Note: This page contains sample records for the topic antibody-coated magnetic nanoparticles from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues.  

PubMed

Aeromonas salmonicida is the causative agent of furunculosis, a disease that affects both salmonid and non-salmonid fish. Detection of A. salmonicida can be labour intensive and time consuming because of the difficulties in distinguishing the bacterium from other species given the wide variety of existing biochemical profiles and the slow growth characteristics which allow other organisms to overgrow the A. salmonicida. Herein, we report the development of a specific immunoassay using gold-conjugated polyclonal antibodies for the rapid detection of A. salmonicida in fish tissues. Monodispersible 13-nm gold nanoparticles were coated with polyclonal antibodies specific to A. salmonicida. Reddish purple agglutination of gold particles indicated the presence of A. salmonicida in samples. Positive reactions were detected visually with the naked eye. No agglutination was observed when A. salmonicida antibody-coated gold nanoparticles were tested with other common bacterial fish pathogens, thereby verifying the specificity of the assay. The assay could detect A. salmonicida in fish tissues down to 1 × 10(4) ?CFU?mL(-1) , and results were obtained within 45 min. The antibody-coated gold nanoparticles were stable for at least 2 months at 4 ° C. The immunoassay using antibody-coated gold nanoparticles represents a promising tool for the rapid and specific detection of A. salmonicida in fish tissues. PMID:21988356

Saleh, M; Soliman, H; Haenen, O; El-Matbouli, M

2011-11-01

2

Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium  

PubMed Central

Vascular endothelium offers a variety of therapeutic targets for the treatment of cancer, cardiovascular diseases, inflammation, and oxidative stress. Significant research has been focused on developing agents to target the endothelium in diseased tissues. This includes identification of antibodies against adhesion molecules and neovascular expression markers or peptides discovered using phage display. Such targeting molecules also have been used to deliver nanoparticles to the endothelium of the diseased tissue. Here we report, based on in vitro and in vivo studies, that the specificity of endothelial targeting can be enhanced further by engineering the shape of ligand-displaying nanoparticles. In vitro studies performed using microfluidic systems that mimic the vasculature (synthetic microvascular networks) showed that rod-shaped nanoparticles exhibit higher specific and lower nonspecific accumulation under flow at the target compared with their spherical counterparts. Mathematical modeling of particle–surface interactions suggests that the higher avidity and specificity of nanorods originate from the balance of polyvalent interactions that favor adhesion and entropic losses as well as shear-induced detachment that reduce binding. In vivo experiments in mice confirmed that shape-induced enhancement of vascular targeting is also observed under physiological conditions in lungs and brain for nanoparticles displaying anti–intracellular adhesion molecule 1 and anti-transferrin receptor antibodies.

Kolhar, Poornima; Anselmo, Aaron C.; Gupta, Vivek; Pant, Kapil; Prabhakarpandian, Balabhaskar; Ruoslahti, Erkki; Mitragotri, Samir

2013-01-01

3

Magnetic nanoparticles  

Microsoft Academic Search

Intrinsic properties of magnetic nanoparticles are reviewed, with special emphasis on the effects of finite size on zero-temperature spin ordering, magnetic excitations, and relaxation. Effects on zero-temperature spin ordering include moment enhancement due to band narrowing in 3d transition metal particles, surface spin disorder in ferrite particles, and multi-sublattice states in antiferromagnetic oxide particles. Magnetic excitations include discretized spin wave

R. H Kodama

1999-01-01

4

Functionalized Magnetic Nanoparticles for the Detection and Quantitative Analysis of Cell Surface Antigen  

PubMed Central

Cell surface antigens as biomarkers offer tremendous potential for early diagnosis, prognosis, and therapeutic response in a variety of diseases such as cancers. In this research, a simple, rapid, accurate, inexpensive, and easily available in vitro assay based on magnetic nanoparticles and magnetic cell separation principle was applied to identify and quantitatively analyze the cell surface antigen expression in the case of prostate cancer cells. Comparing the capability of the assay with flow cytometry as a gold standard method showed similar results. The results showed that the antigen-specific magnetic cell separation with antibody-coated magnetic nanoparticles has high potential for quantitative cell surface antigen detection and analysis.

Shahbazi-Gahrouei, Daryoush; Abdolahi, Mohammad; Zarkesh-Esfahani, Sayyed Hamid; Laurent, Sophie; Sermeus, Corine; Gruettner, Cordula

2013-01-01

5

Functionalized magnetic nanoparticles for the detection and quantitative analysis of cell surface antigen.  

PubMed

Cell surface antigens as biomarkers offer tremendous potential for early diagnosis, prognosis, and therapeutic response in a variety of diseases such as cancers. In this research, a simple, rapid, accurate, inexpensive, and easily available in vitro assay based on magnetic nanoparticles and magnetic cell separation principle was applied to identify and quantitatively analyze the cell surface antigen expression in the case of prostate cancer cells. Comparing the capability of the assay with flow cytometry as a gold standard method showed similar results. The results showed that the antigen-specific magnetic cell separation with antibody-coated magnetic nanoparticles has high potential for quantitative cell surface antigen detection and analysis. PMID:23484112

Shahbazi-Gahrouei, Daryoush; Abdolahi, Mohammad; Zarkesh-Esfahani, Sayyed Hamid; Laurent, Sophie; Sermeus, Corine; Gruettner, Cordula

2013-01-01

6

Magnetic Nanoparticles and Biosciences  

Microsoft Academic Search

Summary.  ?Magnetic nanoparticles represent an interesting material both present in various living organisms and usable for a variety\\u000a of bioapplications. This review paper will summarize the information about biogenic magnetic nanoparticles, the ways to synthesize\\u000a biocompatible magnetic nano- particles and complexes containing them, and the applications of magnetic nanoparticles in various\\u000a areas of biosciences and biotechnologies.

Ivo Šafa?ík

2002-01-01

7

Magnetic interactions between nanoparticles  

PubMed Central

Summary We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions.

Hansen, Mikkel Fougt; Frandsen, Cathrine

2010-01-01

8

Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field.  

PubMed

Stem cells contribute to physiological processes such as postischemic neovascularization and vascular re-endothelialization, which help regenerate myocardial defects or repair vascular injury. However, therapeutic efficacy of stem cell transplantation is often limited by inefficient homing of systemically administered cells, which results in a low number of cells accumulating at sites of pathology. In this study, anti-CD34 antibody-coated magnetic nanoparticles (Fe3O4@PEG-CD34) are shown to have high affinity to stem cells. The results of hemolysis rate and activated partial thromboplastin time (APTT) tests indicate that such nanoparticle may be used safely in the blood system. In vitro studies showed that a nanoparticle concentration of 100 ?g/mL gives rise to a significant increase in cell retention using an applicable permanent magnet, exerting minimal negative effect on cell viability and migration. Subsequent in vivo studies indicate that nanopartical can specifically bind stem cells with good magnetic response. Anti-CD34 antibody coated magnetic nanoparticle may be used to help deliver stem cells to a lesion site in the body for better treatment. PMID:23749081

Chen, Jialong; Huang, Nan; Ma, Baolong; Maitz, Manfred F; Wang, Juan; Li, Jingan; Li, Quanli; Zhao, Yuancong; Xiong, Kaiqin; Liu, Xin

2013-07-10

9

Functional Magnetic Nanoparticles  

NASA Astrophysics Data System (ADS)

Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

Gass, James

10

Magnetic nanoparticle temperature estimation  

SciTech Connect

The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W. [Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756 (United States) and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000 (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000 (United States)

2009-05-15

11

Chemiluminescence immunoassay for the rapid and sensitive detection of antibody against porcine parvovirus by using horseradish peroxidase/detection antibody-coated gold nanoparticles as nanoprobes.  

PubMed

A rapid, simple, facile, sensitive and enzyme-amplified chemiluminescence immunoassay (CLIA) method to detect antibodies against porcine parvovirus has been developed. Horseradish peroxidase (HRP) and the detection antibody were simultaneously co-immobilized on the surface of gold nanoparticles using the electrostatic method to form gold nanoparticle-based nanoprobes. This nanoprobe was employed in a sandwich-type CLIA, which enables CL signal readout from enzymatic catalysis and results in signal amplification. The presence of porcine parvovirus infection was determined in porcine parvovirus antibodies by measuring the CL intensity caused by the reaction of HRP-luminol with H2 O2 . Under optimal conditions, the obtained calibration plot for the standard positive serum was approximately linear within the dilution range of 1:80 to 1:5120. The limit of detection for the assay was 1:10,240 (S/N?=?3), which is much lower than that typically achieved with an enzyme-linked immunosorbent assay (1:160; S/N?=?3). A series of repeatability measurements using 1:320-fold diluted standard positive serum gave reproducible results with a relative standard deviation of 4.9% (n?=?11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor had an efficiency of 90%, a sensitivity of 93.3%, and a specificity of 87.5% relative to the enzyme-linked immunosorbent assay results. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23832716

Zhou, Yuan; Zhou, Tao; Zhou, Rui; Hu, Yonggang

2014-06-01

12

Magnetic imaging method based on magnetic relaxation of magnetic nanoparticles  

Microsoft Academic Search

We present a well-posed magnetic imaging method based on magnetic relaxation of magnetic nanoparticles for obtaining high-spatial resolution image of magnetic tracers. The method relies on the principle that Néel relaxation of the magnetic nanoparticles is faster in a finite magnetic field than in the absence of the field. The magnetic nanoparticles are used as signal generator and a superconducting

S. Sarangi; I. C. Tan; A. Brazdeikis

2009-01-01

13

Magnetic nanoparticle biosensors.  

PubMed

One of the major challenges in medicine is the rapid and accurate measurement of protein biomarkers, cells, and pathogens in biological samples. A number of new diagnostic platforms have recently been developed to measure biomolecules and cells with high sensitivity that could enable early disease detection or provide valuable insights into biology at the systems level. Most biological samples exhibit negligible magnetic susceptibility; therefore, magnetic nanoparticles have been used for diverse applications including biosensing, magnetic separation, and thermal ablation therapy. This review focuses on the use of magnetic nanoparticles for detection of biomolecules and cells based on magnetic resonance effects using a general detection platform termed diagnostic magnetic resonance (DMR). DMR technology encompasses numerous assay configurations and sensing principles, and to date magnetic nanoparticle biosensors have been designed to detect a wide range of targets including DNA/mRNA, proteins, enzymes, drugs, pathogens, and tumor cells. The core principle behind DMR is the use of magnetic nanoparticles as proximity sensors that modulate the spin-spin relaxation time of neighboring water molecules, which can be quantified using clinical MRI scanners or benchtop nuclear magnetic resonance (NMR) relaxometers. Recently, the capabilities of DMR technology were advanced considerably with the development of miniaturized, chip-based NMR (microNMR) detector systems that are capable of performing highly sensitive measurements on microliter sample volumes and in multiplexed format. With these and future advances in mind, DMR biosensor technology holds considerable promise to provide a high-throughput, low-cost, and portable platform for large scale molecular and cellular screening in clinical and point-of-care settings. PMID:20336708

Haun, Jered B; Yoon, Tae-Jong; Lee, Hakho; Weissleder, Ralph

2010-01-01

14

Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells.  

PubMed

Nanoparticles (NP) as carriers for anti-cancer drugs have shown great promise. Specific targeting of NP to malignant cells, however, remains an unsolved problem. Conjugation of antibodies specific for tumor membrane antigens to NP represents one approach to improve specificity and to increase therapeutic efficacy. In the present study, for the first time a novel membrane heat shock protein (Hsp70)-specific antibody (cmHsp70.1) was coupled to human serum albumin (HSA) NP, loaded with microRNA (miRNA) plasmids to target the inhibitor of apoptosis protein survivin. The physicochemical properties of monodisperse miRNA-loaded NP showed a diameter of 180 nm to 220 nm, a plasmid incorporation of more than 95% and a surface binding capacity of the antibody of 70-80%. Antibody-conjugated NP displayed an increased cellular uptake in U87MG and LN229 glioblastoma cells compared to isotype control antibody, PEG-coupled controls and peripheral blood lymphocytes (PBL). Survivin expression was significantly reduced in cells treated with the Hsp70-miRNA-NP as compared to non-conjugated NP. Hsp70-miRNA-NP enhanced radiation-induced increase in caspase 3/7 activity and decrease in clonogenic cell survival. In summary, cmHsp70.1 miRNA-NP comprise an enhanced tumor cell uptake and increased therapeutic efficacy of radiation therapy in vitro and provide the basis for the development of antibody-based advanced carrier systems for a tumor cell specific targeting. PMID:24008150

Gaca, Sebastian; Reichert, Sebastian; Multhoff, Gabriele; Wacker, Matthias; Hehlgans, Stephanie; Botzler, Claus; Gehrmann, Matthias; Rödel, Claus; Kreuter, Jörg; Rödel, Franz

2013-11-28

15

DNA templated magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

Kinsella, Joseph M.

16

Magnetic Nanoparticle Compositions and Methods.  

National Technical Information Service (NTIS)

A nanoparticle having a core comprising a magnetic material and surface to which are covalently coupled a plurality of silane moieties, wherein each silane moiety comprises a polyalkylene oxide moiety. The nanoparticle can further include a targeting agen...

J. W. Gunn M. Zhang N. Kohler

2006-01-01

17

Magnetic imaging method based on magnetic relaxation of magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

We present a well-posed magnetic imaging method based on magnetic relaxation of magnetic nanoparticles for obtaining high-spatial resolution image of magnetic tracers. The method relies on the principle that Néel relaxation of the magnetic nanoparticles is faster in a finite magnetic field than in the absence of the field. The magnetic nanoparticles are used as signal generator and a superconducting quantum interference device is used as the signal detector. An image of superparamagnetic iron oxide nanoparticle tracer is obtained directly by mapping the magnetization decays. The experimental imaging capability is demonstrated using commercially available gamma-ferric oxide (?-Fe2O3) magnetic nanoparticles.

Sarangi, S.; Tan, I. C.; Brazdeikis, A.

2009-05-01

18

Magnetic nanoparticles for theragnostics  

PubMed Central

Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a pro-inflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). In vivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use.

Shubayev, Veronica I.; Pisanic, Thomas R.; Jin, Sungho

2009-01-01

19

Magnetic Nanoparticles for Cancer Therapy  

Microsoft Academic Search

Today, technologies based on magnetic nanoparticles (MNPs) are routinely applied to biological systems with diagnostic or therapeutic purposes. The paradigmatic example is the magnetic resonance imaging (MRI), a technique that uses the magnetic moments of MNPs as a disturbance of the proton resonance to obtain images. Similarly, magnetic fluid hyperthermia (MFH) uses MNPs as heat generators to induce localized cell

G. F. Goya; V. Grazu; M. R. Ibarra

2008-01-01

20

Magnetic properties of iron nanoparticle  

SciTech Connect

Magnetic properties of Fe nanoparticles with different sizes synthesized by a physical deposition technique have been investigated experimentally. We have used a high pressure sputtering technique to deposit iron nanoparticles on a silicon substrate. The nanoparticles are then analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), and superconducting quantum interference device techniques. TEM and AFM data show that the particle size could be tuned by adjusting the deposition conditions. The magnetic properties have been investigated from temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results show that two phases including both ferromagnetic and superparamagnetic particles are present in our system. From these data we extracted the superparamagnetic critical size to be 9 nm for our samples. Ferromagnetic particles are single magnetic domain particles and the magnetic properties can be explained by the Stoner and Wohlfarth model. For the superparamagnetic phase, the effective anisotropy constant, K{sub eff}, decreases as the particle size increases.

Carvell, J.; Ayieta, E.; Gavrin, A.; Cheng, Ruihua [Department of Physics, Indiana University Purdue University Indianapolis, 402 N Blackford Street Indianapolis, Indiana 46202 (United States); Shah, V. R.; Sokol, P. [Department of Physics, Indiana University, 727 E. Third Street Bloomington, Indiana 47405 (United States)

2010-05-15

21

Magnetism in nanoparticles: tuning properties with coatings  

NASA Astrophysics Data System (ADS)

This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; María Alonso, José; Rivero, Guillermo; Yndurain, Félix; María González-Calbet, José; Hernando, Antonio

2013-12-01

22

Biomedical Applications of Magnetic Nanoparticles  

Microsoft Academic Search

Magnetic nanoparticles exhibit specific physical properties that make them a useful tool for both medical diagnostics and\\u000a therapy. The physical background for all these biomedical applications is the interaction of these particles with externally\\u000a applied magnetic fields. This interaction is confined to the particles so that unwanted side effects can be avoided or reduced.\\u000a In this chapter, the physics of

L. Trahms

23

Temperature dependent dissipation in magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

We parameterized the temperature dependent magnetic dissipation of iron oxide nanoparticles fixed in a frozen aqueous solution in an ac magnetic field. The magnetic power dissipated can be modeled by considering only Neel relaxation. This dissipation increased monotonically with temperature, increasing by approximately 50% between -40 °C and -10 °C. These experimental results provide quantitative confirmation for the Neel model of magnetic dissipative heating for nanoparticles rigidly confined in a solid matrix. We also find substantial temperature dependence in the magnetic dissipation of nanoparticles suspended in a liquid, which has important consequences for potential applications of magnetic nanoparticles for hyperthermia.

Regmi, R.; Naik, A.; Thakur, J. S.; Vaishnava, P. P.; Lawes, G.

2014-05-01

24

Engineering biofunctional magnetic nanoparticles for biotechnological applications  

Microsoft Academic Search

Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates

Maria Moros; Beatriz Pelaz; Pilar López-Larrubia; Maria L. García-Martin; Valeria Grazú; Jesus M. de La Fuente

2010-01-01

25

Intravenous magnetic nanoparticle cancer hyperthermia  

PubMed Central

Magnetic nanoparticles heated by an alternating magnetic field could be used to treat cancers, either alone or in combination with radiotherapy or chemotherapy. However, direct intratumoral injections suffer from tumor incongruence and invasiveness, typically leaving undertreated regions, which lead to cancer regrowth. Intravenous injection more faithfully loads tumors, but, so far, it has been difficult achieving the necessary concentration in tumors before systemic toxicity occurs. Here, we describe use of a magnetic nanoparticle that, with a well-tolerated intravenous dose, achieved a tumor concentration of 1.9 mg Fe/g tumor in a subcutaneous squamous cell carcinoma mouse model, with a tumor to non-tumor ratio > 16. With an applied field of 38 kA/m at 980 kHz, tumors could be heated to 60°C in 2 minutes, durably ablating them with millimeter (mm) precision, leaving surrounding tissue intact.

Huang, Hui S; Hainfeld, James F

2013-01-01

26

Thermoinduced magnetic moment in akaganéite nanoparticles  

NASA Astrophysics Data System (ADS)

It is shown that akaganéite ?-FeOOH provides a good model material to experimentally investigate thermoinduced magnetic moments in antiferromagnetic nanoparticles. We characterize the magnetic properties, exchange field, anisotropy field, and antiferromagnetic susceptibility of bulk akaganéite. In the nanoparticles, we find a drastic enhancement of the antiferromagnetic susceptibility, a phenomenon first predicted by Néel. Also, we find that akaganéite nanoparticles possess a thermoinduced magnetic moment.

Urtizberea, A.; Luis, F.; Millán, A.; Natividad, E.; Palacio, F.; Kampert, E.; Zeitler, U.

2011-06-01

27

Magnetic nanoparticles for gene and drug delivery  

PubMed Central

Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting.

McBain, Stuart C; Yiu, Humphrey HP; Dobson, Jon

2008-01-01

28

Fighting cancer with magnetic nanoparticles and immunotherapy  

NASA Astrophysics Data System (ADS)

IFN-?-adsorbed DMSA-coated magnetite nanoparticles can be used as an efficient in vivo drug delivery system for tumor immunotherapy. Magnetic nanoparticles, with adsorbed interferon-?, were targeted to the tumor site by application of an external magnetic field. A relevant therapeutic dosage of interferon in the tumor was detected and led to a notable reduction in tumor size. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues by AC susceptibility measurements of the corresponding resected tissues. Magnetic nanoparticle biodistribution is affected by the application of an external magnetic field.

Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

2012-02-01

29

Magnetic Oxide nanoparticles  

NASA Astrophysics Data System (ADS)

We have fabricated nanopillar arrays of epitaxial magnetic oxide thin films and heterostructures consisted of SrRuO3, La0.67Sr0.33MnO3 and insulating barrier. The films were grown on TiO2 surface terminated (001) SrTiO3 substrates with atomic layer control by pulsed laser deposition with in situ high pressure RHEED, and were patterned into nanopillars using e-beam lithography and neutralized Ar ion milling with Ti and Au as milling mask materials. Scanning electron and atomic force microscopy measurements confirmed that we have produced well defined diameter 100 nm and 40 nm tall pillar arrays, which are, to our knowledge, the smallest pillars made from magnetic perovskite oxides. The LSMO pillars whose dimensions are smaller than the domain size (˜150nm) and comparable to the exchange length (˜50nm) are ferromagnetic at room temperature as shown by magnetic force microscopy. Using multilevel e-beam lithography we made single nano-ellipses from LSMO and SRO and wired them individually with Au leads. We performed electron transport measurements at 5K aiming to measure anisotropic magnetoresistance and coercive fields of single nano-ellipses ranging in size from 850 x 400 nm^2 to 400 x 150nm^2. Supported by NSF-ECS 0210449.

Ruzmetov, D.; Belenky, L. J.; Ke, X.

2005-03-01

30

Magnetic properties of biosynthesized magnetite nanoparticles  

Microsoft Academic Search

Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39

Lucas W. Yeary; Ji-Won Moon; L. J. Love; J. R. Thompson; C. J. Rawn; T. J. Phelps

2005-01-01

31

Measurements of Individual Magnetic Nanoparticles  

NASA Astrophysics Data System (ADS)

Studying the limits between classical and quantum physics has become a very attractive field of research which is known as 'mesoscopic' physics. New and fascinating mesoscopic effects are expected. Nanometer-sized magnetic particles are situated at the frontier between classical and quantum magnetism. In addition, their magnetic properties are technologically very challenging (permanent magnets, information storage, etc.). First, we review briefly our micro-SQUID technique (For a review, see W. Wernsdorfer, Adv. Chem. Phys., 118, 99 (2001) or http://xxx.lanl.gov/abs/cond-mat/0101104) which allows us to study single nanometer-sized magnetic particles containing less than 1000 atoms, crystals of molecular clusters, or quantum spin chains. Then, we discuss our recent results concerning the magnetization reversal of individual Co and Fe clusters (3 nm). (M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Melinon, and A. Perez, Phys. Rev. Lett 86, 4676 (2001).) Using a generalized Stoner-Wohlfarth model, (E. Bonet, W. Wernsdorfer, B. Barbara, A. Benoit, D. Mailly, and A. Thiaville Phys. Rev. Lett., 83, 4188 (1999)) we show that 3D measurements of the angular dependence of the magnetization reversal yields the effective magnetic anisotropy function. The latter is important for our studies of the influence of temperature on the magnetization reversal. A new method allows us to study the magnetization switching up to the blocking temperature which is typically below 30 K. We achieved a new insight in the dynamics of magnetization reversal using ns-field pulses and micro-wave radiations. We conclude by showing how one might give a definite proof of the quantum character of a nanoparticle (S > 1000) at low temperatures.

Wernsdorfer, Wolfgang

2002-03-01

32

Magnetic Oxide nanoparticles  

Microsoft Academic Search

We have fabricated nanopillar arrays of epitaxial magnetic oxide thin films and heterostructures consisted of SrRuO3, La0.67Sr0.33MnO3 and insulating barrier. The films were grown on TiO2 surface terminated (001) SrTiO3 substrates with atomic layer control by pulsed laser deposition with in situ high pressure RHEED, and were patterned into nanopillars using e-beam lithography and neutralized Ar ion milling with Ti

D. Ruzmetov; L. J. Belenky; X. Ke

2005-01-01

33

Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles  

NASA Astrophysics Data System (ADS)

We describe a novel, facile method for the synthesis of magnetic carbon nanotubes (m-CNTs) decorated with monodisperse ?-Fe2O3 magnetic (maghemite) nanoparticles and their aligned feature in a magnetic field. The tethering of the nanoparticles was achieved by the initial activation of the surface of the CNTs with carboxylic acid groups, followed by the attachment of the ?-Fe2O3 nanoparticles via a modified sol-gel process. Sodium dodecylbenzene sulfonate (NaDDBS) was introduced into the suspension to prevent the formation of an iron oxide 3D network. Various characterization methods were used to confirm the formation of well-defined maghemite nanoparticles. The tethered nanoparticles imparted magnetic characteristics to the CNTs, which became superparamagnetic. The m-CNTs were oriented parallel to the direction of a magnetic field. This has the potential of enhancing various properties, e.g. mechanical and electrical properties, in composite materials.

Kim, Il Tae; Nunnery, Grady; Jacob, Karl; Schwartz, Justin; Liu, Xiaotao; Tannenbaum, Rina

2011-03-01

34

Engineering biofunctional magnetic nanoparticles for biotechnological applications  

NASA Astrophysics Data System (ADS)

Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology. Electronic supplementary information (ESI) available: Chemical, physical and magnetic characterization; R2 maps; stability of NPs at different conditions; size of glucose NPs in the presence of Concanavalin A; MTT assays of the samples are shown in figures S1-S10. Table S1 represents the hydrodynamic size of PMAO NPs after being washed with different solvents. See DOI: 10.1039/c0nr00104j

Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

2010-09-01

35

Temperature Dependence of Magnetic Nanoparticles for Metamaterials  

NASA Astrophysics Data System (ADS)

Commonly, metamaterials are systems with engineered electric response, based on optimized spatial arrangement of sub-wavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow microwave permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. Several systems with magnetic nanoparticles of different size were experimentally tested for estimate their potential as building blocks for metamaterials. Magnetic resonance studies were performed in the limits of diluted non-interacting solutions of superparamagnetic nanoparticles in liquid form and high concentrations of particles in solids at different temperatures. Broadening of the EMR signal was observed upon increase in the particle size and concentration, due to effects of anisotropy and dipolar interaction. Microwave permeability was estimated in solid composites. In dense systems with 5 nm iron oxide nanoparticles it can be tuned from --0.8 to 2 by the external magnetic field.

Williams, Quincy; Noginova, Natalia; Dallas, Pagnagiotis; Giannelis, Emmanuel

2013-03-01

36

Magnetic resonance imaging of glioblastoma using aptamer conjugated magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Here we introduce a new class of smart imaging probes hybridizing polysorbate 80 coated-magnetic nanoparticles with vascular endothelial growth factor receptor 2 (VEGFR2)-targetable aptamer for specific magnetic resonance (MR) imaging of angiogenesis from glioblastoma.

Kim, Bongjune; Yang, Jaemoon; Hwang, Myeonghwan; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

2012-10-01

37

Magnetic Characterization of Ferrite Nanoparticles  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles (NPs) of different compositions (FeO/Fe3O4, g-Fe2O3, FePt, and CoFe2O4) have been synthesized using high temperature organometallic routes described elsewhere. NPs (16.6 nm in diameter) of a mixed FeO/Fe3O4 (wuestite/magnetite) composition were prepared by thermal decomposition or iron oleate in the presence of oleic acid as a surfactant in dodocane at 370C in argon atmosphere. After the thermal treatment of the reaction solution at 200 C under air for 2 hours these NPs are transformed into maghemite (g-Fe2O3), the magnetization of which is significantly enhanced. NPs of CoFe2O4 (8 nm) have been prepared by simultaneous decomposition of Co(II) and Fe(III) acetylacetonates in the presence of oleic acid and oleylamine. The X-ray diffraction profile of these NPs is characteristic of cobalt ferrite. Alternatively, alloyed 1.8 nm FePt NPs prepared by simultaneous decomposition of Fe and Pt acetylacetonates in the reductive environment demonstrate a completely disordered structure, which is reflected in their magnetic properties. SQUID magnetometry was used to measure the magnetization of NPs at high and low temperatures. Zero-field cooling and field-cooling measurements were taken to demonstrate superparamagnetic behavior and an associated blocking temperature.

Bryan, Matthew; Sokol, Paul; Gumina, Greg; Bronstein, Lyudmila; Dragnea, Bogdan

2011-03-01

38

SolidPhase Radioimmunoassay in Antibody-Coated Tubes  

Microsoft Academic Search

The adsorption of antibody to polymeric surfaces has been used to develop a new method of solid-phase radioimmunoassay. Incubation is performed in antibody-coated, disposable tubes that are finally washed-out with water and counted for quantitation of the bound tracer. The method is simple, rapid, inexpensive, and suitable for automation.

Kevin Catt; Geoffrey W. Tregear

1967-01-01

39

Local Magnetic Nanoparticle Delivery in Microvasculature  

NASA Astrophysics Data System (ADS)

The transport and capture of therapeutic magnetic nanoparticles in human microvasculature is studied numerically. The nanoparticles are injected into a vascular system upstream from malignant tissue, and are captured at the tumour site with the aid of a local applied magnetic field positioned outside the body. Taking into account the dominant magnetic and fluidic forces on the particles, our study shows that the nanoparticles can be directed to and concentrated at the desired zone that is within a few centimetres from the surface of the body. In addition, influence of the particles size, average blood flow velocity and the diameter of the blood vessel on the captured efficiency are parametrically analysed.

Guo, Ping; Li, Xin-Xia; Xiong, Ping; He, Ji-Shan

2009-01-01

40

Drug loaded magnetic nanoparticles for cancer therapy  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles have been investigated for biomedical applications for more than 30 years. In medicine they are used for several approaches such as magnetic cell separation or magnetic resonance imaging (MRI). The development of biocompatible nanosized drug delivery systems for specific targeting of therapeutics is the focus of medical research, especially for the treatment of cancer and diseases of the vascular system. In an experimental cancer model, we performed targeted drug delivery and used magnetic iron oxide nanoparticles, bound to a chemotherapeutic agent, which were attracted to an experimental tumour in rabbits by an external magnetic field (magnetic drug targeting). Complete tumour remission could be achieved. An important advantage of these carriers is the possibility for detecting these nanoparticles after treatment with common imaging techniques (i.e. x-ray-tomography, magnetorelaxometry, magnetic resonance imaging), which can be correlated to histology.

Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C.

2006-09-01

41

Measuring magnetic correlations in nanoparticle assemblies  

NASA Astrophysics Data System (ADS)

We illustrate how to extract correlations between magnetic moments in assemblies of nanoparticles from, e.g., electron holography data providing the combined knowledge of particle size distribution, inter-particle distances, and magnitude and orientation of each magnetic moment within a nanoparticle superstructure, We show, based on simulated data, how to build a radial/angular pair distribution function f(r,?) encoding the spatial and angular difference between every pair of magnetic moments. A scatter-plot of f(r,?) reveals the degree of structural and magnetic order present, and hence provides a measure of the strength and range of magnetic correlations.

Beleggia, M.; Frandsen, C.

2014-06-01

42

Engineering biofunctional magnetic nanoparticles for biotechnological applications.  

PubMed

Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology. PMID:20676420

Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L; Grazú, Valeria; de la Fuente, Jesus M

2010-09-01

43

Magnetic nanoparticles separation based on nanostructures  

Microsoft Academic Search

This study describes a magnetic array, which consists of depositing Fe nanowires on a porous alumina membrane. Such a device can be used as a planar magnetic separator. Its performance for the collection of Fe3O4 nanoparticles is experimentally shown. For magnetization of such iron nanowires in the vertical direction, we propose equations to calculate the theoretical absorption ratio.

Jianfei Sun; Rui Xu; Yu Zhang; Ming Ma; Ning Gu

2007-01-01

44

Magnetic nanoparticles separation based on nanostructures  

NASA Astrophysics Data System (ADS)

This study describes a magnetic array, which consists of depositing Fe nanowires on a porous alumina membrane. Such a device can be used as a planar magnetic separator. Its performance for the collection of Fe 3O 4 nanoparticles is experimentally shown. For magnetization of such iron nanowires in the vertical direction, we propose equations to calculate the theoretical absorption ratio.

Sun, Jianfei; Xu, Rui; Zhang, Yu; Ma, Ming; Gu, Ning

2007-05-01

45

Drug loaded magnetic nanoparticles for cancer therapy  

Microsoft Academic Search

Magnetic nanoparticles have been investigated for biomedical applications for more than 30 years. In medicine they are used for several approaches such as magnetic cell separation or magnetic resonance imaging (MRI). The development of biocompatible nanosized drug delivery systems for specific targeting of therapeutics is the focus of medical research, especially for the treatment of cancer and diseases of the

R. Jurgons; C. Seliger; A. Hilpert; L. Trahms; S. Odenbach; C. Alexiou

2006-01-01

46

Chemically Functional Alkanethiol Derivitized Magnetic Nanoparticles.  

National Technical Information Service (NTIS)

Chemically functional magnetic nanoparticles, comprised of an Fe core encased in a thin Au shell, have been prepared by sequential high temperature decomposition of organometallic compounds in a coordinating solvent. A novel approach to encapsulate the Fe...

D. A. Fleming M. Napolitano M. E. Williams

2003-01-01

47

Bifunctional bacterial magnetic nanoparticles for tumor targeting  

NASA Astrophysics Data System (ADS)

Bifunctional bacterial magnetic nanoparticles (BBMPs), which present both magnetic drug targeting and tumor bio-targeting properties, have been developed by chemically coupling both doxorubicin and a galactosyl ligand on to the membrane surface of the bacterial magnetic nanoparticles (BMPs). The BBMP product has a high drug load ratio and magnetic respondence, and exhibits a narrow size distribution and is sensitive to pH to enable drug release. In comparison to doxorubicin-coupled BMPs, without modification with a galactosyl ligand, BBMPs present a higher uptake by the target asialoglycoprotein receptor (ASGP-R) expressed by HepG2 cells and display stronger cytotoxicity.

Guo, Lin; Huang, Ji; Zheng, Li-Min

2012-01-01

48

Magnetic nanoparticles and nanotubes for biomedical applications  

NASA Astrophysics Data System (ADS)

Magnetic nanomaterials, especially nanoparticles and nanotubes, are among the most widely used nanomaterials for biomedical applications, and they are also the most promising nanomaterials for clinical treatments. This paper starts with the fundamentals for nanomedicine and magnetic nanomedicine. After discussing the basic requirements for the biomedical applications, the properties and the biomedical applications of magnetic nanoparticles and nanotubes are discussed. Our results indicate that, with suitable functionalization, iron oxide nanomaterials are non-toxic to biological systems, and they are ideal drug carriers which can be remotely controlled by external magnetic fields. At the final part of this paper, the challenges and our approach for targeted drug delivery with controlled release are discussed.

Chen, Linfeng; Xie, Jining; Yancey, Justin; Srivatsan, Malathi; Varadan, Vijay K.

2009-03-01

49

Magnetic-Plasmonic Core-Shell Nanoparticles  

PubMed Central

Nanoparticles composed of magnetic cores with continuous Au shell layers simultaneously possess both magnetic and plasmonic properties. Faceted and tetracubic nanocrystals consisting of wüstite with magnetite-rich corners and edges retain magnetic properties when coated with an Au shell layer, with the composite nanostructures showing ferrimagnetic behavior. The plasmonic properties are profoundly influenced by the high dielectric constant of the mixed-iron-oxide nanocrystalline core. A comprehensive theoretical analysis that examines the geometric plasmon tunability over a range of core permittivities enables us to identify the dielectric properties of the mixed-oxide magnetic core directly from the plasmonic behavior of the core-shell nanoparticle.

Levin, Carly S.; Hofmann, Cristina; Ali, Tamer A.; Kelly, Anna T.; Morosan, Emilia; Nordlander, Peter; Whitmire, Kenton H.; Halas, Naomi J.

2013-01-01

50

Biomedical Applications of Magnetic Nanoparticles and Fluids.  

NASA Astrophysics Data System (ADS)

Nanomaterials play an increasingly important role in the research, diagnosis and treatment of numerous pathologies. Biomedical applications such as drug delivery, magnetic resonance imaging and hyperthermia require magnetic nanoparticles with a large saturation magnetization that are biocompatible, form stable suspensions in water-based fluids, and can be functionalized. We use chemical synthesis and inert-gas condensation into fluids to produce biocompatible magnetic nanoparticle fluids that allow magnetic targeting of drugs and simultaneous magnetic resonance imaging. We have developed a water-dispersible oleic-acid/Pluronic/iron-oxide nanoparticle formulation that can be loaded with high doses of water-insoluble anti-cancer drugs. An external magnetic field is used to attract the nanoparticles to the treatment region and MRI is used to verify their location. A primary limitation on magnetic targeting, however, is the low moment of iron-oxide nanoparticles. Inert-gas-condensation into fluids produces iron and cobalt nanoparticles from 5-45 nm in diameter. Coating or passivation of these materials is required to prevent oxidation; however, the interaction between surface atoms and surfactant or other functionalizing molecules can greatly diminish the magnetic moment. A study of surfactant interactions with iron nanoparticles shows that the physical barrier provided by a concentric shell of polymeric surfactant offers significantly more protection against oxidation than the radial barrier formed by most linear surfactants. The talk will conclude with a brief overview of the opportunities and challenges for condensed matter and materials physicists in biomagnetic materials. This work is done in collaboration with V. Labhasetwar and T. Jain at the University of Nebraska Medical Center, and Marco Morales, Nguyen Hai, Shannon Fritz, Kishore Sreenivasan and David Schmitter at the University of Nebraska -- Lincoln.

Leslie-Pelecky, Diandra

2006-03-01

51

Application of Magnetic Nanoparticles to Gene Delivery  

PubMed Central

Nanoparticle technology is being incorporated into many areas of molecular science and biomedicine. Because nanoparticles are small enough to enter almost all areas of the body, including the circulatory system and cells, they have been and continue to be exploited for basic biomedical research as well as clinical diagnostic and therapeutic applications. For example, nanoparticles hold great promise for enabling gene therapy to reach its full potential by facilitating targeted delivery of DNA into tissues and cells. Substantial progress has been made in binding DNA to nanoparticles and controlling the behavior of these complexes. In this article, we review research on binding DNAs to nanoparticles as well as our latest study on non-viral gene delivery using polyethylenimine-coated magnetic nanoparticles.

Kami, Daisuke; Takeda, Shogo; Itakura, Yoko; Gojo, Satoshi; Watanabe, Masatoshi; Toyoda, Masashi

2011-01-01

52

Thermal potentiation of chemotherapy by magnetic nanoparticles.  

PubMed

Clinical studies have demonstrated the effectiveness of hyperthermia as an adjuvant for chemotherapy and radiotherapy. However, significant clinical challenges have been encountered, such as a broader spectrum of toxicity, lack of patient tolerance, temperature control and significant invasiveness. Hyperthermia induced by magnetic nanoparticles in high-frequency oscillating magnetic fields, commonly termed magnetic fluid hyperthermia, is a promising form of heat delivery in which thermal energy is supplied at the nanoscale to the tumor. This review discusses the mechanisms of heat dissipation of iron oxide-based magnetic nanoparticles, current methods and challenges to deliver heat in the clinic, and the current work related to the use of magnetic nanoparticles for the thermal-chemopotentiation of therapeutic drugs. PMID:24074390

Torres-Lugo, Madeline; Rinaldi, Carlos

2013-10-01

53

Evidence of surface anisotropy in magnetic nanoparticles  

Microsoft Academic Search

Discontinuous magnetic multilayers provide a simple method of producing magnetic nanoparticles. Such systems can be viewed as two-dimensional nanosystems, depending on separation between the discontinuous magnetic layers via a non-magnetic spacer layer. We have studied the system whereby discontinuous layers of CoFe are separated by Al2O3 interlayers of 40Å (nominal). A set of samples with nominal CoFe thicknesses between 7

D. S. Schmool; R. Rocha; J. B. Sousa; J. A. M. Santos; G. Kakazei

2006-01-01

54

Evidence of surface anisotropy in magnetic nanoparticles  

Microsoft Academic Search

Discontinuous magnetic multilayers provide a simple method of producing magnetic nanoparticles. Such systems can be viewed as two-dimensional nanosystems, depending on separation between the discontinuous magnetic layers via a non-magnetic spacer layer. We have studied the system whereby discontinuous layers of CoFe are separated by Al2O3 interlayers of 40 Å (nominal). A set of samples with nominal CoFe thicknesses between

D. S. Schmool; R. Rocha; J. B. Sousa; J. A. M. Santos; G. Kakazei

2006-01-01

55

Application of magnetic nanoparticles in biomedicine  

Microsoft Academic Search

Abstract The physical principles underlying some,current biomedical,applications of magnetic nanoparticles are reviewed. Starting from well-known basic concepts, and drawing on examples from biology and biomedicine, the relevant physics of magnetic,materials and their responses to applied magnetic fields are surveyed. The way these properties are controlled and used is illustrated with reference to (i) magnetic separation of labelled cells and other

Q. A. Pankhurst; J. Conolly; S. K. Jones; J. Dobson

2003-01-01

56

Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications  

NASA Astrophysics Data System (ADS)

Polyethylene magnetic nanoparticles were synthesized by nonsolvent and temperature induced crystallization along with ultrasonication. Low molecular weight polyethylene wax and maghemite were used for forming the composite particles. These particles were further coated with avidin. The nanoparticles are characterized using STEM, AFM and SQUID. Nanomagnetic particles were found to have two distinct morphologies and have superparamagnetic properties.

Chatterjee, Jhunu; Haik, Yousef; Chen, Ching-Jen

2002-05-01

57

Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications  

Microsoft Academic Search

Polyethylene magnetic nanoparticles were synthesized by nonsolvent and temperature induced crystallization along with ultrasonication. Low molecular weight polyethylene wax and maghemite were used for forming the composite particles. These particles were further coated with avidin. The nanoparticles are characterized using STEM, AFM and SQUID. Nanomagnetic particles were found to have two distinct morphologies and have superparamagnetic properties.

Jhunu Chatterjee; Yousef Haik; Ching-Jen Chen

2002-01-01

58

Arranging matter by magnetic nanoparticle assemblers  

Microsoft Academic Search

We introduce a method for transporting colloidal particles, large molecules, cells, and other materials across surfaces and for assembling them into highly regular patterns. In this method, nonmagnetic materials are manipulated by a fluid dispersion of magnetic nanoparticles. Manipulation of materials is guided by a program of magnetic information stored in a substrate. Dynamic control over the motion of nonmagnetic

Benjamin B. Yellen; Ondrej Hovorka; Gary Friedman

2005-01-01

59

MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT  

PubMed Central

The activation of magnetic nanoparticles (mNPs) by an alternating magnetic field (AMF) is currently being explored as technique for targeted therapeutic heating of tumors. Various types of superparamagnetic and ferromagnetic particles, with different coatings and targeting agents, allow for tumor site and type specificity. Magnetic nanoparticle hyperthermia is also being studied as an adjuvant to conventional chemotherapy and radiation therapy. This review provides an introduction to some of the relevant biology and materials science involved in the technical development and current and future use of mNP hyperthermia as clinical cancer therapy.

Giustini, Andrew J.; Petryk, Alicia A.; Cassim, Shiraz M.; Tate, Jennifer A.; Baker, Ian; Hoopes, P. Jack

2013-01-01

60

Targeting intracellular compartments by magnetic polymeric nanoparticles.  

PubMed

Superparamagnetic iron oxide nanoparticles (SPIONs) show a great promise for a wide specter of bioapplications, due to their characteristic magnetic properties exhibited only in the presence of magnetic field. Their advantages in the fields of magnetic drug targeting and imaging are well established and their safety is assumed, since iron oxide nanoparticles have already been approved for in vivo application, however, according to many literature reports the bare metal oxide nanoparticles may cause toxic effects on treated cells. Therefore, it is reasonable to prevent the direct interactions between metal oxide core and surrounding environment. In the current research ricinoleic acid coated maghemite nanoparticles were successfully synthesized, characterized and incorporated in the polymeric matrix, resulting in nanosized magnetic polymeric particles. The carrier system was shown to exhibit superparamagnetic properties and was therefore responsive towards external magnetic field. Bioevaluation using T47-D breast cancer cells confirmed internalization of magnetic polymeric nanoparticles (MNPs) and their intracellular localization in various subcellular compartments, depending on presence/absence of external magnetic field. However, the number of internalized MNPs observed by fluorescent and transmission electron microscopy was relatively low, making such way of targeting effective only for delivery of highly potent drugs. The scanning electron microscopy of treated cells revealed that MNPs influenced the cell adhesion, when external magnetic field was applied, and that treatment resulted in damaged apical plasma membrane right after exposure to the magnetic carrier. On the other hand, MNPs showed only reversibly reduced cellular metabolic activity in concentrations up to 200 ?g/ml and, in the tested concentration the cell cycle distribution was within the normal range, indicating safety of the established magnetic carrier system for the treated cells. PMID:23603023

Kocbek, Petra; Kralj, Slavko; Kreft, Mateja Erdani; Kristl, Julijana

2013-09-27

61

High Magnetization Polyethylene Glycol Coated Nanoparticles  

NASA Astrophysics Data System (ADS)

High magnetization nanoparticles coated with a biocompatible polymer or poly-saccharide layer are required for biomedical applications such as targeted drug delivery, MRI contrast enhancement and hyperthermia treatments. This paper discusses the fabrication and characterization of iron nanoparticles coated with carboxyl terminated polyethylene glycol for future biomedical applications. Electron microscopy reveals nanoparticles ranging from 10 to 50 nm in size that have a body centered cubic structure characteristic of alpha Fe. Mossbauer spectroscopy reveals the typical sextet expected for Fe with two different hyperfine fields reminiscent of a core shell morphology indicating that there are two distinct Fe sites. The coated nanoparticles are soft ferromagnets with coercivity below 100 Oe and a saturation magnetization of 50 emu/g as shown by SQUID and vibrating sample magnetometry. Optimization studies are underway and the results will be reported.

Bonder, M. J.; Papaefthymiou, V.

2005-03-01

62

Aptamer conjugated magnetic nanoparticles as nanosurgeons  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles have shown promise in the fields of targeted drug delivery, hyperthermia and magnetic resonance imaging (MRI) in cancer therapy. The ability of magnetic nanoparticles to undergo surface modification and the effect of external magnetic field in the dynamics of their movement make them an excellent nanoplatform for cancer destruction. Surgical removal of cancerous or unwanted cells selectively from the interior of an organ or tissue without any collateral damage is a serious problem due to the highly infiltrative nature of cancer. To address this problem in surgery, we have developed a nanosurgeon for the selective removal of target cells using aptamer conjugated magnetic nanoparticles controlled by an externally applied three-dimensional rotational magnetic field. With the help of the nanosurgeon, we were able to perform surgical actions on target cells in in vitro studies. LDH and intracellular calcium release assay confirmed the death of cancer cells due to the action of the nanosurgeon which in turn nullifies the possibility of proliferation by the removed cells. The nanosurgeon will be a useful tool in the medical field for selective surgery and cell manipulation studies. Additionally, this system could be upgraded for the selective removal of complex cancers from diverse tissues by incorporating various target specific ligands on magnetic nanoparticles.

Nair, Baiju G.; Nagaoka, Yutaka; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

2010-11-01

63

Magnetization enhancement of magnetic nanoparticles coated with polypyrrole  

NASA Astrophysics Data System (ADS)

We are presenting the synthesis and characterization of hybrid structures obtained by coating "soft" magnetic nanoparticles like perovskite manganites of La0.67Sr0.33MnO3 (LSMO) type with polypyrrole (PPy). The thin amorphous layer of PPy was observed by HRTEM and analyzed by XPS and XANES techniques. The existence of superparamagnetism is evidenced by the very small values of coercive fields and FC and ZFC behaviors. The surface modification of the magnetic nanoparticles generates an increase of the saturation magnetization. This novel effect is attributed to a charge transfer process between the conducting polymer and the surface layers of the magnetic cores. As a result, a significant increase of the surface contribution to the overall magnetic moment of the nanoparticles is produced. The effect is correlated with the temperature dependences of coercive field and of the ESR integral intensities.

Pana, O.; Leostean, C.; Soran, M. L.; Stefan, M.; Macavei, S.; Gheorghe, N. G.; Teodorescu, C. M.

2012-02-01

64

Temperature-dependent magnetization dynamics of magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Recent experimental and theoretical studies show that the switching behavior of magnetic nanoparticles can be controlled well by external time-dependent magnetic fields. In this work, we inspect theoretically the influence of temperature and magnetic anisotropy on the spin dynamics and switching properties of single domain magnetic nanoparticles (Stoner particles). Our theoretical tools are the Landau-Lifshitz-Gilbert equation extended to deal with finite temperatures within a Langevin framework. Physical quantities of interest are the minimum field amplitudes required for switching and the corresponding reversal times of the nanoparticle's magnetic moment. In particular, we contrast the cases of static and time-dependent external fields and analyze the influence of damping for a uniaxial and a cubic anisotropy.

Sukhov, A.; Berakdar, J.

2008-03-01

65

Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support  

EPA Science Inventory

Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

66

Multifunctional Magnetic Nanoparticle Probes for Intracellular Molecular Imaging and Monitoring.  

National Technical Information Service (NTIS)

The present invention provides multifunctional magnetic nanoparticle probe compositions for molecular imaging and monitoring, comprising a nucleic acid or polypeptide probe, a delivery ligand, and a magnetic nanoparticle having a biocompatible coating the...

G. Bao L. LaConte N. Nitin S. Nie

2003-01-01

67

Thermoinduced Magnetization in NiO Nanoparticles  

NASA Astrophysics Data System (ADS)

The low-temperature magnetic susceptibility for model NiO nanoparticles is calculated using the Monte Carlo method, and three different behaviors are seen. With uncompensated spins present, the susceptibility diverges as T->0. For cube- shaped nanoparticles, a temperature-dependent thermoinduced magnetization is observed. For spherical and octahedral nanoparticles, a temperature-independent susceptibility associated with the spin-flop configuration is observed. Calculations for arbitrary values of the uniaxial anisotropy indicate that thermoinduced magnetization can be observed for all geometries in materials with strong enough anisotropy. This work was sponsored by the LDRD program of ORNL, by the DOE-OS through the Offices of BES, Division of MSE and ASCR, MICS Division. The ?--Mag tool set was developed as part of a BES sponsored Computational Material Science Network project. ORNL is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.

Brown, Gregory

2009-03-01

68

RF susceptibility of magnetic nanoparticles and nanocomposites  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles embedded in non-magnetic matrices like polymers or dielectric oxides are of great technological interest as the coating provides encapsulation and prevents grain growth and agglomeration. Moreover, in electromagnetic applications, the systems can be considered as nanocomposites with possible multi-functionality resulting from the magnetic and dielectric response. We have studied the static and dynamic magnetic properties of as-prepared nanoparticles (Fe, Co, ?-Fe_2O_3, MnFe_2O_4) and particles dispersed in a matrix (like polystyrene, SiO_2). The systems ranged from polymerized magnetic nanopowders synthesized using a microwave plasma method to highly monodisperse nanoparticles prepared by reverse-micelle techniques. The magnetic anisotropy and switching fields in these materials were systematically tracked over a wide range in temperatures and fields using a novel resonant RF method based on a tunnel-diode oscillator (TDO) operating at 10 MHz. This technique accurately probes the dynamic transverse susceptibility and has been validated in several nanoparticle systems. While the overall behavior of the transverse susceptibility can be described by standard Stoner-Wohlfarth formalism, there are subtle variations in the transverse susceptibility features including the approach to saturation that are different in the particles embedded in a dielectric matrix. A comparison between several systems and the role of matrix-mediated interactions will be discussed. HS acknowledges support from NSF through grant # NSF-ECS-0102622

Hariharan, Srikanth; Hajndl, Ranko; Sanders, Jeff; Carpenter, Everett; Sudarshan, T.

2002-03-01

69

Tuning the Magnetic Properties of Nanoparticles  

PubMed Central

The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time.

Kolhatkar, Arati G.; Jamison, Andrew C.; Litvinov, Dmitri; Willson, Richard C.; Lee, T. Randall

2013-01-01

70

Simulations of magnetic nanoparticle Brownian motion  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature.

Reeves, Daniel B.; Weaver, John B.

2012-12-01

71

Microfluidic Biosensing Systems Using Magnetic Nanoparticles  

PubMed Central

In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles.

Giouroudi, Ioanna; Keplinger, Franz

2013-01-01

72

Antibody-Coated Bacteria in the Urinary Sediment of Rats with Experimental Pyelonephritis  

Microsoft Academic Search

The appearance of antibody-coated bacteria in urinary sediment has been evaluated in rats with experimental pyelonephritis. At day 7 after induction of pyelonephritis, 9 out of 11 rats demonstrated antibody-coated bacteria in the urinary sediment. The other 2 rats never had a positive urinary sediment. Following removal of the pyelonephritic kidneys, antibody-coated bacteria disappeared in 7 of the 9 previously

S. Favaro; L. Conventi; B. Baggio; A. Antonello; M. Zanetti; G. F. Zanon; A. Picchi; U. Fagiolo; A. Borsatti

1978-01-01

73

Nanocomposites of magnetic cobalt nanoparticles and cellulose  

NASA Astrophysics Data System (ADS)

Polymeric matrices with stabilized metallic nanoparticles constitute an important class of nanostructured materials, because polymer technology allows fabrication of components with various electronic, magnetic and mechanical properties. The porous cellulose matrix has been shown to be a useful support material for platinum, palladium, silver, copper and nickel nanoparticles. In the present study, nanosized cobalt particles with enhanced magnetic properties were made by chemical reduction within a microcrystalline cellulose (MCC) matrix. Two different chemical reducers, NaBH4 and NaH2PO2, were used, and the so-formed nanoparticles were characterized with X-ray absorption spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These experimental techniques were used to gain insight into the effect of different synthesis routes on structural properties of the nanoparticles. Magnetic properties of the nanoparticles were studied using a vibrating sample magnetometer. Particles made via the NaBH4 reduction were amorphous Co-B or Co oxide composites with diminished ferromagnetic behaviour and particles made via the NaH2PO2 reduction were well-ordered ferromagnetic hcp cobalt nanocrystals.

Pirkkalainen, K.; Leppänen, K.; Vainio, U.; Webb, M. A.; Elbra, T.; Kohout, T.; Nykänen, A.; Ruokolainen, J.; Kotelnikova, N.; Serimaa, R.

2008-10-01

74

Magnetic Nanoparticles for Cancer Diagnosis and Therapy  

PubMed Central

Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.

Yigit, Mehmet V.; Moore, Anna

2013-01-01

75

Interphase synthesis of colloidal magnetic cobalt nanoparticles  

NASA Astrophysics Data System (ADS)

The facilities of one-stage synthesis of magnetic cobalt nanoparticles by the interphase reduction of cobalt oleate (hexane or toluene solution) and sodium borohydride (aqueous or ethanol solution) at room temperature without a soluble polymer as a protective agent have been studied. The resultant cobalt nanoparticles have been concentrated either in non-polar or polar phases as black colloidal solutions. The composition and morphology of the colloid's dispersive phase were investigated by transmission electron microscopy, X-ray analysis and IR-spectroscopy. It has been shown that the dispersive phase of the produced colloidal solutions represents spherical crystal cobalt nanoparticles of fcc and hcp structures. Their average size varies from 4 to 7 nm. In accordance with the IR-spectroscopy results, the stability of the produced metallic nanoparticles was provided by the surfactant obtained as a result of the interphase reaction. Tables 1, Figs 5, Refs 12.

Kudlash, A. N.; Vorobyova, S. A.; Lesnikovich, A. I.

2008-03-01

76

Preparation and characterization of magnetic nanoparticles with controlled magnetization  

Microsoft Academic Search

The effect of molar ratio of two hydrated iron salts used as precursors into a (co)precipitation-based synthesis method, on\\u000a the composition, size and specific saturation magnetization of mixed iron oxides and oxyhydroxides magnetic nanoparticles\\u000a as reaction products, was studied. The preparation procedure is based on a salt-assisted solid-state chemical reaction. The\\u000a obtained products are magnetic multiphase components with the mean

Dumitru-Daniel Herea; Horia Chiriac; Nicoleta Lupu

77

Targeted polymeric magnetic nanoparticles for brain imaging  

NASA Astrophysics Data System (ADS)

The purpose of this study was to develop targeted polymeric magnetic nanoparticle system for brain imaging. Near infrared dye indocyanine green (ICG) or p-gycoprotein substrate rhodamine 123 (Rh123) were encapsulated along with oleic acid coated magnetic nanoparticles (OAMNP) in a matrix of poly(lactide-co-glycolide) (PLGA) and methoxy poly(ethyleneglycol)-poly(lactide) (Met-PEG-PLA). The nanoparticles were evaluated for morphology, particle size, dye content and magnetite content. The in vivo biodistribution study was carried out using three groups of six male Sprague Dawley rats each. Group I received a saline solution containing the dye, group II received dye-loaded polymeric magnetic nanoparticles without the aid of a magnetic field, and group III received dye-loaded polymeric magnetic nanoparticles with a magnet (8000 G) placed on the head of the rat. After a preset exposure period, the animals were sacrificed and dye concentration was measured in the brain, liver, kidney, lungs and spleen homogenates. Brain sections were fixed, cryotomed and visualized using fluorescence microscopy. The particles were observed to be spherical and had a mean size of 220 nm. The encapsulation efficiency for OAMNP was 57%, while that for ICG was 56% and for Rh123 was 45%. In the biodistribution study, while the majority of the dose for all animals was found in the liver, kidneys and spleen, group III showed a significantly higher brain concentration than the other two groups (p < 0.001). This result was corroborated by the fluorescence microscopy studies, which showed enhanced dye penetration into the brain tissue for group III. Further studies need to be done to elucidate the exact mechanism responsible for the increased brain uptake of dye to help us understand if the magnetic nanoparticles actually penetrate the blood brain barrier or merely deliver a massive load of dye just outside it, thereby triggering passive diffusion into the brain parenchyma. These results reinforce the potential use of polymeric magnetically-targeted nanoparticles in active brain targeting and imaging.

Kirthivasan, Bharat; Singh, Dhirender; Raut, Sangram; Bommana, Murali Mohan; Squillante, Emilio, III; Sadoqi, Mostafa

2012-02-01

78

Monodisperse Magnetic Nanoparticles for Theranostic Applications  

PubMed Central

Conspectus The development of highly effective medicine requires the on-time monitoring of the medical treatment process. This combination of monitoring and therapeutics allows a large degree of control on the treatment efficacy and is now commonly referred to as “theranostics”. Magnetic nanoparticles (NPs) provide a unique nano-platform for theranostic applications due to their comparable sizes with various functional biomolecules, their biocompatibility and their responses to the external magnetic field. Recent efforts in studying magnetic NPs for both imaging and therapeutic applications have led to great advances in NP fabrication with controls in dimension, surface functionalization and magnetic property. These magnetic NPs have been proven to be robust agents that can be target-specific for enhancing magnetic resonance imaging sensitivity and magnetic heating efficiency. These, plus the deep tissue penetration of magnetic field, make magnetic NPs the most promising candidates for successful theranostics in the future. In this Account, we review the recent advances in the synthesis of magnetic NPs of iron oxide, Fe, as well as FePt and FeCo NPs for imaging and therapeutic applications. We will first introduce briefly nanomagnetism, magnetic resonance imaging (MRI), and magnetic fluid hyperthermia (MFH). We will then focus on chemical synthesis of monodisperse magnetic NPs with controlled sizes, morphologies, and magnetic properties. Typical examples in using monodisperse magnetic NPs for MRI and MFH are highlighted.

Ho, Don; Sun, Xiaolian; Sun, Shouheng

2011-01-01

79

Local magnetism of Fe in Ag nanoparticles  

NASA Astrophysics Data System (ADS)

Applying ?-ray perturbed angular distribution method, we have investigated local magnetism of isolated Fe atoms implanted in nanocrystalline Ag host. The measured Curie-Weiss type local susceptibility of 54Fe indicate the existance of large magnetic moment for Fe in Ag nanoparticle, comparable to that in bulk metal. As an important feature we find that Kondo temperature T K?23 K of Fe in nanocrystalline Ag is much higher than the value in bulk silver.

Mishra, S. N.; Taneja, P.; Ayyub, P.; Tulapurkar, A. A.

2002-03-01

80

Electron Energy Levels in Magnetic Nanoparticles.  

National Technical Information Service (NTIS)

Final Report for Grant N00014-97-1-0745. Progress is reported on (a) investigations of electron tunneling via individual 'electron-in-a-box' quantum energy levels in magnetic nanoparticles, and the sensitivity of these energy levels to changes in the orie...

D. C. Ralph

2000-01-01

81

EDITORIAL: Biomedical applications of magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Magnetic materials have been used with grain sizes down to the nanoscale for longer than any other type of material. This is because of a fundamental change in the magnetic structure of ferro- and ferrimagnetic materials when grain sizes are reduced. In these circumstances, the normal macroscopic domain structure transforms into a single domain state at a critical size which typically lies below 100 nm. Once this transformation occurs the mechanism of magnetisation reversal can only be via the rotation of the magnetisation vector from one magnetic easy axis to another via a magnetically hard direction. This change of reversal mechanism has led to a new class of magnetic materials whose properties and the basic underlying physical mechanism governing them were defined in a seminal work first published by E C Stoner and E P Wolhfarth in 1949. As a consequence of this rotation mechanism, magnetic nanoparticles exist having coercivities which are highly controllable and lie between soft materials and normal permanent magnet materials. This ability to control coercivity in such particles has led to a number of significant technological advances, particularly in the field of information storage. The high value of information storage technology has meant that since the 1950s an enormous research and development effort has gone into techniques for the preparation of magnetic particles and thin films having well defined properties. Hence, certainly since the 1960s, a wide range of techniques to produce both metallic and oxide magnetic nanoparticles with sizes ranging from 4-100 nm has been developed. The availability of this wide range of materials led to speculation from the 1960s onwards that they may have applications in biology and medicine. The fact that a magnetic field gradient can be used to either remotely position or selectively filter biological materials leads to a number of obvious applications. These applications fall broadly into two categories: those involving the use in-vivo and those involving the use of magnetic particles in-vitro. Obviously for safety reasons the development of in-vitro applications are more accessible. However, and somewhat ironically, the one application currently used on a significant scale involves the use of magnetic particles to produce a distortion in the magnetic field at a given site under examination via magnetic resonance imaging (MRI). The presence of the particles at a given site can alter the contrast of certain types of cells by several orders of magnitude, making visible objects that were hitherto difficult to image. With the increasing sophistication of pharmaceuticals, the dramatic development of cell manipulation and even DNA sequencing, the possibility of using magnetic nanoparticles to improve the effectiveness of such technologies is obviously appealing. Hence there are proposals for drug delivery systems, particularly for anti-inflammatory agents and also for the use of magnetic separation technologies for rapid DNA sequencing. A further and somewhat surprising application of magnetic nanoparticles lies in the production of controlled heating effects. Each cycle of a hysteresis loop of any magnetic material involves an energy loss proportional to the area of the loop. Hence if magnetic nanoparticles having the required coercivity are remotely positioned at a given site in the body, perhaps the site of a malignancy, then the application of an alternating magnetic field can be used to selectively warm a given area. It has been proposed that this simple physical effect could be used both to destroy cells directly or to induce a modest increase in temperature so as to increase the efficacy of either chemotherapy or radiotherapy. Clearly this area of potential technology is highly novel and offers many exciting possibilities for future developments. The area is relatively young and highly multidisciplinary, requiring a range of scientific knowledge from inorganic chemistry involved in the preparation of the nanoparticles, through biochemistry and medical science to allow for

O'Grady, K.

2002-07-01

82

Productive encounter: molecularly imprinted nanoparticles prepared using magnetic templates.  

PubMed

Synthesis of core-shell nanoparticles by surface initiated reversible addition fragmentation chain transfer polymerization in presence of a chiral template conjugated to magnetic nanoparticles is reported. The approach leads to imprinted nanoparticles featuring enantioselectivity and enhanced affinity compared to nanoparticles prepared using free template. PMID:24983025

Berghaus, Melanie; Mohammadi, Reza; Sellergren, Börje

2014-07-15

83

Heterostructured magnetic nanoparticles: their versatility and high performance capabilities.  

PubMed

Magnetic nanoparticles exhibit unique nanoscale properties and their utilization for various magnetic systems is of significant interest. Especially, heterostructured magnetic nanoparticles are emerging as next-generation materials due to their synergistically enhanced magnetism and potential multifunctionalities. Herein, we overview the recent advances in the development of magnetic nanoparticles with a focus on multicomponent heterostructured nanoparticles including alloys, core-shells, and binary superlattices synthesized via nonhydrolytic methods. Their multifunctionalites and high performance capabilities are demonstrated for applications in high density magnetic storages, chemical catalysis, and biomedical separation and diagnostics. PMID:17356759

Jun, Young-wook; Choi, Jin-sil; Cheon, Jinwoo

2007-03-28

84

The preparation of magnetic nanoparticles for applications in biomedicine  

Microsoft Academic Search

This review is focused on describing state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications. In addition to this topic, we have also described in some detail some of the possible applications of magnetic nanoparticles in the field of biomedicine with special emphasis on showing the benefits of using nanoparticles. Finally, we have addressed some relevant

Pedro Tartaj; M ar ´ õa del Puerto Morales; Sabino Veintemillas-Verdaguer; Teresita González-Carreño; Carlos J Serna

2003-01-01

85

Intracellular patterning of internalized magnetic fluorescent nanoparticles.  

PubMed

We have designed, simulated, and fabricated micro-magnetic substrates for the reversible self-assembly of cell-internalized magnetic fluorescent nanoparticles according to lithographically defined patterns within live cells. Magnetic nanoparticles have recently demonstrated potential in activating highly specific activity within single cells. Using microfabrication, we have developed a technique of localizing both particles and large magnetic fields to highly specific, engineered, sub-cellular locations with various modes of operation. The substrates were simulated in 3 dimensions with ANSYS FEA, and consist of micro-patterned, electroplated permalloy elements planarized with SU-8. Various modes of magnet-orientation dependent patterns of nanoparticles were generated and verified within live cells, with their precise location verified under separate blue and green (absorption and emission wavelengths of the particles) filters using a fluorescent microscope. Results correspond well with modeled positions and response time. We anticipate using the tool as a compact, simple method of generating highly localized, easily distinguishable, sub-cellular chemical and mechanical signals that is compatible with standard biological fluorescence setups. PMID:19964677

Tseng, Peter; Di Carlo, Dino; Judy, Jack W

2009-01-01

86

A One-Step Homogeneous Sandwich Immunosensor for Salmonella Detection Based on Magnetic Nanoparticles (MNPs) and Quantum Dots (QDs)  

PubMed Central

Simple immuno-magnetic separation tandem fluorescent probes based on quantum dots-antibody (QDs-Ab) were developed to detect Salmonella with sensitivity of 500 cfu mL?1. With two monoclonal antibodies, which recognize different antigenic determinant on the surface of Salmonella, we prepared antibody-coated magnetic nanoparticles (MNPs) and conjugates of QDs-Ab. The immune-magnetic beads were verified with high enrichment efficiency for Salmonella (90%). A sandwich structure formed if the Salmonella solution was mixed together with immune-beads and QDs-Ab, and the fluorescent single from QDs was related to the amount of Salmonella. A linear response between fluorescence intensity and various concentrations of Salmonella (2.5 × 103 to 1.95 × 108 cfu mL?1) were observed with this proposed method. The total assay time for Salmonella was 30 min, and no cross-reaction to other microbial strains, such as Staphylococcus aureus, Escherichia coli (E. coli) and Escherichia coli O157:H7 (E. coli O157:H7), were found using this detection system. All our results showed that the simple homogeneous immunoassay could be applied in Salmonella screening without time-consuming extra-enrichment of bacteria.

Kuang, Hua; Cui, Gang; Chen, Xiujin; Yin, Honghong; Yong, Qianqian; Xu, Liguang; Peng, Chifang; Wang, Libing; Xu, Chuanlai

2013-01-01

87

Tracking stem cells using magnetic nanoparticles  

PubMed Central

Stem cell therapies offer great promise for many diseases, especially those without current effective treatments. It is believed that noninvasive imaging techniques, which offer the ability to track the status of cells after transplantation, will expedite progress in this field and help to achieve maximized therapeutic effect. Today’s biomedical imaging technology allows for real-time, noninvasive monitoring of grafted stem cells including their biodistribution, migration, survival, and differentiation, with magnetic resonance imaging (MRI) of nanoparticle-labeled cells being one of the most commonly used techniques. Among the advantages of MR cell tracking are its high spatial resolution, no exposure to ionizing radiation, and clinical applicability. In order to track cells by MRI, the cells need to be labeled with magnetic nanoparticles, for which many types exist. There are several cellular labeling techniques available, including simple incubation, use of transfection agents, magnetoelectroporation, and magnetosonoporation. In this overview article, we will review the use of different magnetic nanoparticles and discuss how these particles can be used to track the distribution of transplanted cells in different organ systems. Caveats and limitations inherent to the tracking of nanoparticle-labeled stem cells are also discussed.

Cromer Berman, Stacey M.; Walczak, Piotr; Bulte, Jeff W.M.

2011-01-01

88

Arranging matter by magnetic nanoparticle assemblers  

PubMed Central

We introduce a method for transporting colloidal particles, large molecules, cells, and other materials across surfaces and for assembling them into highly regular patterns. In this method, nonmagnetic materials are manipulated by a fluid dispersion of magnetic nanoparticles. Manipulation of materials is guided by a program of magnetic information stored in a substrate. Dynamic control over the motion of nonmagnetic particles can be achieved by reprogramming the substrate magnetization on the fly. The unexpectedly large degree of control over particle motion can be used to manipulate large ensembles of particles in parallel, potentially with local control over particle trajectory.

Yellen, Benjamin B.; Hovorka, Ondrej; Friedman, Gary

2005-01-01

89

Synthesis and Characterization of Magnetic Iron Oxide Nanoparticles  

Microsoft Academic Search

This paper reports the synthesis and characterization of iron oxide nanoparticles and their assembly towards thin film materials. The results have provided important insights into the design of interfacial reactivities via iron nanoparticles for magnetic, catalytic and biological applications.

Lingyan Wang; Jin Luo; Mathew M. Maye; Quan Fan; Qiang Rendeng; JQ Wang; Mark H. Engelhard; Chong M. Wang; Yuehe Lin; EI Altman; Chuan-Jian Zhong

2005-01-01

90

Thermoresponsive magnetic nanoparticles for seawater desalination.  

PubMed

Thermoresponsive magnetic nanoparticles (MNPs) as a class of smart materials that respond to a change in temperature may by used as a draw solute to extract water from brackish or seawater by forward osmosis (FO). A distinct advantage is the efficient regeneration of the draw solute and the recovery of water via heat-facilitated magnetic separation. However, the osmotic pressure attained by this type of draw solution is too low to counteract that of seawater. In this work, we have designed a FO draw solution based on multifunctional Fe3O4 nanoparticles grafted with copolymer poly(sodium styrene-4-sulfonate)-co-poly(N-isopropylacrylamide) (PSSS-PNIPAM). The resulting regenerable draw solution shows high osmotic pressure for seawater desalination. This is enabled by three essential functional components integrated within the nanostructure: (i) a Fe3O4 core that allows magnetic separation of the nanoparticles from the solvent, (ii) a thermoresponsive polymer, PNIPAM, that enables reversible clustering of the particles for further improved magnetic capturing at a temperature above its low critical solution temperature (LCST), and (iii) a polyelectrolyte, PSSS, that provides an osmotic pressure that is well above that of seawater. PMID:24134565

Zhao, Qipeng; Chen, Ningping; Zhao, Dieling; Lu, Xianmao

2013-11-13

91

Magnetic Nanoparticles, Magnetic Detector Arrays, and Methods for Their Use in Detecting Biological Molecules.  

National Technical Information Service (NTIS)

Magnetic nanoparticles and methods for their use in detecting biological molecules are disclosed. The magnetic nanoparticles can be attached to nucleic acid molecules, which are then captured by a complementary sequence attached to a detector, such as a s...

C. D. Webb G. Li R. L. White S. X. Wang

2004-01-01

92

Photoconjugation of molecularly imprinted polymer with magnetic nanoparticles  

PubMed Central

Because of their synthetic accessibility, molecularly imprinted polymer (MIP) nanoparticles are ideal building blocks for preparing multifunctional composites. In this work we developed a general photo-coupling chemistry to enable simple conjugation of MIP nanoparticles with inorganic magnetic nanoparticles. We first synthesized MIP nanoparticles using propranolol as a model template and perfluorophenylazide-modified silica-coated magnetic nanoparticles. Using a simple photoactivation followed by facile purification with a magnet, we obtained magnetic composite particles that showed selective uptake of propranolol. We characterized the nanoparticles and composite materials using FT-IR, TEM, fluorescence spectroscopy and radioligand binding analysis. Through the high molecular selectivity of the magnetic composite, we demonstrated the non-destructive feature and the high efficiency of the photocoupling chemistry. The versatile photoconjugation method developed in this work should also be very useful for combining organic MIPs with other inorganic nanoparticles to enable new chemical sensors and high efficiency photo-catalysts.

Xu, Changgang; Uddin, Khan Mohammad Ahsan; Shen, Xiantao; Jayawardena, Surangi; Yan, Mingdi; Ye, Lei

2013-01-01

93

Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles  

Microsoft Academic Search

The magnetic behavior of polymer nanocomposites containing nanoparticles (?10nm) of oxidized magnetite in a polyvinyl alcohol matrix were investigated by means of Mossbauer transmission and conversion electron spectroscopy and magnetic measurements. The obtained results show that the base concentration of iron oxide nanoparticles within the polymer matrix volume greatly influences the magnetic properties of nanocomposites. The estimated lamellar distribution of

A. A. Novakova; V. Yu. Lanchinskaya; A. V. Volkov; T. S. Gendler; T. Yu. Kiseleva; M. A. Moskvina; S. B. Zezin

2003-01-01

94

Remote control of cellular behaviour with magnetic nanoparticles  

Microsoft Academic Search

By binding magnetic nanoparticles to the surface of cells, it is possible to manipulate and control cell function with an external magnetic field. The technique of activating cells with magnetic nanoparticles offers a means to isolate and explore cellular mechanics and ion channel activation to gain better understanding of these processes. Here, we go beyond using this technique as an

Jon Dobson

2008-01-01

95

Magnetic microreactors for efficient and reliable magnetic nanoparticle surface functionalization.  

PubMed

Microreactors have attracted wide attention in the nano- and biotechnology fields because they offer many advantages over standard liquid phase reactions. We report the development of a magnetic microreactor for reliable, fast and efficient surface functionalization of superparamagnetic iron oxide nanoparticles (SPIONs). A comprehensive study of the development process in terms of setup, loading capacity and efficiency is described. We performed experimental and computational studies in order to evaluate the trapping efficiencies, maximum loading capacity and magnetic alignment of the nanoparticles. The results showed that capacity and trapping efficiencies are directly related to the flow rate, elution time and reactor type. Based on our results and the developed magnetic microreactor, we describe a model multistep surface derivatization procedure of SPIONs. PMID:24817177

Digigow, R G; Dechézelles, J-F; Kaufmann, J; Vanhecke, D; Knapp, H; Lattuada, M; Rothen-Rutishauser, B; Petri-Fink, A

2014-06-01

96

Synthesis and magnetic properties of prussian blue modified Fe nanoparticles  

NASA Astrophysics Data System (ADS)

Fe nanoparticles are prepared using a unique polyol process and modified with prussian blue (PB) at various concentrations. The presence of PB in the Fe nanoparticles are confirmed from thermal, Fourier transform infrared spectroscopy and electron microscopic analyses. The prussian blue existed on ;the surface of the nanoparticles when the concentration is 200 ?M and in excess with 1000 ?M. ;Fe nanoparticles are reduced in size using Pt as nucleating agent and modified with the optimum concentration of PB. The saturation magnetization decreases with the concentration of PB whereas the coercivity is influenced by the size of the Fe nanoparticles. The presence of oxide layer in Fe nanoparticles helps in the surface modification with PB. The Fe nanoparticles of particle size 53 nm modified with 200 ?M of PB showed a saturation magnetization of 110 emu/g. The magnetic properties suggest that the PB modified Fe nanoparticles are better candidates for detoxification applications.

Arun, T.; Prakash, K.; Justin Joseyphus, R.

2013-11-01

97

A comparative study of magnetic transferability of superparamagnetic nanoparticles  

NASA Astrophysics Data System (ADS)

The aspect of magnetic transferability was established using an automated magnetic particle transfer workstation. Maghemite (?-Fe 2O 3) nanoparticles were synthesized via conventional co-precipitation procedure. Their transferability was determined in addition to several commercial nanoparticles that ranged in diameter, surface functionality, and composition. Transmission and scanning electron micrographs and infrared spectrum, respectively, provided size and surface information on the synthesized particles for comparison to commercially available magnetic nanoparticles.

Hrdina, Amy; Lai, Edward; Li, Chunsheng; Sadi, Baki; Kramer, Gary

2010-09-01

98

Preparation and characterization of YADH-bound magnetic nanoparticles  

Microsoft Academic Search

The covalently binding of yeast alcohol dehydrogenase (YADH) to magnetic nanoparticles via carbodiimide activation was studied. The magnetic nanoparticles Fe3O4 with a mean diameter of 10.6nm were prepared by co-precipitating Fe2+ and Fe3+ ions in an ammonia solution and treating under hydrothermal conditions. Transmission electron microscopy (TEM) micrographs showed that the magnetic nanoparticles remained discrete and had no significant change

Dong-Hwang Chen; Min-Hung Liao

2002-01-01

99

Magnetic sensitivity enhanced novel fluorescent magnetic silica nanoparticles for biomedical applications  

Microsoft Academic Search

We synthesized novel fluorescent magnetic silica nanoparticles (FMSNPs) containing large magnetic components for biomedical application. By employing assemblies of magnetic nanoparticles as kernels against FMSNPs, both the saturation of magnetization and the magnetic resonance (MR) signal intensity were significantly enhanced. Furthermore, the cellular binding of FMSNPs was improved by introducing a positive charge on the surface of the FMSNPs, and

Jaemoon Yang; Jaewon Lee; Jinyoung Kang; Chan-Hwa Chung; Kwangyeol Lee; Jin-Suck Suh; Ho-Geun Yoon; Yong-Min Huh; Seungjoo Haam

2008-01-01

100

Magnoelastic coupling in magnetic oxide nanoparticles  

NASA Astrophysics Data System (ADS)

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials. To investigate confinement in combination with strong magnetoelastic interactions, we measured the infrared vibrational properties of MnO and CoFe2O4 nanoparticles and their parent compounds. For MnO, a charge and bonding analysis reveals that Born effective charge, local effective charge, total polarizability, and the force constant are overall lower in the nanoparticles compared to the bulk. We find that the spin-lattice coupling drops from ˜7 cm-1 in the single crystal to <1 cm-1 in the nanoparticles. For CoFe2O4, the spectroscopic response is sensitive to the size-induced crossover to the superparamagnetic state, which occurs between 7 and 10 nm, and a spin-phonon coupling analysis supports the core-shell model. Moreover, it provides an estimate of the thickness of the magnetically disordered shell, increasing from 0.4 nm in the 14 nm particles to 0.8 nm in the 5 nm particles, demonstrating that the associated local lattice distortions take place on the length scale of the unit cell. These findings are important for understanding finite length scale effects in magnetic oxides and other more complex functional oxides.

Sun, Qi; Baker, Sheila; Birkel, Christina; Seshadri, Ram; Tremel, Wolfgang; Christianson, Andrew; Musfeldt, Janice

2012-02-01

101

Dynamic Hysteresis in Compacted Magnetic Nanoparticles  

NASA Astrophysics Data System (ADS)

The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit by modifying the Cole-Davidson model with a scaling factor that extended the model to higher damping. The additional damping was consistent with the damping from eddy current modeling, showing that the nanocomposite's complex permeability could be explained by combining microscopic effects (the distribution of energy barriers represented by the Cole-Davidson model) with macroscopic effects (damping due to eddy currents).

Chowdary, Krishna M.

102

Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles  

NASA Astrophysics Data System (ADS)

The magnetic behavior of polymer nanocomposites containing nanoparticles (˜10 nm) of oxidized magnetite in a polyvinyl alcohol matrix were investigated by means of Mossbauer transmission and conversion electron spectroscopy and magnetic measurements. The obtained results show that the base concentration of iron oxide nanoparticles within the polymer matrix volume greatly influences the magnetic properties of nanocomposites. The estimated lamellar distribution of superparamagnetic Fe 3O 4 islands actuates the magnetic anisotropy formation in the investigated films.

Novakova, A. A.; Lanchinskaya, V. Yu.; Volkov, A. V.; Gendler, T. S.; Kiseleva, T. Yu.; Moskvina, M. A.; Zezin, S. B.

2003-03-01

103

Surface Magnetic Anisotropic Energy Gap in Cu2O Nanoparticles  

Microsoft Academic Search

A weak surface magnetic anisotropy was observed in the thermal deviation of the saturation magnetization of Cu2O nanoparticles. The thermal deviation of the saturation magnetization is clearly a departure from the Bloch T3\\/2 law expected for isotropic systems, signaling the onset of magnetic anisotropy, and is presumably due to the high surface-to-volume ratio of the nanoparticles, and the surface atoms

Sheng Yun Wu; Jhong-Yi Ji; Po-Hsun Shih

2008-01-01

104

A solid state nanopore device for investigating the magnetic properties of magnetic nanoparticles.  

PubMed

In this study, we explored magnetic nanoparticles translocating through a nanopore in the presence of an inhomogeneous magnetic field. By detecting the ionic current blockade signals with a silicon nitride nanopore, we found that the translocation velocity that is driven by magnetic and hydrodynamic forces on a single magnetic nanoparticle can be accurately determined and is linearly proportional to the magnetization of the magnetic nanoparticle. Thus, we obtained the magneto-susceptibility of an individual nanoparticle and the average susceptibility over one hundred particles within a few minutes. PMID:23708272

Park, SangYoon; Lim, Jaekwan; Pak, Y Eugene; Moon, Seunghyun; Song, Yoon-Kyu

2013-01-01

105

A Solid State Nanopore Device for Investigating the Magnetic Properties of Magnetic Nanoparticles  

PubMed Central

In this study, we explored magnetic nanoparticles translocating through a nanopore in the presence of an inhomogeneous magnetic field. By detecting the ionic current blockade signals with a silicon nitride nanopore, we found that the translocation velocity that is driven by magnetic and hydrodynamic forces on a single magnetic nanoparticle can be accurately determined and is linearly proportional to the magnetization of the magnetic nanoparticle. Thus, we obtained the magneto-susceptibility of an individual nanoparticle and the average susceptibility over one hundred particles within a few minutes.

Park, SangYoon; Lim, Jaekwan; Pak, Y. Eugene; Moon, Seunghyun; Song, Yoon-Kyu

2013-01-01

106

Magnetic nanoparticles for biomedical NMR-based diagnostics  

PubMed Central

Summary Rapid and accurate measurements of protein biomarkers, pathogens and cells in biological samples could provide useful information for early disease diagnosis, treatment monitoring, and design of personalized medicine. In general, biological samples have only negligible magnetic susceptibility. Thus, using magnetic nanoparticles for biosensing not only enhances sensitivity but also effectively reduces sample preparation needs. This review focuses on the use of magnetic nanoparticles for in vitro detection of biomolecules and cells based on magnetic resonance effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits magnetic nanoparticles as proximity sensors, which modulate the spin–spin relaxation time of water molecules surrounding molecularly-targeted nanoparticles. By developing more effective magnetic nanoparticle biosensors, DMR detection limits for various target moieties have been considerably improved over the last few years. Already, a library of magnetic nanoparticles has been developed, in which a wide range of targets, including DNA/mRNA, proteins, small molecules/drugs, bacteria, and tumor cells, have been quantified. More recently, the capabilities of DMR technology have been further advanced with new developments such as miniaturized nuclear magnetic resonance detectors, better magnetic nanoparticles and novel conjugational methods. These developments have enabled parallel and sensitive measurements to be made from small volume samples. Thus, the DMR technology is a highly attractive platform for portable, low-cost, and efficient biomolecular detection within a biomedical setting.

Shao, Huilin; Yoon, Tae-Jong; Liong, Monty

2010-01-01

107

Characterization of magnetic nanoparticles synthesized by sonomechanical method  

Microsoft Academic Search

We have synthesized magnetic nanoparticles using the newly developed sonomechanical method with the FeSO4'7H2O and characterized crystallographic structural changes, surface morphology, chemical bonding states and magnetic properties. The crystallographic structure of the nanoparticles was characterized with high resolution X-ray powder diffraction (XRD) analysis. The surface morphology of the nanoparticles was observed by scanning electron microscopy. The chemical bonding states of

Ki-Chul Kim; Eung-Kwon Kim; Young-Sung Kim

2006-01-01

108

SIZE-OPTIMIZED MAGNETITE NANOPARTICLES FOR MAGNETIC PARTICLE IMAGING  

SciTech Connect

We present experimental results to demonstrate that there is an optimum size for magnetite nanoparticles that are used to generate MPI signal, where the signal is detected as the third harmonic of nanoparticle magnetization, M, for any driving field frequency, ?. Our experimental results, for an arbitrarily chosen ? = 250 kHz, agree with predictions for a nanoparticle magnetization model based on the Langevin theory of superparamagnetism.

Ferguson, R. Matthew; Khandhar, Amit P.; Minard, Kevin R.; Krishnan, Kannan M.

2010-06-01

109

Bleomycin Loaded Magnetic Chitosan Nanoparticles as Multifunctional Nanocarriers  

Microsoft Academic Search

Iron oxide (Fe3O4) containing magnetic chitosan nanoparticles were prepared with Concanavalin-A and Bleomycin as multifunctional nanocarriers for the targeted cancer therapy by co-precipitation techniques. The chemical structures of nanoparticles were analyzed by FTIR and the magnetic properties of the nanoparticles were evaluated by electron spin resonance technique and vibrational scanning mangnetometer measurements. The in vitro release profiles of Bleomycin were

Do?a Kavaz; Sedat Odaba?; Eylem Güven; Murat Demirbilek; Emir Baki Denkba?

2010-01-01

110

Targeting cancer cells: magnetic nanoparticles as drug carriers  

Microsoft Academic Search

Magnetic drug targeting employing nanoparticles as carriers is a promising cancer treatment avoiding side effects of conventional\\u000a chemotherapy. We used iron oxide nanoparticles covered by starch derivatives with phosphate groups which bound mitoxantrone\\u000a as chemotherapeutikum. In this letter we show that a strong magnetic field gradient at the tumour location accumulates the\\u000a nanoparticles. Electron microscope investigations show that the ferrofluids

Christoph Alexiou; Roswitha J. Schmid; Roland Jurgons; Marcus Kremer; Gerhard Wanner; Christian Bergemann; Ernst Huenges; Thomas Nawroth; Wolfgang Arnold; Fritz G. Parak

2006-01-01

111

Facile synthesis of magnetic iron oxide nanoparticles and their characterization  

NASA Astrophysics Data System (ADS)

Magnetic iron oxide nanoparticles are synthesized by suitable modification of the standard synthetic procedure without use of inert atmosphere and at room temperature. The facile synthesis procedure can be easily scaled up and is of important from industrial point of view for the commercial large scale production of magnetic iron oxide nanoparticles. The synthesized nanoparticles were characterized by thermal, dynamic light scattering, scanning electron microscopy and transmission electron microscopy analyses.

Jadhav, Sushilkumar A.; Patil, Suresh V.

2014-06-01

112

Applications of Magnetic Micro and Nanoparticles in Biology and Medicine  

Microsoft Academic Search

Magnetic nanoparticles were first proposed for biomedical applications in the 1970s - primarily as targeted drug delivery vehicles and MRI contrast agents. Since that time, such particles have found application in a variety of biomedical techniques. In addition to drug delivery, magnetic nanoparticles are now used routinely as MRI contrast agents as well as for magneto-immunoassay and cell sorting. More

J. Dobson

2005-01-01

113

Models for the dynamics of interacting magnetic nanoparticles  

Microsoft Academic Search

A critical review of models for the dynamics of interacting magnetic nanoparticles is given. It is shown that the basic assumptions in the Dormann–Bessais–Fiorani model are unrealistic. The experimental observations on systems of interacting magnetic nanoparticles can, at least qualitatively, be explained by the model derived by Mørup and Tronc for weakly interacting particles, in combination with a transition to

M. F. Hansen; S. Mørup

1998-01-01

114

TOPICAL REVIEW: Functionalisation of magnetic nanoparticles for applications in biomedicine  

Microsoft Academic Search

Magnetic nanoparticles have been proposed for use as biomedical purposes to a large extent for several years. In recent years, nanotechnology has developed to a stage that makes it possible to produce, characterize and specifically tailor the functional properties of nanoparticles for clinical applications. This has led to various opportunities such as improving the quality of magnetic resonance imaging, hyperthermic

Catherine C. Berry; Adam S. G. Curtis

2003-01-01

115

Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation  

PubMed Central

We present an experimental study on magnetoacoustic imaging of superparamagnetic iron oxide (SPIO) nanoparticles embedded in biological tissues. In experiments, a large-current-carrying coil is used to deliver microsecond pulsed magnetic stimulation to samples. The ultrasound signals induced by magnetic forces on SPIO nanoparticles are measured by a rotating transducer. The distribution of nanoparticles is reconstructed by a back-projection imaging algorithm. The results demonstrated the feasibility to obtain cross-sectional image of magnetic nanoparticle targets with faithful dimensional and positional information, which suggests a promising tool for tomographic reconstruction of magnetic nanoparticle-labeled diseased tissues (e.g., cancerous tumor) in molecular or clinic imaging.

Hu, Gang; He, Bin

2012-01-01

116

Magnetic nanoparticles as targeted delivery systems in oncology  

PubMed Central

Background Many different types of nanoparticles, magnetic nanoparticles being just a category among them, offer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biological applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic nanoparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are concentrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, however, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles has been demonstrated as a successful non-viral transfection method of different cell lines in vitro. With the optimization of this method called magnetofection, it will hopefully become another form of gene delivery for the treatment of cancer.

Prijic, Sara; Sersa, Gregor

2011-01-01

117

Magnetically multiplexed heating of single domain nanoparticles  

NASA Astrophysics Data System (ADS)

Selective hysteretic heating of multiple collocated types of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of "magnetothermal multiplexing" has not yet been realized, in part due to prevalent use of linear response theory to model SDMNP heating in AMFs. Dynamic hysteresis modeling suggests that specific driving conditions play an underappreciated role in determining optimal material selection strategies for high heat dissipation. Motivated by this observation, magnetothermal multiplexing is theoretically predicted and empirically demonstrated by selecting SDMNPs with properties that suggest optimal hysteretic heat dissipation at dissimilar AMF driving conditions. This form of multiplexing could effectively offer multiple channels for minimally invasive biological signaling applications.

Christiansen, M. G.; Senko, A. W.; Chen, R.; Romero, G.; Anikeeva, P.

2014-05-01

118

Surface controlled magnetic properties of Fe3O4 nanoparticles  

NASA Astrophysics Data System (ADS)

To understand the influence of surface organic-inorganic interactions on the magnetic properties of magnetic nanoparticles, magnetite (Fe3O4) of mean size 4-16 nm (standard deviation ? <= 15 %) are synthesized by three different thermolysis techniques. The surface functionality is controlled through either amine or amine-acid both taking as surfactant for Fe3O4 nanoparticles synthesis. Magnetic investigations revealed that samples prepared using amine as a multifunctional agent (only one surfactant) shows superior magnetic properties than the nanoparticles produced by the approach utilizing oleic acid and oleylamine.

Mohapatra, Jeotikanta; Mitra, Arijit; Bahadur, D.; Aslam, M.

2013-02-01

119

Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents  

PubMed Central

Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.

Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

2014-01-01

120

Differential magnetic catch and release: analysis and separation of magnetic nanoparticles.  

PubMed

This article reports the purification and separation of magnetic nanoparticle mixtures using differential magnetic catch and release (DMCR). This method applies a variable magnetic flux orthogonal to the flow direction in an open tubular capillary to trap and controllably release magnetic nanoparticles. Magnetic moments of 8, 12, and 17 nm diameter CoFe2O4 nanoparticles are calculated using the applied magnetic flux and experimentally determined force required to trap 50% of the particle sample. Balancing the relative strengths of the drag and magnetic forces enables separation and purification of magnetic CoFe2O4 nanoparticle samples with <20 nm diameters. Samples were characterized by transmission electron microscopy to determine the average size and size dispersity of the sample population. DMCR is further demonstrated to be useful for separation of a magnetic nanoparticle mixture, resulting in samples with narrowed size distributions. PMID:19891452

Beveridge, Jacob S; Stephens, Jason R; Latham, Andrew H; Williams, Mary Elizabeth

2009-12-01

121

Exploiting BSA to Inhibit the Fibrous Aggregation of Magnetic Nanoparticles under an Alternating Magnetic Field.  

PubMed

The alternating magnetic field was discovered to be capable of inducing the fibrous aggregation of magnetic nanoparticles. However, this anisotropic aggregation may be unfavorable for practical applications. Here, we reported that the adsorption of BSA (bovine serum albumin) on the surfaces of magnetic nanoparticles can effectively make the fibrous aggregation of ?-Fe2O3 nanoparticles turn into a more isotropic aggregation in the presence of the alternating magnetic field. Also, the heating curves with and without BSA adsorption under different pH conditions were measured to show the influence of the colloidal aggregation states on the collective calorific behavior of magnetic nanoparticles. PMID:23481639

Sun, Jian Fei; Liu, Xuan; Chen, Yuan; Zhang, Yu; Gu, Ning

2013-01-01

122

Exploiting BSA to Inhibit the Fibrous Aggregation of Magnetic Nanoparticles under an Alternating Magnetic Field  

PubMed Central

The alternating magnetic field was discovered to be capable of inducing the fibrous aggregation of magnetic nanoparticles. However, this anisotropic aggregation may be unfavorable for practical applications. Here, we reported that the adsorption of BSA (bovine serum albumin) on the surfaces of magnetic nanoparticles can effectively make the fibrous aggregation of ?-Fe2O3 nanoparticles turn into a more isotropic aggregation in the presence of the alternating magnetic field. Also, the heating curves with and without BSA adsorption under different pH conditions were measured to show the influence of the colloidal aggregation states on the collective calorific behavior of magnetic nanoparticles.

Sun, Jian Fei; Liu, Xuan; Chen, Yuan; Zhang, Yu; Gu, Ning

2013-01-01

123

Magnetic nanoparticles for applications in oscillating magnetic field  

SciTech Connect

Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

Peeraphatdit, Chorthip

2010-12-15

124

A Renewable Electrochemical Magnetic Immunosensor Based on Gold Nanoparticle Labels  

SciTech Connect

A particle-based renewable electrochemical magnetic immunosensor was developed by using magnetic beads and a gold nanoparticle label. Anti-IgG antibody-modified magnetic beads were attached to a renewable carbon paste transducer surface by magnets that were fixed inside the sensor. A gold nanoparticle label was capsulated to the surface of magnetic beads by sandwich immunoassay. Highly sensitive electrochemical stripping analysis offers a simple and fast method to quantify the capatured gold nanoparticle tracer and avoid the use of an enzyme label and substrate. The stripping signal of gold nanoparticle is related to the concentration of target IgG in the sample solution. A transmission electron microscopy image shows that the gold nanoparticles were successfully capsulated to the surface of magnetic beads through sandwich immunoreaction events. The parameters of immunoassay, including the loading of magnetic beads, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.02 ?g ml-1of IgG was obtained under optimum experimental conditions. Such particle-based electrochemical magnetic immunosensors could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for disease diagnostics and biosecurity.

Liu, Guodong; Lin, Yuehe

2005-05-24

125

Synthesis and magnetic characterizations of uniform iron oxide nanoparticles  

NASA Astrophysics Data System (ADS)

Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe3O4 with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

Jiang, FuYi; Li, XiaoYi; Zhu, Yuan; Tang, ZiKang

2014-06-01

126

Oxidation and magnetic properties of lead nanoparticles in different matrices  

NASA Astrophysics Data System (ADS)

A systematic study was conducted for in situ synthesis of fine Pb nanoparticles in aqueous gelatin solution and in pre-organized gel of polyacrylamide. The Pb nanoparticles stabilized by gelatin or trapped in polyacrylamide matrix transfer electron to O 2 and methyl viologen (paraquat; 1,1'-dimethyl-4,4'-dipyridinium dichloride; MV 2+(Cl -) 2). Lead nanoparticles were probed for their magnetic characteristics by superconducting quantum interference device (SQUID) magnetometer and display superconductivity with a critical temperature T c of about 7.1 K. The magnetization measurements reveal the superconducting behaviour of Pb nanoparticles prepared in aqueous gelatin stabilized sol and corroborates the results obtained from electron transfer reactions.

Sarkar, A.; Chadha, R.; Mukherjee, T.; Kapoor, S.

2009-04-01

127

Determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles from magnetization relaxation curves  

Microsoft Academic Search

We have developed a new method for the determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles.\\u000a This method deals with the approximation of magnetization relaxation curves measured upon application and further fast switching\\u000a off the dc magnetizing field. The relaxation process is registered in the time interval from 6 ?s to several minutes by using\\u000a a scanning high-T

Ivan Volkov; Maxim Chukharkin; Oleg Snigirev; Alexander Volkov; Saburo Tanaka; Coenrad Fourie

2008-01-01

128

Microchip integrating magnetic nanoparticles for allergy diagnosis.  

PubMed

We report on the development of a simple and easy to use microchip dedicated to allergy diagnosis. This microchip combines both the advantages of homogeneous immunoassays i.e. species diffusion and heterogeneous immunoassays i.e. easy separation and preconcentration steps. In vitro allergy diagnosis is based on specific Immunoglobulin E (IgE) quantitation, in that way we have developed and integrated magnetic core-shell nanoparticles (MCSNPs) as an IgE capture nanoplatform in a microdevice taking benefit from both their magnetic and colloidal properties. Integrating such immunosupport allows to perform the target analyte (IgE) capture in the colloidal phase thus increasing the analyte capture kinetics since both immunological partners are diffusing during the immune reaction. This colloidal approach improves 1000 times the analyte capture kinetics compared to conventional methods. Moreover, based on the MCSNPs' magnetic properties and on the magnetic chamber we have previously developed the MCSNPs and therefore the target can be confined and preconcentrated within the microdevice prior to the detection step. The MCSNPs preconcentration factor achieved was about 35,000 and allows to reach high sensitivity thus avoiding catalytic amplification during the detection step. The developed microchip offers many advantages: the analytical procedure was fully integrated on-chip, analyses were performed in short assay time (20 min), the sample and reagents consumption was reduced to few microlitres (5 ?L) while a low limit of detection can be achieved (about 1 ng mL(-1)). PMID:22033539

Teste, Bruno; Malloggi, Florent; Siaugue, Jean-Michel; Varenne, Anne; Kanoufi, Frederic; Descroix, Stéphanie

2011-12-21

129

Complex magnetic reversal modes in low-symmetry nanoparticles  

NASA Astrophysics Data System (ADS)

A detailed numerical analysis of the magnetization reversal processes in T-shaped nanoparticles has been carried out. Attention has been focused on the influence of the symmetry of the particle on the formation, propagation, and interaction of internal magnetic structures such as domain walls, vortices, and antivortices. Results show that the lower the degree of symmetry of the particle, the more complex the reversal process is. Thus, symmetry represents an additional ingredient to control the magnetic properties of ferromagnetic nanoparticles.

Escobar, R. A.; Vargas, N. M.; Castillo-Sepúlveda, S.; Allende, S.; Altbir, D.; d'Albuquerque e Castro, J.

2014-03-01

130

Quadrupole magnetic field-flow fractionation for the analysis of magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Field-flow fractionation (FFF) is an analytical scale separation and characterizatio technique for macromolecules and particles. A quadrupole magnetic FFF device has bee constructed for analyzing magnetic nanoparticles. It is shown to give reproducible results and be capable of distinguishing between different lots of a commercial magnetic nanoparticle material.

Carpino, Francesca; Moore, Lee R.; Chalmers, Jeffrey J.; Zborowski, Maciej; Williams, P. Stephen

2005-01-01

131

Nanomedicine: magnetic nanoparticles and their biomedical applications.  

PubMed

During this past decade, science and engineering have seen a rapid increase in interest for nanoscale materials with dimensions less than 100 nm, which lie in the intermediate state between atoms and bulk (solid) materials. Their attributes are significantly altered relative to the corresponding bulk materials as they exhibit size dependent behavior such as quantum size effects (depending on bulk Bohr radius), optical absorption and emission, coulomb staircase behavior (electrical transport), superparamagnetism and various unique properties. They are active components of ferrofluids, recording tape, flexible disk recording media along with potential future applications in spintronics: a new paradigm of electronics utilizing intrinsic charge and spin of electrons for ultra-high-density data storage and quantum computing. They are used in a gamut of biomedical applications: bioseparation of biological entities, therapeutic drugs and gene delivery, radiofrequency-induced destruction of cells and tumors (hyperthermia), and contrast-enhancement agents for magnetic resonance imaging (MRI). The magnetic nanoparticles have optimizable, controllable sizes enabling their comparison to cells (10-100 µm), viruses (20-250 nm), proteins (3-50 nm), and genes (10-100 nm). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) provide necessary characterization methods that enable accurate structural and functional analysis of interaction of the biofunctional particles with the target bioentities. The goal of the present discussion is to provide a broad review of magnetic nanoparticle research with a special focus on the synthesis, functionalization and medical applications of these particles, which have been carried out during the past decade, and to examine several prospective directions. PMID:20629620

Banerjee, Reshmi; Katsenovich, Yelena; Lagos, Leonel; McIintosh, M; Zhang, Xueji; Li, Chen-Zhong

2010-01-01

132

Experimental and theoretical investigation of intratumoral nanoparticle distribution to enhance magnetic nanoparticle hyperthermia  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass transport model is developed to simulate nanoparticle convection and diffusion in tumors, heat-induced tumor structural changes, as well as nanoparticle re-distribution during nanoparticle hyperthermia procedures. The modeled thermal damage induced nanoparticle redistribution predicts a 20% increase in the radius of the spherical tissue region containing nanoparticles. The developed model has demonstrated the feasibility of enhancing nanoparticle dispersion from injection sites using targeted thermal damage.

Attaluri, Anilchandra

133

Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage  

PubMed Central

This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe2O4, Co, Fe, CoFe, FePt and SmCo5 nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications.

Frey, Natalie A.; Peng, Sheng; Cheng, Kai; Sun, Shouheng

2009-01-01

134

Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation.  

PubMed

CMP wastewaters have high solids content resulted from abrasive nanoparticles. Tremendous amount of ultrapure water consumption also makes the removal of nanoparticles from CMP wastewaters an important issue. Magnetic seeding aggregation of silica nanoparticles from the oxide CMP wastewater is studied in this work. Magnetite nanoparticles were synthesized and used as seeding particles. The turbidity of the CMP wastewater was reduced from 110 NTU to 7 NTU when solution pH was 6 and no addition of salt. This is because silica and magnetite nanoparticles were highly oppositely charged and the aggregation between silica and magnetite nanoparticles was achieved by electrostatic attractions. When the seeded wastewater was placed in a magnetic field strength higher than 800 G, the turbidity of the CMP wastewater was reduced to 1 NTU, which was clearer than the CMP wastewater treated by many other technologies. PMID:16289219

Chin, Ching-Ju Monica; Chen, Pei-Wen; Wang, Li-Jen

2006-06-01

135

Magnetic nanoparticles: surface effects and properties related to biomedicine applications.  

PubMed

Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 ?m), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

2013-01-01

136

Biotin avidin amplified magnetic immunoassay for hepatitis B surface antigen detection using GoldMag nanoparticles  

NASA Astrophysics Data System (ADS)

Using GoldMag (Fe3O4/Au) nanoparticles as a carrier, a biotin-avidin amplified ELISA was developed to detect hepatitis B surface antigen (HBsAg). A specific antibody was labeled with biotin and then used to detect the antigen with an antibody coated on GoldMag nanoparticles by a sandwich ELISA assay. The results showed that 5 mol of biotin were surface bound per mole of antibody. The biotin-avidin amplified ELISA assay has a higher sensitivity than that of the direct ELISA assay. There is 5-fold difference between HBsAg positive and negative serum even at dilution of 1:10000, and the relative standard deviation of the parallel positive serum at dilution of 1:4000 is 5.98% (n=11).

Yu, An; Geng, Tingting; Fu, Qiang; Chen, Chao; Cui, Yali

2007-04-01

137

Mass production of magnetic nickel nanoparticle in thermal plasma reactor  

NASA Astrophysics Data System (ADS)

We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Das, A. K.; Mathe, V. L.

2014-04-01

138

Surface charge switching nanoparticles for magnetic resonance imaging.  

PubMed

In this study, polypeptide-based nanoparticles [constituted using poly(l-lysine) coupled with deoxycholic acid (DOCA) and conjugated with 2,3-dimethylmaleic acid (DMA)] have high tumor selectivity once electrostatically switched by the acidic milieu of solid tumors. These nanoparticles exhibited a significantly increased in vitro cellular uptake and high accumulation in the acidic tumor site in vivo. Consequently, Fe3O4-loaded nanoparticles enabled high contrast magnetic resonance (MR) imaging of the tumor in vivo. PMID:24858382

Lee, Dong Jin; Oh, Young Taik; Lee, Eun Seong

2014-08-25

139

Oxidation and magnetic properties of lead nanoparticles in different matrices  

Microsoft Academic Search

A systematic study was conducted for in situ synthesis of fine Pb nanoparticles in aqueous gelatin solution and in pre-organized gel of polyacrylamide. The Pb nanoparticles stabilized by gelatin or trapped in polyacrylamide matrix transfer electron to O2 and methyl viologen (paraquat; 1,1?-dimethyl-4,4?-dipyridinium dichloride; MV2+(Cl?)2). Lead nanoparticles were probed for their magnetic characteristics by superconducting quantum interference device (SQUID) magnetometer

A. Sarkar; R. Chadha; T. Mukherjee; S. Kapoor

2009-01-01

140

Magnetic order in two-dimensional nanoparticle assemblies  

NASA Astrophysics Data System (ADS)

This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the resulting configuration of their magnetic moments. We have studied two systems: 20-nm magnetite (Fe3O4) and 21-nm cobalt ferrite (CoFe2O4) nanoparticles, capped with oleic acid and oleylamine, deposited using drop-casting technique on HOPG (Highly Oriented Pyrolytic Graphite). We present an analytical model to interpret the experimental spectroscopy curves (frequency shift as a function of the tip-sample distance) in terms of force, to enable a quantitative interpretation of the experimental results. In addition, a numerical model based on the Metropolis Monte Carlo method has been developed to calculate the configuration of magnetic moments with minimum energy. The energy consists of dipolar energy and anisotropy energy. The simulations have shown that local energy minima are present that correspond to different configurations of magnetic moments. Because of the thermal energy, the system may jump in between these energy minima. Considering a specific configuration of moments, MFM images were simulated taking the dipolar interactions between the nanoparticles and the tip into account. Spectroscopy curves were calculated for two cases: namely with and without the influence of the tip. The magnetite nanoparticles present a relatively large magnetic moment and exhibit strong dipole-dipole interactions and small, negligible, anisotropy. The observed repulsion between the tip and the nanoparticles at the side of the nanoparticle islands shows that dipolar coupling between the particles causes blocking of their magnetic moments. The experimental observations agree well with the numerical calculations, which show that the magnetic moments arrange themselves in flux-closure structures. However, the magnetite nanoparticle 2D systems can be considered soft-magnetic: their moments are strongly influenced by the field of the tip. This has been observed experimentally and confirmed by simulations for the considered magnetic moment of the tip. The cobalt-ferrite nanoparticles present a similar magnetic moment as the magnetite nanoparticles. The anisotropy, however, increases significantly with decreasing temperature, which leads to blocking of the moments even in the strong field of the tip. As a consequence, attractive and repulsive areas were observed in the MFM image above the islands of nanoparticles at low temperatures. In our simulation we have assumed arbitrary orientations of the easy axes of the particles. Simulation results reveal short-range order of the magnetic moments, consistent with the experimental results.

Georgescu, M.

2008-12-01

141

Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields  

PubMed Central

Targeted hyperthermia treatment using magnetic nanoparticles is a promising cancer therapy. However, the mechanisms of heat dissipation in the large alternating magnetic field used during such treatment have not been clarified. In this study, we numerically compared the magnetic loss in rotatable nanoparticles in aqueous media with that of non-rotatable nanoparticles anchored to localised structures. In the former, the relaxation loss in superparamagnetic nanoparticles has a secondary maximum because of slow rotation of the magnetic easy axis of each nanoparticle in the large field in addition to the known primary maximum caused by rapid Néel relaxation. Irradiation of rotatable ferromagnetic nanoparticles with a high-frequency axial field generates structures oriented in a longitudinal or planar direction irrespective of the free energy. Consequently, these dissipative structures significantly affect the conditions for maximum hysteresis loss. These findings shed new light on the design of targeted magnetic hyperthermia treatments.

Mamiya, Hiroaki; Jeyadevan, Balachandran

2011-01-01

142

Synthesis and characterization of magnetic nanoparticles and nano-composites  

Microsoft Academic Search

This project involves a cationic surfactant assisted hydrothermal method for synthesizing magnetic manganite nanoparticles. We have demonstrated that manganite nanoparticles formed from a metal chloride precursor in water under mild hydrothermal conditions yields high crystalline, thermally stable and pure phase particles, whose sizes and morphology can also be tuned through adjustment of reaction temperature, precursor concentration, concentration of mineralizers and

Wai Lun Sin

2008-01-01

143

Multifunctional magnetic nanoparticles for targeted imaging and therapy  

Microsoft Academic Search

Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters

Jason R. McCarthy; Ralph Weissleder

2008-01-01

144

Noninvasive assessment of magnetic nanoparticle-cancer cell interactions  

PubMed Central

The success of magnetic nanoparticle (mNP)-based diagnostic and therapeutic techniques is dependent upon how the mNP are distributed in vivo. The potential efficacy and timing of a given magnetic nanoparticle treatment or diagnostic test is largely determined by the number of nanoparticles in each tissue and microscopic compartment: e.g., in the intravascular and extravascular spaces, in the interstitial space, cell surface and in cell cytoplasm. Techniques for monitoring these cell-level interactions generally require the harvesting and destruction of tissues or cells at each time point of interest. We present a method (magnetic spectroscopy of Brownian motion, MSB) for longitudinally monitoring nanoparticle binding to cell surface proteins and uptake by cancer cells in vitro using the harmonics of the magnetization produced by the nanoparticles. These harmonics can be measured rapidly and noninvasively without the need for nanoparticle modifications and without damaging the cells. We demonstrate sensitivity of this harmonic signal to the nanoparticles’ microenvironment and use this technique to monitor the nanoparticle binding activities of different cell lines.

Giustini, Andrew J.; Perreard, Irina; Rauwerdink, Adam M.; Hoopes, P. Jack; Weaver, John B.

2012-01-01

145

Magnetic properties of nanoparticles of cenospheres from energetic ashes  

NASA Astrophysics Data System (ADS)

The application of magnetic cenospheres including ferrospinel nanoparticles as a “transport container” in medicine and biology is quite attractive. Their nanoscale size, high porosity, and well pronounced magnetic properties provide good consumer choice. In this contribution, we report on the magnetic properties of microspheres from energetic ashes of Ekibastuz coals.

Balaev, A. D.; Rabchevskii, E. V.; Anshits, A. G.; Petrov, M. I.

2006-12-01

146

Progress in applications of magnetic nanoparticles in biomedicine  

Microsoft Academic Search

A progress report is presented on a selection of scientific, technological and commercial advances in the biomedical applications of magnetic nanoparticles since 2003. Particular attention is paid to (i) magnetic actuation for in vitro non-viral transfection and tissue engineering and in vivo drug delivery and gene therapy, (ii) recent clinical results for magnetic hyperthermia treatments of brain and prostate cancer

Q A Pankhurst; NKT Thanh; J Dobson

2009-01-01

147

Magnetic nanoparticles in MR imaging and drug delivery  

Microsoft Academic Search

Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to specifically tailor the features and properties of MNPs for these biomedical

Conroy Sun; Jerry S. H. Lee; Miqin Zhang

2008-01-01

148

Prospects for Imaging Magnetic Nanoparticles Using a Scanning Squid Microscope  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles have a number of present and proposed uses: in the fields of nanobiotechnology for magnetic separation, magnetic manipulation, magnetic sensing, and in situ heating; for high density storage in both conventional and patterned media; and for spintronic devices. Although there are well established techniques for measuring the magnetic properties of large numbers of particles, it is desirable to magnetically image individual nanoparticles and clusters with small numbers of nanoparticles to determine such properties as their coercive fields, magnetic moments, and anisotropy energies. Wernsdorfer and co-workers [1] have shown that the magnetic reversal fields of small magnetic particles can be determined using a nanoSQUID. However, in these experiments nanoparticles were deposited directly on the SQUID. Such a technique would be difficult to use for the determination of, for example, the distribution in particle properties of a collection of particles. Woods and coworkers [2] determined the anisotropy energy of a film of magnetic particles from SQUID microscope measurements of the magnetic noise. In these experiments a large number of particles were included in the region sensed by the SQUID pickup loop, so that only average properties were determined. Measurement of the magnetic properties of individual nanoparticles is a challenge using any scanning probe microscopy, but is possible with the scanning SQUID microscope. In this talk I will describe different modes for imaging magnetic nanoparticles, present simple calculations of the size of signal expected for these modes as a function of such parameters as the size and saturation magnetization of the particles, the size of the pickup loop, and the spacing between the SQUID pickup loop and the nanoparticle, and compare these signals with the noise currently and ultimately available in scanning SQUID sensors [3]. I conclude that such measurements should be possible with the very small pickup loop (0.6 ?m diameter) nanoSQUIDs that have now been demonstrated [4]. We have built and operated a high spatial resolution, variable sample temperature scanning SQUID microscope for imaging magnetic nanoparticles. I will describe this microscope and present results on imaging magnetic nanoparticles. * Work done in collaboration with Beena Kalisky, Lisa Qian, and Kathryn Moler. [4pt] [1] W. Wernsdorfer et al. Phys. Rev. Lett. 78, 1791 (1997). [0pt] [2] S.I. Woods, J.R. Kirtley, S. Sun, and R.H. Koch, Phys. Rev. Lett. 87, 137205 (2001). [0pt] [3] J.R. Kirtley, Supercond. Sci. Technol. 22, 064008 (2009). [0pt] [4] N.C. Koshnick, M.E. Huber, J.A. Bert, C.W. Hicks, J. Large, H. Edwards, and K.A. Moler, Appl. Phys. Lett. 93, 243101 (2007).

Kirtley, John

2010-03-01

149

Magnetic nanoparticles for bio-analytical applications  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles are widely being used in various fields of medicine, biology and separations. This dissertation focuses on the synthesis and use of magnetic nanoparticles for targeted drug delivery and analytical separations. The goals of this research include synthesis of biocompatible surface modified monodisperse superparamagnetic iron oxide nanoparticles (SPIONs) by novel techniques for targeted drug delivery and use of SPIONs as analytical sensing tools. Surface modification of SPIONs was performed with two different co-polymers: tri block co-polymer Pluronics and octylamine modified polyacrylic acid. Samples of SPIONs were subsequently modified with 4 different commercially available, FDA approved tri-block copolymers (Pluronics), covering a wide range of molecular weights (5.75-14.6 kDa). A novel, technically simpler and faster phase transfer approach was developed to surface modify the SPIONs with Pluronics for drug delivery and other biomedical applications. The hydrodynamic diameter and aggregation properties of the Pluronic modified SPIONs were studied by dynamic light scattering (DLS). The coverage of SPIONs with Pluronics was supported with IR Spectroscopy and characterized by Thermo gravimetric Analysis (TGA). The drug entrapment capacity of SPIONs was studied by UV-VIS spectroscopy using a hydrophobic carbocyanine dye, which serves as a model for hydrophobic drugs. These studies resulted in a comparison of physical properties and their implications for drug loading capacities of the four types of Pluronic coated SPIONs for drug delivery assessment. These drug delivery systems could be used for passive drug targeting. However, Pluronics lack the functional group necessary for bioconjugation and hence cannot achieve active targeting. SPIONs were functionalized with octylamine modified polyacrylic acid-based copolymer, providing water solubility and facile biomolecular conjugation. Epirubicin was loaded onto SPIONs and the drug entrapment was studied by UVVIS spectrophotometry. In this study, the antisense oligonucleotide sequence to the anti-apoptopic protein survivin was coupled to SPIONs to provide molecular targeting and potential therapy for cancer cells. Successful coupling of antisense survivin to SPIONs was demonstrated by circular dichroism studies of the conjugate and its complementary sequence. Such multifunctional SPIONs can be used as active targeting agents for cancer cells, producing enhanced magnetic resonance imaging contrast and releasing chemotherapeutic agents to targeted cells. SPIONs also serve as an excellent platform for analytical sensing. Streptavidin modified SPIONs were used as substrates to immobilize biotinylated aptamers (single-stranded DNA). The binding affinity of such aptamers to its target was achieved by quantifying the amount of target released from the aptamer. This quantification was achieved using pH-mediated stacking capillary electrophoresis. SPIONs were shown to be more efficient compared to magnetic microbeads as the sensing elements. The binding affinity constant of the aptamer determined was almost 8-fold better than that obtained using magnetic microbeads.

Yedlapalli, Sri Lakshmi

150

Tailored Magnetic Nanoparticles for Optimizing Magnetic Fluid Hyperthermia  

PubMed Central

Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ~ 10–25 nm), size distribution and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (? ~ 0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, Ho = 14 kA/m); however, with a broader size distribution (? ~ 0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment.

Khandhar, Amit; Ferguson, R. Matthew; Simon, Julian A.; Krishnan, Kannan M.

2011-01-01

151

Biological cell positioning and spatially selective destruction via magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

We report a procedure on biological cells (erythrocytes) where magnetite (Fe3O4) nanoparticles have been used for micro-scale blood cell positioning and space selective destruction. The experiment was accomplished on the top of the microelectromagnet serving as a source of magnetic field and as a local heater at the same time. We observed the controlled motion and focusing of the blood cells dragged by the flow of magnetic nanoparticles. Furthermore, we found that the increase of the electric current through the microelectromagnet leads to the local cell haemolysis. The haemolysis is observed only in the vicinity (5-10 microns) of the current-carrying wires. The whole procedure takes less than 3 seconds. The obtained results provide a rich resource showing the dynamics of cell dragging by the magnetic nanoparticles and demonstrate the feasibility of using magnetic nanoparticles for cell positioning and surgery on the cellular level with micrometer-scale precision.

Gertz, Frederick; Azimov, Rustam; Khitun, Alexander

2012-07-01

152

Synthesis, Characterization, and Magnetism of Dendrimer Encapsulated Co Nanoparticles.  

National Technical Information Service (NTIS)

Preparation and characterization of magnetic Co dendrimer- encapsulated nanoparticles (DENs) have been studied. As these materials are easily oxidized, the synthesis was carried out under anaerobic conditions in organic solvents. Using a hydrophobically m...

M. D. Bradshaw M. R. Knecht R. M. Crooks

2005-01-01

153

Magnetic Nanoparticles for Multi-Imaging and Drug Delivery  

PubMed Central

Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed.

Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo

2013-01-01

154

Magnetic nanoparticles for multi-imaging and drug delivery.  

PubMed

Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479

Lee, Jae-Hyun; Kim, Ji-Wook; Cheon, Jinwoo

2013-04-01

155

Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field  

Microsoft Academic Search

We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag

Jan Dieckhoff; Meinhard Schilling; Frank Ludwig

2011-01-01

156

Magnetic nanoparticle-based hyperthermia for cancer treatment.  

PubMed

Nanotechnology involves the study of nature at a very small scale, searching new properties and applications. The development of this area of knowledge affects greatly both biotechnology and medicine disciplines. The use of materials at the nanoscale, in particular magnetic nanoparticles, is currently a prominent topic in healthcare and life science. Due to their size-tunable physical and chemical properties, magnetic nanoparticles have demonstrated a wide range of applications ranging from medical diagnosis to treatment. Combining a high saturation magnetization with a properly functionalized surface, magnetic nanoparticles are provided with enhanced functionality that allows them to selectively attach to target cells or tissues and play their therapeutic role in them. In particular, iron oxide nanoparticles are being actively investigated to achieve highly efficient carcinogenic cell destruction through magnetic hyperthermia treatments. Hyperthermia in different approaches has been used combined with radiotherapy during the last decades, however, serious harmful secondary effects have been found in healthy tissues to be associated with these treatments. In this framework, nanotechnology provides a novel and original solution with magnetic hyperthermia, which is based on the use of magnetic nanoparticles to remotely induce local heat when a radiofrequency magnetic field is applied, provoking a temperature increase in those tissues and organs where the tumoral cells are present. Therefore, one important factor that determines the efficiency of this technique is the ability of magnetic nanoparticles to be driven and accumulated in the desired area inside the body. With this aim, magnetic nanoparticles must be strategically surface functionalized to selectively target the injured cells and tissues. PMID:24416585

Bañobre-López, Manuel; Teijeiro, Antonio; Rivas, Jose

2013-01-01

157

FePt Magnetic Nanoparticles and Their Assembly for Future Magnetic Media  

Microsoft Academic Search

Magnetic nanoparticles with extremely high anisotropy such as chemically ordered L10 phase FePt nanoparticles have been considered one of the best candidates for future magnetic recording media with areal density beyond 1 Tbit\\/in2 for either the nanocomposite-film-type heat-assisted magnetic recording (HAMR) media or the self-organized-magnetic-array (SOMA)-type bit patterned media. However, current preparation methods via phase transformation must overcome many obstacles,

Jian-Ping Wang

2008-01-01

158

FMR study of magnetic nanoparticles embedded in non-magnetic matrix  

Microsoft Academic Search

Purpose: The aim of this review is recapitulating the FMR study of low concentration of magnetic nanoparticles in non-magnetic matrices. Design\\/methodology\\/approach: Magnetic nanoparticles exhibit a variety of anomalous magnetic properties and they could be used for forming low concentration in different matrices. This way, they are being found to be allowing for effectively novel applications of FMR (ferromagnetic resonance) for

N. Guskos; E. A. Anagnostakis; A. Guskos

159

Enhanced magnetic anisotropy in cobalt-carbide nanoparticles  

NASA Astrophysics Data System (ADS)

An outstanding problem in nano-magnetism is to stabilize the magnetic order in nanoparticles at room temperatures. For ordinary ferromagnetic materials, reduction in size leads to a decrease in the magnetic anisotropy resulting in superparamagnetic relaxations at nanoscopic sizes. In this work, we demonstrate that using wet chemical synthesis, it is possible to stabilize cobalt carbide nanoparticles which have blocking temperatures exceeding 570 K even for particles with magnetic domains of 8 nm. First principles theoretical investigations show that the observed behavior is rooted in the giant magnetocrystalline anisotropies due to controlled mixing between C p- and Co d-states.

El-Gendy, Ahmed A.; Qian, Meichun; Huba, Zachary J.; Khanna, Shiv N.; Carpenter, Everett E.

2014-01-01

160

Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI)  

PubMed Central

Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.

Du, Yimeng; Lai, Pui To; Leung, Cheung Hoi; Pong, Philip W. T.

2013-01-01

161

Design and Application of Magnetic-based Theranostic Nanoparticle Systems  

PubMed Central

Recently, magnetic-based theranostic nanoparticle (MBTN) systems have been studied, researched, and applied extensively to detect and treat various diseases including cancer. Theranostic nanoparticles are advantageous in that the diagnosis and treatment of a disease can be performed in a single setting using combinational strategies of targeting, imaging, and/or therapy. Of these theranostic strategies, magnetic-based systems containing magnetic nanoparticles (MNPs) have gained popularity because of their unique ability to be used in magnetic resonance imaging, magnetic targeting, hyperthermia, and controlled drug release. To increase their effectiveness, MNPs have been decorated with a wide variety of materials to improve their biocompatibility, carry therapeutic payloads, encapsulate/bind imaging agents, and provide functional groups for conjugation of biomolecules that provide receptor-mediated targeting of the disease. This review summarizes recent patents involving various polymer coatings, imaging agents, therapeutic agents, targeting mechanisms, and applications along with the major requirements and challenges faced in using MBTN for disease management.

Wadajkar, Aniket S.; Menon, Jyothi U.; Kadapure, Tejaswi; Tran, Richard T.; Yang, Jian; Nguyen, Kytai T.

2013-01-01

162

Preparation of novel magnetic fluorescent nanoparticles using amino acids.  

PubMed

Nanotechnology has opened new gates to pharmaceutical sciences and medicine from the aspect of drug delivery and imaging systems. Currently, bimodal fluorescent-magnetic nanoparticles are of great interest to biomedical scientists. In order to constructing these kinds of nanoparticles, fluorescent molecules should be linked to a magnetic core, while luminescence quenching is prevented. In order to alleviate this effect, usually fluorescent molecules are attached to a magnetic core after a multistep hydrocarbon, polymer or silica coating, which significantly increases the particle's size and reduces its magnetic saturation value. In this study, for the first time, amino acids (L-lysine and L-arginine) have been used as a linker and spacer between a fluorescent molecule (FITC) and a magnetic nanoparticle (Fe(3)O(4)) in a simple, two-step synthesis. Also, 3-aminopropyltriethoxysilane (APTES) was used without any previous silica coating for fluorescent magnetic nanoparticles construction. Routinely APTES is used after silica coating by tetraethoxysilane (TEOS). Either of L-lysine, L-arginine and APTES coating provides surface functional groups which interact with the isothiocyanate group of FITC. According to the obtained results, amino acids could be used for successful construction of fluorescent magnetic nanoparticles in a simple synthesis pathway, without any significant impact on the excitation and emission properties of fluorescent molecule. PMID:23104022

Ebrahiminezhad, Alireza; Ghasemi, Younes; Rasoul-Amini, Sara; Barar, Jaleh; Davaran, Soodabeh

2013-02-01

163

Size-dependent magnetic properties of calcium ferrite nanoparticles  

NASA Astrophysics Data System (ADS)

The union of nanotechnology with the other fields of science heralds the influx of many newer and better technologies, with the capability to revolutionize the human life. In the present work, calcium ferrite nanoparticles were synthesized by conventional sol-gel method and were characterised by X-ray diffraction, Transmission electron microscope, Vibrating sample magnetometer and Fourier transform infrared spectroscope. The synthesized nanoparticles were calcined at different temperatures and their magnetic behaviour was studied. The synthesized nanoparticles calcined at 900 °C were formed in the shape of capsules and exhibited mixed characteristics of ferrimagnetic and paramagnetic grains with magnetic saturation of 0.85 emu/g whereas nanoparticles calcined at 500 °C were spherical in shape and exhibited superparamagnetic characteristics with saturation magnetization of 37.67 emu/g.

Khanna, Lavanya; Verma, N. K.

2013-06-01

164

Magnetic birefringence of iron oxyhydroxide nanoparticles stabilised by sucrose  

NASA Astrophysics Data System (ADS)

Magnetically induced optical birefringence is used to investigate pharmaceutically important iron-sucrose aqueous suspensions. XRD and TEM measurements of the system of oxyhydroxide particles stabilised by sucrose have shown that this system contains iron oxyhydroxide in the form of 2-5 nm particles. The mineral form of the iron-core is suggested to be akaganeite. Anisotropy of the optical polarizability and magnetic susceptibility of akaganeite nanoparticles are calculated. The permanent dipole moment obtained for the nanoparticles studied was found to be negligible, in agreement with the characteristic superparamagnetic behaviour of the magnetic nanoparticles observed at room temperature. The Neel temperature of these nanoparticles is estimated as below 276 K. The results obtained are discussed against a background of the earlier studies of similar nanoscale systems.

Koralewski, M.; Pochylski, M.; Gierszewski, J.

2011-05-01

165

Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Decisions on the fate of cells and their functions are dictated by the spatiotemporal dynamics of molecular signalling networks. However, techniques to examine the dynamics of these intracellular processes remain limited. Here, we show that magnetic nanoparticles conjugated with key regulatory proteins can artificially control, in time and space, the Ran/RCC1 signalling pathway that regulates the cell cytoskeleton. In the presence of a magnetic field, RanGTP proteins conjugated to superparamagnetic nanoparticles can induce microtubule fibres to assemble into asymmetric arrays of polarized fibres in Xenopus laevis egg extracts. The orientation of the fibres is dictated by the direction of the magnetic force. When we locally concentrated nanoparticles conjugated with the upstream guanine nucleotide exchange factor RCC1, the assembly of microtubule fibres could be induced over a greater range of distances than RanGTP particles. The method shows how bioactive nanoparticles can be used to engineer signalling networks and spatial self-organization inside a cell environment.

Hoffmann, Céline; Mazari, Elsa; Lallet, Sylvie; Le Borgne, Roland; Marchi, Valérie; Gosse, Charlie; Gueroui, Zoher

2013-03-01

166

Magnetic Properties of Bio-Synthesized Magnetite Nanoparticles  

SciTech Connect

Magnetic nanoparticles, which are unique because of both structural and functional elements, have various novel applications. The popularity and practicality of nanoparticle materials create a need for a synthesis method that produces quality particles in sizable quantities. This paper describes such a method, one that uses bacterial synthesis to create nanoparticles of magnetite. The thermophilic bacterial strain Thermoanaerobacter ethanolicus TOR-39 was incubated under anaerobic conditions at 65 C for two weeks in aqueous solution containing Fe ions from a magnetite precursor (akaganeite). Magnetite particles formed outside of bacterial cells. We verified particle size and morphology by using dynamic light scattering, X-ray diffraction, and transmission electron microscopy. Average crystallite size was 45 nm. We characterized the magnetic properties by using a superconducting quantum interference device magnetometer; a saturation magnetization of 77 emu/g was observed at 5 K. These results are comparable to those for chemically synthesized magnetite nanoparticles.

Rawn, Claudia J [ORNL; Yeary, Lucas W [ORNL; Moon, Ji Won [ORNL; Love, Lonnie J [ORNL; Thompson, James R [ORNL; Phelps, Tommy Joe [ORNL

2005-01-01

167

Magnetic nanoparticles for medical applications: Progress and challenges  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose ZnCoFeO ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Hempelmann, R.; Caltun, O. F.

2013-11-01

168

Taking the temperature of the interiors of magnetically heated nanoparticles.  

PubMed

The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications. PMID:24779552

Dong, Juyao; Zink, Jeffrey I

2014-05-27

169

Applications of Magnetic Micro- and Nanoparticles in Biology and Medicine  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles were first proposed for biomedical applications in the 1970s - primarily as targeted drug delivery vehicles and MRI contrast agents. Since that time, such particles have found application in a variety of biomedical techniques. In addition to drug delivery, magnetic nanoparticles are now used routinely as MRI contrast agents as well as for magneto-immunoassay and cell sorting. More recently, magnetic micro- and nanoparticles have been used to investigate and manipulate cellular processes both in vitro and in vivo. In addition, biogenic magnetic nanoparticles are also produced in the human body. The iron storage protein, ferritin, consists of a superparamagnetic ferrihydrite core and biogenic magnetite (a ferrimagnet) has also been found in the brain and other organs. Though the role of ferritin and several other magnetic iron oxides in the body is well understood, the origin and role of biogenic magnetite is only now coming to light - and this may have profound implications for our understanding of neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases. This talk will review applications related to magnetic particle-mediated activation of cellular processes for tissue engineering applications and novel methods of magnetofection which have the potential to provide enhanced transfection for non-viral therapeutic gene delivery. It will also briefly highlight new techniques recently developed for the mapping and characterization of magnetic iron compounds related to neurodegenerative diseases and how rock magnetic techniques have been adapted to study magnetic iron compounds in the brain and other organs.

Dobson, J.

2005-12-01

170

Stability and Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation.  

National Technical Information Service (NTIS)

Magnetic nanoparticle fluids have numerous biomedical applications, including magnetic imaging, drug delivery, and hyperthermia treatment for cancer. Ideal magnetic nanoparticle fluids have well-separated, biocompatible nanoparticles with a small size dis...

M. A. Strand, N. H. Hai, R. Lemoine, S. Remboldt, S. Wignall

2005-01-01

171

Magnetic response of thermally blocked magnetic nanoparticles in a pulsed magnetic field  

NASA Astrophysics Data System (ADS)

In order to detect fast changes of the Brownian relaxation time due to reaction kinetics on the surface of magnetic particles or particle-clustering processes, we have developed a method that uses pulsed magnetic fields and detects the relaxation of the magnetic response on the time scale of milliseconds. We compared measurements in the frequency domain with the time domain measurement using particle suspensions with three different median sizes. The results obtained with the two methods agreed well. Time domain determination of Brownian relaxation was then used to study the reaction kinetics of the clustering process when sodium chloride solution was added to a magnetic nanoparticle suspension.

Prieto Astalan, Andrea; Jonasson, Christian; Petersson, Karolina; Blomgren, Jakob; Ilver, Dag; Krozer, Anatol; Johansson, Christer

2007-04-01

172

Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles.  

PubMed

The development of magnetic materials for interstitial hyperthermia treatment of cancer is an ever evolving research field which provides new alternatives to antitumoral therapies. The development of biocompatible magnetic materials has resulted in new biomaterials with multifunctional properties, which are able to adapt to the complex scenario of tumoral processes. Once implanted or injected in the body, magnetic materials can behave as thermoseeds under the effect of AC magnetic fields. Magnetic bioceramics aimed to treat bone tumors and magnetic nanoparticles are among the most studied thermoseeds, and supply different solutions for the different scenarios in cancerous processes. This paper reviews some of the biomaterials used for bone cancer treatment and skeletal reinforcing, as well as the more complex topic of magnetic nanoparticles for intracellular targeting and hyperthermia. PMID:24200980

Baeza, A; Arcos, D; Vallet-Regí, M

2013-12-01

173

Biocompatible core-shell magnetic nanoparticles for cancer treatment  

SciTech Connect

Non-toxic magnetic nanoparticles (MNPs) have expanded the treatment delivery options in the medical world. With a size range from 2 to 200 nm MNPs can be compiled with most of the small cells and tissues in living body. Monodispersive iron-iron oxide core shell nanoparticles were prepared in our novel cluster deposition system. This unique method of preparing the core shell MNPs gives nanoparticles very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells (SCLC). Since core iron enhances the heating effect [7] the rate of oxidation of iron nanoparticles was tested in deionized water at certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by X-ray diffraction (XRD) scan after 0, 24, 48, 96, 204 hours. Due to the high magnetic moment offered by MNPs produced in our lab, we predict that even in low applied external alternating field desired temperature can be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover, our MNPs do not require additional anti-coagulating agents and provide a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

Sharma, Amit M.; Qiang, You; Meyer, Daniel R.; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald R.

2008-04-01

174

Colloidal Polymers via Dipolar Assembly of Magnetic Nanoparticle Monomers.  

PubMed

In this Spotlight on Applications, we describe our recent progress in the preparation of hierarchical one-dimensional (1-D) materials constructed from polymer-coated ferromagnetic cobalt nanoparticles. We begin with a general discussion of nanoparticles capable of 1-D self-organization to form 1-D assemblies, which we term colloidal polymers. The need for efficient, highly directional interactions prompted our investigation with polymer-coated ferromagnetic nanoparticles, which spontaneously form linear assemblies through coupling of north and south magnetic poles present in these single-domain ferromagnetic nanoparticles. These highly directional N-S interactions and the resulting formation of 1-D assemblies can be understood in the context of traditional polymer-forming reactions. The dipolar assembly of these ferromagnetic nanoparticles into chains and binary assemblies while dispersed in organic media has been investigated as a key foundation to form novel magnetic materials and heterostructured nanocomposites. These studies enabled the fabrication of magnetic nanoactuating systems resembling "artificial cilia and flagella". We then discuss our recent efforts to prepare cobalt oxide nanowires using various nanoparticle conversion reactions through a process termed colloidal polymerization. A series of novel functional "colloidal monomers" based on dipolar cobalt nanoparticles were also prepared, incorporating noble metal or semiconductor nanoinclusions to form heterostructured cobalt oxide nanocomposites. PMID:24467583

Hill, Lawrence J; Pyun, Jeffrey

2014-05-14

175

Preparation of magnetic fluorescent hollow nanoparticles with multi-layer  

NASA Astrophysics Data System (ADS)

A kind of novel magnetic fluorescent hollow nanoparticles with multi-layer shells by layer-by-layer self-assembly process was presented in this paper. Non-crosslinking poly(acrylic acid) (PAA) nanoparticles as core with 250 nm in diameters were prepared by distillation-precipitation polymerization in acetonitrile with 2, 2'-Azobisisobutyronitrile (AIBN) as initiator and without any stabilizer and crosslinker. Then 4-vinylpyridine (4-VPy) as monomer was selfassembled on the surface of PAA nanoparticles because of hydrogen-bonding effect between the surface carboxyl of PAA nanoparticles and pyridine of 4-VPy. The 4-VPy as first shell layer were crosslinked by ethylene glycol dimethacrylate (EGDMA) by seeds distillation-precipitation polymerization in acetonitrile. The core/shell structure of this kind of nanoparticles was investigated by FT-IR and TEM. We can find that the products had an absorption peak at 1641 cm-1 from the FT-IR, which showed that the vinyl groups had been connected in the polyAA microspheres. After that, the non-crosslinking PAA core was removed under a solution of sodium hydroxide in ethanol-water. On the other hand, CdTe quantum dots (QDs) with about 3 nm in diameters as shell were prepared in aqueous solution with 3- mercaptopropionic acid (MPA) as stabilizer and 1, 6-hexylenediamime modified Fe3O4 nanoparticles with about 11 nm in diameters as core were synthesized in water respectively. Because of the hydrogen-bonding between the surface carboxyl of MPA on CdTe QDs and the amino on Fe3O4 nanoparticles, the core/shell magnetic-fluorescent nanoparticles were obtained. Then, the magnetic-fluorescent nanoparticles as second shell layer were self-assembled on the hollow 4VPy nanoparticles.

Sun, Xiuxue; Zhang, Jimei; Dai, Zhao; Li, Ping; Zhou, Wen; Zheng, Guo

2009-07-01

176

Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Different hybrid structures were obtained by coating magnetic nanoparticles of perovskite type manganite at optimal doping (La0.67Sr0.33MnO3,LSMO) with different quantities of polypyrrole (PPy). The amorphous layer of polypyrrole surrounding the crystalline magnetic core was observed by high resolution transmission electron microscopy (HRTEM) and analyzed by using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements in near edge structure (XANES) techniques. By analyzing the magnetic behavior of the samples one can observe that the surface modification of magnetic nanoparticles by PPy results in an increase in the saturation magnetization of the composites. The process is ascribed to paired electrons transferred from the delocalized ? states of the PPy into the outer disordered layers of the manganite. The analysis of pre-edge peak of the Mn K-edge XANES spectra in the case of PPy coated LSMO nanoparticles indicates that the charge transfer between polymer and nanoparticles is (directed) going to missing or distorted oxygen positions, hence increasing the 3d electrons' mobility and orbital hybridization between the neighboring manganese ion. As a consequence, within the surface layers of LSMO nanoparticles, both energy bands disrupted the structure, and the double exchange process between Mn ions was reestablished determining the saturation magnetizations and pre-edge features increase, respectively.

Pana, O.; Soran, M. L.; Leostean, C.; Macavei, S.; Gautron, E.; Teodorescu, C. M.; Gheorghe, N.; Chauvet, O.

2012-02-01

177

Magnetic nanoparticles fixed on the surface of detonation nanodiamond microgranules  

Microsoft Academic Search

Conglomerates formed out of aggregated nanodiamond particles have been successfully covered with magnetic Fe- and Co-containing nanoparticles by means of thermal destruction of metal-containing compounds in a hot mixture of mineral oil and detonation nanodiamond. Thus produced samples were characterized by TEM, XRD, and element analysis. Magnetic studies of the Co-containing samples have been performed.

S. P. Gubin; O. V. Popkov; G. Yu. Yurkov; V. N. Nikiforov; Yu. A. Koksharov; N. K. Eremenko

2007-01-01

178

Human erythrocytes as nanoparticle carriers for magnetic particle imaging  

Microsoft Academic Search

The potential of red blood cells (RBCs) loaded with iron oxide nanoparticles as a tracer material for magnetic particle imaging (MPI) has been investigated. MPI is an emerging, quantitative medical imaging modality which holds promise in terms of sensitivity in combination with spatial and temporal resolution. Steady-state and dynamic magnetization measurements, supported by semi-empirical modeling, were employed to analyze the

D. E. Markov; H. Boeve; B. Gleich; J. Borgert; A. Antonelli; C. Sfara; M. Magnani

2010-01-01

179

Agglomerating fluidization of nanoparticles in the vibration or magnetic field  

NASA Astrophysics Data System (ADS)

The agglomerate characteristics of SiO2, TiO2, ZnO nanoparticles in the vibration or magnetic field are studied with respect to bed pressure drop and the average agglomerate sizes. The results showed that slugging of the bed disappeared and the measured agglomerate sizes decreased, so that the fluidization quality of nanoparticles was significantly improved due to introduction of vibration or magnetic field. A model of energy balance is proposed to estimate the agglomerate sizes in the vibration or magnetic field, respectively. The equilibrium agglomerate sizes calculated by this model are in reasonable agreement with the experimental values.

Zhou, Tao; Duan, Hao; Wang, Hui; Zhang, Feng; Kage, Hiroyuki; Mawatari, Yoshihide

2013-06-01

180

Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays  

Microsoft Academic Search

Magnetic nanoparticle-based gene transfection has been shown to be effective in combination with both viral vectors and with non-viral agents. In these systems, therapeutic or reporter genes are attached to magnetic nanoparticles which are then focused to the target site\\/cells via high-field\\/high-gradient magnets. The technique has been shown to be efficient and rapid for in vitro transfection and compares well

S. C. McBain; U. Griesenbach; S. Xenariou; A. Keramane; C. D. Batich; E. W. F. W. Alton; J. Dobson

2008-01-01

181

Structure and Magnetic Properties of Polymer Microspheres Filled with Magnetite Nanoparticles  

Microsoft Academic Search

The structure and magnetic properties of collagen microspheres filled with magnetite nanoparticles are studied. The average interparticle separation in the polymer matrix and the size of magnetite nanoparticles before and after the introduction of the nanoparticles into the matrix are determined using electron microscopy. The magnetization curve of the microspheres has a superparamagnetic character. The magnetite nanoparticles undergo no aggregation

R. A. Ali-zade

2004-01-01

182

Synthesis of pure iron magnetic nanoparticles in large quantity  

NASA Astrophysics Data System (ADS)

Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications.

Tiwary, C. S.; Kashyap, S.; Biswas, K.; Chattopadhyay, K.

2013-09-01

183

Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy  

PubMed Central

Magnetic iron oxide (IO) nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which and generate significant susceptibility effects resulting in strong T2 and T2* contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI), which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.

Peng, Xiang-Hong; Qian, Ximei; Mao, Hui; Wang, Andrew Y; Chen, Zhuo (Georgia); Nie, Shuming; Shin, Dong M

2008-01-01

184

Magnetic domains and surface effects in hollow maghemite nanoparticles  

NASA Astrophysics Data System (ADS)

In the present work, we investigate the magnetic properties of ferrimagnetic and noninteracting maghemite (?-Fe2O3) hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arrangement in the different temperature regimes.

Cabot, Andreu; Alivisatos, A. Paul; Puntes, Víctor F.; Balcells, Lluís; Iglesias, Òscar; Labarta, Amílcar

2009-03-01

185

Magnetic domains and surface effects in hollow maghemite nanoparticles  

SciTech Connect

In the present work, we investigate the magnetic properties of ferrimagnetic and non-interacting maghemite hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arranggement in the different temperataure regimes.

Cabot, Andreu; Alivisatos, A. Paul; Puntes, Victor; Balcells, Lluis; Iglesias, Oscar; Labarta, Amilcar

2008-09-30

186

Design and synthesis of plasmonic magnetic nanoparticles  

Microsoft Academic Search

Core shell nanoparticles containing both iron oxide and gold are proposed for bioseparation applications. The surface plasmon resonance of gold makes it possible to track the positions of individual particles, even when they are smaller than the optical diffraction limit. The synthesis of water-dispersible iron oxide-gold nanoparticles is described. Absorption spectra show the plasmon peaks for Au shells on silica

Jitkang Lim; Robert D. Tilton; Alexander Eggeman; Sara A. Majetich

2007-01-01

187

Synthesis of magnetite nanoparticles for AC magnetic heating  

Microsoft Academic Search

Magnetite particles with different average diameter (Dm) suitable for magnetic fluid hyperthermia (MFH) were synthesized by controlled coprecipitation technique. In this method, the reaction pH was stabilized using the pH buffer and the average particle diameter decreased with increasing reaction pH. The size-dependent magnetic behavior of the magnetite nanoparticles was studied and the optimum size range required for magnetic fluid

T. Hosono; H. Takahashi; A. Fujita; R. Justin Joseyphus; K. Tohji; B. Jeyadevan

2009-01-01

188

Unconventional Magnetism in Low Carrier Density Systems and Nanoparticle Composites  

SciTech Connect

Under the auspices of this funding, we have developed a program to synthesize and characterize highly monodispersed magnetic nanoparticles. We have been particularly interested in the origin of the exchange bias effect, which occurs in compound nanoparticles with a ferromagnetic core and an antiferromagnetic shell, and have mostly focused on Co/CoO core-shell nanoparticles. The exchange bias effect involves exchange coupling between the core moment and the antiferromagnetic shell which stabilizes the core moment, which would otherwise be quickly reorienting in ferromagnetic particles of this size.

Meigan C Aronson

2008-06-14

189

ERRATUM: Magnetic and caloric properties of magnetic nanoparticles: an equilibrium study  

NASA Astrophysics Data System (ADS)

In the article 'Magnetic and caloric properties of magnetic nanoparticles: an equilibrium study', we discuss thermal equilibrium properties of non-interacting magnetically anisotropic nanoparticles. Some of the results related to ?0, ?2 and caloric properties are discussed earlier by J L García-Palacios in his classic article 'On the statics and dynamics of magneto-anisotropic nanoparticles' [1]. If someone is interested in this topic they should consult the article of J L García-Palacios [1]. References [1] J L García-Palacios 2000 Advances in Chemical Physics vol 112, ed I Priogogine and Stuart A Rice (New York: Wiley) 1

Bandyopadhyay, M.; Bhattacharya, J.

2008-04-01

190

Magnetically driven micropump produced by microstereolithography with ferrite nanoparticle composite photopolymer  

Microsoft Academic Search

A photopolymer containing magnetic nanoparticles was developed for applying magnetically driven micromachines. 7-nm diameter gamma-Fe2O3 nanoparticles coated by amorphous-SiO2 was used. The concentration of the magnetic nanoparticles was optimized by ultraviolet exposure. A magnetic microrotor of 6 mm diameter was produced by a molding process with a three-dimensional master model produced by microstereolithography using the nanoparticle composite photopolymer. A viscous

S. Maruo; T. Saeki; Y. Kanazawa; Y. Ichiyanagi

2008-01-01

191

Progress in applications of magnetic nanoparticles in biomedicine  

NASA Astrophysics Data System (ADS)

A progress report is presented on a selection of scientific, technological and commercial advances in the biomedical applications of magnetic nanoparticles since 2003. Particular attention is paid to (i) magnetic actuation for in vitro non-viral transfection and tissue engineering and in vivo drug delivery and gene therapy, (ii) recent clinical results for magnetic hyperthermia treatments of brain and prostate cancer via direct injection, and continuing efforts to develop new agents suitable for targeted hyperthermia following intravenous injection and (iii) developments in medical sensing technologies involving a new generation of magnetic resonance imaging contrast agents, and the invention of magnetic particle imaging as a new modality. Ongoing prospects are also discussed.

Pankhurst, Q. A.; Thanh, N. T. K.; Jones, S. K.; Dobson, J.

2009-11-01

192

Indole conjugated silica and magnetic nanoparticles as inhibitors of HIF.  

PubMed

Multifunctional silica nano-vehicles (SiO2@indol-IL) and magnetic nanoparticles (Fe3O4@indol-IL) were constructed through the Schiff bases condensation of indole-3-carboxaldehyde and 4-acetyl-N-allyl pyridinium chloride (ILs) with the amine groups of silica and magnetic nanoparticles. SiO2@indol-IL can inhibit the proliferation of HepG-2 cells in 48 h. Fe3O4@indol-IL can mimic the function of catalase to disproportionate H2O2 to O2, and has obvious effect on the proliferation of HepG-2 cells in 72 h. Moreover, the two nanoparticles show some inhibition on the expression of hypoxia inducible factor (HIF-1?), glucose transporter (GLUT1) and the production of lactate in HepG-2 cells. Therefore, we deduced that indole conjugated silica and magnetic nanparticles could be used as inhibitors of HIF-1? or GLUT1. PMID:24184535

Chen, Qiu-Yun; Wang, Zhi-Wei; Yang, Xia; Wang, Li

2014-02-01

193

TOPICAL REVIEW: Functionalisation of magnetic nanoparticles for applications in biomedicine  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles have been proposed for use as biomedical purposes to a large extent for several years. In recent years, nanotechnology has developed to a stage that makes it possible to produce, characterize and specifically tailor the functional properties of nanoparticles for clinical applications. This has led to various opportunities such as improving the quality of magnetic resonance imaging, hyperthermic treatment for malignant cells, site-specific drug delivery and the manipulation of cell membranes. To this end a variety of iron oxide particles have been synthesized. A common failure in targeted systems is due to the opsonization of the particles on entry into the bloodstream, rendering the particles recognizable by the body's major defence system, the reticulo-endothelial system. This review discusses each of the above bio-applications of such magnetic nanoparticles and details some of the main recent advances in biological research.

Berry, Catherine C.; Curtis, Adam S. G.

2003-07-01

194

Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties.  

PubMed

Ionic liquids as neoteric solvents, microwave irradiation, and alternative energy source are becoming as a solvent for many enzymatic reactions. We recently showed that the incubation of firefly luciferase from Photinus pyralis with various ionic liquids increased the activity and stability of luciferase. Magnetic nanoparticles supported ionic liquids have been obtained by covalent bonding of ionic liquids-silane on magnetic silica nanoparticles. In the present study, the effects of [?-Fe2O3@SiO2][BMImCl] and [?-Fe2O3@SiO2][BMImI] were investigated on the structural properties and function of luciferase using circular dichroism, fluorescence spectroscopy, and bioluminescence assay. Enzyme activity and structural stability increased in the presence of magnetic nanoparticles supported ionic liquids. Furthermore, the effect of ingredients which were used was not considerable on K(m) value of luciferase for adenosine-5'-triphosphate and also K(m) value for luciferin. PMID:24492953

Noori, Ali Reza; Hosseinkhani, Saman; Ghiasi, Parisa; Akbari, Jafar; Heydari, Akbar

2014-03-01

195

Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field  

NASA Astrophysics Data System (ADS)

We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.

Dieckhoff, Jan; Schilling, Meinhard; Ludwig, Frank

2011-09-01

196

Photoinduced Magnetism in Nanoparticles of Prussian Blue Derivatives  

NASA Astrophysics Data System (ADS)

Nanoparticles of the Prussian blue family are of great interest due to the possibility for applications in magnetic memory, biosensing, and magnetic filtering. Nanoparticles also serve to better investigate fascinating phenomena, such as the anisotropic photomagnetic properties seen in thin films of Prussian blue derivatives. Here, we present results on RbjCok[Fe(CN)6]l.nH2O Prussian blue analog nanoparticles, which exhibit photoinduced magnetism. The nanoparticles are synthesized in a controlled manner, which allows for particle growth in the range of 5-50 nm. Early experiments show that upon irradiation with light at 5 K for a period of 2 hours, the final magnetization increases on the order of 10-100% compared to the initial dark state value. This increase is comparable in magnitude with the results reported for bulk materials. The change in magnetization is also accompanied by an increase in Tc. Furthermore, the effect of the dispersing agent on the photomagnetism, the size effect on characteristic magnetic properties, and ac susceptibility data will be presented. J.-H. Park, E. Cizm'ar, M. W. Meisel, Y. D. Huh, F. Frye, S. Lane, and D. R. Talham, Appl. Phys. Lett. 85, 3797 (2004).

Anderson, N. E.; Park, J.-H.; Meisel, M. W.; Frye, F.; Talham, D. R.

2006-03-01

197

A Two-Magnet System to Push Therapeutic Nanoparticles  

NASA Astrophysics Data System (ADS)

Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically ``inject'', or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

2010-12-01

198

Effects of finite size and interactions on magnetic properties of oxide nanoparticles  

Microsoft Academic Search

The structure and magnetic properties of iron-based oxide nanoparticles have been studied to understand the effects of finite size and interparticle interactions on the magnetic properties of the particles. Nanoparticles of bismuth substituted yttrium iron garnet (Bi-YIG) nanoparticles and magnetite were selected to carry out the study for this thesis because of their unique magnetic properties and their practical importance

Taegyun Kim

2006-01-01

199

Intracellular Confinement of Magnetic Nanoparticles by Living Cells: Impact for Imaging and Therapeutic Applications  

NASA Astrophysics Data System (ADS)

Superparamagnetic properties of iron-oxide nanoparticles paved the way for various biomedical applications, such as magnetic resonance imaging (MRI), magnetic targeting of drug vectors or magnetically-induced therapeutic hyperthermia. Living cells interact with nanoparticles by internalizing them within intracellular compartments, called lysosomes. In the course of cellular uptake, the spatial distribution of magnetic nanoparticles changes from dilute isolated nanoparticles to a highly concentrated assembly of nanoparticles confined in micrometric lysosomes. This local organization of nanoparticles, which is induced by the intracellular environment, may have important consequences for their superparamagnetic behaviour. In particular, it may deeply affect their magnetic properties used for biomedical purposes and therefore must be considered when optimizing the properties of nanoparticles for a peculiar application. In this paper, we review the role of intracellular confinement of nanoparticles for their three main biomedical uses: MR cellular imaging, magnetic targeting of cells and magnetically induced hyperthermia.

Gazeau, Florence; Lévy, Michael; Wilhelm, Claire

2011-03-01

200

Magnetization and actuation of polymeric microstructures with magnetic nanoparticles for application in microfluidics  

Microsoft Academic Search

An increasing number of lab-on-a-chip devices require advanced fluid manipulations. We intend to address this requirement by incorporating polymeric responsive materials on the walls of the microfluidic channels of such devices. In this paper we present a magnetic polymer made from commercially available functionalized magnetic nanoparticles and PDMS. Loadings of this polymer up to 5% volume of magnetic material were

F. Fahrni; M. W. J. Prins; L. J. van IJzendoorn

2009-01-01

201

Magnetic properties of self-assembled interacting nanoparticles  

NASA Astrophysics Data System (ADS)

The temperature-dependent magnetization and the hysteresis properties (remanence and coercivity) of magnetic nanoparticle arrays are studied by Monte Carlo simulations. An oscillatory variation of the remanence with layer coverage and accompanying peaks in the coercive field are predicted at low temperatures, due to dipolar interparticle interactions. The blocking temperature of the arrays decreases with the inverse cube of the interparticle spacing (Tb~d-3) and it remains almost unchanged with film thickness above one monolayer. Our results are compared with recent experiments on self-assembled Co nanoparticle arrays.

Kechrakos, D.; Trohidou, K. N.

2002-12-01

202

Multifunctional magnetic nanoparticles for targeted imaging and therapy  

PubMed Central

Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials.

McCarthy, Jason R.; Weissleder, Ralph

2008-01-01

203

Electron Energy Levels in Magnetic Nanoparticles.  

National Technical Information Service (NTIS)

Annual progress report for N00014-97-1-0745. We provide details concerning equipment installation, start-up experiments on effects of spin-orbit scattering impurities on the superconducting properties of aluminum nanoparticles, and efforts to optimize pro...

D. C. Ralph

1998-01-01

204

Design and synthesis of plasmonic magnetic nanoparticles  

Microsoft Academic Search

Core–shell nanoparticles containing both iron oxide and gold are proposed for bioseparation applications. The surface plasmon resonance of gold makes it possible to track the positions of individual particles, even when they are smaller than the optical diffraction limit. The synthesis of water-dispersible iron oxide-gold nanoparticles is described. Absorption spectra show the plasmon peaks for Au shells on silica particles,

JitKang Lim; Robert D. Tilton; Alexander Eggeman; Sara A. Majetich

2007-01-01

205

Magnetic Nanoparticle Drug Carriers and their Study by Quadrupole Magnetic Field-Flow Fractionation  

PubMed Central

Magnetic nanoparticle drug carriers continue to attract considerable interest for drug targeting in the treatment of cancers and other pathological conditions. The efficient delivery of therapeutic levels of drug to a target site while limiting nonspecific, systemic toxicity requires optimization of the drug delivery materials, the applied magnetic field, and the treatment protocol. The history and current state of magnetic drug targeting is reviewed. While initial studies involved micron-sized and larger carriers, and work with these microcarriers continues, it is the sub-micron carriers or nanocarriers that are of increasing interest. An aspect of magnetic drug targeting using nanoparticle carriers that has not been considered is then addressed. This aspect involves the variation in the magnetic properties of the nanocarriers. Quadrupole magnetic field-flow fractionation (QMgFFF) is a relatively new technique for characterizing magnetic nanoparticles. It is unique in its capability of determining the distribution in magnetic properties of a nanoparticle sample in suspension. The development and current state of this technique is also reviewed. Magnetic nanoparticle drug carriers have been found by QMgFFF analysis to be highly polydisperse in their magnetic properties, and the strength of response of the particles to magnetic field gradients is predicted to vary by orders of magnitude. It is expected that the least magnetic fraction of a formulation will contribute the most to systemic toxicity, and the depletion of this fraction will result in a more effective drug carrying material. A material that has a reduced systemic toxicity will allow higher doses of cytotoxic drugs to be delivered to the tumor with reduced side effects. Preliminary experiments involving a novel method of refining a magnetic nanoparticle drug carrier to achieve this result are described. QMgFFF is used to characterize the refined and unrefined material.

Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

2009-01-01

206

Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.  

PubMed

Functionalized magnetic nanoparticles (mNPs) have shown promise in biosensing and other biomedical applications. Here we use functionalized mNPs to develop a highly sensitive, versatile sensing strategy required in practical biological assays and potentially in vivo analysis. We demonstrate a new sensing scheme based on magnetic spectroscopy of nanoparticle Brownian motion (MSB) to quantitatively detect molecular targets. MSB uses the harmonics of oscillating mNPs as a metric for the freedom of rotational motion, thus reflecting the bound state of the mNP. The harmonics can be detected in vivo from nanogram quantities of iron within 5s. Using a streptavidin-biotin binding system, we show that the detection limit of the current MSB technique is lower than 150 pM (0.075 pmole), which is much more sensitive than previously reported techniques based on mNP detection. Using mNPs conjugated with two anti-thrombin DNA aptamers, we show that thrombin can be detected with high sensitivity (4 nM or 2 pmole). A DNA-DNA interaction was also investigated. The results demonstrated that sequence selective DNA detection can be achieved with 100 pM (0.05 pmole) sensitivity. The results of using MSB to sense these interactions, show that the MSB based sensing technique can achieve rapid measurement (within 10s), and is suitable for detecting and quantifying a wide range of biomarkers or analytes. It has the potential to be applied in variety of biomedical applications or diagnostic analyses. PMID:23896525

Zhang, Xiaojuan; Reeves, Daniel B; Perreard, Irina M; Kett, Warren C; Griswold, Karl E; Gimi, Barjor; Weaver, John B

2013-12-15

207

Magnetic molecularly imprinted nanoparticles for recognition of lysozyme.  

PubMed

Molecular imprinting is an attractive technique for preparing mimics of natural, biological receptors. Nevertheless, the imprinting of macromolecule remains a challenge due to their bulkiness and sensitivity to denaturation. In this work, we presented a method for preparing multifunctional lysozyme-imprinted nanoparticles (magnetic susceptibility, molecular recognition and environmental response). The magnetic susceptibility was imparted through the successful encapsulation of Fe3O4 nanoparticles. Selective lysozyme recognition depended on molecularly imprinted film. Moreover, it was also a hydrophilic stimuli-responsive polymer, which could undergo a reversible change of imprinted cavity in response to a small change in the environmental conditions. Thus, magnetic molecularly imprinted nanoparticles had high adsorption capacity (0.11 mg mg(-1)), controlled selectivity and direct magnetic separation (22.1 emicro g(-1)) in crude samples. After preconcentration and purification with magnetic MIPs nanoparticles, a sensitive chemiluminescence method was developed for determination of lysozyme in human serum samples. The results indicated that the spiked recoveries were changed from 92.5 to 113.7%, and the RSD was lower than 11.8%. PMID:20829022

Jing, Tao; Du, Hairong; Dai, Qing; Xia, Huan; Niu, Jiwei; Hao, Qiaolin; Mei, Surong; Zhou, Yikai

2010-10-15

208

Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles  

Microsoft Academic Search

Polymer-coated magnetic nanoparticles are hi-tech materials with ample applications in the field of biomedicine for the treatment of cancer and targeted drug delivery. In this study, magnetic nanoparticles were synthesized by chemical reduction of FeCl2 solution with sodium borohydride and coated with amine-terminated polyethylene glycol (aPEG). By varying the concentration of the reactants, the particle size and the crystallinity of

Srinivasan Balakrishnan; Michael J. Bonder; George C. Hadjipanayis

2009-01-01

209

Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation  

PubMed Central

Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected.

Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

2010-01-01

210

Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate\\/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles  

Microsoft Academic Search

Saccharomyces cerevisiae cells were entrapped in matrix of alginate and magnetic nanoparticles and covalently immobilized on magnetite-containing chitosan and cellulose-coated magnetic nanoparticles. Cellulose-coated magnetic nanoparticles with covalently immobilized thermostable {\\\\alpha}-amylase and chitosan particles with immobilized glucoamylase were also prepared. The immobilized cells and enzymes were applied in column reactors - 1\\/for simultaneous corn starch saccharification with the immobilized glucoamylase and

Viara Ivanova; Petia Petrova; Jordan Hristov

2011-01-01

211

Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection  

PubMed Central

The incidence of wound infections that do not adequately respond to standard-of-care antimicrobial treatment has been increasing. To address this challenge, a novel antimicrobial magnetic thermotherapy platform has been developed in which a high-amplitude, high-frequency, alternating magnetic field (AMF) is used to rapidly heat magnetic nanoparticles that are bound to Staphylococcus aureus (S. aureus). The antimicrobial efficacy of this platform was evaluated in the treatment of both an in vitro culture model of S. aureus biofilm and a mouse model of cutaneous S. aureus infection. We demonstrated that an antibody-targeted magnetic nanoparticle bound to S. aureus was effective at thermally inactivating S. aureus and achieving accelerated wound healing without causing tissue injury.

Kim, Min-Ho; Yamayoshi, Itsukyo; Mathew, Steven; Liln, Hubert; Nayfach, Joseph; Simon, Scott I.

2013-01-01

212

Magnetic single-enzyme nanoparticles with high activity and stability  

SciTech Connect

Magnetic single-enzyme nanoparticles (SENs) encapsulated within a composite inorganic/organic polymer network were fabricated via the surface modification and in situ aqueous polymerization of separate enzyme molecule. The resultant nanoparticles were characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrometer and X-ray diffraction (XRD). These particles are almost spherical in shape and have a unique size of about 50 nm in diameter. Electrical and magnetic measurements reveal that the magnetic SENs have a conductivity of 2.7 x 10{sup -3} S cm{sup -1}, and are superparamagnetic with a saturation magnetization of 14.5 emu g{sup -1} and a coercive force of 60 Oe. Compared with free enzyme, encapsulated enzyme exhibits a strong tolerance to the variation of solution pH, high temperature, organic solvent and long-term storage, thus showing significantly enhanced enzyme performance and stability.

Yang Zhengpeng [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000 (China); Si Shihui [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: sishihui@mail.csu.edu.cn; Zhang Chunjing [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000 (China)

2008-02-29

213

Numerical study of magnetic nanoparticles concentration in biofluid (blood) under influence of high gradient magnetic field  

NASA Astrophysics Data System (ADS)

Ferrofluids are widely used in pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro-valve applications. The purpose of the current study is to investigate the effect of a magnetic field on the volume concentration of magnetic nanoparticles of a non-Newtonian biofluid (blood) as a drug carrier. The effect of particles on the flow field is considered. The governing non-linear differential equations, concentration and Naviar-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. The results show accumulation of magnetic nanoparticles near the magnetic source until it looks like a solid object. The accumulation of nanoparticles is due to the magnetic force that overcomes the fluid drag force. As the magnetic strength and size of the magnetic particles increase, the accumulation of nanoparticles increases, as well. The magnetic susceptibility of particles also affects the flow field and the contour of the concentration considerably.

Reza Habibi, Mohammad; Ghasemi, Majid

2011-01-01

214

Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy  

PubMed Central

The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30–70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.

Glover, Amanda L.; Bennett, James B.; Pritchett, Jeremy S.; Nikles, Sarah M.; Nikles, David E.; Nikles, Jacqueline A.; Brazel, Christopher S.

2013-01-01

215

Do Antibody-Coated Bacteria Reflect Local Immune Response in the Urinary Tract?  

Microsoft Academic Search

We examined whether antibody-coated bacteria (ACB) reflect local immune response or passive adsorption of immune globulins (Ig). For this purpose, bacterial subcultures from infected urines and third-party bacteria were incubated with Ig preparations. These were obtained from infected urine either by removal of Ig from ACB (dissociation in alpha-methylmannoside, 0.1 M glycine-HCl, or 3 M NaSCN) or by staphylococcal protein

Gerd Riedasch; Eberhard Ritz; Ernst Rauterberg

1984-01-01

216

A direct competitive enzyme-linked immunosorbent assay by antibody coated for diethyl phthalate analysis  

Microsoft Academic Search

A direct competitive enzyme-linked immunosorbent assay (ELISA) has been developed for detection of diethyl phthalate (DEP). Protein–hapten conjugate was synthesized to produce polyclonal antibodies against DEP. Experimental parameters were optimized, including immunoreaction conditions, the dilution ratio of horseradish peroxidase (HRP)–antigen conjugate, time of the antibody coated, effect of pH, and ionic strength. The limit of detection was 0.096ng\\/ml, and the

Mingcui Zhang; Ying Cong; Yali Sheng; Bolin Liu

2010-01-01

217

Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient.  

PubMed

Magnetic core shell nanoparticles (MCSNPs) 30 nm diameter with a magnetic weight of 10% are usually much too small to be trapped in microfluidic systems using classical external magnets. Here, a simple microchip for efficient MCSNPs trapping and release is presented. It comprises a bed of micrometric iron beads (6-8 ?m diameter) packed in a microchannel against a physical restriction and presenting a low dead volume of 0.8 nL. These beads of high magnetic permeability are used to focus magnetic field lines from an external permanent magnet and generate local high magnetic gradients. The nanoparticles magnetic trap has been characterised both by numerical simulations and fluorescent MCSNPs imaging. Numerical simulations have been performed to map both the magnetic flux density and the magnetic force, and showed that MCSNPs are preferentially trapped at the iron bead magnetic poles where the magnetic force is increased by 3 orders of magnitude. The trapping efficiency was experimentally determined using fluorescent MCSNPs for different flow rates, different iron beads and permanent magnet positions. At a flow rate of 100 ?L h(-1), the nanoparticles trapping/release can be achieved within 20 s with a preconcentration factor of 4000. PMID:21253647

Teste, Bruno; Malloggi, Florent; Gassner, Anne-Laure; Georgelin, Thomas; Siaugue, Jean-Michel; Varenne, Anne; Girault, Hubert; Descroix, Stéphanie

2011-03-01

218

Statistical sequential analysis for particle size distribution of magnetic nanoparticles  

Microsoft Academic Search

We present two statistical sequential analytical approaches to estimate particle size distribution of magnetic nanoparticles. They are termed sequential least square estimation and sequential linear minimum mean square error estimation, respectively. These approaches are implemented and quantified within the formalism of sequential estimation theory. The proposed methods are based on the data sampled sequentially in time and no matrix inversions

Gang Lei; Yanbin Li; J. Zhao; K. R. Shao

2008-01-01

219

Synthesis and magnetism of hematite and maghemite nanoparticles  

NASA Astrophysics Data System (ADS)

Rod-shaped hematite and maghemite nanoparticles with diameters of 5nm and lengths of 16 and 17nm were synthesized by a newly designed sol-gel mediated reaction and their magnetic properties were investigated. The hematite nanorods showed ferromagnetic behavior from 5 to 300K, while the maghemite nanorods exhibited superparamagnetic behavior with a blocking temperature at around 130K.

Woo, Kyoungja; Lee, Ho Jin

2004-05-01

220

Synthesis and magnetism of hematite and maghemite nanoparticles  

NASA Astrophysics Data System (ADS)

Rod-shaped hematite and maghemite nanoparticles with diameters of 5 nm and lengths of 16 and 17 nm were synthesized by a newly designed sol-gel mediated reaction and their magnetic properties were investigated. The hematite nanorods showed ferromagnetic behavior from 5 to 300 K, while the maghemite nanorods exhibited superparamagnetic behavior with a blocking temperature at around 130 K.

Woo, Kyoungja; Lee, Ho Jin

221

Hybrid composites of xanthan and magnetic nanoparticles for cellular uptake.  

PubMed

We describe a fast and simple method to prepare composite films of magnetite nanoparticles and xanthan networks. The particles are distributed close to hybrid film surface, generating a coercivity of 27 ± 2 Oe at 300 K. The proliferation of fibroblast cells on the hybrid composites was successful, particularly when an external magnetic field was applied. PMID:23774749

Bueno, Vânia Blasques; Silva, Anielle Martins; Barbosa, Leandro Ramos Souza; Catalani, Luiz Henrique; Teixeira-Neto, Erico; Cornejo, Daniel Reinaldo; Petri, Denise Freitas Siqueira

2013-11-01

222

Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies  

PubMed Central

Magnetostatic (dipolar) interactions between nanoparticles promise to open new ways to design nanocrystalline magnetic materials and devices if the collective magnetic properties can be controlled at the nanoparticle level. Magnetic dipolar interactions are sufficiently strong to sustain magnetic order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ? 100??B. Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15?nm cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies.

Varon, M.; Beleggia, M.; Kasama, T.; Harrison, R. J.; Dunin-Borkowski, R. E.; Puntes, V. F.; Frandsen, C.

2013-01-01

223

Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies.  

PubMed

Magnetostatic (dipolar) interactions between nanoparticles promise to open new ways to design nanocrystalline magnetic materials and devices if the collective magnetic properties can be controlled at the nanoparticle level. Magnetic dipolar interactions are sufficiently strong to sustain magnetic order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ? 100??(B). Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15?nm cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies. PMID:23390584

Varón, M; Beleggia, M; Kasama, T; Harrison, R J; Dunin-Borkowski, R E; Puntes, V F; Frandsen, C

2013-01-01

224

Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization.  

PubMed

This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe2O4 (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using magnetic and structural nanoparticle characterization, we identify key synthetic parameters in the thermal decomposition of organometallic precursors that yield optimized magnetic nanoparticles over a wide range of sizes and compositions. The developed synthetic procedures allow for gram-scale production of magnetic nanoparticles stable in physiological buffer for several months. Our magnetic nanoparticles display some of the highest heat dissipation rates, which are in qualitative agreement with the trends predicted by a dynamic hysteresis model of coherent magnetization reversal in single domain magnetic particles. By combining physical simulations with robust scalable synthesis and materials characterization techniques, this work provides a pathway to a model-driven design of magnetic nanoparticles tailored to a variety of biomedical applications ranging from cancer hyperthermia to remote control of gene expression. PMID:24016039

Chen, Ritchie; Christiansen, Michael G; Anikeeva, Polina

2013-10-22

225

Computational studies of steering nanoparticles with magnetic gradients  

NASA Astrophysics Data System (ADS)

Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.

Aylak, Sultan Suleyman

226

Biological Sensors based on Brownian Relaxation of Magnetic Nanoparticles  

NASA Astrophysics Data System (ADS)

We present a biological sensing platform that is based on a modification of the dynamic magnetic properties of ferromagnetic nanoparticles suspended in a liquid. For a narrow size range the ac magnetic susceptibility of the ferromagnetic nanoparticles is dominated by Brownian relaxation. By coating the nanoparticles with a suitable ligand the Brownian relaxation and thus the ac magnetic susceptibility can be modified through the binding to the corresponding bio-receptor. The size of the particles has to be large enough to avoid superparamagnetism and at the same time small enough to have a homogeneous single domain magnetization. We demonstrate a proof-of-principle of this concept by using avidin-coated Fe_3O4 particles that are 10 nm in diameter, which were investigated before and after binding to biotinated S-protein and bacteriophage particles. The ac susceptibility measurements show that the magnetic relaxation occurs via a Brownian mechanism; the frequency shift for the peak in the imaginary part of the susceptibility after binding to the target indicates the increase of the hydrodynamic radius. We are currently developing magnetic phage viruses in order to further improve this bio-sensing platform. * Supported by DOE, BES under contract W-31-109-ENG-38, and DARPA under contract 8C67400.

Chung, S.-H.; Hoffmann, A.; Bader, S. D.; Liu, C.; Chen, L.; Kay, B.; Makowski, L.

2004-03-01

227

Magnetic nanoparticles as new diagnostic tools in medicine.  

PubMed

Magnetic iron oxide nanoparticles have raised much interest during the recent years due to their novel properties (superparamagnetism, high saturation field, blocking temperature, etc.) and potential applications in organic synthesis, biotechnology and finally in medicine. The medicinal applications include: controlled drug delivery systems (DDS), magnetic resonance imaging (MRI), magnetic fluid hyperthermia (MFH), macromolecules and pathogens separation, cancer therapy and so on. In this paper we would like to present the newest literature reports concerning usage of MNPs in medicinal diagnostics such as: - magnetic separations of DNA (immobilization, isolation, diagnosis of genetic disorders and detection of exogenous substances in the organisms) - magnetic immobilization of proteins (applications in biotechnology, medicine, and catalysis) - magnetic separations of pathogens (i.e. isolation of bacteria, detection of various pathogens) - magnetic resonance imaging (imaging contrast agents, lymphangiography). PMID:23154427

Niemirowicz, K; Markiewicz, K H; Wilczewska, A Z; Car, H

2012-01-01

228

Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection.  

PubMed

A simple fiber sensor for magnetic field measurement based on nanoparticle Fe(3)O(4) magnetic fluid and relative Fresnel reflection is presented. The sensor includes only a light source, three couplers, two photodetectors, and two fiber sensing ends. Magnetic fields at different concentrations of magnetic fluid are measured. Magnetic fluid with high concentration can be used for the measurement of weak magnetic fields, while low concentration fluid is used for the measurement of strong magnetic fields. The temperature dependence of the sensor is also addressed. PMID:21808304

Chen, Luan Xiong; Huang, Xu Guang; Zhu, Jia Hu; Li, Guang Can; Lan, Sheng

2011-08-01

229

Nanostructured diblock copolymer films with embedded magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Nanostructured diblock copolymer films with embedded magnetic nanoparticles are prepared by solution casting. The diblock copolymer polystyrene-block-polymethylmethacrylate with a fully deuterated polystyrene block of a weight ratio of 0.22 is used as a structure-directing matrix. Maghemite nanoparticles (?-Fe2O3) are coated with polystyrene and thus have a selective affinity to the minority block of the diblock copolymer. The hybrid film morphology is investigated as a function of nanoparticle concentration. The surface structure is probed with atomic force microscopy and scanning electron microscopy. The inner film structure and the structure at the polymer-substrate interface are detected with grazing incidence small angle neutron scattering (GISANS). Irrespective of the nanoparticle concentration a well developed micro-phase separation structure is present. From the Bragg peaks observed in the GISANS data a linear nanoparticle concentration dependence of the inter-domain spacing of the micro-phase separation structure is determined. The superparamagnetic and blocking behavior can be explained with a generalized Stoner-Wohlfarth-Néel theory which includes either an elastic torque being exerted on the nanoparticles by the field or a broad distribution of anisotropy constants.

Xia, Xin; Metwalli, Ezzeldin; Ruderer, Matthias A.; Körstgens, Volker; Busch, Peter; Böni, Peter; Müller-Buschbaum, Peter

2011-06-01

230

Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors  

PubMed Central

Introduction Breast cancer detection using mammography has improved clinical outcomes for many women, because mammography can detect very small (5 mm) tumors early in the course of the disease. However, mammography fails to detect 10 - 25% of tumors, and the results do not distinguish benign and malignant tumors. Reducing the false positive rate, even by a modest 10%, while improving the sensitivity, will lead to improved screening, and is a desirable and attainable goal. The emerging application of magnetic relaxometry, in particular using superconducting quantum interference device (SQUID) sensors, is fast and potentially more specific than mammography because it is designed to detect tumor-targeted iron oxide magnetic nanoparticles. Furthermore, magnetic relaxometry is theoretically more specific than MRI detection, because only target-bound nanoparticles are detected. Our group is developing antibody-conjugated magnetic nanoparticles targeted to breast cancer cells that can be detected using magnetic relaxometry. Methods To accomplish this, we identified a series of breast cancer cell lines expressing varying levels of the plasma membrane-expressed human epidermal growth factor-like receptor 2 (Her2) by flow cytometry. Anti-Her2 antibody was then conjugated to superparamagnetic iron oxide nanoparticles using the carbodiimide method. Labeled nanoparticles were incubated with breast cancer cell lines and visualized by confocal microscopy, Prussian blue histochemistry, and magnetic relaxometry. Results We demonstrated a time- and antigen concentration-dependent increase in the number of antibody-conjugated nanoparticles bound to cells. Next, anti Her2-conjugated nanoparticles injected into highly Her2-expressing tumor xenograft explants yielded a significantly higher SQUID relaxometry signal relative to unconjugated nanoparticles. Finally, labeled cells introduced into breast phantoms were measured by magnetic relaxometry, and as few as 1 million labeled cells were detected at a distance of 4.5 cm using our early prototype system. Conclusions These results suggest that the antibody-conjugated magnetic nanoparticles are promising reagents to apply to in vivo breast tumor cell detection, and that SQUID-detected magnetic relaxometry is a viable, rapid, and highly sensitive method for in vitro nanoparticle development and eventual in vivo tumor detection.

2011-01-01

231

Biofunctionalized magnetic nanoparticles for in vitro labeling and in vivo locating specific biomolecules  

NASA Astrophysics Data System (ADS)

In this work, we developed processes to biofunctionalize magnetic nanoparticles dispersed in phosphate buffer saline solution. For future clinical utility, magnetic nanoparticles were biofunctionalized with anti-vascular cell adhesion molecule-1 (VCAM-1) to label the VCAM-1 molecule, which served as an indicator for the lesions prone to vulnerable atherosclerotic plaque formation. The biofunctionalized magnetic nanoparticles were used to magnetically label, in vitro, cells expressing VCAM-1, as well as to locate the vulnerable aortic lesions of hypercholesterolemic rabbits with the aid of magnetic resonance imaging. In addition to demonstrating the feasibility of using biofunctionalized magnetic nanoparticles for biomolecule assays, the relevant physical mechanisms are discussed.

Wu, C. C.; Lin, L. Y.; Lin, L. C.; Huang, H. C.; Yang, Y. F.; Liu, Y. B.; Tsai, M. C.; Gao, Y. L.; Wang, W. C.; Hung, S. W.; Yang, S. Y.; Horng, H. E.; Yang, H. C.; Tseng, W. Y. I.; Yeh, H. I.; Hsuan, C. F.; Lee, T. L.; Tseng, W. K.

2008-04-01

232

Non-Langevin high-temperature magnetization of nanoparticles in a weak magnetic field  

SciTech Connect

Experimental evidence and theoretical substantiation are presented for the asymptotic behavior of high-temperature magnetization of an ensemble of nanoparticles in a weak magnetic field, which was predicted earlier and which differs qualitatively from the 'Langevin' limit for ideal superparamagnetic particles. It is shown that the physical reason for the new asymptotic behavior is the temperature-independent 'positive' tilt of the uniform magnetization vector at local energy minima in the direction of the field; this asymptotic behavior is associated with the nonstandard thermodynamics of single-domain particles, which depends on the ratio of characteristic frequencies of regular precession and random diffusion of this vector. An alternative approach is proposed for describing the magnetic dynamics of an ensemble of nanoparticles in a magnetic field, and the precession orbits of the magnetization vector are considered as stochastic states of each particle, whereas each state is characterized by the trajectory-averaged value of magnetization.

Chuev, M. A. [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation)], E-mail: m_a_chuev@mail.ru

2009-02-15

233

Use of Magnetic Nanoparticles to Visualize Threadlike Structures inside Lymphatic Vessels of Rats  

Microsoft Academic Search

A novel application of fluorescent magnetic nanoparticles was made to visualize a new tissue which had not been detectable by using simple stereomicroscopes. This unfamiliar threadlike structure inside the lymphatic vessels of rats was demonstrated in vivo by injecting nanoparticles into lymph nodes and applying magnetic fields on the collecting lymph vessels so that the nanoparticles were taken up by

Hyeon-Min Johng; Jung Sun Yoo; Tae-Jong Yoon; Hak-Soo Shin; Byung-Cheon Lee; Changhoon Lee; Jin-Kyu Lee; Kwang-Sup Soh

2007-01-01

234

Magnetic behaviour of iron nanoparticles passivated by oxidation  

NASA Astrophysics Data System (ADS)

This study is to understand the effect of oxidation, especially magnetically, on iron nanoparticles. According to generation of the oxidated iron nanoparticles, mechanical alloying technique was used and nanosized magnetite (Fe3O4), maghemite (-Fe2O3) and hematite (-Fe2O3) particles were obtained as the resultant samples. The reactance to the thermal treatment was determined by differential thermal analysis and thermogravimetric (DTA-TG) measurements. X-ray powder diffractions (XRD) helped to exhibit the structure of the sample by ICDD cards and to determine the size of nanoparticles by using the Scherrer formula. On the other hand, VSM (vibrating sample magnetometer) measurements were determined to understand the magnetic behaviour. Through the transformation of Fe3O4 to other iron-oxides, two exothermic peaks were observed at around 169.11 °C and 562.61 °C by DTA analysis. Beside of this, the experimental results demonstrate the effects of mechanical milling parameters, atmosphere and lubricant, to the structure and to the size of the resultant particles and the change of magnetic behavior of the iron-oxide and iron nanoparticles when they approach to superparamagnetic region, especially in single domain region.

Mutlu Can, Musa; Özcan, Adan; Frat, Tezer

2006-05-01

235

Dynamic nanomagnetism characterization of individual magnetic nanoparticles by frequency-modulated magnetic force microscopy  

NASA Astrophysics Data System (ADS)

In this study, stroboscopic imaging of an alternating magnetic field (AC magnetic field) from individual superparamagnetic Fe3O4 nanoparticles was achieved using the developed frequency modulated-magnetic force microscopy (FM-MFM) technique, which enables the imaging of the vector signals of AC magnetic fields, such as a combination of in-phase and quadrature signals or that of amplitude and phase signals. FM-MFM uses the frequency modulation of cantilever oscillation, caused by the application of an off-resonant AC magnetic field to a mechanically oscillated cantilever, and visualises the vector signals of the AC magnetic field by adding a frequency demodulator and a lock-in amplifier to a conventional magnetic force microscope. Stroboscopic imaging of an AC magnetic field was carried out by varying the phase of the measured in-phase and quadrature signals via a signal processing technique. For the superparamagnetic Fe3O4 nanoparticles, stroboscopic imaging of the time-variable AC magnetic field, caused by the rotation of the magnetic moments within the particles, was demonstrated. This article describes the present status of FM-MFM technology, with particular attention to the feasibility of detecting magnetic moments of individual nanoparticles, and the possible application of FM-MFM in biological imaging.

Li, Xiang; Li, Zhenghua; Pan, Deng; Yoshimura, Satoru; Saito, Hitoshi

2014-05-01

236

Magnetic Properties of ?-Fe2O3 Nanoparticles  

NASA Astrophysics Data System (ADS)

We produced maghemite (?-Fe2O3) nanoparticles with average particle diameters of 6, 7, and 12 nm and investigated their magnetic properties. The structure was determined to be face centered-cubic with a lattice constant of a = 8.350±2 Å, similar to the bulk material for all samples. We observed that the ?-Fe2O3 nanoparticles, with average particle diameters of 6 and 7 nm, were superparamagnetic at room temperature with blocking temperatures of 138 and 168 K, respectively. Those with an average particle diameter of 12 nm are ferrimagnetic at room temperature.

Choi, B. J.; Kim, S. H.; Jeon, Y. T.; Moon, J. Y.; Lee, G. H.; Chang, Y.; Park, J.

237

Contactless conductivity of nanoparticles from electron magnetic resonance lineshape analysis  

NASA Astrophysics Data System (ADS)

A contactless method to determine the electrical conductivity of nanoparticles is presented. It is based on the lineshape analysis of electron magnetic resonance signals which are 'Dysonian' for conducting samples of sizes larger than the skin depth. The method is validated by measurements on a bulk sample of La 0.67Sr 0.33MnO 3 where it gives values close to those obtained from direct measurement of conductivity and is then used to determine the conductivity of nanoparticles of La 0.67Sr 0.33MnO 3 dispersed in polyvinyl alcohol as a function of temperature.

Padmalekha, K. G.; Bhat, S. V.

2010-09-01

238

Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer  

NASA Astrophysics Data System (ADS)

Key advances in multifunctional magnetic nanoparticles (MNPs) for magnetic resonance (MR) image-guided photothermal therapy of cancer are reviewed. We briefly outline the design and fabrication of such multifunctional MNPs. Bimodal image-guided photothermal therapies (MR/fluorescence and MR/ultrasound) are also discussed.

Yue, Xiu-Li; Ma, Fang; Dai, Zhi-Fei

2014-04-01

239

Magnetism in nanoparticles: beyond the effect of particle size.  

PubMed

A set of investigations on selected samples of nanosized cobalt ferrite are reviewed, aimed at studying the various factors affecting the magnetic properties of nanoparticles. Specifically, the effects of inter-particle interactions, of structural and magnetic order, both in the core and on the surface of the particle, have been examined. All factors render the control of the magnetic properties of nanosystems quite difficult, but, at the same time, they also offer the opportunity of tuning them properly, so that materials for specific applications may be created. PMID:19579233

Peddis, Davide; Cannas, Carla; Musinu, Anna; Piccaluga, Giorgio

2009-08-10

240

Magnetic Deposition of Aerosols Composed of Aggregated Superparamagnetic Nanoparticles  

Microsoft Academic Search

Purpose  The deposition of magnetic particles was examined for the possibility of further enhancing the selectivity of inhalation drug\\u000a administration for the treatment of lung cancer.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Superparamagnetic magnetite nanoparticles were prepared and ultrasonically atomized, dried, and passed through glass tubes\\u000a in the presence and absence of a wedge-shaped permanent magnet. The change in the outlet aerosol size distribution due to\\u000a magnetic

Yuanyuan Xie; Pengyun Zeng; Ronald A. Siegel; Timothy Scott Wiedmann; Bruce E. Hammer; P. Worth Longest

2010-01-01

241

Heat-inducible gene expression system by applying alternating magnetic field to magnetic nanoparticles.  

PubMed

By combining synthetic biology with nanotechnology, we demonstrate remote controlled gene expression using a magnetic field. Magnetite nanoparticles, which generate heat under an alternating magnetic field, have been developed to label cells. Magnetite nanoparticles and heat-induced therapeutic genes were introduced into tumor xenografts. The magnetically triggered gene expression resulted in tumor growth inhibition. This system shows great potential for controlling target gene expression in a space and time selective manner and may be used for remote control of cell functions via gene expression. PMID:24144205

Yamaguchi, Masaki; Ito, Akira; Ono, Akihiko; Kawabe, Yoshinori; Kamihira, Masamichi

2014-05-16

242

Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation  

PubMed Central

This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.

2013-01-01

243

Cobalt silica magnetic nanoparticles with functional surfaces  

NASA Astrophysics Data System (ADS)

Cobalt nanoparticles encased in polysiloxane block copolymers have been heated at 600-700 °C to form protective shells around the particles, which contain crosslinked Si-O structures, and to anneal the cobalt. Methods to functionalize and modify the surfaces of the pyrolyzed/annealed silica-cobalt complexes with amines, isocyanates, poly(ethylene oxide), poly( L-lactide) and polydimethylsiloxane (PDMS) are presented.

Vadala, Michael L.; Zalich, Michael A.; Fulks, David B.; St. Pierre, Tim G.; Dailey, James P.; Riffle, Judy S.

2005-05-01

244

Biocompatible magnetic core\\/shell nanoparticles  

Microsoft Academic Search

Biocompatible magnetic fluids composed of modified nano-sized magnetic iron oxide particles have been prepared. The magnetic particles have been obtained (diameter in the order 2–30nm) by variations of the concentration of reactants, temperature, operation time and pH conditions as well as the electrolyte concentration. Besides one- or two-step coating processes were used successfully. The adsorption process of the modified dextran

T. Goetze; C. Gansau; N. Buske; M. Roeder; P. Görnert; M. Bahr

2002-01-01

245

Magnetic nanoparticle transport within flowing blood and into surrounding tissue  

PubMed Central

Magnetic drug delivery refers to the physical confinement of therapeutic magnetic nanoparticles to regions of disease, tumors, infections and blood clots. Predicting the effectiveness of magnetic focusing in vivo is critical for the design and use of magnetic drug delivery systems. However, current simple back-of-the-envelope estimates have proven insufficient for this task. In this article, we present an analysis of nanoparticle distribution, in and around a single blood vessel (a Krogh tissue cylinder), located at any depth in the body, with any physiologically relevant blood flow velocity, diffusion and extravasation properties, and with any applied magnetic force on the particles. For any such blood vessel our analysis predicts one of three distinct types of particle behavior (velocity dominated, magnetic dominated or boundary-layer formation), which can be uniquely determined by looking up the values of three nondimensional numbers we define. We compare our predictions to previously published magnetic-focusing in vitro and in vivo studies. Not only do we find agreement between our predictions and prior observations, but we are also able to quantitatively explain behavior that was not understood previously.

Nacev, A; Beni, C; Bruno, O; Shapiro, B

2011-01-01

246

Optimizing Magnetite Nanoparticles for Mass Sensitivity in Magnetic Particle Imaging  

SciTech Connect

Purpose: Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, we explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency, ?. Methods: Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally, at an arbitrarily chosen ? = 250 kHz, using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. Results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution, and size-dependent magnetic relaxation. Results: Our experimental results show clear variation in the MPI signal intensity as a function of MNP size that is in good agreement with modeled results. A maxima in the plot of MPI signal vs. MNP size indicates there is a particular size that is optimal for the chosen frequency of 250 kHz. Conclusions: For MPI at any chosen frequency, there will exist a characteristic particle size that generates maximum signal amplitude. We illustrate this at 250 kHz with particles of 15 nm core diameter.

Ferguson, R. Matthew; Minard, Kevin R.; Khandhar, Amit P.; Krishnan, Kannan M.

2011-03-01

247

Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles.  

PubMed

Efficient dynamic interactions among cofactor, enzymes and substrate molecules are of primary importance for multi-step enzymatic reactions with in situ cofactor regeneration. Here we showed for the first time that the above dynamic interactions could be significantly intensified by exerting an external alternating magnetic field on magnetic nanoparticles-supported multi-enzymatic system so that the inter-particle collisions due to Brownian motion of nanoparticles could be improved. To that end, a multienzyme system including glutamate dehydrogenase (GluDH), glucose dehydrogenase (GDH) and cofactor NAD(H) were separately immobilized on silica coated Fe3O4 magnetic nanoparticles with an average diameter of 105 nm, and the effect of magnetic field strength and frequency on the kinetics of the coupled bi-enzyme reaction was investigated. It was found that at low magnetic field frequency (25 Hz and 100 Hz), increasing magnetic field strength from 9.8 to 161.1 Gs led to only very slight increase in reaction rate of the coupled bi-enzyme reaction expressed by glucose consumption rate. At higher magnetic field of 200 Hz and 500 Hz, reaction rate increased significantly with increase of magnetic field strength. When the magnetic field frequency was kept at 500 Hz, the reaction rate increased from 3.89 ?M/min to 8.11 ?M/min by increasing magnetic field strength from 1.3 to 14.2 Gs. The immobilized bi-enzyme system also showed good reusability and stability in the magnetic field (500 Hz, 14.2 Gs), that about 46% of original activity could be retained after 33 repeated uses, accounting for totally 34 days continuous operation. These results demonstrated the feasibility in intensifying molecular interactions among magnetic nanoparticle-supported multienzymes by using nano-magnetic stirrer for efficient multi-step transformations. PMID:23756150

Zheng, Muqing; Su, Zhiguo; Ji, Xiaoyuan; Ma, Guanghui; Wang, Ping; Zhang, Songping

2013-10-20

248

Iron oxide nanoparticles coated with gold: Enhanced magnetic moment due to interfacial effects  

NASA Astrophysics Data System (ADS)

In this paper, we show that when nanoparticles of Fe3O4 are coated with gold there is a distinct enhancement of magnetization by a factor of six. This increase of magnetization has been attributed to large orbital magnetic moment formation at the magnetic particle/Au (core/shell) interface. Our theoretical analysis indicates that the enhanced magnetism observed in Fe3O4-Au (core-shell) nanoparticles is an interfacial effect. The origin of magnetism in Au as an interfacial phenomenon is supported by the observation of positive magnetization in citrate coated gold nanoparticles. In citrate coated gold nanoparticles, we observe a crossover from positive magnetization value to negative magnetization value upon increasing magnetic field indicating cancellation of interfacial magnetization by the diamagnetic contribution from the bulk. We propose a theoretical formalism which semi-quantitatively explains our experimental results and supports the origin of magnetization in Au as an interfacial effect.

Banerjee, S.; Raja, S. O.; Sardar, M.; Gayathri, N.; Ghosh, B.; Dasgupta, A.

2011-06-01

249

Synthesis and characterization of magnetic nanoparticles and nano-composites  

NASA Astrophysics Data System (ADS)

This project involves a cationic surfactant assisted hydrothermal method for synthesizing magnetic manganite nanoparticles. We have demonstrated that manganite nanoparticles formed from a metal chloride precursor in water under mild hydrothermal conditions yields high crystalline, thermally stable and pure phase particles, whose sizes and morphology can also be tuned through adjustment of reaction temperature, precursor concentration, concentration of mineralizers and the presence of surfactants. Generally, stoichiometric LaxSr1-xMnO 3 (LSMO) nanoparticles were obtained at low process temperature of 240°C under the hydrothermal condition. Crystalline LSMO particles with grain size as small as 20 nm and confined to a narrow size distribution have been obtained. The nucleation and crystal growth processes mediated by macromolecule (CTAB) finally results in more uniform and controllable products. Based on these magnetic nano-sized perovskite manganites, we have systematically studied their magnetic hysteresis, magnetic anisotropy and exchange coupling. Several magnetometry techniques such as Zero Field-Cooled (ZFC)/Field-Cooled (FC) measurements, temperature dependent magnetization curve have been employed in these studies. A systematic study of the temperature dependence and the magnetic effects on electrical conductivity in LSMO nanoparticle has been made also. The experimental results were explained satisfactory by several scattering and hopping models. The composite consists of ferromagnetic La0.67Sr0.33 MnO3 core and antiferromagnetic LaMnO3 shell has been prepared. Formation of this manganites core-shell structure has been done by a two-step hydrothermal process, which involves the use of two precursor solutions in succession. We are able to show that a 5 nm thin layer is clearly coated on LSMO particles to form the desired core-shell architecture. The effects on the magnetic properties such as the coercive field enhancement are also discussed. Finally, LSMO/Poly(vinyl alcohol) (PVA) composites have been prepared by simple ultrasonic mixing of as-prepared nanoparticles and polymer solution. Then, films of LSMO/PVA composites have been fabricated on insulating substrate by traditional spin coating method. The microstructure, magnetic and magnetoresistivity properties of these films have been studied also. The experimental resistivity data of the present investigation are fitted to a simple empirical equation in order to reveal conduction mechanism in these composites.

Sin, Wai Lun

250

Crosswell Magnetic Sensing of Superparamagnetic Nanoparticles for Subsurface Applications  

NASA Astrophysics Data System (ADS)

Stable dispersions of superparamagnetic nanoparticles, already used in biomedicine as image-enhancing agents, have potential in subsurface applications. The surface-coated nanoparticles are capable of flowing through micron-size pores across long distances in a reservoir with minimal retention in rock. These particles change the magnetic permeability of the flooded region, and when added to the injected fluid during enhanced oil recovery processes, they can be used to tag the flood. In this paper, we model the propagation of a "ferrofluid" slug in a reservoir and its response to a crosswell magnetic tomography system. The magnetic response to these contrast agents can thus help characterize the formation and fluid displacement mechanisms. The monitoring of fluid injections into reservoirs builds upon the established EM conductivity monitoring technology. In this work, however, particular attention is paid to distinguish the injected and resident fluids when they have similar conductivities but different magnetic permeabilities. Specifically, we focus on low-frequency (less than 100 Hz) magnetic excitations generated by a vertical magnetic dipole source positioned at the injection well. At such low frequencies, the induction effect is small, the casing effect is manageable, and the crosswell response originates purely from the magnetic contrast in the formation. In this study, we assume a 2d axisymmetric model and track a donut-shaped ferrofluid slug of magnetic permeability 2 as it propagates toward an observatory well, housing magnetic field receivers and located 100 m away from the injection well. We apply vertical magnetic dipole source and receivers at multiple levels within the tomography section. A non-magnetic and non-conductive casing is assumed for both wells. The ferrofluid slug volume is conserved throughout the dispersionless propagation and confined within a 20 m thick reservoir layer at a depth of 1 Km. We compare the response of a conductive slug with that of a ferrofluid slug both at low and high frequencies.

Rahmani, A.; Athey, A.; Wilt, M.; Chen, J.

2012-12-01

251

Targeting of systemically-delivered magnetic nanoparticle hyperthermia using a noninvasive, static, external magnetic field  

NASA Astrophysics Data System (ADS)

One of the greatest challenges of nanoparticle cancer therapy is the delivery of adequate numbers of nanoparticles to the tumor site. Iron oxide nanoparticles (IONPs) have many favorable qualities, including their nontoxic composition, the wide range of diameters in which they can be produced, the cell-specific cytotoxic heating that results from their absorption of energy from a nontoxic, external alternating magnetic field (AMF), and the wide variety of functional coatings that can be applied. Although IONPs can be delivered via an intra-tumoral injection to some tumors, the resulting tumor IONP distribution is generally inadequate; additionally, local tumor injections do not allow for the treatment of systemic or multifocal disease. Consequently, the ultimate success of nanoparticle based cancer therapy likely rests with successful systemic, tumor-targeted IONP delivery. In this study, we used a surface-based, bilateral, noninvasive static magnetic field gradient produced by neodymiumboron- iron magnets (80 T/m to 130 T/m in central plane between magnets), a rabbit ear model, and systemicallydelivered starch-coated 100 nm magnetic (iron oxide) nanoparticles to demonstrate a spatially-defined increase in the local tissue accumulation of IONPs. In this non-tumor model, the IONPs remained within the local vascular space. It is anticipated that this technique can be used to enhance IONP delivery significantly to the tumor parenchyma/cells.

Zulauf, Grayson D.; Trembly, B. Stuart; Giustini, Andrew J.; Flint, Brian R.; Strawbridge, Rendall R.; Hoopes, P. Jack

2013-02-01

252

THE SUBMILLIMETER AND MILLIMETER EXCESS OF THE SMALL MAGELLANIC CLOUD: MAGNETIC DIPOLE EMISSION FROM MAGNETIC NANOPARTICLES?  

SciTech Connect

The Small Magellanic Cloud (SMC) has surprisingly strong submillimeter- and millimeter-wavelength emission that is inconsistent with standard dust models, including those with emission from spinning dust. Here, we show that the emission from the SMC may be understood if the interstellar dust mixture includes magnetic nanoparticles, emitting magnetic dipole radiation resulting from thermal fluctuations in the magnetization. The magnetic grains can be metallic iron, magnetite Fe{sub 3}O{sub 4}, or maghemite {gamma}-Fe{sub 2}O{sub 3}. The required mass of iron is consistent with elemental abundance constraints. The magnetic dipole emission is predicted to be polarized orthogonally to the normal electric dipole radiation if the nanoparticles are inclusions in larger grains. We speculate that other low-metallicity galaxies may also have a large fraction of the interstellar Fe in magnetic materials.

Draine, B. T.; Hensley, Brandon, E-mail: draine@astro.princeton.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

2012-09-20

253

Magnetic fluid and nanoparticle applications to nanotechnology  

Microsoft Academic Search

Magnetic field based micro\\/nanoelectromechanical systems (MEMS\\/NEMS) devices are proposed that use 10 nm diameter magnetic particles, with and without a carrier fluid, for a new class of nanoduct flows, nanomotors, nanogenerators, nanopumps, nanoactuators, and other similar nanoscale devices. A few examples of macroscopic ferrohydrodynamic instabilities that result in patterns, lines, and structures are shown that can be scaled down to

Markus Zahn

2001-01-01

254

Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media  

NASA Astrophysics Data System (ADS)

Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

Ye, L.; Qi, B.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

2014-05-01

255

Magnetically controlled single-nanoparticle detection via particle-electrode collisions.  

PubMed

This paper reports the magnetic control of nanoparticle collisions on gold ultramicroelectrode surface. Magnetite nanoparticles with diameters of 10 nm and modified with Prussian blue (Fe3O4-NPs-PB) were directed by gravitational force on the electrode surface, and spikes in current-time transients were observed. By modulating a magnetic field parallel to the electrode surface, the number of nanoparticle collisions and the nanoparticle positions could be controlled. PMID:24647862

Santos, Germano P; Melo, Antonio F A A; Crespilho, Frank N

2014-05-01

256

Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites  

Microsoft Academic Search

The magnetic and electromagnetic wave absorption behavior of a flexible iron-nanoparticle reinforced polyurethane nanocomposite is reported. Surface-initiated-polymerization (SIP) method was utilized to fabricate high-quality nanocomposites with uniform particle distribution and tunable particle loading (up to 65 wt %). The enhancement of coercive force is observed when the nanoparticles are embedded into the polymer matrix. Electromagnetic wave absorption performance at a

Zhanhu Guo; Sung Park; H. Thomas Hahn; Suying Wei; Monica Moldovan; Amar B. Karki; David P. Young

2007-01-01

257

Quantification of drug-loaded magnetic nanoparticles in rabbit liver and tumor after in vivo administration  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles have been investigated for biomedical applications for more than 30 years. The development of biocompatible nanosized drug delivery systems for specific targeting of therapeutics is imminent in medical research, especially for treating cancer and vascular diseases. We used drug-labeled magnetic iron oxide nanoparticles, which were attracted to an experimental tumor in rabbits with an external magnetic field (magnetic drug targeting, MDT). Aim of this study was to detect and quantify the biodistribution of the magnetic nanoparticles by magnetorelaxometry. The study shows higher amount of nanoparticles in the tumor after intraarterial application and MDT compared to intravenous administration.

Tietze, Rainer; Jurgons, Roland; Lyer, Stefan; Schreiber, Eveline; Wiekhorst, Frank; Eberbeck, Dietmar; Richter, Heike; Steinhoff, Uwe; Trahms, Lutz; Alexiou, Christoph

2009-05-01

258

Stimuli-responsive magnetic nanoparticles for monoclonal antibody purification.  

PubMed

Monoclonal antibodies (mAbs) are important therapeutic proteins. One of the challenges facing large-scale production of monoclonal antibodies is the capacity bottleneck in downstream processing, which can be circumvented by using magnetic stimuli-responsive polymer nanoparticles. In this work, stimuli-responsive magnetic particles composed of a magnetic poly(methyl methacrylate) core with a poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) shell cross-linked with N, N'-methylenebisacrylamide were prepared by miniemulsion polymerization. The particles were shown to have an average hydrodynamic diameter of 317 nm at 18°C, which decreased to 277 nm at 41°C due to the collapse of the thermo-responsive shell. The particles were superparamagnetic in behavior and exhibited a saturation magnetization of 12.6 emu/g. Subsequently, we evaluated the potential of these negatively charged stimuli-responsive magnetic particles in the purification of a monoclonal antibody from a diafiltered CHO cell culture supernatant by cation exchange. The adsorption of antibodies onto P(NIPAM-co-AA)-coated nanoparticles was highly selective and allowed for the recovery of approximately 94% of the mAb. Different elution strategies were employed providing highly pure mAb fractions with host cell protein (HCP) removal greater than 98%. By exploring the stimuli-responsive properties of the particles, shorter magnetic separation times were possible without significant differences in product yield and purity. PMID:23420794

Borlido, Luís; Moura, Leila; Azevedo, Ana M; Roque, Ana C A; Aires-Barros, Maria R; Farinha, José Paulo S

2013-06-01

259

Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel  

NASA Astrophysics Data System (ADS)

Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of super paramagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. The present paper is devoted to study on MDT (Magnetic Drug Targeting) technique by particle tracking in the presence of magnetic field in a bifurcation vessel. The blood flow in bifurcation is considered incompressible, unsteady and Newtonian. The flow analysis applies the time dependent, two dimensional, incompressible Navier–Stokes equations for Newtonian fluids. The Lagrangian particle tracking is performed to estimate particle behavior under influence of imposed magnetic field gradients along the bifurcation. According to the results, the magnetic field increased the volume fraction of particle in target region, but in vessels with high Reynolds number, the efficiency of MDT technique is very low. Also the results showed that in the bifurcation vessels with lower angles, wall shear stress is higher and consequently the risk of the vessel wall rupture increases.

Larimi, M. M.; Ramiar, A.; Ranjbar, A. A.

2014-08-01

260

MAGNETIC NANOPARTICLES IN THE INTERSTELLAR MEDIUM: EMISSION SPECTRUM AND POLARIZATION  

SciTech Connect

The presence of ferromagnetic or ferrimagnetic nanoparticles in the interstellar medium would give rise to magnetic dipole radiation at microwave and submillimeter frequencies. Such grains may account for the strong millimeter-wavelength emission observed from a number of low-metallicity galaxies, including the Small Magellanic Cloud. We calculate the absorption and scattering cross sections for such grains, with particular attention to metallic Fe, magnetite Fe{sub 3}O{sub 4}, and maghemite {gamma}-Fe{sub 2}O{sub 3}, all potentially present in the interstellar medium. The rate of Davis-Greenstein alignment by magnetic dissipation is also estimated. We determine the temperature of free-flying magnetic grains heated by starlight and calculate the polarization of the magnetic dipole emission from both free-fliers and inclusions. For inclusions, the magnetic dipole emission is expected to be polarized orthogonally relative to the normal electric dipole radiation. Magnetic dipole radiation will contribute significantly to the 20-40 GHz anomalous microwave emission only if a large fraction of the Fe is in metallic Fe iron nanoparticles with extreme elongations. Finally, we present self-consistent dielectric functions for metallic Fe, magnetite Fe{sub 3}O{sub 4}, and maghemite {gamma}-Fe{sub 2}O{sub 3}, enabling calculation of absorption and scattering cross sections from microwave to X-ray wavelengths.

Draine, B. T.; Hensley, Brandon, E-mail: draine@astro.princeton.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

2013-03-10

261

Characterization of magnetic nanoparticle by dynamic light scattering  

PubMed Central

Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS.

2013-01-01

262

Optimization of Hall Magnetometry and Single Magnetic Nanoparticle Measurements  

Microsoft Academic Search

This dissertation presents work on improving the sensitivity of Hall magnetometry for single magnetic nanoparticle measurement by miniaturizing the devices down to submicron range. Limiting factors for Hall device performance, including noise and mesoscopic effects, will be explored. The first systematic low-frequency Hall noise measurements on submicron GaAs\\/AlGaAs 2DEG devices have been carried out at temperatures between 1.5K and 75K

Yongqing Li

2003-01-01

263

Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine  

NASA Astrophysics Data System (ADS)

Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered.

Akbarzadeh, Abolfazl; Samiei, Mohamad; Davaran, Soodabeh

2012-02-01

264

Size-controlled magnetic nanoparticles with lecithin for biomedical applications  

NASA Astrophysics Data System (ADS)

Lecithin-adsorbed magnetic nanoparticles were prepared by three-step process that the thermal decomposition was combined with ultrasonication. Experimental parameters were three items—molar ratio between Fe(CO) 5 and oleic acid, keeping time at decomposition temperature and lecithin concentration. As the molar ratio between Fe(CO) 5 and oleic acid, and keeping time at decomposition temperature increased, the particle size increased. However, the change of lecithin concentration did not show the remarkable particle size variation.

Park, S. I.; Kim, J. H.; Kim, C. G.; Kim, C. O.

2007-05-01

265

Magnetic and structural properties of nanoparticles of nickel oxide  

Microsoft Academic Search

In this dissertation, magnetic properties of NiO nanoparticles (NP) prepared by the sol-gel method in the size range D = 5 nm to 20 nm, with and without oleic acid (OA) coating, are reported. Transmission electron microscopy (TEM) studies show the morphology of the smaller particles to be primarily rod-like, changing over to nearly spherical shapes for D >10 nm.

2006-01-01

266

Large-scale production of magnetic nanoparticles using bacterial fermentation  

Microsoft Academic Search

Production of both nano-sized particles of crystalline pure phase magnetite and magnetite substituted with Co, Ni, Cr, Mn,\\u000a Zn or the rare earths for some of the Fe has been demonstrated using microbial processes. This microbial production of magnetic\\u000a nanoparticles can be achieved in large quantities and at low cost. In these experiments, over 1 kg (wet weight) of Zn-substituted\\u000a magnetite

Ji-Won Moon; Claudia J. Rawn; Adam J. Rondinone; Lonnie J. Love; Yul Roh; S. Michelle Everett; Robert J. Lauf; Tommy J. Phelps

2010-01-01

267

Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine  

PubMed Central

Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered.

2012-01-01

268

A magnetic poly(dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles  

Microsoft Academic Search

We report a new magnetic polymer membrane for MEMS application. The polymeric magnetic composite has coated iron oxide nanoparticles incorporated in a polydimethylsiloxane (PDMS) matrix. Existing magnetic polymeric materials have particle agglomeration problems, which result in rough surfaces and uneven mechanical and optical properties. We show that the use of iron oxide nanoparticles (10 nm in diameter) with fatty acid

Luna Cheng; Mu Chiao

2010-01-01

269

Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic MIIFe2O4 nanoparticles  

NASA Astrophysics Data System (ADS)

In this study, a simple, efficient and reproducible microemulsion method was applied for the successful decoration of carbon nanotubes (CNTs) with magnetic MIIFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles. The structure, composition and morphology of the prepared nanocomposite materials were characterized using X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The magnetic properties were investigated by the vibrating sample magnetometer (VSM). The SEM results illustrated that large quantity of MIIFe2O4 nanoparticles were uniformly decorated around the circumference of CNTs and the sizes of the nanoparticles ranged from 15 to 20 nm. Magnetic hysteresis loop measurements revealed that all the MIIFe2O4/CNTs nanocomposites displayed ferromagnetic behavior at 300 K and can be manipulated using an external magnetic field. The CoFe2O4/CNTs nanocomposite showed maximum value of saturation magnetization which was 37.47 emu g-1. The as prepared MIIFe2O4/CNTs nanocomposites have many potential application in magnetically guided targeted drug delivery, clinical diagnosis, electrochemical biosensing, magnetic data storage and magnetic resonance imaging.

Ali, Syed Danish; Hussain, Syed Tajammul; Gilani, Syeda Rubina

2013-04-01

270

Silica coated magnetic nanoparticles for separation of nuclear acidic waste  

NASA Astrophysics Data System (ADS)

Fe2O3 magnetic nanoparticles (MNPs) have been coated with silica, followed by covalent attachment of the actinide specific chelators to separate nuclear waste in acidic conditions. A general model is developed to relate the surface coating to the particle's magnetization change, providing an alternative way to characterize the size-distribution/aggregation of MNPs. The optimized silica coating protects the Fe2O3 MNPs from iron leaching under highly acidic conditions, facilitates the dispersion of MNPs, and dramatically increases the loading capacity of chelator onto the MNPs. Compared with the uncoated counterparts, the silica coated MNPs show enhanced actinide separation efficiency.

Han, H.; Johnson, A.; Kaczor, J.; Kaur, M.; Paszczynski, A.; Qiang, Y.

2010-05-01

271

Direct visualization and identification of biofunctionalized nanoparticles using a magnetic atomic force microscope.  

PubMed

Because of its outstanding ability to image and manipulate single molecules, atomic force microscopy (AFM) established itself as a fundamental technique in nanobiotechnology. (1) We present a new modality that distinguishes single nanoparticles by the surrounding magnetic field gradient. Diamagnetic gold and superparamagnetic iron oxide nanoparticles become discernible under ambient conditions. Images of proteins, magnetolabeled with nanoparticles, demonstrate the first steps toward a magnetic analogue to fluorescence microscopy, which combines nanoscale lateral resolution of AFM with unambiguous detection of magnetic markers. PMID:21819124

Block, Stephan; Glöckl, Gunnar; Weitschies, Werner; Helm, Christiane A

2011-09-14

272

Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system  

Microsoft Academic Search

Glucose oxidase (GOD) and lactate dehydrogenase (LDH) were immobilized onto magnetic nanoparticles, viz. Fe3O4, via carbodiimide and glutaraldehyde. The immobilization efficiency was largely dependent upon the immobilization time and\\u000a concentration of glutaraldehyde. The magnetic nanoparticles had a mean diameter of 9.3 nm and were superparamagnetic. The\\u000a immobilization of GOD and LDH on the nanoparticles slightly decreased their saturation magnetization. However,

Ok-Jae Sohn; Chun-Kwang Kim; Jong Il Rhee

2008-01-01

273

Magnetic nanoparticles–DNA interactions: design and applications of nanobiohybrid systems  

NASA Astrophysics Data System (ADS)

Mechanisms of interaction between nucleic acid molecules and magnetic nanoparticles and methods of their conjugation in order to develop functional nanostructures are considered. The properties of nucleic acids and magnetic nanoparticles that are key to the design of nanobiocomposites are described. Prospects for applications of nanobiocomposites in nanoelectronics and medicine are analyzed. Possible harmful effects of magnetic nanoparticles on the genetic system are briefly outlined. The bibliography includes 287 references.

Pershina, A. G.; Sazonov, A. E.; Filimonov, V. D.

2014-04-01

274

Magnetic properties of substituted strontium ferrite nanoparticles and thin films  

NASA Astrophysics Data System (ADS)

SrFe 12-x(Zr 0.5Mg 0.5) xO 19 nanoparticles and thin films with x=0-2.5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO 2). Structural and magnetic characteristics of synthesized samples were studied employing x-rays diffraction (XRD), transmission electron microscopy (TEM), magnetic susceptometer, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). TEM micrographs display that the narrow size distribution of ferrite nanoparticles with average particle size of 50 nm were fabricated. Fitting obtained data of effective magnetic susceptibility by Vogel-Fulcher law confirms the existence of strong magnetic interaction among fine particles. XRD patterns and FE-SEM micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. AFM micrographs exhibited that the surface roughness increases with an increase in Zr-Mg content. It was found from the VSM graphs that with an increase in substitution contents the coercivity decreases, while the saturation of magnetization increases. The Henkle plots confirms the existence of exchange coupling among nano-grain in ferrite thin films.

Ghasemi, Ali

2012-04-01

275

Magnetic nanoparticle drug delivery systems for targeting tumor  

NASA Astrophysics Data System (ADS)

Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

2014-04-01

276

FEM numerical model study of heating in magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 ?W. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.

Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew

2011-02-01

277

Efficient bacterial capture with amino acid modified magnetic nanoparticles.  

PubMed

Traditional chemical disinfectants are becoming increasingly defective due to the generation of carcinogenic disinfection byproducts and the emergence of antibiotic-resistant bacterial strains. Functionalized magnetic nanoparticles yet have shown great application potentials in water treatment processes especially for bacterial removal. In this study, three types of amino acids (arginine, lysine, and poly-l-lysine) functionalized Fe3O4 nanoparticles (Fe3O4@Arg, Fe3O4@Lys, and Fe3O4@PLL) were prepared through a facile and inexpensive two-step process. The amino acid modified Fe3O4 nanoparticles (Fe3O4@AA) showed rapid and efficient capture and removal properties for both Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative Escherichia coli 15597 (E. coli). For both strains, more than 97% of bacteria (initial concentration of 1.5 × 10(7) CFU mL(-1)) could be captured by all three types of magnetic nanoparticles within 20 min. With E. coli as a model strain, Fe3O4@AA could remove more than 94% of cells from solutions over a broad pH range (from 4 to 10). Solution ionic strength did not affect cell capture efficiency. The co-presence of sulfate and nitrate in solutions did not affect the capture efficiency, whereas, the presence of phosphate and silicate slightly decreased the removal rate. However, around 90% and 80% of cells could be captured by Fe3O4@AA even at 10 mM of silicate and phosphate, respectively. Bacterial capture efficiencies were over 90% and 82% even in the present of 10 mg L(-1) of humic acid and alginate, respectively. Moreover, Fe3O4@AA nanoparticles exhibited good reusability, and greater than 90% of E. coli cells could be captured even in the fifth regeneration cycle. The results showed Fe3O4@AA fabricated in this study have great application potential for bacteria removal from water. PMID:24370656

Jin, Yinjia; Liu, Fei; Shan, Chao; Tong, Meiping; Hou, Yanglong

2014-03-01

278

Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging  

PubMed Central

Purpose: Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, the authors explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency f0. Methods: Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. The driving field amplitude H0=6 mT ?0?1 and frequency f0=250 kHz were chosen to be suitable for imaging small animals. Experimental results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution and size-dependent magnetic relaxation. Results: The experimental results show a clear variation in the MPI signal intensity as a function of MNP diameter that is in agreement with simulated results. A maximum in the plot of MPI signal vs MNP size indicates there is a particular size that is optimal for the chosen f0. Conclusions: The authors observed that MNPs 15 nm in diameter generate maximum signal amplitude in MPI experiments at 250 kHz. The authors expect the physical basis for this result, the change in magnetic relaxation with MNP size, will impact MPI under other experimental conditions.

Ferguson, R. Matthew; Minard, Kevin R.; Khandhar, Amit P.; Krishnan, Kannan M.

2011-01-01

279

Magnetization Reversal of Individual Cylindrical Iron Nanoparticles  

Microsoft Academic Search

The magnetization dynamics of ferromagnetic nanowires has recently attracted much attention [1]. So far, most measurements on individual nanowires have been done on electrodeposited Ni or Co wires, in which there are competing energy scales of comparable magnitude. On the other hand, Fe is dominated by shape anisotropy, yet no work has been reported on individual, isolated Fe nanowires. In

Yongqing Li; Peng Xiong; Stephan von Molnár; Yuzo Ohno; Hideo Ohno

2003-01-01

280

Thermal magnetization reversal in arrays of nanoparticles  

NASA Astrophysics Data System (ADS)

The results of large-scale simulations investigating the dynamics of magnetization reversal in arrays of single-domain nanomagnets after a rapid reversal of the applied field at nonzero temperature are presented. The numerical micromagnetic approach uses the Landau-Lifshitz-Gilbert equation including contributions from thermal fluctuations and long-range dipole-dipole demagnetizing effects implemented using a fast-multipole expansion. The individual model nanomagnets are 9 nm×9 nm×150 nm iron pillars similar to those fabricated on a surface with scanning tunneling microscope assisted chemical vapor deposition [S. Wirth et al., J. Appl. Phys. 85, 5249 (1999)]. Nanomagnets oriented perpendicular to the surface and spaced 300 nm apart in linear arrays are considered. The applied field is always oriented perpendicular to the surface. When the magnitude of the applied field is less than the coercive value, about 2000 Oe for an individual nanomagnet, magnetization reversal in the nanomagnets can only occur by thermally activated processes. Even though the interaction from the dipole moment of neighboring magnets in this geometry is only about 1 Oe, less than 1% of the coercive field, it can have a large impact on the switching dynamics. What determines the height of the free-energy barrier is the difference between the coercive and applied fields, and 1 Oe can be a significant fraction of that. The magnetic orientations of the neighbors are seen to change the behavior of the nanomagnets in the array significantly.

Brown, Gregory; Novotny, M. A.; Rikvold, Per Arne

2001-06-01

281

Magnetic nanoparticles colourization by a mixing-frequency method  

NASA Astrophysics Data System (ADS)

Brownian and Néel relaxation of magnetic nanoparticles (MNPs) can be characterized by a highly sensitive mixing-frequency method using a search-coil based detection system. The unique magnetic properties of MNPs have been used for biomarkers detection. In this paper, we present a theory and implement an experimental detection scheme using the mixing-frequency method to identify different MNPs simultaneously. A low-frequency sinusoidal magnetic field is applied to saturate the MNPs periodically. A high-frequency sinusoidal magnetic field is then applied to generate mixing-frequency signals that are highly specific to the magnetization of MNPs. The spectra of each MNP can be defined as the complex magnetization of the MNPs over the field frequency. The magnetic spectra of various MNPs and magnetic beads have been characterized and compared. The differences between the MNPs spectra enable us to identify the individual MNPs at the same time. A test has been done to verify the ratio of two different MNPs in mixed samples based on the proposed theory. The experimental results show that the mixing-frequency method is a promising method for MNPs colourization.

Tu, Liang; Wu, Kai; Klein, Todd; Wang, Jian-Ping

2014-04-01

282

Enhancing the tumor discrimination using antibody-activated magnetic nanoparticles in ultra-low magnetic fields  

NASA Astrophysics Data System (ADS)

In this paper, we report an enhanced liver tumor discrimination for rats using antibody-activated magnetic nanoparticles (MNs) and ultra-low-field magnetic resonance imaging ex vivo. It was found that the intensity ratio between the magnetic resonance image of tumor and normal liver tissues is 2-3 absence of antibody-activated MNs in rats. The intensity ratio rises to ~100 when antibody-activated MNs are expressed in liver tumors through vein injection. Enhancing tumor discrimination using antibody-activated MNs is demonstrated using T1-weighted contrast imaging in ultra-low magnetic fields.

Yang, H. C.; Huang, K. W.; Liao, S. H.; Horng, H. E.; Chieh, J. J.; Chen, H. H.; Chen, M. J.; Chen, K. L.; Wang, L. M.

2013-01-01

283

Lymph node localization of non-specific antibody-coated liposomes  

SciTech Connect

Subcutaneously injected small unilamellar liposomes are drained into the lymphatics and localized in the regional lymph nodes, and thus they can be used for the detection of metastatic spread in breast cancer patients and for delivery of drugs to diseased lymph nodes. An aqueous phase marker, (/sup 125/I)-polyvinylpyrrolidone, and a lipid phase marker, (/sup 3/H)-cholesterol, were used to study the lymph node localization of IgG-coated liposomes injected subcutaneously into mouse and rat footpads. The results show that human immunoglobulin G (IgG) coated liposomes are rapidly removed from the site of injection and are localized in the regional lymph nodes to a greater extent than control liposomes (i.e. liposomes without IgG). Free IgG was found to inhibit the uptake of IgG-coated liposomes by the lymph nodes. The localization of IgG-coated liposomes in the regional lymph nodes is influenced by charge of the liposomes. The results presented here suggest that antibody-coated liposomes may provide a more efficient way of delivering therapeutic agents to the lymph nodes in the treatment of diseases such as breast cancer with lymph node involvement. Similarly, monoclonal antibody-coated liposomes containing lymphoscintigraphic material may improve the detection of lymph node metastases. 26 references, 3 figures, 3 tables.

Mangat, S.; Patel, H.M.

1985-05-20

284

Thermal magnetization reversal in arrays of nanoparticles  

Microsoft Academic Search

The results of large-scale simulations investigating the dynamics of magnetization reversal in arrays of single-domain nanomagnets after a rapid reversal of the applied field at nonzero temperature are presented. The numerical micromagnetic approach uses the Landau–Lifshitz–Gilbert equation including contributions from thermal fluctuations and long-range dipole–dipole demagnetizing effects implemented using a fast-multipole expansion. The individual model nanomagnets are 9 nm×9 nm×150

Gregory Brown; M. A. Novotny; Per Arne Rikvold

2001-01-01

285

RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.  

PubMed

The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin ?(v)?? targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy. PMID:23796630

Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

2014-03-01

286

Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles  

PubMed Central

Targeting gene therapy remains a challenge. The use of magnetic force to achieve this was investigated in the present study. It was hypothesized that nanoparticles with both controllable particle size and magnetic properties would enable magnetically driven gene delivery. We investigated this hypothesis by creating a family of novel biodegradable polymeric superparamagnetic nanoparticle (MNP) formulations. Polylactide MNP were formulated using a modified emulsification-solvent evaporation methodology with both the incorporation of oleate-coated iron oxide and a polyethylenimine (PEI) oleate ion-pair surface modification for DNA binding. MNP size could be controlled by varying the proportion of the tetrahydrofuran cosolvent. Magnetically driven MNP-mediated gene transfer was studied using a green fluorescent protein reporter plasmid in cultured arterial smooth muscle cells and endothelial cells. MNP-DNA internalization and trafficking were examined by confocal microscopy. Cell growth inhibition after MNP-mediated adiponectin plasmid transfection was studied as an example of a therapeutic end point. MNP-DNA complexes protected DNA from degradation and efficiently transfected quiescent cells under both low and high serum conditions after a 15 min exposure to a magnetic field (500 G). There was negligible transfection with MNP in the absence of a magnetic field. Larger sized MNP (375 nm diameter) exhibited higher transfection rates compared with 185 nm- and 240 nm-sized MNP. Internalized larger sized MNP escaped lysosomal localization and released DNA in the perinuclear zone. Adiponectin plasmid DNA delivery using MNP resulted in a dose-dependent growth inhibition of cultured arterial smooth muscle cells. It is concluded that magnetically driven plasmid DNA delivery can be achieved using biodegradable MNP containing oleate-coated magnetite and surface modified with PEI oleate ion-pair complexes that enable DNA binding.

Chorny, Michael; Polyak, Boris; Alferiev, Ivan S.; Walsh, Kenneth; Friedman, Gary; Levy, Robert J.

2012-01-01

287

Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber  

NASA Astrophysics Data System (ADS)

Polyacrylonitrile (PAN) textiles with 2 mm thickness are coated with magnetic nanoparticles in coating baths with Ni, Co and their alloys via an electroless metal deposition method. The crystal structure, morphology and magnetic nature of composites are investigated by X-ray Powder diffraction, Scanning Electron Microscopy, and dc magnetization measurement techniques. The frequency dependent microwave absorption measurements have been carried out in the frequency range of 12.4-18 GHz (X and P bands). Diamagnetic and ferromagnetic properties are also investigated. Finally, the microwave absorption of composites is found strongly dependent on the coating time. One absorption peak is observed between 14.3 and 15.8 GHz with an efficient absorption bandwidth of 3.3-4.1 GHz (under -20 dB reflection loss limit). The Reflection loss (RL) can be achieved between -30 and -50 dB. It was found that the RL is decreasing and absorption bandwidth is decreasing with increasing coating time. While absorption peak moves to lower frequencies in Ni coated PAN textile, it goes higher frequencies in Co coated ones. The Ni-Co alloy coated composites have fluctuating curve of absorption frequency with respect to coating time. These results encourage further development of magnetic nanoparticle coated textile absorbers for broadband applications.

Akman, O.; Kavas, H.; Baykal, A.; Toprak, M. S.; Çoruh, Ali; Akta?, B.

2013-02-01

288

Iron Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of Brain Tumors  

PubMed Central

This study explored the possibility of utilizing iron oxide nanoparticles as a drug delivery vehicle for minimally invasive, MRI-monitored magnetic targeting of brain tumors. In vitro determined hydrodynamic diameter of ~100nm, saturation magnetization of 94 emu/g Fe and T2 relaxivity of 43 s?1mM?1 of the nanoparticles suggested their applicability for this purpose. In vivo effect of magnetic targeting on the extent and selectivity of nanoparticle accumulation in tumors of rats harboring orthotopic 9L-gliosarcomas was quantified with MRI. Animals were intravenously injected with nanoparticles (12 mg Fe/kg) under a magnetic field density of 0 T (control) or 0.4 T (experimental) applied for 30 minutes. MR images were acquired prior to administration of nanoparticles and immediately after magnetic targeting at 1 hour intervals for 4 hours. Image analysis revealed that magnetic targeting induced a 5-fold increase in the total glioma exposure to magnetic nanoparticles over non-targeted tumors (p=0.005) and a 3.6-fold enhancement in the target selectivity index of nanoparticle accumulation in glioma over the normal brain (p=0.025). In conclusion, accumulation of iron oxide nanoparticles in gliosarcomas can be significantly enhanced by magnetic targeting and successfully quantified by MR imaging. Hence, these nanoparticles appear to be a promising vehicle for glioma-targeted drug delivery.

Chertok, Beata; Moffat, Bradford A.; David, Allan E.; Yu, Faquan; Bergemann, Christian; Ross, Brian D.; Yang, Victor C.

2009-01-01

289

Metal nanoparticle fluids with magnetically induced electrical switching properties  

NASA Astrophysics Data System (ADS)

We report the successful preparation of solvent-free metal nanoparticle (NP) fluids with multiple-functionalities, such as rheological properties, magnetism, ionic conductivity, and electrical properties, allowing for facile synthesis and mass production. The gold nanoparticles (AuNPs) used in this study were synthesized using tetraoctylammonium bromide (TOABr) in toluene and then directly phase-transferred to solvent-free low-molecular-weight (Mw) imidazolium-type ionic liquid media containing thiol groups (i.e., IL-SH). Magnetic metal fluids (i.e., MIL-SH-AuNPs) were prepared by the addition of FeCl3 powder to metal fluids (i.e., IL-SH-AuNPs). These fluids showed relatively high ionic and electrical conductivities compared with those of conventional metal NP fluids based on organic ILs with high Mw. Furthermore, it was demonstrated that these fluids could be used as electric switches operated using an external magnetic field in organic media.We report the successful preparation of solvent-free metal nanoparticle (NP) fluids with multiple-functionalities, such as rheological properties, magnetism, ionic conductivity, and electrical properties, allowing for facile synthesis and mass production. The gold nanoparticles (AuNPs) used in this study were synthesized using tetraoctylammonium bromide (TOABr) in toluene and then directly phase-transferred to solvent-free low-molecular-weight (Mw) imidazolium-type ionic liquid media containing thiol groups (i.e., IL-SH). Magnetic metal fluids (i.e., MIL-SH-AuNPs) were prepared by the addition of FeCl3 powder to metal fluids (i.e., IL-SH-AuNPs). These fluids showed relatively high ionic and electrical conductivities compared with those of conventional metal NP fluids based on organic ILs with high Mw. Furthermore, it was demonstrated that these fluids could be used as electric switches operated using an external magnetic field in organic media. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00653k

Kim, Younghoon; Cho, Jinhan

2013-05-01

290

Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles  

Microsoft Academic Search

Magnetic nanoparticles embedded in polymer matrices have excellent potential for electromagnetic device applications like electromagnetic interference suppression. We have synthesized polymer nanocomposites of poly(methylmethacrylate) doped with varying concentrations of iron nanoparticles (~20 nm in size). The iron nanoparticles were produced using a microwave plasma technique and have a natural oxide surface layer for passivation. These nanocomposites were processed using melt

J. L. Wilson; P. Poddar; N. A. Frey; H. Srikanth; K. Mohomed; J. P. Harmon; S. Kotha; J. Wachsmuth

2004-01-01

291

Novel aspects of magnetic interactions in a macroscopic 3D nanoparticle-based crystal.  

PubMed

We report magnetic measurements on a macroscopic three-dimensional fcc array of iron-oxide nanoparticles. We observe typical nanomagnetism for the randomly packed configuration of nanoparticles, including dynamical freezing and superparamagnetism. By contrast, the nanoparticle "atoms" in the fcc configuration that form the crystal exhibit a low coercivity that is weakly temperature dependent with no superparamagnetism up to 400 K. PMID:20366563

Kasyutich, O; Desautels, R D; Southern, B W; van Lierop, J

2010-03-26

292

Temperature-induced phenomena in systems of magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticle ensembles have received a lot of attention, stemming in part from their current and potential applications in biomedicine and in the development of high-density magnetic storage media. Key to the functionality of these systems are microscopic structures and mechanisms that make them exhibit unique properties and behave differently from their bulk counterparts. We studied microscopic structures and processes that dictate macroscopic properties, behavior and functionality of magnetic nanoparticle ensembles. As the temperature T strongly influences the magnetic behavior of these systems, we studied temperature dependent magnetic properties using AC-susceptibility and DC-magnetization measurements carried out over a broad range of temperatures, between 3 and 300 K. We extracted structural information from X-ray diffraction (XRD) and direct imaging techniques and correlate it with magnetic properties, in an attempt at better understanding the microscopic structures and magnetic mechanisms responsible for the macroscopic magnetic behavior. We studied ensembles of magnetic nanoparticles: nickel ferrite immobilized in a solid matrix and cobalt ferrite immersed in carrier fluid respectively, in order to explore their potential use in biomedical applications and magnetic recording. For both NiFe2O4(NFO) and Co0.2Fe2.8O4 (CFO) relaxation mechanisms were determined. Structural properties and average particle sizes were derived from XRD, including synchrotron XRD, and direct imaging techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Temperature dependent magnetic measurements, FC-ZFC DC magnetometry, as well as AC complex susceptibility measurements at frequencies between 10 and 10,000 Hz were carried out within the temperature range 3Kmagnetization and AC susceptibility measurements were performed using a Physical Property Measurement System (PPMS), which allows measurements in magnetic fields up to 9T and within a temperature range between 2 and 350 K. For NFO, besides the expected blocking of the superspin, observed at T1 ? 45 K, we found that the system undergoes a magnetic transition at T2 ? 6 K. For the latter, frequency- and temperature-resolved dynamic susceptibility data reveal characteristics that are unambiguously related to collective spin freezing: the relative variation (per frequency decade) of the in-phase-susceptibility peak temperature is ˜0.025, critical dynamics analysis yields an exponent zv = 9.6 and a zero-field freezing temperature TF = 5.8 K, and, in a magnetic field, TF (H) is excellently described by the de Almeida-Thouless line deltaT F infinity H2/3. Moreover, out-of-phase-susceptibility vs. temperature datasets collected at different frequencies collapse on a universal dynamic scaling curve. All these observations indicate the existence of a spin-glass-like surface layer that surrounds the superparamagnetic core and undergoes a transition to a frozen state upon cooling below 5.8 K. For the CFO ferrofluid, we used temperature- and frequency-resolved AC-susceptibility measurements to investigate its magnetic relaxation above the freezing point of the liquid carrier. Our data show that both the Neel and the Brown relaxation mechanisms are operative at temperatures in the vicinity of the out-of-phase (imaginary) susceptibility peak. We separate the contributions of the two mechanisms to the overall-relaxation time, and demonstrate that Brownian relaxation plays a dominant role at all temperatures within this high-dissipation regime.

Bhuiya, Abdul Wazed

293

Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles  

NASA Astrophysics Data System (ADS)

The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe 3O 4 nanoparticles with an average size of 10±2.5 nm. These Fe 3O 4 NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252±6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe 3O 4 NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (l-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe 3O 4 NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

Abdalla, Mohamed O.; Aneja, Ritu; Dean, Derrick; Rangari, Vijay; Russell, Albert; Jaynes, Jessie; Yates, Clayton; Turner, Timothy

2010-01-01

294

A fast and reproducible method to quantify magnetic nanoparticle biodistribution.  

PubMed

The quantification of nanoparticles, particularly superparamagnetic iron oxide nanoparticles (SPIONs), both in vitro and in vivo has become highly important in recent years. Some methods, such as induced coupled plasma (ICP) spectroscopy and UV-visible chemical titration using Prussian Blue (PB), already exist however they consist of the titration of the whole iron content. These standard methods need sample preparations leading to their destruction and long measurement time. In this study, we used magnetic susceptibility measurements (MSM) to titrate the concentration and biodistribution of magnetic particles in the organs of rats. The advantages of the MSM SPION quantification technique are presented and compared to widely used methods of iron oxide titration such as ICP and PB UV-visible titration. We have demonstrated that MSM is a simpler, faster (1 second per measurement), more reproducible and highly sensitive technique for SPION detection with minimal detection around 2 ?gFe mL(-1) without being influenced by neither the SPION coating nor their surrounding environment. Moreover, MSM is a more robust method as it is not affected by endogenous iron facilitating the distinction of SPIONs (iron present as nanoparticles) from background iron in tissues. This advantage allows the decrease of control samples needed in biological studies. In conclusion, we have demonstrated that MSM is a standard method that can be easily setup to determine the biodistribution of SPIONs regardless of their environment. PMID:24448415

Maurizi, Lionel; Sakulkhu, Usawadee; Gramoun, Azza; Vallee, Jean-Paul; Hofmann, Heinrich

2014-03-01

295

Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles  

PubMed Central

The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe3O4 nanoparticles with an average size of 10 ± 2.5 nm. These Fe3O4 NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252 ± 6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe3O4 NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (L-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe3O4 NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

Abdalla, Mohamed O.; Aneja, Ritu; Dean, Derrick; Rangari, Vijay; Russell, Albert; Jaynes, Jessie; Yates, Clayton; Turner, Timothy

2009-01-01

296

Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles  

Microsoft Academic Search

Contrast agents incorporating superparamagnetic iron-oxide nanoparticles have shown promise as a means to visualize labeled cells using MRI. Labeled cells cause significant signal dephasing due to the magnetic field inhomogeneity induced in water molecules near the cell. With the resulting signal void as the means for detection, the particles behave as a negative contrast agent, which can suffer from partial-volume

Charles H. Cunningham; Takayasu Arai; Phillip C. Yang; Michael V. McConnell; John M. Pauly; Steven M. Conolly

2005-01-01

297

Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires  

NASA Astrophysics Data System (ADS)

We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are ?-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A `destabilization state' with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, `long-lived stable clusters state' (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field ( B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can `paste' these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 ?m) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 ?m and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.

Yan, Minhao; Qu, Li; Fan, Jiangxia; Ren, Yong

2014-05-01

298

Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires  

PubMed Central

We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are ?-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A ‘destabilization state’ with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, ‘long-lived stable clusters state’ (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field (B?=?0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can ‘paste’ these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 ?m) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 ?m and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.

2014-01-01

299

Imaging of Her2-Targeted Magnetic Nanoparticles for Breast Cancer Detection: Comparison of SQUID-detected Magnetic Relaxometry and MRI  

PubMed Central

Both magnetic relaxometry and magnetic resonance imaging (MRI) can be used to detect and locate targeted magnetic nanoparticles, non-invasively and without ionizing radiation. Magnetic relaxometry offers advantages in terms of its specificity (only nanoparticles are detected) and the linear dependence of the relaxometry signal on the number of nanoparticles present. In this study, detection of single-core iron oxide nanoparticles by Superconducting Quantum Interference Device (SQUID)-detected magnetic relaxometry and standard 4.7 T MRI are compared. The nanoparticles were conjugated to a Her2 monoclonal antibody and targeted to Her2-expressing MCF7/Her2-18 breast cancer cells); binding of the nanoparticles to the cells was assessed by magnetic relaxometry and iron assay. The same nanoparticle-labeled cells, serially diluted, were used to assess the detection limits and MR relaxivities. The detection limit of magnetic relaxometry was 125,000 nanoparticle-labeled cells at 3 cm from the SQUID sensors. T2-weighted MRI yielded a detection limit of 15,600 cells in a 150 ?l volume, with r1 = 1.1 mM?1s?1 and r2 = 166 mM?1s?1. Her2-targeted nanoparticles were directly injected into xenograft MCF7/Her2-18 tumors in nude mice, and magnetic relaxometry imaging and 4.7 T MRI were performed, enabling direct comparison of the two techniques. Co-registration of relaxometry images and MRI of mice resulted in good agreement. A method for obtaining accurate quantification of microgram quantities of iron in the tumors and liver by relaxometry was also demonstrated. These results demonstrate the potential of SQUID-detected magnetic relaxometry imaging for the specific detection of breast cancer and the monitoring of magnetic nanoparticle-based therapies.

Adolphi, Natalie L.; Butler, Kimberly S.; Lovato, Debbie M.; Tessier, T. E.; Trujillo, Jason E.; Hathaway, Helen J.; Fegan, Danielle L.; Monson, Todd C.; Stevens, Tyler E.; Huber, Dale L.; Ramu, Jaivijay; Milne, Michelle L.; Altobelli, Stephen A.; Bryant, Howard C.; Larson, Richard S.; Flynn, Edward R.

2013-01-01

300

Magnetic Nanoparticle based Solder Composites for Electronic Packaging Applications  

NASA Astrophysics Data System (ADS)

Rosensweig's model for power dissipation in ferrofluids when subjected to alternating magnetic fields was extended to account for the particle size distribution and temperature dependence of the magnetization parameters. The power loss and heating rates for various magnetic materials were compared to determine their suitability for technological and biomedical applications. Synthesis of FeCo magnetic nanoparticles (MNPs) for carried out using a RF plasma torch setup. Various samples of FeCo MNPs synthesized were characterized for their structural and magnetic properties. Their power loss ability in AC magnetic field of 50 mT at 280 kHz was evaluated using a RF heating station and infra-red thermal imaging setup. FeCo MNPs were incorporated into solder paste and their ability to cause solder reflow in AC magnetic field was demonstrated. The solder-MNP composite samples showed heating profile dependent on their size distribution. The highest heating rates were achieved for FeCo MNPs with average particle size of 50 nm. Suitability of RF reflow of solder-MNP composites for board level and flip chip electronic packaging applications has been explored by performing RF reflow experiments on flip-chip substrate. Microstructural evolution in the solder-MNP composites has been studies and its effects on the mechanical and electrical properties have been determined. FeCo MNPs help in nucleation of beta-Sn phase which helps to refine the eutectic microstructure during solidification. This results in improvement of their mechanical properties.

Habib, Ashfaque Hussian

301

Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications  

PubMed Central

Magnetic nanoparticles (MNP) are playing an increasingly important role in cardiovascular molecular imaging. These agents are superparamagnetic and consist of a central core of iron-oxide surrounded by a carbohydrate or polymer coat. The size, physical properties and pharmacokinetics of MNP make them highly suited to cellular and molecular imaging of atherosclerotic plaque and myocardial injury. MNP have a sensitivity in the nanomolar range and can be detected with T1, T2, T2*, off resonance and steady state free precession sequences. Targeted imaging with MNP is being actively explored and can be achieved through either surface modification or through the attachment of an affinity ligand to the nanoparticle. First generation MNP are already in clinical use and second generation agents, with longer blood half lives, are likely to be approved for routine clinical use in the near future.

Sosnovik, David E.; Nahrendorf, Matthias; Weissleder, Ralph

2008-01-01

302

Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour  

NASA Astrophysics Data System (ADS)

Superparamagnetic nanoparticles of magnetite were coprecipitated from iron salts, dispersed with nitric acid and stabilised either by lactic acid (LA) or by a polycarboxylate-ether polymer (MELPERS4343, MP). The differently stabilised nanoparticles were incorporated into a silica matrix to form nanocomposite microparticles. The silica matrix was prepared either from tetraethylorthosilicate (TEOS) or from an aqueous sodium silicate (water glass) solution. Stabilisation of nanoparticles had a crucial influence on microparticle texture and nanoparticle distribution in the silica matrix. Magnetic measurements in combination with transmission electron microscopy (TEM) investigations suggest a uniform magnetic interaction of nanoparticles in case of LA stabilisation and magnetically interacting nanoparticle clusters of different sizes in case of MP stabilisation. Splitting of blocking temperature (TB) and irreversible temperature (Tir) in zero field cooled (ZFC) and field cooled (FC) measurements is discussed in terms of nanoparticle clustering.

Mandel, K.; Hutter, F.; Gellermann, C.; Sextl, G.

2013-04-01

303

Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies  

PubMed Central

Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

2008-01-01

304

Evidence for Quantization of Mechanical Rotation of Magnetic Nanoparticles  

NASA Astrophysics Data System (ADS)

We report evidence of the quantization of the rotational motion of solid particles containing thousands of atoms. A system of CoFe2O4 nanoparticles confined inside polymeric cavities has been studied. The particles have been characterized by the x-ray diffraction, transmission electron microscopy, plasma mass spectroscopy, ferromagnetic resonance (FMR), and magnetization measurements. Magnetic and FMR data confirm the presence of particles that are free to rotate inside the cavities. Equidistant, temperature-independent jumps in the dependence of the microwave absorption on the magnetic field have been detected. This observation is in accordance with the expectation that orbital motion splits the low-field absorption line into multiple lines.

Tejada, J.; Zysler, R. D.; Molins, E.; Chudnovsky, E. M.

2010-01-01

305

Evidence for quantization of mechanical rotation of magnetic nanoparticles.  

PubMed

We report evidence of the quantization of the rotational motion of solid particles containing thousands of atoms. A system of CoFe2O4 nanoparticles confined inside polymeric cavities has been studied. The particles have been characterized by the x-ray diffraction, transmission electron microscopy, plasma mass spectroscopy, ferromagnetic resonance (FMR), and magnetization measurements. Magnetic and FMR data confirm the presence of particles that are free to rotate inside the cavities. Equidistant, temperature-independent jumps in the dependence of the microwave absorption on the magnetic field have been detected. This observation is in accordance with the expectation that orbital motion splits the low-field absorption line into multiple lines. PMID:20366623

Tejada, J; Zysler, R D; Molins, E; Chudnovsky, E M

2010-01-15

306

Characterization of different magnetite cobalt nanoparticles in hydrocarbon-based magnetic fluids by means of static and dynamic magnetization measurements  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles with different compositions (Co xFe 3-xO 4, 0? x?0.1) were synthesized from metal salts using a coprecipitation technique to produce magnetic fluids following a peptization technique. The liquid carrier was the hydrocarbon Isopar M and the surfactant was oleic acid. The colloidal-sized ferrimagnetic nanoparticles produced were found to be superparamagnetic. Measurements of the complex magnetic susceptibility were carried out to evaluate the resonant frequency fres, the anisotropy constant K, and anisotropy field HA. fres was found to be a linear function of the cobalt content of the magnetic nanoparticles over the range of cobalt content studied.

Ayala-Valenzuela, Oscar; Fannin, Paul C.; Betancourt-Galindo, Rebeca; Rodríguez-Fernández, Oliverio; Matutes-Aquino, José

2007-04-01

307

Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation.  

PubMed

The ability to control the movement of nanoparticles remotely and with high precision would have far-reaching implications in many areas of nanotechnology. We have designed a unique dynamic magnetic field (DMF) generator that can induce rotational movements of superparamagnetic iron oxide nanoparticles (SPIONs). We examined whether the rotational nanoparticle movement could be used for remote induction of cell death by injuring lysosomal membrane structures. We further hypothesized that the shear forces created by the generation of oscillatory torques (incomplete rotation) of SPIONs bound to lysosomal membranes would cause membrane permeabilization, lead to extravasation of lysosomal contents into the cytoplasm, and induce apoptosis. To this end, we covalently conjugated SPIONs with antibodies targeting the lysosomal protein marker LAMP1 (LAMP1-SPION). Remote activation of slow rotation of LAMP1-SPIONs significantly improved the efficacy of cellular internalization of the nanoparticles. LAMP1-SPIONs then preferentially accumulated along the membrane in lysosomes in both rat insulinoma tumor cells and human pancreatic beta cells due to binding of LAMP1-SPIONs to endogenous LAMP1. Further activation of torques by the LAMP1-SPIONs bound to lysosomes resulted in rapid decrease in size and number of lysosomes, attributable to tearing of the lysosomal membrane by the shear force of the rotationally activated LAMP1-SPIONs. This remote activation resulted in an increased expression of early and late apoptotic markers and impaired cell growth. Our findings suggest that DMF treatment of lysosome-targeted nanoparticles offers a noninvasive tool to induce apoptosis remotely and could serve as an important platform technology for a wide range of biomedical applications. PMID:24597847

Zhang, Enming; Kircher, Moritz F; Koch, Martin; Eliasson, Lena; Goldberg, S Nahum; Renström, Erik

2014-04-22

308

Enhanced magnetic resonance contrast of iron oxide nanoparticles embedded in a porous silicon nanoparticle host  

NASA Astrophysics Data System (ADS)

In this report, we prepared a porous Si nanoparticle with a pore morphology that facilitates the proximal loading and alignment of magnetite nanoparticles. We characterized the composite materials using superconducting quantum interference device magnetometry, dynamic light scattering, transmission electron microscopy, and MRI. The in vitro cytotoxicity of the composite materials was tested using cell viability assays on human liver cancer cells and rat hepatocytes. An in vivo analysis using a hepatocellular carcinoma (HCC) Sprague Dawley rat model was used to determine the biodistribution properties of the material, while naïve Sprague Dawley rats were used to determine the pharmocokinetic properties of the nanomaterials. The composite material reported here demonstrates an injectable nanomaterial that exploits the dipolar coupling of superparamagnetic nanoparticles trapped within a secondary inorganic matrix to yield significantly enhanced MRI contrast. This preparation successfully avoids agglomeration issues that plague larger ferromagnetic systems. A Fe3O4:pSi composite formulation consisting of 25% by mass Fe3O4 yields an maximal T2* value of 556 mM Fe-1 s-1. No cellular (HepG2 or rat hepatocyte cells) or in vivo (rat) toxicity was observed with the formulation, which degrades and is eliminated after 4-8 h in vivo. The ability to tailor the magnetic properties of such materials may be useful for in vivo imaging, magnetic hyperthermia, or drug-delivery applications.

Kinsella, Joseph; Ananda, Shalini; Andrew, Jennifer; Grondek, Joel; Chien, Miao-Ping; Scandeng, Miriam; Gianneschi, Nathan; Ruoslahti, Erkki; Sailor, Michael

2013-02-01

309

Heat Assisted Magnetic Recording Film Including Superparamagnetic Nanoparticles Dispersed in an Antiferromagnetic or Ferrimagnetic Matrix.  

National Technical Information Service (NTIS)

Heat assisted magnetic recording systems with composite recording films are disclosed. The magnetic recording films include superparamagnetic nanoparticles dispersed in an antiferromagnetic or ferrimagnetic matrix. The matrix provides antiferromagnetic co...

B. Liu D. K. Weller

2003-01-01

310

Magnetic force microscopy of iron oxide nanoparticles and their cellular uptake.  

PubMed

Magnetic force microscopy has the capability to detect magnetic domains from a close distance, which can provide the magnetic force gradient image of the scanned samples and also simultaneously obtain atomic force microscope (AFM) topography image as well as AFM phase image. In this work, we demonstrate the use of magnetic force microscopy together with AFM topography and phase imaging for the characterization of magnetic iron oxide nanoparticles and their cellular uptake behavior with the MCF7 carcinoma breast epithelial cells. This method can provide useful information such as the magnetic responses of nanoparticles, nanoparticle spatial localization, cell morphology, and cell surface domains at the same time for better understanding magnetic nanoparticle-cell interaction. It would help to design magnetic-related new imaging, diagnostic and therapeutic methods. PMID:19562741

Zhang, Yu; Yang, Mo; Ozkan, Mihrimah; Ozkan, Cengiz S

2009-01-01

311

Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis.  

PubMed

The magnetic properties of copper ferrite (CuFe2O4) nanoparticles prepared via sol-gel auto combustion and facile solvothermal method are studied focusing on the effect of nanoparticle arrangement. Randomly oriented CuFe2O4 nanoparticles (NP) are obtained from the sol-gel auto combustion method, while the solvothermal method allows us to prepare iso-oriented uniform spherical ensembles of CuFe2O4 nanoparticles (NS). X-ray diffractometry (XRD), atomic absorption spectroscopy (AAS), infra-red (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), (57)Fe Mössbauer spectroscopy and vibrating sample magnetometer (VSM) are used to investigate the composition, microstructure and magnetic properties of as-prepared ferrite nanoparticles. The field-dependent magnetization measurement for the NS sample at low temperature exhibits a step-like rectangular hysteresis loop (MR/MS? 1), suggesting cubic anisotropy in the system, whereas for the NP sample, typical features of uniaxial anisotropy (MR/MS? 0.5) are observed. The coercive field (HC) for the NS sample shows anomalous temperature dependence, which is correlated with the variation of effective anisotropy (KE) of the system. A high-temperature enhancement of HC and KE for the NS sample coincides with a strong spin-orbit coupling in the sample as evidenced by significant modification of Cu/Fe-O bond distances. The spherical arrangement of nanocrystals at mesoscopic scale provokes a high degree of alignment of the magnetic easy axis along the applied field leading to a step-like rectangular hysteresis loop. A detailed study on the temperature dependence of magnetic anisotropy of the system is carried out, emphasizing the influence of the formation of spherical iso-oriented assemblies. PMID:24714977

Chatterjee, Biplab K; Bhattacharjee, Kaustav; Dey, Abhishek; Ghosh, Chandan K; Chattopadhyay, Kalyan K

2014-06-01

312

Hard magnetic FePt nanoparticles by salt-matrix annealing  

Microsoft Academic Search

To transfer face-centered-cubic (fcc) FePt nanoparticles to the face-centered-tetragonal (fct) phase with high magnetic anisotropy, heat treatments are necessary. The heat treatments lead to agglomeration and sintering of the nanoparticles. To prevent the particles from sintering, salts as the separating media (matrix) have been used for annealing the nanoparticles in our experiments. The fcc nanoparticles produced by chemical synthesis were

Daren Li; Narayan Poudyal; Vikas Nandwana; Zhiqiang Jin; Kevin Elkins; J. Ping Liu

2006-01-01

313

Quantum dots incorporated magnetic nanoparticles for imaging colon carcinoma cells  

PubMed Central

Background Engineered multifunctional nanoparticles (NPs) have made a tremendous impact on the biomedical sciences, with advances in imaging, sensing and bioseparation. In particular, the combination of optical and magnetic responses through a single particle system allows us to serve as novel multimodal molecular imaging contrast agents in clinical settings. Despite of essential medical imaging modalities and of significant clinical application, only few nanocomposites have been developed with dual imaging contrast. A new method for preparing quantum dots (QDs) incorporated magnetic nanoparticles (MNPs) based on layer-by-layer (LbL) self-assembly techniques have developed and used for cancer cells imaging. Methods Here, citrate - capped negatively charged Fe3O4 NPs were prepared and coated with positively - charged hexadecyltrimethyl ammonium bromide (CTAB). Then, thiol - capped negatively charged CdTe QDs were electrostatically bound with CTAB. Morphological, optical and magnetic properties of the fluorescent magnetic nanoparticles (FMNPs) were characterized. Prepared FMNPs were additionally conjugated with hCC49 antibodies fragment antigen binding (Fab) having binding affinity to sialylated sugar chain of TAG-72 region of LS174T cancer cells, which was prepared silkworm expression system, and then were used for imaging colon carcinoma cells. Results The prepared nanocomposites were magnetically responsive and fluorescent, simultaneously that are useful for efficient cellular imaging, optical sensing and magnetic separation. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the particle size is around 50 nm in diameter with inner magnetic core and outer CdTe QDs core-shell structure. Cytotoxicity test of prepared FMNPs indicates high viability in Vero cells. NPs conjugated with anti cancer antibodies were successfully labeled on colon carcinoma cells (LS174) in vitro and showed significant specificity to target cells. Conclusion The present report demonstrates a simple synthesis of CdTe QDs-Fe3O4 NPs. The surface of the prepared FMNPs was enabled simple conjugation to monoclonal antibodies by electrostatic interaction. This property further extended their in vitro applications as cellular imaging contrast agents. Such labeling of cells with new fluorescent-magneto nanoprobes for living detection is of interest to various biomedical applications and has demonstrated the potential for future medical use.

2013-01-01

314

Ultrafast magnetization dynamics of cobalt nanoparticles and individual ferromagnetic dots  

NASA Astrophysics Data System (ADS)

The ultrafast magnetization dynamics of magnetic materials can be investigated using femtosecond laser pulses to perform femtosecond magneto-optical Kerr and Faraday measurements [1]. In this talk, we will focus on the magnetization dynamics of cobalt nanoparticles which are either ferromagnetic or super-paramagnetic at room temperature and on the dynamics of individual ferromagnetic dots. In the first case (Co nanoparticles), we will demonstrate that the magnetization dynamics preceding the fluctuations over the anisotropy energy barrier is coherent but exhibits a strongly damped precession [2]. These results, which have been obtained with a three dimensional analysis of the magnetization vector [3] will be discussed in the context of the N'eel-Brown models involving the gyromagnetic character of the magnetization. We will also examine the dynamics of self-organized supra-crystals of cobalt nanoparticles [4]. In the second case, we will present the ultrafast magnetization dynamics of individual ferromagnetic dots (CoPt3, Permalloy, Nickel) made either by e-beam lithography or induced optically on thin films deposited on sapphire and glass substrates. The technique employed is the magneto-optical pump probe imaging (MOPPI) which allows performing time resolved magneto-optical Kerr images with with spatial and temporal resolutions of 300 nm and 150 fs [5]. The study of the demagnetization of the dots for different laser intensities shows that it is possible to write and read ultrafast monodomains on thin films. [3pt] [1] E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot Phys. Rev. Lett., 76, 4250 (1996) [0pt] [2] L.H.F. Andrade, A. Laraoui, M. Vomir, D. Muller, J.-P. Stoquert, C. Estournès, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 97, 127401 (2006). [0pt] [3] M. Vomir, L. H.F. Andrade, L. Guidoni, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 94, 237601 (2005). [0pt] [4] I. Lisiecki, V. Halt'e, C. Petit, M.-P. Pileni, J.-Y. Bigot Adv. Mater., 20, 4176 (2008). [0pt] [5] A. Laraoui, M. Albrecht, J.-Y. Bigot Optic. Letters 32, 936 (2007).

Bigot, Jean-Yves

2009-03-01

315

Magnetic and Mössbauer studies of fucan-coated magnetite nanoparticles for application on antitumoral activity  

NASA Astrophysics Data System (ADS)

Fucan-coated magnetite (Fe3O4) nanoparticles were synthesized by the co-precipitation method and studied by Mössbauer spectroscopy and magnetic measurements. The sizes of the nanoparticles were 8-9 nm. Magnetization measurements and Mössbauer spectroscopy at 300 K revealed superparamagnetic behavior. The magnetic moment of the Fe3O4 is partly screened by the Fucan coating aggregation. When the magnetite nanoparticles are capped with oleic acid or fucan, reduced particle-particle interaction is observed by Mössbauer and TEM studies. The antitumoral activity of the fucan-coated nanoparticles were tested in Sarcoma 180, showing an effective reduction of the tumor size.

Silva, V. A. J.; Andrade, P. L.; Bustamante, Angel; de los Santos Valladares, L.; Mejia, M.; Souza, I. A.; Cavalcanti, K. P. S.; Silva, M. P. C.; Aguiar, J. Albino

2014-01-01

316

Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets  

NASA Astrophysics Data System (ADS)

A finite element technique was employed for analysing the transport behaviour of magnetic nanoparticles (MNPs) under the gradient magnetic field generated by rectangular permanent magnets with different configurations. To predict the exact particle dynamic behaviour, the governing non-linear differential equations, Navier-Stokes and convection-diffusion were coupled with the magnetic field equation. The MNP concentration distribution was calculated and taken as an evaluation parameter to show where MNPs are preferentially captured in a microchannel. Since the dynamic behaviour of MNPs in the flow was dependent on the competition between magnetic and fluidic forces, the effects of the flow velocity and magnetic field strength on the MNP concentration distribution were analysed. Meanwhile, the effects of magnetic design parameters for permanent magnets on the magnetic force and MNP concentration distribution were analysed. Results showed that the MNP concentration in the capture region increased with magnetic field strength and decreased with increasing flow velocity. And the shape and position of the high concentration regions were related to the applied inlet velocity, magnetic field strength, geometry of the magnets and the orientation of the remanent flux density. The simulations performed can be used as a tool for the design and optimization of millimetre-sized rectangular magnets for developing efficient lab-on-a-chip systems.

Cao, Quanliang; Han, Xiaotao; Li, Liang

2012-11-01

317

Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging  

PubMed Central

Magnetic Particle Imaging (MPI) is a new biomedical imaging modality that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide (SPIO) nanoparticle tracer distributions. In this study, we synthesized monodisperse tracers for enhanced MPI performance and investigated both, their blood clearance time using a 25 kHz magnetic particle spectrometer (MPS), and biodistribution using a combination of quantitative T2-weighted MRI and tissue histology. In vitro and in vivo MPI performance of our magnetic nanoparticle tracers (MNTs), subject to biological constraints, were compared to commercially available SPIOs (Resovist). Monodisperse MNTs showed a 2-fold greater signal per unit mass, and 20% better spatial resolution. In vitro evaluation of tracers showed that MPI performance of our MNTs is preserved in blood, serum-rich cell culture medium and gel; thus independent of changes in hydrodynamic volume and fluid viscosity – a critical prerequisite for in vivo MPI. In a rodent model, our MNTs circulated for 15 minutes – 3× longer than Resovist – and supported our in vitro evaluation that MPI signal is preserved in the physiological environment. Furthermore, MRI and histology analysis showed that MNTs distribute in the reticuloendothelial system (RES) in a manner similar to clinically approved SPIO agents. MNTs demonstrating long-circulation times and optimized MPI performance show potential as angiography tracers and blood-pool agents for the emerging MPI imaging modality.

Khandhar, Amit P; Ferguson, R Matthew; Arami, Hamed; Krishnan, Kannan M

2013-01-01

318

Magnetic resonance in nanoparticles: between ferro- and paramagnetism  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles of ?-Fe2O3 coated with organic molecules and suspended in liquid and solid matrices, as well as non-diluted magnetic fluid, have been studied by electron magnetic resonance (EMR) at 77-380 K. Slightly asymmetric spectra observed at room temperature become much broader and symmetric, and shift to lower fields upon cooling. An additional narrow spectral component (with a line-width of 30 G) is found in diluted samples; its magnitude obeys the Arrhenius law with an activation temperature of about 850 K. The longitudinal spin-relaxation time, T1ap10 ns, is determined by a specially developed modulation method. The angular dependence of the EMR signal position in field-freezing samples points to substantial alignment, suggesting the formation of dipolar-coupled aggregates. The shift and broadening of the spectrum upon cooling are assigned to the effect of the surface-related anisotropy. To describe the overall spectral shape, the 'quantization' model is used which includes summation of resonance transitions over the whole energy spectrum of a nanoparticle considered as a giant exchange cluster. This approach, supplemented with some phenomenological assumptions, provides satisfactory agreement with the experimental data.

Noginova, N.; Chen, F.; Weaver, T.; Giannelis, E. P.; Bourlinos, A. B.; Atsarkin, V. A.

2007-06-01

319

Detection of Magnetic Nanoparticles with Superconducting Quantum Interference Device (SQUID) Magnetometer and Application to Immunoassays  

Microsoft Academic Search

A system is developed to magnetically measure biological antigen-antibody reactions with a superconducting quantum interference device (SQUID) magnetometer. In this system, antibodies are labeled with magnetic nanoparticles of gamma-Fe2O3, and the antigen-antibody reactions are measured by detecting the magnetic field from the magnetic nanoparticles. A setup of the system is described, and the sensitivity of the system is studied in

Keiji Enpuku; Tadashi Minotani; Takemitsu Gima; Yukinori Kuroki; Yuzuru Itoh; Makiko Yamashita; Yoshinori Katakura; Satoru Kuhara

1999-01-01

320

Characterization of polyaniline-coated magnetic nanoparticles for application in a disposable membrane strip biosensor  

Microsoft Academic Search

We investigated the electrical properties of polyaniline-coated magnetic nanoparticles as a signal transducer for application in a disposable membrane strip biosensor. The size of these particles (~100 nm) was investigated by a transmission electron microscope. Electrical properties of these nanoparticles were investigated by four-point probe measurements and I-V measurements. Polyaniline-coated magnetic nanoparticles had a resistivity of 0.385 Omega cm and

J. S. Yuk; J. Rose; E. C. Alocilja

2010-01-01

321

Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.  

PubMed

When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 ?m) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces-the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter ??2), the Brownian motion seems not to affect the cloud behavior. PMID:24730845

Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Nave, S; Zubarev, A; Lomenech, C; Bashtovoi, V

2014-03-01

322

Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields  

NASA Astrophysics Data System (ADS)

When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 ?m) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter ? ?2), the Brownian motion seems not to affect the cloud behavior.

Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.

2014-03-01

323

Magnetic field gradient driven self-assembly of superparamagnetic nanoparticles using programmable magnetically-recorded templates  

NASA Astrophysics Data System (ADS)

Using the enormous magnetic field gradients (100 MT/m @ z=20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.

Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.

2013-03-01

324

Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles  

PubMed Central

Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

2013-01-01

325

Preparation, Structure, and Properties of Magnetic Materials Based on Co-Containing Nanoparticles  

Microsoft Academic Search

The recent experimental data on the preparation and properties of materials containing Co-based magnetic nanoparticles are summarized. Particular attention is focused on the synthesis of cobalt nanoparticles in “rigid” matrices (polymers, metals, and solid surfaces) and their static magnetic properties, which are of great importance for practical applications. The conclusion is made that surface effects play an important role in

S. P. Gubin; Yu. A. Koksharov

2002-01-01

326

Liver cancer immunoassay with magnetic nanoparticles and MgO-based magnetic tunnel junction sensors  

NASA Astrophysics Data System (ADS)

We have demonstrated the detection of alpha-fetoprotein (AFP) labeled with magnetic nanoparticles (MNPs) using MgO-based magnetic tunnel junction (MTJ) sensors. AFP is an important hepatic tumor biomarker and the detection of AFP has significant applications for clinical diagnostics and immunoassay for early-stage liver cancer indications. In this work, MgO-based MTJ sensors and 20-nm iron-oxide magnetic nanoparticles (MNPs) were used for detecting AFP antigens by a sandwich-assay configuration. The MTJ sensors with a sensing area of 4 × 2 ?m2 possess tunneling magnetoresistance (TMR) of 122% and sensitivity of 0.95%/Oe at room temperature. The target AFP antigens of three concentrations were successfully detected, and the experimental data indicate that the resistance variations of the MTJ sensor increased with the AFP concentration ratios proportionally. These results demonstrate that MgO-based MTJ sensors together with MNPs are a promising biosensing platform for liver cancer immunoassay.

Lei, Z. Q.; Li, L.; Li, G. J.; Leung, C. W.; Shi, J.; Wong, C. M.; Lo, K. C.; Chan, W. K.; Mak, C. S. K.; Chan, S. B.; Chan, N. M. M.; Leung, C. H.; Lai, P. T.; Pong, P. W. T.

2012-04-01

327

Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy  

PubMed Central

We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided ?-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in ?-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and ?-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy.

Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

2010-01-01

328

Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine.  

PubMed

Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered. PMID:22348683

Akbarzadeh, Abolfazl; Samiei, Mohamad; Davaran, Soodabeh

2012-01-01

329

Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites  

NASA Astrophysics Data System (ADS)

The magnetic and electromagnetic wave absorption behavior of a flexible iron-nanoparticle reinforced polyurethane nanocomposite is reported. Surface-initiated-polymerization (SIP) method was utilized to fabricate high-quality nanocomposites with uniform particle distribution and tunable particle loading (up to 65 wt %). The enhancement of coercive force is observed when the nanoparticles are embedded into the polymer matrix. Electromagnetic wave absorption performance at a discrete frequency as studied by metal-backed reflection loss indicates that the SIP nanocomposites can save the weight up to 50% compared to the composite counterpart with micron-size particles.

Guo, Zhanhu; Park, Sung; Hahn, H. Thomas; Wei, Suying; Moldovan, Monica; Karki, Amar B.; Young, David P.

2007-05-01

330

Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism  

PubMed Central

Summary The results of the investigation of the structural and magnetic (static and dynamic) properties of an assembly of metallic Fe nanoparticles synthesized by an organometallic chemical method are described. These nanoparticles are embedded in a polymer, monodisperse, with a diameter below 2 nm, which corresponds to a number of around 200 atoms. The X-ray absorption near-edge structure and Mössbauer spectrum are characteristic of metallic Fe. The structural studies by wide angle X-ray scattering indicate an original polytetrahedral atomic arrangement similar to that of ?-Mn, characterized by a short-range order. The average magnetic moment per Fe atom is raised to 2.59 µB (for comparison, bulk value of metallic Fe: 2.2 µB). Even if the spontaneous magnetization decreases rapidly as compared to bulk materials, it remains enhanced even up to room temperature. The gyromagnetic ratio measured by ferromagnetic resonance is of the same order as that of bulk Fe, which allows us to conclude that the orbital and spin contributions increase at the same rate. A large magnetic anisotropy for metallic Fe has been measured up to (3.7 ± 1.0)·105 J/m3. Precise analysis of the low temperature Mössbauer spectra, show a broad distribution of large hyperfine fields. The largest hyperfine fields display the largest isomer shifts. This indicates a progressive increase of the magnetic moment inside the particle from the core to the outer shell. The components corresponding to the large hyperfine fields with large isomer shifts are indeed characteristic of surface atoms.

Margeat, Olivier; Lecante, Pierre; Chaudret, Bruno

2010-01-01

331

Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles  

DOEpatents

A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

Huber, Dale L. (Albuquerque, NM)

2011-07-05

332

Gum Arabic-Coated Magnetic Nanoparticles for Potential Application in Simultaneous Magnetic Targeting and Tumor Imaging  

Microsoft Academic Search

Magnetic iron oxide nanoparticles (MNP) coated with gum arabic (GA), a biocompatible phytochemical glycoprotein widely used\\u000a in the food industry, were successfully synthesized and characterized. GA-coated MNP (GA-MNP) displayed a narrow hydrodynamic\\u000a particle size distribution averaging about 100 nm; a GA content of 15.6% by dry weight; a saturation magnetization of 93.1 emu\\/g\\u000a Fe; and a superparamagnetic behavior essential for most magnetic-mediated

Lei Zhang; Faquan Yu; Adam J. Cole; Beata Chertok; Allan E. David; Jingkang Wang; Victor C. Yang

2009-01-01

333

Temperature Dependence of Smectic Liquid Crystals Mixed With Magnetic Nanoparticles  

NASA Astrophysics Data System (ADS)

We investigate the properties of bulk liquid crystal mixed with a magnetic nanoparticle (CoFe) as a function of temperature. We compare our results to those of a heat capacity measurement of Cordoyiannis et al.ootnotetextGeorge Cordoyiannis, Lynn K. Kurihara, Luz J. Martinez-Miranda, Christ Glorieux, and Jan Thoen, Phys. Rev. E 79, 011702 (2009) and compare the way the smectic as a function of temperature the way the nematic behaves. We study how the liquid crystal reorganizes in the presence of the functionalized nanoparticles as a function of temperature and compare it to how it behaves at room temperature.ootnotetextL. J. Mart'inez-Miranda, and Lynn Kurihara, J. Appl. Phys, 105, p. 084305 (2009). The X-rays give rise to three or four peaks whose evolution in temperature varies depending on their origin. In particular the second peak does not seem to vary much with temperature, and can be associated with the first several molecular layers attached to the nanoparticles.

Taylor, Jefferson W.; Kurihara, Lynn K.; Martinez-Miranda, Luz J.

2012-02-01

334

Direct dyes removal using modified magnetic ferrite nanoparticle  

PubMed Central

The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of adsorbent dosage, initial dye concentration and salt was evaluated. In ternary system, dye removal of the adsorbent at 90, 120, 150 and 200 mg/L dye concentration was 63, 45, 30 and 23% for DR23, 97, 90, 78 and 45% for DR31 and 51, 48, 42 and 37% for DG6, respectively. It was found that dye adsorption onto the adsorbent followed Langmuir isotherm. The adsorption kinetic of dyes was found to conform to pseudo-second order kinetics.

2014-01-01

335

Comparison of two kinds of magnetic nanoparticles in vivo and in vitro.  

PubMed

This study compared a new type of polysaccharide-coated magnetic nanoparticles (in which the polysaccharide is derived from Angelica sinensis) with the dextran magnetic nanoparticles in terms of preparation, biocompatibility and tissue distribution in vivo and in vitro in order to examine the potential application of Angelica polysaccharide as a novel carrier in magnetic drug targeting (MDT). Magnetic nanoparticles were prepared by chemical co-precipitation. Their physical and chemical properties were determined by using the transmission electron microscope (TEM), laser particle size analyzer (DLS) and vibrating sample magnetometer (VSM), and their purity and structure by using X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). The atomic absorption spectrometric method was performed for quantification of the iron content in different tissues. Histological sections were stained by Prussian blue staining to observe the disposition of magnetic nanoparticles in the liver and kidney. The results showed that both kinds of magnetic nanoparticles possessed small particle size, good dispersion and good magnetic properties. XRD showed the main component of the two magnetic nanoparticles was Fe(3)O(4) crystals, and FTIR proved Fe(3)O(4) was successfully coated by each polysaccharide, respectively. In vivo, Fe(3)O(4)-dextran accumulated in the liver, spleen and lung and Fe(3)O(4)-Angelica polysaccharide only in the spleen and lung. It was concluded that Angelica polysaccharide may be applied as a novel carrier in the preparation of magnetic nanoparticles. PMID:22684573

Wang, Liu; Zhang, Yu; Li, Shijun; Wang, Yujuan; Wang, Kaiping

2012-06-01

336

Multifunctional hybrid silica nanoparticles based on [Mo?Br??]²? phosphorescent nanosized clusters, magnetic ?-Fe?O? and plasmonic gold nanoparticles.  

PubMed

We report on the synthesis, characterization and photophysical study of new luminescent and magnetic hybrid silica nanoparticles. Our method is based on the co-encapsulation of single maghemite ?-Fe2O3 nanoparticles and luminescent molybdenum cluster units [Mo6Br(i)8Br(a)6](2-) through a water-in-oil (W/O) microemulsion technique. The as-prepared core-shell [Cs2Mo6Br14-?Fe2O3]@SiO2 nanoparticles (45-53 nm) possess a single magnetic core (6, 10.5 or 15 nm) and the cluster units are dispersed in the entire volume of the silica sphere. The [Cs2Mo6Br14-?Fe2O3]@SiO2 nanoparticles have a perfect spherical shape with a good monodispersity and they display red and near-infrared (NIR) emission in water under UV excitation, whose intensity depends on the magnetic core size. The hybrid nanoparticles have been characterized by transmission electron microscopy (TEM), high annular angular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis-NIR spectroscopy and magnetometer SQUID analysis. Small gold nanoparticles were successfully nucleated at the surface of the hybrid silica nanoparticles in order to add plasmonic properties. PMID:24767509

Nerambourg, Nicolas; Aubert, Tangi; Neaime, Chrystelle; Cordier, Stéphane; Mortier, Michel; Patriarche, Gilles; Grasset, Fabien

2014-06-15

337

Influence of the morphology of ferrite nanoparticles on the directed assembly into magnetically anisotropic hierarchical structures.  

PubMed

The effect of the morphology of ferrite nanoparticles on their assembly in a magnetic field was studied. Thin BaFe12O19 nanoplatelets were compared with isotropic, spherical or octahedral, CoFe2O4 nanoparticles, all of which were synthesized hydrothermally. The nanoplatelets and nanoparticles assembled into a variety of hierarchical structures from stable suspensions during the "drop deposition" and drying in a magnetic field. The alignment of the nanoparticles in the magnetic field was observed in situ with an optical microscope. The morphologies of the nanoparticles and the subsequent assemblies were observed with transmission and scanning electron microscopes, respectively. The magnetic properties of the nanoparticles and the assemblies were measured with a vibrating-sample magnetometer. The BaFe12O19 nanoplatelets aligned in the plane of the substrate and formed several-micrometers-thick, ordered films with a magnetic alignment of approximately 90%. The CoFe2O4 nanoparticles assembled into thick, dense columns with a height of several hundreds of micrometers and showed a magnetic alignment of up to 60%. The differences in the morphologies and the magnetic alignments between the BaFe12O19 and CoFe2O4 hierarchical structures could be explained in terms of the differences in the shape and magnetocrystalline structure of the specific nanoparticles. PMID:24841592

Lisjak, Darja; Jenuš, Petra; Mertelj, Alenka

2014-06-10

338

Potential of magnetic nanoparticles for targeted drug delivery  

PubMed Central

Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications.

Yang, Hung-Wei; Hua, Mu-Yi; Liu, Hao-Li; Huang, Chiung-Yin; Wei, Kuo-Chen

2012-01-01

339

Scaffold-independent Patterning of Cells using Magnetic Nanoparticles  

NASA Astrophysics Data System (ADS)

Spatial patterning of cells in vitro relies on direct contact of cells on to solid surfaces. Scaffold independent patterning of cells has never been achieved so far. Patterning of cells has wide applications including stem cell biology, tissue architecture and regenerative medicine besides fundamental biology. Magnetized cells in a suspension can be manipulated using an externally applied magnetic field enabling directed patterning. We magnetized mammalian cells by internalization of superparamagnetic nanoparticles coated with bovine serum albumin (BSA). A magnetic field is then used to arrange cells in a desired pattern on a substrate or in suspension. The control strategy is derived from the self-assembly of magnetic colloids in a liquid considering magnetostatic interactions. The range of achievable structural features promise novel experimental methods investigating the influence of tissue shape and size on cell population dynamics wherein Fickian diffusion of autocrine growth signals are known to play a significant role. By eliminating the need for a scaffold, intercellular adhesion mechanics and the effects of temporally regulated signals can be investigated. The findings can be applied to novel tissue engineering methods.

Ghosh, Suvojit; Biswas, Moanaro; Elankumaran, Subbiah; Puri, Ishwar

2013-03-01

340

Magnetic Carbon nanoparticles enabled efficient photothermal alteration of mammalian cells  

NASA Astrophysics Data System (ADS)

While cw near-infrared (NIR) laser beams have been finding widespread application in photothermal therapy of cancer and pulsed NIR laser microbeams are recently being used for optoporation of exogeneous impermeable materials into cells. Since, carbon nanomaterials are very good in photothermal conversion, we utilized carbon nanoparticles (CNP) doped with Fe, so that they can be localized in a defined area by two fold selectivity, (i) external magnetic field for retention of the CNP in targeted area and (ii) surface functionalization for binding the targeted cells. Here, we report efficient photothermal therapy as well as poration of cells using magnetic CNPs with very low power continuous wave laser beam. Localization of CNPs on cell membrane under application of magnetic field was confirmed by scanning electron microscopy. At different power levels, cells could be damaged or microinjected with fluorescence protein-encoding plasmids or impermeable dyes. Monte Carlo simulation showed that the dose of NIR laser beam is sufficient to elicit response for magnetic CNP based photothermal treatment at significant depth. The results of our study suggest that magnetic CNP based photothermal alteration is a viable approach to remotely guide treatments offering high efficiency with significantly reduced cytotoxicity.

Gu, L.; Vardarajan, V.; Kanneganti, A.; Koymen, A.; Mohanty, S. K.

2011-03-01

341

Bioconjugated magnetic nanoparticles for the detection of bacteria.  

PubMed

Blood culture is traditionally a time-consuming method and has not changed significantly in several decades. Using nanotechnology, such as the use of magnetic nanoparticles (MNPs), the blood culture process may be streamlined. An important advantage of using MNPs to capture bacteria is the simple separation of bacteria from biological samples using magnets. Indeed, high bacteria capture efficiencies have been realized using MNPs. The binding events between MNPs and bacteria can be tightly controlled through carefully selected biorecognition events, using molecules such as vancomycin, daptomycin, antibodies, and others. These biomolecules can be readily conjugated onto MNPs followed by tethering to bacteria, thus enabling detection using the beacon produced by the bacteria conjugated MNPs. Methods to prepare bioconjugated MNPs and their performance with bacteria are reviewed. Finally, future directions on bacteria detection using giant magnetoresistance (GMR) biosensors are discussed. PMID:24266251

Chu, Yu W; Engebretson, David A; Carey, James R

2013-12-01

342

Chemisorption of cyanogen chloride by spinel ferrite magnetic nanoparticles.  

PubMed

Spinel ferrite magnetic nanoparticles, MnFe2O4, NiFe2O4, and CoFe2O4, were synthesized and used as gas-phase adsorbents for the removal of cyanogen chloride from dry air. Fixed-bed adsorption breakthrough experiments show adsorption wave behavior at the leading edge of the breakthrough curve that is not typical of physically adsorbed species. Fourier transform infrared spectroscopy (FTIR) results indicate that CK is reacting with the spinel ferrite surface and forming a carbamate species. The reaction is shown to be a function of the hydroxyl groups and adsorbed water on the surface of the particles as well as the metallic composition of the particles. The surface reaction decreases the remnant and saturation magnetism of the MnFe2O4 and CoFe2O4 particles by approximately 25%. PMID:23540752

Glover, T Grant; DeCoste, Jared B; Sabo, Daniel; Zhang, Z John

2013-05-01

343

Electronic structure and magnetism of the diluted magnetic semiconductor Fe-doped ZnO nanoparticles  

SciTech Connect

We have studied the electronic structure of Fe-doped ZnO nanoparticles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy, resonant photoemission spectroscopy, x-ray absorption spectroscopy, and x-ray magnetic circular dichroism (XMCD). From the experimental and cluster-model calculation results, we find that Fe atoms are predominantly in the Fe{sup 3+} ionic state with mixture of a small amount of Fe{sup 2+} and that Fe{sup 3+} ions are dominant in the surface region of the nanoparticles. It is shown that the room temperature ferromagnetism in the Fe-doped ZnO nanoparticles primarily originated from the antiferromagnetic coupling between unequal amounts of Fe{sup 3+} ions occupying two sets of nonequivalent positions in the region of the XMCD probing depth of {approx}2-3 nm.

Kataoka, T.; Kobayashi, M.; Sakamoto, Y.; Song, G. S. [Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Fujimori, A. [Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyogo 679-5148 (Japan); Chang, F.-H.; Lin, H.-J.; Huang, D. J.; Chen, C. T. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Ohkochi, T.; Takeda, Y.; Okane, T.; Saitoh, Y. [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyogo 679-5148 (Japan); Yamagami, H. [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyogo 679-5148 (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Tanaka, A. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Mandal, S. K.; Nath, T. K. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India); Karmakar, D. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Dasgupta, I. [Department of Solid State Physics and Center for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 (India)

2010-02-15

344

Highly magnetic iron carbide nanoparticles as effective T2 contrast agents  

NASA Astrophysics Data System (ADS)

This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM-1 S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM-1 S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications.This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM-1 S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM-1 S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications. Electronic supplementary information (ESI) available: Supplementary figures and experimental details. See DOI: 10.1039/c3nr04691e

Huang, Guoming; Hu, Juan; Zhang, Hui; Zhou, Zijian; Chi, Xiaoqin; Gao, Jinhao

2013-12-01

345

Effect of hexane on magnetic blocking behavior of FePt nanoparticles  

NASA Astrophysics Data System (ADS)

In this work effect of the carrier fluid, hexane, on the magnetic properties of 4.7 nm sized FePt nanoparticles is investigated. Nanoparticles are synthesized by chemical method. Structural and magnetic characterizations confirmed that samples are monodispersed with disordered face centered cubic (fcc) crystal structure and, magnetically, exhibit two blocking behaviors; the first is at 27 K and second at 110 K. Carrier fluid of particles, hexane, is found to influence the blocking of 7% of the total magnetic moments in the system by freezing at low temperatures resulting in a two blocking phenomena even for nanoparticles that are monodispersed with narrow particle size distribution.

?im?ek, Telem; Akansel, Serkan; Özcan, ?adan

2012-11-01

346

Magnetic properties of -Fe2O3 nanoparticles made by coprecipitation method  

NASA Astrophysics Data System (ADS)

We have synthesized maghemite (-Fe2O3) nanoparticles using chemical coprecipitation technique through a typical pipette drop method (pipette diameter: 2000 m) and a piezoelectric nozzle method (nozzle size: 50 m). The size distribution of the maghemite nanoparticles prepared by the pipette drop method is from 5 nm to 8 nm. However, the nanoparticles made by the piezoelectric nozzle method show smaller size and very narrow size distribution from 3 nm to 5 nm. Zero-Field-Cooled (ZFC)/Field-Cooled (FC) magnetization and magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer from 5 K to 300 K to investigate the magnetic properties of nanoparticles. The SQUID measurements revealed superparamagnetism of nanoparticles with the blocking temperature of 119.5 K and 94.3 K for the nanoparticles made by the pipette drop method and the piezoelectric nozzle method, respectively.

Jeong, Jong-Ryul; Lee, Seung-Jun; Kim, Jong-Duk; Shin, Sung-Chul

2004-06-01

347

Structural and magnetic properties of polymer coated iron based nanoparticles for biomedical applications  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles have recently attracted much attention for potential biomedical applications such as targeted drug delivery, magnetic resonance imaging contrast agents and hyperthermia treatment of cancerous cells. Future research on biomedical applications also includes use of magnetic nanoparticles for cell and DNA separation. By functionalizing magnetic nanoparticles with cells or DNA selective biomolecules, the particles attach to the target and are removed from the sample upon passing through magnetic field gradients. The field gradients apply a force that attracts the particles given by the equation F = ?(m · B), where m is the magnetization of the MNP, and B is the applied magnetic field. This type of magnetic manipulation is potential for in vivo applications such as targeted drug delivery, magnetic resonance imaging contrast enhancement and hyperthermia treatment of cancer. The magnitude of the field gradients of magnetic nanoparticles are significantly reduced due to the inverse square law dependence of magnetic field strength and subsequently the forces set up are reduced. Although the research in this field has focused primarily on iron oxide nanoparticles, these oxide nanoparticles have a low magnetization that renders them ineffective, at the distances required for in vivo applications, due to the reduced forces felt by the nanoparticles. Successful implementation of such magnetic nanoparticles based system in vivo may require higher magnetization. The aim of this proposal is to synthesize high magnetization Fe-based MNPs functionalized with artificial proteins. The research described in this dissertation focuses on synthesis, size control, structural and magnetic characterization and associated experimental studies to characterize their properties for application in magnetic fluid hyperthermia and magnetic resonance imaging applications. The method used for the synthesis of the Fe-based nanoparticles is the conventional borohydride reduction of the metal salt solution. Since our intention is to synthesize iron based nanoparticles we used iron salts such as FeCl3. A polymer such as polyethylene glycol is coated onto the oxide shell to make it biocompatible. Parameters such as length of the tube, diameter of the Y-tube junction and concentration of the reactants were varied to study the effect on particle size, structure and morphology of the magnetic nanoparticles. X-ray diffraction measurements revealed that the particles typically contain three iron based phases such as a crystalline (alpha-Fe), nanocrystalline/amorphous (a-FeB/n-Fe) and Fe-oxide. By controlling the synthesis parameters such as length of the reaction tube, inner diameter of the Y-tube and concentration of the reagents the volume percentage of the three phases of the nanoparticles, viz. crystalline phase, amorphous phase and Fe-Oxide phases can be controlled effectively. The Fe-Oxide phase could not be determined whether is magnetite and maghemite phase because of the very broad nature of the peak. Transmission electron microscopy was used to study the particle size and the microstructural property of the samples. Samples with particle size in the range of 3 nm to 30 nm were fabricated. The magnetic properties of the nanoparticles studied were measured with a vibrating sample magnetometer with a maximum field of 1 Tesla. The particles magnetic properties such as magnetization and coercivity were typical of a soft ferromagnetic material with a high magnetization (in emu/g) and the coercivity was in range of 50 to 450 Oe. The nanoparticles synthesized were used to study their performance in magnetic fluid hyperthermia and magnetic resonance imaging applications. In the hyperthermia, the power loss due to an alternating magnetic field had a direct correlation with the magnetization and the particle size of the nanoparticle. The power loss in magnetic fluid hyperthermia is an outcome from four loss mechanism, they are Brownian rotational loss, Neel's relaxational loss, hysteresis loss and eddy current loss. The Brownian rotation loss

Balakrishnan, Srinivasan

348

Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers  

PubMed Central

A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic ?-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside.

Wahajuddin; Arora, Sumit

2012-01-01

349

Synthesis and magnetic properties of gold coated iron oxide nanoparticles  

NASA Astrophysics Data System (ADS)

We report on synthesis, structural, and magnetic properties of chemically synthesized iron oxide (Fe3O4) and Fe3O4@Au core-shell nanoparticles. Structural characterization was done using x-ray diffraction and transmission electron microscopy, and the magnetite phase of the core (~6 nm) and fcc Au shell (thickness of ~1 nm) were confirmed. Magnetization (M) versus temperature (T) data at H=200 Oe for zero-field-cooled and field-cooled modes exhibited a superparamagnetic blocking temperature TB~35 K (40 K) for parent (core-shell) system. Enhanced coercivity (Hc~200 Oe) at 5 K along with nonsaturating M-H loops observed for Fe3O4@Au nanoparticles indicate the possible role of spin disorder at the Au-Fe3O4 interface and weak exchange coupling between surface and core spins. Analysis of ac susceptibility (?' and ?'') data shows that the interparticle interaction is reduced upon Au coating and the relaxation mechanism follows the Vogel-Fulcher law.

Pal, Susmita; Morales, Marienette; Mukherjee, Pritish; Srikanth, Hariharan

2009-04-01

350

Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements  

NASA Astrophysics Data System (ADS)

A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by ``direct'' techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

2012-10-01

351

Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles.  

PubMed

Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticles is limited by the onset of superparamagnetism. One solution to overcome this limitation is the use of materials with extremely large magneto-crystalline anisotropy. In this article, we follow an alternative approach by using magneto-elastic interactions to tailor the total effective magnetic anisotropy of the nanoparticles. By applying large biaxial stress to nanoparticles embedded in a non-magnetic film, it is demonstrated that a significant modification of the magnetic properties can be achieved. The stress is applied to the nanoparticles through expansion of the substrate during hydrogen loading. Experimental evidence for stress induced magnetic effects is presented based on temperature-dependent magnetization curves of superparamagnetic Fe particles. The results show the potential of the approach for adjusting the magnetic properties of nanoparticles, which is essential for application in future data storage media. PMID:21977439

Saranu, Srinivasa; Selve, Sören; Kaiser, Ute; Han, Luyang; Wiedwald, Ulf; Ziemann, Paul; Herr, Ulrich

2011-01-01

352

Quantification of magnetic nanoparticles by magnetorelaxometry and comparison to histology after magnetic drug targeting.  

PubMed

Magnetic nanoparticles can be used in medicine in vivo as contrast agents and as a drug carrier system for chemotherapeutics. Thus local cancer therapy is performed with Magnetic Drug Targeting (MDT) and allows a specific delivery of therapeutic agents to desired targets, i.e., tumors, by using a chemotherapeutic substance bound to magnetic nanoparticles and focused with an external magnetic field to the tumor after intraarterial application. Important for this therapeutic principle is the distribution of the particles in the whole organism and especially in the tumor. Therefore we used magnetorelaxometry to quantify ferrofluids delivered after MDT. Tissue samples of some mm3 volume of a VX2 squamous cell carcinoma were measured by magnetic relaxation and the amount of iron was determined using the original ferrofluid suspension as a reference. From this the distribution of the magnetic particles within the slice of tumor was reconstructed. Histological cross-sections of the respective tumor offer the opportunity to map quantitatively the particle distribution and the vascularisation in the targeted tumor on a microscopic scale. Our data show that the integral method magnetorelaxometry and microscopic histological methods can complete each other efficiently. PMID:17048540

Wiekhorst, F; Seliger, C; Jurgons, R; Steinhoff, U; Eberbeck, D; Trahms, L; Alexiou, C

2006-01-01

353

Molecular detection of biomarkers and cells using magnetic nanoparticles and diagnostic magnetic resonance.  

PubMed

The rapid and sensitive detection of molecular targets such as proteins, cells, and pathogens in biological specimens is a major focus of ongoing medical research, as it could promote early disease diagnoses and the development of tailored therapeutic strategies. Magnetic nanoparticles (MNP) are attractive candidates for molecular biosensing applications because most biological samples exhibit negligible magnetic susceptibility, and thus the background against which measurements are made is extremely low. Numerous magnetic detection methods exist, but sensing based on magnetic resonance effects has successfully been developed into a general detection platform termed diagnostic magnetic resonance (DMR). DMR technology encompasses numerous assay configurations and sensing principles, and to date magnetic nanoparticle biosensors have been designed to detect a wide range of targets including DNA/mRNA, proteins, enzymes, drugs, pathogens, and tumor cells with exquisite sensitivity. The core principle behind DMR is the use of MNP as proximity sensors that modulate the transverse relaxation time of neighboring water molecules. This signal can be quantified using MR imagers or NMR relaxometers, including miniaturized NMR detector chips that are capable of performing highly sensitive measurements on microliter sample volumes and in a multiplexed format. The speed, sensitivity, and simplicity of the DMR principle, coupled with further advances in NMR biosensor technology should provide a high-throughput, low-cost, and portable platform for large-scale parallel sensing in clinical and point-of-care settings. PMID:21424441

Haun, Jered B; Yoon, Tae-Jong; Lee, Hakho; Weissleder, Ralph

2011-01-01

354

Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles  

NASA Astrophysics Data System (ADS)

Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, and scalable molten-salt reaction at 700 °C in air. Their structural and morphological properties were characterized by X-ray diffraction and transmission electron microscopy. Their magnetic properties were evaluated and compared using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field for the first time. The dc magnetization curves show paramagnetic-ferromagnetic transitions at TC ~ 275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO nanoparticles had a single magnetic transition indicative of Co2+-O2--Mn4+ ordering, whereas the LNMO nanoparticles showed more complex magnetic behaviors suggesting a re-entrant spin glass.

Mao, Yuanbing; Parsons, Jason; McCloy, John S.

2013-05-01

355

Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel  

PubMed Central

Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erne, Ben H.

2013-01-01

356

Nano- and microstructures of magnetic field-guided maghemite nanoparticles in diblock copolymer films.  

PubMed

The control over the alignment of nanoparticles within a block copolymer matrix was investigated for different external magnetic fields with respect to producing well-aligned, highly oriented metal-oxide-polymer nanopatterns. Hybrid films were prepared by solution casting under a range of external magnetic fields. The nano- and microstructure of maghemite nanoparticles within poly(styrene-b-methyl methacrylate) diblock copolymer films as a function of the nanoparticle concentration was studied using optical microscopy, atomic force microscopy, scanning electron microscopy, and grazing incidence small-angle X-ray scattering. Because of a polystyrene (PS) coating, the nanoparticles are incorporated in the PS domains of the diblock copolymer morphology. At higher nanoparticle concentrations, nanoparticle aggregates perturb the block copolymer structure and accumulate at the films surface into wire-shaped stripes. These wire-shaped nanoparticle aggregates form mainly because of the competition between nanoparticle-polymer friction and magnetic dipolar interaction. The magnetic behavior of the hybrid films was probed at different temperatures for two orthogonal directions (with the line-shaped particle aggregates parallel and perpendicular to the magnetic field). The hybrid film systems show superparamagnetic behavior and remarkable shape anisotropy that render them interesting for magnetic applications. PMID:24621173

Yao, Yuan; Metwalli, Ezzeldin; Niedermeier, Martin A; Opel, Matthias; Lin, Chen; Ning, Jing; Perlich, Jan; Roth, Stephan V; Müller-Buschbaum, Peter

2014-04-01

357

Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel.  

PubMed

Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

2013-01-01

358

Immobilization of cholesterol oxidase to finely dispersed silica-coated maghemite nanoparticles based magnetic fluid  

NASA Astrophysics Data System (ADS)

In the recent years, the potential applicability of magnetic nanoparticles (MNPs) has witnessed a significant increase in interest towards the medical field, in particular, towards the usage of novel nanoparticles in diagnostics and disease treatment, respectively. In a present study, cholesterol oxidase (ChOx) was covalently immobilized to magnetic nanoparticles of maghemite (?-Fe 2O 3) and further functionalized by silica (SiO 2) and amino-silane molecules. The activity of the bound enzyme was retained up to 60%, respectively. The binding of cholesterol oxidase was confirmed using FT-IR spectrophotometer. SEM analysis showed uniformly dispersed functional magnetic nanoparticles, which ranged in size from 22.5 to 50.8 nm, surrounded by amorphous silica. In this paper, the potential applications of chemically modified magnetic nanoparticles as carriers for cholesterol oxidase and other enzymes are discussed.

Šulek, Franja; Knez, Željko; Habulin, Maja

2010-05-01

359

Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases  

PubMed Central

Advances in nanoparticle contrast agents for molecular imaging have made magnetic resonance imaging a promising modality for noninvasive visualization and assessment of vascular and cardiac disease processes. This review provides a description of the various nanoparticles exploited for imaging cardiovascular targets. Nanoparticle probes detecting inflammation, apoptosis, extracellular matrix, and angiogenesis may provide tools for assessing the risk of progressive vascular dysfunction and heart failure. The utility of nanoparticles as multimodal probes and/or theranostic agents has also been investigated. Although clinical application of these nanoparticles is largely unexplored, the potential for enhancing disease diagnosis and treatment is considerable.

Chen, Wei; Cormode, David P.; Fayad, Zahi A.; Mulder, Willem J. M.

2011-01-01

360

Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with ?-cyclodextrin  

NASA Astrophysics Data System (ADS)

Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then ?-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

2014-06-01

361

Characterization of polyaniline-coated magnetic nanoparticles for application in a disposable membrane strip biosensor  

NASA Astrophysics Data System (ADS)

We investigated the electrical properties of polyaniline-coated magnetic nanoparticles as a signal transducer for application in a disposable membrane strip biosensor. The size of these particles (~100 nm) was investigated by a transmission electron microscope. Electrical properties of these nanoparticles were investigated by four-point probe measurements and I-V measurements. Polyaniline-coated magnetic nanoparticles had a resistivity of 0.385 ? cm and showed ohmic behavior. Resistance decreased with increasing concentration of polyaniline. We also demonstrated that the resistance decreased with increasing concentration of biotinylated IgG conjugated with these nanoparticles.

Yuk, J. S.; Rose, J.; Alocilja, E. C.

2010-04-01

362

Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents.  

PubMed

Various magnetic nanoparticles have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents owing to their unique characteristics, including efficient contrast effects, biocompatibility, and versatile surface functionalization capability. Nanoparticles with high relaxivity are very desirable because they would increase the accuracy of MRI. Recent progress in nanotechnology enables fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. In this tutorial review, we discuss how MRI contrast effects can be improved by controlling the size, composition, doping, assembly, and surface properties of iron-oxide-based nanoparticles. PMID:22138852

Lee, Nohyun; Hyeon, Taeghwan

2012-04-01

363

Influence of surface segregation on magnetic properties of FePt nanoparticles  

SciTech Connect

Surface segregation leads to chemical disordering in magnetic alloy nanostructures and thus could have profound impact upon the magnetic properties of these nanostructures. In this study, we used the first-principles density functional theory calculation method to determine how Pt surface segregation (exchanging interior Pt with surface Fe atoms) would affect the magnetic properties of L1{sub 0} ordered FePt nanoparticles. For both cuboid and cuboctahedral FePt nanoparticles, we predicted that the Pt surface segregation process could cause a decrease in total magnetic moments, a change in (easy and/or hard) magnetization axes, and a reduction in magnetic anisotropy.

Lv, Hongyan [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States) [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Lei, Yinkai; Datta, Aditi; Wang, Guofeng [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)] [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

2013-09-23

364

Influence of surface segregation on magnetic properties of FePt nanoparticles  

NASA Astrophysics Data System (ADS)

Surface segregation leads to chemical disordering in magnetic alloy nanostructures and thus could have profound impact upon the magnetic properties of these nanostructures. In this study, we used the first-principles density functional theory calculation method to determine how Pt surface segregation (exchanging interior Pt with surface Fe atoms) would affect the magnetic properties of L10 ordered FePt nanoparticles. For both cuboid and cuboctahedral FePt nanoparticles, we predicted that the Pt surface segregation process could cause a decrease in total magnetic moments, a change in (easy and/or hard) magnetization axes, and a reduction in magnetic anisotropy.

Lv, Hongyan; Lei, Yinkai; Datta, Aditi; Wang, Guofeng

2013-09-01

365

Pulsed electric discharges in water as a source of magnetic nanoparticles for transportation of microorganisms  

NASA Astrophysics Data System (ADS)

The distinguishing property of magnetic nanoparticles that determines the increasing interest in these objects is their mobility under the action of a magnetic field, which can be used for their directional transportation, deposition, and concentration in a preset region. It is shown that nanoparticles consisting of iron oxide can be used as magnetoactive agents for converting the cells of microorganisms into microaggregates for their directional transportation or concentration in liquid media under the action of a magnetic field.

Rutberg, F. G.; Kolikov, V. A.; Snetov, V. N.; Stogov, A. Yu.; Abramov, E. G.; Bogomolova, E. V.; Panina, L. K.

2012-12-01

366

Magnetic nano-particles of Ni in MgO single crystals by ion implantation  

Microsoft Academic Search

Magnetic Ni nano-particles in the near surface regions of MgO single crystals have been synthesized by 64keV Ni ion implantation to 1×1017cm?2 followed by thermal annealing. Transmission electron microscopy (TEM) and magnetic properties measurement system (MPMS) equipped with a superconducting quantum interference device (SQUID) detector have been employed to characterize the microstructure and magnetic properties of the Ni nano-particles. The

S. Zhu; X. Xiang; X. T. Zu; L. M. Wang

2006-01-01

367

Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance.  

PubMed

We numerically demonstrate selective absorption of visible light in film-coupled nanoparticle metamaterials by excitation of magnetic resonance. The physical mechanism of magnetic resonance is elucidated with the help of electromagnetic field distribution. Resonance wavelengths are shown to be strongly dependent on geometric parameters. Representative inductor-capacitor models are employed to further confirm the underlying mechanism and explain the unique behaviors of magnetic resonance in film-coupled nanoparticle metamaterials. PMID:24690812

Wang, Hao; O'Dea, Kieran; Wang, Liping

2014-03-15

368

Rapid and Efficient Protein Digestion using Trypsin Coated Magnetic Nanoparticles under Pressure Cycles  

Microsoft Academic Search

Trypsin-coated magnetic nanoparticles (EC-TR\\/NPs), prepared via a simple crosslinking of the enzyme to magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR\\/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, while a control sample of covalently-attached trypsin on NPs resulted in a rapid inactivation under

Byoungsoo Lee; Daniel Lopez-Ferrer; Byoung Chan Kim; Hyon Bin Na; Yong Il Park; Karl K. Weitz; Marvin G. Warner; Taeghwan Hyeon; Sang-Won Lee; Richard D. Smith; Jungbae Kim

2011-01-01

369

Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes  

Microsoft Academic Search

With a view to preparing monosized hydrophilic functional magnetic latex particles based on a two-step strategy using anionic\\u000a iron oxide and cationic polymer latexes, the adsorption step was systematically investigated for a better control of the subsequent\\u000a encapsulation step. The iron oxide nanoparticles were first obtained according to the classical precipitation method of ferric\\u000a and ferrous chloride salt using a

F. Sauzedde; A. Elaïssari; C. Pichot

1999-01-01

370

Release of Magnetic Nanoparticles from Cell-Encapsulating Biodegradable Nanobiomaterials  

PubMed Central

The future of tissue engineering requires development of intelligent biomaterials using nanoparticles. Magnetic nanoparticles (MNPs) have several applications in biology and medicine; one example is Food and Drug Administration (FDA)-approved contrast agents in magnetic resonance imaging. Recently, MNPs have been encapsulated within cell-encapsulating hydrogels to create novel nanobiomaterials (i.e., M-gels), which can be manipulated and assembled in magnetic fields. The M-gels can be used as building blocks for bottom-up tissue engineering to create 3D tissue constructs. For tissue engineering applications of M-gels, it is essential to study the release of encapsulated MNPs from the hydrogel polymer network and the effect of MNPs on hydrogel properties, including mechanical characteristics, porosity, swelling behavior, and cellular response (e.g., viability, growth). Therefore, we evaluated the release of MNPs from photocrosslinkable gelatin methacrylate hydrogels as the polymer network undergoes biodegradation using inductively coupled plasma atomic emission spectroscopy. MNP release correlated linearly with hydrogel biodegradation rate with correlation factors (Pearson product moment correlation coefficient) of 0.96 ± 0.03 and 0.99 ± 0.01 for MNP concentrations of 1% and 5%, respectively. We also evaluated the effect of MNPs on hydrogel mechanical properties, porosity, and swelling behavior, as well as cell viability and growth in MNP-encapsulating hydrogels. Fibroblasts encapsulated with MNPs in hydrogels remained viable (>80% at t = 144 h) and formed microtissue constructs in culture (t = 144 h). These results indicated that MNP-encapsulating hydrogels show promise as intelligent nanobiomaterials, with great potential to impact broad areas of bioengineering, including tissue engineering, regenerative medicine, and pharmaceutical applications.

Xu, Feng; Inci, Fatih; Mullick, Omer; Gurkan, Umut Atakan; Sung, Yuree; Kavaz, Doga; Li, Baoqiang; Denkbas, Emir Baki; Demirci, Utkan

2013-01-01

371

Remediation of Cr(VI) by biogenic magnetic nanoparticles: An x-ray magnetic circular dichroism study  

NASA Astrophysics Data System (ADS)

Biologically synthesized magnetite (Fe3O4) nanoparticles are studied using x-ray absorption and x-ray magnetic circular dichroism following exposure to hexavalent Cr solution. By examining their magnetic state, Cr cations are shown to exist in trivalent form on octahedral sites within the magnetite spinel surface. The possibility of reducing toxic Cr(VI) into a stable, nontoxic form, such as a Cr3+-spinel layer, makes biogenic magnetite nanoparticles an attractive candidate for Cr remediation.

Telling, N. D.; Coker, V. S.; Cutting, R. S.; van der Laan, G.; Pearce, C. I.; Pattrick, R. A. D.; Arenholz, E.; Lloyd, J. R.

2009-10-01

372

Magnetorelaxometry—a new binding specific detection method based on magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

The measurement of the relaxing magnetisation of magnetic nanoparticles after switching off a magnetising field (magnetorelaxometry) was investigated towards its applicability for the determination of the binding of antibodies to their antigens. For this purpose a direct solid phase immunoassay using magnetic nanoparticles conjugated with an antibody against human IgG and a sandwich solid phase immunoassay using the identical biotinylated antibody against human IgG and magnetic nanoparticles conjugated with streptavidin were performed. Both assays yielded binding specific magnetic nanoparticle relaxation signals that were dependent on the amount of antigen. The comparison of the magnetic relaxation immunoassay (MARIA) with an established immunoassy technique (enzyme-linked immunosorbent assay, ELISA) showed, that both techniques yielded well comparable results.

Lange, J.; Kötitz, R.; Haller, A.; Trahms, L.; Semmler, W.; Weitschies, W.

2002-11-01

373

Influence of naturally occurring antioxidants on magnetic nanoparticles: risks, benefits, and possible therapeutic applications.  

PubMed

We have studied interaction of well known antioxidant L-ascorbic acid with magnetic nanoparticles containing insoluble Fe(III) in their core. In analogy with ferritin, mobilization of iron in the form of water soluble Fe(II) was observed, especially pronounced at higher temperatures. In the presence of hydrogen peroxide cytotoxic hydroxyl radicals are produced. These results suggest possible harmful effects of widely used magnetic nanoparticles as a MRI contrast agents in combination with overload of organism with ascorbic acid in some specific conditions, like fever of patient. On the other hand combination of magnetic nanoparticles and ascorbic acid may be used for a cancer therapy using alternating magnetic field for the release of Fe(II) via Néel relaxation of magnetic moment of used nanoparticles. We have further found that lipoic acid is an efficient antioxidant scavenging hydroxyl radicals produced by Fenton reaction from Fe(II). PMID:23479451

Durdík, Stefan; Vrbovská, Hanka; Olas, Adam; Babincová, Melánia

2013-06-01

374

Preparation of magnetic fluorochromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles and their characterization  

NASA Astrophysics Data System (ADS)

In this study, a new magnetic hybrid nanomaterial Fe3O4@SiO2@PPh3@[CrO3F]- is instituted. Firstly, magnetic Fe3O4 nanoparticles have been synthesized by hydrothermal method. Next, the produced magnetic nanoparticles were covered with a silica shell via modified Stöber method. Then, the core-shell magnetic nanoparticles system Fe3O4@SiO2 functionalization was combined by utilizing (3-chloropropyl)trimethoxysilane and triphenylphosphine, to give the cationic part for immobilization of the anionic part of the Cr(VI) catalysts including [CrO3F]-. The structure of the catalyst after immobilization was investigated by using elemental analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and solid state UV-vis. The particle size and morphology were identified by scanning electron microscope (SEM) and XRD. Magnetization properties of nanoparticles were confirmed by vibrating sample magnetometer (VSM).

Rahimi, Rahmatollah; Maleki, Ali; Maleki, Saied

2014-04-01

375

Magnetic nanoparticle (MNP) enhanced biosensing by surface plasmon resonance (SPR) for portable devices  

NASA Astrophysics Data System (ADS)

The use of magnetic nanparticles in microfluidic systems is emerging and is receiving growing attention due to the synergistic advantages of microfluidics and magnetic nanoparticles. Biomagnetic separation techniques based on magnetic nanoparticles are becoming increasingly important with a wide range of possible applications. However, the separation products are difficult to be detected by general method due to the small size of MNPs. Here, we demonstrate magnetic nanoparticles can greatly enhance the signal of surface plasmon resonance spectroscopy (SPR). Features of MNPs-aptamer conjugates as a powerful amplification reagent for ultrasensitive immunoassay are explored for the first time. Our results confirm that MNPs is a powerful sandwich element and an excellent amplification reagent for SPR based sandwich immunoassay and SPR has a great potential for the detection of magnetic nanoparticles-based separation products.

Wang, Jianlong; Zhu, Zanzan; Munir, Ahsan; Zhou, H. Susan

2010-03-01

376

Diverse Structural and Magnetic Properties of Differently Prepared MnAs Nanoparticles  

SciTech Connect

Discrete nanoparticles of MnAs with distinct magnetostructural properties have been prepared by small modifications of solution-phase arrested precipitation reactions. Rietveld and X-ray atomic pair distribution function based approaches were used to explore the evolution of the structure of the samples with temperature, and these data were compared to the magnetic response measured with ac susceptibility. Relative to a bulk standard, one type of MnAs nanoparticles was found to demonstrate similar but smaller structural transitions and corresponding magnetic changes. However, both magnetic and structural transitions in the second type of nanoparticles are strongly suppressed.

Billinge, S.J.; Tian, P.; Zhang, Y.; Senevirathne, K.; Brock, S.L.; Dixit, A.; Lawes, G.

2011-04-01

377

Fatty Acid Binding Domain Mediated Conjugation of Ultrafine Magnetic Nanoparticles with Albumin Protein  

NASA Astrophysics Data System (ADS)

A novel bioconjugate of stearic acid capped maghemite nanoparticle (?-Fe2O3) with bovine serum albumin (BSA) was developed by taking recourse to the fatty acid binding property of the protein. From FT-IR study, it was found that conjugation took place covalently between the amine group of protein molecule and carboxyl group of stearic acid capped maghemite nanoparticle. TEM study further signified the morphology of the proposed nanobioconjuagte. The binding constant of nanoparticle with protein molecule was evaluated from the optical property studies. Also, magnetic measurement (M-H) showed retaining of magnetic property by significant values of saturation magnetization and other hysteretic parameters.

Bora, D. K.; Deb, P.

2009-02-01

378

In-vitro investigations of nanoparticle magnetic thermotherapy: adjuvant effects and comparison to conventional heating  

NASA Astrophysics Data System (ADS)

Thermotherapy, particularly magnetic nanoparticle hyperthermia, is a promising modality both as a direct cancer cell killing and as a radiosensitization technique for adjuvant therapy. Dextran-coated iron oxide nanoparticles were mixed with multiple tumor cell lines in solution and exposed to varying magnetic field regimes and combined with traditional external radiotherapy. Heating of cell lines by water bath in temperature patterns comparable to those achieved by nanoparticle hyperthermia was conducted to assess the relative value of nano-magnetic thermotherapy compared with conventional bulk heating techniques and data.

Pierce, Z.; Strawbridge, R.; Gaito, C.; Dulatas, L.; Tate, J.; Ogden, J.; Hoopes, P. J.

2007-03-01

379

Enhanced magnetism in highly ordered magnetite nanoparticle-filled nanohole arrays.  

PubMed

A new approach to develop highly ordered magnetite (Fe3 O4 ) nanoparticle-patterned nanohole arrays with desirable magnetic properties for a variety of technological applications is presented. In this work, the sub-100 nm nanohole arrays are successfully fabricated from a pre-ceramic polymer mold using spin-on nanoprinting (SNAP). These nanoholes a then filled with monodispersed, spherical Fe3 O4 nanoparticles of about 10 nm diameter using a novel magnetic drag and drop procedure. The nanohole arrays filled with magnetic nanoparticles a imaged using magnetic force microscopy (MFM). Magnetometry and MFM measurements reveal room temperature ferromagnetism in the Fe3 O4 -filled nanohole arrays, while the as-synthesized Fe3 O4 nanoparticles exhibit superparamagnetic behavior. As revealed by MFM measurements, the enhanced magnetism in the Fe3 O4 -filled nanohole arrays originates mainly from the enhanced magnetic dipole interactions of Fe3 O4 nanoparticles within the nanoholes and between adjacent nanoholes. Nanoparticle filled nanohole arrays can be highly beneficial in magnetic data storage and other applications such as microwave devices and biosensor arrays that require tunable and anisotropic magnetic properties. PMID:24706405

Duong, Binh; Khurshid, Hafsa; Gangopadhyay, Palash; Devkota, Jagannath; Stojak, Kristen; Srikanth, Hariharan; Tetard, Laurene; Norwood, Robert A; Peyghambarian, N; Phan, Manh-Huong; Thomas, Jayan

2014-07-01

380

Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells  

NASA Astrophysics Data System (ADS)

Optical observations of 100 nm metallic magnetic nanoparticles are used to study their magnetic field induced self assembly. Chains with lengths of tens of microns are observed to form within minutes at nanoparticle concentrations 10 10/mL. Chain rotation and magnetophoresis are readily observed, and SEM reveals that long chains are not simple single particle filaments. Similar chains are detected for several 100 nm commercial bio-separation nanoparticles. We demonstrate the staged magnetic condensation of different types of nanoparticles into composite structures and show that magnetic chains bind to immuno-magnetically labeled cells, serving as temporary handles which allow novel magnetic cell manipulations.

Wilson, Robert J.; Hu, Wei; Fu, Cheryl Wong Po; Koh, Ai Leen; Gaster, Richard S.; Earhart, Christopher M.; Fu, Aihua; Heilshorn, Sarah C.; Sinclair, Robert; Wang, Shan X.

2009-05-01

381

Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis  

PubMed Central

Superparamagnetic iron oxide (SPIO) particles have been used successfully as an intracellular contrast agent for nuclear MRI cell tracking in vivo. We present a method of detecting intracellular SPIO colloid uptake in live cells using cell magnetophoresis, with potential applications in measuring intracellular MRI contrast uptake. The method was evaluated by measuring shifts in mean and distribution of the cell magnetophoretic mobility, and the concomitant changes in population frequency of the magnetically positive cells when compared to the unmanipulated negative control. Seven different transfection agent (TA) -SPIO complexes based on dendrimer, lipid, and polyethylenimine compounds were used as test standards, in combination with 3 different cell types: mesenchymal stem cells, cardiac fibroblasts, and cultured KG-1a hematopoietic stem cells. Transfectol (TRA) -SPIO incubation resulted in the highest frequency of magnetically positive cells (>90%), and Fugene 6 (FUG) -SPIO incubation the lowest, below that when using SPIO alone. A highly regular process of cell magnetophoresis was amenable to intracellular iron mass calculations. The results were consistent in all the cell types studied and with other reports. The cell magnetophoresis depends on the presence of high-spin iron species and is therefore expected to be directly related to the cell MRI contrast level.—Jing, Y., Mal, N., Williams, P. S., Mayorga, M., Penn, M. S., Chalmers, J. J., Zborowski, M. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis.

Jing, Ying; Mal, Niladri; Williams, P. Stephen; Mayorga, Maritza; Penn, Marc S.; Chalmers, Jeffrey J.; Zborowski, Maciej

2008-01-01

382

Magnetic resonance imaging of microvessels using iron-oxide nanoparticles  

NASA Astrophysics Data System (ADS)

The visualization of microstructures including blood vessels with an inner overall cross-sectional area below approximately 200 ?m remains beyond the capabilities of current clinical imaging modalities. But with magnetic resonance (MR) imaging, magnetic entities cause susceptibility artifacts in the images by disrupting the homogeneous magnetic field in a much larger scale than their actual size. As validated in this paper through simulation and in-vitro experiments, these artifacts can serve as a source of contrast, enabling microvessels with an inner diameter below the spatial resolution of any medical imaging modalities to be visualized using a clinical MR scanner. For such experiments, micron-sized agglomerations of iron-oxide (Fe3O4) nanoparticles were injected in microchannels with internal diameters of 200 and 50 ?m equivalent to a narrower artery or a larger arteriole, and down to a smaller arteriole, respectively. The results show the feasibility of the proposed method for micro-particle detection and the visualization of microvessels using a 1.5 T clinical MR scanner. It was confirmed that the method is reproducible and accurate at the sub-pixel level.

Olamaei, N.; Cheriet, F.; Martel, S.

2013-03-01

383

Development of a magnetic nanoparticle susceptibility magnitude imaging array.  

PubMed

There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R(2) > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml(-1) mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. PMID:24504184

Ficko, Bradley W; Nadar, Priyanka M; Hoopes, P Jack; Diamond, Solomon G

2014-02-21

384

Magnetic tumor targeting of ?-glucosidase immobilized iron oxide nanoparticles.  

PubMed

Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating ?-glucosidase (?-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as ?-Glu-MNP, using glutaraldehyde as the crosslinker. This ?-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated ?-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that ?-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of ?-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered ?-Glu in tumor lesions showed as high as 20.123±5.022 mU g(-1) tissue with 2.14 of tumor/non-tumor ?-Glu activity. PMID:23974977

Zhou, Jie; Zhang, Jian; David, Allan E; Yang, Victor C

2013-09-20

385

Interfacial magnetic coupling between Fe nanoparticles in Fe–Ag granular alloys.  

PubMed

The role of the interface in mediating interparticle magnetic interactions has been analysed in Fe50Ag50 and Fe55Ag45 granular thin films deposited by the pulsed laser deposition technique (PLD). These samples are composed of crystalline bcc Fe (2–4 nm) nanoparticles and fcc Ag (10–12 nm) nanoparticles, separated by an amorphous Fe50Ag50 interface, occupying around 20% of the sample volume, as determined by x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and high resolution transmission electron microscopy (HRTEM). Interfacial magnetic coupling between Fe nanoparticles is studied by dc magnetization and x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and Ag L2,3 edges. This paper reveals that these thin films present two magnetic transitions, at low and high temperatures, which are strongly related to the magnetic state of the amorphous interface, which acts as a barrier for interparticle magnetic coupling. PMID:22166763

Alonso, J; Fdez-Gubieda, M L; Sarmiento, G; Chaboy, J; Boada, R; García Prieto, A; Haskel, D; Laguna-Marco, M A; Lang, J C; Meneghini, C; Fernández Barquín, L; Neisius, T; Orue, I

2012-01-20

386

Interfacial magnetic coupling between Fe nanoparticles in Fe-Ag granular alloys  

NASA Astrophysics Data System (ADS)

The role of the interface in mediating interparticle magnetic interactions has been analysed in Fe50Ag50 and Fe55Ag45 granular thin films deposited by the pulsed laser deposition technique (PLD). These samples are composed of crystalline bcc Fe (2-4 nm) nanoparticles and fcc Ag (10-12 nm) nanoparticles, separated by an amorphous Fe50Ag50 interface, occupying around 20% of the sample volume, as determined by x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and high resolution transmission electron microscopy (HRTEM). Interfacial magnetic coupling between Fe nanoparticles is studied by dc magnetization and x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and Ag L2, 3 edges. This paper reveals that these thin films present two magnetic transitions, at low and high temperatures, which are strongly related to the magnetic state of the amorphous interface, which acts as a barrier for interparticle magnetic coupling.

Alonso, J.; Fdez-Gubieda, M. L.; Sarmiento, G.; Chaboy, J.; Boada, R.; García Prieto, A.; Haskel, D.; Laguna-Marco, M. A.; Lang, J. C.; Meneghini, C.; Fernández Barquín, L.; Neisius, T.; Orue, I.

2012-01-01

387

A Magnetic Nanoparticle-Based Multiple-Gene Delivery System for Transfection of Porcine Kidney Cells  

PubMed Central

Superparamagnetic nanoparticles are promising candidates for gene delivery into mammalian somatic cells and may be useful for reproductive cloning using the somatic cell nuclear transfer technique. However, limited investigations of their potential applications in animal genetics and breeding, particularly multiple-gene delivery by magnetofection, have been performed. Here, we developed a stable, targetable and convenient system for delivering multiple genes into the nuclei of porcine somatic cells using magnetic Fe3O4 nanoparticles as gene carriers. After surface modification by polyethylenimine, the spherical magnetic Fe3O4 nanoparticles showed strong binding affinity for DNA plasmids expressing the genes encoding a green (DNAGFP) or red (DNADsRed) fluorescent protein. At weight ratios of DNAGFP or DNADsRed to magnetic nanoparticles lower than or equal to 10?1 or 5?1, respectively, the DNA molecules were completely bound by the magnetic nanoparticles. Atomic force microscopy analyses confirmed binding of the spherical magnetic nanoparticles to stretched DNA strands up to several hundred nanometers in length. As a result, stable and efficient co-expression of GFP and DsRed in porcine kidney PK-15 cells was achieved by magnetofection. The results presented here demonstrate the potential application of magnetic nanoparticles as an attractive delivery system for animal genetics and breeding studies.

Wang, Yan; Cui, Haixin; Li, Kui; Sun, Changjiao; Du, Wei; Cui, Jinhui; Zhao, Xiang; Chen, Wenjie

2014-01-01

388

Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance.  

PubMed

The optimization of magnetic nanoparticles (MNPs) as markers for magnetic particle imaging (MPI) requires an understanding of the relationship between the harmonics spectrum and the structural and magnetic properties of the MNPs. Although magnetic particle spectroscopy (MPS) - carried out at the same excitation frequency as the given MPI system - represents a straightforward technique to study MNPs for their suitability for MPI, a complete understanding of the mechanisms and differences between different tracer materials requires additional measurements of the static and dynamic magnetic behavior covering additional field and time ranges. Furthermore, theoretical models are needed, which correctly account for the static and dynamic magnetic properties of the markers. In this paper, we give an overview of currently used theoretical models for the explanation of amplitude and phase of the harmonics spectra as well as of the various static and dynamic magnetic techniques, which are applied for the comprehensive characterization of MNPs for MPI. We demonstrate on two multicore MNP model systems, Resovist(®) and FeraSpin™ Series, how a detailed picture of the MPI performance can be obtained by combining various static and dynamic magnetic measurements. PMID:23751379

Ludwig, Frank; Eberbeck, Dietmar; Löwa, Norbert; Steinhoff, Uwe; Wawrzik, Thilo; Schilling, Meinhard; Trahms, Lutz

2013-12-01

389

Cobalt-platinum and iron-platinum nanoparticles for high density magnetic recording  

Microsoft Academic Search

The work has been focused on the fabrication and characterization of high anisotropy CoPt and FePt nanoparticles with the aim: (i) to study finite size effects on the intrinsic magnetic properties of the nanoparticles and (ii) to investigate their potential for application in high density recording media. CoPt nanoparticles with the high anisotropy ordered fct phase and a particle size

Yunhe Huang

2003-01-01

390

Magnetic phase transition in confined MnO nanoparticles studied by polarized neutron scattering  

SciTech Connect

We have investigated the magnetic ordering and the phase transition in MnO nanoparticles confined in a porous glass using polarized neutron scattering. These MnO nanoparticles are best described as extended wormlike structures with a mean diameter of 70 A. We observe an apparent continuous magnetic phase transition in MnO nanoparticles, in contrast to the well-known discontinuous phase transition in bulk MnO. By polarization analysis, separating the magnetic scattering, it is found that within the individual MnO nanoparticles about 60% of atoms remain disordered in the low-temperature limit, presumably due to interactions between nanoparticles and glass walls. The continuous character of the phase transition and the unusual temperature dependence suggests a surface-induced disorder phenomenon.

Feygenson, Mikhail [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Schweika, Werner; Ioffe, Alexander; Brueckel, Thomas [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Vakhrushev, Sergey B. [Ioffe Physico-Technical Institute, St. Petersburg 194021 (Russian Federation)

2010-02-01

391

Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic ?-Fe2O3 nanoparticles  

NASA Astrophysics Data System (ADS)

Graphene nanoscrolls are Archimedean-type spirals formed by rolling single-layer graphene sheets. Their unique structure makes them conceptually interesting and understanding their formation gives important information on the manipulation and characteristics of various carbon nanostructures. Here we report a 100% efficient process to transform nitrogen-doped reduced graphene oxide sheets into homogeneous nanoscrolls by decoration with magnetic ?-Fe2O3 nanoparticles. Through a large number of control experiments, magnetic characterization of the decorated nanoparticles, and ab initio calculations, we conclude that the rolling is initiated by the strong adsorption of maghemite nanoparticles at nitrogen defects in the graphene lattice and their mutual magnetic interaction. The nanoscroll formation is fully reversible and upon removal of the maghemite nanoparticles, the nanoscrolls return to open sheets. Besides supplying information on the rolling mechanism of graphene nanoscrolls, our results also provide important information on the stabilization of iron oxide nanoparticles.

Sharifi, Tiva; Gracia-Espino, Eduardo; Reza Barzegar, Hamid; Jia, Xueen; Nitze, Florian; Hu, Guangzhi; Nordblad, Per; Tai, Cheuk-Wai; Wågberg, Thomas

2013-08-01

392

Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses.  

PubMed

Silicon nanoparticles with sizes of a few hundred nanometres exhibit unique optical properties due to their strong electric and magnetic dipole responses in the visible range. Here we demonstrate a novel laser printing technique for the controlled fabrication and precise deposition of silicon nanoparticles. Using femtosecond laser pulses it is possible to vary the size of Si nanoparticles and their crystallographic phase. Si nanoparticles produced by femtosecond laser printing are initially in an amorphous phase (a-Si). They can be converted into the crystalline phase (c-Si) by irradiating them with a second femtosecond laser pulse. The resonance-scattering spectrum of c-Si nanoparticles, compared with that of a-Si nanoparticles, is blue shifted and its peak intensity is about three times higher. Resonant optical responses of dielectric nanoparticles are characterized by accumulation of electromagnetic energy in the excited modes, which can be used for the realization of nanoantennas, nanolasers and metamaterials. PMID:24595073

Zywietz, Urs; Evlyukhin, Andrey B; Reinhardt, Carsten; Chichkov, Boris N

2014-01-01

393

Magnetic properties of iron nanoparticles in mesoporous silica matrix  

NASA Astrophysics Data System (ADS)

Anisotropic iron nanoparticles were successfully synthesized within the pores of mesoporous silica matrix by intercalation of hydrophobic iron complex (Fe(CO) 5) into the hydrophobic part of the mesoporous silica-surfactant composite. It was shown that the particles are uniform and well ordered in the matrix and their shape and size are in good agreement with that of the pores. The samples demonstrate spin-glass-like behavior at low temperatures, which transforms to the superparamagnetic one with temperature increases. Nanoscale-related magnetic properties were investigated by polarized SANS. It was shown that hysteretic and the spin-glass-like behavior may be attributed to bunches of the iron nanowires with average radius of 4.7 nm.

Grigorieva, N. A.; Grigoriev, S. V.; Eckerlebe, H.; Eliseev, A. A.; Napolskii, K. S.; Lukashin, A. V.; Tretyakov, Yu. D.

2006-05-01

394

M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer  

NASA Astrophysics Data System (ADS)

Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

2012-10-01

395

M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer  

PubMed Central

Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment1. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression2. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand3,4,5 and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells6. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

2014-01-01

396

A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode  

Microsoft Academic Search

A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4–SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet.

Zhimin Liu; Yanli Liu; Haifeng Yang; Yu Yang; Guoli Shen; Ruqin Yu

2005-01-01

397

Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles  

NASA Astrophysics Data System (ADS)

Polymer-coated magnetic nanoparticles are hi-tech materials with ample applications in the field of biomedicine for the treatment of cancer and targeted drug delivery. In this study, magnetic nanoparticles were synthesized by chemical reduction of FeCl 2 solution with sodium borohydride and coated with amine-terminated polyethylene glycol (aPEG). By varying the concentration of the reactants, the particle size and the crystallinity of the particles were varied. The particle size was found to increase from 6 to 20 nm and the structure becomes amorphous-like with increase in the molar concentration of the reactant. The magnetization at 1 T field ( M1T) for all samples is > 45 emu/g while the coercivity is in the range of 100-350 Oe. When the ethanol-suspended particles are subjected to an alternating magnetic field of 4 Oe at 500 kHz, the temperature is increased to a maximum normalized temperature (3.8 °C/mg) with decreasing particle size.

Balakrishnan, Srinivasan; Bonder, Michael J.; Hadjipanayis, George C.

2009-01-01

398

Preparation and Magnetic Properties of Fe and Ni Based Nanoparticles and Nanowires  

Microsoft Academic Search

In this work we present our experimental results on the preparation and magnetic properties of iron and nickel based nanoparticles and nanowires. Fe, Ni and Ni-Fe nanoparticles have been synthesized by polyol method and Ni-Fe nanowire arrays have been synthesized by electrochemical deposition. The morphology and sizes of synthesised nanostructures were studied by scanning electron microscopy (SEM), atomic force microscopy

H. Chiriac; A. E. Moga; C. Gherasimu

2006-01-01

399

One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles.  

PubMed

A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques. The results show that the prepared nanoparticles are spherically shaped with a nearly uniform size distribution and pure magnetite phase. The presence of arginine on the magnetic nanoparticle surface has been confirmed and the amount of surface arginine varies with the Fe2+/arginine molar ratio. The surface amine densities are calculated to be 5.60 and 7.84 micromol mg(-1) for magnetic nanoparticles prepared at 1:1 and 1:2 Fe2+/arginine molar ratio, respectively. The as-synthesized nanoparticles show superparamagnetic behavior at room temperature and good solubility in water. In addition, using a similar synthesis procedure, we have been able to synthesize superparamagnetic manganese and cobalt ferrite nanoparticles. PMID:19847022

Wang, Zhongjun; Zhu, Hui; Wang, Xiaolei; Yang, Fan; Yang, Xiurong

2009-11-18

400

Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics  

Microsoft Academic Search

Tumor intracellular delivery is an effective route for targeting chemotherapy to enhance the curative effect and minimize the side effect of a drug. In this study, the magnetic lipid nanoparticles with an uptake ability by tumor cells were prepared dispersing ferroso-ferric oxide nanoparticles in aqueous phase using oleic acid (OA) as a dispersant, and following the solvent dispersion of lipid

Xiao-Ying Ying; Yong-Zhong Du; Ling-Hong Hong; Hong Yuan; Fu-Qiang Hu

2011-01-01

401

Influence of Oxidation and Size of Iron Nanoparticles on the Saturation Magnetization  

Microsoft Academic Search

Monodisperse Fe nanoparticles, with a size ranging from 4 to 10 nm, have been prepared by the thermal decomposition of Fe carbonyl. The influence of oxidation on the magnetization of Fe nanoparticles has been investigated with changing the concentration of oxygen (O2) gas in the glove box, the oxygen atom (O) in ether and water (H2O) in the reaction solution.

Hitoshi Matsuura; Kou Seto; Haitao Yang; Kenji Kawano; Migaku Takahashi; Tomoyuki Ogawa

2008-01-01

402

Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications  

Microsoft Academic Search

Magnetite nanoparticles with high self-heating capacity and low toxicity characteristics are a promising candidate for cancer hyperthermia treatment. In order to achieve minimum dosage to a patient, magnetic nanoparticles with high heating capacity are needed. In addition, the influence of physiological factors on the heat capacity of a material