of these molecules. Here, we report the successful combination of llama DNA immunization with scFv-phage display and selections using virus-like particles (VLP) and the recombinant extracellular domain of the GPCR glucagon receptor (GCGR), resulting in glucagon receptor-specific antagonistic antibodies. By immunizing outbred llamas with plasmid DNA containing the human GCGR gene, we sought to provoke their immune system, which generated a high IgG1 response. Phage selections on VLPs allowed the identification of mAbs against the extracellular loop regions (ECL) of GCGR, in addition to multiple VH families interacting with the extracellular domain (ECD) of GCGR. Identifying mAbs binding to the ECL regions of GCGR is challenging because the large ECD covers the small ECLs in the energetically most favorable 'closed conformation' of GCGR. Comparison of Fab with scFv-phage display demonstrated that the multivalent nature of scFv display is essential for the identification of GCGR specific clones by selections on VLPs because of avid interaction. Ten different VH families that bound 5 different epitopes on the ECD of GCGR were derived from only 2 DNA-immunized llamas. Seven VH families demonstrated interference with glucagon-mediated cAMP increase. This combination of technologies proved applicable in identifying multiple functional binders in the class B GPCR context, suggesting it is a robust approach for tackling difficult membrane proteins. PMID:27211075

  6. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  7. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease.

    PubMed

    Korkmaz, Brice; Lesner, Adam; Guarino, Carla; Wysocka, Magdalena; Kellenberger, Christine; Watier, Hervé; Specks, Ulrich; Gauthier, Francis; Jenne, Dieter E

    2016-07-01

    Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future. PMID:27329045

  8. SYNTHESIS OF HAPTENS AND POTENTIAL RADIOLIGANDS AND DEVELOPMENT OF ANTIBODIES TO INSECT GROWTH REGULATORS DIFLUBENZURON AND BAY SIR 8514

    EPA Science Inventory

    A variety of synthetic approaches were undertaken, leading to potential haptens and radioligands for the benzoylphenylurea insect growth regulators diflubenzuron and BAY SIR 8514. One successful approach involved derivatization of the aniline nitrogen by ethyl 4-bromobutyrate fol...

  9. A noncytolytic antibody-like extendin-4-IgG4 fusion protein as a long-acting potential anti-diabetic agent

    PubMed Central

    Li, Xiaoxia; Hu, Pinliang; Yang, Rungong; Bai, Jie; Wang, Xingheng; Fu, Shuhong; Yang, Siyi; Ma, Jinwei; Gong, Meiliang; Chen, Hong; Zhou, Feng; Chen, Yanbing; Zhou, Qian

    2015-01-01

    Background: GLP-1 and its analogs have a variety of anti-diabetic effects. However, short half-life and rapid degraded by DPP-IV limits the therapeutic potential of the native GLP-1. So, many DPP-IV-resistant and long-acting GLP-1 analogs were developed. In this study, an antibody-like extendin-4-IgG4 fusion protein was developed. Methods: The γ4 constant region contains two amino acid substitutions relative to native γ4 (S228P and L235E) lead to affinity for FcγRI to be low and stability of the IgG4 molecular. The fusion protein was expressed in CHO cells and assembled into an immunoglobulin-like structure with molecular weight of approximately 130 kDa. Results: The Exendin-4-IgG4 fusion protein was found to affinity bind GLP-1R in vitro. In vivo when compared the potency and duration of glucose-lowering effects in diabetic (db/db) mice at the same dose, exendin-4 resulted in a glucose-lowering effect that persisted only for 6 hours, but the extendin-4-IgG4 fusion protein for more than 168 hours. Injecting subcutaneously with a high dose of the fusion protein led normal BALB/c mice to the lower blood glucose level but did not cause serious hypoglycemia. Especially, the half-life time of the fusion protein in cynomolgus monkeys was about 180 hours, almost the longest half-life time among the developed GPL-1 analogues, which suggested a longer half-life time in human. Conclusions: The intact antibody-like fusion protein has more advantages than the Fc fusion protein including the intent of prolonging the half-life. These results also suggested the fusion protein was a safe and long-acting potential anti-diabetic agent. PMID:26064256

  10. Development of novel antibodies against non-structural proteins nsP1, nsP3 and nsP4 of chikungunya virus: potential use in basic research.

    PubMed

    Kumar, Sameer; Mamidi, Prabhudutta; Kumar, Abhishek; Basantray, Itishree; Bramha, Umarani; Dixit, Anshuman; Maiti, Prasanta Kumar; Singh, Sujay; Suryawanshi, Amol Ratnakar; Chattopadhyay, Subhasis; Chattopadhyay, Soma

    2015-11-01

    Chikungunya virus (CHIKV) has reemerged recently as an important pathogen, causing several large epidemics worldwide. This necessitates the development of better reagents to understand its biology and to establish effective and safe control measures. The present study describes the development and characterization of polyclonal antibodies (pAbs) against synthetic peptides of CHIKV non-structural proteins (nsPs; nsP1, nsP3 and nsP4). The reactivity of these pAbs was demonstrated by ELISA and Western blot. Additionally, in vitro infection studies in a mammalian system confirmed that these pAbs are highly sensitive and specific for CHIKV nsPs, as these proteins were detected very early during viral replication. Homology analysis of the selected epitope sequences revealed that they are conserved among all of the CHIKV strains of different genotypes, while comparison with other alphavirus sequences showed that none of them are 100% identical to the epitope sequences (except Onyong-nyong and Igbo Ora viruses, which show 100% identity to the nsP4 epitope). Interestingly, two different forms of CHIKV nsP1 and three different forms of nsP3 were detected in Western blot analysis during infection; however, further experimental investigations are required to confirm their identity. Also, the use of these antibodies demonstrated faster and enhanced expression profiles of all CHIKV nsPs in 2006 Indian outbreak strains when compared to the CHIKV prototype strain, suggesting the epidemic potential of the 2006 isolate. Accordingly, it can be suggested that the pAbs reported in this study can be used as sensitive and specific tools for experimental investigations of CHIKV replication and infection. PMID:26280524

  11. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies

    PubMed Central

    Bornholdt, Zachary A.; Ndungo, Esther; Fusco, Marnie L.; Bale, Shridhar; Flyak, Andrew I.; Crowe, James E.

    2016-01-01

    ABSTRACT The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. PMID:26908579

  12. Commercial antibodies and their validation

    PubMed Central

    Voskuil, JLA

    2014-01-01

    Despite an impressive growth in the business of research antibodies a general lack of trust in commercial antibodies remains in place. A variety of issues, each one potentially causing an antibody to fail, underpin the frustrations that scientists endure. Lots of money goes to waste in buying and trying one failing antibody after the other without realizing all the pitfalls that come with the product: Antibodies can get inactivated, both the biological material and the assay itself can potentially be flawed, a single antibody featuring in many different catalogues can be deemed as a set of different products, and a bad choice of antibody type, wrong dilutions, and lack of proper validation can all jeopardize the intended experiments. Antibodies endorsed by scientific research papers do not always meet the scientist’s requirements either due to flawed specifications, or due to batch-to-batch variations. Antibodies can be found with Quality Control data obtained from previous batches that no longer represent the batch on sale. In addition, one cannot assume that every antibody is fit for every application. The best chance of success is to try an antibody that already was confirmed to perform correctly in the required platform. PMID:25324967

  13. Antithyroid microsomal antibody

    MedlinePlus

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... test is done to confirm the cause of thyroid problems, including Hashimoto thyroiditis . The test is also ...

  14. Plasma metabolomics combined with lipidomics profiling reveals the potential antipyretic mechanisms of Qingkailing injection in a rat model.

    PubMed

    Qin, Lingling; Zhang, Zhixin; Guo, Mingxing; Zhang, Qingqing; Wang, Qing; Lu, Zhiwei; Zhao, Huizhen; Liu, Yuehong; Fu, Shuang; Wang, Meiling; Gao, Xiaoyan

    2016-07-25

    Qingkailing injection (QKLI) has a notable antipyretic effect and is widely used in China as a clinical emergency medicine. To elucidate the pharmacological action thoroughly, following the investigation of the urine metabolome and hypothalamus metabolome, plasma metabolomics combined with lipidomics profiling of the QKLI antipyretic effect in a rat model is described in this paper. Compared with pure metabolomics profiling, this non-targeted plasma metabolomics combined with lipidomics profiling based on ultra-performance liquid chromatography-coupled with quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS) could be used for a large-scale detection of features in plasma samples. The results showed that 15 metabolites at the 1 h time point and 19 metabolites at the 2 h time point after QKLI administration were associated with the antipyretic effect of QKLI, including amino acid, phosphatidylcholine and lysophosphatidylcholine. The metabolism pathway analysis revealed that the potential biomarkers, which were important for the antipyretic mechanism of QKLI, were closely responsible for correcting the perturbed pathways of amino acid metabolism and lipid metabolism. In conclusion, the use of complementary UPLC Q-TOF/MS based metabolomics and lipidomics allows for the discovery of new potential plasma biomarkers in the QKLI antipyretic process and the associated pathways, and aided in advancing the understanding of the holism and synergism of the Chinese drug. PMID:27208622

  15. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    PubMed Central

    2012-01-01

    Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process. PMID:22300648

  16. High-Throughput Sequencing of miRNAs Reveals a Tissue Signature in Gastric Cancer and Suggests Novel Potential Biomarkers.

    PubMed

    Darnet, Sylvain; Moreira, Fabiano C; Hamoy, Igor G; Burbano, Rommel; Khayat, André; Cruz, Aline; Magalhães, Leandro; Silva, Artur; Santos, Sidney; Demachki, Samia; Assumpção, Monica; Assumpção, Paulo; Ribeiro-Dos-Santos, Ândrea

    2015-01-01

    Gastric cancer has a high incidence and mortality rate worldwide; however, the use of biomarkers for its clinical diagnosis remains limited. The microRNAs (miRNAs) are biomarkers with the potential to identify the risk and prognosis as well as therapeutic targets. We performed the ultradeep miRnomes sequencing of gastric adenocarcinoma and gastric antrum without tumor samples. We observed that a small set of those samples were responsible for approximately 80% of the total miRNAs expression, which might represent a miRNA tissue signature. Additionally, we identified seven miRNAs exhibiting significant differences, and, of these, hsa-miR-135b and hsa-miR-29c were able to discriminate antrum without tumor from gastric cancer regardless of the histological type. These findings were validated by quantitative real-time polymerase chain reaction. The results revealed that hsa-miR-135b and hsa-miR-29c are potential gastric adenocarcinoma occurrence biomarkers with the ability to identify individuals at a higher risk of developing this cancer, and could even be used as therapeutic targets to allow individualized clinical management. PMID:26157332

  17. High-Throughput Sequencing of miRNAs Reveals a Tissue Signature in Gastric Cancer and Suggests Novel Potential Biomarkers

    PubMed Central

    Darnet, Sylvain; Moreira, Fabiano C; Hamoy, Igor G; Burbano, Rommel; Khayat, André; Cruz, Aline; Magalhães, Leandro; Silva, Artur; Santos, Sidney; Demachki, Samia; Assumpção, Monica; Assumpção, Paulo; Ribeiro-dos-Santos, Ândrea

    2015-01-01

    Gastric cancer has a high incidence and mortality rate worldwide; however, the use of biomarkers for its clinical diagnosis remains limited. The microRNAs (miRNAs) are biomarkers with the potential to identify the risk and prognosis as well as therapeutic targets. We performed the ultradeep miRnomes sequencing of gastric adenocarcinoma and gastric antrum without tumor samples. We observed that a small set of those samples were responsible for approximately 80% of the total miRNAs expression, which might represent a miRNA tissue signature. Additionally, we identified seven miRNAs exhibiting significant differences, and, of these, hsa-miR-135b and hsa-miR-29c were able to discriminate antrum without tumor from gastric cancer regardless of the histological type. These findings were validated by quantitative real-time polymerase chain reaction. The results revealed that hsa-miR-135b and hsa-miR-29c are potential gastric adenocarcinoma occurrence biomarkers with the ability to identify individuals at a higher risk of developing this cancer, and could even be used as therapeutic targets to allow individualized clinical management. PMID:26157332

  18. The crystal structure of Escherichia coli heat shock protein YedU reveals three potential catalytic active sites

    PubMed Central

    Zhao, Yonghong; Liu, Deqian; Kaluarachchi, Warna D.; Bellamy, Henry D.; White, Mark A.; Fox, Robert O.

    2003-01-01

    The mRNA of Escherichia coli yedU gene is induced 31-fold upon heat shock. The 31-kD YedU protein, also calls Hsp31, is highly conserved in several human pathogens and has chaperone activity. We solved the crystal structure of YedU at 2.2 Å resolution. YedU monomer has an α/β/α sandwich domain and a small α/β domain. YedU is a dimer in solution, and its crystal structure indicates that a significant amount of surface area is buried upon dimerization. There is an extended hydrophobic patch that crosses the dimer interface on the surface of the protein. This hydrophobic patch is likely the substrate-binding site responsible for the chaperone activity. The structure also reveals a potential protease-like catalytic triad composed of Cys184, His185, and Asp213, although no enzymatic activity could be identified. YedU coordinates a metal ion using His85, His122, and Glu90. This 2-His-1-carboxylate motif is present in carboxypeptidase A (a zinc enzyme), and a number of dioxygenases and hydroxylases that utilize iron as a cofactor, suggesting another potential function for YedU. PMID:14500888

  19. A monoclonal antibody against leptin.

    PubMed

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin. PMID:23098305

  20. Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody

    PubMed Central

    Arora, Jayant; Hickey, John M; Majumdar, Ranajoy; Esfandiary, Reza; Bishop, Steven M; Samra, Hardeep S; Middaugh, C Russell; Weis, David D; Volkin, David B

    2015-01-01

    There is a need for new analytical approaches to better characterize the nature of the concentration-dependent, reversible self-association (RSA) of monoclonal antibodies (mAbs) directly, and with high resolution, when these proteins are formulated as highly concentrated solutions. In the work reported here, hydrogen exchange mass spectrometry (HX-MS) was used to define the concentration-dependent RSA interface, and to characterize the effects of association on the backbone dynamics of an IgG1 mAb (mAb-C). Dynamic light scattering, chemical cross-linking, and solution viscosity measurements were used to determine conditions that caused the RSA of mAb-C. A novel HX-MS experimental approach was then applied to directly monitor differences in local flexibility of mAb-C due to RSA at different protein concentrations in deuterated buffers. First, a stable formulation containing lyoprotectants that permitted freeze-drying of mAb-C at both 5 and 60 mg/mL was identified. Upon reconstitution with RSA-promoting deuterated solutions, the low vs. high protein concentration samples displayed different levels of solution viscosity (i.e., approx. 1 to 75 mPa.s). The reconstituted mAb-C samples were then analyzed by HX-MS. Two specific sequences covering complementarity-determining regions CDR2H and CDR2L (in the variable heavy and light chains, respectively) showed significant protection against deuterium uptake (i.e., decreased hydrogen exchange). These results define the major protein-protein interfaces associated with the concentration-dependent RSA of mAb-C. Surprisingly, certain peptide segments in the VH domain, the constant domain (CH2), and the hinge region (CH1-CH2 interface) concomitantly showed significant increases in local flexibility at high vs. low protein concentrations. These results indicate the presence of longer-range, distant dynamic coupling effects within mAb-C occurring upon RSA. PMID:25875351

  1. Essential Role for the Lectin Pathway in Collagen Antibody-Induced Arthritis Revealed Through Use of Adenovirus Programming Complement Inhibitor MAp44 Expression

    PubMed Central

    Banda, Nirmal K.; Mehta, Gaurav; Kjaer, Troels R.; Takahashi, Minoru; Schaack, Jerome; Morrison, Thomas E.; Thiel, Steffen; Arend, William P.; Holers, V. Michael

    2014-01-01

    Previous studies using mannose-binding lectin (MBL) and complement C4 deficient mice have suggested that the lectin pathway (LP) is not required for the development of inflammatory arthritis in the collagen antibody-induced arthritis (CAIA) model. MBL, ficolins and collectin-11 are key LP pattern recognition molecules that associate with three serine proteases, MASP-1, MASP-2 and MASP-3, and also with two MBL-associated proteins designated sMAP and MAp44. Recent studies have shown that MAp44, an alternatively spliced product of the MASP-1/3 gene, is a competitive inhibitor of the binding of the recognition molecules to all three MASPs. In these studies we examined the effect of treatment of mice with adenovirus (Ad) programmed to express human MAp44 (AdhMAp44) on the development of CAIA. AdhMAp44 and Ad programming Green fluorescent protein (AdGFP) expression were injected intraperitoneally in C57BL/6 wild-type mice prior to the induction of CAIA. AdhMAp44 significantly reduced the clinical disease activity score (CDA) by 81% compared to mice injected with AdGFP. Similarly, histopathologic injury scores for inflammation, pannus, cartilage and bone damage, as well as C3 deposition in the cartilage and synovium, were significantly reduced by AdhMAp44 pretreatment. Mice treated with AdmMAp44, programming expression of mouse MAp44, also showed significantly decreased CDA and histopathologic injury scores. Additionally, administration of AdhMAp44 significantly diminished the severity of Ross River Virus-induced arthritis, a LP-dependent model. Our study provides conclusive evidence that an intact complement LP is essential to initiate CAIA, and that MAp44 may be an appropriate treatment for inflammatory arthritis. PMID:25070856

  2. Event-Related Potentials Reveal Preserved Attention Allocation but Impaired Emotion Regulation in Patients with Epilepsy and Comorbid Negative Affect

    PubMed Central

    De Taeye, Leen; Pourtois, Gilles; Meurs, Alfred; Boon, Paul; Vonck, Kristl; Carrette, Evelien; Raedt, Robrecht

    2015-01-01

    Patients with epilepsy have a high prevalence of comorbid mood disorders. This study aims to evaluate whether negative affect in epilepsy is associated with dysfunction of emotion regulation. Event-related potentials (ERPs) are used in order to unravel the exact electrophysiological time course and investigate whether a possible dysfunction arises during early (attention) and/or late (regulation) stages of emotion control. Fifty epileptic patients with (n = 25) versus without (n = 25) comorbid negative affect plus twenty-five matched controls were recruited. ERPs were recorded while subjects performed a face- or house-matching task in which fearful, sad or neutral faces were presented either at attended or unattended spatial locations. Two ERP components were analyzed: the early vertex positive potential (VPP) which is normally enhanced for faces, and the late positive potential (LPP) that is typically larger for emotional stimuli. All participants had larger amplitude of the early face-sensitive VPP for attended faces compared to houses, regardless of their emotional content. By contrast, in patients with negative affect only, the amplitude of the LPP was significantly increased for unattended negative emotional expressions. These VPP results indicate that epilepsy with or without negative affect does not interfere with the early structural encoding and attention selection of faces. However, the LPP results suggest abnormal regulation processes during the processing of unattended emotional faces in patients with epilepsy and comorbid negative affect. In conclusion, this ERP study reveals that early object-based attention processes are not compromised by epilepsy, but instead, when combined with negative affect, this neurological disease is associated with dysfunction during the later stages of emotion regulation. As such, these new neurophysiological findings shed light on the complex interplay of epilepsy with negative affect during the processing of emotional

  3. Isolation and Characterization of Monoclonal Antibodies Against a Virion Core Protein of Orf Virus Strain NA1/11 As Potential Diagnostic Tool for Orf Viruses.

    PubMed

    Wang, Xiaoping; Zhang, Jiafeng; Hao, Wenbo; Peng, Yongzheng; Li, Hong; Li, Wei; Li, Ming; Luo, Shuhong

    2015-08-01

    Orf is caused by the orf virus (ORFV) and is a non-systemic, widespread disease afflicting sheep, goats, wild ruminants, and humans. Recent outbreaks in sheep and goats in Jilin and other northern Chinese provinces raise concerns about orf control in China. Thirty-five hybridoma clones were constructed from splenocytes of BALB/c mice immunized with natural orf virus protein. These hybridomas were used to produce antibodies targeting ORFV proteins. Immunological characterization of these monoclonal antibodies (MAb) showed that the 5F2D8 hybridoma line produced MAb that can recognize the 100, 70, and 20 kDa bands from total viral lysate. This hybridoma was further characterized by immunoprecipitation and peptide sequencing. The results indicate that 5F2D8 specifically recognizes orf virus encoded protein ORFV086, a late expression virion core protein that plays important roles in progeny virus particle assembly, morphogenesis, and maturity. Further experiments demonstrate that this MAb did not react with other viral proteins of ORFV orthopoxviruses, but reacted strongly to different field isolates of orf viruses from China. Additionally, this anti-ORFV086 MAb possesses ORFV neutralizing capability. Sequence alignments and phylogenetic analysis determined that ORFV086 of NA1/11, clustered together with NZ2 and IA82, is highly conserved and has structural similarities with the Vaccinia virus core protein P4a. As such, this MAb has great potential as a diagnostic tool for orf viruses, in the further exploration of orf pathogenesis, and in disease control and prevention. PMID:26301926

  4. A High-Affinity Native Human Antibody Disrupts Biofilm from Staphylococcus aureus Bacteria and Potentiates Antibiotic Efficacy in a Mouse Implant Infection Model.

    PubMed

    Estellés, Angeles; Woischnig, Anne-Kathrin; Liu, Keyi; Stephenson, Robert; Lomongsod, Evelene; Nguyen, Da; Zhang, Jianzhong; Heidecker, Manfred; Yang, Yifan; Simon, Reyna J; Tenorio, Edgar; Ellsworth, Stote; Leighton, Anton; Ryser, Stefan; Gremmelmaier, Nina Khanna; Kauvar, Lawrence M

    2016-04-01

    Many serious bacterial infections are difficult to treat due to biofilm formation, which provides physical protection and induces a sessile phenotype refractory to antibiotic treatment compared to the planktonic state. A key structural component of biofilm is extracellular DNA, which is held in place by secreted bacterial proteins from the DNABII family: integration host factor (IHF) and histone-like (HU) proteins. A native human monoclonal antibody, TRL1068, has been discovered using single B-lymphocyte screening technology. It has low-picomolar affinity against DNABII homologs from important Gram-positive and Gram-negative bacterial pathogens. The disruption of established biofilm was observedin vitroat an antibody concentration of 1.2 μg/ml over 12 h. The effect of TRL1068in vivowas evaluated in a murine tissue cage infection model in which a biofilm is formed by infection with methicillin-resistantStaphylococcus aureus(MRSA; ATCC 43300). Treatment of the established biofilm by combination therapy of TRL1068 (15 mg/kg of body weight, intraperitoneal [i.p.] administration) with daptomycin (50 mg/kg, i.p.) significantly reduced adherent bacterial count compared to that after daptomycin treatment alone, accompanied by significant reduction in planktonic bacterial numbers. The quantification of TRL1068 in sample matrices showed substantial penetration of TRL1068 from serum into the cage interior. TRL1068 is a clinical candidate for combination treatment with standard-of-care antibiotics to overcome the drug-refractory state associated with biofilm formation, with potential utility for a broad spectrum of difficult-to-treat bacterial infections. PMID:26833157

  5. Antibody Repertoires in Humanized NOD-scid-IL2Rγnull Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Checkpoints in the Mouse

    PubMed Central

    Ippolito, Gregory C.; Hoi, Kam Hon; Reddy, Sai T.; Carroll, Sean M.; Ge, Xin; Rogosch, Tobias; Zemlin, Michael; Shultz, Leonard D.; Ellington, Andrew D.; VanDenBerg, Carla L.; Georgiou, George

    2012-01-01

    Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγnull engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH) and light (IGK and IGL) genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγnull mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3) repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential DH-JH pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by genetic factors

  6. Recombinant gp19 as a potential antigen for detecting anti-Ehrlichia canis antibodies in dog sera.

    PubMed

    Oliveira, Rômulo Silva de; Cunha, Rodrigo Casquero; Moraes-Filho, Jonas; Gonçales, Relber Aguiar; Lara, Ana Paula de Souza Stori de; Avila, Luciana Farias da Costa de; Labruna, Marcelo Bahia; Leite, Fábio Pereira Leivas

    2015-01-01

    The canine monocytic ehrlichiosis, caused by Ehrlichia canis, is endemic in several regions of Brazil. Some serological diagnostic techniques using immunodominant proteins of E. canis as antigens are available, but their specificities and sensitivities are questionable. Based on this, the objective of this study was to test the antigenic potential of the recombinant gp19 protein (rGP19) for subsequent use in diagnostic tests. The rGP19 expressed in the Escherichia coli strain BL21 (DE3) C41 was recognized in the sera from experimentally infected dogs using ELISA and Western blotting. Thus, it was possible to obtain a promising antigen with the ability to differentiate between E. canis-positive and -negative animals, even 1 week after infection. PMID:26291145

  7. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Tse, Herman; Teng, Jade L L; Curreem, Shirly O T; Tsang, Alan K L; Fan, Rachel Y Y; Wong, Gilman K M; Huang, Yi; Loman, Nicholas J; Snyder, Lori A S; Cai, James J; Huang, Jian-Dong; Mak, William; Pallen, Mark J; Lok, Si; Yuen, Kwok-Yung

    2009-03-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37 degrees C (human body temperature) and 20 degrees C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20 degrees C, whereas NAGK-37 showed higher expression at 37 degrees C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other

  8. Numerically bridging lamellipodial and filopodial activity during cell spreading reveals a potentially novel trigger of focal adhesion maturation.

    PubMed

    Loosli, Y; Vianay, B; Luginbuehl, R; Snedeker, J G

    2012-05-01

    We present a novel approach to modeling cell spreading, and use it to reveal a potentially central mechanism regulating focal adhesion maturation in various cell phenotypes. Actin bundles that span neighboring focal complexes at the lamellipodium-lamellum interface were assumed to be loaded by intracellular forces in proportion to bundle length. We hypothesized that the length of an actin bundle (with the corresponding accumulated force at its adhesions) may thus regulate adhesion maturation to ensure cell mechanical stability and morphological integrity. We developed a model to test this hypothesis, implementing a "top-down" approach to simplify certain cellular processes while explicitly incorporating complexity of other key subcellular mechanisms. Filopodial and lamellipodial activities were treated as modular processes with functional spatiotemporal interactions coordinated by rules regarding focal adhesion turnover and actin bundle dynamics. This theoretical framework was able to robustly predict temporal evolution of cell area and cytoskeletal organization as reported from a wide range of cell spreading experiments using micropatterned substrates. We conclude that a geometric/temporal modeling framework can capture the key functional aspects of the rapid spreading phase and resultant cytoskeletal complexity. Hence the model is used to reveal mechanistic insight into basic cell behavior essential for spreading. It demonstrates that actin bundles spanning nascent focal adhesions such that they are aligned to the leading edge may accumulate centripetal endogenous forces along their length, and could thus trigger focal adhesion maturation in a force-length dependent fashion. We suggest that this mechanism could be a central "integrating" factor that effectively coordinates force-mediated adhesion maturation at the lamellipodium-lamellum interface. PMID:22453759

  9. Groundwater circulation and utilisation in an unconfined carbonate system - revealing the potential effect of climate change and humankind activities

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Mádl-Szönyi, Judit

    2016-04-01

    Characteristics of gravitational groundwater flow systems in carbonate regions were presented by Mádl-Szönyi & Tóth (2015) based on theoretical considerations, identification and classification of groundwater flow-related field phenomena and numerical simulation. It was revealed that the changes of flow pattern in carbonate framework attributed to groundwater utilization and/or climate change are more apparent due to the effective hydraulic conductivity of carbonates. Consequently, natural or artificial disturbances of water level propagate farther, deeper and faster in carbonates than in siliciclastic basins. These changes could result in degradation and reorganization of hierarchical flow systems, modification of recharge and discharge areas and even alteration of physicochemical parameters (Mádl-Szönyi & Tóth, 2015). This paper presents the application of the gravity-driven regional groundwater flow concept to the hydrogeologically complex thick carbonate system of the Transdanubian Range, Hungary, depicting the flow pattern of the area and to a practical problem of a local study area, conflicts of interest of water supply and water use of a golf course. The question is how will the natural discharge on the golf course be influenced by the planned karst drinking water production well. In addition, the effects of climate change on this conflict were evaluated. We demonstrate the importance of the understanding the appropriate scale in karst studies and illustrate how the gravity-driven regional groundwater flow concept can help to determine it. For this purpose, the hydrogeological conditions of the study site were examined at different scales. The goals were to define the appropriate scale and reveal the effects of tectonic structures; and give prognoses for the possible impact of a planned drinking water well and climate change on the golf course based on numerical simulation. The study also showed the low geothermal potential of the area.

  10. Profiling Murine Tau with 0N, 1N and 2N Isoform-Specific Antibodies in Brain and Peripheral Organs Reveals Distinct Subcellular Localization, with the 1N Isoform Being Enriched in the Nucleus

    PubMed Central

    Liu, Chang; Götz, Jürgen

    2013-01-01

    In the adult murine brain, the microtubule-associated protein tau exists as three major isoforms, which have four microtubule-binding repeats (4R), with either no (0N), one (1N) or two (2N) amino-terminal inserts. The human brain expresses three additional isoforms with three microtubule-binding repeats (3R) each. However, little is known about the role of the amino-terminal inserts and how the 0N, 1N and 2N tau species differ. In order to investigate this, we generated a series of isoform-specific antibodies and performed a profiling by Western blotting and immunohistochemical analyses using wild-type mice in three age groups: two months, two weeks and postnatal day 0 (P0). This revealed that the brain is the only organ to express tau at significant levels, with 0N4R being the predominant isoform in the two month-old adult. Subcellular fractionation of the brain showed that the 1N isoform is over-represented in the soluble nuclear fraction. This is in agreement with the immunohistochemical analysis as the 1N isoform strongly localizes to the neuronal nucleus, although it is also found in cell bodies and dendrites, but not axons. The 0N isoform is mainly found in cell bodies and axons, whereas nuclei and dendrites are only slightly stained with the 0N antibody. The 2N isoform is highly expressed in axons and in cell bodies, with a detectable expression in dendrites and a very slight expression in nuclei. The 2N isoform that was undetectable at P0, in adult brain was mainly found localized to cell bodies and dendrites. Together these findings reveal significant differences between the three murine tau isoforms that are likely to reflect different neuronal functions. PMID:24386422

  11. Proteome profiling of seed storage proteins reveals the nutritional potential of Salicornia brachiata Roxb., an extreme halophyte.

    PubMed

    Jha, Bhavanath; Singh, Nater Pal; Mishra, Avinash

    2012-05-01

    Salicornia brachiata is an extreme halophyte that grows in salty marshes and is considered to be a potential alternative crop for seawater agriculture. Salicornia seeds are rich in protein, and its tender shoots are eaten as salad greens. Seed storage proteins were fractionated by sequential extraction using different solvents, including distilled water for albumins, NaCl (1.0 M) for globulins, NaOH (0.1 N) for glutelins, and ethanol (70% v/v) for prolamins. Globulins accounted for 54.75% of the total seed storage proteins followed by albumins (34.30%) and glutelins (8.70%). The fractionated proteins were characterized using 2D-diagonal SDS-PAGE and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. The globulin fraction, composed of seven intermolecular disulfide-linked polypeptide pairs of molecular mass 63.5, 62.5, 54.7, 53.0, 43.2, 38.5, and 35.1 kDa, encompassed a basic and an acidic subunit. Two-dimensional gels revealed approximately 32 spots, with isoelectric points and molecular masses ranging from 4.93 to 11.6 and from ∼5.2 to ∼109.4 kDa, respectively. Protein spots were identified by MALDI-TOF MS peptide mass fingerprint analysis and further classified. Homology analysis demonstrated that 19% of the proteins were involved in metabolism, 16% were involved in signaling, and 15% were regulatory proteins. Peptide mass fingerprint analysis confirmed the presence of inter- and intramolecular disulfide linkages in the globulin fraction. Sulfur-rich proteins are of high nutritional value, and disulfides make S. brachiata a potential source of dietary supplementation. PMID:22494338

  12. Comparison of Extraintestinal Pathogenic Escherichia coli Strains from Human and Avian Sources Reveals a Mixed Subset Representing Potential Zoonotic Pathogens▿

    PubMed Central

    Johnson, Timothy J.; Wannemuehler, Yvonne; Johnson, Sara J.; Stell, Adam L.; Doetkott, Curt; Johnson, James R.; Kim, Kwang S.; Spanjaard, Lodewijk; Nolan, Lisa K.

    2008-01-01

    Since extraintestinal pathogenic Escherichia coli (ExPEC) strains from human and avian hosts encounter similar challenges in establishing infection in extraintestinal locations, they may share similar contents of virulence genes and capacities to cause disease. In the present study, 1,074 ExPEC isolates were classified by phylogenetic group and possession of 67 other traits, including virulence-associated genes and plasmid replicon types. These ExPEC isolates included 452 avian pathogenic E. coli strains from avian colibacillosis, 91 neonatal meningitis E. coli (NMEC) strains causing human neonatal meningitis, and 531 uropathogenic E. coli strains from human urinary tract infections. Cluster analysis of the data revealed that most members of each subpathotype represent a genetically distinct group and have distinguishing characteristics. However, a genotyping cluster containing 108 ExPEC isolates was identified, heavily mixed with regard to subpathotype, in which there was substantial trait overlap. Many of the isolates within this cluster belonged to the O1, O2, or O18 serogroup. Also, 58% belonged to the ST95 multilocus sequence typing group, and over 90% of them were assigned to the B2 phylogenetic group typical of human ExPEC strains. This cluster contained strains with a high number of both chromosome- and plasmid-associated ExPEC genes. Further characterization of this ExPEC subset with zoonotic potential urges future studies exploring the potential for the transmission of certain ExPEC strains between humans and animals. Also, the widespread occurrence of plasmids among NMEC strains and members of the mixed cluster suggests that plasmid-mediated virulence in these pathotypes warrants further attention. PMID:18820066

  13. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target

    PubMed Central

    Toman, O.; Kabickova, T.; Vit, O.; Fiser, R.; Polakova, K. Machova; Zach, J.; Linhartova, J.; Vyoral, D.; Petrak, J.

    2016-01-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  14. Antibodies with beta-adrenergic activity from chronic chagasic patients modulate the QT interval and M cell action potential duration

    PubMed Central

    Medei, Emiliano Horacio; Nascimento, José H.M.; Pedrosa, Roberto C.; Barcellos, Luciane; Masuda, Masako O.; Sicouri, Serge; Elizari, Marcelo V.; Campos de Carvalho, Antonio C.

    2009-01-01

    Aims The aim of this study was to investigate whether the sera from chronic chagasic patients (CChPs) with beta-1 adrenergic activity (Ab-β) can modulate ventricular repolarization. Beta-adrenergic activity has been described in CChP. It increases the L-type calcium current and heart rate in isolated hearts, but its effects on ventricular repolarization has not been described. Methods and results In isolated rabbit hearts, under pacing condition, QT interval was measured under Ab-β perfusion. Beta-adrenergic activity was also tested in guinea pig ventricular M cells. Furthermore, the immunoglobulin fraction (IgG-β) of the Ab-β was tested on Ito, ICa, and Iks currents in rat, rabbit, and guinea pig myocytes, respectively. Beta-adrenergic activity shortened the QT interval. This effect was abolished in the presence of propranolol. In addition, sera from CChP without beta-adrenergic activity (Ab-β) did not modulate QT interval. The M cell action potential duration (APD) was reversibly shortened by Ab-β. Atenolol inhibited this effect of Ab-β, and Ab- did not modulate the AP of M cells. Ito was not modulated by isoproterenol nor by IgG-β. However, IgG-β increased ICa and IKs. Conclusion The shortening of the QT interval and APD in M cells and the increase of IKs and ICa induced by IgG-β contribute to repolarization changes that may trigger malignant ventricular arrhythmias observed in patients with chronic chagasic or idiopathic cardiomyopathy. PMID:18515284

  15. High-resolution, three-dimensional modeling of human leukocyte antigen class I structure and surface electrostatic potential reveals the molecular basis for alloantibody binding epitopes.

    PubMed

    Kosmoliaptsis, Vasilis; Dafforn, Timothy R; Chaudhry, Afzal N; Halsall, David J; Bradley, J Andrew; Taylor, Craig J

    2011-11-01

    The potential of human leukocyte antigens (HLA) to stimulate humoral alloimmunity depends on the orientation, accessibility and physiochemical properties of polymorphic amino acids. We have generated high-resolution structural and physiochemical models of all common HLA class I alleles and analyzed the impact of amino acid polymorphisms on surface electrostatic potential. Atomic resolution three-dimensional structural models of HLA class I molecules were generated using the MODELLER computer algorithm. The molecular surface electrostatic potential was calculated using the DelPhi program. To confirm that electrostatic surface topography reflects known HLA B cell epitopes, we examined Bw4 and Bw6 and ascertained the impact of amino acid polymorphisms on their tertiary and physiochemical composition. The HLA protein structures generated performed well when subjected to stereochemical and energy-based testing for structural integrity. The electrostatic pattern and conformation of Bw4 and Bw6 epitopes are maintained among HLA molecules even when expressed in a different structural context. Importantly, variation in epitope amino acid composition does not always translate into a different electrostatic motif, providing an explanation for serologic cross-reactivity. Mutations of critical amino acids that abrogate antibody binding also induce distinct changes in epitope electrostatic properties. In conclusion, high-resolution structural modeling provides a physiochemical explanation for serologic patterns of antibody binding and provides novel insights into HLA immunogenicity. PMID:21840357

  16. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials.

    PubMed

    Cox, Anthony; Kohls, Gregor; Naples, Adam J; Mukerji, Cora E; Coffman, Marika C; Rutherford, Helena J V; Mayes, Linda C; McPartland, James C

    2015-10-01

    Diminished responsivity to reward incentives is a key contributor to the social-communication problems seen in autism spectrum disorders (ASDs). Social motivation theories suggest that individuals with ASD do not experience social interactions as rewarding, leading to negative consequences for the development of brain circuitry subserving social information. In this study, we examined neural responses to social and non-social reward anticipation in 35 typically developing young adults, examining modulation of reward sensitivity by level of autistic traits. Using an Event-related potential incentive-delay task incorporating novel, more ecologically valid forms of reward, higher expression of autistic traits was associated with an attenuated P3 response to the anticipation of social (simulated real-time video feedback from an observer), but not non-social (candy), rewards. Exploratory analyses revealed that this was unrelated to mentalizing ability. The P3 component reflects motivated attention to reward signals, suggesting attenuated motivation allocation specific to social incentives. The study extends prior findings of atypical reward anticipation in ASD, demonstrating that attenuated social reward responsiveness extends to autistic traits in the range of typical functioning. Results support the development of innovative paradigms for investigating social and non-social reward responsiveness. Insight into vulnerabilities in reward processing is critical for understanding social function in ASD. PMID:25752905

  17. Sex-Specific Automatic Responses to Infant Cries: TMS Reveals Greater Excitability in Females than Males in Motor Evoked Potentials.

    PubMed

    Messina, Irene; Cattaneo, Luigi; Venuti, Paola; de Pisapia, Nicola; Serra, Mauro; Esposito, Gianluca; Rigo, Paola; Farneti, Alessandra; Bornstein, Marc H

    2015-01-01

    Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS). Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs) from the biceps brachii (BB) and interosseus dorsalis primus (ID1) muscles as produced by TMS delivered from 0 to 250 ms after sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was attenuated to stimuli increasingly different from natural cry and absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this response is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation. PMID:26779061

  18. Extroversion-related differences in speed of premotor and motor processing as revealed by lateralized readiness potentials.

    PubMed

    Stahl, Jutta; Rammsayer, Thomas

    2008-03-01

    To further elucidate extroversion-related differences in speed of sensorimotor processing, the authors obtained behavioral and psychophysiological measures as participants (16 introverts and 16 extroverts) performed a visual go/no-go task. Although no extroversion-related differences in reaction time emerged, introverts showed faster premotor processing but slower central and peripheral motor processing--as indicated by latencies of the lateralized readiness potential (LRP) and electromyographic (EMG) data, respectively--than extroverts did. Additional regression analyses revealed that stimulus-locked LRP latency, response-locked LRP latency, and Nl EMG amplitude accounted for 40% of overall variability in individual extroversion scores. On the basis of the present results, the authors introduce a compensation hypothesis that accounts for the common failure of researchers to demonstrate extroversion-related differences in reaction time. The present results challenge J. Brebner and C. Cooper's (1985) model of extroversion in which stimulus analysis is not slower in introverts than in extroverts. However, the present findings support the assumption of faster motor processing in extroverts. PMID:18400680

  19. Comparative Genomics Reveal Extensive Transposon-Mediated Genomic Plasticity and Diversity among Potential Effector Proteins within the Genus Coxiella▿ †

    PubMed Central

    Beare, Paul A.; Unsworth, Nathan; Andoh, Masako; Voth, Daniel E.; Omsland, Anders; Gilk, Stacey D.; Williams, Kelly P.; Sobral, Bruno W.; Kupko, John J.; Porcella, Stephen F.; Samuel, James E.; Heinzen, Robert A.

    2009-01-01

    Genetically distinct isolates of Coxiella burnetii, the cause of human Q fever, display different phenotypes with respect to in vitro infectivity/cytopathology and pathogenicity for laboratory animals. Moreover, correlations between C. burnetii genomic groups and human disease presentation (acute versus chronic) have been described, suggesting that isolates have distinct virulence characteristics. To provide a more-complete understanding of C. burnetii's genetic diversity, evolution, and pathogenic potential, we deciphered the whole-genome sequences of the K (Q154) and G (Q212) human chronic endocarditis isolates and the naturally attenuated Dugway (5J108-111) rodent isolate. Cross-genome comparisons that included the previously sequenced Nine Mile (NM) reference isolate (RSA493) revealed both novel gene content and disparate collections of pseudogenes that may contribute to isolate virulence and other phenotypes. While C. burnetii genomes are highly syntenous, recombination between abundant insertion sequence (IS) elements has resulted in genome plasticity manifested as chromosomal rearrangement of syntenic blocks and DNA insertions/deletions. The numerous IS elements, genomic rearrangements, and pseudogenes of C. burnetii isolates are consistent with genome structures of other bacterial pathogens that have recently emerged from nonpathogens with expanded niches. The observation that the attenuated Dugway isolate has the largest genome with the fewest pseudogenes and IS elements suggests that this isolate's lineage is at an earlier stage of pathoadaptation than the NM, K, and G lineages. PMID:19047403

  20. Studies in transgenic mice reveal potential relationships between secretin-producing cells and other endocrine cell types.

    PubMed

    Lopez, M J; Upchurch, B H; Rindi, G; Leiter, A B

    1995-01-13

    We have produced transgenic mice expressing fusion genes consisting of 1.6 kilobase pairs of the secretin gene 5' flanking region to direct the expression of human growth hormone (hGH) or simian virus 40 large T antigen to secretin-producing cells. Analysis of different mouse tissues for hGH transcripts revealed expression in each of the major secretin-producing tissues, namely the intestine and endocrine pancrease. Multiple label immunohistochemistry demonstrated that the transgene was correctly directed to secretin cells in the intestinal tract, including a previously unrecognized population of secretin cells in the colon of adult and developing mice. In the small intestine, subpopulations of hGH-containing cells frequently coexpressed substance P, serotonin, and cholecystokinin, whereas in the colon, cells expressing hGH frequently coexpressed glucagon, peptide YY, or neurotensin. Transgenic mice expressing large T antigen in secretin cells developed poorly differentiated neuroendocrine tumors of the small intestine, well differentiated colonic tumors containing glucagon-expressing cells, and insulin-producing tumors in pancreas. These studies indicate that the major cis-regulatory sequences necessary for secretin expression in enteroendocrine cells and fetal islets are localized with 1.6 kilobase pairs of the transcriptional start site. Coexpression of reporter transgenes with several gastrointestinal hormones suggests a potential relationships between secretin cells and other enteroendocrine cell types, as well as pancreatic beta cells. PMID:7822327

  1. Sex-Specific Automatic Responses to Infant Cries: TMS Reveals Greater Excitability in Females than Males in Motor Evoked Potentials

    PubMed Central

    Messina, Irene; Cattaneo, Luigi; Venuti, Paola; de Pisapia, Nicola; Serra, Mauro; Esposito, Gianluca; Rigo, Paola; Farneti, Alessandra; Bornstein, Marc H.

    2016-01-01

    Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS). Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs) from the biceps brachii (BB) and interosseus dorsalis primus (ID1) muscles as produced by TMS delivered from 0 to 250 ms after sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was attenuated to stimuli increasingly different from natural cry and absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this response is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation. PMID:26779061

  2. Antithyroglobulin antibody

    MedlinePlus

    ... may be due to: Graves disease Hashimoto thyroiditis Hypothyroidism Systemic lupus erythematosus (SLE) Thyrotoxicosis Type 1 diabetes ... Antibody Chronic thyroiditis (Hashimoto disease) Graves disease Hyperthyroidism Hypothyroidism Systemic lupus erythematosus T3 test Update Date 5/ ...

  3. The Complete Genome and Proteome of Laribacter hongkongensis Reveal Potential Mechanisms for Adaptations to Different Temperatures and Habitats

    PubMed Central

    Curreem, Shirly O. T.; Tsang, Alan K. L.; Fan, Rachel Y. Y.; Wong, Gilman K. M.; Huang, Yi; Loman, Nicholas J.; Snyder, Lori A. S.; Cai, James J.; Huang, Jian-Dong; Mak, William; Pallen, Mark J.; Lok, Si; Yuen, Kwok-Yung

    2009-01-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish–borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors—such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases—are present. Proteomes of L. hongkongensis HLHK9 cultured at 37°C (human body temperature) and 20°C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)—NAGK-20 and NAGK-37—in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20°C, whereas NAGK-37 showed higher expression at 37°C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other bacteria. Genome and

  4. The Shark Strikes Twice: Hypervariable Loop 2 of Shark IgNAR Antibody Variable Domains and Its Potential to Function as an Autonomous Paratope.

    PubMed

    Zielonka, Stefan; Empting, Martin; Könning, Doreen; Grzeschik, Julius; Krah, Simon; Becker, Stefan; Dickgießer, Stephan; Kolmar, Harald

    2015-08-01

    In this present study, we engineered hypervariable loop 2 (HV2) of the IgNAR variable domain in a way that it solely facilitates antigen binding, potentially functioning as an autonomous paratope. For this, the surface-exposed loop corresponding to HV2 was diversified and antigen-specific variable domain of IgNAR antibody (vNAR) molecules were isolated by library screening using yeast surface display (YSD) as platform technology. An epithelial cell adhesion molecule (EpCAM)-specific vNAR was used as starting material, and nine residues in HV2 were randomized. Target-specific clones comprising a new HV2-mediated paratope were isolated against cluster of differentiation 3ε (CD3ε) and human Fcγ while retaining high affinity for EpCAM. Essentially, we demonstrate that a new paratope comprising moderate affinities against a given target molecule can be engineered into the vNAR scaffold that acts independent of the original antigen-binding site, composed of complementarity-determining region 3 (CDR3) and CDR1. PMID:26003538

  5. Human antibody response to Aedes albopictus salivary proteins: a potential biomarker to evaluate the efficacy of vector control in an area of Chikungunya and Dengue Virus transmission.

    PubMed

    Doucoure, Souleymane; Mouchet, François; Cornelie, Sylvie; Drame, Papa Makhtar; D'Ortenzio, Eric; DeHecq, Jean Sébastien; Remoue, Franck

    2014-01-01

    Aedes borne viruses represent public health problems in southern countries and threat to emerge in the developed world. Their control is currently based on vector population control. Much effort is being devoted to develop new tools to control such arbovirus. Recent findings suggest that the evaluation of human antibody (Ab) response to arthropod salivary proteins is relevant to measuring the level of human exposure to mosquito bites. Using an immunoepidemiological approach, the present study aimed to assess the usefulness of the salivary biomarker for measuring the efficacy of Ae. albopictus control strategies in La Reunion urban area. The antisaliva Ab response of adult humans exposed to Ae. albopictus was evaluated before and after vector control measures. Our results showed a significant correlation between antisaliva Ab response and the level of exposure to vectors bites. The decrease of Ae. albopictus density has been detected by this biomarker two weeks after the implementation of control measures, suggesting its potential usefulness for evaluating control strategies in a short time period. The identification of species specific salivary proteins/peptides should improve the use of this biomarker. PMID:24822216

  6. Hep-2 cell based indirect immunofluorescence assay for antinuclear antibodies as a potential diagnosis of drug-induced autoimmunity in nonclinical toxicity testing.

    PubMed

    Hong, Min; Ma, Ben; Lin, Zhi; Zhou, Xiaobing; Geng, Xingchao; Shen, Lianzhong; Li, Bo

    2015-03-01

    Antinuclear antibodies (ANAs) are important biomarkers in the diagnosis of autoimmune diseases in humans; however, the diagnostic performance of ANA in nonclinical safety studies are not well understood. Here, we studied the use of ANAs as potential nonclinical biomarkers for drug-induced autoimmunity (DIA) using a Hep-2 based indirect immunofluorescence assay (IFA). Initially, MRL-fas(lpr)/J mice and HgCl₂-treated rats were used as SLE-positive models. Serum samples obtained from 94 normal mice or 204 normal rats aged one to four months served as the negative control. The IFA effectively distinguished ANAs-positive samples in both species with a cut-off titer of 1:100. Brown Norway rats were treated with 450 mg/kg D-penicillamine for 30 consecutive days. ANAs were generated and corresponded with DIA development. Human Hep-2 cells, mice Neuro 2A cells, and Chinese Hamster Lung cells served as antigen from different species, which were found cross-reactive with ANA-positive serum samples from mice, rats, and humans without any differences in diagnosis. This methodology showed no species-specificity for ANA detection. Furthermore, we found approximately 20 percentage of the mice aged seven to eight months demonstrated age-related ANAs, which was consistent with humans. Overall, our findings demonstrated the use of ANA detection using IFA in the nonclinical diagnosis of murine drug-induced autoimmunity, and age-related ANAs should be considered when aged animals are used. PMID:25455225

  7. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target.

    PubMed

    Toman, O; Kabickova, T; Vit, O; Fiser, R; Polakova, K Machova; Zach, J; Linhartova, J; Vyoral, D; Petrak, J

    2016-09-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib‑resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  8. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus)

    PubMed Central

    Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans. PMID:27149515

  9. Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses▿

    PubMed Central

    Udwary, Daniel W.; Gontang, Erin A.; Jones, Adam C.; Jones, Carla S.; Schultz, Andrew W.; Winter, Jaclyn M.; Yang, Jane Y.; Beauchemin, Nicholas; Capson, Todd L.; Clark, Benjamin R.; Esquenazi, Eduardo; Eustáquio, Alessandra S.; Freel, Kelle; Gerwick, Lena; Gerwick, William H.; Gonzalez, David; Liu, Wei-Ting; Malloy, Karla L.; Maloney, Katherine N.; Nett, Markus; Nunnery, Joshawna K.; Penn, Kevin; Prieto-Davo, Alejandra; Simmons, Thomas L.; Weitz, Sara; Wilson, Micheal C.; Tisa, Louis S.; Dorrestein, Pieter C.; Moore, Bradley S.

    2011-01-01

    Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus. PMID:21498757

  10. Clausmarin A, Potential Immunosuppressant Revealed by Yeast-Based Assay and Interleukin-2 Production Assay in Jurkat T Cells

    PubMed Central

    Suauam, Pitipreya; Yingyongnarongkul, Boon-ek; Palaga, Tanapat; Miyakawa, Tokichi; Yompakdee, Chulee

    2015-01-01

    Small-molecule inhibitors of Ca2+-signaling pathways are of medicinal importance, as exemplified by the immunosuppressants FK506 and cyclosporin A. Using a yeast-based assay devised for the specific detection of Ca2+-signaling inhibitors, clausmarin A, a previously reported terpenoid coumarin, was identified as an active substance. Here, we investigated the likely mechanism of clausmarin A action in yeast and Jurkat T-cells. In the presence of 100 mM CaCl2 in the growth medium of Ca2+-sensitive Δzds1 strain yeast, clausmarin A exhibited a dose-dependent alleviation of various defects due to hyperactivation of Ca2+ signaling, such as growth inhibition, polarized bud growth and G2 phase cell-cycle arrest. Furthermore, clausmarin A inhibited the growth of Δmpk1 (lacking the Mpk1 MAP kinase pathway) but not Δcnb1 (lacking the calcineurin pathway) strain, suggesting that clausmarin A inhibited the calcineurin pathway as presumed from the synthetic lethality of these pathways. Furthermore, clausmarin A alleviated the serious defects of a strain expressing a constitutively active form of calcineurin. In the human Jurkat T-cell line, clausmarin A exhibited a dose-dependent inhibition of IL-2 production and IL-2 gene transcription, as well as an inhibition of NFAT dephosphorylation. The effects of clausmarin A observed in both yeast and Jurkat cells are basically similar to those of FK506. Our study revealed that clausmarin A is an inhibitor of the calcineurin pathway, and that this is probably mediated via inhibition of calcineurin phosphatase activity. As such, clausmarin A is a potential immunosuppressant. PMID:26313553

  11. Transcriptomic gene-network analysis of exposure to silver nanoparticle reveals potentially neurodegenerative progression in mouse brain neural cells.

    PubMed

    Lin, Ho-Chen; Huang, Chin-Lin; Huang, Yuh-Jeen; Hsiao, I-Lun; Yang, Chung-Wei; Chuang, Chun-Yu

    2016-08-01

    Silver nanoparticles (AgNPs) are commonly used in daily living products. AgNPs can induce inflammatory response in neuronal cells, and potentially develop neurological disorders. The gene networks in response to AgNPs-induced neurodegenerative progression have not been clarified in various brain neural cells. This study found that 3-5nm AgNPs were detectable to enter the nuclei of mouse neuronal cells after 24-h of exposure. The differentially expressed genes in mouse brain neural cells exposure to AgNPs were further identified using Phalanx Mouse OneArray® chip, and permitted to explore the gene network pathway regulating in neurodegenerative progression according to Cytoscape analysis. In focal adhesion pathway of ALT astrocytes, AgNPs induced the gene expression of RasGRF1 and reduced its downstream BCL2 gene for apoptosis. In cytosolic DNA sensing pathway of microglial BV2 cells, AgNPs reduced the gene expression of TREX1 and decreased IRF7 to release pro-inflammatory cytokines for inflammation and cellular activation. In MAPK pathway of neuronal N2a cells, AgNPs elevated GADD45α gene expression, and attenuated its downstream PTPRR gene to interfere with neuron growth and differentiation. Moreover, AgNPs induced beta amyloid deposition in N2a cells, and decreased PSEN1 and PSEN2, which may disrupt calcium homeostasis and presynaptic dysfunction for Alzheimer's disease development. These findings suggested that AgNPs exposure reveals the potency to induce the progression of neurodegenerative disorder. PMID:27131904

  12. Multiscale Modeling of Antibody-Drug Conjugates: Connecting Tissue and Cellular Distribution to Whole Animal Pharmacokinetics and Potential Implications for Efficacy.

    PubMed

    Cilliers, Cornelius; Guo, Hans; Liao, Jianshan; Christodolu, Nikolas; Thurber, Greg M

    2016-09-01

    Antibody-drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from nonspecific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody-drug conjugate Kadcyla in HER2-positive mouse xenografts. This model is able to capture the impact of the drug-antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs. PMID:27287046

  13. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics.

    PubMed

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model's components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  14. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics

    PubMed Central

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  15. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci

    PubMed Central

    2014-01-01

    Background The identification of QTL involved in heterosis formation is one approach to unravel the not yet fully understood genetic basis of heterosis - the improved agronomic performance of hybrid F1 plants compared to their inbred parents. The identification of candidate genes underlying a QTL is important both for developing markers and determining the molecular genetic basis of a trait, but remains difficult owing to the large number of genes often contained within individual QTL. To address this problem in heterosis analysis, we applied a meta-analysis strategy for grain yield (GY) of Zea mays L. as example, incorporating QTL-, hybrid field-, and parental gene expression data. Results For the identification of genes underlying known heterotic QTL, we made use of tight associations between gene expression pattern and the trait of interest, identified by correlation analyses. Using this approach genes strongly associated with heterosis for GY were discovered to be clustered in pericentromeric regions of the complex maize genome. This suggests that expression differences of sequences in recombination-suppressed regions are important in the establishment of heterosis for GY in F1 hybrids and also in the conservation of heterosis for GY across genotypes. Importantly functional analysis of heterosis-associated genes from these genomic regions revealed over-representation of a number of functional classes, identifying key processes contributing to heterosis for GY. Based on the finding that the majority of the analyzed heterosis-associated genes were addtitively expressed, we propose a model referring to the influence of cis-regulatory variation on heterosis for GY by the compensation of fixed detrimental expression levels in parents. Conclusions The study highlights the utility of a meta-analysis approach that integrates phenotypic and multi-level molecular data to unravel complex traits in plants. It provides prospects for the identification of genes relevant for

  16. Antinuclear antibodies in mice

    PubMed Central

    Teague, P. O.; Friou, G. J.

    1969-01-01

    Seven-week-old and 16-week-old A/Jax mice were injected with viable spleen cells or homogenates of spleen cells obtained from older syngeneic mice which either had autoimmune anti-deoxyribonucleoprotein (DNP) antibody in their sera or lacked this activity. None of the 7-week-old recipients developed detectable anti-DNP antibody. However, most of the animals in the 16-week-old group developed this autoantibody. The viability of the cells and the presence of or absence of anti-DNP antibody in the donor's sera did not appear to influence the autoimmune response of these recipients. When viable thymus cells which were obtained from young A/Jax mice were transferred to groups of older syngeneic animals that had developed anti-DNP antibody spontaneously, the anti-DNP decreased or disappeared from the sera of most recipients. Untreated controls did not show this variation. When 36-week-old A/Jax mice which lacked anti-DNP antibody were injected with thymus or spleen cells obtained from young donors, none of the recipients or untreated controls developed anti-DNP antibody. After specific immunization with DNP, however, the control animals began to produce autoimmune anti-DNP antibody while the animals treated with thymus or spleen cells remained unresponsive. These observations support the hypothesis that in A/Jax mice: (1) autoimmunity to DNP may result from failure of normal homeostasis mechanisms which allow proliferation of autoimmune cells; (2) the number of cells with autoimmune potential may increase during ageing; (3) the efficiency of the homeostasis system may decrease during ageing as the result of microbial or genetic factors; and (4) cells which participate in homeostasis are found in the thymus and spleen of young mice and may be the thymus dependent lymphocytes. PMID:5307745

  17. Communication: Antibody stability and behavior on surfaces.

    PubMed

    Bush, Derek B; Knotts, Thomas A

    2015-08-14

    Antibody microarrays have the potential to revolutionize molecular detection in scientific, medical, and other biosensor applications, but their current use is limited because of poor reliability. It is hypothesized that one reason for their poor performance results from strong antibody-surface interactions that destabilize the antibody structure and create steric interference for antigen recognition. Using a recently developed coarse-grain protein-surface model that has been parameterized against experimental data, antibody-surface interactions for two antibody orientations on two types of surfaces have been investigated. The results show that regardless of attachment geometry, antibodies tend to collapse onto hydrophobic surfaces and exhibit lower overall stability compared to antibodies on hydrophilic surfaces or in bulk solution. The results provide an unprecedented view into the dynamics of antibodies on surfaces and offer new insights into the poor performance exhibited by current antibody microarrays. PMID:26277119

  18. Communication: Antibody stability and behavior on surfaces

    NASA Astrophysics Data System (ADS)

    Bush, Derek B.; Knotts, Thomas A.

    2015-08-01

    Antibody microarrays have the potential to revolutionize molecular detection in scientific, medical, and other biosensor applications, but their current use is limited because of poor reliability. It is hypothesized that one reason for their poor performance results from strong antibody-surface interactions that destabilize the antibody structure and create steric interference for antigen recognition. Using a recently developed coarse-grain protein-surface model that has been parameterized against experimental data, antibody-surface interactions for two antibody orientations on two types of surfaces have been investigated. The results show that regardless of attachment geometry, antibodies tend to collapse onto hydrophobic surfaces and exhibit lower overall stability compared to antibodies on hydrophilic surfaces or in bulk solution. The results provide an unprecedented view into the dynamics of antibodies on surfaces and offer new insights into the poor performance exhibited by current antibody microarrays.

  19. Real time detection of lysozyme by pulsed streaming potentials using polyclonal antibodies immobilized on a renewable nonfouling surface inside plastic microfluidic channels.

    PubMed

    Luna-Vera, Fernando; Ferguson, Josephus D; Alvarez, Julio C

    2011-03-15

    A composite surface was prepared on cyclic olefin copolymer (COC) microchannels by UV-photografting of polyethylene glycol acrylate (PEGA) and poly(acrylic acid) (PAA) films. A PEGA layer of globular particles with average thickness of 60 nm was formed after 15 min of polymerization. Real time monitoring by pulsed streaming potentials demonstrated the ability of the PEGA layer to inhibit the adhesion of five different nonspecific adsorbing proteins when compared with pristine COC. Roughness determined by atomic force microscopy (AFM) after PAA grafting on COC-PEGA at different UV illumination times suggests that PAA formation is initiated at the free space in between the PEGA particles. Carboxylic groups activated with N-hydroxysuccinimide and N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide were used to bind anti-lysozyme polyclonal antibodies. The composite COC-PEGA-PAA-anti-lysozyme surface demonstrated its ability to detect lysozyme with a dynamic range between 140 and 860 nM. Linearity was maintained even when samples were spiked with 250 nM of cytochrome as interfering species. The equilibrium constant K(eq) for the adsorption of Ly on COC-PEGA-PAA-anti-Ly was estimated to be 2.7 × 10(6) M(-1), and it shows that this kinetic approach of monitoring the surface charge is also useful to estimate affinity interactions for proteins in label free fashion. The regeneration of the surface exhibited an average percentage of recovery of ∼97% for each of six adsorption-regeneration cycles. This feature enables curve calibration on a single microfluidic chip because each point of the curve has a reproducible and renewable surface. PMID:21322582

  20. Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR

    USGS Publications Warehouse

    Kollner, B.; Fisher, U.; Rombout, J.H.W.M.; Taverne-Thiele, J.J.; Hansen, J.D.

    2004-01-01

    The functional relationship between fish and mammalian thrombocytes is relatively unknown. In this study, a panel of monoclonal antibodies (mAbs) was used to investigate the functional properties of rainbow trout thrombocytes. The mAbs recognize cell-surface molecules on thrombocytes with molecular weights ranging from 17 to 160 kDa. Flow cytometric and immuno-electron microscopic analyses demonstrate that these molecules are expressed at different levels and that surface expression increased upon activation with bovine collagen. Two of these cell-surface molecules (17 and 21 kDa) were directly involved in collagen-induced aggregation of thrombocytes since aggregation was blocked upon pre-treatment with mAbs that recognize the two surface markers. Interestingly, the percentage of thrombocytes in blood increased after stimulation using different antigens. The transcriptional profile of trout thrombocytes was then examined after immuno-magnetic enrichment using the described mAbs to assess potential roles of trout thrombocytes in immune functions. Trout thrombocytes express components of the MHC class Ia pathway, IL1β, TNFα, TGFβ, the interleukin receptor common γ chain as well as CXC and CC chemokines. MHC class IIB and TNFα were expressed at low levels in resting thrombocytes. No evidence was found for the expression of TCRαβ, Ig heavy chain, CD8α or CK1 mRNA. Taken together, these results suggest that rainbow trout thrombocytes express molecules involved in activation, aggregation and genes encoding proteins, that are involved in antigen presentation and immune regulation.

  1. Reducing heterophilic antibody interference in immunoassays using single chain antibodies

    SciTech Connect

    Baird, Cheryl L.; Tan, Ruimin; Fischer, Christopher J.; Victry, Kristin D.; Zangar, Richard C.; Rodland, Karin D.

    2011-12-15

    Sandwich ELISA microarrays have the potential to simultaneously quantify the levels of multiple diagnostic targets in a biological sample. However, as seen with traditional ELISA diagnostics, heterophilic antibodies (HA) in patient sera have the potential to cause interference in these assays. We demonstrate here that reducing the diagnostic capture antibody to its minimal functional unit, the variable heavy and light domains artificially connected with a short polypeptide linker (scFv), is an effective strategy for reducing the HA assay interference.

  2. RE-186 labeled 16.88 IgM and 88BV59 IgG human antibody studies to assess potential for radioimmunotherapy

    SciTech Connect

    Breitz, H.; Seiler, C.; Weiden, P. ||

    1994-05-01

    Two studies with Re-186-MAG{sub 2}GABA labeled human antibodies were carried out to assess feasibility for radioimmunotherapy. Antibodies 16.88 and 88BV59 react with different epitopes of CTA 16.88, a tumor associated antigen of colorectal carcinoma. In a phase I dose escalation study, 14 patients received 60 mg/m{sup 2} 16.88 IgM MoAb. The dose of Re-186 ranged from 25 mCi/m{sup 2} to 210 mCi/m{sup 2} divided into 3 weekly infusions. In a pilot study with 88BV59, a human IgG3k MoAb, 20 mg antibody was labeled with 25 mCi/m{sup 2} Re-186 and administered to 4 patients with colon carcinoma. Tumor targeting was seen in 12 of 14 patients with 16.88 and all 4 patients with 88BV59. Retention of antibody at the tumor was longer with 88BV59. One patient developed a rash. No other acute or delayed toxicities were observed. Human anti-human antibody did not develop in any patient. The slower metabolism of the 88BV59 IgG suggests that this form of immunoconjugate merits further investigation for use in radioimmunotherapy.

  3. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET.

    PubMed

    Mume, Eskender; Orlova, Anna; Malmström, Per-Uno; Lundqvist, Hans; Sjöberg, Stefan; Tolmachev, Vladimir

    2005-08-01

    Combining the specificity of radioimmunoscintigraphy and the high sensitivity of PET in an in vivo detection technique could improve the quality of nuclear diagnostics. Positron-emitting nuclide (76)Br (T(1/2)=16.2 h) might be a possible candidate for labeling monoclonal antibodies (mAbs) and their fragments, provided that the appropriate labeling chemistry has been established. For internalizing antibodies, such as the humanized anti-HER2 monoclonal antibody, trastuzumab, radiobromine label should be residualizing, i.e., ensuring that radiocatabolites are trapped intracellularly after the proteolytic degradation of antibody. This study evaluated the chemistry of indirect radiobromination of trastuzumab using N-succinimidyl 5-(tributylstannyl)-3-pyridinecarboxylate. Literature data indicated that the use of this method provided residualizing properties for iodine and astatine labels on some antibodies. An optimized "one-pot" procedure produced an overall labeling efficiency of 45.5+/-1.2% over 15 min. The bromine label was stable under physiological and denaturing conditions. The labeled trastuzumab retained its capacity to bind specifically to HER2-expressing SKOV-3 ovarian carcinoma cells in vitro (immunoreactivity more than 75%). However, in vitro cell test did not demonstrate that the radiobromination of trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate improves cellular retention of radioactivity in comparison with the use of N-succinimidyl 4-bromobenzoate. PMID:16026708

  4. Module based antibody engineering: A novel synthetic REDantibody

    PubMed Central

    Markiv, Anatoliy; Anani, Bernard; Durvasula, Ravi V; Kang, Angray S

    2010-01-01

    We describe the facile generation of a stable recombinant antibody with intrinsic red fluorescent properties for qualitative and potentially quantitative immunofluorescence analysis. The REDantibody based on the X-ray crystallographic structures of the anti-sialyl-Tn antibody B72.3 and 3D model of the monomeric red fluorescent protein was designed to retain optimal spatial geometry between the C- and N- termini of the VH and VL chains respectively to mimic the domains interface pairing in antibody Fab fragments and to incorporate the red fluorescent protein as a bridging scaffold. The model was further validated by assembling a REDantibody based on CA19.9 the anti-sialylated Lewis (Le)a blood group antigen and 4D5-8 the anti-p185HER2 antibodies. The chimeric heavy and light chains containing red fluorescent protein as a bridge were correctly processed and secreted into E. coli periplasm for assembly and disulphide bond formation, further analysis revealed the molecules to be exclusively monomers. Purified anti-glycan proteins were used for an immunofluorescent analysis of Trypanosoma cruzi epimastigotes, and the anti-p185HER2 used to determine the binding properties. The REDantibody platform facilitates rapid generation of scFv chimeras that could be used for screening antibodies against cell surface markers. Furthermore, such modular assembly should permit the interchange of binding sites and of fluorophores to create robust panels of coloured antibodies. PMID:21055406

  5. Pr1E11, a novel anti-TROP-2 antibody isolated by adenovirus-based antibody screening, recognizes a unique epitope.

    PubMed

    Ikeda, Masahiro; Yamaguchi, Miki; Kato, Kazunori; Nakamura, Kiminori; Shiina, Sagano; Ichikawa-Ando, Takako; Misaka, Hirofumi; Myojo, Kensuke; Nakamura, Kazuyasu; Sugimoto, Yoshiyuki; Hamada, Hirofumi

    2015-03-20

    TROP-2 is a type Ⅰ transmembrane glycoprotein that is highly expressed in various epithelial cancer cells, and its increased expression correlates with poor prognosis. Although several anti-TROP-2 antibodies have been described, they were found unsuitable for antitumor therapy use in vivo as naked antibodies. In this study, we established a novel anti-TROP-2 antibody, designated Pr1E11, from mice immunized with primary prostate cancer cells. Antibody screening was based on the infection activity of Adv-LacZ-FZ33, which displays an immunoglobulin G binding domain in the adenoviral fiber protein. We found that Pr1E11 specifically binds to TROP-2 with high affinity and recognizes diverse epithelial cancer cell lines and primary pancreatic cancer tissues. Epitope analysis using TROP-2 deletion mutants revealed that binding site of Pr1E11 is a cysteine-rich domain, a unique epitope compared with other available anti-TROP-2 antibodies. In addition, Pr1E11 exhibited low internalization activity, which may make it suitable for naked antibody therapeutics. Our results suggest that Pr1E11 may stimulate different biological activities from other anti-TROP-2 antibodies based on its unique binding epitope, and is a potential candidate for naked antibody therapeutics for various epithelial cancer treatments. PMID:25701778

  6. Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against IGHV1-69 germline gene-based B-CLL.

    PubMed

    Chang, De-Kuan; Kurella, Vinodh B; Biswas, Subhabrata; Avnir, Yuval; Sui, Jianhua; Wang, Xueqian; Sun, Jiusong; Wang, Yanyan; Panditrao, Madhura; Peterson, Eric; Tallarico, Aimee; Fernandes, Stacey; Goodall, Margaret; Zhu, Quan; Brown, Jennifer R; Jefferis, Roy; Marasco, Wayne A

    2016-01-01

    In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells. PMID:26963739

  7. Antithyroid microsomal antibody

    MedlinePlus

    ... Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb Images Blood test References Guber HA, Faraq AF. Evaluation of endocrine function. In: McPherson RA, Pincus MR, eds. Henry's Clinical ...

  8. Draft Genome Sequence of the Deep-Sea Ascomycetous Filamentous Fungus Cadophora malorum Mo12 from the Mid-Atlantic Ridge Reveals Its Biotechnological Potential

    PubMed Central

    Rédou, Vanessa; Kumar, Abhishek; Hainaut, Matthieu; Henrissat, Bernard; Record, Eric; Barbier, Georges

    2016-01-01

    Cadophora malorum Mo12 was isolated from the Rainbow hydrothermal site on the Mid-Atlantic Ridge. We present the draft genome sequence of this filamentous fungal strain, which has high biotechnological potentials as revealed by the presence of genes encoding biotechnologically important enzymes and genes involved in the synthesis of secondary metabolites. PMID:27389260

  9. Draft Genome Sequence of the Deep-Sea Ascomycetous Filamentous Fungus Cadophora malorum Mo12 from the Mid-Atlantic Ridge Reveals Its Biotechnological Potential.

    PubMed

    Rédou, Vanessa; Kumar, Abhishek; Hainaut, Matthieu; Henrissat, Bernard; Record, Eric; Barbier, Georges; Burgaud, Gaëtan

    2016-01-01

    Cadophora malorum Mo12 was isolated from the Rainbow hydrothermal site on the Mid-Atlantic Ridge. We present the draft genome sequence of this filamentous fungal strain, which has high biotechnological potentials as revealed by the presence of genes encoding biotechnologically important enzymes and genes involved in the synthesis of secondary metabolites. PMID:27389260

  10. In Silico Structural Homology Modelling and Docking for Assessment of Pandemic Potential of a Novel H7N9 Influenza Virus and Its Ability to Be Neutralized by Existing Anti-Hemagglutinin Antibodies

    PubMed Central

    Rajapaksha, Harinda; Petrovsky, Nikolai

    2014-01-01

    The unpredictable nature of pandemic influenza and difficulties in early prediction of pandemic potential of new isolates present a major challenge for health planners. Vaccine manufacturers, in particular, are reluctant to commit resources to development of a new vaccine until after a pandemic is declared. We hypothesized that a structural bioinformatics approach utilising homology-based molecular modelling and docking approaches would assist prediction of pandemic potential of new influenza strains alongside more traditional laboratory and sequence-based methods. The newly emerged Chinese A/Hangzhou/1/2013 (H7N9) influenza virus provided a real-life opportunity to test this hypothesis. We used sequence data and a homology-based approach to construct a 3D-structural model of H7-Hangzhou hemagglutinin (HA) protein. This model was then used to perform docking to human and avian sialic acid receptors to assess respective binding affinities. The model was also used to perform docking simulations with known neutralizing antibodies to assess their ability to neutralize the newly emerged virus. The model predicted H7N9 could bind to human sialic acid receptors thereby indicating pandemic potential. The model also confirmed that existing antibodies against the HA head region are unable to neutralise H7N9 whereas antibodies, e.g. Cr9114, targeting the HA stalk region should bind with high affinity to H7N9. This indicates that existing stalk antibodies initially raised against H5N1 or other influenza A viruses could be therapeutically beneficial in prevention and/or treatment of H7N9 infections. The subsequent publication of the H7N9 HA crystal structure confirmed the accuracy of our in-silico structural model. Antibody docking studies performed using the H7N9 HA crystal structure supported the model's prediction that existing stalk antibodies could cross-neutralise the H7N9 virus. This study demonstrates the value of using in-silico structural modelling approaches to

  11. New engineered antibodies against prions

    PubMed Central

    Škrlj, Nives; Dolinar, Marko

    2014-01-01

    A number of recently developed and approved therapeutic agents based on highly specific and potent antibodies have shown the potential of antibody therapy. As the next step, antibody-based therapeutics will be bioengineered in a way that they not only bind pathogenic targets but also address other issues, including drug targeting and delivery. For antibodies that are expected to act within brain tissue, like those that are directed against the pathogenic prion protein isoform, one of the major obstacles is the blood-brain barrier which prevents efficient transfer of the antibody, even of the engineered single-chain variants. We recently demonstrated that a specific prion-specific antibody construct which was injected into the murine tail vein can be efficiently transported into brain tissue. The novelty of the work was in that the cell penetrating peptide was used as a linker connecting both specificity-determining domains of the antibody peptide, thus eliminating the need for the standard flexible linker, composed of an arrangement of three consecutive (Gly4Ser) repeats. This paves the road toward improved bioengineered antibody variants that target brain antigens. PMID:23941991

  12. Trifunctional antibody ertumaxomab

    PubMed Central

    Diermeier-Daucher, Simone; Ortmann, Olaf; Buchholz, Stefan; Brockhoff, Gero

    2012-01-01

    Background: The trifunctional antibody ertumaxomab bivalently targets the human epidermal growth factor receptor 2 (Her2) on epithelial (tumor) cells and the T cell specific CD3 antigen, and its Fc region is selectively recognized by Fcγ type I/III receptor-positive immune cells. As a trifunctional immunoglobulin, ertumaxomab therefore not only targets Her2 on cancer cells, but also triggers immunological effector mechanisms mediated by T and accessory cells (e.g., macrophages, dendritic cells, natural killer cells). Whether molecular effects, however, might contribute to the cellular antitumor efficiency of ertumaxomab are largely unknown. Methods: Potential molecular effects of ertumaxomab on Her2-overexpressing BT474 and SK-BR-3 breast cancer cells were evaluated. The dissociation constant Kd of ertumaxomab was calculated from titration curves that were recorded by flow cytometry. Treatment-induced changes in Her2 homodimerization were determined by flow cytometric fluorescence resonance energy transfer measurements on a cell-by-cell basis. Potential activation / deactivation of Her2, ERK1/2, AKT and STAT3 were analyzed by western blotting, Immunochemistry and immunofluorescent cell staining. Results: The Kd of ertumaxomab for Her2-binding was determined at 265 nM and the ertumaxomab binding epitope was found to not overlap with that of the therapeutic anti-Her2 monoclonal antibodies trastuzumab and pertuzumab. Ertumaxomab caused an increase in Her2 phosphorylation at higher antibody concentrations, but changed neither the rate of Her2-homodimerization /-phosphorylation nor the activation state of key downstream signaling proteins analyzed. Conclusions: The unique mode of action of ertumaxomab, which relies more on activation of immune-mediated mechanisms against tumor cells compared with currently available therapeutic antibodies for breast cancer treatment, suggests that modular or sequential treatment with the trifunctional bivalent antibody might complement

  13. Co-expression networks revealed potential core lncRNAs in the triple-negative breast cancer.

    PubMed

    Yang, Fan; Liu, Ye-Huan; Dong, Si-Yang; Yao, Zhi-Han; Lv, Lin; Ma, Rui-Min; Dai, Xuan-Xuan; Wang, Jiao; Zhang, Xiao-Hua; Wang, Ou-Chen

    2016-10-15

    Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with unfavorable outcome. It is urgent to explore novel biomarkers and potential therapeutic targets in this malignancy. Increasing knowledge of long noncoding RNAs (lncRNAs) significantly deepens our understanding of cancer biology. Here, we sequenced eight paired TNBC tumor tissues and non-cancerous tissues, and validated significantly differentially expressed lncRNAs. Gene ontology (GO) and pathway analysis were used to investigate the function of differentially expressed mRNAs. Further, potential core lncRNAs in TNBC were identified by co-expression networks. Kaplan-Meier analysis also indicated that breast cancer patients with lower expression level of rhabdomyosarcoma 2 associated transcript (RMST), one of the potential core lncRNAs, had worse overall survival. To the best of our knowledge, it was the first report that RMST was involved in breast cancer. Our research provided a rich resource to the research community for further investigating lncRNAs functions and identifying lncRNAs with diagnostic and therapeutic potentials in TNBC. PMID:27380926

  14. Forecasting the Effects of Land Use Scenarios on Farmland Birds Reveal a Potential Mitigation of Climate Change Impacts

    PubMed Central

    Princé, Karine; Lorrillière, Romain; Barbet-Massin, Morgane; Léger, François; Jiguet, Frédéric

    2015-01-01

    Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable

  15. A comparison of the Caulobacter NA1000 and K31 genomes reveals extensive genome rearrangements and differences in metabolic potential

    PubMed Central

    Ash, Kurt; Brown, Theta; Watford, Tynetta; Scott, LaTia E.; Stephens, Craig; Ely, Bert

    2014-01-01

    The genus Caulobacter is found in a variety of habitats and is known for its ability to thrive in low-nutrient conditions. K31 is a novel Caulobacter isolate that has the ability to tolerate copper and chlorophenols, and can grow at 4°C with a doubling time of 40 h. K31 contains a 5.5 Mb chromosome that codes for more than 5500 proteins and two large plasmids (234 and 178 kb) that code for 438 additional proteins. A comparison of the K31 and the Caulobacter crescentus NA1000 genomes revealed extensive rearrangements of gene order, suggesting that the genomes had been randomly scrambled. However, a careful analysis revealed that the distance from the origin of replication was conserved for the majority of the genes and that many of the rearrangements involved inversions that included the origin of replication. On a finer scale, numerous small indels were observed. K31 proteins involved in essential functions shared 80–95% amino acid sequence identity with their C. crescentus homologues, while other homologue pairs tended to have lower levels of identity. In addition, the K31 chromosome contains more than 1600 genes with no homologue in NA1000. PMID:25274120

  16. Genome Analysis of the Fruiting Body-Forming Myxobacterium Chondromyces crocatus Reveals High Potential for Natural Product Biosynthesis

    PubMed Central

    Zaburannyi, Nestor; Bunk, Boyke; Maier, Josef; Overmann, Jörg

    2016-01-01

    Here, we report the complete genome sequence of the type strain of the myxobacterial genus Chondromyces, Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to that of other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters are in line with the capability of Cm c5 to produce an arsenal of antibacterial, antifungal, and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin, crocapeptin, and thuggacin compound families are complemented by many more natural compound biosynthetic gene clusters in the chromosome. Whole-genome comparison of the fruiting-body-forming type strain (Cm c5, DSM 14714) to an accustomed laboratory strain which has lost this ability (nonfruiting phenotype, Cm c5 fr−) revealed genetic changes in three loci. In addition to the low synteny found with the closest sequenced representative of the same family, Sorangium cellulosum, extensive genetic information duplication and broad application of eukaryotic-type signal transduction systems are hallmarks of this 11.3-Mbp prokaryotic genome. PMID:26773087

  17. Therapeutic antibodies in ophthalmology

    PubMed Central

    Magdelaine-Beuzelin, Charlotte; Pinault, Coralie; Paintaud, Gilles

    2010-01-01

    More than a century after the first successful use of serotherapy, antibody-based therapy has been renewed by the availability of recombinant monoclonal antibodies. As in the past, current clinical experience has prompted new pharmacological questions and induced much debate among practitioners, notably in the field of ophthalmology. An examination of the history of antibodies as treatments for ocular disorders reveals interesting parallels to the modern era. The fact that a treatment administered by a systemic route could be efficacious in a local disease was not widely accepted and the “chemical” nature of antibodies was not clearly understood in the late 19th century. Clinical studies by Henry Coppez, a Belgian ophthalmologist, established in 1894 that antidiphtheric antitoxins could be used to treat conjunctival diphtheria. Nearly 20 years later, Coppez and Danis described age-related macular degeneration, a disorder which today benefits from ranibizumab therapy. The product, a locally-administered recombinant monoclonal Fab fragment, is directed against vascular endothelial growth factor A. Interestingly, its full-size counterpart, bevacizumab, which is approved for the treatment of solid tumors, has also demonstrated efficacy in age-related macular degeneration when administered either intravenously or locally, which raises new questions about antibody pharmacology and biodistribution. In order to shed some light on this debate, we recount the early history of serotherapy applied to ophthalmology, review the exact molecular differences between ranibizumab and bevacizumab, and discuss what is known about IgG and the blood-retina barrier and the possible role of FcRn, an IgG transporter. PMID:21358858

  18. Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T.

    PubMed

    Diken, Elif; Ozer, Tugba; Arikan, Muzaffer; Emrence, Zeliha; Oner, Ebru Toksoy; Ustek, Duran; Arga, Kazim Yalcin

    2015-01-01

    Halomonas smyrnensis AAD6T is a gram negative, aerobic, and moderately halophilic bacterium, and is known to produce high levels of levan with many potential uses in foods, feeds, cosmetics, pharmaceutical and chemical industries due to its outstanding properties. Here, the whole-genome analysis was performed to gain more insight about the biological mechanisms, and the whole-genome organization of the bacterium. Industrially crucial genes, including the levansucrase, were detected and the genome-scale metabolic model of H. smyrnensis AAD6T was reconstructed. The bacterium was found to have many potential applications in biotechnology not only being a levan producer, but also because of its capacity to produce Pel exopolysaccharide, polyhydroxyalkanoates, and osmoprotectants. The genomic information presented here will not only provide additional information to enhance our understanding of the genetic and metabolic network of halophilic bacteria, but also accelerate the research on systematical design of engineering strategies for biotechnology applications. PMID:26251777

  19. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    NASA Astrophysics Data System (ADS)

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  20. DNA methylome profiling of maternal peripheral blood and placentas reveal potential fetal DNA markers for non-invasive prenatal testing.

    PubMed

    Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi

    2014-09-01

    Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia. PMID:24996894

  1. Potential contaminants at a dredged spoil placement site, Charles City County, Virginia, as revealed by sequential extraction

    PubMed Central

    Tang, Jianwu; Whittecar, G Richard; Johannesson, Karen H; Daniels, W Lee

    2004-01-01

    Backfills of dredged sediments onto a former sand and gravel mine site in Charles City County, VA may have the potential to contaminate local groundwater. To evaluate the mobility of trace elements and to identify the potential contaminants from the dredged sediments, a sequential extraction scheme was used to partition trace elements associated with the sediments from the local aquifer and the dredged sediments into five fractions: exchangeable, acidic, reducible, oxidizable, and residual phases. Sequential extractions indicate that, for most of the trace elements examined, the residual phases account for the largest proportion of the total concentrations, and their total extractable fractions are mainly from reducible and oxidizable phases. Only Cd, Pb, and Zn have an appreciable extractable proportion from the acidic phase in the filled dredged sediments. Our groundwater monitoring data suggest that the dredged sediments are mainly subject to a decrease in pH and a series of oxidation reactions, when exposed to the atmosphere. Because the trace elements released by carbonate dissolution and the oxidation (e.g., organic matter degradation, iron sulfide and, ammonia oxidation) are subsequently immobilized by sorption to iron, manganese, and aluminum oxides, no potential contaminants to local groundwater are expected by addition of the dredged sediments to this site.

  2. Antibody Engineering and Therapeutics

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  3. A Synthetic Quorum Sensing System Reveals a Potential Private Benefit for Public Good Production in a Biofilm

    PubMed Central

    Zhang, Fang; Kwan, Anna; Xu, Amy; Süel, Gürol M.

    2015-01-01

    Bacteria predominantly reside in microbial communities known as biofilms, where cells are encapsulated and protected by the extracellular matrix (ECM). While all biofilm cells benefit from the ECM, only a subgroup of cells carries the burden of producing this public good. This dilemma provokes the question of how these cells balance the cost of ECM production. Here we show that ECM producing cells have a higher gene expression response to quorum sensing (QS) signals, which can lead to a private benefit. Specifically, we constructed a synthetic quorum-sensing system with designated “Sender” and “Receiver” cells in Bacillus subtilis. This synthetic QS system allowed us to uncouple and independently investigate ECM production and QS in both biofilms and single cells. Results revealed that ECM production directly enhances the response to QS signals, which may offset the cost of ECM production. PMID:26196509

  4. [Monoclonal antibody for cancer treatment].

    PubMed

    Achiwa, Hiroyuki; Sato, Shigeki; Ueda, Ryuzo

    2002-04-01

    Antibodies have for many decades been viewed as ideal molecules for cancer therapy. Although promising from the start, it has taken much of more than two decades to reach the level of clinical application. Genetic engineering of antibodies; that is novel technologies for chimeric or humanizing monoclonal antibodies, has greatly advanced their utility in molecular targeting therapies, and in the past four years some therapeutic monoclonal antibodies for hematologic malignancies and solid tumors, such as Rituximab for B-cell lymphoma and Trastuzumab for metastatic breast cancer, have provided sufficient efficacy and safety to support regulatory approval from the U.S. Food and Drug Administration. They were subsequently approved by the Japanese Ministry of Health, Labour and Welfare in 2001. Many molecular biological and immunological studies have revealed the targeting properties of the host immune system and the biological mechanism of cancer cells for a more specific anticancer effect. Many clinical trials of monoclonal antibodies as a single agent, or in combination protocol with current standard chemotherapy or immunoconjugates have shown promise in the treatment of specific diseases. Furthermore, novel antibody designs and improved understanding of the mode of action of current antibodies lend great hope to the future of this therapeutic approach. The accumulating results from many basic, clinical and translational studies may lead to more individualized therapeutic strategies using these agent directed at specific genetic and immunologic targets. PMID:11977531

  5. Structure of Severe Fever with Thrombocytopenia Syndrome Virus Nucleocapsid Protein in Complex with Suramin Reveals Therapeutic Potential

    PubMed Central

    Jiao, Lianying; Ouyang, Songying; Liang, Mifang; Niu, Fengfeng; Shaw, Neil; Wu, Wei; Ding, Wei; Jin, Cong; Peng, Yao; Zhu, Yanping; Zhang, Fushun; Wang, Tao; Li, Chuan; Zuo, Xiaobing; Luan, Chi-Hao; Li, Dexin

    2013-01-01

    Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks. PMID:23576501

  6. Methods of identification employing antibody profiles

    DOEpatents

    Francoeur, Ann-Michele

    1993-12-14

    An identification method, applicable to the identification of animals or inanimate objects, is described. The method takes advantage of the set of individual-specific antibodies that are part of the unique antibody repertoire present in animals, by reacting an effective amount of such antibodies with a particular panel, of n-dimensional array (where n is typically one or two) consisting of an effective amount of many different antigens (typically greater than one thousand), to give antibody-antigen complexes. The profile or pattern formed by the antigen-antibody complexes, termed an antibody fingerprint, when revealed by an effective amount of an appropriate detector molecule, is uniquely representative of a particular individual. The method can similarly be used to distinguish genetically, or otherwise similar individuals, or their body parts containing individual-specific antibodies.

  7. Assessment of Potential Cross-Reactivity of Human Endogenous Matrix Metalloproteinases with Collagenase Clostridium histolyticum Antibodies in Human Sera Obtained from Patients with Dupuytren's Contracture

    PubMed Central

    Edkins, Thomas J.; Koller-Eichhorn, Roland; Alhadeff, Jack A.; Mayer, Ulrich; Faust, Heinrich

    2012-01-01

    Collagenase Clostridium histolyticum (CCH) contains a fixed ratio of class I (AUX-I) and class II (AUX-II) collagenases and is used as treatment for Dupuytren's contracture. These two Zn-dependent enzymes, produced by the Gram-positive bacterium Clostridium histolyticum, are related functionally to matrix metalloproteinases (MMPs) which, among other functions, degrade the extracellular matrix. Since AUX-I and AUX-II exhibit sequence similarities to human MMPs, we assessed MMP-1 (interstitial collagenase), MMP-2 (gelatinase A), MMP-3 (stromelysin 1), MMP-8 (collagenase 2), and MMP-13 (collagenase 3) for cross-reactivity with anti-AUX-I and anti-AUX-II antibodies in patient serum. Serum samples from 71 subjects enrolled in a long-term clinical study (58 males and 13 females; 63 ± 10 years old [mean ± standard error]) were evaluated for cross-reactivity with the five MMPs using the two validated enzyme-linked immunosorbent assays (ELISAs). Inhibition cutoff points for anti-AUX-I and anti-AUX-II antibodies were based on assay inhibition obtained with a nonspecific protein, bovine gamma globulin, which was tested for each clinical sample. No MMP cross-reactivity was found for any of the 71 clinical antibody-positive sera evaluated. Sequence identity assessments indicated minimal, nonmeaningful alignments of the MMPs and AUX-I/AUX-II. Furthermore, clinical adverse event assessments indicated no safety signals related to MMP inhibition. The bioanalytical results, sequence identity, and clinical assessments consistently did not demonstrate cross-reactivity between CCH antidrug antibodies and endogenous human matrix metalloproteinases. The results presented here suggest that treatment of Dupuytren's contracture patients with CCH does not lead to any clinical adverse events associated with MMP inhibition. PMID:22357647

  8. Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood Group Antigens Reveal Details for a Potential Site of Vulnerability

    SciTech Connect

    Hansman, Grant S.; Biertümpfel, Christian; Georgiev, Ivelin; McLellan, Jason S.; Chen, Lei; Zhou, Tongqing; Katayama, Kazuhiko; Kwong, Peter D.

    2011-10-10

    Noroviruses are the dominant cause of outbreaks of gastroenteritis worldwide, and interactions with human histo-blood group antigens (HBGAs) are thought to play a critical role in their entry mechanism. Structures of noroviruses from genogroups GI and GII in complex with HBGAs, however, reveal different modes of interaction. To gain insight into norovirus recognition of HBGAs, we determined crystal structures of norovirus protruding domains from two rarely detected GII genotypes, GII.10 and GII.12, alone and in complex with a panel of HBGAs, and analyzed structure-function implications related to conservation of the HBGA binding pocket. The GII.10- and GII.12-apo structures as well as the previously solved GII.4-apo structure resembled each other more closely than the GI.1-derived structure, and all three GII structures showed similar modes of HBGA recognition. The primary GII norovirus-HBGA interaction involved six hydrogen bonds between a terminal {alpha}fucose1-2 of the HBGAs and a dimeric capsid interface, which was composed of elements from two protruding subdomains. Norovirus interactions with other saccharide units of the HBGAs were variable and involved fewer hydrogen bonds. Sequence analysis revealed a site of GII norovirus sequence conservation to reside under the critical {alpha}fucose1-2 and to be one of the few patches of conserved residues on the outer virion-capsid surface. The site was smaller than that involved in full HBGA recognition, a consequence of variable recognition of peripheral saccharides. Despite this evasion tactic, the HBGA site of viral vulnerability may provide a viable target for small molecule- and antibody-mediated neutralization of GII norovirus.

  9. Imaginative Language: What Event-Related Potentials have Revealed about the Nature and Source of Concreteness Effects*

    PubMed Central

    Huang, Hsu-Wen; Federmeier, Kara D.

    2016-01-01

    Behavioral and neuropsychological evidence suggest that abstract and concrete concepts may be represented, retrieved, and processed differently in the human brain. As reviewed in this paper, data using event-related potential measures, some in combination with visual half-field presentation methods, have offered a detailed picture of the nature and source of concreteness effects. In particular, the results provide strong evidence for multiple mechanisms underlying the behavioral processing differences that have long been noted for concrete and abstract words and, further, suggest an intriguing, unique role for the right hemisphere in associating words with sensory imagery. PMID:27559305

  10. Competition between recently potentiated synaptic inputs reveals a winner-take-all phase of synaptic tagging and capture

    PubMed Central

    Sajikumar, Sreedharan; Morris, Richard G. M.; Korte, Martin

    2014-01-01

    Canonical models suggest that mechanisms of long-term memory consist of a synapse-specific, protein synthesis-independent induction phase (changes in synaptic weights/temporary tagging of such synapses) and, within adjacent dendritic compartments, a protein synthesis-dependent distribution phase that may accompany or immediately precede induction and whose protein products enable consolidation through synaptic capture. We now report that this distribution phase is competitive in a “winner-take-all”