Science.gov

Sample records for antibody fragments directed

  1. Structural modifications of monoclonal antibodies following direct versus indirect labelling with 99Tcm: does fragmentation really occur?

    PubMed

    Behr, T; Becker, W; Hannappel, E; Wolf, F

    1994-11-01

    In this study, the influence of direct and indirect 99Tcm-labelling on the molecular structural integrity of monoclonal antibodies and other immunoglobulin preparations was investigated. Molecular composition of antibody preparations [two IgG monoclonal antibodies, one F(ab')2 fragment (all directly labelled), one indirectly labelled polyclonal human immunoglobulin preparation] and of serum samples after antibody injection were studied using polyacrylamide gel electrophoresis (PAGE; non-reducing and reducing conditions) and gel filtration chromatography. With PAGE, depending on the conditions used, a variety of lower molecular weight products could be detected. When analysing the same antibody preparations by gel filtration chromatography, all complete antibody preparations appeared as homogenous proteins of IgG molecular weight (150 kD). In F(ab')2 fragments, some further fragmentation to Fab' was noticed. Neither in vitro nor in vivo (serum) evidence of smaller fragments could be detected by gel filtration, despite their presence in PAGE. We therefore conclude that through the reductive step of direct 99Tcm-labelling, interchain disulphide linkages are broken but the polypeptide chains of complete IgG remain associated by non-covalent linkages, whereas (F(ab')2 is fragmented further to form essentially Fab'. The protein-denaturating conditions of PAGE (even if performed non-reducingly) seem to produce artifacts, not representing the real in vivo condition. PAGE results should therefore be interpreted only with great care. PMID:7870392

  2. Characterization of neutralizing monoclonal antibodies directed against tetanus toxin fragment C.

    PubMed

    Yousefi, Mehdi; Tahmasebi, Fathollah; Younesi, Vahid; Razavi, Alireza; Khoshnoodi, Jalal; Bayat, Ali Ahmad; Abbasi, Ebrahim; Rabbani, Hodjatallah; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2014-01-01

    Clostridium tetani causes a life-threatening infectious disease by production of tetanus neurotoxin (TeNT), a 150 kDa molecule composed of light (LC) and heavy chain (HC) polypeptides. The TeNT HC contains an N-terminal domain critical for LC translocation and a C-terminal toxin receptor-binding domain known as fragment C. Despite extensive investigations on epitope specificity of anti-TeNT antibodies, the immunodominant neutralizing epitopes of the toxin are poorly defined. This study describes the generation and characterization of four monoclonal antibodies (MAb) specific for TeNT. The characteristics of each MAb were explored in terms of isotype, specificity, affinity, and immuno-globulin heavy chain variable region (IGHV) gene usage using ELISA, Western blotting, and sequencing techniques. The toxin neutralizing activity of the MAbs was also investigated using the in vitro GT1b neutralizing assay. The data demonstrated that all MAbs bind to tetanus toxin and toxoid. Sub-fragments binding analysis showed that two MAbs react with fragment C, one with both fragment C and LC, and one with LC. Only the two fragment C-specific MAbs were able to neutralize the toxin. Sequencing of the expressed VH and VL genes revealed rearrangements of various VH and VL gene segments in all hybridoma clones. Clonality of the hybridomas was also confirmed by a competition assay that showed recognition of distinct epitopes by these MAbs. The results suggest the importance of TeNT fragment C in terms of immunogenicity and toxin neutralization activity. PMID:23369087

  3. "Diabodies": small bivalent and bispecific antibody fragments.

    PubMed Central

    Holliger, P; Prospero, T; Winter, G

    1993-01-01

    Bivalent and bispecific antibodies and their fragments have immense potential for practical application. Here we describe the design of small antibody fragments with two antigen-binding sites. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) on the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. As indicated by a computer graphic model of the dimers, the two pairs of domains can pack together with the antigen-binding sites pointing in opposite directions. The dimeric antibody fragments, or "diabodies," can be designed for bivalent or bispecific interactions. Starting from the monoclonal antibodies NQ11.7.22 (NQ11) and D1.3 directed against the hapten phenyloxazolone and hen egg lysozyme, respectively, we built bivalent fragments (VHNQ11-VLNQ11)2 and (VHD1.3-VLD1.3)2 and bispecific fragments VHNQ11-VLD1.3 and VHD1.3-VLNQ11. The fragments were expressed by secretion from bacteria and shown to bind specifically to the hapten and/or antigen. Those with 5- and 15-residue linkers had similar binding affinities to the parent antibodies, but a fragment with the VH domain joined directly to the VL domain was found to have slower dissociation kinetics and an improved affinity for hapten. Diabodies offer a ready means of constructing small bivalent and bispecific antibody fragments in bacteria. Images Fig. 1 Fig. 3 PMID:8341653

  4. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display

    PubMed Central

    Keller, Thomas; Kalt, Romana; Raab, Ingrid; Schachner, Helga; Mayrhofer, Corina; Kerjaschki, Dontscho; Hantusch, Brigitte

    2015-01-01

    The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers. PMID:25993332

  5. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2

    SciTech Connect

    Miao, H.-Q. . E-mail: hua-quan.miao@imclone.com; Hu, Kun; Jimenez, Xenia; Navarro, Elizabeth; Zhang, Haifan; Lu Dan; Ludwig, Dale L.; Balderes, Paul; Zhu Zhenping . E-mail: zhenping.zhu@imclone.com

    2006-06-23

    Compelling evidence suggest that vascular endothelial growth factor (VEGF) and its receptors, especially receptor 2 (VEGFR2, or kinase insert domain-containing receptor, KDR), play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies such as age-related macular degeneration (AMD). To this end, inhibition of angiogenesis with antagonists to either VEGF or KDR has yielded significant therapeutic efficacy both in preclinical studies in animal models and in clinical trials in patients with cancer and AMD. We previously reported the identification of a high affinity, fully human anti-KDR antibody fragment, 1121B Fab, through a highly stringent affinity maturation process with a Fab originally isolated from a naive human antibody phage display library. In this study, we demonstrate that 1121B Fab is able to strongly block KDR/VEGF interaction, resulting in potent inhibition of an array of biological activities of VEGF, including activation of the receptor and its signaling pathway, intracellular calcium mobilization, and migration and proliferation of endothelial cells. Taken together, our data lend strong support to the further development of 1121B Fab fragment as an anti-angiogenesis agent in both cancer and angiogenic retinopathies.

  6. Bone marrow dosimetry in rats using direct tissue counting after injection of radio-iodinated intact monoclonal antibodies or F(ab')2 fragments

    SciTech Connect

    Buchegger, F.; Chalandon, Y.; Pelegrin, A.; Hardman, N.; Mach, J.P. )

    1991-07-01

    Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats.

  7. Extreme scale-down of expanded bed adsorption: Purification of an antibody fragment directly from recombinant E. coli culture.

    PubMed

    Willoughby, Nik; Martin, Phillip; Titchener-Hooker, Nigel

    2004-09-01

    Scale-down is a methodology that combines the use of very small volumes of process fluid in dedicated devices to predict accurately the behaviour of process-scale biotechnological unit operations and for the production of comparable material for use in further devices which, taken together, facilitate the mimic of a complete full-scale process. This article provides the rationale behind the development of a small-scale mimic and demonstrates the use of a highly scaled-down expanded bed to predict hydrodynamic, kinetic, and adsorptive performance using less than 5-mL sample volumes. Data acquired on a specially developed 1.9 mm ID column was compared with that obtained in a standard 25 mm ID column. A homogenised E. coli system expressing an antibody fragment (F(ab)) adsorbed onto an rProtein A matrix was used to characterise the full adsorptive performance. Breakthrough curve studies using BSA in buffer were used to characterise binding kinetics. Performance at the two scales was comparable both in terms of expansion, axial dispersion, binding isotherms, and elution behaviour of the antibody fragment. The eluted F(ab) material was further purified by ion exchange chromatography to demonstrate the similarity between the profile of the product material obtained at both scales. The high level of scale-down (approximately 200-fold) provides for rapid process evaluation early in development, where material is at a premium and where a fast appreciation of the likely merits of one process strategy will lead to greater confidence in process selection and more robust flowsheets. PMID:15352062

  8. Production of antibody fragments in Escherichia coli.

    PubMed

    Katsuda, Tomohisa; Sonoda, Hiroyuki; Kumada, Yoichi; Yamaji, Hideki

    2012-01-01

    Escherichia coli is a host widely used in the industrial production of recombinant proteins. However, the expression of heterologous proteins in E. coli often encounters the formation of inclusion bodies, which are insoluble and nonfunctional protein aggregates. For the successful production of antibody fragments, which includes single-chain variable fragments (scFvs), we describe here the modification of linker, signal, and Shine-Dalgarno (SD) sequences, the coexpression of cytoplasmic and periplasmic chaperones, and a method for fed-batch cultivation with exponential feed. PMID:22907360

  9. Alternative downstream processes for production of antibodies and antibody fragments.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke

    2014-11-01

    Protein-A or Protein-L affinity chromatography and virus inactivation are key processes for the manufacturing of therapeutic antibodies and antibody fragments. These two processes often involve exposure of therapeutic proteins to denaturing low pH conditions. Antibodies have been shown to undergo conformational changes at low pH, which can lead to irreversible damages on the final product. Here, we review alternative downstream approaches that can reduce the degree of low pH exposure and consequently damaged product. We and others have been developing technologies that minimize or eliminate such low pH processes. We here cover facilitated elution of antibodies using arginine in Protein-A and Protein-G affinity chromatography, a more positively charged amidated Protein-A, two Protein-A mimetics (MEP and Mabsorbent), mixed-mode and steric exclusion chromatography, and finally enhanced virus inactivation by solvents containing arginine. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. PMID:24859179

  10. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    PubMed

    Thullier, Philippe; Avril, Arnaud; Mathieu, Jacques; Behrens, Christian K; Pellequer, Jean-Luc; Pelat, Thibaut

    2013-01-01

    The lethal toxin (LT) of Bacillus anthracis, composed of the protective antigen (PA) and the lethal factor (LF), plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF) to form the edema toxin (ET), which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236), of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260) was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest. PMID:23741517

  11. Antibody Fragments Directed against Different Portions of the Human Neural Cell Adhesion Molecule L1 Act as Inhibitors or Activators of L1 Function

    PubMed Central

    Wang, Yan; Loers, Gabriele; Pan, Hong-Chao; Gouveia, Ricardo; Zhao, Wei-Jiang; Shen, Yan-Qin; Kleene, Ralf; Costa, Julia; Schachner, Melitta

    2012-01-01

    The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs), named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA) that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig) domains 1–4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn) domains 1–3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H2O2 by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1–4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1–3 trigger L1 functions of cultured neuroblastoma cells. PMID:23272240

  12. Considerations in producing preferentially reduced half-antibody fragments.

    PubMed

    Makaraviciute, Asta; Jackson, Carolyn D; Millner, Paul A; Ramanaviciene, Almira

    2016-02-01

    Half-antibody fragments are a promising reagent for biosensing, drug-delivery and labeling applications, since exposure of the free thiol group in the Fc hinge region allows oriented reaction. Despite the structural variations among the molecules of different IgG subclasses and those obtained from different hosts, only generalized preferential antibody reduction protocols are currently available. Preferential reduction of polyclonal sheep anti-digoxin, rabbit anti-Escherichia coli and anti-myoglobin class IgG antibodies to half-antibody fragments has been investigated. A mild reductant 2-mercaptoethylamine (2-MEA) and a slightly stronger reductant tris(2-carboxyethyl)phosphine (TCEP) were used and the fragments obtained were quantitatively determined by SDS-PAGE analysis. It has been shown that the yields of half-antibody fragments could be increased by lowering the pH of the reduction mixtures. However, antibody susceptibility to the reductants varied. At pH4.5 the highest yield of sheep anti-digoxin IgG half-antibody fragments was obtained with 1M 2-MEA. Conversely, rabbit IgG half-antibody fragments could only be obtained with the stronger reductant TCEP. Preferential reduction of rabbit anti-myoglobin IgG antibodies was optimized and the highest half-antibody yield was obtained with 35 mM TCEP. Finally, it has been demonstrated that produced anti-myoglobin half-IgG fragments retained their binding activity. PMID:26779832

  13. A simple and robust approach to immobilization of antibody fragments.

    PubMed

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. PMID:27142477

  14. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency.

    PubMed

    Turki, Imène; Hammami, Akil; Kharmachi, Habib; Mousli, Mohamed

    2014-02-01

    Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy. PMID:24091293

  15. Isolation of Balamuthia mandrillaris-specific antibody fragments from a bacteriophage antibody display library.

    PubMed

    Siddiqui, Ruqaiyyah; Kulsoom, Huma; Lalani, Salima; Khan, Naveed Ahmed

    2016-07-01

    Balamuthia mandrillaris is a protist pathogen that can cause encephalitis with a mortality rate of more than 95%. Early diagnosis followed by aggressive treatment is a pre-requisite for successful prognosis. Current methods for identifying this organism rely on culture and microscopy, antibody-based methods using animals, or involve the use of molecular tools that are expensive. Here, we describe the isolation of antibody fragments that can be used for the unequivocal identification of B. mandrillaris. B. mandrillaris-specific antibody fragments were isolated from a bacteriophage antibody display library. Individual clones were studied by enzyme-linked immunosorbent assay, and immunofluorescence. Four antibody clones showed specific binding to B. mandrillaris. The usefulness of phage antibody display technology as a diagnostic tool for isolating antibody fragments against B. mandrillaris antigens and studying their biological role(s) is discussed further. PMID:27055361

  16. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    PubMed Central

    Joosten, Vivi; Lokman, Christien; van den Hondel, Cees AMJJ; Punt, Peter J

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications of these proteins. Also the coupling of fragments to relevant enzymes or other components will be discussed. As an example of the fusion protein strategy, the 'magic bullet' approach for industrial applications, will be highlighted. PMID:12605725

  17. Repeated dosing of digoxin-fragmented antibody in preterm eclampsia.

    PubMed

    Adair, C D; Buckalew, V M; Kipikasa, J; Torres, C; Stallings, S P; Briery, C M

    2009-02-01

    Early onset eclampsia has significant morbidity and mortality for both the mother and fetus. No effective treatment exists at present except delivery and seizure prophylaxis with magnesium sulfate. We report the novel use of a fragmented ovine antibody against digoxin for the treatment of eclampsia. A 16-year-old primagravida at 29 weeks 5/7 days gestation presented with clinical diagnosis of eclampsia and was treated with compassionate off-label use of digoxin-fragmented ovine antibody (Digibind Glaxo Smith Kline, Research Triangle Park, NC, USA). Improvement of her underlying disorder during a 48 h treatment window was noted without adverse maternal or neonatal outcome. We suggest digoxin-fragmented ovine antibody as a possible intervention in preterm pregnancies complicated by pre-eclampsia or eclampsia. PMID:19177044

  18. Biotechnological applications of recombinant single-domain antibody fragments

    PubMed Central

    2011-01-01

    Background Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. Results The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. Conclusions Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments. PMID:21658216

  19. Production of recombinant antibody fragments in Bacillus megaterium

    PubMed Central

    Jordan, Eva; Hust, Michael; Roth, Andreas; Biedendieck, Rebekka; Schirrmann, Thomas; Jahn, Dieter; Dübel, Stefan

    2007-01-01

    Background Recombinant antibodies are essential reagents for research, diagnostics and therapy. The well established production host Escherichia coli relies on the secretion into the periplasmic space for antibody synthesis. Due to the outer membrane of Gram-negative bacteria, only a fraction of this material reaches the medium. Recently, the Gram-positive bacterium Bacillus megaterium was shown to efficiently secrete recombinant proteins into the growth medium. Here we evaluated B. megaterium for the recombinant production of antibody fragments. Results The lysozyme specific single chain Fv (scFv) fragment D1.3 was succesfully produced using B. megaterium. The impact of culture medium composition, gene expression time and culture temperatures on the production of functional scFv protein was systematically analyzed. A production and secretion at 41°C for 24 h using TB medium was optimal for this individual scFv. Interestingly, these parameters were very different to the optimal conditions for the expression of other proteins in B. megaterium. Per L culture supernatant, more than 400 μg of recombinant His6-tagged antibody fragment were purified by one step affinity chromatography. The material produced by B. megaterium showed an increased specific activity compared to material produced in E. coli. Conclusion High yields of functional scFv antibody fragments can be produced and secreted into the culture medium by B. megaterium, making this production system a reasonable alternative to E. coli. PMID:17224052

  20. Therapeutic Monoclonal Antibodies and Fragments: Bevacizumab.

    PubMed

    Klein, Ainat; Loewenstein, Anat

    2016-01-01

    Bevacizumab (Avastin) is a recombinant humanized monoclonal immunoglobulin antibody that has two antigen-binding domains and blocks all active forms of vascular endothelial growth factor-A. It was originally designed and is still in use as antitumor agent (for colorectal and non-small cell lung cancers). Besides inhibiting vessel growth and neovascularization, the drug promotes the regression of existing microvessels and induces 'normalization' of surviving mature vasculature, stabilizes vessels and prevents leakage. Its molecular weight is 149 kDa and its estimated terminal half-life is approximately 20 days for both men and women. The effectiveness and safety of bevacizumab was proven in retrospective and prospective controlled clinical trials for the treatment of neovascular age-related macular degeneration, neovascularization in proliferative diabetic retinopathy, diabetic macular edema, retinal vein occlusion and retinopathy of prematurity, especially for zone I. Uncontrolled trials have shown its effectiveness in various other conditions as myopic and uveitic choroidal neovascularization and neovascular glaucoma. There are no absolute contraindications to intravitreal injection though it is recommended to withhold treatment in patients who have recently suffered from a cardiovascular or cerebrovascular event and during pregnancy. Ocular complications from intravitreal use are usually mild and transient (corneal abrasion, chemosis, subconjunctival hemorrhage and vitreous hemorrhage). Bacterial endophthalmitis is rare (about 0.1%). New or progressive subretinal hemorrhages, tears of the retinal pigment epithelium and an increased incidence of geographic atrophy have also been reported. PMID:26502311

  1. Progress in programming antibody fragments to crystallize.

    PubMed

    Edmundson, A B; Borrebaeck, C A

    1998-01-01

    Completion of the X-ray analysis of the human B7-15A2 Fab opened a new vista (Immunotechnology 3, no. 4). In the crystal lattice, both the lambda-type light chain (CL domain) and gamma 1-type heavy chain (CH1 domain) participated in formation of antiparallel beta-pleated sheets with neighboring molecules related to the reference Fab by 2-fold axes. This observation evoked memories of the first description of this type of packing for human Bence-Jones (lambda chain) dimers 20 years ago (Ely K.R. et al. Biochemistry 1978;17:158-167). Reexamination of packing interactions in selected crystal systems revealed that the C domains of lambda and gamma 1 chains were structurally amenable to the formation of such cross-molecule beta-structures, but kappa chain CL domains were not. In the latter, a single proline residue disrupted the order of beta-strand 3-3 in the middle of the surface used in lambda and gamma 1 chains for intermolecular interactions with symmetry-related molecules. For the packing of Fv molecules, the VL domains are structurally well suited for analogous packing interactions through antiparallel 4-1 beta-strands in adjacent molecules. Such interactions have been shown to provide the driving force in the crystal packing of a human (Pot) Fv from an IgM-kappa cryoglobulin. Together, these observations suggest several avenues through which propensity to crystallize can be programmed into the designs of synthetic human Fabs, Fvs and single-chain antibodies. PMID:9530564

  2. Fast antibody fragment motion: flexible linkers act as entropic spring

    DOE PAGESBeta

    Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter

    2016-03-29

    A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unboundmore » state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. In conclusion, the Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.« less

  3. Fast antibody fragment motion: flexible linkers act as entropic spring

    PubMed Central

    Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter

    2016-01-01

    A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function. PMID:27020739

  4. Fast antibody fragment motion: flexible linkers act as entropic spring.

    PubMed

    Stingaciu, Laura R; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter

    2016-01-01

    A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function. PMID:27020739

  5. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOEpatents

    Thakur, Mathew L.

    1994-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  6. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOEpatents

    Thakur, Mathew L.

    1991-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  7. Thermodynamic stability and flexibility characteristics of antibody fragment complexes

    PubMed Central

    Li, Tong; Verma, Deeptak; Tracka, Malgorzata B.; Casas-Finet, Jose; Livesay, Dennis R.; Jacobs, Donald J.

    2015-01-01

    Free energy landscapes, backbone flexibility and residue-residue couplings for being co-rigid or co-flexible are calculated from the minimal Distance Constraint Model (mDCM) on an exploratory dataset consisting of VL, scFv and Fab antibody fragments. Experimental heat capacity curves are reproduced markedly well, and an analysis of quantitative stability/flexibility relationships (QSFR) is applied to a representative VL domain and several complexes in the scFv and Fab forms. Global flexibility in the denatured ensemble typically decreases in the larger complexes due to domain-domain interfaces. Slight decreases in global flexibility also occur in the native state of the larger fragments, but with a concurrent large increase in correlated flexibility. Typically, a VL fragment has more co-rigid residue pairs when isolated compared to the scFv and Fab forms, where correlated flexibility appears upon complex formation. This context dependence on residue-residue couplings in the VL domain across length scales of a complex is consistent with the evolutionary hypothesis of antibody maturation. In comparing two scFv mutants with similar thermodynamic stability, local and long-ranged changes in backbone flexibility are observed. In the case of anti-p24 HIV-1 Fab, a variety of QSFR metrics were found to be atypical, which includes comparatively greater co-flexibility in the VH domain and less co-flexibility in the VL domain. Interestingly, this fragment is the only example of a polyspecific antibody in our dataset. Finally, the mDCM method is extended to cases where thermodynamic data is incomplete, enabling high throughput QSFR studies on large numbers of antibody fragments and their complexes. PMID:23855672

  8. Monoclonal antibodies and Fc fragments for treating solid tumors.

    PubMed

    Eisenbeis, Andrea M; Grau, Stefan J

    2012-01-01

    Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials. PMID:22291463

  9. Monoclonal antibodies and Fc fragments for treating solid tumors

    PubMed Central

    Eisenbeis, Andrea M; Grau, Stefan J

    2012-01-01

    Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials. PMID:22291463

  10. Fluorescent labeling of antibody fragments using split GFP.

    PubMed

    Ferrara, Fortunato; Listwan, Pawel; Waldo, Geoffrey S; Bradbury, Andrew R M

    2011-01-01

    Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs) using the split green fluorescent protein (GFP) system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11), is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems. PMID:21998685

  11. A polar ring endows improved specificity to an antibody fragment.

    PubMed

    Schaefer, Zachary P; Bailey, Lucas J; Kossiakoff, Anthony A

    2016-07-01

    Engineering monovalent Fab fragments into bivalent formats like IgGs or F(ab')2 can lead to aggregation presumably because of nonspecific off-target interactions that induce aggregation. In an effort to further understand the molecular determinants of nonspecific interactions for engineered antibodies and natively folded proteins in general, we focused on a synthetic Fab with low nanomolar affinity to histone chaperone Anti-silencing factor 1 (Asf1) that demonstrates off-target binding through low solubility (∼5 mg/mL) in the multivalent F(ab') 2 state. Here, we generated phage display-based shotgun scanning libraries to introduce aspartate as a negative design element into the antibody paratope. The antibody-combining site was amenable to aspartate substitution at numerous positions within the antigen binding loops and one variant, Tyr(L93) Asp/His(L94) Asp/Thr(H100b) Asp, possessed high solubility (>100 mg/ml). Furthermore, the mutations decreased nonspecific interactions measured by column interaction chromatography and ELISA in the multivalent antibody format while maintaining high affinity to the antigen. Structural determination of the antibody-antigen complex revealed that the aspartate-permissive residues formed a polar ring around the structural and functional paratope, recapitulating the canonical feature of naturally occurring protein-protein interactions. This observation may inform future strategies for the design and engineering of molecular recognition. PMID:27334407

  12. Fusogenics: a recombinant immunotoxin-based screening platform to select internalizing tumor-specific antibody fragments.

    PubMed

    Cizeau, Jeannick; Torres, Marianne G P; Cowling, Sharla G; Stibbard, Stacy; Premsukh, Arjune; Entwistle, Joycelyn; MacDonald, Glen C

    2011-01-01

    Antibody-based therapeutics play a vital role in the treatment of certain cancers; however, despite commercial success, various strategies are being pursued to increase their potency and hence improve patient outcomes. The use of antibodies to deliver a cytotoxic payload offers a promising alternative for more efficacious therapies. Immunotoxins are composed of an internalizing antibody fragment linked to a bacterial or plant toxin. Once internalized, the payload, such as Pseudomonas exotoxin A (PE), blocks protein synthesis and induces apoptosis. Typically, immunotoxins are developed by first isolating a tumor-specific antibody, which is then either chemically linked to a toxin or reengineered as a fusion protein. Here, the authors describe the development of Fusogenics, an immunotoxin-based screening method that selects internalizing tumor-specific antibodies using a functional assay. Selected immune library clones were characterized and shown to be selective against normal tissues and specific to tumor tissues. In summary, the Fusogenics immunotoxin platform represents a unique, single-step selection approach combining specificity and functionality to isolate novel internalizing tumor-specific antibody fragments with potential for direct clinical application in the treatment of cancer. PMID:21131595

  13. Diagnosis of and therapy for solid tumors with radiolabeled antibodies and immune fragments

    SciTech Connect

    Carrasquillo, J.A.; Krohn, K.A.; Beaumier, P.; McGuffin, R.W.; Brown, J.P.; Hellstroem, K.E.; Hellstroem, I.; Larson, S.M.

    1984-01-01

    Antibodies which are directed against human tumor-associated antigens can potentially be used as carriers of radioactivity for in vivo diagnosis (radioimmunodetection) or treatment (radioimmunotherapy) of solid tumors, including colon, hepatoma, cholangiocarcinoma, and melanoma. Murine monoclonal antibodies (MOAB), produced by the hybridoma technique of Kohler and Milstein, are replacing conventional heterosera as sources of antibodies, because MOAB can be produced in large quantities as reproducible reagents with homogeneous binding properties. We have studied human melanoma using MOAB IgG and Fab fragments that recognize the human melanoma-associated antigens p97 and ''high-molecular-weight antigen''. Both antigens are found in the membrane of melanomas at much larger concentrations than in normal adult tissues. We have performed radioimmunodetection studies with whole immunoglobulin and have detected 88% of lesions greater than 1.5 cm. We have used Fab fragments for radioimmunotherapy and have found that large doses of radiolabeled antibodies (up to 342 mCi) can be repetitively given to patients without excessive end-organ toxicity. Two of three patients treated with high-dose radiolabeled antimelanoma Fab showed an effect from the treatment. Although both technical and biologic problems remain, the use of radiolabeled antibodies that are directed against tumor-associated antigens holds future promise as a new therapeutic approach to solid tumors that are resistant to conventional therapy.

  14. Selection and characterization of human antibody fragments specific for psoriasin - a cancer associated protein.

    PubMed

    Cyranka-Czaja, Anna; Wulhfard, Sarah; Neri, Dario; Otlewski, Jacek

    2012-03-01

    S100A7 (psoriasin) is a calcium-binding protein that is upregulated in many types of cancer and often associated with poor prognosis. Its role in carcinogenesis has been associated with the stimulation of VEGF and EGF activity. The recent research showed that psoriasin directly interacts with αvβ6 integrin, a protein related to the invasive phenotype of cancer. Moreover, this interaction promotes the αvβ6-dependent invasive activity. The important function of S100A7 in carcinoma development determines a great need for valuable tools enabling its detection, quantification and also activity inhibition. Here, we show the selection of S100A7 specific antibody fragments from the human scFv phage library ETH-2 Gold. We have selected antibody fragments specific for psoriasin, purified them and analyzed by BIAcore affinity measurements. The best clone was subjected to affinity maturation procedure yielding molecule with a subnanomolar affinity towards human S100A7 protein. Selected clone was expressed in a bivalent format and applied for immunostaining analysis, which confirmed the ability of the antigen recognition in physiological conditions. We therefore propose that obtained antibody, that is the first phage display-derived human antibody against psoriasin, can serve as a useful psoriasin binding platform in research, diagnostics and therapy of cancer. PMID:22342672

  15. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    SciTech Connect

    Quinn, T.P.

    2003-12-31

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with {sup 99m}Tc and {sup 188}Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic

  16. Production, purification and biological characterization of mono-PEGylated anti-IL-17A antibody fragments.

    PubMed

    Koussoroplis, Salome-Juliette; Heywood, Sam; Uyttenhove, Catherine; Barilly, Céline; Van Snick, Jacques; Vanbever, Rita

    2013-09-15

    The aim of this study was to maximize the yield of the production of mono-PEGylated anti-interleukin-17A (anti-IL-17A) antibody fragments using large (≥ 20 kDa) polyethylene glycol (PEG) chains. Particular attention was paid to selectively yield mono-PEGylated species to maintain the maximum possible functionality and to simplify the purification. Neutralization of IL-17A by antibody constructs might find application for the treatment of bronchial hyperreactivity. Amino-directed and sulfhydryl-directed PEGylation of the native antibody fragments were compared. The former was selected as it produced the most interesting construct in terms of yield and preservation of biological activity. In particular, the F(ab')2-PEG conjugate with one 40 kDa branched PEG prepared in this study was produced at a 42% yield. The conjugate presented only a slight decrease in its binding activity and in its in vitro inhibitory potency offering interesting perspectives for in vivo studies. PMID:23850622

  17. Development of an Immunoassay for Chloramphenicol Based on the Preparation of a Specific Single-Chain Variable Fragment Antibody.

    PubMed

    Du, Xin-Jun; Zhou, Xiao-Nan; Li, Ping; Sheng, Wei; Ducancel, Frédéric; Wang, Shuo

    2016-04-13

    Specific antibodies are essential for the immune detection of small molecule contaminants. In the present study, the heavy and light variable regions (VH and VL) of the immunoglobulin genes from a hybridoma secreting a chloramphenicol (CAP)-specific monoclonal antibody (mAb) were cloned and sequenced. In addition, the light and heavy chains obtained from the monoclonal antibody were separated using SDS-PAGE and analyzed using Orbitrap mass spectrometry. The results of DNA sequencing and mass spectrometry analysis were compared, and the VH and VL chains specific for CAP were determined and used to construct a single-chain variable fragment (scFv). This fragment was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein and used to develop a direct competitive ELISA. Compared with the parent mAb, scFv exhibits lower sensitivity but better food matrix resistance. This work highlights the application of engineered antibodies for CAP detection. PMID:27003441

  18. Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions.

    PubMed

    Rodríguez-Rodríguez, Everardo Remi; Olamendi-Portugal, Timoteo; Serrano-Posada, Hugo; Arredondo-López, Jonathan Noé; Gómez-Ramírez, Ilse; Fernández-Taboada, Guillermo; Possani, Lourival D; Anguiano-Vega, Gerardo Alfonso; Riaño-Umbarila, Lidia; Becerril, Baltazar

    2016-09-01

    New approaches aimed at neutralizing the primary toxic components present in scorpion venoms, represent a promising alternative to the use of antivenoms of equine origin in humans. New potential therapeutics developed by these approaches correspond to neutralizing antibody fragments obtained by selection and maturation processes from libraries of human origin. The high sequence identity shared among scorpion toxins is associated with an important level of cross reactivity exhibited by these antibody fragments. We have exploited the cross reactivity showed by single chain variable antibody fragments (scFvs) of human origin to re-direct the neutralizing capacity toward various other scorpion toxins. As expected, during these evolving processes several variants derived from a parental scFv exhibited the capacity to simultaneously recognize and neutralize different toxins from Centruroides scorpion venoms. A sequence analyses of the cross reacting scFvs revealed that specific mutations are responsible for broadening their neutralizing capacity. In this work, we generated a set of new scFvs that resulted from the combinatorial insertion of these point mutations. These scFvs are potential candidates to be part of a novel recombinant antivenom of human origin that could confer protection against scorpion stings. A remarkable property of one of these new scFvs (ER-5) is its capacity to neutralize at least three different toxins and its complementary capacity to neutralize the whole venom from Centruroides suffusus in combination with a second scFv (LR), which binds to a different epitope shared by Centruroides scorpion toxins. PMID:27212628

  19. Yeast display of antibody fragments: a discovery and characterization platform

    SciTech Connect

    Feldhaus, Michael; Siegel, Robert W.

    2004-07-01

    This review will focus on some of the novel attributes of the yeast surface display platform for the discovery and characterization of novel affinity reagents, optimization of those reagents, and novel uses of the platform. This is not intended to serve as an exhaustive review on the broader topic of general scFv technologies (see Winter et al., 1994; Smith and Petrenko, 1997; Bradbury et al., 2003) Furthermore, the scFv format of antibodies are easily manipulated through molecular cloning into a number of other formats such IgG, Fab, diabodies and such, for use in down steam applications and the reader is encouraged to read ?IgG?, ?Fab?, or your favorite format whenever scFv is seen in this review. This review is presented in 5 parts; (1) description of yeast display and its components, (2) library types and construction methods, (3) screening approaches for non-immune libraries and benefits, (4) screening approaches for directed evolution, kinetic on and off rates and (5) epitope complementation binning of clones.

  20. Femtosecond spectroscopy probes the folding quality of antibody fragments expressed as GFP fusions in the cytoplasm

    SciTech Connect

    Didier, P.; Weiss, E.; Sibler, A.-P.; Philibert, P.; Martineau, P.; Bigot, J.-Y.; Guidoni, L.

    2008-02-22

    Time-resolved femtosecond spectroscopy can improve the application of green fluorescent proteins (GFPs) as protein-folding reporters. The study of ultrafast excited-state dynamics (ESD) of GFP fused to single chain variable fragment (scFv) antibody fragments, allowed us to define and measure an empirical parameter that only depends on the folding quality (FQ) of the fusion. This method has been applied to the analysis of genetic fusions expressed in the bacterial cytoplasm and allowed us to distinguish folded and thus functional antibody fragments (high FQ) with respect to misfolded antibody fragments. Moreover, these findings were strongly correlated to the behavior of the same scFvs expressed in animal cells. This method is based on the sensitivity of the ESD to the modifications in the tertiary structure of the GFP induced by the aggregation state of the fusion partner. This approach may be applicable to the study of the FQ of polypeptides over-expressed under reducing conditions.

  1. In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli

    PubMed Central

    2011-01-01

    Background Anthrax is caused by the bacterium Bacillus anthracis and is regarded as one of the most prominent bioterrorism threats. Anthrax toxicity is induced by the tripartite toxin complex, composed of the receptor-binding anthrax protective antigen and the two enzymatic subunits, lethal factor and edema factor. Recombinant lactobacilli have previously been used to deliver antibody fragments directed against surface epitopes of a variety of pathogens, including Streptococcus mutans, Porphyromonas gingivalis, and rotavirus. Here, we addressed whether or not anthrax toxins could be targeted and neutralised in the gastrointestinal tract by lactobacilli producing recombinant antibody fragments as a model system for toxin neutralisation in the gastrointestinal lumen. Results The neutralising anti-PA scFv, 1H, was expressed in L. paracasei as a secreted protein, a cell wall-anchored protein or both secreted and wall-anchored protein. Cell wall display on lactobacilli and PA binding of the anchored constructs was confirmed by flow cytometry analysis. Binding of secreted or attached scFv produced by lactobacilli to PA were verified by ELISA. Both construct were able to protect macrophages in an in vitro cytotoxicity assay. Finally, lactobacilli producing the cell wall attached scFv were able to neutralise the activity of anthrax edema toxin in the GI tract of mice, in vivo. Conclusion We have developed lactobacilli expressing a neutralising scFv fragment against the PA antigen of the anthrax toxin, which can provide protection against anthrax toxins both in vitro and in vivo. Utilising engineered lactobacilli therapeutically for neutralising toxins in the gastrointestinal tract can potential be expanded to provide protection against a range of additional gastrointestinal pathogens. The ability of lactobacilli to colonise the gastrointestinal tract may allow the system to be used both prophylactically and therapeutically. PMID:22185669

  2. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.

    PubMed

    Karkov, Hanne Sophie; Woo, James; Krogh, Berit Olsen; Ahmadian, Haleh; Cramer, Steven M

    2015-12-24

    This study describes the in silico design, surface property analyses, production and chromatographic evaluations of a diverse set of antibody Fab fragment variants. Based on previous findings, we hypothesized that the complementarity-determining regions (CDRs) constitute important binding sites for multimodal chromatographic ligands. Given that antibodies are highly diversified molecules and in particular the CDRs, we set out to examine the generality of this result. For this purpose, four different Fab fragments with different CDRs and/or framework regions of the variable domains were identified and related variants were designed in silico. The four Fab variant libraries were subsequently generated by site-directed mutagenesis and produced by recombinant expression and affinity purification to enable examination of their chromatographic retention behavior. The effects of geometric re-arrangement of the functional moieties on the multimodal resin ligands were also investigated with respect to Fab variant retention profiles by comparing two commercially available multimodal cation-exchange ligands, Capto MMC and Nuvia cPrime, and two novel multimodal ligand prototypes. Interestingly, the chromatographic data demonstrated distinct selectivity trends between the four Fab variant libraries. For three of the Fab libraries, the CDR regions appeared as major binding sites for all multimodal ligands. In contrast, the fourth Fab library displayed a distinctly different chromatographic behavior, where Nuvia cPrime and related multimodal ligand prototypes provided markedly improved selectivity over Capto MMC. Clearly, the results illustrate that the discriminating power of multimodal ligands differs between different Fab fragments. The results are promising indications that multimodal chromatography using the appropriate multimodal ligands can be employed in downstream bioprocessing for challenging selective separation of product related variants. PMID:26654254

  3. Construction of Recombinant Single Chain Variable Fragment (ScFv) Antibody Against Superantigen for Immunodetection Using Antibody Phage Display Technology.

    PubMed

    Singh, Pawan Kumar; Agrawal, Ranu; Kamboj, D V; Singh, Lokendra

    2016-01-01

    Superantigens are a class of antigens that bind to the major histocompatibility complex class (MHC) II and T-cell receptor (TCR) and cause the nonspecific activation of T cells, resulting in a massive release of pro-inflammatory mediators. They are produced by the gram-positive organisms Staphylococcus aureus and Streptococcus pyogenes, and by a variety of other microbes such as viruses and mycoplasma, and cause toxic shock syndrome (TSS) and even death in some cases. The immunodetection of superantigens is difficult due to the polyclonal activation of T-cells leading to nonspecific antibody production. The production of recombinant monoclonal antibodies against superantigens can solve this problem and are far better than polyclonal antibodies in terms of detection. Here, we describe the construction of recombinant single chain variable fragments (ScFv) antibodies against superantigens with specific reference to SEB (staphylococcal enterotoxin B) using antibody phage display technology. PMID:26676049

  4. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential

    PubMed Central

    Diebolder, Philipp; Keller, Armin; Haase, Stephanie; Schlegelmilch, Anne; Kiefer, Jonathan D; Karimi, Tamana; Weber, Tobias; Moldenhauer, Gerhard; Kehm, Roland; Eis-Hübinger, Anna M; Jäger, Dirk; Federspil, Philippe A; Herold-Mende, Christel; Dyckhoff, Gerhard; Kontermann, Roland E; Arndt, Michaela AE; Krauss, Jürgen

    2014-01-01

    The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential. PMID:24256717

  5. Direct Photo Double Ionization of Water and Subsequent Fragmentation

    NASA Astrophysics Data System (ADS)

    Reedy, D.; Gaire, B.; Gatton, A.; Sartor, J.; Berry, B.; Weller, M.; Bauer, T.; Burzynski, P.; Henrichs, K.; Dorner, R.; Williams, J. B.; Weber, Th.; Landers, A. L.

    2016-05-01

    We have measured and imaged the dissociation of water in the gas phase following direct double photoionization by a 57 eV photon. The dissociation left the dication in a range of several energetically available excited states. The momenta of the resulting dication fragments and photoelectrons were measured in coincidence with Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS). The different states of the dication result in marked differences in photoelectron energies, kinetic energy release, and bond angle at the time of the fragmentation, as well as leaving the neutral oxygen fragment in one of several indirectly observed excited states.

  6. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    PubMed Central

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  7. Preparation of Recombinant Human Monoclonal Antibody Fab Fragments Specific for Entamoeba histolytica

    PubMed Central

    Tachibana, Hiroshi; Cheng, Xun-Jia; Watanabe, Katsuomi; Takekoshi, Masataka; Maeda, Fumiko; Aotsuka, Satoshi; Kaneda, Yoshimasa; Takeuchi, Tsutomu; Ihara, Seiji

    1999-01-01

    Genes coding for human antibody Fab fragments specific for Entamoeba histolytica were cloned and expressed in Escherichia coli. Lymphocytes were separated from the peripheral blood of a patient with an amebic liver abscess. Poly(A)+ RNA was isolated from the lymphocytes, and then genes coding for the light chain and Fd region of the heavy chain were amplified by a reverse transcriptase PCR. The amplified DNA fragments were ligated with a plasmid vector and were introduced into Escherichia coli. Three thousand colonies were screened for the production of antibodies to E. histolytica HM-1:IMSS by an indirect fluorescence-antibody (IFA) test. Lysates from five Escherichia coli clones were positive. Analysis of the DNA sequences of the five clones showed that three of the five heavy-chain sequences and four of the five light-chain sequences differed from each other. When the reactivities of the Escherichia coli lysates to nine reference strains of E. histolytica were examined by the IFA test, three Fab fragments with different DNA sequences were found to react with all nine strains and another Fab fragment was found to react with seven strains. None of the four human monoclonal antibody Fab fragments reacted with Entamoeba dispar reference strains or with other enteric protozoan parasites. These results indicate that the bacterial expression system reported here is effective for the production of human monoclonal antibodies specific for E. histolytica. The recombinant human monoclonal antibody Fab fragments may be applicable for distinguishing E. histolytica from E. dispar and for use in the serodiagnosis of amebiasis. PMID:10225840

  8. High affinity anti-Internalin B VHH antibody fragments isolated from naturally and artificially immunized repertoires.

    PubMed

    Gene, Robert W; Kumaran, Jyothi; Aroche, Cristina; van Faassen, Henk; Hall, J Christopher; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    The need for rapid and easy technologies for the detection of food-borne and environmental pathogens is essential for safeguarding the health of populations. Furthermore, distribution of tainted food and water can have consequences which can affect whole economies. Antibodies and antibody fragments have been historically used in detection platforms due to their antigen specificity and robust physicochemical properties. In this study, we report the isolation and characterization of antibody fragments from the heavy chain antibody repertoire (VHH) of Camelidae which bind with specificity and high affinity to the Listeria monocytogenes invasin, Internalin B (InlB). To the best of our knowledge, this is the first report of anti-InlB VHHs from camelids. These anti-InlB VHHs were not cross-reactive to the structurally related Listeria invasin Internalin A (InlA) and are potential reagents to be used in the development of detection and medical technologies. PMID:25450000

  9. Fragmentation, labeling and biodistribution studies of KS1/4, a monoclonal antibody

    SciTech Connect

    Mohd, S.B.

    1987-01-01

    In this study, an IgG2a (KS1/4), a monoclonal antibody (MoAb) specific against a human lung adenocarcinoma (UCLA P-3) was successfully fragmented enzymatically to yield F(ab')/sub 2/ and Fab by using pepsin and papain, respectively. The kinetic of fragmentation of the MoAb was compared to that of human immunoglobulin G (IgG). A similar pattern of fragmentation was observed with both antibodies with a higher percentage yield of the F(ab')/sub 2/ and Fab obtained upon the fragmentation of the IgG by the enzymes. The KS1/4 and the two fragments were labeled with three different radionuclides, namely iodine-131, indium-111 and selenium-75. The radioiodination of the MoAb and the fragments was carried out by using a modified chloramine-T method. Radiometal labeling of the MoAb and the fragments with indium-111 was performed by using DTPA as a bifunctional chelating agent, while intrinsic labeling of the MoAb was done by culturing the hybridoma in the presence of /sup 75/Se-methionine. The biodistribution of the radiolabeled MoAb, F(ab')/sub 2/ and Fab fragments were performed by injecting the preparations intravenously into nude mice bearing human lung adenocarcinoma.

  10. Antibody fragment recognition layers for surface plasmon resonance biosensing: a parametric study

    NASA Astrophysics Data System (ADS)

    Magalhães, André; Bordeira, Sandro; Almeida, Ana Cristina; Fontes, Vanessa; Costa, Maria João L.; Fonseca, Luís P.; da Fonseca, João Garcia

    2009-02-01

    A comparative study is reported regarding the use of two different surface plasmon resonance (SPR) biosensors, a homemade SPR grating biosensor and a reference prism coupled biosensor, to perform quantification of C-reactive protein (CRP) in human blood serum. Surface functionalization was conducted using anti-CRP fragments immobilized directly on gold. Adsorption time optimization for the antibody fragments monolayer, non-specific binding (NSB) resistance evaluation and CRP detection were conducted, with better results achieved by the grating biosensor on all topics, namely less functionalization time, higher resistance to NSB and wider CRP dynamic concentration range. A study regarding comparison between continuous flow and surface coating immobilization is also reported in this work. We have shown that surface coating immobilization achieves similar NSB resistance and CRP detection results, allowing a 75% assay cost reduction by lower solution volume requirement. Results suggest that the coating immobilization technique is the best suited to be used in further studies in order to obtain a viable immunosensor for CRP and other biomarkers detection in complex biological fluids.

  11. Composition and method for detecting cancer with technetium labeled antibody fragments

    SciTech Connect

    Burchiel, S. W.; Crockford, D. R.; Rhodes, B. A.

    1984-10-23

    F(ab')/sub 2/ or Fab fragments of antibodies to: (a) human chorionic gonadotropin (hCG), hCG alpha subunit, hCG beta subunit, or an hCG-like material; or (b) other tumor specific or tumor associated molecules, to include carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), human melanoma associated antigens, human sarcoma associated antigens or other antigens, are radiolabeled with technetium-99m (Tc-99m). When the F(ab')/sub 2/ or Fab fragments of antibody to such tumor associated antigens are injected intravenously into a patient, the radiolabeled composition accumulates at tumor sites. The accumulation of the cancer seeking radiopharmaceutical at tumor sites permits detection by external gamma scintigraphy. Thus, the composition is useful in the monitoring, localization and detection of cancer in the body. In an alternative composition, a double antibody approach to tumor localization using radiolabeled F(ab')/sub 2/ or Fab fragments is utilized. In this approach, a tumor specific antibody in the form of IgG, F(ab')/sub 2/ or Fab is first administered to a patient intravenously. Following a sufficient period of time, a second antibody in the form of F(ab')/sub 2/ or Fab is administered. The second antibody is radiolabeled with Tc-99m and has the property that it is reactive with the first antibody. This double antibody method has the advantage over a single antibody approach in that smaller tumors can be localized and detected and that the total amount of radioactive trace localized at the cancer site is increased.

  12. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    PubMed Central

    Alvarenga, Larissa M.; Zahid, Muhammad; di Tommaso, Anne; Juste, Matthieu O.; Aubrey, Nicolas; Billiald, Philippe; Muzard, Julien

    2014-01-01

    Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety. PMID:25153256

  13. Antibodies directed against receptor tyrosine kinases

    PubMed Central

    FAUVEL, Bénédicte; Yasri, Aziz

    2014-01-01

    Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229

  14. Association of selenocysteine transfer RNA fragments with serum antibody response to Mycoplasma spp. in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to identify transfer RNA fragments (tRFs) associated with a serum antibody response to Mycoplasma spp. in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected...

  15. Detection of experimental myocarditis by monoclonal antimyosin antibody, Fab fragment

    SciTech Connect

    Rezkalla, S.; Kloner, R.A.; Khaw, B.A.; Haber, E.; Fallon, J.T.; Smith, F.E.; Khatib, R.

    1989-02-01

    The purpose of this study was to determine whether monoclonal antimyosin Fab (antigen binding fragment) was capable of labeling hearts with experimental coxsackievirus myocarditis, and to determine whether Fab could be used for detecting myocardial damage in either early or chronic phases of the disease. Sixty-five, 3-week-old cesarean-derived 1 (CD 1) mice were divided into two groups: group I (noninfected animals) and group II (infected with coxsackievirus B3). Mice from each group were killed on days 7, 17, 30, or 90 of infection. Forty-eight hours before killing, mice were injected with monoclonal I-125 antimyosin, Fab (25 microCi/injection) and radioactivity was counted in the heart. Selected heart sections were also examined by autoradiography. Heart radioactivity, count/m/mg (m +/- SEM) on days 7, 17, 30, and 90 of infection was 10.8 +/- 1.7, 21.3 +/- 1.1, 11.2 +/- 3.4, and 12.4 +/- 1.5 for group I, versus 36.7 +/- 8.0 (p less than 0.01), 50.0 +/- 4.5 (p less than 0.001), 33.4 +/- 16.1 (p = NS), and 40.6 +/- 8.5 (p less than 0.01) for group II, respectively. Autoradiography revealed focal uptake within areas of necrotic myocardium. We conclude that I125 Fab may be useful in detecting myocardial damage in the experimental model of murine myocarditis up to day 90 of infection.

  16. Latex agglutination test based on single-chain Fv recombinant antibody fragment.

    PubMed

    Golchin, M; Khalili-Yazdi, A; Karamouzian, M; Abareghi, A

    2012-01-01

    Recombinant antibodies have been proposed as invaluable tools for various therapeutic and diagnostic purposes. Here, we describe the development of a novel latex agglutination test (LAT) using single-chain Fv recombinant antibody fragment for the detection of K99(+) enterotoxigenic Escherichia coli strains. For the production of a single-chain Fv antibody fragment (scFv) against the major colonization factor (FanC) of K99 antigen, the scFv gene was integrated into a bacterial expression vector under the control of T7 promoter. After high-level expression of soluble scFv (approximately 50 mg/l) in flask cultivation of E. coli DE3 and purification, scFv was immobilized on different latex particles, and then, these sensitized beads were used in LAT. Results obtained with our latex reagents revealed that the recombinant antibody-coated particles were able to give a good agglutination signal with purified antigen, intact cells displaying this protein and clinical specimens. The strength of agglutination of scFv-coated beads for antigen was comparable to that of polyclonal anti-K99-coated particles. However, the assay proved to be simple and rapid, similar to conventional LATs, and owing to more convenient and economical production of recombinant antibodies, they can be considered as a useful reagent for replacing monoclonal antibodies in LATs. PMID:21916915

  17. High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100.

    PubMed

    Leonard, Paul; Säfsten, Pär; Hearty, Stephen; McDonnell, Barry; Finlay, William; O'Kennedy, Richard

    2007-06-30

    Advances in molecular evolution strategies have made it possible to identify antibodies with exquisite specificities and also to fine-tune their biophysical properties for practically any specified application. Depending on the desired function, antibody/antigen interactions can be long-lived or short-lived and, therefore, particular attention is needed when seeking to identify antibodies with specific reaction-rate and affinity properties. Surface plasmon resonance (SPR) biosensors routinely generate sensitive and reliable kinetic data from antibody/antigen interactions for both therapeutic and diagnostic applications. However, many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To ameliorate this problem, we developed a rapid and reliable assay for characterising recombinant scFv antibody fragments, directly from crude bacterial lysates. Ninety-six scFv antibodies derived from chickens immunised with C-reactive protein (CRP) were selected by phage display and evaluated using the Biacore A100 protein interaction array system. Antibodies were captured from crude bacterial extracts on the sensor chip surface and ranked based on the percentage of the complex left (% left) after dissociation in buffer. Kinetic rate constants (k(a) and k(d)) and affinity (K(D)) data were obtained for six clones that bound monomeric CRP across a broad affinity range (2.54 x 10(-8) to 3.53 x 10(-10) M). Using this assay format the A100 biosensor yielded high quality kinetic data, permitting the screening of nearly 400 antibody clones per day. PMID:17532001

  18. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  19. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    SciTech Connect

    Page, R.L.; Garg, P.K.; Gard, S. ||

    1994-09-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the {sup 18}F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4{prime}-({sup 18}F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T{sub 1/2{beta}} = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of {sup 18}F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10{sup -3}% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of {sup 18}F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs.

  20. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    PubMed

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  1. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment

    PubMed Central

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  2. Probing the soybean Bowman-Birk inhibitor using recombinant antibody fragments.

    PubMed

    Muzard, Julien; Fields, Conor; O'Mahony, James John; Lee, Gil U

    2012-06-20

    The nutritional and health benefits of soy protein have been extensively studied over recent decades. The Bowman-Birk inhibitor (BBI), derived from soybeans, is a double-headed inhibitor of chymotrypsin and trypsin with anticarcinogenic and anti-inflammatory properties, which have been demonstrated in vitro and in vivo. However, the lack of analytical and purification methodologies complicates its potential for further functional and clinical investigations. This paper reports the construction of anti-BBI antibody fragments based on the principle of protein design. Recombinant antibody (scFv and diabody) molecules targeting soybean BBI were produced and characterized in vitro (K(D)~1.10(-9) M), and the antibody-binding site (epitope) was identified as part of the trypsin-specific reactive loop. Finally, an extremely fast purification strategy for BBI from soybean extracts, based on superparamagnetic particles coated with antibody fragments, was developed. To the best of the authors' knowledge, this is the first report on the design and characterization of recombinant anti-BBI antibodies and their potential application in soybean processing. PMID:22642722

  3. Antibody response by cultured spleen fragments from carrier-primed mice to hapten-protein conjugates.

    PubMed

    Hurme, M; Nakamura, I; Kaartinen, M; Mäkelä, O

    1975-01-01

    Hapten-protein conjugates stimulated very poor anti-hapten responses in mouse spleen fragment cultures from unimmunized mice, whereas hapten coupled to type III pneumococcal polysaccharide or polylysine induced good responses. When the donors of the fragments were primed with the carrier protein, hapten-protein conjugates induced a strong anti-hapten response. Both the true primary and the carrier-primed response in vitro consisted mainly of IgA antibodies of 9-13S. In carrier-primed responses also IgM was produced at the beginning and IgG at the end of those responses. PMID:1080285

  4. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    SciTech Connect

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael; Wood, David W.

    2011-02-25

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.

  5. High throughput cytotoxicity screening of anti-HER2 immunotoxins conjugated with antibody fragments from phage-displayed synthetic antibody libraries

    PubMed Central

    Hou, Shin-Chen; Chen, Hong-Sen; Lin, Hung-Wei; Chao, Wei-Ting; Chen, Yao-Sheng; Fu, Chi-Yu; Yu, Chung-Ming; Huang, Kai-Fa; Wang, Andrew H.-J.; Yang, An-Suei

    2016-01-01

    Immunotoxins are an important class of antibody-based therapeutics. The potency of the immunotoxins depends on the antibody fragments as the guiding modules targeting designated molecules on cell surfaces. Phage-displayed synthetic antibody scFv libraries provide abundant antibody fragment candidates as targeting modules for the immunoconjugates, but the discovery of optimally functional immunoconjugates is limited by the scFv-payload conjugation procedure. In this work, cytotoxicity screening of non-covalently assembled immunotoxins was developed in high throughput format to discover highly functional synthetic antibody fragments for delivering toxin payloads. The principles governing the efficiency of the antibodies as targeting modules have been elucidated from large volume of cytotoxicity data: (a) epitope and paratope of the antibody-based targeting module are major determinants for the potency of the immunotoxins; (b) immunotoxins with bivalent antibody-based targeting modules are generally superior in cytotoxic potency to those with corresponding monovalent targeting module; and (c) the potency of the immunotoxins is positively correlated with the densities of the cell surface antigen. These findings suggest that screening against the target cells with a large pool of antibodies from synthetic antibody libraries without the limitations of natural antibody responses can lead to optimal potency and minimal off-target toxicity of the immunoconjugates. PMID:27550798

  6. High throughput cytotoxicity screening of anti-HER2 immunotoxins conjugated with antibody fragments from phage-displayed synthetic antibody libraries.

    PubMed

    Hou, Shin-Chen; Chen, Hong-Sen; Lin, Hung-Wei; Chao, Wei-Ting; Chen, Yao-Sheng; Fu, Chi-Yu; Yu, Chung-Ming; Huang, Kai-Fa; Wang, Andrew H-J; Yang, An-Suei

    2016-01-01

    Immunotoxins are an important class of antibody-based therapeutics. The potency of the immunotoxins depends on the antibody fragments as the guiding modules targeting designated molecules on cell surfaces. Phage-displayed synthetic antibody scFv libraries provide abundant antibody fragment candidates as targeting modules for the immunoconjugates, but the discovery of optimally functional immunoconjugates is limited by the scFv-payload conjugation procedure. In this work, cytotoxicity screening of non-covalently assembled immunotoxins was developed in high throughput format to discover highly functional synthetic antibody fragments for delivering toxin payloads. The principles governing the efficiency of the antibodies as targeting modules have been elucidated from large volume of cytotoxicity data: (a) epitope and paratope of the antibody-based targeting module are major determinants for the potency of the immunotoxins; (b) immunotoxins with bivalent antibody-based targeting modules are generally superior in cytotoxic potency to those with corresponding monovalent targeting module; and (c) the potency of the immunotoxins is positively correlated with the densities of the cell surface antigen. These findings suggest that screening against the target cells with a large pool of antibodies from synthetic antibody libraries without the limitations of natural antibody responses can lead to optimal potency and minimal off-target toxicity of the immunoconjugates. PMID:27550798

  7. Rigidity Emerges during Antibody Evolution in Three Distinct Antibody Systems: Evidence from QSFR Analysis of Fab Fragments

    PubMed Central

    Li, Tong; Tracka, Malgorzata B.; Uddin, Shahid; Casas-Finet, Jose; Jacobs, Donald J.; Livesay, Dennis R.

    2015-01-01

    The effects of somatic mutations that transform polyspecific germline (GL) antibodies to affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM). We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab), and subsequently, the DCM was combined with molecular dynamics (MD) simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR) in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation. PMID:26132144

  8. Binding of a monoclonal antibody and its Fab fragment to supported phospholipid monolayers measured by total internal reflection fluorescence microscopy.

    PubMed Central

    Pisarchick, M L; Thompson, N L

    1990-01-01

    The association of an anti-dinitrophenyl monoclonal antibody and its Fab fragment with supported phospholipid monolayers composed of a mixture of dipalmitoylphosphatidylcholine and dinitrophenyl-conjugated dipalmitoylphosphatidylethanolamine has been characterized with total internal reflection fluorescence microscopy. The surface densities of bound antibodies were measured as a function of the antibody and Fab solution concentrations, and as a function of the solution concentration of dinitrophenylglycine. The apparent association constant of Fab fragments with surface-associated haptens was approximately 10-fold lower than the association constant for haptens in solution, and the apparent surface association constant for intact antibodies was only approximately 10-fold higher than the constant for Fab fragments. Data analysis with simple theoretical models indicated that, at most antibody surface densities, 50-90% of membrane-associated intact antibodies were attached to the surface by two antigen binding sites. PMID:2291943

  9. Isolation of Llama Antibody Fragments for Prevention of Dandruff by Phage Display in Shampoo

    PubMed Central

    Dolk, Edward; van der Vaart, Marcel; Lutje Hulsik, David; Vriend, Gert; de Haard, Hans; Spinelli, Silvia; Cambillau, Christian; Frenken, Leon; Verrips, Theo

    2005-01-01

    As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama single-domain antibody fragments (VHHs) can be extended to very harsh conditions, such as the presence of shampoo containing nonionic and anionic surfactants. We selected several VHHs that bind to the cell wall protein Malf1 of M. furfur, a fungus implicated in causing dandruff. In addition to high stability in the presence of shampoo, these VHHs are also stable under other denaturing conditions, such as high urea concentrations. Many of the stable VHHs were found to contain arginine at position 44. Replacement of the native amino acid at position 44 with arginine in the most stable VHH that lacked this arginine resulted in a dramatic further increase in the stability. The combination of the unique properties of VHHs together with applied phage display and protein engineering is a powerful method for obtaining highly stable VHHs that can be used in a wide range of applications. PMID:15640220

  10. Refolded scFv Antibody Fragment against Myoglobin Shows Rapid Reaction Kinetics

    PubMed Central

    Song, Hyung-Nam; Jang, Jun-Hyuck; Kim, Young-Wan; Kim, Dong-Hyung; Park, Sung-Goo; Lee, Myung Kyu; Paek, Se-Hwan; Woo, Eui-Jeon

    2014-01-01

    Myoglobin is one of the early biomarkers for acute myocardial infarction. Recently, we have screened an antibody with unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid reaction kinetics are thought to be an early IgG form produced during early stage of in vivo immunization. We produced a recombinant scFv fragment for the premature antibody from Escherichia coli using refolding technology. The scFv gene was constructed by connection of the VH–VL sequence with a (Gly4Ser)3 linker. The scFv fragment without the pelB leader sequence was expressed at a high level, but the solubility was extremely low. A high concentration of 8 M urea was used for denaturation. The dilution refolding process in the presence of arginine and the redox reagents GSH and GSSH successfully produced a soluble scFv protein. The resultant refolded scFv protein showed association and dissociation values of 9.32 × 10−4 M−1·s−1 and 6.29 × 10−3 s−1, respectively, with an affinity value exceeding 107 M−1 (kon/koff), maintaining the original rapid reaction kinetics of the premature antibody. The refolded scFv could provide a platform for protein engineering for the clinical application for diagnosis of heart disease and the development of a continuous biosensor. PMID:25530617

  11. Refolded scFv antibody fragment against myoglobin shows rapid reaction kinetics.

    PubMed

    Song, Hyung-Nam; Jang, Jun-Hyuck; Kim, Young-Wan; Kim, Dong-Hyung; Park, Sung-Goo; Lee, Myung Kyu; Paek, Se-Hwan; Woo, Eui-Jeon

    2014-01-01

    Myoglobin is one of the early biomarkers for acute myocardial infarction. Recently, we have screened an antibody with unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid reaction kinetics are thought to be an early IgG form produced during early stage of in vivo immunization. We produced a recombinant scFv fragment for the premature antibody from Escherichia coli using refolding technology. The scFv gene was constructed by connection of the V(H)-V(L) sequence with a (Gly4Ser)3 linker. The scFv fragment without the pelB leader sequence was expressed at a high level, but the solubility was extremely low. A high concentration of 8 M urea was used for denaturation. The dilution refolding process in the presence of arginine and the redox reagents GSH and GSSH successfully produced a soluble scFv protein. The resultant refolded scFv protein showed association and dissociation values of 9.32 × 10⁻⁴ M⁻¹·s⁻¹ and 6.29 × 10⁻³ s⁻¹, respectively, with an affinity value exceeding 10⁷ M⁻¹ (k(on)/k(off)), maintaining the original rapid reaction kinetics of the premature antibody. The refolded scFv could provide a platform for protein engineering for the clinical application for diagnosis of heart disease and the development of a continuous biosensor. PMID:25530617

  12. Cholestatic Liver Disease after Rituximab and Adalimumab and the Possible Role of Cross-Reacting Antibodies to Fab 2 Fragments

    PubMed Central

    Koetter, Ina; Schwab, Matthias; Fritz, Peter; Kimmel, Martin; Alscher, M. Dominik; Braun, Niko

    2013-01-01

    Background Millions of patients are treated with therapeutic monoclonal antibodies (Tmabs) for miscellaneous diseases. We investigated sera from six patients who received immune globulin, from one patient with refractory anti-neutrophil-cytoplasmic antibody (ANCA)-associated granulomatosis with polyangiitis (GPA) who developed two episodes of acute cholestatic liver disease, one after treatment with rituximab and a second after adalimumab and a healthy control group. Methods Three sera from the patient and six sera from patients who received immune globulin were analyzed for antibodies to rituximab and adalimumab by ELISA. Additionally, sera from the patients and from nine healthy blood donors were coated with the Fab fragment of an unrelated humanized monoclonal antibody, with human Fc proteins as well as a mouse IgG globulin. Results Viral serology for hepatitis A, B, C and autoantibodies specific for autoimmune liver disorders were negative. In all three sera from the patient antibodies to rituximab could be detected, but also antibodies to adalimumab were present even at time points when the patient had not yet received adalimumab, indicating cross reactivity between both substances. Testing against an unrelated human Fab fragment revealed positive results, indicating that the patient had antibodies against human Fab fragments in general. The Fc proteins were negative, and patients’ sera did also not react with mouse IgG globulins. Remarkably, 2 out of 5 patients which were treated with immune globulin had antibodies against human Fab fragments in general whereas in none of the samples from healthy controls antibodies to Fab fragment could be detected. Conclusion This is the first study demonstrating cholestatic liver disease induced by two different Tmabs. Cross - reacting antibodies to Fab2 fragments in general are probably involved. Further studies must show if these Fab2 antibodies in general are related with drug-induced side effects and accelerated drug

  13. PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract.

    PubMed

    Koussoroplis, Salome Juliette; Paulissen, Geneviève; Tyteca, Donatienne; Goldansaz, Hadi; Todoroff, Julie; Barilly, Céline; Uyttenhove, Catherine; Van Snick, Jacques; Cataldo, Didier; Vanbever, Rita

    2014-08-10

    Inhalation aerosols offer a targeted therapy for respiratory diseases. However, the therapeutic efficacy of inhaled biopharmaceuticals is limited by the rapid clearance of macromolecules in the lungs. The aim of this research was to study the effects of the PEGylation of antibody fragments on their local residence time after administration to the respiratory tract. We demonstrate that the conjugation of a two-armed 40-kDa polyethylene glycol (PEG) chain to anti-interleukin-17A (IL-17A) F(ab')2 and anti-IL-13 Fab' greatly prolonged the presence of these fragments within the lungs of mice. The content of PEGylated antibody fragments within the lungs plateaued up to 4h post-delivery, whereas the clearance of unconjugated proteins started immediately after administration. Forty-eight hours post-delivery, F(ab')2 and Fab' contents in the lungs had decreased to 10 and 14% of the dose initially deposited, respectively. However, this value was 40% for both PEG40-F(ab')2 and PEG40-Fab'. The prolonged pulmonary residency of the anti-IL-17A PEG40-F(ab')2 translated into an improved efficacy in reducing lung inflammation in a murine model of house dust mite-induced lung inflammation. We demonstrate that PEGylated proteins were principally retained within the lung lumen rather than the nasal cavities or lung parenchyma. In addition, we report that PEG increased pulmonary retention of antibody fragments through mucoadhesion and escape from alveolar macrophages rather than increased hydrodynamic size or improved enzymatic stability. The PEGylation of proteins might find broad application in the local delivery of therapeutic proteins to diseased airways. PMID:24845126

  14. Advancing the global proteome survey platform by using an oriented single chain antibody fragment immobilization approach.

    PubMed

    Säll, Anna; Persson, Helena; Ohlin, Mats; Borrebaeck, Carl A K; Wingren, Christer

    2016-09-25

    Increasing the understanding of a proteome and how its protein composition is affected by for example different diseases, such as cancer, has the potential to improve strategies for early diagnosis and therapeutics. The Global Proteome Survey or GPS is a method that combines mass spectrometry and affinity enrichment with the use of antibodies. The technology enables profiling of complex proteomes in a species independent manner. The sensitivity of GPS, and other methods relying on affinity enrichment, is largely affected by the activity of the exploited affinity reagent. We here present an improvement of the GPS platform by utilizing an antibody immobilization approach which ensures a controlled immobilization process of the antibody to the magnetic bead support. More specifically, we make use of an antibody format that enables site-directed biotinylation and use this in combination with streptavidin coated magnetic beads. The performance of the expanded GPS platform was evaluated by profiling yeast proteome samples. We demonstrate that the oriented antibody immobilization strategy increases the ability of the GPS platform and results in larger fraction of functional antibodies. Additionally, we show that this new antibody format enabled in-solution capture, i.e. immobilization of the antibodies after sample incubation. A workflow has been established that permit the use of an oriented immobilization strategy for the GPS platform. PMID:26703809

  15. Direct nuclear pumping by a volume source of fission fragments

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1978-01-01

    A detailed kinetic model is presented for the analysis of nuclear pumped lasers when the pumping is a result of a volume source of fission fragments. The results of the model are employed to study a He-3 - Xe laser. For the range of pressures, neutron fluxes and mixtures considered, the gain and power calculations are in good agreement with experiment. Moreover, based on these calculations, it appears that the collisional recombination is the dominant pumping mechanism for 7p-7s transitions while direct excitation is the dominant pumping mechanism for the 5d-6p transitions.

  16. Production of stabilized scFv antibody fragments in the E. coli bacterial cytoplasm.

    PubMed

    Vaks, Lilach; Benhar, Itai

    2014-01-01

    Monoclonal antibodies (mAbs) are currently the fastest growing class of therapeutic proteins. Parallel to full-length IgG format the development of recombinant technologies provided the production of smaller recombinant antibody variants. The single-chain variable fragment (scFv) antibody is a minimal form of functional antibody comprised of the variable domains of immunoglobulin light and heavy chains connected by a flexible linker. In most cases, scFvs are expressed in the bacterium E. coli. The production of soluble scFvs under the reducing conditions of the E. coli bacterial cytoplasm is inefficient because of the inability of the disulfide bonds to form. Hence, scFvs are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies and recovered by refolding. The cytoplasmic expression of scFvs as a C-terminal fusion to maltose-binding protein (MBP) provided the high-level production of stable, soluble, and functional fusion protein. The below protocol provides the detailed description of MBP-scFv production in E. coli utilizing two expression systems: pMalc-TNN and pMalc-NHNN. Although the MBP tag does not disrupt the most of antibody activities, the MBP-TNN-scFv product can be cleaved by TEV protease in order to obtain untagged scFv. PMID:24037842

  17. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer.

    PubMed

    Ahn, Jooyeon; Miura, Yutaka; Yamada, Naoki; Chida, Tsukasa; Liu, Xueying; Kim, Ahram; Sato, Ryuta; Tsumura, Ryo; Koga, Yoshikatsu; Yasunaga, Masahiro; Nishiyama, Nobuhiro; Matsumura, Yasuhiro; Cabral, Horacio; Kataoka, Kazunori

    2015-01-01

    Antibody-mediated therapies including antibody-drug conjugates (ADCs) have shown much potential in cancer treatment by tumor-targeted delivery of cytotoxic drugs. However, there is a limitation of payloads that can be delivered by ADCs. Integration of antibodies to drug-loaded nanocarriers broadens the applicability of antibodies to a wide range of therapeutics. Herein, we developed antibody fragment-installed polymeric micelles via maleimide-thiol conjugation for selectively delivering platinum drugs to pancreatic tumors. By tailoring the surface density of maleimide on the micelles, one tissue factor (TF)-targeting Fab' was conjugated to each carrier. Fab'-installed platinum-loaded micelles exhibited more than 15-fold increased cellular binding within 1 h and rapid cellular internalization compared to non-targeted micelles, leading to superior in vitro cytotoxicity. In vivo, Fab'-installed micelles significantly suppressed the growth of pancreatic tumor xenografts for more than 40 days, outperforming non-targeted micelles and free drugs. These results indicate the potential of Fab'-installed polymeric micelles for efficient drug delivery to solid tumors. PMID:25477168

  18. Isolation and characterization of antibody fragments selective for toxic oligomeric tau

    PubMed Central

    Tian, Huilai; Davidowitz, Eliot; Lopez, Patricia; He, Ping; Schulz, Philip; Moe, James; Sierks, Michael R.

    2014-01-01

    Oligomeric tau species are important in the onset and progression of Alzheimer’s Disease (AD) as they are neurotoxic and can propagate tau tangle pathology. Therefore reagents that selectively recognize different key morphologies of tau are needed to help define the role of tau in AD and related diseases. We utilized a biopanning protocol that combines the binding diversity of phage-displayed antibody libraries with the powerful imaging capability of atomic force microscopy (AFM) to isolate single chain antibody fragments (scFvs) that selectively bind toxic oligomeric tau. We isolated three different antibody fragments that bind oligomeric but not monomeric or fibrillar tau. The scFvs differentiate brain tissue homogenates of both 3×TG and tau-AD mice from wild type mice, detecting oligomeric tau at much earlier ages than when neurofibrillary tangles are typically detected. The scFvs also distinguish human post-mortem AD brain tissue from cognitively normal post-mortem human brain tissue demonstrating the potential of this approach for developing biomarkers for early detection and progression of AD. PMID:25616912

  19. Proteomic differences in recombinant CHO cells producing two similar antibody fragments.

    PubMed

    Sommeregger, Wolfgang; Mayrhofer, Patrick; Steinfellner, Willibald; Reinhart, David; Henry, Michael; Clynes, Martin; Meleady, Paula; Kunert, Renate

    2016-09-01

    Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. "Omics" studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label-free LC-MS proteomic analyses to investigate product-specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single-chain Fv-Fc homodimeric antibody fragments (scFv-Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase-mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label-free proteomic analysis. LC-MS-MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902-1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26913574

  20. Isolation and characterization of antibody fragments selective for toxic oligomeric tau.

    PubMed

    Tian, Huilai; Davidowitz, Eliot; Lopez, Patricia; He, Ping; Schulz, Philip; Moe, James; Sierks, Michael R

    2015-03-01

    Oligomeric tau species are important in the onset and progression of Alzheimer's disease (AD), as they are neurotoxic and can propagate tau-tangle pathology. Therefore, reagents that selectively recognize different key morphologies of tau are needed to help define the role of tau in AD and related diseases. We utilized a biopanning protocol that combines the binding diversity of phage-displayed antibody libraries with the powerful imaging capability of atomic force microscopy to isolate single-chain antibody fragments (scFvs) that selectively bind toxic oligomeric tau. We isolated 3 different antibody fragments that bind oligomeric but not monomeric or fibrillar tau. The scFvs differentiate brain tissue homogenates of both 3×TG and tau-AD mice from wild-type mice, detecting oligomeric tau at much earlier ages than when neurofibrillary tangles are typically detected. The scFvs also distinguish human postmortem AD brain tissue from cognitively normal postmortem human brain tissue, demonstrating the potential of this approach for developing biomarkers for early detection and progression of AD. PMID:25616912

  1. Mutations in Antibody Fragments Modulate Allosteric Response Via Hydrogen-Bond Network Fluctuations.

    PubMed

    Srivastava, Amit; Tracka, Malgorzata B; Uddin, Shahid; Casas-Finet, Jose; Livesay, Dennis R; Jacobs, Donald J

    2016-05-10

    A mechanical perturbation method that locally restricts conformational entropy along the protein backbone is used to identify putative allosteric sites in a series of antibody fragments. The method is based on a distance constraint model that integrates mechanical and thermodynamic viewpoints of protein structure wherein mechanical clamps that mimic substrate or cosolute binding are introduced. Across a set of six single chain-Fv fragments of the anti-lymphotoxin-β receptor antibody, statistically significant responses are obtained by averaging over 10 representative structures sampled from a molecular dynamics simulation. As expected, the introduced clamps locally rigidify the protein, but long-ranged increases in both rigidity and flexibility are also frequently observed. Expanding our analysis to every molecular dynamics frame demonstrates that the allosteric responses are modulated by fluctuations within the hydrogen-bond network where the native ensemble is comprised of conformations that both are, and are not, affected by the perturbation in question. Population shifts induced by the mutations alter the allosteric response by adjusting which hydrogen-bond networks are the most probable. These effects are compared using response maps that track changes across each single chain-Fv fragment, thus providing valuable insight into how sensitive allosteric mechanisms are to mutations. PMID:27166802

  2. Head direction maps remain stable despite grid map fragmentation

    PubMed Central

    Whitlock, Jonathan R.; Derdikman, Dori

    2012-01-01

    Areas encoding space in the brain contain both representations of position (place cells and grid cells) and representations of azimuth (head direction cells). Previous studies have already suggested that although grid cells and head direction cells reside in the same brain areas, the calculation of head direction is not dependent on the calculation of position. Here we demonstrate that realignment of grid cells does not affect head direction tuning. We analyzed head direction cell data collected while rats performed a foraging task in a multi-compartment environment (the hairpin maze) vs. an open-field environment, demonstrating that the tuning of head direction cells did not change when the environment was divided into multiple sub-compartments, in the hairpin maze. On the other hand, as we have shown previously (Derdikman et al., 2009), the hexagonal firing pattern expressed by grid cells in the open-field broke down into repeating patterns in similar alleys when rats traversed the multi-compartment hairpin maze. The grid-like firing of conjunctive cells, which express both grid properties and head direction properties in the open-field, showed a selective fragmentation of grid-like firing properties in the hairpin maze, while the head directionality property of the same cells remained unaltered. These findings demonstrate that head direction is not affected during the restructuring of grid cell firing fields as a rat actively moves between compartments, thus strengthening the claim that the head direction system is upstream from or parallel to the grid-place system. PMID:22479237

  3. Recombinant human antibodies: linkage of an Fab fragment from a combinatorial library to an Fc fragment for expression in mammalian cell culture.

    PubMed

    Bender, E; Woof, J M; Atkin, J D; Barker, M D; Bebbington, C R; Burton, D R

    1993-04-01

    The combinatorial phage library approach to immunoglobulin repertoire cloning recently made it possible to isolate gene fragments encoding human immunoglobulin G1 Fabs binding with high affinity to specific antigens. Here we describe the construction of genes encoding whole human anti-tetanus toxoid antibodies based on one of these gene fragments and the efficient expression of these constructs by co-transfection of separate heavy and light chain vectors into a Chinese hamster ovary cell line constitutively expressing a viral transactivator protein. This system will be generally useful for the rapid analysis of recombinant antibodies derived from combinatorial libraries. PMID:8518367

  4. High-Affinity Recombinant Antibody Fragments (Fabs) Can Be Applied in Peptide Enrichment Immuno-MRM Assays

    PubMed Central

    2015-01-01

    High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays. PMID:24568200

  5. Conjugation of R-Phycoerythrin to a Polyclonal Antibody and F (ab')2 Fragment of a Polyclonal Antibody by Two Different Methods.

    PubMed

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah; Mahmoudi, Ahmad Reza; Akhondi, Mohammad Mehdi; Zarnani, Amir Hassan; Goli, Leila Balaei; Babaei, Mahdokht; Ghods, Roya

    2010-04-01

    R-Phycoerythrin (R-PE), a fluorescent protein from phycobiliprotein family, is isolated from red algae. Conjugation of antibodies to R-PE facilitates multiple fluorescent staining methods. In the present study polyclonal antibodies and polyclonal F(ab')2 fragment antibodies were conjugated to R-PE by two different methods. The efficiency of the methods was evaluated using Immunocytochemistry (ICC) and Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). In the first conjugation method, PE was attached to SMCC linker followed by conjugation of antibody to PE-SMCC. In the second method, SH groups were added onto R-PE molecule, while the antibody was attached to SPDP linker. Then, the antibody-SPDP molecule was conjugated to R-PE. Our results showed that the two conjugation methods did not have any abrogative effects on the antibody binding activity. PMID:23407609

  6. Use of solid-phase double-antibody radioimmunoassay to identify species from small skeletal fragments.

    PubMed

    Ubelaker, Douglas H; Lowenstein, Jerold M; Hood, Darden G

    2004-09-01

    Protein radioimmunoassay (pRIA) offers the potential to identify species in small skeletal fragments submitted as forensic evidence. The technique consists of protein extraction followed by a solid-phase double-antibody radioimmunoassay using controls of antisera (raised in rabbits) and radioactive (iodine-125) antibody of rabbit gamma globulin (produced in donkeys). Species determination results from evaluation of radioactivity uptake. To demonstrate the potential of this technique, six known bone samples (three human and three nonhuman, including one from a deer [Odocoileus virginianus]) were submitted for blind analysis. pRIA correctly distinguished the human from the nonhuman samples. Using 200 mg or less of each sample, species of the deer specimen was identified correctly, given the choices of cow, deer, dog, goat, and pig. PMID:15461091

  7. In Vivo Tumor Targeting and Imaging with Engineered Trivalent Antibody Fragments Containing Collagen-Derived Sequences

    PubMed Central

    Cuesta, Ángel M.; Sánchez-Martín, David; Sanz, Laura; Bonet, Jaume; Compte, Marta; Kremer, Leonor; Blanco, Francisco J.; Oliva, Baldomero; Álvarez-Vallina, Luis

    2009-01-01

    There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed “trimerbody”, comprises a single-chain antibody (scFv) fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA), a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting. PMID:19401768

  8. Optimizing Radiolabeled Engineered Anti-p185HER2 Antibody Fragments for In vivo Imaging

    PubMed Central

    Olafsen, Tove; Kenanova, Vania E.; Sundaresan, Gobalakrishnan; Anderson, Anne-Line; Crow, Desiree; Yazaki, Paul J.; Li, Lin; Press, Michael F.; Gambhir, Sanjiv S.; Williams, Lawrence E.; Wong, Jeffrey Y.C.; Raubitschek, Andrew A.; Shively, John E.; Wu, Anna M.

    2014-01-01

    We have recently described the in vivo properties of an iodinated anti-p185HER2 engineered antibody fragment [minibody (scFv-CH3)2; 80 kDa], made from the internalizing 10H8 monoclonal antibody. Although the 10H8 minibody showed excellent binding to the target in vitro, only modest tumor uptake [5.6 ± 1.7% injected dose per gram (ID/g) of tissue] was achieved in nude mice bearing MCF7/HER2 breast cancer tumors. Here, in an attempt to improve targeting, the 10H8 minibody was conjugated to 1,4,7,10-tetraazacyclododecane-N, N′, N″, N‴-tetraacetic acid (DOTA), radio metal labeled, and evaluated in vivo. The tumor uptake of 111In-DOTA 10H8 minibody was 5.7 ± 0.1% ID/g, similar to the radioiodinated 10H8 minibody. However, in addition to the expected liver clearance, the kidneys had unexpectedly high activity (34.0 ± 4.0% ID/g). A minibody derived from a second anti-p185HER2 antibody (trastuzumab; hu4D5v8) was also made. Tumor uptakes, evaluated by quantitative microPET using 64Cu-DOTA hu4D5v8 minibody, were 4.2 ± 0.5% ID/g. Furthermore, in non-tumor-bearing mice, 111In-DOTA hu4D5v8 minibody exhibited similar elevated uptake in the kidneys (28.4 ± 6.5% ID/g). Immunohistochemical staining of kidneys from non-tumor-bearing mice showed strong specific staining of the proximal tubules, and Western blot analysis of kidney lysate confirmed the presence of cross-reactive antigen. To further improve tumor uptake and normal tissue distribution, a larger hu4D5v8 fragment [(scFv-CH2-CH3)2; 105 kDa] was made, engineered to exhibit rapid clearance kinetics. This fragment, when evaluated by microPET, exhibited improved tumor targeting (12.2 ± 2.4% ID/g) and reduced kidney uptake (13.1 ± 1.5% ID/g). Thus, by manipulating the size and format of anti-p185 antibody fragments, the kidney activity was reduced and high or low expression of p185HER2 in xenografts could be distinguished by microPET imaging. PMID:15994969

  9. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule.

    PubMed

    Petters, Edyta; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek

    2015-01-01

    Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer. PMID:26307975

  10. Crystal Structure of the Fab Fragment of an Anti-ofloxacin Antibody and Exploration of Its Specific Binding.

    PubMed

    He, Kuo; Du, Xinjun; Sheng, Wei; Zhou, Xiaonan; Wang, Junping; Wang, Shuo

    2016-03-30

    The limited knowledge on the mechanism of interactions between small contaminants and the corresponding antibodies greatly inhibits the development of enzyme-linked immunosorbent assay methods. In this study, the crystal structure of a Fab fragment specific for ofloxacin was obtained. On the basis of the crystal characteristics, the modeling of the interactions between ofloxacin and the Fab revealed that TYR31 and HIS99 of the heavy chain and MET20 and GLN79 of the light chain formed a hydrophobic region and that SER52 and ALA97 of the heavy chain and TYR35 of the light chain formed a salt bridge and two hydrogen bonds for specific binding. The key roles of SER52 and ALA97 were further confirmed by site-directed mutation. A specificity analysis using 14 ofloxacin analogues indicates that the length of the bond formed between the piperazine ring and the antibody plays key roles in specific recognition. This work helps to clarify the mechanisms through which antibodies recognize small molecules and improve immune detection methods. PMID:26963935

  11. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    PubMed Central

    Petters, Edyta; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek

    2015-01-01

    Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer. PMID:26307975

  12. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo

    PubMed Central

    Tavaré, Richard; McCracken, Melissa N.; Zettlitz, Kirstin A.; Knowles, Scott M.; Salazar, Felix B.; Olafsen, Tove; Witte, Owen N.; Wu, Anna M.

    2014-01-01

    The noninvasive detection and quantification of CD8+ T cells in vivo are important for both the detection and staging of CD8+ lymphomas and for the monitoring of successful cancer immunotherapies, such as adoptive cell transfer and antibody-based immunotherapeutics. Here, antibody fragments are constructed to target murine CD8 to obtain rapid, high-contrast immuno-positron emission tomography (immuno-PET) images for the detection of CD8 expression in vivo. The variable regions of two anti-murine CD8-depleting antibodies (clones 2.43 and YTS169.4.2.1) were sequenced and reformatted into minibody (Mb) fragments (scFv-CH3). After production and purification, the Mbs retained their antigen specificity and bound primary CD8+ T cells from the thymus, spleen, lymph nodes, and peripheral blood. Importantly, engineering of the parental antibodies into Mbs abolished the ability to deplete CD8+ T cells in vivo. The Mbs were subsequently conjugated to S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid for 64Cu radiolabeling. The radiotracers were injected i.v. into antigen-positive, antigen-negative, immunodeficient, antigen-blocked, and antigen-depleted mice to evaluate specificity of uptake in lymphoid tissues by immuno-PET imaging and ex vivo biodistribution. Both 64Cu-radiolabeled Mbs produced high-contrast immuno-PET images 4 h postinjection and showed specific uptake in the spleen and lymph nodes of antigen-positive mice. PMID:24390540

  13. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents. PMID:15518242

  14. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    PubMed Central

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295

  15. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. PMID:26232710

  16. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage. PMID:27414790

  17. Human antibody response to fragments A and B of diphtheria toxin and a synthetic peptide of amino acid residues 141-157 of fragment A.

    PubMed Central

    Perera, V. Y.; Corbel, M. J.

    1990-01-01

    Examination of a selection of serum samples from adults from two regions of England showed that 50% of men in the 16-24 years and over 55 years age groups had high titres of antibody to diphtheria toxin (DT). In contrast, only 11% of women aged 16 to over 55 years had high titres of antibody to DT. All human antisera with high anti-DT titres reacted with a synthetic peptide (SP) corresponding to the amino acids 141-157 of DT fragment A, with sera from men aged 35 to over 55 years showing the highest titres. High antibody titres to fragment A paralleled those to SP in both sexes. Titres of antibody to DT fragment B were highest in individuals with high titres to DT. In sera from both sexes immunoglobulin G1 was the predominant subclass reactive with all three antigens. However, both IgG1 and IgG4 and to a lesser extent IgG2 and IgG3 were present in immunoglobulin concentrates. Images Fig. 1 Fig. 2 PMID:2249709

  18. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    PubMed

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency. PMID:26325475

  19. An assay for the detection of grapevine leafroll-associated virus 3 using a single-chain fragment variable antibody.

    PubMed

    Cogotzi, Laura; Giampetruzzi, Annalisa; Nölke, Greta; Orecchia, Martin; Elicio, Vito; Castellano, Maria Antonietta; Martelli, Giovanni P; Fischer, Rainer; Schillberg, Stefan; Saldarelli, Pasquale

    2009-01-01

    Grapevine leafroll-associated virus 3 (GLRaV-3) is a major pathogen of grapevine. A previously described single-chain fragment variable (scFv) antibody (scFvLR3), directed against the coat protein (CP) of GLRaV-3, was expressed in Escherichia coli and used to develop a diagnostic ELISA kit. The antibody was fused to the light chain constant domain of human immunoglobulin to create the bivalent reagent C(L)-LR3, which was purified from the periplasmic fraction, giving a yield of ~5 mg/l. The sensitivity of the reagent against recombinant GLRaV-3 CP was 0.1 ng. The sensitivity, specificity and durability of the reagent was similar to a commercial kit. The C(L)-LR3 showed a weak cross-reaction in immune electron microscopy assays to GLRaV-1 and -7, but not with the phylogenetically more distant GLRaV-2. A fully recombinant kit was developed with the inclusion of a recombinant GLRaV-3 CP expressed in bacteria, thus avoiding problems associated with virus propagation and purification. This system represents a rapid, simple, sensitive and standardized diagnostic protocol for GLRaV-3 detection. PMID:19082687

  20. Engineered single-chain variable fragment antibody for immunodiagnosis of groundnut bud necrosis virus infection.

    PubMed

    Maheshwari, Yogita; Vijayanandraj, S; Jain, R K; Mandal, Bikash

    2015-05-01

    Few studies have been done on engineered antibodies for diagnosis of tospovirus infections. The present study was undertaken to develop a single-chain variable fragment (scFv) for specific diagnosis of infection by groundnut bud necrosis virus (GBNV), the most prevalent serogroup IV tospovirus in India. Heavy chain (372 nucleotide [nt]) and light chain (363 nt) variable region clones obtained from a hybridoma were used to make an scFv construct that expressed a ~29-kDa protein in E. coli. The scFv specifically detected GBNV in field samples of cowpea, groundnut, mung bean, and tomato, and it did not recognize watermelon bud necrosis virus, a close relative of GBNV belonging to tospovirus serogroup IV. This study for the first time demonstrated the application of a functional scFv against a serogroup-IV tospovirus. PMID:25698103

  1. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry

    PubMed Central

    Luo, Haiming; Hernandez, Reinier; Hong, Hao; Graves, Stephen A.; Yang, Yunan; England, Christopher G.; Theuer, Charles P.; Nickles, Robert J.; Cai, Weibo

    2015-01-01

    Early diagnosis remains a task of upmost importance for reducing cancer morbidity and mortality. Successful development of highly specific companion diagnostics targeting aberrant molecular pathways of cancer is needed for sensitive detection, accurate diagnosis, and opportune therapeutic intervention. Herein, we generated a bispecific immunoconjugate [denoted as Bs-F(ab)2] by linking two antibody Fab fragments, an anti-epidermal growth factor receptor (EGFR) Fab and an anti-CD105 Fab, via bioorthogonal “click” ligation of trans-cyclooctene and tetrazine. PET imaging of mice bearing U87MG (EGFR/CD105+/+) tumors with 64Cu-labeled Bs-F(ab)2 revealed a significantly enhanced tumor uptake [42.9 ± 9.5 percentage injected dose per gram (%ID/g); n = 4] and tumor-to-background ratio (tumor/muscle ratio of 120.2 ± 44.4 at 36 h postinjection; n = 4) compared with each monospecific Fab tracer. Thus, we demonstrated that dual targeting of EGFR and CD105 provides a synergistic improvement on both affinity and specificity of 64Cu-NOTA-Bs-F(ab)2. 64Cu-NOTA-Bs-F(ab)2 was able to visualize small U87MG tumor nodules (<5 mm in diameter), owing to high tumor uptake (31.4 ± 10.8%ID/g at 36 h postinjection) and a tumor/muscle ratio of 76.4 ± 52.3, which provided excellent sensitivity for early detection. Finally, we successfully confirmed the feasibility of a ZW800-1–labeled Bs-F(ab)2 for near-infrared fluorescence imaging and image-guided surgical resection of U87MG tumors. More importantly, our rationale can be used in the construction of other disease-targeting bispecific antibody fragments for early detection and diagnosis of small malignant lesions. PMID:26417085

  2. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry.

    PubMed

    Luo, Haiming; Hernandez, Reinier; Hong, Hao; Graves, Stephen A; Yang, Yunan; England, Christopher G; Theuer, Charles P; Nickles, Robert J; Cai, Weibo

    2015-10-13

    Early diagnosis remains a task of upmost importance for reducing cancer morbidity and mortality. Successful development of highly specific companion diagnostics targeting aberrant molecular pathways of cancer is needed for sensitive detection, accurate diagnosis, and opportune therapeutic intervention. Herein, we generated a bispecific immunoconjugate [denoted as Bs-F(ab)2] by linking two antibody Fab fragments, an anti-epidermal growth factor receptor (EGFR) Fab and an anti-CD105 Fab, via bioorthogonal "click" ligation of trans-cyclooctene and tetrazine. PET imaging of mice bearing U87MG (EGFR/CD105(+/+)) tumors with (64)Cu-labeled Bs-F(ab)2 revealed a significantly enhanced tumor uptake [42.9 ± 9.5 percentage injected dose per gram (%ID/g); n = 4] and tumor-to-background ratio (tumor/muscle ratio of 120.2 ± 44.4 at 36 h postinjection; n = 4) compared with each monospecific Fab tracer. Thus, we demonstrated that dual targeting of EGFR and CD105 provides a synergistic improvement on both affinity and specificity of (64)Cu-NOTA-Bs-F(ab)2. (64)Cu-NOTA-Bs-F(ab)2 was able to visualize small U87MG tumor nodules (<5 mm in diameter), owing to high tumor uptake (31.4 ± 10.8%ID/g at 36 h postinjection) and a tumor/muscle ratio of 76.4 ± 52.3, which provided excellent sensitivity for early detection. Finally, we successfully confirmed the feasibility of a ZW800-1-labeled Bs-F(ab)2 for near-infrared fluorescence imaging and image-guided surgical resection of U87MG tumors. More importantly, our rationale can be used in the construction of other disease-targeting bispecific antibody fragments for early detection and diagnosis of small malignant lesions. PMID:26417085

  3. Possible therapeutic potential of a recombinant group 2 grass pollen allergen-specific antibody fragment.

    PubMed

    Gadermaier, E; Flicker, S; Blatt, K; Valent, P; Valenta, R

    2014-02-01

    The induction of blocking IgG antibodies that compete with IgE for allergen binding is one important mechanism of allergen-specific immunotherapy. The application of blocking antibodies may be an alternative treatment strategy. A synthetic gene coding for a single-chain fragment (ScFv) specific for the major timothy grass pollen allergen Phl p 2 was inserted into plasmid pCANTAB 5 E, and the recombinant ScFv was expressed in Escherichia coli and purified by affinity chromatography. The ScFv was tested for allergen binding by ELISA, and its association and dissociation were measured by surface plasmon resonance (Biacore) technology. The ability of the ScFv to inhibit allergic patients' IgE binding to Phl p 2 and Phl p 2-induced basophil degranulation was studied by ELISA competition and basophil activation (CD203c) assays. We report the expression, purification, biochemical and immunological characterization of a monomeric single-chain fragment (ScFv) of human origin specific for the major timothy grass pollen allergen, Phl p 2. The Phl p 2-ScFv showed high affinity binding to the allergen and blocked the binding of allergic patients' polyclonal IgE to Phl p 2 up to 98%. Furthermore, it inhibited allergen-induced basophil activation. The Phl p 2-ScFv inhibited allergic patients' IgE binding to Phl p 2 as well as Phl p 2-induced basophil activation and might be useful for passive immunotherapy of grass pollen allergy. PMID:24251384

  4. Design and construction of a new human naïve single-chain fragment variable antibody library, IORISS1.

    PubMed

    Pasello, Michela; Zamboni, Silvia; Mallano, Alessandra; Flego, Michela; Picci, Piero; Cianfriglia, Maurizio; Scotlandi, Katia

    2016-04-20

    Human monoclonal antibodies are a powerful tool with increasingly successful exploitations and the single chain fragment variable format can be considered the building block for the implementation of more complex and effective antibody-based constructs. Phage display is one of the best and most efficient methods to isolate human antibodies selected from an efficient and variable phage display library. We report a method for the construction of a human naïve single-chain variable fragment library, termed IORISS1. Many different sets of oligonucleotide primers as well as optimized electroporation and ligation reactions were used to generate this library of 1.2×10(9) individual clones. The key difference is the diversity of variable gene templates, which was derived from only 15 non-immunized human donors. The method described here, was used to make a new human naïve single-chain fragment variable phage display library that represents a valuable source of diverse antibodies that can be used as research reagents or as a starting point for the development of therapeutics. Using biopanning, we determined the ability of IORISS1 to yield antibodies. The results we obtained suggest that, by using an optimized protocol, an efficient phage antibody library can be generated. PMID:26945728

  5. Optimization of a single-chain antibody fragment overexpression in Escherichia coli using response surface methodology.

    PubMed

    Akbari, V; Sadeghi, H Mir Mohammad; Jafarian-Dehkordi, A; Chou, C Perry; Abedi, D

    2015-01-01

    Human epidermal growth factor receptor (HER) family plays an important role in various types of cancers. As a result, antibodies against HER and the mechanism of antigen-antibody binding action are under active investigation. We previously constructed a single-chain variable fragment (ScFv) against HER2, i.e. anti-Her2 ScFv, for expressing in the Escherichia coli. In the present study, we report the optimization of anti-Her2 ScFv expression in an E. coli host of BL21 (DE3) pLysS using response surface methodology based on tuning of three cultivation variables, including isopropyl-beta-D-thiogalactopyranoside (IPTG) concentration, temperature and post-induction time. A model for protein expression according to the Box-Behnken design predicted a maximal anti-Her2 ScFv expression at 37 °C, a post-induction time of 10.45 h and 0.75 mM IPTG. In addition, strategies based on inclusion body isolation and affinity chromatography were applied to purify anti-Her2 ScFv. The purity of the final product for inclusion bodies isolation and purification by Ni-NTA resin were 70 % and 95 %, respectively. The solubilization of the inclusion bodies was carried out using two denaturant agents, guanidine hydrochloride and urea. The present study showed that guanidine hydrochloride was more effective than urea in solubilizing the inclusion bodies. PMID:26430460

  6. A method to confer Protein L binding ability to any antibody fragment

    PubMed Central

    Lakhrif, Zineb; Pugnière, Martine; Henriquet, Corinne; di Tommaso, Anne; Dimier-Poisson, Isabelle; Billiald, Philippe; Juste, Matthieu O.; Aubrey, Nicolas

    2016-01-01

    abstract Recombinant antibody single-chain variable fragments (scFv) are difficult to purify homogeneously from a protein complex mixture. The most effective, specific and fastest method of purification is an affinity chromatography on Protein L (PpL) matrix. This protein is a multi-domain bacterial surface protein that is able to interact with conformational patterns on kappa light chains. It mainly recognizes amino acid residues located at the VL FR1 and some residues in the variable and constant (CL) domain. Not all kappa chains are recognized, however, and the lack of CL can reduce the interaction. From a scFv composed of IGKV10-94 according to IMGT®, it is possible, with several mutations, to transfer the motif from the IGKV12-46 naturally recognized by the PpL, and, with the single mutation T8P, to confer PpL recognition with a higher affinity. A second mutation S24R greatly improves the affinity, in particular by modifying the dissociation rate (kd). The equilibrium dissociation constant (KD) was measured at 7.2 10-11 M by surface plasmon resonance. It was possible to confer PpL recognition to all kappa chains. This protein interaction can be modulated according to the characteristics of scFv (e.g., stability) and their use with conjugated PpL. This work could be extrapolated to recombinant monoclonal antibodies, and offers an alternative for protein A purification and detection. PMID:26683650

  7. Structural Characterization of a Therapeutic Anti-Methamphetamine Antibody Fragment: Oligomerization and Binding of Active Metabolites

    PubMed Central

    Gokulan, Kuppan; Varughese, Kottayil I.

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338

  8. Nebulized anti-IL-13 monoclonal antibody Fab' fragment reduces allergen-induced asthma.

    PubMed

    Hacha, Jonathan; Tomlinson, Kate; Maertens, Ludovic; Paulissen, Geneviève; Rocks, Natacha; Foidart, Jean-Michel; Noel, Agnès; Palframan, Roger; Gueders, Maud; Cataldo, Didier D

    2012-11-01

    IL-13 is a prototypic T helper type 2 cytokine and a central mediator of the complex cascade of events leading to asthmatic phenotype. Indeed, IL-13 plays key roles in IgE synthesis, bronchial hyperresponsiveness, mucus hypersecretion, subepithelial fibrosis, and eosinophil infiltration. We assessed the potential efficacy of inhaled anti-IL-13 monoclonal antibody Fab' fragment on allergen-induced airway inflammation, hyperresponsiveness, and remodeling in an experimental model of allergic asthma. Anti-IL-13 Fab' was administered to mice as a liquid aerosol generated by inExpose inhalation system in a tower allowing a nose-only exposure. BALB/c mice were treated by PBS, anti-IL-13 Fab', or A33 Fab' fragment and subjected to ovalbumin exposure for 1 and 5 weeks (short-term and long-term protocols). Our data demonstrate a significant antiasthma effect after nebulization of anti-IL-13 Fab' in a model of asthma driven by allergen exposure as compared with saline and nonimmune Fab fragments. In short- and long-term protocols, administration of the anti-IL-13 Fab' by inhalation significantly decreased bronchial responsiveness to methacholine, bronchoalveolar lavage fluid eosinophilia, inflammatory cell infiltration in lung tissue, and many features of airway remodeling. Levels of proinflammatory mediators and matrix metalloprotease were significantly lower in lung parenchyma of mice treated with anti-IL-13 Fab'. These data demonstrate that an inhaled anti-IL-13 Fab' significantly reduces airway inflammation, hyperresponsiveness, and remodeling. Specific neutralization of IL-13 in the lungs using an inhaled anti-IL-13 Fab' could represent a novel and effective therapy for the treatment of asthma. PMID:22904197

  9. In situ magnetic separation of antibody fragments from Escherichia coli in complex media

    PubMed Central

    2013-01-01

    Background In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies (“D1.3”) produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. Results Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. Conclusions We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield

  10. [One amino acid mutation in an anti-CD20 antibody fragment that affects the yield bacterial secretion and the affinity].

    PubMed

    Liu, Yin-Xing; Xiong, Dong-Sheng; Fan, Dong-Mei; Shao, Xiao-Feng; Xu, Yuan-Fu; Zhu, Zhen-Ping; Yang, Chun-Zheng

    2003-05-01

    Monoclonal antibodies (mAb) directed against CD20, either unmodified or in radiolabeled forms, have been successfully exploited in clinic as effective therapeutic agents in the management of non-Hodgkin's B-cell lymphoma. The antibody fragment is a potential agent in image and therapy of tumor. To further improve the soluble expression of anti-CD20 antibody Fab' fragment, PCR was used to mutate the anti-CD20 VL and VH genes and its biological activity was identified. The expression vector of chimeric antibody Fab' was constructed and expressed in E. coli. The data of mutant clone DNA sequence showed that the amino acid of light chain gene of the parent anti-CD20 antibody (H47) was successful mutated as Ser (GAG)-Asn (CAG). The soluble expression of mutated anti-CD20 Fab' (CD20-7) was 3.8 mg/g dry cell weight, while the parent (CD20-2) was 1.3 mg/g dry cell weight. The affinity constant Ka of CD20-7 was 2.2 x 10(9) L/mol. The primary results of competitive assays by FACS showed that CD20-7 could partially block the sites through which parent antibody (HI47) bind to Raji cells. There was difference in the Raji cells (CD20+)-binding activity between the mutant CD20-7 and parent CD20-2. The site mutation of anti-CD20 Fab' gene make it possible that the anti-CD20 antibody fragment was succeeded to obtain higher expression. In this thesis, we succeeded in completing mutation and expression of anti-CD20 Fab' genes, distinguishing its biological activity, and obtaining its highly expression. These period results will lay a foundation for development of other kind of anti-CD20 engineering antibody (for instance: Fab' Diabody and miniantibody), and make it possible for anti-CD20 antibody to be applied to tumor therapy in civil in the future. PMID:15969005

  11. Quantitation of imaging with I-131-F(ab')/sub 2/ fragments of monoclonal antibody in patients

    SciTech Connect

    Moldofsky, P.J.; Hammond, N.D.; Mulhern, C.B. Jr.

    1984-01-01

    Iodine-131 labeled F(ab')/sub 2/ fragments of monoclonal antibody (IgG/sub 2a/ immunoglobulin with specificity for a cell surface antigen of colon carcinoma) have been used for quantitative imaging of tumor in 27 patients. Activity of I-131 F(ab')/sub 2/ fragments localized in tumor and in liver was quantitated using a modification of the method of Thomas SR, employing computer-acquired conjugate views (i.e. 180 opposed) to eliminate need for tumor or organ depth and tissue attenuation. The method was validated with an abdominal imaging phantom showing accuracy of +/- 10%. Quantitation indicates that activity reaches a peak in tumor at 48-72 hours and the ratio of activity in hepatic metastases to activity in liver peaks at approximately 72 hours. Mean activity in tumor was less than 0.01% of the administered dose per gram of tumor at any imaging time from 24 to 168 hours, while mean activity in surrounding liver was less than .002% of administered dose per gram of liver at any imaging time. Liver activity decreased monotonically with time, showing no peak activity. This non-invasive method of quantitating the distribution of F(ab')/sub 2/ fragments of monoclonal antibody in patients has proven accurate by comparison with phantom simulation. This type of quantitation is necessary for evaluating optimal imaging time, comparing relative utility of various antibodies and has use for therapeutic applications of monoclonal antibody fragments.

  12. Development of single chain variable fragment (scFv) antibodies against surface proteins of ‘Ca. Liberibacter asiaticus’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ca. Liberibacter asiaticus’ is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vec...

  13. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements.

    PubMed

    Crivianu-Gaita, Victor; Thompson, Michael

    2016-11-15

    The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability). PMID:27155114

  14. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis.

    PubMed Central

    Fick, R B; Naegel, G P; Squier, S U; Wood, R E; Gee, J B; Reynolds, H Y

    1984-01-01

    In the disease cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a common clinical complication that determines most morbidity and almost all excess mortality. We postulated that in this disease a defect in Pseudomonas-reactive IgG antibodies may contribute to chronic Pseudomonas infections. Bronchoalveolar lavages were performed upon 13 patients with CF, 7 patients with chronic bronchitis characterized by recurrent Pseudomonas infections, and 4 normal volunteers. The levels of various proteins important to host defenses and proteases were determined; enzyme inhibition studies were performed. CF respiratory immunoglobulin levels were significantly elevated when compared with both normals and patients with chronic bronchitis (P less than 0.05). Albumin and transferrin levels were decreased in the CF lung fluids. CF elastolytic activity was strikingly elevated (means = 6.02 micrograms/mg total protein) and the inhibitory profile suggested such activity resembled a serine-proteinase. Alpha-1-antitrypsin antigenic levels were not altered in CF respiratory fluids. There was a tendency for the lavage IgG to fall as elastase levels rose (r = -0.29). IgG opsonins for two Pseudomonas immunotypes were isolated with affinity chromatography for functional and immunochemical studies. Bacterial phagocytic rates in the presence of these Pseudomonas-reactive IgG opsonins derived from CF lavage fluid were depressed (0.3% uptake/unit time) when compared with similarly titered positive controls (uptake = 1.3%/unit time, P less than 0.001). Additionally, normal pulmonary macrophage intracellular killing of Pseudomonas was severely altered in the presence of opsonins derived from CF respiratory fluids. At some time points, less than 30% of the bacteria were killed. CF IgG opsonins contain a cleavage fragment (100,000 D, 5S sedimentation coefficient) with antigenic determinants similar to the Fab portion of IgG. The presence of such a fragment was inversely

  15. Use of 18F-2-Fluorodeoxyglucose to Label Antibody Fragments for Immuno-Positron Emission Tomography of Pancreatic Cancer

    PubMed Central

    2015-01-01

    We generated 18F-labeled antibody fragments for positron emission tomography (PET) imaging using a sortase-mediated reaction to install a trans-cyclooctene-functionalized short peptide onto proteins of interest, followed by reaction with a tetrazine-labeled-18F-2-deoxyfluoroglucose (FDG). The method is rapid, robust, and site-specific (radiochemical yields > 25%, not decay corrected). The availability of 18F-2-deoxyfluoroglucose avoids the need for more complicated chemistries used to generate carbon–fluorine bonds. We demonstrate the utility of the method by detecting heterotopic pancreatic tumors in mice by PET, using anti-Class II MHC single domain antibodies. We correlate macroscopic PET images with microscopic two-photon visualization of the tumor. Our approach provides easy access to 18F-labeled antibodies and their fragments at a level of molecular specificity that complements conventional 18F-FDG imaging. PMID:26955657

  16. Purification of antibody and antibody-fragment from E. coli homogenate using 6,9-diamino-2-ethoxyacridine lactate as precipitation agent.

    PubMed

    Persson, Josefine; Lester, Philip

    2004-08-01

    To obtain a more efficient purification process for antibody fragments from an Escherichia coli homogenate, the precipitant, Ethodin (6,9-diamino-2-ethoxyacridine lactate) was introduced to the homogenate. By adding the precipitant a drastic reduction of host cell protein was obtained. The majority of the proteins were recovered in a precipitate with the cell debris, while the antibody or antibody-fragment was recovered in the clarified supernatant. In addition, DNA was also efficiently precipitated when using Ethodin as a precipitation agent. The improved purity of the clarified extract obtained by using the precipitant allows for the use of smaller chromatography columns and may reduce the number of chromatographic steps required in the recovery process. The effect of Ethodin concentration, pH, temperature, and conductivity were investigated. The investigation was performed on two different antibody-fragments, e.g., F(ab')(2) molecules and a full-length antibody produced in E. coli. The two F(ab')(2) proteins were F(ab')(2)A and F(ab')(2)B, which have a similar molecular mass (100 kDa) but different isoelectric points (pIs), i.e., 8.9 and 7.5, respectively. The full-length antibody, Ab (the full IgG form of F(ab')(2)B) has a pI of 7.8 and molecular mass of 150 kDa. The investigation showed that the highest purification factors were obtained at neutral pH, low conductivity, and Ethodin concentrations of 0.6%. PMID:15281116

  17. Characterization of Poliovirus Neutralization Escape Mutants of Single-Domain Antibody Fragments (VHHs)

    PubMed Central

    Schotte, Lise; Thys, Bert; Strauss, Mike; Filman, David J.; Rombaut, Bart

    2015-01-01

    To complete the eradication of poliovirus and to protect unvaccinated people subsequently, the development of one or more antiviral drugs will be necessary. A set of five single-domain antibody fragments (variable parts of the heavy chain of a heavy-chain antibody [VHHs]) with an in vitro neutralizing activity against poliovirus type 1 was developed previously (B. Thys, L. Schotte, S. Muyldermans, U. Wernery, G. Hassanzadeh-Ghassabeh, and B. Rombaut, Antiviral Res 87:257–264, 2010, http://dx.doi.org/10.1016/j.antiviral.2010.05.012), and their mechanisms of action have been studied (L. Schotte, M. Strauss, B. Thys, H. Halewyck, D. J. Filman, M. Bostina, J. M. Hogle, and B. Rombaut, J Virol 88:4403–4413, 2014, http://dx.doi.org/10.1128/JVI.03402-13). In this study, neutralization escape mutants were selected for each VHH. Sequencing of the P1 region of the genome showed that amino acid substitutions are found in the four viral proteins of the capsid and that they are located both in proximity to the binding sites of the VHHs and in regions further away from the canyon and hidden beneath the surface. Characterization of the mutants demonstrated that they have single-cycle replication kinetics that are similar to those of their parental strain and that they are all drug (VHH) independent. Their resistant phenotypes are stable, as they do not regain full susceptibility to the VHH after passage over HeLa cells in the absence of VHH. They are all at least as stable as the parental strain against heat inactivation at 44°C, and three of them are even significantly (P < 0.05) more resistant to heat inactivation. The resistant variants all still can be neutralized by at least two other VHHs and retain full susceptibility to pirodavir and 35-1F4. PMID:26014941

  18. Novel human single chain antibody fragments that are rapidly interalizing effectively target epithelioid and sarcomatoid mesotheliomas

    PubMed Central

    Iyer, Arun K.; Lan, Xiaoli; Zhu, Xiaodong; Su, Yang; Feng, Jinjin; Zhang, Xiaoju; Gao, Dongwei; Seo, Youngho; VanBrocklin, Henry F.; Broaddus, V. Courtney; Liu, Bin; He, Jiang

    2011-01-01

    Human antibodies targeting all subtypes of mesothelioma could be useful to image and treat this deadly disease. Here we report tumor targeting of a novel internalizing human single chain antibody fragment (scFv) labeled with 99mTc (99mTc-M40) in murine models of mesothelioma of both epithelioid (M28) and sarcomatoid (VAMT-1) origins. 99mTc-M40 was taken up rapidly and specifically by both subtype tumor cells in vitro, with 68–92% internalized within 1h. The specificity of binding was evidenced by blocking (up to 95%) with 10-fold excess of unlabeled M40. In animal studies, tumors of both subtypes were clearly visualized by SPECT/CT as early as 1h post-injection of 99mTc-M40. Tumor uptake measured as percent of injected dose per gram tissue (%ID/g) at 3h was 4.38 and 5.84 for M28 and VAMT-1 tumors respectively, significantly greater than all organs or tissues studied (liver, 2.62%ID/g; other organs or tissues <1.7%ID/g), except the kidneys (130.7%ID/g), giving tumor-to-blood ratios of 5:1 and 7:1 and tumor-to-muscle ratios of 45:1 and 60:1, for M28 and VAMT-1 respectively. The target-mediated uptake was confirmed by a nearly 70% reduction in tumor activity following administration of 10-fold excess of unlabeled scFv. Taken together, these results indicate that M40 can rapidly and specifically target epithelioid and sarcomatoid tumor cells, demonstrating the potential of this agent as a versatile targeting ligand for imaging and therapy of all subtypes of mesothelioma. PMID:21447742

  19. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    PubMed Central

    2012-01-01

    Background Secretory signal peptides (SPs) are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1) of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s). The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA). Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient expression-secretion of sc

  20. Isolation of soluble scFv antibody fragments specific for small biomarker molecule, L-Carnitine, using phage display.

    PubMed

    Abou El-Magd, Rabab M; Vozza, Nicolas F; Tuszynski, Jack A; Wishart, David S

    2016-01-01

    Isolation of single chain antibody fragment (scFv) clones from naïve Tomlinson I+J phage display libraries that specifically bind a small biomarker molecule, L-Carnitine, was performed using iterative affinity selection procedures. L-Carnitine has been described as a conditionally essential nutrient for humans. Abnormally high concentrations of L-Carnitine in urine are related to many health disorders including diabetes mellitus type 2 and lung cancer. ELISA-based affinity characterization results indicate that selectants preferentially bind to L-Carnitine in the presence of key bioselecting component materials and closely related L-Carnitine derivatives. In addition, the affinity results were confirmed using biophysical fluorescence quenching for tyrosine residues in the V segment. Small-scale production of the soluble fragment yielded 1.3mg/L using immunopure-immobilized protein A affinity column. Circular Dichroism data revealed that the antibody fragment (Ab) represents a folded protein that mainly consists of β-sheets. These novel antibody fragments may find utility as molecular affinity interface receptors in various electrochemical biosensor platforms to provide specific L-Carnitine binding capability with potential applications in metabolomic devices for companion diagnostics and personalized medicine applications. It may also be used in any other biomedical application where detection of the L-Carnitine level is important. PMID:26608419

  1. A new type of pseudothrombocytopenia: EDTA-mediated agglutination of platelets bearing Fab fragments of a chimaeric antibody.

    PubMed

    Christopoulos, C G; Machin, S J

    1994-07-01

    In vitro agglutination of platelets leading to low automated platelet counts was observed in EDTA-anticoagulated blood from human volunteers receiving infusions of Fab fragments of a chimaeric monoclonal antibody to platelet glycoprotein IIb-IIIa. This pseudothrombocytopenia depended on the presence of chimaeric Fab on the platelet surface and was not seen when sodium citrate was used as anticoagulent. Preliminary evidence suggests that this phenomenon might be mediated by immunoglobulin G reactive with the human component of the chimaeric Fab. It is important to exclude pseudothrombocytopenia when low automated platelet counts are reported in association with the administration of chimaeric anti-platelet antibodies. PMID:7993813

  2. Demonstration of anti-idiotypic antibodies directed against IgM rheumatoid factor in the serum of rheumatoid arthritis patients.

    PubMed Central

    Hancock, W K; Barnett, E V

    1989-01-01

    We have identified the presence of anti-idiotypic activity against IgMRF in the sera of RA patients. Only patients seropositive for IgMRF had significant levels of anti-idiotypic activity, while seronegative patients and normal volunteers did not. When this anti-idiotypic activity was affinity-purified from a single RA patient, two separate binding activities were identified. IgG antibodies were pepsin-digested to F(ab')2 fragments before affinity-purification to remove the Fc portion capable of binding to IgMRF. Anti-idiotypic F(ab')2 fragments of IgG were eluted from an IgMRF-Sepharose 4B column. These F(ab')2 bound preferentially to IgMRF bearing an idiotype recognized by the anti-idiotypic murine monoclonal 17.109. A second anti-idiotypic F(ab')2 was affinity purified using rabbit anti-human Fc antibody bound to Sepharose 4B. These eluted antibodies behaved as the internal image of IgG, binding five out of seven IgMRF's tested. The binding of both anti-idiotypic F(ab')2 was inhibited with human IgG. The presence of both IgMRF and anti-idiotypic antibodies directed against it in the sera of RA patients suggests that anti-idiotypic antibodies alone are not capable of inhibiting the production of rheumatoid factor. PMID:2702773

  3. Injectable formulations for an intravitreal sustained-release application of a novel single-chain VEGF antibody fragment.

    PubMed

    Asmus, Lutz R; Grimshaw, John P A; Richle, Philipp; Eicher, Barbara; Urech, David M; Gurny, Robert; Möller, Michael

    2015-09-01

    Sustained-release formulations of a single-chain anti-VEGF-A antibody fragment were investigated in vitro toward their potential use for intravitreal applications. The hydrophobic polyester hexylsubstituted poly(lactic acid) (hexPLA) was selected as the sustained-release excipient for its biodegradability and semi-solid aggregate state, allowing an easy and mild formulation procedure. The lyophilized antibody fragment ESBA903 was micronized and incorporated into the liquid polymer matrix by cryo-milling, forming homogeneous and injectable suspensions. The protein showed excellent compatibility with the hexPLA polymer and storage stability at 4°C for 10 weeks. Additionally, hexPLA shielded the incorporated active substance from the surrounding medium, resulting in a better stability of ESBA903 inside the polymer than after its release in the buffer solution. Formulations of ESBA903 with hexPLA having drug loadings between 1.25% and 5.0% and polymer molecular weights of 1500 g/mol, 2500 g/mol, 3500 g/mol and 5000 g/mol were investigated regarding their in vitro release. All formulations except with the highest molecular weight formed spherical depots in aqueous buffer solutions and released the antibody fragment for at least 6-14 weeks. The polymer viscosity derived from the molecular weight strongly influenced the release rate, while the drug loading had minor influence, allowing customization of the release profile and the daily drug release. Size exclusion chromatography and SDS-PAGE revealed that the antibody fragment structure was kept intact during incorporation and release from the liquid matrix. Furthermore, the released protein monomer maintained its high affinity to human VEGF-A, as measured by surface plasmon resonance analysis. Formulations of ESBA903 in hexPLA meet the basic needs to be used for intravitreal sustained-release applications in age-related macular degeneration treatment. PMID:25779352

  4. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications.

    PubMed

    Foerster, A; Hołowacz, I; Sunil Kumar, G B; Anandakumar, S; Wall, J G; Wawrzyńska, M; Paprocka, M; Kantor, A; Kraskiewicz, H; Olsztyńska-Janus, S; Hinder, S J; Bialy, D; Podbielska, H; Kopaczyńska, M

    2016-04-01

    Stainless steel 316 L material is commonly used for the production of coronary and peripheral vessel stents. Effective biofunctionalization is a key to improving the performance and safety of the stents after implantation. This paper reports the method for the immobilization of recombinant antibody fragments (scFv) on stainless steel 316 L to facilitate human endothelial progenitor cell (EPC) growth and thus improve cell viability of the implanted stents for cardiovascular applications. The modification of stent surface was conducted in three steps. First the stent surface was coated with titania based coating to increase the density of hydroxyl groups for successful silanization. Then silanization with 3 aminopropyltriethoxysilane (APTS) was performed to provide the surface with amine groups which presence was verified using FTIR, XPS, and fluorescence microscopy. The maximum density of amine groups (4.8*10(-5) mol/cm(2)) on the surface was reached after reaction taking place in ethanol for 1 h at 60 °C and 0.04M APTS. On such prepared surface the glycosylated scFv were subsequently successfully immobilized. The influence of oxidation of scFv glycan moieties and the temperature on scFv coating were investigated. The fluorescence and confocal microscopy study indicated that the densest and most uniformly coated surface with scFv was obtained at 37 °C after oxidation of glycan chain. The results demonstrate that the scFv cannot be efficiently immobilized without prior aminosilanization of the surface. The effect of the chemical modification on the cell viability of EPC line 55.1 (HucPEC-55.1) was performed indicating that the modifications to the 316 L stainless steel are non-toxic to EPCs. PMID:26566715

  5. A synthetic antibody fragment targeting nicastrin affects assembly and trafficking of γ-secretase.

    PubMed

    Zhang, Xulun; Hoey, Robert; Koide, Akiko; Dolios, Georgia; Paduch, Marcin; Nguyen, Phuong; Wu, Xianzhong; Li, Yueming; Wagner, Steven L; Wang, Rong; Koide, Shohei; Sisodia, Sangram S

    2014-12-12

    The γ-secretase complex, composed of presenilin, nicastrin (NCT), anterior pharynx-defective 1 (APH-1), and presenilin enhancer 2 (PEN-2), is assembled in a highly regulated manner and catalyzes the intramembranous proteolysis of many type I membrane proteins, including Notch and amyloid precursor protein. The Notch family of receptors plays important roles in cell fate specification during development and in adult tissues, and aberrant hyperactive Notch signaling causes some forms of cancer. γ-Secretase-mediated processing of Notch at the cell surface results in the generation of the Notch intracellular domain, which associates with several transcriptional coactivators involved in nuclear signaling events. On the other hand, γ-secretase-mediated processing of amyloid precursor protein leads to the production of amyloid β (Aβ) peptides that play an important role in the pathogenesis of Alzheimer disease. We used a phage display approach to identify synthetic antibodies that specifically target NCT and expressed them in the single-chain variable fragment (scFv) format in mammalian cells. We show that expression of a NCT-specific scFv clone, G9, in HEK293 cells decreased the production of the Notch intracellular domain but not the production of amyloid β peptides that occurs in endosomal and recycling compartments. Biochemical studies revealed that scFvG9 impairs the maturation of NCT by associating with immature forms of NCT and, consequently, prevents its association with the other components of the γ-secretase complex, leading to degradation of these molecules. The reduced cell surface levels of mature γ-secretase complexes, in turn, compromise the intramembranous processing of Notch. PMID:25352592

  6. Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity

    PubMed Central

    Pelat, Thibaut; Hust, Michael; Hale, Martha; Lefranc, Marie-Paule; Dübel, Stefan; Thullier, Philippe

    2009-01-01

    Background Ricin is a lethal toxin that inhibits protein synthesis. It is easily extracted from a ubiquitously grown plant, Ricinus communis, and thus readily available for use as a bioweapon (BW). Anti-ricin antibodies provide the only known therapeutic against ricin intoxication. Results In this study, after immunizing a non-human primate (Macaca fascicularis) with the ricin chain A (RTA), a phage-displayed immune library was built (2 × 108 clones), that included the λ light chain fragment. The library was screened against ricin, and specific binders were sequenced and further analyzed. The best clone, 43RCA, was isolated using a new, stringent neutralization test. 43RCA had a high, picomolar affinity (41 pM) and neutralized ricin efficiently (IC50 = 23 ± 3 ng/ml, corresponding to a [scFv]/[ricin] molar ratio of 4). The neutralization capacity of 43RCA compared favourably with that of polyclonal anti-deglycosylated A chain (anti-dgRCA) IgGs, obtained from hyperimmune mouse serum, which were more efficient than any monoclonal at our disposal. The 43RCA sequence is very similar to that for human IgG germline genes, with 162 of 180 identical amino acids for the VH and VL (90% sequence identity). Conclusion Results of the characterization studies, and the high degree of identity with human germline genes, altogether make this anti-ricin scFv, or an IgG derived from it, a likely candidate for use in humans to minimize effects caused by ricin intoxication. PMID:19563687

  7. Cell-free production of Gaussia princeps luciferase – antibody fragment bioconjugates for ex vivo detection of tumor cells

    PubMed Central

    Patel, Kedar G.; Ng, Patrick P.; Kuo, Chiung-Chi; Levy, Shoshana; Levy, Ronald; Swartz, James R.

    2016-01-01

    Antibody fragments (scFvs) fused to luciferase reporter proteins have been used as highly sensitive optical imaging probes. Gaussia princeps luciferase (GLuc) is an attractive choice for a reporter protein because it is small and bright and does not require ATP to stimulate bioluminescence-producing reactions. Both GLuc and scFv proteins contain multiple disulfide bonds, and consequently the production of active and properly folded GLuc–scFv fusions is challenging. We therefore produced both proteins individually in active form, followed by covalent coupling to produce the intended conjugate. We used an Escherichia coli-based cell-free protein synthesis (CFPS) platform to produce GLuc and scFv proteins containing non-natural amino acids (nnAAs) for subsequent conjugation by azide–alkyne click chemistry. GLuc mutants with exposed alkyne reactive groups were produced by global replacement of methionine residues in CFPS. Antibody fragment scFvs contained a single exposed azide group using a scheme for site-specific incorporation of tyrosine analogs. Incorporation of tyrosine analogs at specific sites in proteins was performed using an engineered orthogonal tRNA–tRNA synthetase pair from an archaebacterium. The unique azide and alkyne side chains in GLuc and the antibody fragment scFv facilitated conjugation by click chemistry. GLuc–scFv conjugates were shown to differentiate between cells expressing a surface target of the scFv and cells that did not carry this marker. PMID:19852937

  8. Astatine-211 labeling of an anti-melanoma antibody and its Fab fragment using N-succinimidyl para[{sup 211} At]astatobenzoate : comparisons In Vivo with the para-[{sup 125}1]iodobenzoyl conjugate.

    SciTech Connect

    Hadley, S. W.; Wilbur, D. S.; Gray, M. A.; Atcher, R. W.; Chemistry; NeoRx Corp.; Univ. of Washington Medical Center

    1991-01-01

    Astatine-211 labeling of an anti-melanoma antibody, NR-ML-05, and its Fab fragment using N-succinimidyl para[{sup 211} At]astatobenzoate has been described. Preparation of the astatinated intermediate 2a was accomplished by distilling astatine-211 from an irradiated bismuth target directly into a reaction mixture containing an organometallic compound, N-succinimidyl p-(tri-n-butylstannyl)benzoate (1), and an oxidant, N-chlorosuccinimide, in 5% HOAc/MeOH. Trapping of distilled astatine as 2a was found to be efficient, resulting in 70-90% yields based on the amount of astatine-211 which ranged from 20% to 75%. Conjugation of 2a to NR-ML-05 and its Fab fragment was accomplished in 40-60% yields. The [{sup 211}At]astatobenzoyl-conjugated antibodies were found to be stable in vitro when challenged by strong denaturants and nucleophilic reagents. Coinjected dual-labeled studies of the 2a astatinated antibodies and the same antibodies labeled with N-succinimidyl p-[{sup 125}I]iodobenzoate (2b) in athymic mice bearing the human tumor xenograft A375 Met/Mix demonstrated that both radiolabeled antibodies had equivalent tumor localization. Data from the dual-labeled biodistribution of the intact antibody suggests that the astatine is stably attached. Data from the dual-labeled Fab fragment suggests that a portion of the astatine label is released as astatide, either from the astatinated Fab or from a catabolite.

  9. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab′)2 fragment prolong survival of mice infected with Mycobacterium tuberculosis

    PubMed Central

    HAMASUR, B; HAILE, M; PAWLOWSKI, A; SCHRÖDER, U; KÄLLENIUS, G; SVENSON, S B

    2004-01-01

    Lipoarabinomannan (LAM) is a major structural carbohydrate antigen of the outer surface of Mycobacterium tuberculosis. High antibody titres against LAM are often seen in active tuberculosis (TB). The role of such LAM-specific antibodies in the immune response against TB is unknown. Here we have investigated a monoclonal antibody (MoAb) SMITB14 of IgG1 subclass and its corresponding F(ab′)2 fragment directed against LAM from M. tuberculosis strain H37Rv. MoAb SMITB14 was shown by immunofluorescence to bind to whole cells of the clinical isolate M. tuberculosis strain Harlingen as well as to M. tuberculosis H37Rv. The binding of MoAb SMITB14 to LAM was inhibited by arabinomannan (AM) and oligosaccharides (5·2 kDa) derived from LAM, showing that the MoAb binds specifically to the AM carbohydrate portion of LAM. In passive protection experiments BALB/c mice were infected intravenously with M. tuberculosis Harlingen. MoAb SMITB14 was added intravenously either prior to, or together with, the bacteria. The antibody proved to be protective against the M. tuberculosis infection in terms of a dose-dependent reduction in bacterial load in spleens and lungs, reduced weight loss and, most importantly, increased long-term survival. PMID:15373902

  10. Production and characterization of a biotinylated single-chain variable fragment antibody for detection of parathion-methyl.

    PubMed

    Wang, Huimin; Zhao, Fengchun; Han, Xiao; Yang, Zhengyou

    2016-10-01

    In this article, we reported the development of a biotinylated single-chain variable fragment (scFv) antibody based indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) for parathion-methyl (PM) detection. Firstly, a phage display library was generated using a pre-immunized BALB/C mouse against a specific hapten of PM. After four rounds of panning, the scFv gene fragments were transferred into a secreted expression vector. Then, the scFv antibodies were secreted expressed and screened by IC-ELISA against PM. The selected scFv antibody was fused with a biotin acceptor domain (BAD) and inserted into pET-28a(+) vector for high-level expression in Escherichia coli BL2 (DE3). After optimizing expression conditions, the scFv-BAD antibody was expressed as a soluble protein and biotinylated in vitro by the E. coli biotin ligase (BirA). Subsequently, the biotinylated scFv-BAD antibody was purified with a high yield of 59.2 ± 3.7 mg/L of culture, and was characterized by SDS-PAGE and western blotting. Finally, based on the biotinylated scFv-BAD, a sensitive IC-ELISA for detection of PM was developed, and the 50% inhibition value (IC50) of PM was determined as 14.5 ng/mL, with a limit of detection (LOD, IC10) of 0.9 ng/mL. Cross-reactivity (CR) studies revealed that the scFv antibody showed desirable specificity for PM. PMID:27181246

  11. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    PubMed Central

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Hervé, Cécile; Knox, J. Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  12. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    PubMed

    Torode, Thomas A; Marcus, Susan E; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S; Hervé, Cécile; Knox, J Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  13. Anti-MET immunoPET for non-small cell lung cancer using novel fully human antibody fragments

    PubMed Central

    Li, Keyu; Tavaré, Richard; Zettlitz, Kirstin A.; Mumenthaler, Shannon M.; Mallick, Parag; Zhou, Yu; Marks, James D.; Wu, Anna M.

    2014-01-01

    MET, the receptor of hepatocyte growth factor, plays important roles in tumorigenesis and drug resistance in numerous cancers including non-small cell lung cancer. As increasing numbers of MET inhibitors are being developed for clinical applications, antibody fragment based immuno-positron emission tomography (immunoPET) has the potential to rapidly quantify in vivo MET expression levels for drug response evaluation and patient stratification for these targeted therapies. Here, fully human single-chain variable fragments (scFvs) isolated from a phage display library were re-formatted into bivalent cys-diabodies (scFv-cys dimers) with affinities to MET ranging from 0.7 nM to 5.1 nM. The candidate with the highest affinity, H2, was radiolabeled with 89Zr for immunoPET studies targeting non-small cell lung cancer xenografts: low MET expressing Hcc827 and the gefitinib-resistant Hcc827-GR6 with 4-fold MET over-expression. ImmunoPET at as early as 4 hours post injection produced high contrast images, and ex vivo biodistribution analysis at 20 hours post injection showed about 2-fold difference in tracer uptake levels between the parental and resistant tumors (p < 0.01). Further immunoPET studies using a larger fragment, the H2 minibody (scFv-CH3 dimer) produced similar results at later time points. Two of the antibody clones (H2 and H5) showed in vitro growth inhibitory effects on MET-dependent gefitinib-resistant cell lines, while no effects were observed on resistant lines lacking MET activation. In conclusion, these fully human antibody fragments inhibit MET-dependent cancer cells and enable rapid immunoPET imaging to assess MET expression levels, showing potential for both therapeutic and diagnostic applications. PMID:25143449

  14. Neonatal Immunization with Respiratory Syncytial Virus Glycoprotein Fragment Induces Protective Immunity in the Presence of Maternal Antibodies in Mice

    PubMed Central

    Noh, Youran; Shim, Byoung-Shik; Cheon, In Su; Rho, Semi; Kim, Hee Joo; Choi, Youngjoo; Kang, Chang-Yuil; Chang, Jun

    2013-01-01

    Abstract Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants and the elderly worldwide. The significant morbidity and mortality associated with this infection underscores the urgent need for development of RSV vaccine. In this study, we first show that intranasal administration of RSV glycoprotein core fragment (Gcf) to neonatal mice can induce systemic humoral immune responses and protective immunity against RSV without causing lung eosinophilia, although antibody response was shifted to a Th2 response. Next, we examined whether the presence of maternal anti-RSV antibodies would affect the responsiveness and protection efficacy of Gcf in newborn mice, since infants can possess RSV-specific maternal antibodies due to frequent RSV re-infections to adults. Intranasal administration of Gcf induced antibody response and increased IFNγ secretion and protected mice against RSV challenge without severe lung eosinophilia, even in the presence of high levels of RSV-specific maternal antibodies. Thus, our findings suggest that Gcf may be an effective and safe RSV vaccine during the neonatal period. PMID:23869549

  15. Single chain antibody fragment with serine protease inhibitory property capable of neutralizing toxicity of Trimeresurus mucrosquamatus venom.

    PubMed

    Lee, Yu-Ching; Chen, Wang-Chuan; Liang, Meng-Huei; Lee, Chi-Hsin; Tsai, Keng-Chang; Chiang, Jen-Ron; Chiang, Liao-Chun; Chen, Chi-Ching; Chang, Chang-Yu; Lee, Ching-Hsiao; Leu, Sy-Jye; Yang, Yi-Yuan

    2015-05-01

    Trimeresurus mucrosquamatus (TM) is one of majorities of snake envenomation with necrotic and hemorrhagic toxin in Taiwan. In this study, chickens were used as an alternative animal model for immunization with TM venom. Using phage display technology to process four rounds of panning, selected single chain variable fragments (scFv) could specifically recognize TM venom proteins, which were later identified as a group of homogeneous venom serine protease. The specific scFv antibodies showed various inhibitory effects on sheep RBC lysis induced by TM venom using an indirect hemolytic assay in vitro. In addition, the survival times of mice were extended to certain degrees when treated with these scFv antibodies individually or in a combination. To elucidate the inhibitory mechanism, we used molecular modeling to build up the serine protease structure to simulate the possible interactions with scFv antibodies. The results suggested that the CDR-loop of the scFv antibodies (3S10 or 4S1) might bind at the 99-loop of venom serine protease so as to affect substrate access due to the partial collapse of the subsite S2 and the partial movement of the subsite S4. It is hoped these chicken-derived antibodies could be applied to develop diagnostic and therapeutic agents against snakebites. PMID:25769957

  16. Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.

  17. In silico experiments of single-chain antibody fragment against drugs of abuse

    PubMed Central

    Hu, Guodong; Chen, L. Y.

    2010-01-01

    SUMMARY Three sets of in silico experiments have been conducted to elucidate the binding mechanics of two drugs, (+)-methamphetamine (METH) and amphetamine (AMP) to the single-chain variable fragment (scFv) recently engineered from anti-METH monoclonal antibody mAb6H4 (IgG, κ light chain, Kd = 11nM). The first set of in silico experiments are long time equilibration runs of scFv:drug complexes and of drug-free scFv both in solution. They demonstrate how the solution structures of scFv deviate from its crystallographic form with or without drug molecules bound to it. And they lead to the prediction that the Arrhenius activation barrier is nearly zero for transitions from the dissociated state to the bound state. The second set of in silico experiments are nonequilibrium dynamics of pulling the drug molecules out of the binding pocket of scFv and the equilibration runs for drugs to fall back into binding pocket. They demonstrate that extra water molecules (in addition to the two crystallographic waters) exist inside the binding pocket, underneath the drug molecules. These extra waters must have been evaporated from the binding pockets during the crystallization process of the in vitro experiments of structural determination. The third set of in silico experiments are nonequilibrium steered molecular dynamics simulations to determine the absolute binding free energies of METH and AMP to scFv. The center-of-mass of a drug molecule (METH or AMP) is steered (pulled) towards (forward) and away from (reverse) the binding site, sampling forward and reverse pulling paths. Mechanic work is measured along the pulling paths. The work measurements are averaged through the Brownian dynamics fluctuation dissipation theorem to produce the free-energy profiles of the scFv:drug complexes as a function of the drug-scFv separation. These experiments lead to the theoretical prediction of absolute binding energies of METH and AMP that are in agreement with the in vitro experimental

  18. Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes.

    PubMed

    Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø; de Souza, Gustavo A; Sollid, Ludvig M

    2016-01-01

    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306

  19. Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes

    PubMed Central

    Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø.; de Souza, Gustavo A.; Sollid, Ludvig M.

    2016-01-01

    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306

  20. Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation.

    PubMed

    Pfeffer, Martin; Maurer, Michael; Stadlmann, Johannes; Grass, Josephine; Delic, Marizela; Altmann, Friedrich; Mattanovich, Diethard

    2012-03-01

    Protein translation, translocation, folding, processing, and secretion in eukaryotic cells are complex and not always straightforward processes, e.g., different routes of secretion and degradation exist. Formation of malfolded proteins in the endoplasmic reticulum (ER) can be one of the major bottlenecks for recombinant protein production. In this regard, an in-depth analysis of the interactions of a secreted protein during its pathway through the cell may be beneficial, as realized in this study for the methylotrophic yeast Pichia pastoris. The antibody fragment Fab3H6 used here is the anti-idiotype to the HIV neutralizing antibody 2F5 and is known to be intracellularly degraded in significant amounts when expressed in P. pastoris. The interactome of Fab3H6 was analyzed by using a pull-down mass spectrometry approach, and 23 proteins were found to bind specifically to the antibody fragment. Those allowed concluding that Fab3H6 is post-translationally translocated into the ER and degraded via the proteasome as well as the vacuole. In line with this, the expression of Fab3H6 increased the proteasomal activities by over 20%. Partial inhibition of the proteasome resulted in a significant increase of extracellular Fab3H6. Thus, it seems that ER quality control overshoots its requirements for the recombinant protein expressed and that more than just terminally malfolded protein is degraded by ER-associated degradation. This work will further facilitate our understanding how recombinant proteins behave in the secretory pathway. PMID:22350260

  1. In Vitro Neutralisation of Rotavirus Infection by Two Broadly Specific Recombinant Monovalent Llama-Derived Antibody Fragments

    PubMed Central

    Aladin, Farah; Einerhand, Alexandra W. C.; Bouma, Janneke; Bezemer, Sandra; Hermans, Pim; Wolvers, Danielle; Bellamy, Kate; Frenken, Leon G. J.; Gray, Jim; Iturriza-Gómara, Miren

    2012-01-01

    Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains. PMID:22403728

  2. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  3. Development of single chain variable fragment (scFv) antibodies against surface proteins of 'Ca. Liberibacter asiaticus'.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Minenkova, Olga; Hartung, John

    2016-03-01

    'Candidatus Liberibacter asiaticus' is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vector, pKM19. The antibody population is enriched for antibodies that bind antigens of 'Ca. Liberibacter asiaticus'. The primary library has more than 10(7) unique antibodies and the genes that encode them. We have screened this library for antibodies that bind to specifically-chosen proteins that are present on the surface of 'Ca. Liberibacter asiaticus'. These proteins were used as targets for affinity-based selection of scFvs that bind to the major outer membrane protein, OmpA; the polysaccharide capsule protein KpsF; a protein component of the type IV pilus (CapF); and, two flagellar proteins FlhA and FlgI. These scFvs have been used in ELISA and dot blot assays against purified protein antigens and 'Ca. Liberibacter asiaticus' infected plant extracts. We have also recloned many of these scFvs into a plasmid expression vector designed for the production of scFvs. Screening of these scFvs was more efficient when phage-bound, rather than soluble scFvs, were used. We have demonstrated a technology to produce antibodies at will and against any protein target encoded by 'Ca. Liberibacter asiaticus'. Applications could include advanced diagnostic methods for huanglongbing and the development of immune labeling reagents for in planta applications. PMID:26744234

  4. Galactosylated streptavidin for improved clearance of biotinylated intact and F(ab')2 fragments of an anti-tumour antibody.

    PubMed Central

    Marshall, D.; Pedley, R. B.; Melton, R. G.; Boden, J. A.; Boden, R.; Begent, R. H.

    1995-01-01

    Persistence of high levels of radiolabelled antibody in the circulation is a major limitation of radioimmunotherapy. Biotinylation of the radiolabelled anti-tumour antibody followed by administration of streptavidin is known to give much improved tumour to blood ratios as the radioantibody is complexed and subsequently cleared via the reticuloendothelial system, although prolonged splenic uptake is a problem. We have investigated the effect on the clearance pattern and tumour localisation of a 125I-labelled biotinylated anti-CEA antibody (A5B7) after administration of a galactosylated form of streptavidin (gal-streptavidin) in nude mice bearing a human colon carcinoma xenograft. Fifteen minutes to 1 h after gal-streptavidin administration the complexes were cleared via the liver alone (as opposed to liver and spleen after native streptavidin). Twenty-four hours after administration of gal-streptavidin, the tumour to blood ratio for biotinylated A5B7 IgG increased from 2.9 to 13.2 and for biotinylated F(ab')2 fragments an increase from 4.9 to 33.2 was achieved. The reduction in tumour accumulation of F(ab')2 24 h after injection of the clearing agent was less than that seen with intact antibody. Injection of asialofetuin inhibited clearance, confirming that removal of the gal-streptavidin-biotinylated antibody complexes from the blood was via the asialoglycoprotein receptor on liver hepatocytes. Therefore, galactosylation of the streptavidin clearing agent allows rapid removal of radiolabelled biotinylated antibodies via the liver asialoglycoprotein receptor, as opposed to the reticuloendothelial system. Images Figure 5 Figure 6 Figure 7 PMID:7529526

  5. Expression of functional single-chain variable domain fragment antibody (scFv) against mycotoxin zearalenone in Pichia pastoris.

    PubMed

    Chang, Hyun-Joo; Choi, Sung-Wook; Chun, Hyang Sook

    2008-10-01

    A synthetic gene coding for single-chain variable domain fragment antibody against mycotoxin zearalenone (scFv-ZEN) has been designed, constructed and expressed in Pichia pastoris. The native scFv-ZEN sequence was optimized to Pichia preference codon usage. The expression level of codon-optimized scFv-ZEN was slightly higher than that of native scFv-ZEN, and its maximum yield reached 328 mg total protein/l in flask culture. The binding activities of two selected clones to ZEN using surface plasmon resonance analysis were comparable or better than that of monoclonal antibody. Our results demonstrate the potential of soluble scFv-ZEN for developing a rapid and affordable immunoassay for detection of ZEN in food and feedstuff. PMID:18575809

  6. Recombinant anti-CD20 antibody fragments for microPET imaging of B-cell lymphoma

    PubMed Central

    Olafsen, Tove; Betting, David; Kenanova, Vania E.; Salazar, Felix B.; Clarke, Pat; Said, Jonathan; Raubitschek, Andrew A.; Timmerman, John M.; Wu, Anna M.

    2010-01-01

    The CD20 cell surface antigen is expressed at high levels by over 90% of B cell non-Hodgkin lymphomas (NHL), and is the target of the anti-CD20 monoclonal antibody rituximab. To provide more sensitive, tumor-specific positron emission tomography (PET) imaging of NHL, we sought to develop PET imaging agents targeting CD20. Methods Two recombinant anti-CD20 rituximab fragments, a minibody (scFv-CH3 dimer, 80 kDa) and a modified scFv-Fc fragment (105 kDa), designed to clear rapidly, were generated. Both fragments were radiolabeled with 124I, and the minibody was additionally radiometal labeled with 64Cu following conjugation to 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (DOTA). The radioiodinated fragments and the radiometal labeled minibody were evaluated in mice as microPET imaging agents for in vivo imaging of human CD20-expressing lymphomas. Results Rapid and specific localization to CD20-positive tumors was observed with the radioiodinated fragments. However, their tumor uptakes and blood activities differed, resulting in different levels of contrast in the images. The best candidate was the minibody, with superior uptake (2-fold higher than the scFv-Fc) in CD20-positive tumor and low uptake in CD20-negative tumor. Positive tumor to negative tumor ratios were 7.0(±3.1) and 3.9(±0.7) for the minibody and scFv-Fc, respectively at 21 hours. About a 5-fold lower ratio was achieved with the 64Cu-DOTA-minibody at 19 hours due to higher residual background activity in CD20 negative tumor. Conclusion Radioiodinated minibody and scFv-Fc fragment produced excellent, high-contrast images in vivo. These new immunoPET agents may prove useful for the imaging CD20 positive lymphomas in preclinical models and in humans with NHL. PMID:19690034

  7. Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans.

    PubMed

    Greineder, Colin F; Hood, Elizabeth D; Yao, Anning; Khoshnejad, Makan; Brenner, Jake S; Johnston, Ian H; Poncz, Mortimer; Gottstein, Claudia; Muzykantov, Vladimir R

    2016-03-28

    Endothelial cells (EC) represent an important target for pharmacologic intervention, given their central role in a wide variety of human pathophysiologic processes. Studies in lab animal species have established that conjugation of drugs and carriers with antibodies directed to surface targets like the Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, a highly expressed endothelial transmembrane protein) help to achieve specific therapeutic interventions in ECs. To translate such "vascular immunotargeting" to clinical practice, it is necessary to replace antibodies by advanced ligands that are more amenable to use in humans. We report the molecular design of a single chain variable antibody fragment (scFv) that binds with high affinity to human PECAM-1 and cross-reacts with its counterpart in rats and other animal species, allowing parallel testing in vivo and in human endothelial cells in microfluidic model. Site-specific modification of the scFv allows conjugation of protein cargo and liposomes, enabling their endothelial targeting in these models. This study provides a template for molecular engineering of ligands, enabling studies of drug targeting in animal species and subsequent use in humans. PMID:26855052

  8. Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co-expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm.

    PubMed

    Levy, Raphael; Ahluwalia, Kiran; Bohmann, David J; Giang, Hoa M; Schwimmer, Lauren J; Issafras, Hassan; Reddy, Nithin B; Chan, Chung; Horwitz, Arnold H; Takeuchi, Toshihiko

    2013-08-30

    Improper protein folding or aggregation can frequently be responsible for low expression and poor functional activity of antibody fragments secreted into the Escherichia coli periplasm. Expression issues also can affect selection of antibody candidates from phage libraries, since antibody fragments displayed on phage also are secreted into the E. coli periplasm. To improve secretion of properly folded antibody fragments into the periplasm, we have developed a novel approach that involves co-expressing the antibody fragments with the peptidyl prolyl cis-trans isomerase, FkpA, lacking its signal sequence (cytFkpA) which consequently is expressed in the E. coli cytosol. Cytoplasmic expression of cytFkpA improved secretion of functional Fab fragments into the periplasm, exceeding even the benefits from co-expressing Fab fragments with native, FkpA localized in the periplasm. In addition, panning and subsequent screening of large Fab and scFv naïve phage libraries in the presence of cytFkpA significantly increased the number of unique clones selected, as well as their functional expression levels and diversity. PMID:23624043

  9. Functional domains on von Willebrand factor. Recognition of discrete tryptic fragments by monoclonal antibodies that inhibit interaction of von Willebrand factor with platelets and with collagen.

    PubMed Central

    Sixma, J J; Sakariassen, K S; Stel, H V; Houdijk, W P; In der Maur, D W; Hamer, R J; de Groot, P G; van Mourik, J A

    1984-01-01

    We have identified two functional domains on the von Willebrand factor (VWF) moiety of the Factor VIII-von Willebrand factor complex (FVIII-VWF), one interacting with blood platelets, and one interacting with vessel wall collagens, by means of two monoclonal antibodies directed against the VWF molecule, CLB-RAg 35 and CLB-RAg 201. The monoclonal antibody CLB-RAg 35 inhibited virtually all platelet adherence to artery subendothelium and to purified vessel wall collagen type III, at relatively high wall shear rates. CLB-RAg 35 also inhibited the ristocetin-induced platelet aggregation and the binding of FVIII-VWF to the platelet in the presence of ristocetin but did not affect the binding of FVIII-VWF to collagen. The monoclonal antibody CLB-RAg 201 inhibited the binding of FVIII-VWF to purified vessel wall collagen type I and III and all platelet adherence to collagen type III and the platelet adherence to subendothelium that was mediated by FVIII-VWF in plasma. The two functional domains on FVIII-VWF that were recognized by CLB-RAg 35 and CLB-RAg 201 were identified by means of immunoprecipitation studies of trypsin-digested FVIII-VWF. The domains resided on different polypeptide fragments, with a Mr of 48,000 for the collagen binding domain and a Mr of 116,000 for the platelet binding domain. The 116,000-mol wt fragment consisted of subunits of 52,000/56,000 mol wt and 14,000 mol wt after reduction. The 52,000/56,000-mol wt subunits possessed the epitope for CLB-RAg 35. Images PMID:6332119

  10. Identification of Novel Single Chain Fragment Variable Antibodies Against TNF-α Using Phage Display Technology

    PubMed Central

    Alizadeh, Ali Akbar; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2015-01-01

    Purpose: Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine, involved in both physiological and pathological pathways. Because of central role of TNF-α in pathogenesis of inflammatory diseases, in the current study, we aimed to identify novel scFv antibodies against TNF-α using phage display technology. Methods: Using libraries composed of phagemid displaying scFv antibodies, four rounds of biopanning against TNF-α were carried out, which led to identification of scFvs capable of binding to TNF-α. The scFv antibody with appropriate binding affinity towards TNF-α, was amplified and used in ELISA experiment. Results: Titration of phage achieved from different rounds of biopanning showed an enrichment of specific anti-TNF-α phages during biopanning process. Using ELISA experiment, a binding constant (Kd) of 1.11 ± 0.32 nM was determined for the phage displaying J48 scFv antibody. Conclusion: The findings in the current work revealed that the identified novel scFv antibody displayed at the N-terminal of minor coat proteins of phagemid binds TNF-α with suitable affinity. However, the soluble form of the antibody is needed to be produced and evaluated in more details regarding its binding properties to TNF-α. PMID:26793613

  11. Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells.

    PubMed

    Toleikis, Lars; Frenzel, André

    2012-01-01

    Despite the rising impact of the generation of antibodies by phage display and other technologies, hybridoma technology still provides a valuable tool for the generation of high-affinity binders against different targets. But there exist several limitations of using hybridoma-derived antibodies. The source of the hybridoma clones are mostly rat or mouse B-lymphocytes. Therefore a human-anti-mouse or human-anti-rat antibody response may result in immunogenicity of these antibodies. This leads to the necessity of humanization of these antibodies where the knowledge of the amino acid sequence of the proteins is inalienable. Furthermore, additional in vitro modifications, e.g., affinity maturation or fusion to other proteins, are dependent on cloning of the antigen-binding domains.Here we describe the isolation of RNA from hybridoma cells and the primers that can be used for the amplification of VL and VH as well as the cloning of the antibody in scFv format and its expression in Escherichia coli. PMID:22907345

  12. Absence of SV40 antibodies or DNA fragments in prediagnostic mesothelioma serum samples.

    PubMed

    Kjaerheim, Kristina; Røe, Oluf Dimitri; Waterboer, Tim; Sehr, Peter; Rizk, Raeda; Dai, Hong Yan; Sandeck, Helmut; Larsson, Erik; Andersen, Aage; Boffetta, Paolo; Pawlita, Michael

    2007-06-01

    The rhesus monkey virus Simian Virus 40 (SV40) is a member of the polyomavirus family. It was introduced inadvertently to human populations through contaminated polio vaccine during the years 1956-1963, can induce experimental tumors in animals and transform human cells in culture. SV40 DNA has been identified in mesothelioma and other human tumors in some but not all studies. We tested prediagnostic sera from 49 mesothelioma cases and 147 matched controls for antibodies against the viral capsid protein VP1 and the large T antigen of SV40 and of the closely related human polyomaviruses BK and JC, and for SV40 DNA. Cases and controls were identified among donors to the Janus Serum Bank, which was linked to the Cancer Registry of Norway. Antibodies were analyzed by recently developed multiplex serology based on recombinantly expressed fusions of glutathione-S transferase with viral proteins as antigens combined with fluorescent bead technology. BKV and JCV specific antibodies cross- reactive with SV40 were preabsorbed with the respective VP1 proteins. Sera showing SV40 reactivity after preabsorption with BKV and JCV VP1 were further analyzed in SV40 neutralization assays. SV40 DNA was analyzed by SV40 specific polymerase chain reactions. The odds ratio for being a case when tested positive for SV40 VP1 in the antibody capture assay was 1.5 (95% CI 0.6-3.7) and 2.0 (95% CI 0.6-7.0) when only strongly reactive sera where counted as positive. Although some sera could neutralize SV40, preabsorption with BKV and JCV VP1 showed for all such sera that this neutralizing activity was due to cross-reacting antibodies and did not represent truly SV40-specific antibodies. No viral DNA was found in the sera. No significant association between SV40 antibody response in prediagnostic sera and risk of mesothelioma was seen. PMID:17315193

  13. An integrated top-down and bottom-up proteomic approach to characterize the antigen binding fragment of antibodies

    SciTech Connect

    Dekker, Leendert J.; Wu, Si; vanDuijn, Martijn M.; Tolic, Nikola; Stingl, Christoph; Zhao, Rui; Luider, Theo N.; Pasa-Tolic, Ljiljana

    2014-05-31

    We have previously shown that different individuals exposed to the same antigen produce antibodies with identical mutations in their complementarity determining regions (CDR), suggesting that CDR tryptic peptides can serve as biomarkers for disease diagnosis and prognosis. Complete Fabs derived from disease specific antibodies have even higher potential; they could potentially be used for disease treatment and are required to identify the antigens towards which the antibodies are directed. However, complete Fab sequence characterization via LC-MS analysis of tryptic peptides (i.e. bottom-up) has proven to be impractical for mixtures of antibodies. To tackle this challenge, we have developed an integrated bottom-up and top-down MS approach, employing 2D chromatography coupled with Fourier transform mass spectrometry (FTMS), and applied this approach for full characterization of the variable parts of two pharmaceutical monoclonal antibodies with sensitivity comparable to the bottom-up standard. These efforts represent an essential step towards the identification of disease specific antibodies in patient samples with potentially significant clinical impact.

  14. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1994-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) directed against surface molecules of tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, 3-dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture. Therefore MCS make better in vitro model systems to study the interactions of mammalian cells, and provide a functional assay for surface adhesion molecules. This project also involves investigations of cell-cell interactions in a gravity-based environment. It will provide a base of scientific information necessary to expand the focus of the project in future years to microgravity and hypergravity-based environments. This project also has the potential to yield important materials (e.g., cellular products) which may prove useful in the diagnosis and/or treatment of certain human diseases. Moreover, this project supports the training of both undergraduate and graduate students; thus, it will assist in developing a pool of future scientists with research experience in an area (gravitational biology) of interest to NASA.

  15. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1994-01-01

    The objective of this project is to generate a library of monoclonial antibodies (MAbs) directed against surface molecules of tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, 3-dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues which are not found in conventional monolayer or suspension culture. In brief, MCS combine the relevance or organized tissues with in vitro methodology making the MCS a good model system to study the interactions of mammalian cells, and thereby provide a functional assay for surface adhesion molecules. This project also involves investigations of cell-cell interactions in a gravity-based environment. It will provide an important base of scientific information for future comparative studies on the effects of hypergravity and simulated microgravity environments on cell-cell interactions. This project also has the potential to yield important materials (e.g. cellular products) which may be useful for the diagnosis and/or treatment of certain human diseases. Moreover, this project supports the training of one undergraduate and one graduate student; thus, it will also assist in developing a pool of future scientists with research experience in gravitational biology research.

  16. Therapeutic antibodies directed at G protein-coupled receptors

    PubMed Central

    Hutchings, Catherine J; Koglin, Markus

    2010-01-01

    G protein-coupled receptors (GPCRs) are one of the most important classes of targets for small molecule drug discovery, but many current GPCRs of interest are proving intractable to small molecule discovery and may be better approached with bio-therapeutics. GPCRs are implicated in a wide variety of diseases where antibody therapeutics are currently used. These include inflammatory diseases such as rheumatoid arthritis and Crohn disease, as well as metabolic disease and cancer. Raising antibodies to GPCRs has been difficult due to problems in obtaining suitable antigen because GPCRs are often expressed at low levels in cells and are very unstable when purified. A number of new developments in overexpressing receptors, as well as formulating stable pure protein, are contributing to the growing interest in targeting GPCRs with antibodies. This review discusses the opportunities for targeting GPCRs with antibodies using these approaches and describes the therapeutic antibodies that are currently in clinical development. PMID:20864805

  17. Purification of single-chain antibody fragments exploiting pH-gradients in simulated moving bed chromatography.

    PubMed

    Martínez Cristancho, Carlos Andrés; Seidel-Morgenstern, Andreas

    2016-02-19

    This paper deals with the theoretical design and experimental validation of an affinity-based continuous multi-column chromatography process for the purification of single-chain Fragment variable (scFv) antibodies. An open-loop 3-zone pH-gradient simulated moving bed (SMB) process was investigated exploiting the highly specific affinity of metal ions toward histidine-tagged recombinant proteins. The separation problem was simplified by considering the cell culture supernatant as a pseudo-binary mixture. The influence of mobile phase pH on the adsorption isotherm parameters was estimated by the inverse method using recorded pH-gradient batch elution profiles. Suitable operating parameters for the SMB process were identified using an equilibrium stage model and subsequently validated in a lab-scale SMB unit. Finally, the performance of the pH-gradient SMB process was compared against a non-optimized batch process. Biologically active single-chain Fragment variable antibody formats were purified continuously with 9% more recovery, 11 times more productivity (576 mg of purified scFv per day and liter stationary phase in SMB) and enriched by a factor of 2.5 compared to those obtained in the non-optimized batch process. PMID:26810806

  18. Randomly broken fragment PCR with 5′ end-directed adaptor for genome walking

    PubMed Central

    Xu, Wentao; Shang, Ying; Zhu, Pengyu; Zhai, Zhifang; He, Jing; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Many genome walking methods based on polymerase chain reaction (PCR) are available, including those with and without restriction enzyme modification. Nevertheless, these methods suffer from low reproducibility, inefficiency, and non-specificity. Here, we present a traceable and efficient PCR strategy: randomly broken fragment PCR with 5′ end-directed adaptor for genome walking. The genome is first fragmented randomly. After blunting ends, the fragments are ligated to the 5′ end-directed adaptors. Semi-nested PCR is then performed. Thus, we can obtain an unknown sequence by cloning the fragments of interest, followed by sequencing. This method effectively bypasses the above-mentioned obstacles and offers the advances: 1) genome fragmentation without using restriction enzymes; 2) enhancement of primer specificity and the prevention of self-ligation between the adaptors by employing a 5′ end-directed adaptor. All of the steps in this new method are straightforward, and the unknown sequence can be definitively obtained by merely applying the method once. PMID:24322619

  19. Randomly broken fragment PCR with 5' end-directed adaptor for genome walking.

    PubMed

    Xu, Wentao; Shang, Ying; Zhu, Pengyu; Zhai, Zhifang; He, Jing; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Many genome walking methods based on polymerase chain reaction (PCR) are available, including those with and without restriction enzyme modification. Nevertheless, these methods suffer from low reproducibility, inefficiency, and non-specificity. Here, we present a traceable and efficient PCR strategy: randomly broken fragment PCR with 5' end-directed adaptor for genome walking. The genome is first fragmented randomly. After blunting ends, the fragments are ligated to the 5' end-directed adaptors. Semi-nested PCR is then performed. Thus, we can obtain an unknown sequence by cloning the fragments of interest, followed by sequencing. This method effectively bypasses the above-mentioned obstacles and offers the advances: 1) genome fragmentation without using restriction enzymes; 2) enhancement of primer specificity and the prevention of self-ligation between the adaptors by employing a 5' end-directed adaptor. All of the steps in this new method are straightforward, and the unknown sequence can be definitively obtained by merely applying the method once. PMID:24322619

  20. A Cryo-Electron Microscopy Study Identifies the Complete H16.V5 Epitope and Reveals Global Conformational Changes Initiated by Binding of the Neutralizing Antibody Fragment

    PubMed Central

    Lee, Hyunwook; Brendle, Sarah A.; Bywaters, Stephanie M.; Guan, Jian; Ashley, Robert E.; Yoder, Joshua D.; Makhov, Alexander M.; Conway, James F.; Christensen, Neil D.

    2014-01-01

    ABSTRACT Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid–Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called “invading-arm” structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites. IMPORTANCE Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and “invading-arm” structures. This study advances the understanding of the neutralization mechanism used

  1. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  2. Gaussia Luciferase as a Genetic Fusion Partner with Antibody Fragments for Sensitive Immunoassay Monitoring of Clinical Biomarkers.

    PubMed

    Oyama, Hiroyuki; Morita, Izumi; Kiguchi, Yuki; Miyake, Sayaka; Moriuchi, Ayaka; Akisada, Tatsuki; Niwa, Toshifumi; Kobayashi, Norihiro

    2015-12-15

    In this study, we show the utility of Gaussia luciferase (GLuc), which is much smaller than previously found luciferases, as the fusion partner with artificial antibody species for developing sensitive immunoassay systems. As an example, we constructed a bioluminescent enzyme-linked immunosorbent assay (BL-ELISA) system determining the major glucocorticoid cortisol. A monoclonal antibody was newly elicited against a cortisol-albumin conjugate, and the genes encoding its variable domains (VH and VL) were cloned and combined to encode a single-chain Fv fragment (scFv). scFv was then linked to the wild-type GLuc gene or that encoding GLuc mutants reported to show improved emission kinetics and expressed in the periplasmic space of several Escherichia coli strains. Notably, the wild-type GLuc fusion protein (scFv-wtGLuc) showed the most suitable luminescent properties for BL-ELISAs. In our system, scFv-wtGLuc was reacted competitively with the analyte and immobilized cortisol moieties, and the bound GLuc activity was monitored with coelenterazine as the substrate. Successful batch-type luminescence detection was achieved using a plate reader without built-in injectors. The midpoint and limit of detection in a typical dose-response curve were 4.1 and 0.26 pg/assay, respectively, thus exhibiting much more sensitivity than conventional cortisol immunoassays. Serum cortisol levels (as the sum with cortisone) for healthy subjects, determined without any pretreatment, were compatible with reported reference ranges. The scFv-wtGLuc probe was stable over a year under storage as periplasmic extracts at -30 °C or with repeated freeze-thawing. These results suggest that GLuc fusions with antibody fragments might serve as useful and highly sensitive immunoassay probes in various clinical settings. PMID:26625180

  3. A chimera of green fluorescent protein with single chain variable fragment antibody against ginsenosides for fluorescence-linked immunosorbent assay.

    PubMed

    Sakamoto, Seiichi; Tanizaki, Yusuke; Pongkitwitoon, Benyakan; Tanaka, Hiroyuki; Morimoto, Satoshi

    2011-05-01

    A chimera of green fluorescent protein extracted from Aequorea coerulescens (AcGFP), a mutant that has been codon optimized for mammalian expression, with single-chain variable fragment (scFv) antibody against ginsenoside Re (GRe-scFv), named fluobody, has been successfully expressed in Escherichia coli (E. coli) to develop simple, speedy, and sensitive fluorescence-linked immunosorbent assay (FLISA). Two chimera proteins were constructed to contain GRe-scFv at the C-terminus of AcGFP (C-fluobody) and at the N-terminus of AcGFP (N-fluobody). These fluobodies were then purified by ion metal affinity chromatography and refolded by stepwise dialysis. The characterization of both fluobodies revealed that C-fluobody was found to be appropriate probe for FLISA as compare with N-fluobody. Furthermore, improvement of limit of detection (LOD) was observed in FLISA using C-fluobody (10 ng/mL) due to its strong fluorescence intensity of AcGFP compared with conventional enzyme-linked immunosorbent assay (ELISA) using parental monoclonal antibody against ginsenoside Re (G-Re), MAb-4G10 (100 ng/mL). Since some steps required in ELISA can be avoided in this present FLISA, speedy and sensitive immunoassay also could be performed using fluobody instead of monoclonal antibody and scFv. PMID:21277981

  4. Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro.

    PubMed

    Vaario, Lu-Min; Pennanen, Taina; Lu, Jinrong; Palmén, Jorma; Stenman, Jarkko; Leveinen, Jussi; Kilpeläinen, Petri; Kitunen, Veikko

    2015-07-01

    Tricholoma matsutake, a highly valued delicacy in Japan and East Asia, is an ectomycorrhizal fungus typically found in a complex soil community of mycorrhizae, soil microbes, and host-tree roots referred to as the shiro in Japan. A curious characteristic of the shiro is an assortment of small rock fragments that have been implicated as a direct source of minerals and trace elements for the fungus. In this study, we measured the mineral content of 14 samples of shiro soil containing live matsutake mycelium and the extent to which the fungus can absorb minerals directly from the rock fragments. X-ray powder diffraction identified major phases of quartz, microcline, orthoclase, and albite in all shiro samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing confirmed the presence of T. matsutake on 32 of 33 rock fragments. Piloderma sp. co-occurred on 40% of fragments and was positively correlated with locations known to produce good mushroom crops. The ability of T. matsutake to absorb trace elements directly from rock fragments was examined in vitro on nutrient-agar plates supplemented with rock fragments from the shiro. In comparison to the mineral content of tissues grown on control media, the concentration of Al, Cu, Fe, Mn, P, and Zn increased from 1.1 to 106.4 times for both T. matsutake and Piloderma sp. Mineral content of dried sporocarps sampled from the study site partially reflected the results of the in vitro study. We discuss the implications of our results with respect to the natural development and artificial culture of this important fungus. PMID:25355073

  5. Optimizing the expression of a monoclonal antibody fragment under the transcriptional control of the Escherichia coli lac promoter.

    PubMed

    Donovan, R S; Robinson, C W; Glick, B R

    2000-06-01

    The expression of a monoclonal antibody Fab fragment in Escherichia coli strain RB791/pComb3, induced with either lactose or isopropyl-beta-D-thiogalactoside (IPTG), was compared to determine if lactose might provide an inexpensive alternative to induction with IPTG. Induction of Fab expression imposed a metabolic load on the recombinant cells, resulting in lower final cell yields compared to the non-induced controls. An IPTG concentration of 0.05 mM was sufficient to achieve maximal expression of soluble Fab protein when inducing in the early-, mid-, or late-log phases of batch cultures grown using either glucose or glycerol as a carbon source. The largest overall yield of Fab fragments when using 0.05 mM IPTG was achieved by increasing the final yield of cells through glycerol feeding following induction in late-log phase. Lactose was as effective as IPTG for inducing Fab expression in E. coli RB791/pComb3. The greatest overall level of Fab expression was found when cells grown on glycerol were induced with 2 g/L lactose in late-log phase. Since the cost of 0.05 mM of IPTG is significantly greater than the cost of 2 g/L lactose, lactose provides an inexpensive alternative to IPTG for inducing the expression of Fab fragments, and possibly other recombinant proteins, from the E. coli lac promoter. PMID:10913975

  6. Production and Purification of a Novel Anti-TNF-α Single Chain Fragment Variable Antibody

    PubMed Central

    Alizadeh, Ali Akbar; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2015-01-01

    Purpose: TNF-α is an inflammatory cytokine with a key role in initiation of inflammatory responses. Anti-TNF-α antibodies are being used in clinic for the purpose of diagnosis and treatment due to their high specificity. The objective of the current study was to express and purify an anti-TNF-α scFv antibody identified by phage display technology. Methods: The DNA coding sequence of the identified scFv was cloned into pET28a vector and the corresponding protein was expressed as 6×His tagged using E.coli BL21 (DE3) pLysS expression system followed by affinity purification on Ni-Sepharose affinity column. Results: The J44 scFv antibody was cloned into the expression vector and successfully expressed and purified. The purity of the scFv fraction was confirmed using SDS-PAGE analysis. Western blotting technique was used to detect expression of 6×His tagged protein. Conclusion: In the current study an anti-TNF-α scFv antibody was successfully expressed in bacterial expression system and purified on affinity column. The purified protein can be used in different in vitro and in vivo experiments in order to elucidate its functionality. PMID:26793614

  7. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum.

    PubMed

    Shkoporov, A N; Khokhlova, E V; Savochkin, K A; Kafarskaia, L I; Efimov, B A

    2015-06-01

    Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease. PMID:25994292

  8. Competition of charge- versus radical-directed fragmentation of gas-phase protonated cysteine sulfinyl radicals.

    PubMed

    Love, Chasity B; Tan, Lei; Francisco, Joseph S; Xia, Yu

    2013-04-24

    The fragmentation behavior of various cysteine sulfinyl ions (intact, N-acetylated, and O-methylated), new members of the gas-phase amino acid radical ion family, was investigated by low-energy collision-induced dissociation (CID). The dominant fragmentation channel for the protonated cysteine sulfinyl radicals ((SO•)Cys) was the radical-directed Cα-Cβ homolytic cleavage, resulting in the formation of glycyl radical ions and loss of CH2SO. This channel, however, was not observed for protonated N-acetylated cysteine sulfinyl radicals (Ac-(SO•)Cys); instead, charge-directed H2O loss followed immediately by SH loss prevailed. Counterintuitively, the H2O loss did not derive from the carboxyl group but involved the sulfinyl oxygen, a proton, and a Cβ hydrogen atom. Theoretical calculations suggested that N-acetylation significantly increases the barrier (~14 kcal mol(-1)) for the radical-directed fragmentation channel because of its reduced capability to stabilize the thus-formed glycyl radical ions via the captodative effect. N-Acetylation also assists in moving the proton to the sulfinyl site, which reduces the barrier for H2O loss. Our studies demonstrate that for cysteine sulfinyl radical ions, the stability of the product ions (glycyl radical ions) and the location of the charge (proton) can significantly modulate the competition between radical- and charge-directed fragmentation. PMID:23527556

  9. Stratum corneum antibodies detected by hemagglutination are not directed against keratin intermediate filaments.

    PubMed

    Qutaishat, S; Kumar, V; Beutner, E H; Jabłońska, S

    1990-01-01

    Autoantibodies to stratum corneum (SC) occur in virtually all normal adult human sera. These antibodies may be directed against various antigens of the SC. They have been detected by indirect immunofluorescence, passive hemagglutination (HA), immune adherence, and most recently by enzyme immunoassay and immunoblot methods. The purpose of our study was to examine whether antibodies to SC antigens as detected by passive HA are similar to the keratin intermediate filament (KIF) reactive antibodies. SC antigen preparation was prepared from psoriatic scales by the trypsin-phenol-water (TPW) extraction method. KIFs were prepared by 8 M urea extraction of normal callus or psoriatic scales. The anti-SC antibody titers of normal human sera were determined by passive HA before and after absorption with TPW-SC antigen preparation and upon absorption with KIFs. Similarly, titers of anti-KIF antibodies were determined on absorbed and unabsorbed sera by immunoblot assay. The results of this study indicate that the absorption of the sera with KIFs did not affect the titer of antibodies to TPW-extractable SC antigens whereas the titer of KIF antibodies dropped. KIF-reactive antibodies, on the other hand, were not affected by absorption with TPW-SC antigen, whereas the latter absorbed out the corresponding reactive antibodies. These results indicate that antibodies directed against SC antigen are different from the KIF-reactive antibodies. PMID:1693842

  10. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments.

    PubMed

    Niesen, Judith; Sack, Markus; Seidel, Melanie; Fendel, Rolf; Barth, Stefan; Fischer, Rainer; Stein, Christoph

    2016-08-17

    Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives. PMID:27391930

  11. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism.

    PubMed

    Karim-Silva, Sabrina; Moura, Juliana de; Noiray, Magali; Minozzo, Joao Carlos; Aubrey, Nicolas; Alvarenga, Larissa M; Billiald, Philippe

    2016-08-01

    Loxosceles spider bites often lead to serious envenomings and no definite therapy has yet been established. In such a context, it is of interest to consider an antibody-based targeted therapy. We have previously prepared a murine monoclonal IgG (LiMab7) that binds to 32-35kDa components of Loxosceles intermedia venom and neutralizes the dermonecrotic activity of the venom. Here, we re-engineered LiMab7 into a recombinant diabody. The protein was produced in bacteria and then it was functionally characterized. It proved to be efficient at neutralizing sphingomyelinase and hemolytic activities of the crude venom despite the slightly altered binding kinetic constants and the limited stability of the dimeric configuration. This is the first report of a specific recombinant antibody for a next-generation of Loxosceles antivenoms. PMID:27288291

  12. Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type

    NASA Technical Reports Server (NTRS)

    He, X. M.; Ruker, F.; Casale, E.; Carter, D. C.

    1992-01-01

    The three-dimensional structure of a human monoclonal antibody (Fab), which binds specifically to a major epitope of the transmembrane protein gp41 of the human immunodeficiency virus type 1, has been determined by crystallographic methods to a resolution of 2.7 A. It has been previously determined that this antibody recognizes the epitope SGKLICTTAVPWNAS, belongs to the subclass IgG1 (kappa), and exhibits antibody-dependent cellular cytotoxicity. The quaternary structure of the Fab is in an extended conformation with an elbow bend angle between the constant and variable domains of 175 degrees. Structurally, four of the hypervariable loops can be classified according to previously recognized canonical structures. The third hypervariable loops of the heavy (H3) and light chain (L3) are structurally distinct. Hypervariable loop H3, residues 102H-109H, is unusually extended from the surface. The complementarity-determining region forms a hydrophobic binding pocket that is created primarily from hypervariable loops L3, H3, and H2.

  13. Targeting Prostate Cancer Cells In Vivo Using a Rapidly Internalizing Novel Human Single-Chain Antibody Fragment

    PubMed Central

    He, Jiang; Wang, Yong; Feng, Jinjin; Zhu, Xiaodong; Lan, Xiaoli; Iyer, Arun K.; Zhang, Niu; Seo, Youngho; VanBrocklin, Henry F.; Liu, Bin

    2010-01-01

    Human antibodies targeting prostate cancer cell surface epitopes may be useful for imaging and therapy. The objective of this study was to evaluate the tumor targeting of an internalizing human antibody fragment, a small-size platform, to provide high contrast in a mouse model of human prostate carcinoma. Methods A prostate tumor-targeting single-chain antibody fragment (scFv), UA20, along with a nonbinding control scFv, N3M2, were labeled with 99mTc and evaluated for binding and rapid internalization into human prostate tumor cells in vitro and tumor homing in vivo using xenograft models. For the in vitro studies, the labeled UA20 scFv was incubated at 37°C for 1 h with metastatic prostate cancer cells (DU145) to assess the total cellular uptake versus intracellular uptake. For the animal studies, labeled UA20 and N3M2 scFvs were administered to athymic mice implanted subcutaneously with DU145 cells. Mice were imaged with small-animal SPECT/CT with concomitant biodistribution at 1 and 3 h after injection. Results The UA20 scFv was labeled in 55%–65% yield and remained stable in phosphate buffer within 24 h. The labeled UA20 scFv was taken up specifically by prostate tumor cells. Internalization was rapid, because incubation at 37°C for less than 1 h resulted in 93% internalization of total cell-associated scFvs. In animal studies, SPECT/CT showed significant tumor uptake as early as 1 h after injection. At 3 h after injection, tumor uptake was 4.4 percentage injected dose per gram (%ID/g), significantly greater than all organs or tissues studied (liver, 2.7 %ID/g; other organs or tissues, <1 %ID/g), except the kidneys (81.4 %ID/g), giving tumor-to-blood and tumor-to-muscle ratios of 12:1 and 70:1, respectively. In contrast, the control antibody exhibited a tumor uptake of only 0.26 %ID/g, similar to that of muscle and fat. Tumor-specific targeting was evidenced by reduced tumor uptake of nearly 70% on administration of a 10-fold excess of unlabeled UA20 sc

  14. Structural Basis of Neutralization of the Major Toxic Component from the Scorpion Centruroides noxius Hoffmann by a Human-derived Single-chain Antibody Fragment

    SciTech Connect

    Canul-Tec, Juan Carlos; Riaño-Umbarila, Lidia; Rudiño-Piñera, Enrique; Becerril, Baltazar; Possani, Lourival D.; Torres-Larios, Alfredo

    2011-08-09

    It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 {angstrom} resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complex reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of {beta}-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.

  15. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns

    NASA Astrophysics Data System (ADS)

    Halim, Mohammad A.; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe

    2016-03-01

    Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.

  16. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns.

    PubMed

    Halim, Mohammad A; Girod, Marion; MacAleese, Luke; Lemoine, Jérôme; Antoine, Rodolphe; Dugourd, Philippe

    2016-03-01

    Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system. PMID:26545767

  17. Crystallization and preliminary X-ray structure determination of jack bean urease with a bound antibody fragment.

    PubMed

    Sheridan, Louisa; Wilmot, Carrie M; Cromie, Karen D; van der Logt, Paul; Phillips, Simon E V

    2002-02-01

    Urease allows organisms to use exogenous and internally generated urea as a nitrogen source, by catalyzing the hydrolysis of urea to form ammonia and carbon dioxide. Urease may also participate in the systemic nitrogen-transport pathways and possibly acts as a toxic defence protein. Jack bean urease (JBU) was the first nickel-metalloenzyme identified and was crystallized as early as 1926. Despite this, the structure has not yet been determined. An antibody fragment, Fv, that has a high affinity for JBU has been used to aid crystallization. The complex, which retains full enzyme activity, forms very small crystals that diffract weakly to 3.3 A. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 228.6, c = 130.9 A. The structure of the urease molecule has been solved by molecular replacement using the structure of homogenous enzyme from Klebsiella aerogenes as a search model. PMID:11807281

  18. Production, isolation, and characterization of rabbit anti-idiotypic antibodies directed against human antithyrotrophin receptor antibodies.

    PubMed Central

    Baker, J R; Lukes, Y G; Burman, K D

    1984-01-01

    Previous studies have shown that anti-idiotypic antibodies can be developed in vivo through animal immunization with idiotype, and that these antibodies can be isolated from other anti-immunoglobulin antibodies by affinity purification. These techniques have relied on large amounts of idiotype, which were produced either by hyperimmunization or by monoclonal antibodies, to serve as the affinity adsorbent. In the present study, we produced anti-idiotypic antibodies to human anti-thyroid-stimulating hormone (TSH) receptor antibodies by first injecting rabbits with (TSH receptor purified) IgG from Graves' patients. The resulting antiserum was then adsorbed with Sepharose-coupled TSH in an attempt to specifically bind and isolate the anti-idiotype. The antibody obtained from this process was shown to bind specifically to TSH receptor-binding antibodies from Graves' patients, and this binding could be inhibited by 56% with the addition of 10(-4) M TSH but not by HCG (10(-2) M). The anti-idiotype also bound to TSH, and this binding could be specifically inhibited by receptor-purified Graves' IgG (60% inhibition at 10 micrograms/ml IgG), but not by IgG from normal subjects (no inhibition at 50 micrograms/ml IgG). In a TSH receptor binding assay, the anti-idiotype could inhibit TSH receptor binding in Graves' sera at a 1,000-fold lower concentration than could anti-kappa/lambda antiserum; the anti-idiotypic antiserum also inhibited in vitro TSH-mediated adenylate cyclase stimulation at an IgG concentration of 5 micrograms/ml, while heterologous anti-TSH antisera and normal IgG at similar concentrations had no effect. Finally, despite being generated against a single patient's TSH receptor binding antibody, the anti-idiotype was able to block TSH receptor binding in the serum of six other Graves' patients, thus suggesting that there may be conformational conservation in the antigen that is recognized by different individuals' TSH receptor-binding immunoglobulins. PMID

  19. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses.

    PubMed

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An; Chang, Ya-Chun

    2015-10-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  20. Expression of bioactive anti-CD20 antibody fragments and induction of ER stress response in Arabidopsis seeds.

    PubMed

    Wang, Dezhong; Ma, Jisheng; Sun, Difei; Li, Haiyan; Jiang, Chao; Li, Xiaokun

    2015-08-01

    Seed-based expression system is an attractive platform for the production of recombinant proteins in molecular farming. Despite the many advantages of molecular farming, little is known about the effect of the different subcellular accumulation of recombinant proteins on the endoplasmic reticulum (ER) quality control system in host plants. In this study, we analyzed the expression of anti-CD20 antibody fragments in seeds of Arabidopsis thaliana (ecotype Columbia) and corresponding glycosylation mutants, and evaluated the influence of three different signal sequences on the expression levels of scFv-Fc of C2B8. The highest protein accumulation level, with a maximum of 6.12 % total soluble proteins, was observed upon fusing proteins to the signal peptide of Arabidopsis seed storage albumin 2. The ER stress responses in developing seeds at 13 days post-anthesis were also compared across different transgenic lines under normal and heat shock conditions. Based on the gene expression profiles of ER stress transducers, our results suggest that accumulation of antibody fragments in the ER exerts more stress on ER homeostasis. In addition, quantitative PCR results also implicate enhanced activation of ER-associated degradation in transgenic lines. Last but not the least, we also demonstrate the anti-tumor potency of plant-derived proteins by showing the anti-tumor activity of purified scFv-Fc proteins against Daudi cells. Together, our data implies that better understanding of the interaction between exogenous protein production and the cellular quality control system of the host plant is necessary for the development of an optimal expression strategy that will be especially beneficial to commercial protein manufacturing. PMID:25957150

  1. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    PubMed Central

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  2. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    PubMed

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects. PMID:26700095

  3. Molecular specificities of monoclonal antibodies directed against virulent Treponema pallidum.

    PubMed Central

    Marchitto, K S; Selland-Grossling, C K; Norgard, M V

    1986-01-01

    Radioimmunoprecipitation (RIP) and Western blot analyses with specific anti-Treponema pallidum subsp. pallidum monoclonal antibodies were used to identify antigens with apparent masses of 102, 84, 54, 53, 52, 47, 32, 29, and 24 kilodaltons (kDa). Cross-reactivity of these antibodies with T. pallidum subsp. pertenue antigens and lack of cross-reactivity with T. phagedenis biotype Reiter, T. vincentii, T. refringens, T. scoliodontum, and T. denticola were also demonstrated by RIP and Western blot analyses. Reactivities in the T. pallidum immobilization test, along with the RIP of lactoperoxidase-catalyzed iodination products, suggested that the identified antigens were surface associated. The abundance and surface association of the 47- and 84-kDa antigens were supported by reactivity in the microhemagglutination test for T. pallidum and by strong reactivity of monoclonal antibodies upon indirect immunofluorescence assays with rabbit-cultivated T. pallidum subsp. pallidum, respectively, but not with T. phagedenis biotype Reiter. Anti-47-kDa and anti-84-kDa monoclonal antibodies were also reactive in indirect immunofluorescence assays using treponemes found in dark-field-positive smears of human genital ulcers. Images PMID:3510168

  4. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin

    PubMed Central

    2011-01-01

    Background Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs) represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY), the main virulence factor of Gardnerella vaginalis. Results The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs) that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody. Conclusions Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the scFv-Fc molecules on the surface of

  5. Antibody-Directed Cytotoxic Agents: Use of Monoclonal Antibody to Direct the Action of Toxin A Chains to Colorectal Carcinoma Cells

    NASA Astrophysics Data System (ADS)

    Gilliland, D. Gary; Steplewski, Zenon; Collier, R. John; Mitchell, Kenneth F.; Chang, Tong H.; Koprowski, Hilary

    1980-08-01

    We have constructed cell-specific cytotoxic agents by covalently coupling the A chain from diphtheria toxin or ricin toxin to monoclonal antibody directed against a colorectal carcinoma tumor-associated antigen. Antibody 1083-17-1A was modified by attachment of 3-(2-pyridyldithio)propionyl or cystaminyl groups and then treated with reduced A chain to give disulfide-linked conjugates that retained the original binding specificity of the antibody moiety. The conjugates showed cytotoxic activity for colorectal carcinoma cells in culture, but were not toxic in the same concentration range for a variety of cell lines that lacked the antigen. Under defined conditions virtually 100% of antigen-bearing cultured cells were killed, whereas cells that lacked the antigen were not affected. Conjugates containing toxin A chains coupled to monoclonal antibodies may be useful in studying functions of various cell surface components and, possibly, as tumor-specific therapeutic agents.

  6. Interaction of monoclonal antibodies directed against bromodeoxyuridine with pyrimidine bases, nucleosides, and DNA

    SciTech Connect

    Miller, M.R.; Heyneman, C.; Walker, S.; Ulrich, R.G.

    1986-03-01

    Although antibodies directed against bromodeoxyuridine (BrdU) are being used in both clinical and basic research laboratories as tools to study and monitor DNA synthesis, little is known about the epitopes with which they react. Four monoclonal antibodies directed against BrdU were produced and were characterized to learn more about the epitopes on BrdU which are important for antibody recognition, to identify compounds other than BrdU which react with the antibodies and which might interfere with immunologic assays for BrdU, and to characterize the reaction of these antibodies with BrdU-containing DNA. By radioimmunoassays, the antibodies generally reacted well with 5-iododeoxyuridine, 5-fluorodeoxyuridine, and 5-nitrouracil. However, none of the antibodies reacted well with uridine - indicating that a substituent on uridine C5 was essential for antibody reactivity - or with 5-bromo or iodo-cytosine, indicating that the region around pyrimidine C4 is important for antibody recognition. Although the antibodies reacted with 5-halogen-substituted uracil bases, the antibodies reacted much better with the corresponding halogenated nucleosides, indicating that the sugar moiety was important for recognition. The presence of a triphosphate group of C'5 of BrdU (i.e., BrdUTP) did not detectably alter antibody recognition. S/sub 1/ nuclease treatment of purified DNA suggested that all four monoclonal antibodies reacted exclusively with single-stranded regions of BrdU-containing DNA. Comparison of detecting DNA synthesis by (/sup 3/H)TdR incorporation followed by autoradiography with that by BrdU incorporation followed by indirect immunofluorescence indicated that the latter technique was both an accurate and a sensitive measure of DNA synthesis.

  7. Novel human 3-domain disulfide-stabilized antibody fragment against glycoprotein of rabies virus.

    PubMed

    Cai, Kun; Wang, Hui; Bao, Shizhong; Shi, Jing; Hou, Xiaojun; Gao, Xiang; Liu, Hao; Yin, Jun

    2008-04-01

    Mutated disulfide bond sites VH (Cys44) and VL (Cys100) were constructed in variable domains (Fvs) of the human anti-glycoprotein antigen of the rabies virus (anti-GPRV), and the light chain variable (VL) and heavy chain variable (VH) fragments were linked using the heavy chain constant region 1 (CH1) of the human immunoglobulin (Ig) to successfully construct a 3-domain disulfide-stabilized fragment of variables (3d-dsFv). 3d-dsFv was mainly expressed as an inclusion body. After refolding by the conventional dilution method, 3d-dsFv was purified using a nickel-nitrilotriacetic acid (Ni-NTA) column. Enyzme-linked immunosorbent assay (ELISA) was used to determine the binding activity of 3d-dsFv to GPRV. Flow cytometry studies and rapid fluorescent focus inhibition test were used to evaluate the function of 3d-dsFv. The results showed that the stability of 3d-dsFv was improved notably in some aspects such as thermal kinetics, ability to withstand urea denaturation, etc. 3d-dsFv could bind specially to infective cells and the GPRV. The titration of 3d-dsFv to RV-CVS is 83.3 IU/mg, and it can easily reach 2.5IU/mL, which is the value suggested by the WHO as effective for neutralization titration of the rabies virus. PMID:18424153

  8. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes.

    PubMed

    Liu, Jiangnan; Yi, Bin; Zhang, Zhe; Cao, Yi

    2016-06-01

    CD176 (Thomsen-Friedenreich antigen) is a tumor-associated carbohydrate epitope (glycotope) functionally involved in blood spread and liver metastasis of cancer cells by mediating the adhesion of cancer cells to endothelial cells and hepatocytes, respectively. CD176 could be a promising target for antitumor immunotherapy. We applied B lymphocytes obtained from mice immunized with CD176 antigen and constructed a phage display library. A positive clone of CD176 single-chain variable antibody fragment (scFv) was successfully screened from this library. The CD176 scFv was expressed in Escherichia coli and purified. The purified scFv can bind to the natural CD176 expressed on the surface of cancer cells. Furthermore, the CD176 scFv inhibits the adhesion of CD176(+) cancer cells to endothelial cells and hepatocytes. This CD176 scFv provides a basis for future development of recombinant CD176-specific antibodies that can be used in therapeutic application. PMID:27090911

  9. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease.

    PubMed

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E; Levites, Yona; Rincon-Limas, Diego E

    2015-11-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  10. Neutralization Analysis of a Chicken Single-Chain Variable Fragment Derived from an Immune Antibody Library Against Infectious Bronchitis Virus.

    PubMed

    Lin, Yuan; Li, Benqiang; Ye, Jiaxin; Wang, Man; Wang, Jianhua; Zhang, Ying; Zhu, Jianguo

    2015-09-01

    Avian infectious bronchitis virus (IBV), which is prevalent in many countries causing severe economic loss to the poultry industry, causes infectious bronchitis (IB) in birds. Recombinant single-chain variable fragments (scFvs) have been proven to effectively inhibit many viruses, both in vitro and in vivo, and they could be a potential diagnostic and therapeutic reagent to control IB. In this study, six anti-IBV chicken scFvs, ZL.10, ZL.64, ZL.78, ZL.80, ZL.138, and ZL.256, were obtained by screening random clones from an immune antibody library. An analysis of nucleotide sequences revealed that they represented distinctive genetic sequences and greatly varied in complementarity-determining region three of the heavy chain. Neutralization tests showed that ZL.10, which bound the S1 protein in western blots, inhibited the formation of syncytia in Vero cells 48 h post IBV infection and decreased the transcriptional level of nucleoprotein mRNA to 17.2%, while the other five scFvs, including ZL.78 and ZL.256, that bound the N protein did not. In conclusion, the results suggested that specific and neutralizing chicken scFvs against IBV, which can be safe and economical antibody reagents, can be produced in vitro through prokaryotic expression. PMID:26090700

  11. Enhancement of hERG channel activity by scFv antibody fragments targeted to the PAS domain.

    PubMed

    Harley, Carol A; Starek, Greg; Jones, David K; Fernandes, Andreia S; Robertson, Gail A; Morais-Cabral, João H

    2016-08-30

    The human human ether-à-go-go-related gene (hERG) potassium channel plays a critical role in the repolarization of the cardiac action potential. Changes in hERG channel function underlie long QT syndrome (LQTS) and are associated with cardiac arrhythmias and sudden death. A striking feature of this channel and KCNH channels in general is the presence of an N-terminal Per-Arnt-Sim (PAS) domain. In other proteins, PAS domains bind ligands and modulate effector domains. However, the PAS domains of KCNH channels are orphan receptors. We have uncovered a family of positive modulators of hERG that specifically bind to the PAS domain. We generated two single-chain variable fragments (scFvs) that recognize different epitopes on the PAS domain. Both antibodies increase the rate of deactivation but have different effects on channel activation and inactivation. Importantly, we show that both antibodies, on binding to the PAS domain, increase the total amount of current that permeates the channel during a ventricular action potential and significantly reduce the action potential duration recorded in human cardiomyocytes. Overall, these molecules constitute a previously unidentified class of positive modulators and establish that allosteric modulation of hERG channel function through ligand binding to the PAS domain can be attained. PMID:27516548

  12. Preparation and identification of a single-chain variable fragment antibody against Newcastle diseases virus F48E9.

    PubMed

    Li, Benqiang; Ye, Jiaxin; Lin, Yuan; Wang, Man; Zhu, Jianguo

    2014-10-15

    This article describes a proposed method for convenient and efficient detection of Newcastle diseases virus (NDV) that uses the fusion of single-chain variable fragment (scFv) and pOPE101 vector. In order to select the single chain variable fragment (scFv) against NDV F48E9, the total RNA was extracted from the spleen of immunized chicken, and then was converted into cDNA via the reverse transcription. The scFv was spliced by using splice-overlap extension polymerase chain reaction (SOE-PCR). The scFv gene was cloned into a pOPE101 vector and expressed in E. coli. Under the optimized conditions, antibody affinity was studied by indirect ELISA. One positive clone was selected by ELISA screening, named ZL.6. Based on the positive clone and the germline sequence, the results of sequence analysis showed that there are more variation in CDR of VH and VL. In addition, BHK21 cell culture was conducted to examine the potential antiviral activity of ZL.6. The experimental result demonstrated that ZL.6 was able to neutralize NDV F48E9 which infected BHK21 cells. So ZL.6 will be proved useful for further characterization of NDV as potential diagnostic tool and therapeutic agent. PMID:25183016

  13. Comparative tissue distribution in mice of the alpha-emitter 211At and 131I as labels of a monoclonal antibody and F(ab')2 fragment.

    PubMed

    Garg, P K; Harrison, C L; Zalutsky, M R

    1990-06-15

    Because it decays by the emission of short-range, high-energy alpha-particles, the radiohalogen 211At might be a particularly useful nuclide for some types of radioimmunotherapy. However, no suitable gamma-emitting nuclide of astatine exists which would permit either imaging prior to therapy to obtain radiation dosimetry estimates or performing experiments in paired-label format. Since iodine is the halogen above astatine in the periodic table, we investigated whether the in vivo distribution of 131I could be used to mimic the biodistribution of 211At. In this study, the N-succinimidyl 3-(trialkylstannyl)benzoate method was used to label C110 IgG, an antibody directed against carcinoembryonic antigen, and its (Fab')2 fragment with 211At and 131I. Paired-label experiments were performed in normal mice comparing the tissue distribution of 211At- versus 131I-labeled C110 IgG and F(ab')2 as well as [211At]astatide versus [131I]iodide and m-[211At]astatobenzoic acid versus m-[131I]iodobenzoic acid, potential catabolites of proteins radiohalogenated via the N-succinimidyl 3-(trialkylstannyl)benzoate method. With the exception of thyroid, retention of astatide in tissues was higher than that of iodide; and, with the halobenzoic acids, uptake of 211At was higher than 135I in thyroid, stomach, and spleen. Use of the N-succinimidyl 3-(trialkylstannyl)benzoate method to label C110 IgG with 211At and 131I resulted in similar distributions of the two nuclides. In contrast, loss of 211At from the F(ab')2 fragment was considerably more rapid than 131I, suggesting that different astatination methods may be required for use with F(ab')2 fragments. PMID:2340501

  14. Crystal Structure of Snake Venom Acetylcholinesterase in Complex with Inhibitory Antibody Fragment Fab410 Bound at the Peripheral Site

    PubMed Central

    Bourne, Yves; Renault, Ludovic; Marchot, Pascale

    2015-01-01

    The acetylcholinesterase found in the venom of Bungarus fasciatus (BfAChE) is produced as a soluble, non-amphiphilic monomer with a canonical catalytic domain but a distinct C terminus compared with the other vertebrate enzymes. Moreover, the peripheral anionic site of BfAChE, a surface site located at the active site gorge entrance, bears two substitutions altering sensitivity to cationic inhibitors. Antibody Elec410, generated against Electrophorus electricus acetylcholinesterase (EeAChE), inhibits EeAChE and BfAChE by binding to their peripheral sites. However, both complexes retain significant residual catalytic activity, suggesting incomplete gorge occlusion by bound antibody and/or high frequency back door opening. To explore a novel acetylcholinesterase species, ascertain the molecular bases of inhibition by Elec410, and document the determinants and mechanisms for back door opening, we solved a 2.7-Å resolution crystal structure of natural BfAChE in complex with antibody fragment Fab410. Crystalline BfAChE forms the canonical dimer found in all acetylcholinesterase structures. Equally represented open and closed states of a back door channel, associated with alternate positions of a tyrosine phenol ring at the active site base, coexist in each subunit. At the BfAChE molecular surface, Fab410 is seated on the long Ω-loop between two N-glycan chains and partially occludes the gorge entrance, a position that fully reflects the available mutagenesis and biochemical data. Experimentally based flexible molecular docking supports a similar Fab410 binding mode onto the EeAChE antigen. These data document the molecular and dynamic peculiarities of BfAChE with high frequency back door opening, and the mode of action of Elec410 as one of the largest peptidic inhibitors targeting the acetylcholinesterase peripheral site. PMID:25411244

  15. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin.

    PubMed

    Demartis, S; Tarli, L; Borsi, L; Zardi, L; Neri, D

    2001-04-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. PMID:11357506

  16. Direct Injection of Functional Single-Domain Antibodies from E. coli into Human Cells

    PubMed Central

    Blanco-Toribio, Ana; Muyldermans, Serge; Frankel, Gad; Fernández, Luis Ángel

    2010-01-01

    Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 105–106 molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes. PMID:21170340

  17. Biokinetics of a radioiodinated antibreast carcinoma monoclonal antibody and fragment in humans

    SciTech Connect

    Zalutsky, M.R.; Noska, M.; Kaplan, W.D.; Hayes, D.; Colcher, D.; Schlom, J.; Kufe, D.

    1984-01-01

    Monoclonal antibody B6.2 is promising for the detection of breast cancers; it binds to >80% of human breast carcinoma (hbc) lines, its antigen is not seen in serum, and it localizes selectively in hbc xenografts in nude mice. The authors have studied the biokinetics of I-131 activity following injection of I-131-IgG and F(ab')/sub 2/ each in 4 patients (pts). The antibody was labeled using iodogen and tested for specific binding to hbc membrane extracts prior to injection. Pts received 0.6-1.1 mCi of I-131 and 50-100 ..mu..g of protein. Blood clearance of I-131 activity was biphasic with half times of 2 and 15.4 hrs for IgG; 1 and 30 hrs for F(ab')/sub 2/. Dehalogenation was noted: by 72 hrs post-injection, 22% (IgG) and 21% (F(ab')/sub 2/) of the injected dose of I-131 was found in the urine. In 2 pts receiving I-131 IgG, stomach uptake was 7-10% at 24 hrs. Protein associated activity in the blood was >90% for the first 8 hrs and gradually decreased to 79% (IgG) and 58% (F(ab')/sub 2/) at 48 hrs. High liver uptake, reported with other antibody systems, was not observed; <20% of the activity was seen in the liver at all time points for both proteins. In 1/4 pts receiving IgG and 4/4 receiving F(ab')/sub 2/, bone marrow uptake was clearly noted. In these pts, >20% of the activity present in blood was cell associated. This is not inconsistent with the observation that B6.2 binds to granulocytes in vitro. Increased binding to cells in the blood for F(ab')/sub 2/ probably accounts for the anomolously longer blood clearance half times observed for F(ab')/sub 2/ vs IgG and low liver accumulation most likely reflects the absence of hepatic or circulating B6.2 antigen.

  18. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  19. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    NASA Astrophysics Data System (ADS)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  20. Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems.

    PubMed

    Nelson, Scott A; Li, Zhouyu; Newton, Ian P; Fraser, David; Milne, Rachel E; Martin, David M A; Schiffmann, David; Yang, Xuesong; Dormann, Dirk; Weijer, Cornelis J; Appleton, Paul L; Näthke, Inke S

    2012-11-01

    Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC) tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating β-catenin-binding sites from APC, which leads to upregulation of β-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC) results in loss of directionality, but not speed, of cell motility independently of changes in β-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APC(Min/+); multiple intestinal neoplasia model) demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APC(Min/+) intestines are overpopulated with cells, suggesting that a lack of migration might cause cell

  1. Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems

    PubMed Central

    Nelson, Scott A.; Li, Zhouyu; Newton, Ian P.; Fraser, David; Milne, Rachel E.; Martin, David M. A.; Schiffmann, David; Yang, Xuesong; Dormann, Dirk; Weijer, Cornelis J.; Appleton, Paul L.; Näthke, Inke S.

    2012-01-01

    SUMMARY Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC) tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating β-catenin-binding sites from APC, which leads to upregulation of β-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC) results in loss of directionality, but not speed, of cell motility independently of changes in β-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APCMin/+; multiple intestinal neoplasia model) demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APCMin/+ intestines are overpopulated with cells, suggesting that a lack of migration might cause

  2. Direct selection for a catalytic mechanism from combinatorial antibody libraries.

    PubMed Central

    Janda, K D; Lo, C H; Li, T; Barbas, C F; Wirsching, P; Lerner, R A

    1994-01-01

    Semisynthetic combinatorial antibody library methodology in the phage-display format was used to select for a cysteine residue in complementarity-determining regions. Libraries were panned with an alpha-phenethyl pyridyl disulfide that undergoes disulfide interchange. Out of 10 randomly picked clones, two contained an unpaired cysteine, one of which was studied. The antibody catalyzed the hydrolysis of the corresponding thioester where the electrophilic carbonyl occupies the three-dimensional space that was defined by the reactive sulfur atom during selection. The reaction operates by covalent catalysis. Although the steady-state rate enhancement relative to the activated thiol ester substrate is modest, hydrolysis of the acylated cysteine intermediate is remarkably efficient with a catalytic advantage of about four orders of magnitude. The results suggest that iterative mechanism-based selection procedures can recapitulate the enzymatic mechanisms refined through evolution. Images PMID:8146149

  3. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) to surface molecules of mammalian tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, three dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture; therefore, MCS make better in vitro model systems to study the interactions of mammalian cells. Additionally, they provide a functional assay for surface adhesion molecules.

  4. Preparation and Identification of a Single-chain Variable Fragment Antibody Against Canine Distemper Virus.

    PubMed

    Yi, Li; Cheng, Shipeng

    2015-08-01

    The variable regions of the heavy chain (VH) and light chain (VL) were amplified by RT-PCR from the hybridoma 1N8, which secretes the monoclonal antibody against CDV N protein (aa 277-471). The VL and VH amplicons were combined using SOE-PCR by a 12 amino acid flexible linker (SSGGGGSGGGGS), which produced the scFv gene (named scFv/1N8). After sequence analysis, the scFv/1N8 gene was cloned into the prokaryotic expression vector PET32a with a His-tag. The recombinant scFv/1N8 protein was successfully expressed in recombinant Escherichia coli by IPTG induction. Moreover, the binding activity and specificity of the scFv were determined by indirect ELISA (His-tag) and competitive ELISA. The recombinant scFv/1N8 protein reported here will provide some basis for further antiviral drug research based on the scFv molecule. PMID:26301925

  5. Cytokine Activation by Antibody Fragments Targeted to Cytokine-Receptor Signaling Complexes.

    PubMed

    Kuruganti, Srilalitha; Miersch, Shane; Deshpande, Ashlesha; Speir, Jeffrey A; Harris, Bethany D; Schriewer, Jill M; Buller, R Mark L; Sidhu, Sachdev S; Walter, Mark R

    2016-01-01

    Exogenous cytokine therapy can induce systemic toxicity, which might be prevented by activating endogenously produced cytokines in local cell niches. Here we developed antibody-based activators of cytokine signaling (AcCS), which recognize cytokines only when they are bound to their cell surface receptors. AcCS were developed for type I interferons (IFNs), which induce cellular activities by binding to cell surface receptors IFNAR1 and IFNAR2. As a potential alternative to exogenous IFN therapy, AcCS were shown to potentiate the biological activities of natural IFNs by ∼100-fold. Biochemical and structural characterization demonstrates that the AcCS stabilize the IFN-IFNAR2 binary complex by recognizing an IFN-induced conformational change in IFNAR2. Using IFN mutants that disrupt IFNAR1 binding, AcCS were able to enhance IFN antiviral potency without activating antiproliferative responses. This suggests AcCS can be used to manipulate cytokine signaling for basic science and possibly for therapeutic applications. PMID:26546677

  6. Controlling Rotavirus-associated diarrhea: Could single-domain antibody fragments make the difference?

    PubMed

    Maffey, Lucia; Vega, Celina G; Parreño, Viviana; Garaicoechea, Lorena

    2015-01-01

    Group A Rotavirus (RVA) remains a leading cause of severe diarrhea and child mortality. The variable domain of camelid heavy chain antibodies (VHH) display potent antigen-binding capacity, have low production costs and are suitable for oral therapies. Two sets of anti-RVA VHHs have been developed: ARP1-ARP3; 2KD1-3B2. Here, we explore the potential of both sets as a prevention strategy complementary to vaccination and a treatment option against RVA-associated diarrhea in endangered populations. Both sets have been expressed in multiple production systems, showing extensive neutralizing capacity against strains of RVA in vitro. They were also tested in the neonatal mouse model with various degrees of success in preventing or treating RVA-induced diarrhea. Interestingly, mitigation of the symptoms was also achieved with freeze-dried ARP1, so that it could be applied in areas where cold chains are difficult to maintain. 3B2 was tested in a pre-clinical trial involving gnotobiotic piglets where it conferred complete protection against RVA-induced diarrhea. ARP1 was used in the first clinical trial for anti-RVA VHHs, successfully reducing stool output in infants with RVA diarrhea, with no detected side effects. PMID:26654700

  7. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAb's) to surface molecules involved in the cell-cell interactions of mammalian cells grown as multicell spheroids (MCS). MCS are highly organized 3-dimensional multicellular structures which exhibit many characteristics in vivo tissues not found in conventional monolayer or suspension culture. They also provide a functional assay for surface adhesion molecules. In brief, MCS combine the relevance of organized tissues with the accuracy of in vitro methodology. Further, one can manipulate these MCS experimentally to discern important information about their biology.

  8. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions.

    PubMed

    Rodgers, Kyla R; Chou, Richard C

    2016-11-01

    Biologics, both monoclonal antibodies (mAbs) and fusion proteins, have revolutionized the practice of medicine. This year marks the 30th anniversary of the Food and Drug Administration approval of the first mAb for human use. In this review, we examine the biotechnological breakthroughs that spurred the explosive development of the biopharmaceutical mAb industry, as well as how critical lessons learned about human immunology informed the development of improved biologics. We also discuss the most common mechanisms of action of currently approved biologics and the indications for which they have been approved to date. PMID:27460206

  9. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease.

    PubMed

    Rotman, Maarten; Welling, Mick M; Bunschoten, Anton; de Backer, Maaike E; Rip, Jaap; Nabuurs, Rob J A; Gaillard, Pieter J; van Buchem, Mark A; van der Maarel, Silvère M; van der Weerd, Louise

    2015-04-10

    Treatment of neurodegenerative disorders such as Alzheimer's disease is hampered by the blood-brain barrier (BBB). This tight cerebral vascular endothelium regulates selective diffusion and active transport of endogenous molecules and xenobiotics into and out of the brain parenchyma. In this study, glutathione targeted PEGylated (GSH-PEG) liposomes were designed to deliver amyloid-targeting antibody fragments across the BBB into the brain. Two different formulations of GSH-PEG liposomes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and egg-yolk phosphatidylcholine (EYPC) were produced. Both formulations encapsulate 15kDa amyloid beta binding llama single domain antibody fragments (VHH-pa2H). To follow the biodistribution of VHH-pa2H rather than the liposome, the antibody fragment was labeled with the radioisotope indium-111. To prolong the shelf life of the construct beyond the limit of radioactive decay, an active-loading method was developed to efficiently radiolabel the antibody fragments after encapsulation into the liposomes, with radiolabeling efficiencies of up to 68% after purification. The radiolabeled liposomes were administered via a single intravenous bolus injection to APPswe/PS1dE9 double transgenic mice, a mouse model of Alzheimer's disease, and their wildtype littermates. Both GSH-PEG DMPC and GSH-PEG EYPC liposomes significantly increased the standard uptake values (SUV) of VHH-pa2H in the blood of the animals compared to free VHH-pa2H. Encapsulation in GSH-PEG EYPC liposomes resulted in the highest increase in SUV in the brains of transgenic animals. Overall, these data provide evidence that GSH-PEG liposomes may be suitable for specific delivery of single domain antibody fragments over the BBB into the brain. PMID:25668771

  10. A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles.

    PubMed

    Filbrun, Seth L; Driskell, Jeremy D

    2016-06-21

    The ability to evaluate antibody immobilization onto gold nanoparticles is critical for assessing coupling chemistry and optimizing the sensitivity of nanoparticle-enabled biosensors. Herein, we developed a fluorescence-based method for directly quantifying antibodies bound onto gold nanoparticles. Antibody-modified gold nanoparticles were treated with KI/I2 etchant to dissolve the gold nanoparticles. A desalting spin column was used to recover the antibody released from the nanoparticles, and NanoOrange, a fluorescent dye, was used to quantify the antibody. We determined 309 ± 93 antibodies adsorb onto a 60 nm gold nanoparticles (2.6 × 10(10) NP mL(-1)), which is consistent with a fully adsorbed monolayer based on the footprint of an IgG molecule. Moreover, the increase in hydrodynamic diameter of the conjugated nanoparticle (76 nm) compared to that of the unconjugated nanoparticle (62 nm) confirmed that multilayers did not form. A more conventional method of indirectly quantifying the adsorbed antibody by analysis of the supernatant overestimated the antibody surface coverage (660 ± 87 antibodies per nanoparticle); thus we propose the method described herein as a more accurate alternative to the conventional approach. PMID:27113720

  11. Monoclonal antibody-directed radioimmunoassay of specific cytochromes P-450

    SciTech Connect

    Song, B.J.; Fujino, T.; Park, S.S.; Friedman, F.K.; Gelboin, H.V.

    1984-02-10

    A rapid solid phase radioimmunoassay (RIA) for cytochromes P-450 has been developed utilizing specific monoclonal antibodies to major forms of rat liver cytochrome P-450 that are induced by 3-methylcholanthrene (MC-P-450) and phenobarbital (PB-P-450). Monoclonal antibodies (MAbs) that were endogenously labeled with (/sup 35/S)methionine were used to detect MAb-specific cytochromes P-450 in liver microsomes from untreated rats and rats pretreated with 3-methylcholanthrene (MC) or phenobarbital. The competitive binding assays are rapid and can detect cytochrome P-450 in less than 100 ng of microsomal protein. Tthe RIA was used to examine the distribution of MAb-specific cytochromes P-450 in extrahepatic tissues of MC-treated rats; an approximately 30- to 50-fold greater amount of MC-P-450 in liver relative to lung and kidney was observed, which corresponds well with aryl hydrocarbon hydroxylase activity in these tissues. The inducibility of MAb-specific cytochromes P-450 were observed in MC-treated rats, guinea pigs, and C57BL/6 mice, all highly inducible for aryl hydrocarbon hydroxylase; little increase was observed for the relatively noninducible DBA/2 mouse strain.

  12. Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies.

    PubMed

    Briney, Bryan; Sok, Devin; Jardine, Joseph G; Kulp, Daniel W; Skog, Patrick; Menis, Sergey; Jacak, Ronald; Kalyuzhniy, Oleksandr; de Val, Natalia; Sesterhenn, Fabian; Le, Khoa M; Ramos, Alejandra; Jones, Meaghan; Saye-Francisco, Karen L; Blane, Tanya R; Spencer, Skye; Georgeson, Erik; Hu, Xiaozhen; Ozorowski, Gabriel; Adachi, Yumiko; Kubitz, Michael; Sarkar, Anita; Wilson, Ian A; Ward, Andrew B; Nemazee, David; Burton, Dennis R; Schief, William R

    2016-09-01

    Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses. PMID:27610570

  13. PET Imaging of CD105/Endoglin Expression with a 61/64Cu-Labeled Fab Antibody Fragment

    PubMed Central

    Zhang, Yin; Hong, Hao; Orbay, Hakan; Valdovinos, Hector F.; Nayak, Tapas R.; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2013-01-01

    Purpose The goal of this study was to generate and characterize the Fab fragment of TRC105, a monoclonal antibody that binds with high affinity to human and murine CD105 (i.e. endoglin), and investigate its potential for positron emission tomography (PET) imaging of tumor angiogenesis in a small animal model after 61/64Cu-labeling. Methods TRC105-Fab was generated by enzymatic papain digestion. The integrity and CD105 binding affinity of TRC105-Fab was evaluated before NOTA (i.e., 1,4,7-triazacyclononane-1,4,7-triacetic acid) conjugation and 61/64Cu-labeling. Serial PET imaging and biodistribution studies were carried out in the syngeneic 4T1 murine breast cancer model to quantify tumor targeting efficacy and normal organ distribution of 61/64Cu-NOTA-TRC105-Fab. Blocking studies with unlabeled TRC105 were performed to confirm CD105 specificity of the tracer in vivo. Immunofluorescence staining was also conducted to correlate tracer uptake in the tumor and normal tissues with CD105 expression. Results TRC105-Fab was produced with high purity through papain digestion of TRC105, as confirmed by SDS-PAGE, HPLC analysis, and mass spectrometry. 61/64Cu-labeling of NOTA-TRC105-Fab was achieved with ~50% yield (specific activity: ~44 GBq/µmol). PET imaging revealed rapid uptake of 64Cu-NOTA-TRC105-Fab in the 4T1 tumor (3.6 ± 0.4, 4.2 ± 0.5, 4.9 ± 0.3, 4.4 ± 0.7, and 4.6 ± 0.8 %ID/g at 0.5, 2, 5, 16, and 24 h post-injection respectively; n = 4). Since tumor uptake peaked soon after tracer injection, 61Cu-labeled TRC105-Fab was also able to provide tumor contrast at 3 and 8 h post-injection. CD105 specificity of the tracer was confirmed with blocking studies and histological examination. Conclusion Herein we report PET imaging of CD105 expression with 61/64Cu-NOTA-TRC105-Fab, which exhibited prominent and target specific uptake in the 4T1 tumor. The use of a Fab fragment led to much faster tumor uptake (which peaked at a few hours after tracer injection) compared to

  14. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants.

    PubMed

    Brar, Hargeet K; Bhattacharyya, Madan K

    2012-06-01

    Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases. PMID:22397408

  15. Effect of radiochemical modification on biodistribution of scFvD2B antibody fragment recognising prostate specific membrane antigen.

    PubMed

    Frigerio, Barbara; Benigni, Fabio; Luison, Elena; Seregni, Ettore; Pascali, Claudio; Fracasso, Giulio; Morlino, Sara; Valdagni, Riccardo; Mezzanzanica, Delia; Canevari, Silvana; Figini, Mariangela

    2015-11-01

    Antibody-based reagents represent a promising strategy as clinical diagnostic tools. Prostate cancer (PCa) is the second-leading cause of death in males in the Western population. There is a presently unmet need for accurate diagnostic tool to localize and define the extent of both primary PCa and occult recurrent disease. One of the most suitable targets for PCa is the prostate-specific membrane antigen (PSMA) recognised by the monoclonal antibody D2B that we re-shaped into the single chain Fv (scFv format). Aim of this study was to evaluate in preclinical in vivo models the target specificity of scFvD2B after labelling with different radionuclides. (111)In radiolabelling was performed via the chelator Bz-NOTA, and (131)I radioiodination was performed using iodogen. The potential for molecular imaging and the biological behaviour of the radiolabelled scFvD2B were evaluated in mice bearing two subcutaneous PCa isogenic cell lines that differed only in PSMA expression. Biodistribution studies were performed at 3, 9, 15 and 24h after injection to determine the optimal imaging time point. A significant kidney accumulation, as percentage of injected dose of tissue (%ID/g), was observed for (111)In-scFvD2B at 3h after injection (45%ID/g) and it was maintained up to 24h (26%ID/g). By contrast, kidney accumulation of (131)I-scFvD2B was only marginally (0.3%ID/g at 24h). At the optimal time point defined between 15h and 24h, regardless of the radionuclide used, the scFvD2B was able to localize significantly better in the PSMA expressing tumours compared to the negative control; with (131)I-scFvD2B yielding a significantly better target/background ratio compared to (111)In-scFvD2B. These data suggest that, besides antigen specificity, chemical modification may affect antibody fragment biodistribution. PMID:26404855

  16. DNA-Directed Antibody Immobilization for Enhanced Detection of Single Viral Pathogens.

    PubMed

    Seymour, Elif; Daaboul, George G; Zhang, Xirui; Scherr, Steven M; Ünlü, Nese Lortlar; Connor, John H; Ünlü, M Selim

    2015-10-20

    Here, we describe the use of DNA-conjugated antibodies for rapid and sensitive detection of whole viruses using a single-particle interferometric reflectance imaging sensor (SP-IRIS), a simple, label-free biosensor capable of imaging individual nanoparticles. First, we characterize the elevation of the antibodies conjugated to a DNA sequence on a three-dimensional (3-D) polymeric surface using a fluorescence axial localization technique, spectral self-interference fluorescence microscopy (SSFM). Our results indicate that using DNA linkers results in significant elevation of the antibodies on the 3-D polymeric surface. We subsequently show the specific detection of pseudotyped vesicular stomatitis virus (VSV) as a model virus on SP-IRIS platform. We demonstrate that DNA-conjugated antibodies improve the capture efficiency by achieving the maximal virus capture for an antibody density as low as 0.72 ng/mm(2), whereas for unmodified antibody, the optimal virus capture requires six times greater antibody density on the sensor surface. We also show that using DNA conjugated anti-EBOV GP (Ebola virus glycoprotein) improves the sensitivity of EBOV-GP carrying VSV detection compared to directly immobilized antibodies. Furthermore, utilizing a DNA surface for conversion to an antibody array offers an easier manufacturing process by replacing the antibody printing step with DNA printing. The DNA-directed immobilization technique also has the added advantages of programmable sensor surface generation based on the need and resistance to high temperatures required for microfluidic device fabrication. These capabilities improve the existing SP-IRIS technology, resulting in a more robust and versatile platform, ideal for point-of-care diagnostics applications. PMID:26378807

  17. Interaction analysis of HIV-1 antibody 2G12 and Man9GlcNAc2 ligand: Theoretical calculations by fragment molecular orbital and MD methods

    NASA Astrophysics Data System (ADS)

    Koyama, Yuka; Ueno-Noto, Kaori; Takano, Keiko

    2013-07-01

    In HIV-1 infection, human antibody 2G12 is capable of recognizing the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. To investigate the ligand binding mechanisms of antibody 2G12 with glycans aiming for the contribution to the medications, we carried out classical molecular dynamics (MD) simulations and ab initio fragment molecular orbital (FMO) calculations on the antibody 2G12 complex with its high-mannose ligand. We found that Mannose D1 of the ligand had the largest binding affinity with the antibody, which was well consistent with experimental reports. Furthermore, significant roles of Mannose 4 and 4‧ in the ligand binding were theoretically indicated.

  18. Labeling monoclonal antibodies and F(ab')2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity.

    PubMed Central

    Zalutsky, M R; Garg, P K; Friedman, H S; Bigner, D D

    1989-01-01

    alpha-Particles such as those emitted by 211At may be advantageous for radioimmunotherapy since they are radiation of high linear energy transfer, depositing high energy over a short distance. Here we describe a strategy for labeling monoclonal antibodies and F(ab')2 fragments with 211At by means of the bifunctional reagent N-succinimidyl 3-(trimethylstannyl)benzoate. An intact antibody, 81C6, and the F(ab')2 fragment of Me1-14 (both reactive with human gliomas) were labeled with 211At in high yield and with a specific activity of up to 4 mCi/mg in a time frame compatible with the 7.2-hr half-life of 211At. Quantitative in vivo binding assays demonstrated that radioastatination was accomplished with maintenance of high specific binding and affinity. Comparison of the biodistribution of 211At-labeled Me1-14 F(ab')2 to that of a nonspecific antibody fragment labeled with 211At and 131I in athymic mice bearing D-54 MG human glioma xenografts demonstrated selective and specific targeting of 211At-labeled antibody in this human tumor model. PMID:2476813

  19. Three-dimensional reconstruction of a co-complex of F-actin with antibody Fab fragments to actin's NH2 terminus.

    PubMed Central

    Orlova, A; Yu, X; Egelman, E H

    1994-01-01

    We have decorated F-actin with Fab fragments of antibodies to actin residues 1-7. These antibody fragments do not strongly affect the rigor binding of myosin S-1 to actin, but do affect the binding of S-1 to actin in the presence of nucleotide (DasGupta, G., and E. Reisler, 1989. J. Mol. Biol. 207:833-836; 1991. Biochemistry. 30:9961-9966; 1992. Biochemistry. 31:1836-1841). Although the binding constant is rather low, we estimate that we have achieved about 85% occupancy of the actin sites. Three-dimensional reconstructions from electron micrographs of both negatively stained and frozen-hydrated filaments show that the Fab fragment is bound at the location of the NH2 terminus in the model of Holmes et al. (Holmes, K.C., D. Popp, W. Gebhard, and W. Kabsch. 1990. Nature. 347:37-44) for F-actin, excluding very different orientations of the actin subunit in the filament. Most of the mass of the antibody is not visualized, which is due to the large mobility of the NH2 terminus in F-actin, differences in binding angle within the polyclonal antibody population, or a combination of both of these possibilities. Images FIGURE 1 FIGURE 5 FIGURE 7 FIGURE 10 PMID:8161679

  20. Expression and characterization of single-chain variable fragment antibody against staphylococcal enterotoxin A in Escherichia coli.

    PubMed

    Chen, Weifeng; Hu, Li; Liu, Aiping; Li, Jinquan; Chen, Fusheng; Wang, Xiaohong

    2014-11-01

    The staphylococcal enterotoxins (SEs) are potent gastrointestinal exotoxins synthesized by Staphylococcus aureus, which is responsible for various diseases including septicemia, food poisoning, and toxic shock syndrome, as well as bovine mastitis. Among them, staphylococcal enterotoxin A (SEA) is one of the most commonly present serotypes in staphylococcal food poisoning cases. In this study, the stable hybridoma 3C12 producing anti-SEA monoclonal antibody was established with an equilibrium dissociation constant (KD) of 1.48 × 10(-8) mol·L(-1), its ScFv-coding genes were obtained and then the anti-SEA single chain variable fragment (ScFv) protein was expressed in Escherichia coli. Characterization of the expressed target ScFv protein was analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis, Western blot, and enzyme-linked immunosorbent assay. The results demonstrated that the recombinant anti-SEA ScFv protein retained a specific binding activity for SEA, and the KD value of the soluble ScFv was about 3.75 × 10(-7) mol·L(-1). The overall yield of bioactive anti-SEA ScFv in E. coli flask culture was more than 10 mg·L(-1). PMID:25322256

  1. Single cell analysis applied to antibody fragment production with Bacillus megaterium: development of advanced physiology and bioprocess state estimation tools

    PubMed Central

    2011-01-01

    Background Single cell analysis for bioprocess monitoring is an important tool to gain deeper insights into particular cell behavior and population dynamics of production processes and can be very useful for discrimination of the real bottleneck between product biosynthesis and secretion, respectively. Results Here different dyes for viability estimation considering membrane potential (DiOC2(3), DiBAC4(3), DiOC6(3)) and cell integrity (DiBAC4(3)/PI, Syto9/PI) were successfully evaluated for Bacillus megaterium cell characterization. It was possible to establish an appropriate assay to measure the production intensities of single cells revealing certain product secretion dynamics. Methods were tested regarding their sensitivity by evaluating fluorescence surface density and fluorescent specific concentration in relation to the electronic cell volume. The assays established were applied at different stages of a bioprocess where the antibody fragment D1.3 scFv production and secretion by B. megaterium was studied. Conclusions It was possible to distinguish between live, metabolic active, depolarized, dormant, and dead cells and to discriminate between high and low productive cells. The methods were shown to be suitable tools for process monitoring at single cell level allowing a better process understanding, increasing robustness and forming a firm basis for physiology-based analysis and optimization with the general application for bioprocess development. PMID:21496219

  2. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    PubMed

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  3. In Situ X-Ray Observations of Dendritic Fragmentation During Directional Solidification of a Sn-Bi Alloy

    NASA Astrophysics Data System (ADS)

    Gibbs, John W.; Tourret, Damien; Gibbs, Paul J.; Imhoff, Seth D.; Gibbs, Meghan J.; Walker, Brandon A.; Fezzaa, Kamel; Clarke, Amy J.

    2016-01-01

    Dendrite fragmentation is an important phenomenon in microstructural development during solidification. For instance, it plays a key role in initiating the columnar-to-equiaxed transition (CET). Here, we use x-ray radiography to study dendrite fragmentation rate in a Sn-39.5 wt.% Bi alloy during directional solidification. Experiments were performed in which solidification was parallel and anti-parallel to gravity, leading to significantly different fragmentation rates. We quantify the distribution of fragmentation rate as a function of distance from the solidification front, time in the mushy zone, and volume fraction of solid. While the observed fragmentation rate can be high, there is no evidence of a CET, illustrating that it requires more than just fragmentation to occur.

  4. Co-Expression of Anti-Rotavirus Proteins (Llama VHH Antibody Fragments) in Lactobacillus: Development and Functionality of Vectors Containing Two Expression Cassettes in Tandem

    PubMed Central

    Günaydın, Gökçe; Álvarez, Beatriz; Lin, Yin; Hammarström, Lennart; Marcotte, Harold

    2014-01-01

    Rotavirus is an important pediatric pathogen, causing severe diarrhea and being associated with a high mortality rate causing approximately 500 000 deaths annually worldwide. Even though some vaccines are currently available, their efficacy is lower in the developing world, as compared to developed countries. Therefore, alternative or complementary treatment options are needed in the developing countries where the disease burden is the largest. The effect of Lactobacillus in promoting health and its use as a vehicle for delivery of protein and antibody fragments was previously shown. In this study, we have developed co-expression vectors enabling Lactobacillus paracasei BL23 to produce two VHH fragments against rotavirus (referred to as anti-rotavirus proteins 1 and 3, ARP1 and ARP3) as secreted and/or surface displayed products. ARP1 and ARP3 fragments were successfully co-expressed as shown by Western blot and flow cytometry. In addition, engineered Lactobacillus produced VHH antibody fragments were shown to bind to a broad range of rotavirus serotypes (including the human rotavirus strains 69M, Va70, F45, DS1, Wa and ST3 and simian rotavirus strains including RRV and SA11), by flow cytometry and ELISA. Hereby, we have demonstrated for the first time that when RRV was captured by one VHH displayed on the surface of co-expressor Lactobacillus, targeting other epitope was possible with another VHH secreted from the same bacterium. Therefore, Lactobacillus producing two VHH antibody fragments may potentially serve as treatment against rotavirus with a reduced risk of development of escape mutants. This co-expression and delivery platform can also be used for delivery of VHH fragments against a variety of mucosal pathogens or production of other therapeutic molecules. PMID:24781086

  5. In vitro folding and thermodynamic stability of an antibody fragment selected in vivo for high expression levels in Escherichia coli cytoplasm.

    PubMed

    Martineau, P; Betton, J M

    1999-10-01

    We recently isolated a mutant of a human anti-beta-galactosidase single chain antibody fragment (scFv) able to fold at high levels in Escherichia coli cytoplasm. When targeted to the periplasm, this mutant and the wild-type scFv are both expressed at comparable levels in a soluble, active and oxidized form. If a reducing agent is added to the growth medium, only the mutant scFv is still able to fold, showing that in vivo aggregation is a direct consequence of the lack of disulphide bond formation and not of the cellular localization. In vitro denaturation/renaturation experiments show that the mutant protein is more stable than the wild-type scFv. Furthermore, refolding kinetics under reducing conditions show that the mutant folds faster than the wild-type protein. Aggregation does not proceed from the native or unfolded conformation of the protein, but from a species only present during the unfolding/refolding transition. In conclusion, the in vivo properties of the mutant scFv can be explained by, first, an increase in the stability of the protein in order to tolerate the removal of the two disulphide bonds and, second, a modification of its folding properties that reduces the kinetic competition between folding and aggregation of a reduced folding intermediate. PMID:10525415

  6. Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv).

    PubMed

    Ferreira, A R; Ataíde, F; von Stosch, M; Dias, J M L; Clemente, J J; Cunha, A E; Oliveira, R

    2012-11-01

    In this study, fed-batch cultures of a Pichia pastoris strain constitutively expressing a single chain antibody fragment (scFv) under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter were performed in a pilot 50 L bioreactor. Due to the very high cell density achieved within the first 75 h, typically between 140 and 160 g-DCW/L of dry cell weight (DCW), most of the scFv is produced under hard oxygen transfer limitation. To improve scFv productivity, a direct adaptive dissolved oxygen (DO)-stat feeding controller that maximizes glycerol feeding under the constraint of available oxygen transfer capacity was developed and applied to this process. The developed adaptive controller enabled to maximize glycerol feeding through the regulation of DO concentration between 3 and 5 % of saturation, thereby improving process productivity. Set-point convergence dynamics are characterized by a fast response upon large perturbations to DO, followed by a slower but very robust convergence in the vicinity of the boundary with almost imperceptible overshoot. Such control performance enabled operating closer to the 0 % boundary for longer periods of time when compared to a traditional proportional-integral-derivative algorithm, which tends to destabilize with increasing cell density. PMID:22610694

  7. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    SciTech Connect

    Thakur, M.L.

    1991-04-30

    This patent describes a method for directly labeling proteins with radionuclides for use in diagnostic imaging and therapy. It comprises: the steps of incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein-containing solution and incubating.

  8. Development of antibody directed nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Ivkov, R.; DeNardo, S. J.; Meirs, L. A.; Natarajan, A.; DeNardo, G. L.; Gruettner, C.; Foreman, A. R.

    2007-02-01

    The pharmacokinetics, tumor uptake, and biologic effects of inductively heating 111In-chimeric L6 (ChL6) monoclonal antibody (mAb)-linked iron oxide nanoparticle (bioprobes) by externally applied alternating magnetic fields (AMF) were studied in athymic mice bearing human breast cancer HBT 3477 xenografts. In addition, response was correlated with calculated total deposited heat dose. Methods: Using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide HCl, 111In-7,10-tetraazacyclododecane-N, N',N'',N'''-tetraacetic acid-ChL6 was conjugated to the carboxylated polyethylene glycol on dextran-coated iron oxide 20-nm particles, one to two mAbs per nanoparticle. After magnetic purification and sterile filtration, pharmacokinetics, histopathology, and AMF/bioprobe therapy were done using 111In-ChL6 bioprobe doses (20 mcg/2.2 mg ChL6/ bioprobe), i.v. with 50 mcg ChL6 in athymic mice bearing HBT 3477; a 153 kHz AMF was given 72 hours postinjection for therapy with amplitudes of 1,300, 1,000, or 700 Oe. Weights, blood counts, and tumor size were monitored and compared with control mice receiving nothing, or AMF, or bioprobes alone. Results: 111In-ChL6 bioprobe binding in vitro to HBT 3477 cells was 50% to 70% of that of 111In-ChL6. At 48 hours, tumor, lung, kidney, and marrow uptakes of the 111In-ChL6 bioprobes were not different from that observed in prior studies of 111In-ChL6. Significant therapeutic responses from AMF/bioprobe therapy were shown compared with no treatment. In addition, greatest therapeutic benefit was observed for the 700 Oe treatment cohort. Toxicity was only seen in the 1,300 Oe AMF cohort, with 4 of 12 immediate deaths associated with skin erythema and petechiae. Conclusion: This study shows that mAb-conjugated nanoparticles (bioprobes), when given i.v., escape into the extravascular space and bind to cancer cell membrane antigen.Thus, bioprobes can be used in concert with externally applied AMF to deliver thermoablative cancer therapy. Therapeutic benefit

  9. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation

    PubMed Central

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2015-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions. PMID:25484039

  10. Epitope Mapping of Antigenic MUC1 Peptides to Breast Cancer Antibody Fragment B27.29: A Heteronuclear NMR Study

    SciTech Connect

    Grinstead, Jeffrey S.; Schuman, Jason T.; Campbell, Ann P.

    2003-11-13

    MUC1 mucin is a breast cancer-associated transmembrane glycoprotein, of which the extracellular domain is formed by the repeating 20-amino acid sequence GVTSAPDTRPAPGSTAPPAH. In neoplastic breast tissue, the highly immunogenic sequence PDTRPAP (in bold above) is exposed. Antibodies raised directly against MUC1-expressing tumors offer unique access to this neoplastic state, as they represent immunologically relevant ''reverse templates'' of the tumor-associated mucin. In a previous study [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], 1H NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRPAP core epitope sequence on the recognition and binding of Mab B27.29, a monoclonal antibody raised against breast tumor cells. In the study presented here, isotope-edited NMR methods, including 15N and 13C relaxation measurements, were used to probe the recognition and binding of the PDTRPAP epitope sequence to Fab B27.29. Two peptides were studied: a one-repeat MUC1 16mer peptide of the sequence GVTSAPDTRPAPGSTA and a two-repeat MUC1 40mer peptide of the sequence (VTSAPDTRPAPGSTAPPAHG)2. 15N and 13C NMR relaxation parameters were measured for both peptides free in solution and bound to Fab B27.29. The 13CR T1 values best represent changes in the local correlation time of the peptide epitope upon binding antibody, and demonstrate that the PDTRPAP sequence is immobilized in the antibody-combining site. This result is also reflected in the appearance of the 15N- and 13C-edited HSQC spectra, where line broadening of the same peptide epitope resonances is observed. The PDTRPAP peptide epitope expands upon the peptide epitope identified previously in our group as PDTRP by homonuclear NMR experiments [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], and illustrates the usefulness of the heteronuclear NMR experiments. The implications of these results are discussed within the context of MUC1 breast cancer vaccine design.

  11. PET Imaging of Abdominal Aortic Aneurysm with 64Cu-Labeled Anti-CD105 Antibody Fab Fragment

    PubMed Central

    Shi, Sixiang; Orbay, Hakan; Yang, Yunan; Graves, Stephen A.; Nayak, Tapas R.; Hong, Hao; Hernandez, Reinier; Luo, Haiming; Goel, Shreya; Theuer, Charles P.; Nickles, Robert J.; Cai, Weibo

    2015-01-01

    The critical challenge in abdominal aortic aneurysm (AAA) research is the accurate diagnosis and assessment of AAA progression. Angiogenesis is a pathological hallmark of AAA, and CD105 is highly expressed on newly formed vessels. Our goal was to use 64Cu-labeled anti-CD105 antibody Fab fragment for noninvasive assessment of angiogenesis in the aortic wall in a murine model of AAA. Methods Fab fragment of TRC105, a mAb that specifically binds to CD105, was generated by enzymatic papain digestion and conjugated to NOTA for 64Cu-labeling. Binding affinity/specificity of NOTA-TRC105-Fab was evaluated by flow cytometry and various ex vivo studies. BALB/c mice were anesthetized and treated with calcium phosphate to induce AAA, which underwent weekly PET scans using 64Cu-NOTA-TRC105-Fab. Biodistribution and autoradiography studies were also performed to confirm the accuracy of PET results. Results NOTA-TRC105-Fab exhibited high purity and specifically bound to CD105 in vitro. Uptake of 64Cu-NOTA-TRC105-Fab increased from a control level of 3.4 ± 0.1 to 9.5 ± 0.4 %ID/g at 6 h p.i. on Day 5, and decreased to 7.2 ± 1.4 %ID/g on Day 12 which correlated well with biodistribution and autoradiography studies (i.e. much higher tracer uptake in AAA than normal aorta). Of note, enhanced AAA contrast was achieved, due to the minimal background in the abdominal area of mice. Degradation of elastic fibers and highly expressed CD105 were observed in ex vivo studies. Conclusion 64Cu-NOTA-TRC105-Fab cleared rapidly through kidneys, which enabled noninvasive PET imaging of the aorta with enhanced contrast and showed increased angiogenesis (CD105 expression) during AAA. 64Cu-NOTA-TRC105-Fab PET may potentially be used for future diagnosis and prognosis of AAA. PMID:25883125

  12. Specificity of antibodies against Neisseria gonorrhoeae that stimulate neutrophil chemotaxis. Role of antibodies directed against lipooligosaccharides.

    PubMed Central

    Densen, P; Gulati, S; Rice, P A

    1987-01-01

    Five strains each of Neisseria gonorrhoeae sensitive or resistant to complement (C) dependent killing by normal human serum (NHS) were examined for their ability to stimulate chemotaxis of polymorphonuclear leukocytes (PMNs) after preincubation with NHS; or IgM or IgG derived from NHS. Serum-sensitive N. gonorrhoeae stimulated C-dependent chemotaxis when opsonized with IgM, but not IgG, however, serum-resistant strains, taken as a whole, failed to promote chemotaxis when opsonized with either isotype. IgM titers in NHS against lipooligosaccharide (LOS) antigens from individual serum-sensitive, but not serum-resistant strains, correlated with the magnitude of chemotaxis generated by the corresponding opsonized strains (r = 0.99). Western blots demonstrated that IgM and IgG from NHS recognized different antigenic determinants on LOS from serum-sensitive gonococci. IgM from NHS immunopurified against serum-sensitive LOS accounted for two-thirds of the chemotaxis promoting activity present in whole serum. IgG titers in NHS against LOS antigens from individual serum-resistant strains also correlated with magnitude of chemotaxis generated by the corresponding opsonized strains (r = 0.87), although most opsonized serum-resistant strains did not generate significantly higher magnitudes of chemotaxis than controls. In contrast, a serum-resistant isolate from a patient with disseminated gonococcal infection (DGI) stimulated chemotaxis when opsonized with IgG obtained from the patient's convalescent serum. By Western blot, convalescent IgG antibody recognized an additional determinant on serum-resistant LOS not seen by normal IgG. Images PMID:2439546

  13. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli.

    PubMed

    Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei

    2013-12-01

    Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein. PMID:24128692

  14. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    PubMed

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection. PMID:26772159

  15. Complete regression of a guinea pig hepatocarcinoma by immunotherapy with "tumor-immune" RNA or antibody to fibrin fragment E.

    PubMed

    Schlager, S I; Dray, S

    1976-01-01

    Two novel immunotherapeutic regimens were developed for a uniformly lethal, intradermally growing transplantable ascites variant (line 10) of a diethylnitrosamine-induced hepatoma in strain 2 guinea pigs. In an apparently tumor-specific immunotherapy model, 32 guinea pigs were cured by the injection into the tumor area, five or seven days after tumor challenge, of syngeneic or xenogeneic RNA extracts obtained from lymphoid tissues of line 10-immune strain 2 guinea pigs or rhesus monkeys, as part of a total regimen which included syngeneic nonsensitive peritoneal exudate cells injected prior to, and tumor-specific antigen injected after, the RNA. In another immunotherapy model, not tumor-specific, 18 strain 2 guinea pigs were cured by the injection into the tumor area, 6 and 16 days after tumor challenge, of antibody specific for fibrin fragment E (FFE), an essential component in the formation of a fibrin matrix considered to be important in tumor development. When therapy was delayed to 12 days in the RNA test system, or to 16 days in the anti-FFE test system, complete abrogation of the tumors did not occur. The long-term survival of the 50 successfully treated animals and their immunity to further tumor challenge indicated that both immunotherapeutic procedures had systemic effects. To test this further, line 10 cells were injected intradermally simultaneously at two sites and only one site was treated. When the one tumor location was treated with anti-FFE, complete regression of the treated tumor and a 30% retardation in the development of the untreated tumor were observed. When this tumor location was treated with the RNA regimen, complete regression of the tumors occurred at both the treated and the untreated sites. Optimal conditions for both immunotherapeutic models and their combination have yet to be establshed. Nonetheless, both immunotherapeutic regimens were more effective than any other immunotherapy thus far reported for this tumor, including the use

  16. Investigations of ascorbate for direct labeling of antibodies with technetium-99m

    SciTech Connect

    Hnatowich, D.J.; Winnard, P. Jr.; Virzi, F.

    1994-01-01

    Recently, a method for the direct labeling of antibodies with {sup 99m}Tc was described in which sulfhydryls were reportedly generated by reduction of antibody disulfides with ascorbic acid. Thereafter, these proteins may be labeled at high efficiency with {sup 99m}Tc following reduction of pertechnetate with dithionite. This investigation was initially conducted to evaluate the mechanism of the increased stability towards cysteine challenge reported for the label and subsequently to determine the role of ascorbate in the labeling process. It was possible to reproduce the reported high labeling efficiencies by increasing the dithionite concentration fivefold, presumably because of variabilities among lots of commercial sodium dithionite. Despite success in labeling, it was not possible to confirm that antibody reduction followed the treatment with ascorbate. Using both Ellman`s reagent and 2,2`-dithiodipyridine as indicators, the authors were unable to detect sulfhydryls on one IgG antibody treated at ten times the suggested ascorbate-to-antibody molar ratio. It was estimated that the number of sulfhydryls generated could not have been more than 1% (dithiodipyridine) to 2% (Ellman`s). Furthermore, radiolabeling efficiencies for two IgG antibodies and stabilities of the label to cysteine challenge were unchanged when the ascorbate was eliminated. The number of sulfhydryls generated by treatment of the antibody with dithionite at 1-2 times the concentration required for adequate labeling was about 1% (dithiodipyridine) to 5% (Ellman`s). For the conditions of this investigation and for the antibodies employed, ascorbate apparently played no more than a minor role at best in the labeling process. If antibody reduction occurred, this most likely was a result of residual dithionite presented to the protein along with the reduced {sup 99m}Tc. 31 refs., 2 figs.

  17. Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella.

    PubMed

    Ramachandran, Girish; Tennant, Sharon M; Boyd, Mary A; Wang, Jin Y; Tulapurkar, Mohan E; Pasetti, Marcela F; Levine, Myron M; Simon, Raphael

    2016-01-01

    Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity. PMID:26998925

  18. Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella

    PubMed Central

    Boyd, Mary A.; Wang, Jin Y.; Tulapurkar, Mohan E.; Pasetti, Marcela F.; Levine, Myron M.; Simon, Raphael

    2016-01-01

    Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity. PMID:26998925

  19. Using the local immune response from the natural buffalo host to generate an antibody fragment library that binds the early larval stages of Schistosoma japonicum.

    PubMed

    Hosking, Christopher G; Driguez, Patrick; McWilliam, Hamish E G; Ilag, Leodevico L; Gladman, Simon; Li, Yuesheng; Piedrafita, David; McManus, Donald P; Meeusen, Els N T; de Veer, Michael J

    2015-09-01

    Antibodies isolated from the local draining inguinal lymph node of field exposed-water buffaloes following challenge with Schistosoma japonicum cercariae showed high reactivity towards S. japonicum antigen preparations and bound specifically to formaldehyde-fixed S. japonicum schistosomules. Using this specific local immune response we produced a series of single-chain antibody Fv domain libraries from the same lymph nodes. Removal of phage that cross reacted with epitopes on adult parasites yielded a single-chain antibody Fv domain-phage library that specifically bound to whole formaldehyde-fixed and live S. japonicum schistosomules. DNA sequencing indicated clear enrichment of the single-chain antibody Fv domain library for buffalo B-cell complementarity determining regions post-selection for schistosomule binding. This study also revealed that long heavy chain complementarity determining regions appear to be an important factor when selecting for antibody binding fragments against schistosomule proteins. The selected single-chain antibody Fv domain-phage were used to probe a schistosome-specific protein microarray, which resulted in the recognition of many proteins expressed across all schistosome life-cycle stages. Following absorption to adult worms, the single-chain antibody Fv domain-phage library showed significantly reduced binding to most proteins, whilst two proteins (NCBI GenBank accession numbers AY915878 and AY815196) showed increased binding. We have thus developed a unique set of host derived single-chain antibody Fv domains comprising buffalo B-cell variable regions that specifically bind to early S. japonicum life-stages. PMID:26116907

  20. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.

    PubMed

    Doria-Rose, Nicole A; Schramm, Chaim A; Gorman, Jason; Moore, Penny L; Bhiman, Jinal N; DeKosky, Brandon J; Ernandes, Michael J; Georgiev, Ivelin S; Kim, Helen J; Pancera, Marie; Staupe, Ryan P; Altae-Tran, Han R; Bailer, Robert T; Crooks, Ema T; Cupo, Albert; Druz, Aliaksandr; Garrett, Nigel J; Hoi, Kam H; Kong, Rui; Louder, Mark K; Longo, Nancy S; McKee, Krisha; Nonyane, Molati; O'Dell, Sijy; Roark, Ryan S; Rudicell, Rebecca S; Schmidt, Stephen D; Sheward, Daniel J; Soto, Cinque; Wibmer, Constantinos Kurt; Yang, Yongping; Zhang, Zhenhai; Mullikin, James C; Binley, James M; Sanders, Rogier W; Wilson, Ian A; Moore, John P; Ward, Andrew B; Georgiou, George; Williamson, Carolyn; Abdool Karim, Salim S; Morris, Lynn; Kwong, Peter D; Shapiro, Lawrence; Mascola, John R

    2014-05-01

    Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development. PMID:24590074

  1. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus.

    PubMed

    Jacob, Christian L; Lamorte, Louie; Sepulveda, Eliud; Lorenz, Ivo C; Gauthier, Annick; Franti, Michael

    2013-09-01

    Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection. PMID:23849792

  2. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    SciTech Connect

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. We have studied the binding of 125I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind (formula; see text). Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10(8) M-1 are not likely to be useful for drug targeting or tumor imaging.

  3. Rabies direct fluorescent antibody test does not inactivate rabies or eastern equine encephalitis viruses.

    PubMed

    Jarvis, Jodie A; Franke, Mary A; Davis, April D

    2016-08-01

    An examination using the routine rabies direct fluorescent antibody test was performed on rabies or Eastern equine encephalitis positive mammalian brain tissue to assess inactivation of the virus. Neither virus was inactivated with acetone fixation nor the routine test, thus laboratory employees should treat all samples as rabies and when appropriate Eastern equine encephalitis positive throughout the whole procedure. PMID:27079827

  4. Direct fluorescent antibody technique for the detection of bacterial kidney disease in paraffin-embedded tissues

    USGS Publications Warehouse

    Ochiai, T.; Yasutake, W.T.; Gould, R.W.

    1985-01-01

    The direct fluorescent antibody technique (FAT) was successfully used to detect the causative agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, in Bouin's solution flexed and paraffinembedded egg and tissue sections. This method is superior to gram stain and may be particularly useful in detecting the BKD organism in fish with low-grade infection.

  5. Direct calculation of the sizes of DNA fragments separated by gel electrophoresis using programmes written for a pocket calculator.

    PubMed

    Gough, E J; Gough, N M

    1984-01-11

    In order to facilitate the direct computation of the sizes of DNA fragments separated by gel electrophoresis, we have written and evaluated programmes for the Hewlett-Packard 41C programmable calculator. The sizes estimated for DNA fragments of known length using some of these programmes were found to be more accurate than the estimates obtained by conventional graphical procedures. These programmes should be adaptable to other programmable calculators. PMID:6320110

  6. Conserved stem fragment from H3 influenza hemagglutinin elicits cross-clade neutralizing antibodies through stalk-targeted blocking of conformational change during membrane fusion.

    PubMed

    Gong, Xin; Yin, He; Shi, Yuhua; Guan, Shanshan; He, Xiaoqiu; Yang, Lan; Yu, Yongjiao; Kuai, Ziyu; Jiang, Chunlai; Kong, Wei; Wang, Song; Shan, Yaming

    2016-04-01

    Currently available influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies due to the mutability of virus sequences and conformational changes during protective immunity, thereby limiting their efficacy. This problem needs to be addressed by further understanding the mechanisms of neutralization and finding the desired neutralizing site during membrane fusion. This study specifically focused on viruses of the H3N2 subtype, which have persisted as a principal source of influenza-related morbidity and mortality in humans since the 1968 influenza pandemic. Through sequence alignment and epitope prediction, a series of highly conserved stem fragments (spanning 47 years) were found and coupled to the Keyhole Limpet Hemocyanin (KLH) protein. By application of a combinatorial display library and crystal structure modeling, a stem fragment immunogen, located at the turning point of the HA neck undergoing conformational change during membrane fusion with both B- and T-cell epitopes, was identified. After synthesis of the optimal stem fragment using a multiple antigen peptide (MAP) system, strong humoral immune responses and cross-clade neutralizing activities against strains from the H3 subtype of group 2 influenza viruses after animal immunizations were observed. By detection of nuclear protein immunofluorescence with acid bypass treatment, antisera raised against MAP4 immunogens of the stem fragment showed the potential to inhibit the conformational change of HA in stem-targeted virus neutralization. The identification of this conserved stem fragment provides great potential for exploitation of this site of vulnerability in therapeutic and vaccine design. PMID:26875772

  7. Direct radiolabeling of antibody against stage specific embryonic antigen for diagnostic imaging

    DOEpatents

    Rhodes, Buck A.

    1994-01-01

    Antibody against stage specific embryonic antigen-1 is radiolabeled by direct means with a radionuclide for use in detection of occult abscess and inflammation. Radiolabeling is accomplished by partial reduction of the disulfide bonds of the antibody using Sn(II), or using other reducing agents followed by the addition of Sn(II), removal of excess reducing agent and reduction by-products, and addition of a specified amount of radionuclide reducing agent, such as stannous tartrate. The resulting product may be store frozen or lyophilized, with radiolabeling accomplished by the addition of the radionuclide.

  8. Direct radiolabeling of antibody against stage specific embryonic antigen for diagnostic imaging

    DOEpatents

    Rhodes, B.A.

    1994-09-13

    Antibodies against stage specific embryonic antigen-1 is radiolabeled by direct means with a radionuclide for use in detection of occult abscess and inflammation. Radiolabeling is accomplished by partial reduction of the disulfide bonds of the antibody using Sn(II), or using other reducing agents followed by the addition of Sn(II), removal of excess reducing agent and reduction by-products, and addition of a specified amount of radionuclide reducing agent, such as stannous tartrate. The resulting product may be stored frozen or lyophilized, with radiolabeling accomplished by the addition of the radionuclide. No Drawings

  9. Radiometric assay for direct quantitation of rat liver cytochrome P-450b using monoclonal antibodies.

    PubMed

    Rothwell, C E; Khazaeli, M B; Bernstein, I A

    1985-08-15

    A simple and sensitive assay has been developed that is capable of detecting as little as 0.2 ng of the major isozyme of cytochrome P-450 (P-450b) isolated from the livers of phenobarbital-induced rats. This assay employs monoclonal antibodies generated against cytochrome P-450b to directly quantify the levels of this enzyme in various tissues. Separation of bound from free labeled antibody is achieved by using 6,9-diaminoacridine lactate (Rivanol). The useful range of the assay is between 1 and 100 ng of P-450b. PMID:3935002

  10. Engineering, purification and applications of His-tagged recombinant antibody fragments with specificity for the major birch pollen allergen, bet v1.

    PubMed

    Flicker, S; Laffer, S; Steinberger, P; Alhani, B; Zhu, Y; Laukkanen, M L; Keinänen, K; Kraft, D; Valenta, R

    2000-01-01

    Type I allergy, an immunodisorder affecting almost 20% of the population worldwide, is based on the production of IgE antibodies against per se harmless allergens. We report the expression of hexahistidine-tagged antibody fragments (Fabs) with specificity for Bet v1, the major birch pollen allergen, in Escherichia coli. The cDNA coding for the heavy chain fragment of a mouse monoclonal anti-Bet v1 antibody, Bip 1, was engineered by PCR to contain a hexahistidine-encoding 3' end. The modified Bip1 heavy chain cDNA was co-expressed in E. coli XL-1 Blue with the Bip 1 light chain cDNA using the combinatorial plasmid pComb3H. His-tagged recombinant (r) Bip 1 Fabs were isolated by nickel affinity chromatography and rBip 1 Fabs without His-tag were purified via affinity to rBet v1. rBip 1 Fabs with and without His-tag bound specifically to rBet v1 and, like Bet v1 -specific human serum IgE and rabbit-anti rBet v1 antibodies, cross-reacted with Bet v1-related allergens in other plant-species (alder, oak, hazelnut). We demonstrate the usefulness of His-tagged rBip 1 Fabs (1) for the identification of pollen samples containing Bet v 1 by particle blotting, (2) forthe detection of Bet v1-specific IgE antibodies in human serum samples by sandwich ELISA and (3) for the quantification of Bet v1 in solution. Based on these examples we suggest to use rBip 1 Fabs for the detection of Bet v1 and Bet v1-related allergens in natural allergen sources for allergy prevention, as well as for the standardization of natural allergen extracts produced for diagnosis and immunotherapy of birch pollen allergy. PMID:10722049