Sample records for anticancer agent podophyllotoxin

  1. Synthesis and Biological evaluation of novel 4?-[(5-substituted)-1,2,3,4-tetrazolyl] podophyllotoxins as anticancer compounds.

    PubMed

    Hyder, Irfan; Yedlapudi, Deepthi; Kalivendi, Shasi V; Khazir, Jabeena; Ismail, Tabasum; Nalla, Naresh; Miryala, Sreekanth; Sampath Kumar, Halmuthur M

    2015-07-15

    A series of novel 4?-[(5-substituted)-1,2,3,4-tetrazolyl] podophyllotoxin derivatives were synthesized by employing azide-nitrile click chemistry approach. All the derivatives were evaluated for their cytotoxicity against a panel of four human cancer cell lines and their IC50 values were found to be in the range of 2.4-29.06?M. The cytotoxicity exhibited by the majority of test compounds were found to comparable and often more effective than doxorubicin and all compounds exhibited higher cytotoxicity on A-549 cell lines. Cell cycle analysis showed that the novel 4?-[(5-substituted)-1,2,3,4-tetrazolyl] podophyllotoxins resulted in cell cycle arrest at G2/M phase and were also found to be the potent inhibitors of tubulin polymerization in vitro. PMID:26022842

  2. Synthesis and evaluation of novel podophyllotoxin derivatives as potential antitumor agents.

    PubMed

    Cheng, Wei-Hua; Cao, Bo; Shang, Hai; Niu, Cong; Zhang, Li-Ming; Zhang, Zhong-Heng; Tian, Dan-Li; Zhang, Shi; Chen, Hong; Zou, Zhong-Mei

    2014-10-01

    Cancer multidrug resistance (MDR) is a common cause of treatment failure in cancer patients. Increased expression of permeability glycoprotein (P-gp), which is also known as MDR-1, is the main cause of multidrug resistance. Podophyllotoxin derivatives hold great promise in the battle to overcome multidrug resistance, as they can induce cytotoxicity through multiple mechanisms. Here, we synthesized sixteen novel podophyllotoxin derivatives and evaluated their cytotoxicities in human cancer cell lines, HeLa, K562 and K562/A02. Some of these compounds were more potent than etoposide, a clinically relevant inhibitor of DNA repair enzymes. In particular, compound 5p exhibited the most potent activity toward drug-resistant K562/A02 cells, as it robustly inhibited tumor cell proliferation and induced apoptosis. Furthermore, preliminary investigation suggested that 5p inhibited the expression of MDR-1 in K562/A02 cells more effectively than etoposide. PMID:25113878

  3. Sirtuin inhibitors as anticancer agents

    PubMed Central

    Hu, Jing; Jing, Hui; Lin, Hening

    2015-01-01

    Sirtuins are a class of enzymes with nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylase function. By deacylating various substrate proteins, including histones, transcription factors, and metabolic enzymes, sirtuins regulate various biological processes, such as transcription, cell survival, DNA damage and repair, and longevity. Small molecules that can inhibit sirtuins have been developed and many of them have shown anti-cancer activity. Here we summarize the major biological findings that connect sirtuins to cancer and the different types of sirtuin inhibitors developed. Interestingly, biological data suggest that sirtuins have both tumor-suppressing and tumor-promoting roles. However, most pharmacological studies with small molecule inhibitors suggest that inhibiting sirtuin is a promising anti-cancer strategy. We discuss possible explanations for this discrepancy and suggest possible future directions to further establish sirtuin inhibitors as anticancer agents. PMID:24962284

  4. Synthesis and quantitative structure-activity relationship (QSAR) study of novel isoxazoline and oxime derivatives of podophyllotoxin as insecticidal agents.

    PubMed

    Wang, Yi; Shao, Yonghua; Wang, Yangyang; Fan, Lingling; Yu, Xiang; Zhi, Xiaoyan; Yang, Chun; Qu, Huan; Yao, Xiaojun; Xu, Hui

    2012-08-29

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, 33 isoxazoline and oxime derivatives of podophyllotoxin modified in the C and D rings were synthesized and their structures were characterized by Proton nuclear magnetic resonance ((1)H NMR), high-resolution mass spectrometry (HRMS), electrospray ionization-mass spectrometry (ESI-MS), optical rotation, melting point (mp), and infrared (IR) spectroscopy. The stereochemical configurations of compounds 5e, 5f, and 9f were unambiguously determined by X-ray crystallography. Their insecticidal activity was evaluated against the pre-third-instar larvae of northern armyworm, Mythimna separata (Walker), in vivo. Compounds 5e, 9c, 11g, and 11h especially exhibited more promising insecticidal activity than toosendanin, a commercial botanical insecticide extracted from Melia azedarach . A genetic algorithm combined with multiple linear regression (GA-MLR) calculation is performed by the MOBY DIGS package. Five selected descriptors are as follows: one two-dimensional (2D) autocorrelation descriptor (GATS4e), one edge adjacency indice (EEig06x), one RDF descriptor (RDF080v), one three-dimensional (3D) MoRSE descriptor (Mor09v), and one atom-centered fragment (H-052) descriptor. Quantitative structure-activity relationship studies demonstrated that the insecticidal activity of these compounds was mainly influenced by many factors, such as electronic distribution, steric factors, etc. For this model, the standard deviation error in prediction (SDEP) is 0.0592, the correlation coefficient (R(2)) is 0.861, and the leave-one-out cross-validation correlation coefficient (Q(2)loo) is 0.797. PMID:22891988

  5. Oral anticancer agent medication adherence by outpatients

    PubMed Central

    KIMURA, MICHIO; USAMI, EISEKI; IWAI, MINA; NAKAO, TOSHIYA; YOSHIMURA, TOMOAKI; MORI, HIROMI; SUGIYAMA, TADASHI; TERAMACHI, HITOMI

    2014-01-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21–85 years) and 73 years (range, 30–90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3–3,585 days) and 219 days (24–3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4–5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence. PMID:25295117

  6. Oral anticancer agent medication adherence by outpatients.

    PubMed

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence. PMID:25295117

  7. Designed TPR Modules as Novel Anticancer Agents

    SciTech Connect

    Cortajarena,A.; Yi, F.; Regan, L.

    2008-01-01

    Molecules specifically designed to modulate protein-protein interactions have tremendous potential as novel therapeutic agents. One important anticancer target is the chaperone Hsp90, whose activity is essential for the folding of many oncogenic proteins, including HER2, IGFIR, AKT, RAF-1, and FLT-3. Here we report the design and characterization of new tetratricopeptide repeat modules, which bind to the C-terminus of Hsp90 with higher affinity and with greater specificity than natural Hsp90-binding co-chaperones. Thus, when these modules are introduced into the cell, they out-compete endogenous co-chaperones for binding, thereby inhibiting Hsp90 function. The effect of Hsp90 inhibition in this fashion is dramatic; HER2 levels are substantially decreased and BT474 HER2 positive breast cancer cells are killed. Our designs thus provide new tools with which to dissect the mechanism of Hsp90-mediated protein folding and also open the door to the development of an entirely new class of anticancer agents.

  8. Production of Podophyllotoxin in Juniperus Chinensis Callus Cultures Treated with Oligosaccharides and a Biogenetic Precursor in Honour of Professor G. H. Neil Towers 75th Birthday

    Microsoft Academic Search

    Toshio Muranaka; Masaru Miyata; Kazutaka Ito; Sanro Tachibana

    1998-01-01

    Calli were induced from the leaves of young trees of Juniperus chinensis on Schenk and Hildebrandt medium supplemented with napthalenacetic acid and kinetin and subcultured on the same medium. Podophyllotoxin, a strong anti-tumor agent, was isolated from the extractives of calli and found that calli produced podophyllotoxin. The podophyllotoxin in the calli derived from the leaves constituted 0.005% of dry

  9. Marine organisms as a source of new anticancer agents

    Microsoft Academic Search

    Gilberto Schwartsmann; Adriana Brondani da Rocha; Roberto GS Berlinck; Jose Jimeno

    Various active anticancer agents are derived from plants and terrestrial microorganisms. The isolation of C-nucleosides from the Caribbean sponge, Cryptotheca crypta, four decades ago, provided the basis for the synthesis of cytarabine, the first marine- derived anticancer agent to be developed for clinical use. Cytarabine is currently used in the routine treatment of patients with leukaemia and lymphoma. Gemcitabine, one

  10. Anti-cancer agents counteracting tumor glycolysis

    PubMed Central

    Granchi, Carlotta

    2012-01-01

    Can we consider cancer as a “metabolic disease”? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have to deal with increased needs for both energy and biosynthetic intermediates, in order to support their growth and invasiveness. However, their high proliferation rate often generates regions that are not sufficiently oxygenated. Therefore, their carbohydrate metabolism has to rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the “Warburg Effect”, constitutes a fundamental adaptation of the tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that anti-glycolytic agents may cause serious side effects on normal cells. Actually, the key for a selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anti-cancer drugs showing minimal toxicity. In fact, there is growing evidence that supports many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant anti-glycolytic agents that have been investigated so far for the treatment of cancer. PMID:22684868

  11. Recent Advances of Natural and Synthetic ?-Carbolines as Anticancer Agents.

    PubMed

    Zhang, Mingming; Sun, Dianqing

    2015-05-14

    Cancer is a leading cause of mortality worldwide, being responsible for millions of deaths annually. Therefore, novel cancer chemotherapeutic agents are urgently needed to combat this devastating disease. ? - Carboline alkaloids are an important class of natural products and medicinal molecules, which exert their anticancer activities through diverse mechanisms. In this review, we cover recent natural and synthetic ? - carbolines with anticancer activity that have been reported in the literature (2010-July 2014), focusing on their chemical structures, anticancer properties, structure-activity relationships, and mechanisms of action. PMID:25430895

  12. Natural compounds as anticancer agents: Experimental evidence

    PubMed Central

    Wang, Jiao; Jiang, Yang-Fu

    2012-01-01

    Cancer prevention research has drawn much attention worldwide. It is believed that some types of cancer can be prevented by following a healthy life style. Cancer chemoprevention by either natural or synthetic agents is a promising route towards lowering cancer incidence. In recent years, the concept of cancer chemoprevention has evolved greatly. Experimental studies in animal models demonstrate that the reversal or suppression of premalignant lesions by chemopreventive agents is achievable. Natural occurring agents such as dietary phytochemicals, tea polyphenols and resveratrol show chemopreventive activity in animal models. Moreover, clinical trials for testing the safety and efficacy of a variety of natural agents in preventing or treating human malignancy have been ongoing. Here, we summarize experimental data on the chemopreventive or tumor suppressive effects of several natural compounds including curcumin, (-)-epigallocatechin-3-gallate, resveratrol, indole-3-carbinol, and vitamin D. PMID:24520533

  13. Fucoidan as a Marine Anticancer Agent in Preclinical Development

    PubMed Central

    Kwak, Jong-Young

    2014-01-01

    Fucoidan is a fucose-containing sulfated polysaccharide derived from brown seaweeds, crude extracts of which are commercially available as nutritional supplements. Recent studies have demonstrated antiproliferative, antiangiogenic, and anticancer properties of fucoidan in vitro. Accordingly, the anticancer effects of fucoidan have been shown to vary depending on its structure, while it can target multiple receptors or signaling molecules in various cell types, including tumor cells and immune cells. Low toxicity and the in vitro effects of fucoidan mentioned above make it a suitable agent for cancer prevention or treatment. However, preclinical development of natural marine products requires in vivo examination of purified compounds in animal tumor models. This review discusses the effects of systemic and local administration of fucoidan on tumor growth, angiogenesis, and immune reaction and whether in vivo and in vitro results are likely applicable to the development of fucoidan as a marine anticancer drug. PMID:24477286

  14. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    PubMed Central

    Lu, Jin-Jian; Bao, Jiao-Lin; Chen, Xiu-Ping; Huang, Min; Wang, Yi-Tao

    2012-01-01

    Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made. PMID:22988474

  15. Novel benzimidazole derivatives as expected anticancer agents.

    PubMed

    Nofal, Zienab M; Soliman, Elsyed A; Abd El-Karim, Somaia S; El Zahar, Magdy I; Srour, Aladdin M; Sethumadhavan, Shalini; Maher, Timothy J

    2011-01-01

    A series of 1-(1H-benzimidazol-2-yl)-3-(substituted)-2-propen-1-one and its 1-methyl analogues 2c-h were synthesized and cyclized with different reagents such as ethyl cyanoacetate, thiourea, hydroxylamine hydrochloride, guanidinium sulfate, methylhydrazine, phenylhydrazine and/or hydrogen peroxide in different reactions to produce pyridones 3a,b, pyrimidinethione 4a,b, isoxazole 5a,b, aminopyrimidine 6a,b, pyrazoline 7i-k and epoxy derivative 8, respectively. Acetohydrazide 10 reacted with formic acid, acetic anhydride, carbon disulfide and/or thiosemicarbazide to yield compounds 11-19. Also compound 21a,b was condensed with different monosaccharides to yield the corresponding N-glycoside Schiff's bases derivatives 22a-h, which upon treatment with acetic anhydride afforded 23a-h derivatives. The anticancer activity of some of the newly synthesized compounds was evaluated against HEPG2 (human liver carcinoma cell line) and PC12 (pheochromocytoma of the rat adrenal medulla) cells. Benzimidazole-2-isoxazole 5a derivative exhibited high potency against HEPG2 and PC12 cells. Benzimidazole chalcones 2c,e, benzimidazole mercaptoacetohydrazide 14 and benzimidazole thiosemicarbazide 15a,b derivatives gave high potency against PC12 cells. PMID:21796934

  16. Microtubule-targeted anticancer agents and apoptosis

    Microsoft Academic Search

    Kapil N Bhalla

    2003-01-01

    Over the past decade, significant progress has been made in our understanding of the biology of microtubule (MT) assembly into the mitotic spindle during mitosis and the molecular signaling and execution of the various pathways to apoptosis. In the same period, the microtubule-targeted tubulin-polymerizing agents (MTPAs), notably paclitaxel and taxotere, have come to occupy a central role in the treatment

  17. Ferrocene incorporated selenoureas as anticancer agents.

    PubMed

    Hussain, Raja Azadar; Badshah, Amin; Pezzuto, John M; Ahmed, Nadeem; Kondratyuk, Tamara P; Park, Eun-Jung

    2015-07-01

    For a compound to be a best chemopreventive agent it should be a descent DNA binder and at the same time should be active against any of the three stages of carcinogenesis i.e. cancer initiation, cancer propagation and tumor growth. Most of the problems associated with chemotherapy can be overcome if the chemopreventive agent is active against all the three stages of cancer development. Cancer may be initiated by higher concentration of free radicals, inflammating agents and phase I enzymes (Cytochrome P450) in the body. Cancer propagation can be very efficiently controlled by inducing the phase II enzymes (glutathione S-transferases (GSTs), UDP-glucuronosyl transferases, and quinone reductases) in the body and cancer termination depends on the killing of the faulty cells i.e. cytotoxic actions. This article reports comprehensively the comparative DNA binding studies (with, cyclic voltammetry, UV-vis spectroscopy and viscometry), antioxidant activities (DPPH scavenging), anti-inflammatory activities (nitrite inhibition), phase I enzyme inhibition activities (aromatase inhibition), phase II enzyme induction studies (quinone reductase induction) and cytotoxic studies against neuroblastoma (MYCN2 and SK-N-SH), liver cancer (Hepa 1c1c7) and breast cancer (MCF-7) of seventeen ferrocene incorporated selenoureas. PMID:25966308

  18. Rational Design, Synthesis, and Biological Evaluation of Third Generation ?-Noscapine Analogues as Potent Tubulin Binding Anti-Cancer Agents

    PubMed Central

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (?Gbind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049

  19. Apoptosis of human gastric cancer SGC-7901 cells induced by podophyllotoxin.

    PubMed

    Ji, Chen-Feng; Ji, Yu-Bin

    2014-05-01

    Numerous studies have demonstrated that podophyllotoxin and its derivatives exhibit antitumor effects. The aim of the present study was to investigate SGC-7901 cell apoptosis and the underlying mechanism induced by podophyllotoxin. SGC-7901 cells were treated with varying concentrations of podophyllotoxin. MTT assays and flow cytometry were used to evaluate the effects of podophyllotoxin on the proliferation and apoptosis of SGC-7901 cells, while fluorescence inverted microscopy was used to observe the morphology of SGC-7901 cells that had been dyed with Hoechst 33258. In addition, laser scanning confocal microscopy was used to analyze the mitochondrial membrane potential (MMP) of SGC-7901 cells dyed with Rhodamine 123. Western blotting was performed to analyze the expression levels of cytochrome c (cyt-c), caspase-9 and caspase-3 in the SGC-7901 cells. The results indicated that podophyllotoxin was capable of inhibiting growth and inducing the apoptosis of SGC-7901 cells in a dose-dependent manner, causing cell cycle arrest at the G2/M phase. After 48 h of treatment, the apoptotic morphology of SGC-7901 cells was clear, exhibiting cell protuberance, concentrated cytoplasms and apoptotic bodies. Following 24 h of treatment, the MMP of the SGC-7901 cells decreased. In addition, after 48 h, the expression of cyt-c was shown to be upregulated, while the expression levels of pro-caspase-9 and pro-caspase-3 in the SGC-7901 cells were shown to be downregulated. In conclusion, apoptosis can be induced in SGC-7901 cells by podophyllotoxin, potentially via a mitochondrial pathway, indicating that podophyllotoxin may be a potent agent for cancer treatment. PMID:24940431

  20. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  1. Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis.

    PubMed

    Yousefzadi, Morteza; Sharifi, Mozafar; Behmanesh, Mehrdad; Ghasempour, Alireza; Moyano, Elisabeth; Palazon, Javier

    2010-11-01

    Treatment of Linum album cell cultures with 10 ?M salicylic acid (SA) for 3 days improved podophyllotoxin (PTOX) production up to 333 ?g/g dry weight (DW): over three times that of the control cultures. qPCR analyses showed that in SA-treated cells, the expression of the genes coding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD), all involved in the first steps of PTOX biosynthesis, also increased reaching a peak 8-12 h after the treatment. Expression of the pinoresinol-lariciresinol reductase gene (PLR), which is involved in one of the last biosynthetic steps, was not affected by SA. The selective action of SA on these genes can be applied to control the biotechnological production of this anticancer agent. PMID:20607358

  2. Clinically relevant drug interactions between anticancer drugs and psychotropic agents.

    PubMed

    Yap, K Y-L; Tay, W L; Chui, W K; Chan, A

    2011-01-01

    Drug interactions are commonly seen in the treatment of cancer patients. Psychotropics are often indicated for these patients since they may also suffer from pre-existing psychological disorders or experience insomnia and anxiety associated with cancer therapy. Thus, the risk of anticancer drug (ACD)-psychotropic drug-drug interactions (DDIs) is high. Drug interactions were compiled from the British National Formulary (53rd edn), Lexi-Comp's Drug Information Handbook (15th edn), Micromedex (v5.1), Hansten & Horn's Drug Interactions (2000) and Drug Interaction Facts (2008 edn). Product information of the individual drugs, as well as documented literature on ACD-psychotropic interactions from PubMed and other databases was also incorporated. This paper identifies clinically important ACD-psychotropic DDIs that are frequently observed. Pharmacokinetic DDIs were observed for tyrosine kinase inhibitors, corticosteroids and antimicrotubule agents due to their inhibitory or inductive effects on cytochrome P450 isoenzymes. Pharmacodynamic DDIs were identified for thalidomide with central nervous system depressants, procarbazine with antidepressants, myelosuppressive ACDs with clozapine and anthracyclines with QT-prolonging psychotropics. Clinicians should be vigilant when psychotropics are prescribed concurrently with ACDs. Close monitoring of plasma drug levels should be carried out to avoid toxicity in the patient, as well as to ensure adequate chemotherapeutic and psychotropic coverage. PMID:20030690

  3. Monofunctional and Higher-Valent Platinum Anticancer Agents

    E-print Network

    Wilson, Justin J.

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have ...

  4. Nanomicellar carriers for targeted delivery of anticancer agents.

    PubMed

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10-100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors' recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  5. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  6. Discovery of anticancer agents of diverse natural origin*

    PubMed Central

    Kinghorn, A. Douglas; Carcache de Blanco, Esperanza J.; Chai, Hee-Byung; Orjala, Jimmy; Farnsworth, Norman R.; Soejarto, D. Doel; Oberlies, Nicholas H.; Wani, Mansukh C.; Kroll, David J.; Pearce, Cedric J.; Swanson, Steven M.; Kramer, Robert A.; Rose, William C.; Fairchild, Craig R.; Vite, Gregory D.; Emanuel, Stuart; Jarjoura, David; Cope, Frederick O.

    2009-01-01

    A collaborative multidisciplinary research project is described in which new natural product anticancer drug leads are obtained from a diverse group of organisms, constituted by tropical plants, aquatic cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which crude extracts of these acquisitions are tested. Progress made in the isolation of lead bioactive secondary metabolites from three tropical plants is discussed. PMID:20046887

  7. Dual Extraction of Essential Oil and Podophyllotoxin from Juniperus virginiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaves (needles) of Eastern red cedar (Juniperus virginiana L.) contain two important natural products: essential oil and podophyllotoxin. The hypothesis of this study was that it may be possible to extract both essential oil and podophyllotoxin from the leaves of the tree, by using a dual extra...

  8. Progress in the development and acquisition of anticancer agents from marine sources

    Microsoft Academic Search

    M. L. Amador; J. Jimeno; L. Paz-Ares; H. Cortes-Funes; M. Hidalgo

    2003-01-01

    represent landmarks in the history of medicine. Almost 60% of drugs approved for cancer treatment are of natural origin. Vincristine, irinotecan, etoposide, taxanes and camptothecines are all examples of plant-derived compounds. Dactinomicine, anthracyclines, mitomycin and bleomycin are anticancer agents derived from microbial sources (1). Although marine compounds are under-represented in current pharmacopoeia, it is anticipated that the aquatic environment will

  9. A role for p53 in sensing DNA damage and triggering apoptotic responses to anticancer agents

    Microsoft Academic Search

    Geetha Achanta

    2004-01-01

    The p53 tumor suppressor protein plays a major role in cellular responses to anticancer agents that target DNA. DNA damage triggers the accumulation of p53, resulting in the transactivation of genes, which induce cell cycle arrest to allow for repair of the damaged DNA, or signal apoptosis. The exact role that p53 plays in sensing DNA damage and the functional

  10. Plant-Derived Anticancer Agents Used in Western and Oriental Medicine

    Microsoft Academic Search

    Ah-Reum Han; Ye Deng; Yulin Ren; Li Pan; A. Douglas Kinghorn

    \\u000a Cancer chemotherapeutic agents derived from higher plants are used in Western medicine. Secondary metabolites from plants\\u000a are used in oriental medicine are utilized in anticancer therapy. Immunomodulatory small organic molecules from plant species\\u000a are employed in Chinese traditional medicine are renewed.

  11. BRCA1 Contributes to Cell Cycle Arrest and Chemoresistance in Response to the Anticancer Agent Irofulven

    E-print Network

    BRCA1 Contributes to Cell Cycle Arrest and Chemoresistance in Response to the Anticancer Agent stability by interacting with numerous proteins in cell cycle control and DNA repair. Irofulven (6 and that BRCA1 may affect chemo- sensitivity by controlling cell cycle checkpoints, DNA repair, and genomic

  12. 1. (a) Why are DNA-targeted drugs largely used as anticancer agents and not as, say, antibacterial or antifungal agents?

    E-print Network

    Gates, Kent. S.

    CHEM 4170 Homework 4 1. (a) Why are DNA-targeted drugs largely used as anticancer agents and not as, say, antibacterial or antifungal agents? (b) Provide an explanation for how anticancer drugs can-damaging drugs mentioned in Question 1). (b) However, some medicinal chemists believe that these compounds

  13. Hepatocellular carcinoma detected by iodized oil: use of anticancer agents

    SciTech Connect

    Ohishi, H.; Uchida, H.; Yoshimura, H.; Ohue, S.; Ueda, J.; Katsuragi, M.; Matsuo, N.; Hosogi, Y.

    1985-01-01

    Transcatheter arterial embolization (TAE) was performed in 97 patients with hepatocellular carcinoma. Ethiodol (iodized oil) containing an anticancer drug was infused via the hepatic artery followed by Gelfoam particles. The Ethiodol emulsion was selectively retained in the tumor vessels and also remained in the small daughter nodules that could not be detected by angiography or computed tomography (CT) prior to TAE. In most patients there was a reduction in the tumor size following TAE, and serum alpha-fetoprotein levels were reduced in all patients whose initial levels had exceeded 400 ng/ml. This method is considered to be effective not only for treatment of hepatic tumor but also useful for evaluation of post-TAE changes in the tumor and diagnosis of small daughter nodules, due to the long-term accumulation of Ethiodol in tumor vessels.

  14. Tubulin-Interactive Natural Products as Anticancer Agents1

    PubMed Central

    Kingston, David G. I.

    2009-01-01

    This review provides an overview of the discovery, structures, and biological activities of anticancer natural products which act by inhibiting or promoting the assembly of tubulin to microtubules. The emphasis is on providing recent information on those compounds in clinical use or in advanced clinical trials. The vinca alkaloids, the combretastatins, NPI-2358, the halichondrin B analog eribulin, dolastatin 10, noscapine, hemiasterlin, and rhizoxin are discussed as tubulin polymerization inhibitors, while the taxanes and the epothilones are the major classes of tubulin polymerization promoters presented, with brief treatments of discodermolide, eleutherobin, and laulimalide. The challenges and future directions of tubulin-interactive natural products-based drug discovery programs are also discussed briefly. PMID:19125622

  15. Design, synthesis, and anticancer activity of novel berberine derivatives prepared via CuAAC “click” chemistry as potential anticancer agents

    PubMed Central

    Jin, Xin; Yan, Tian-Hua; Yan, Lan; Li, Qian; Wang, Rui-Lian; Hu, Zhen-Lin; Jiang, Yuan-Ying; Sun, Qing-Yan; Cao, Yong-Bing

    2014-01-01

    A series of novel derivatives of phenyl-substituted berberine triazolyls has been designed and synthesized via copper-catalyzed azide-alkyne cycloaddition click chemistry in an attempt to develop antitumor agents. All of the compounds were evaluated for anticancer activity against a panel of three human cancer cell lines, including MCF-7 (breast), SW-1990 (pancreatic), and SMMC-7721 (liver) and the noncancerous human umbilical vein endothelial cell (HUVEC) cell lines. The results indicated that most of the compounds displayed notable anticancer activities against the MCF-7 cells compared with berberine. Among these derivatives, compound 16 showed the most potent inhibitory activity against the SW-1990 and SMMC-7721 cell lines, with half-maximal inhibitory concentration (IC50) values of 8.54±1.97 ?M and 11.87±1.83 ?M, respectively. Compound 36 exhibited the most potent inhibitory activity against the MCF-7 cell line, with an IC50 value of 12.57±1.96 ?M. Compound 16 and compound 36 exhibited low cytotoxicity in the HUVEC cell line, with IC50 values of 25.49±3.24 ?M and 30.47±3.47 ?M. Furthermore, compounds 14, 15, 16, 17, 18, 32, and 36 exhibited much better selectivity than berberine toward the normal cell line HUVEC. PMID:25120353

  16. Caffeine-hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukaemia cells.

    PubMed

    Kaplánek, Robert; Jakubek, Milan; Rak, Jakub; Kejík, Zden?k; Havlík, Martin; Dolenský, Bohumil; Frydrych, Ivo; Hajdúch, Marián; Kolá?, Milan; Bogdanová, Kate?ina; Králová, Jarmila; Džubák, Petr; Král, Vladimír

    2015-06-01

    We report design and synthesis of set of novel anticancer agents based on caffeine-hydrazones bearing 2-hydroxyaryl- or 2-N-heteroaryl moiety. Anticancer activity evaluation using seven cancer cell lines and two non-malignant cell lines demonstrated that several derivatives display significant anticancer activity and great selectivity index toward T-lymphoblastic leukaemia cells. In general, hydrazones bearing 2-N-heteroaryl moiety are more active and selective than those with 2-hydroxyaryl moiety. Tested compounds exhibit dose-dependent inhibition of both RNA and DNA synthesis, with some exceptions. Antimicrobial activities were tested on set of twelve bacterial and yeast strains, however prepared compounds were not active, suggesting for a molecular target specific for eukaryotic cells. PMID:25912310

  17. Synthesis and cytotoxicity studies of novel triazolo-benzoxazepine as new anticancer agents.

    PubMed

    Banerji, Biswadip; Pramanik, Sumit Kumar; Sanphui, Priyankar; Nikhar, Sameer; Biswas, Subhas C

    2013-10-01

    Cancer continues to be one of the biggest threats to the human civilization because there is no cure of it. Small heterocyclic molecule with low molecular weight and novel structural feature is therapeutically highly demanding. These molecules have the capability to disrupt signaling pathways leading to anticancer activities. Therefore, the search for new anticancer agents continues to draw attention to the research community. In this study, a small triazolo-benzoxazepine scaffolds was synthesized using a one-pot four-step synthetic methodology involving click reaction. Small libraries of 12 compounds were successfully synthesized and screened them against different cancer cell lines. Low micromolar anticancer activity was recorded using MTT assay, and further confirmation of cell death was obtained by phase contrast, fluorescent, and confocal images. PMID:23672315

  18. New anticancer agents: hormones made within the heart.

    PubMed

    Vesely, David L

    2012-07-01

    The heart is a sophisticated endocrine gland synthesizing the atrial natriuretic peptide (ANP) prohormone which contains four peptide hormones, namely atrial natriuretic peptide, vessel dilator, kaliuretic peptide and long-acting natriuretic peptide, which decrease up to 97% of human pancreatic, breast, colon, prostate, kidney and ovarian carcinomas, as well as small-cell and squamous cell lung cancer cells within 24 hours in cell culture. In vivo these four cardiac hormones eliminate up to 80% of human pancreatic adenocarcinomas, up to two-thirds of human breast cancers, and up to 86% of human small-cell lung cancers in athymic mice. Their anticancer mechanism(s) target the Rat sarcoma bound guanosine triphosphate (RAS)-mitogen activated protein kinase kinase 1/2 (MEK1/2)-extracellular signal related kinase 1/2 (ERK1/2) kinase cascade in cancer cells. These four cardiac hormones inhibit up to 95% of the basal activity of Ras, 98% of the phosphorylation of MEK1/2 kinases and 96% of the activation of basal activity of ERK1/2 kinases. They also completely block the activity of mitogens such as the ability of epidermal growth factor to stimulate ERK and RAS. In addition to inhibiting these mitogen-activated protein kinases (MAPKs) they also inhibit MAPK9, i.e. c-Jun-N-terminal kinase 2. These multiple kinase inhibitors are cytotoxic and cause cell death of cancer cells but not of normal cells. PMID:22753708

  19. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents.

    PubMed

    Chiou, Chun-Tang; Lee, Wei-Chun; Liao, Jiahn-Haur; Cheng, Jing-Jy; Lin, Lie-Chwen; Chen, Chih-Yu; Song, Jen-Shin; Wu, Ming-Hsien; Shia, Kak-Shan; Li, Wen-Tai

    2015-06-15

    Indirubin, an active component in the traditional Chinese medicine formula Danggui Longhui Wan, shows promising anticancer effects. Meisoindigo is an analog derived from indirubin, which is less toxic and appears to be even more potent against cancer. In considering meisoindigo as a structural template for the development of new drugs, we designed and synthesized a series of 3-ylideneoxindole acetamides as novel anticancer agents. The acetamides were then evaluated for in vitro and in vivo anticancer activities. The 3-ylideneoxindole acetamides were found to have better anticancer activity than was indirubin-3'-oxime in several cancer cell lines and also displayed a spectrum of activity similar to that of the drug candidate roscovitine, a CDK inhibitor. Among the 3-ylideneoxindole acetamides, compound 10 showed particularly good efficacy. Cell cycle analysis further revealed that compound 10 arrested cells in the G1 phase and caused an increase in the sub-G1 population, indicating that the apoptosis pathway had been induced. In addition, exposure of cells to compound 10 led to the upregulation of the cell-cycle regulator cyclin D1, which was sustained at a high level. In contrast, the same compound induced a short-term elevation in the level of cyclin E, which was followed by a rapid decrease and the attenuation of Rb phosphorylation. Furthermore, a docking model suggests that compound 10 binds to the active site of CDK4. In testing the therapeutic potency of compound 10 on CT26-xenografted BALB/c mice, a significant reduction in tumor size comparable to that of cisplatin was found when administrated via the i.p. route. The mice presented no loss of body weight, indicating that this compound possesses low toxicity. In the future, we are planning in vivo investigations of these new active anticancer agents to better elucidate active mechanisms at the cellular level and thus benefit the development of anticancer therapies. PMID:25988923

  20. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  1. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  2. Bivalent bendamustine and melphalan derivatives as anticancer agents

    Microsoft Academic Search

    Ana Maria Scutaru; Maxi Wenzel; Ronald Gust

    2011-01-01

    The alkylating agents bendamustine and melphalan are currently used in the treatment of various tumoral diseases. In order to increase their antitumor potency and tumor selectivity both compounds were integrated in structure–activity relationship studies including new drug carrier systems. Here we describe the synthesis and the cytotoxicity of new bivalent bendamustine and melphalan derivatives. Two molecules each esterified with N-(2-hydroxyethyl)maleimide

  3. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  4. Monocarboxylate transporter 1 inhibitors as potential anticancer agents.

    PubMed

    Gurrapu, Shirisha; Jonnalagadda, Sravan K; Alam, Mohammad A; Nelson, Grady L; Sneve, Mary G; Drewes, Lester R; Mereddy, Venkatram R

    2015-05-14

    Potent monocarboxylate transporter 1 inhibitors (MCT1) have been developed based on ?-cyano-4-hydroxycinnamic acid template. Structure-activity relationship studies demonstrate that the introduction of p-N, N-dialkyl/diaryl, and o-methoxy groups into cyanocinnamic acid has maximal MCT1 inhibitory activity. Systemic toxicity studies in healthy ICR mice with few potent MCT1 inhibitors indicate normal body weight gains in treated animals. In vivo tumor growth inhibition studies in colorectal adenocarcinoma (WiDr cell line) in nude mice xenograft models establish that compound 27 exhibits single agent activity in inhibiting the tumor growth. PMID:26005533

  5. Investigation of Vietnamese plants for potential anticancer agents.

    PubMed

    Pérez, Lynette Bueno; Still, Patrick C; Naman, C Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M; Soejarto, Djaja D; Kinghorn, A Douglas

    2014-12-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  6. Determining the optimal dose in the development of anticancer agents.

    PubMed

    Mathijssen, Ron H J; Sparreboom, Alex; Verweij, Jaap

    2014-05-01

    Identification of the optimal dose remains a key challenge in drug development. For cytotoxic drugs, the standard approach is based on identifying the maximum tolerated dose (MTD) in phase I trials and incorporating this to subsequent trials. However, this strategy does not take into account important aspects of clinical pharmacology. For targeted agents, the dose-effect relationships from preclinical studies are less obvious, and it is important to change the way these agents are developed to avoid recommending drug doses for different populations without evidence of differential antitumour effects in different diseases. The use of expanded cohorts in phase I trials to better define MTD and refine dose optimization should be further explored together with a focus on efficacy rather than toxicity-based predictions. Another key consideration in dose optimization is related to interindividual pharmacokinetic variability. High variability in intra-individual pharmacokinetics has been observed for many orally-administered drugs, especially those with low bioavailability, which might complicate identification of dose-effect relationships. End-organ dysfunction, interactions with other prescription drugs, herbal supplements, adherence, and food intake can influence pharmacokinetics. It is important these variables are identified during early clinical trials and considered in the development of further phase II and subsequent large-scale phase III studies. PMID:24663127

  7. Current development of the second generation of mTOR inhibitors as anticancer agents

    PubMed Central

    Zhou, Hong-Yu; Huang, Shi-Le

    2012-01-01

    The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, acts as a “master switch” for cellular anabolic and catabolic processes, regulating the rate of cell growth and proliferation. Dysregulation of the mTOR signaling pathway occurs frequently in a variety of human tumors, and thus, mTOR has emerged as an important target for the design of anticancer agents. mTOR is found in two distinct multiprotein complexes within cells, mTORC1 and mTORC2. These two complexes consist of unique mTOR-interacting proteins and are regulated by different mechanisms. Enormous advances have been made in the development of drugs known as mTOR inhibitors. Rapamycin, the first defined inhibitor of mTOR, showed effectiveness as an anticancer agent in various preclinical models. Rapamycin analogues (rapalogs) with better pharmacologic properties have been developed. However, the clinical success of rapalogs has been limited to a few types of cancer. The discovery that mTORC2 directly phosphorylates Akt, an important survival kinase, adds new insight into the role of mTORC2 in cancer. This novel finding prompted efforts to develop the second generation of mTOR inhibitors that are able to target both mTORC1 and mTORC2. Here, we review the recent advances in the mTOR field and focus specifically on the current development of the second generation of mTOR inhibitors as anticancer agents. PMID:22059905

  8. Evaluation of Selected Flavonoids as Antiangiogenic, Anticancer, and Radical Scavenging Agents: An Experimental and In Silico Analysis

    Microsoft Academic Search

    Rajesh N. GaccheHarshala; Harshala D. Shegokar; Dhananjay S. Gond; Zhenzhou Yang; Archana D. Jadhav

    Developing antiangiogenic agents using natural products has remained a significant hope in the mainstream of anticancer research.\\u000a In the present investigation series of flavonoids possessing di-, tri-, tetra-, and penta-hydroxy substitutions were evaluated\\u000a as antiangiogenic agents using in vivo choriallantoic membrane model. The MTT-based cytotoxicity against selected cancer cell\\u000a lines was carried out to determine the anticancer potential. The kinetics

  9. Curcumin and its formulations: potential anti-cancer agents.

    PubMed

    Ji, Jun-Ling; Huang, Xian-Feng; Zhu, Hai-Liang

    2012-03-01

    Curcumin, one of the most studied chemopreventive agents, is a natural compound extracted from Curcuma longa L. Extensive research over the last half century has revealed that curcumin can inhibit the proliferation of various tumor cells in culture, prevent carcinogen induced cancers in rodents and inhibit the growth of human tumors in xenotransplant or orthotransplant animal models. Several phase I and phase II clinical trials indicated that curcumin is quite safe and may exhibit therapeutic efficacy. The utility of curcumin is limited by its lack of water solubility and relatively low in vivo bioavailability. Multiple approaches including nanoparticles, liposomes, micelles and phospholipid complexes are being sought to overcome these limitations. This review describes the general properties of curcumin and its potential effect against cancer including evidences of its antitumor action in vitro, in vivo, clinically and the strategies to overcome its low bioavailability. PMID:22044005

  10. An efficient in vitro system for somatic embryogenesis and podophyllotoxin production in Podophyllum hexandrum Royle.

    PubMed

    Rajesh, Manoharan; Sivanandhan, Ganeshan; Jeyaraj, Murugaraj; Chackravarthy, Rajan; Manickavasagam, Markandan; Selvaraj, N; Ganapathi, Andy

    2014-09-01

    Podophyllum hexandrum Royle known as Indian mayapple is an important medicinal plant found only in higher altitudes (2,700 to 4,200 m) of the Himalayas. The highly valued anticancer drug Podophyllotoxin is obtained from the roots of this plant. Due to over exploitation, this endemic plant species is on the verge of extinction. In vitro culture for efficient regeneration and the production of podophyllotoxin is an important research priority for this plant. Hence, in the present study, an efficient plant regeneration system for mass multiplication through somatic embryogenesis was developed. We have screened P. hexandrum seeds collected from three different regions in the Himalayas to find their regenerative potentials. These variants showed variation in germination percentage as well as somatic embryogenic frequency. The seeds collected from the Milam area of Pithoragarh district showed better germination response (99.3%) on Murashige and Skoog (MS) medium fortified with Gibberellic acid (GA3 [5 mg/l]) and higher direct somatic embryogenic frequency (89.6%). Maximum production of embryogenic callus (1.2 g fresh weight [FW]) was obtained when cotyledons containing the direct somatic embryo clusters were cultured in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D [1.5 mg/l]) after 4 week of culture in complete darkness. In the present investigation, somatic embryogenesis was accomplished either by direct organogenesis or callus mediated pathways. The latter method resulted in a higher frequency of somatic embryo induction in hormone-free MS medium yielding 47.7 embryos/50 mg of embryogenic callus and subsequent germination in MS medium supplemented with GA3 (5 mg/l). Seventy-nine percent of embryos attained complete maturity and germinated into normal plants with well-developed roots. Systematic histological analysis revealed the origin of somatic embryo and their ontogenesis. The higher level of podophyllotoxin (1.8 mg/g dry weight [DW]) was recorded in germinated somatic embryos when compared to field grown plants. The present system can be widely used for mass propagation, transgenic recovery, and podophyllotoxin production for commercial utilization. PMID:24633328

  11. Carnosol: A promising anti-cancer and anti-inflammatory agent

    PubMed Central

    Johnson, Jeremy J.

    2011-01-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicincal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NF?B), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. PMID:21382660

  12. Biochemical characterization and molecular dynamic simulation of ?-sitosterol as a tubulin-binding anticancer agent.

    PubMed

    Mahaddalkar, Tejashree; Suri, Charu; Naik, Pradeep Kumar; Lopus, Manu

    2015-08-01

    ?eta-sitosterol (?-SITO), a phytosterol present in pomegranate, peanut, corn oil, almond, and avocado, has been recognized to offer health benefits and potential clinical uses. ?-SITO is orally bioavailable and, as a constituent of edible natural products, is considered to have no undesired side effects. It has also been considered as a potent anticancer agent. However, the molecular mechanism of action of ?-SITO as a tubulin-binding anticancer agent and its binding site on tubulin are poorly understood. Using a combination of biochemical analyses and molecular dynamic simulation, we investigated the molecular details of the binding interactions of ?-SITO with tubulin. A polymer mass assay comparing the effects of ?-SITO and of taxol and vinblastine on tubulin assembly showed that this phytosterol stabilized microtubule assembly in a manner similar to taxol. An 8-anilino-1-naphthalenesulfonic acid assay confirmed the direct interaction of ?-SITO with tubulin. Although ?-SITO did not show direct binding to the colchicine site on tubulin, it stabilized the colchicine binding. Interestingly, no sulfhydryl groups of tubulin were involved in the binding interaction of ?-SITO with tubulin. Based on the results from the biochemical assays, we computationally modeled the binding of ?-SITO with tubulin. Using molecular docking followed by molecular dynamic simulations, we found that ?-SITO binds tubulin at a novel site (which we call the 'SITO site') adjacent to the colchicine and noscapine sites. Our data suggest that ?-SITO is a potent anticancer compound that interferes with microtubule assembly dynamics by binding to a novel site on tubulin. PMID:25912799

  13. Synthesis of xanthone derivatives based on ?-mangostin and their biological evaluation for anti-cancer agents.

    PubMed

    Fei, Xiang; Jo, Minmi; Lee, Bit; Han, Sang-Bae; Lee, Kiho; Jung, Jae-Kyung; Seo, Seung-Yong; Kwak, Young-Shin

    2014-05-01

    A xanthone-derived natural product, ?-mangostin is isolated from various parts of the mangosteen, Garcinia mangostana L. (Clusiaceae), a well-known tropical fruit. Novel xanthone derivatives based on ?-mangostin were synthesized and evaluated as anti-cancer agents by cytotoxicity activity screening using 5 human cancer cell lines. Some of these analogs had potent to moderate inhibitory activities. The structure-activity relationship studies revealed that phenol groups on C3 and C6 are critical to anti-proliferative activity and C4 modification is capable to improve both anti-cancer activity and drug-like properties. Our findings provide new possibilities for further explorations to improve potency. PMID:24717154

  14. Synthesis and evaluation of the diarylthiourea analogs as novel anti-cancer agents.

    PubMed

    Liu, Shengquan; Louie, Maggie C; Rajagopalan, Vanishree; Zhou, Guangyan; Ponce, Esmeralda; Nguyen, Tran; Green, Linda

    2015-03-15

    Ten p-nitrodiarylthiourea analogs were designed, synthesized and evaluated in breast (MCF-7, T-47D, MDA-MB-453) and prostate (DU-145, PC-3, LNCaP) cancer cell lines for their anticancer activities. The majority of the compounds were able to inhibit the growth of these six cancer cell lines at low micromolar concentrations. Compound 7 was found to be the most potent anticancer agent in this series with GI50 values of 3.16?M for MCF-7, 2.53?M for T-47D, 4.77?M for MDA-MB-453 breast cancer lines and 3.54?M for LNCaP prostate cancer cell line. These GI50 values were comparable to the parent compound, SHetA2. PMID:25701251

  15. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    PubMed Central

    Dinarvand, R; Sepehri, N; Manoochehri, S; Rouhani, H; Atyabi, F

    2011-01-01

    The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects. PMID:21720501

  16. Adherence and awareness of the therapeutic intent of oral anticancer agents in an outpatient setting

    PubMed Central

    KIMURA, MICHIO; NAKASHIMA, KEIJI; USAMI, EISEKI; IWAI, MINA; NAKAO, TOSHIYA; YOSHIMURA, TOMOAKI; MORI, HIROMI; TERAMACHI, HITOMI

    2015-01-01

    The aim of the present study was to clarify the adherence and awareness of oral anticancer agents by type and therapeutic purpose in outpatients prescribed with tegafur/gimeracil/oteracil potassium (S-1) or capecitabine. Outpatients undergoing treatment with the S-1 or capecitabine oral anticancer agents at Ogaki Municipal Hospital (Ogaki, Japan) in June 2013 completed a questionnaire survey and the survey findings were evaluated. No significant differences in medication adherence were identified between the patients administered S-1 and the patients administered capecitabine (P=0.4586). In addition, no significant differences were identified in therapeutic purpose between adjuvant therapy, and advanced and recurrent therapies. However, for S-1 and capecitabine, medication adherence was significantly higher in those undergoing combination therapy compared with those undergoing monotherapy (P=0.0046). In addition, for patients taking S-1, the median age for good adherence was significantly lower than that for insufficient adherence (66.1±10.5 vs. 72.1±7.9 years, respectively; P=0.0035). Furthermore, a significant negative correlation was identified between the awareness score of research regarding the medication and age (n=109; P=0.0045). In conclusion, for patients treated with S-1 or capecitabine, the type and therapeutic purpose of oral anticancer agents did not affect medication adherence. Elderly patients expressed a low interest in medications and typically exhibited insufficient medication adherence. Therefore, patient guidance by pharmacists is important, as it may result in improved medication adherence and an improved understanding of the treatment side-effects in patients self-administering prescribed drugs.

  17. Structure-Activity Relationships of Orotidine-5?-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    SciTech Connect

    Bello, A.; Konforte, D; Poduch, E; Furlonger, C; Wei, L; Liu, Y; Lewis, M; Pai, E; Paige, C; Kotra, L

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro, 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.

  18. Investigation of Degradation Properties of Poly(lactide-co-glycolide) Matrix for Anticancer Agent Delivery

    NASA Astrophysics Data System (ADS)

    Ghani, S. M.; Mohamed, M. S. W.; Yahya, A. F.; Noorsal, K.

    2010-03-01

    Poly(lactide-co-glycolide) (PLA50GA50) is a biodegradable and biocompatible polymer. It offers tremendous potential as a basis for drug delivery, either as drug delivery system alone or in conjugate with a medical device. The PLA50GA50 is the material of choice for relatively shorter-duration applications, while the homopolymer PLA (poly-L-lactide) and PGA (polyglycolide) are preferred for longer term delivery of drugs. This paper discusses the degradation properties of poly(lactide-co-glycolide) (PLA50GA50) at inherent viscosity of 0.89 dL/g as preliminary studies for anticancer agent delivery.

  19. Organometallic ruthenium and osmium compounds of pyridin-2- and -4-ones as potential anticancer agents.

    PubMed

    Henke, Helena; Kandioller, Wolfgang; Hanif, Muhammad; Keppler, Bernhard K; Hartinger, Christian G

    2012-09-01

    Organometallic Ru(II) compounds are among the most widely studied anticancer agents. Functionalizing metal centers with biomolecule-derived ligands has been shown to be a promising strategy to improve the antiproliferative activity of metal-based chemotherapeutics. Herein, the synthesis of a series of novel 3-hydroxypyridin-2-one-derived ligands and their M(II)(?(6)-p-cymene) half-sandwich complexes (M = Ru, Os) is described. The compounds were characterized by 1D- and 2D-NMR spectroscopy, and elemental analysis. PMID:22976964

  20. Novel, Broad Spectrum Anticancer Agents Containing the Tricyclic 5:7:5-Fused Diimidazodiazepine Ring System

    PubMed Central

    2010-01-01

    Synthesis of a series of novel, broad spectrum anticancer agents containing the tricyclic 5:7:5-fused diimidazo[4,5-d:4?,5?-f][1,3]diazepine ring system is reported. Compounds 1, 2, 8, 11, and 12 in the series show promising in vitro antitumor activity with low micromolar IC50 values against prostate, lung, breast, and ovarian cancer cell lines. Some notions about structure?activity relationships and a possible mechanism of biological activity are presented. Also presented are preliminary in vivo toxicity studies of 1 using SCID mice. PMID:21572541

  1. Preclinical pharmacokinetics and bioavailability of noscapine, a tubulin-binding anticancer agent

    Microsoft Academic Search

    Ritu Aneja; Neerupma Dhiman; Jyoti Idnani; Anshumali Awasthi; Sudershan K. Arora; Ramesh Chandra; Harish C. Joshi

    2007-01-01

    Background  Noscapine, a naturally occurring antitussive phthalideisoquinoline alkaloid, is a tubulin-binding agent currently in Phase\\u000a I\\/II clinical trials for anticancer therapy. Unlike currently available antimitotics such as taxanes and vincas, noscapine\\u000a is water-soluble, well tolerated, and shows no detectable toxicity.\\u000a \\u000a \\u000a \\u000a Objective  The goal was to develop a simple, sensitive, quantitative, selective, and less time-consuming high-performance liquid chromatography\\u000a (HPLC) method for determination of

  2. Application of population pharmacokinetic modeling in early clinical development of the anticancer agent E7820

    Microsoft Academic Search

    Ron J. Keizer; Miren K. Zamacona; Mendel Jansen; David Critchley; Jantien Wanders; Jos H. Beijnen; Jan H. M. Schellens; Alwin D. R. Huitema

    2009-01-01

    Summary  The aim of this study was to assess the population pharmacokinetics (PopPK) of the novel oral anti-cancer agent E7820. Both\\u000a a non-linear mixed effects modeling analysis and a non-compartmental analysis (NCA) were performed and results were compared.\\u000a Data were obtained from a phase I dose escalation study in patients with malignant solid tumors or lymphomas. E7820 was administered\\u000a daily for

  3. Improved podophyllotoxin production by transformed cultures of Linum album.

    PubMed

    Baldi, Ashish; Srivastava, Ashok K; Bisaria, Virendra S

    2008-10-01

    Various cell and hairy root cultures of L. album were developed and analyzed for podophyllotoxin content. Transformed callus and hairy root cultures developed from infection of stem portions of in vitro-germinated L. album plant with Agrobacterium rhizogenes NCIM 5140 strain were selected on the basis of high podophyllotoxin content and growth. Based on the integration of Ri T(L)-DNA and T(R)-DNA, integration of only the ags and not the rol gene in transformed cell culture indicated fragmented integration pattern. The effect of different cultivation media and carbon source on growth and podophyllotoxin production were studied in shake-flask suspension cultures. Detailed batch growth and production kinetics with sugar consumption profile were also established. Maximum volumetric productivity of 4.40 and 2.75 mg/L per day was obtained in cell suspension and hairy root cultures, respectively. PMID:18932162

  4. Physico chemical characterization of a novel anti-cancer agent and its comparison to Taxol(®).

    PubMed

    Shah, Amit K; Wyandt, Christy M; Stodghill, Steven P

    2013-01-01

    Every year several thousand compounds are screened for their anti-cancer activity by a general test procedure amongst which only few selected move past the in vitro screening process. This may be due to the intrinsic property of the drug substance. Therefore, a complete physicochemical characterization of a New Chemical Entity (NCE) is essential to understand the effect of these properties on the in vitro and possibly in vivo behavior of these compounds. Various physicochemical properties such as dissociation constant, octanol-water partition co-efficient, pH solubility, stability, thermal characterization and membrane permeability were evaluated for a novel tubulin-binding agent JCA112 and were compared to that of Taxol(®). The drug exhibited a pKa value of 10.9, log P value of 2.3, pH dependent solubility, and low artificial membrane permeability. Stability of the drug substance in the in vitro screening media suggested a significant degradation during the 48-hour study duration. The results demonstrate that due to low aqueous solubility, limited membrane permeability and due to insufficient stability of JCA112 in the in vitro screening media, the drug exhibited limited anti-cancer activity. Along with challenging physicochemical characteristics, a generalization of the in vitro testing procedure may also result in loss of important anti-cancer agents. As a result, a complete understanding of the physico-chemical properties of the drug leading to prototype formulation with acceptable physico-chemical properties may be required for successful in vitro screening. PMID:22339150

  5. [Sensitivity of esophageal cancer to anticancer agents and supplementary chemotherapy combined with surgical treatment].

    PubMed

    Masaki, Y; Ishigami, K; Oka, M; Matsumoto, N; Honma, K; Uchiyama, T

    1986-04-01

    The authors examined the sensitivities of esophageal cancer to Bleomycin (BLM), Peplomycin (PEP), Cisplatin (CDDP) and 5-FU by the INAS method using 3H-thymidine or 14C-formate as labeled precursors, and determined the concentrations of anticancer agents in cancer lesions by the Band Culture method. On the other hand, the authors investigated the superiority or inferiority of various methods of BLM administration by observing the prevention effect of BLM on the development of experimental esophageal cancer in rats. Forty-three cases out of 76, 57%, showed a sensitivity to BLM, 60% to PEP, 38% to CDDP and 56% to 5-FU. As to the types of roentgenological findings, the superficial and tumorous types showed a high sensitivity rate. As to the types of macroscopical findings, the protruded and superficial types showed a high sensitivity rate. As to the types of histological findings, well differentiated squamous cell carcinoma showed a high sensitivity rate. Sensitivity was higher in metastatic lymph nodes than in main cancer lesions. Tumor tissues which had undergone previous hyperthermic management (at 42 degrees C) showed a higher sensitivity than those which had not. PEP at a half dose brought about the same grade of anticancer effect as BLM. The sensitivities of esophageal cancer to various anticancer agents showed individual differences among clinical cases. Therefore, combination chemotherapy for esophageal cancer was thought to be an effective administration method. The divided administration of small doses of BLM was thought to be more superior than the one-shot administration of a large dose for esophageal cancer. The results of the INAS sensitivity test were perfectly coincident with the effects of chemotherapy in clinical cases of esophageal cancer. PMID:2425741

  6. Nature promises new anticancer agents: Interplay with the apoptosis-related BCL2 gene family.

    PubMed

    Christodoulou, Maria-Ioanna; Kontos, Christos K; Halabalaki, Maria; Skaltsounis, Alexios-Leandros; Scorilas, Andreas

    2014-03-01

    Natural products display special attributes in the treatment and prevention of a variety of human disorders including cancer. Their therapeutic capacities along with the fact that nature comprises a priceless pool of new compounds have attracted the interest of researchers worldwide. A significant number of organic compounds from terrestrial and marine organisms exhibit anticancer properties as attested by both in vitro and in vivo studies. Emerging evidence supporting the antineoplastic activity of natural compounds has rendered them promising agents in the fight against cancer. As a result, numerous natural compounds or their derivatives have entered clinical practice and are currently in the forefront of chemotherapeutics, showing beneficial effects for cancer patients. Induction of apoptosis seems to be the major mechanism of action induced by these natural agents in the race against cancer. This is mainly achieved through modulations of the expression of B-cell CLL/lymphoma 2 (BCL2) family members. These molecules appear to be the pivotal players determining cellular fate. In the current review, we provide a comprehensive overview of the major alterations in the gene and/or protein levels of BCL2-family members evoked in cancer cells after treatment with a gamut of natural compounds. The data cited suggest the need for exploitation of newly discovered natural products that, along with the improvement of currently employed chemotherapeutics, will significantly enrich the anticancer armamentarium. PMID:23848203

  7. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    PubMed

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R; Milligan, Ryan D; Cady, Amanda M; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance. PMID:25279830

  8. Toad Glandular Secretions and Skin Extractions as Anti-Inflammatory and Anticancer Agents

    PubMed Central

    Tan, C. K.; Hashimi, Saeed M.; Zulfiker, Abu Hasanat Md.; Wei, Ming Q.

    2014-01-01

    Toad glandular secretions and skin extractions contain many natural agents which may provide a unique resource for novel drug development. The dried secretion from the auricular and skin glands of Chinese toad (Bufo bufo gargarizans) is named Chansu, which has been used in Traditional Chinese Medicine (TCM) for treating infection and inflammation for hundreds of years. The sterilized hot water extraction of dried toad skin is named Huachansu (Cinobufacini) which was developed for treating hepatitis B virus (HBV) and several types of cancers. However, the mechanisms of action of Chansu, Huachansu, and their constituents within are not well reported. Existing studies have suggested that their anti-inflammation and anticancer potential were via targeting Nuclear Factor (NF)-?B and its signalling pathways which are crucial hallmarks of inflammation and cancer in various experimental models. Here, we review some current studies of Chansu, Huachansu, and their compounds in terms of their use as both anti-inflammatory and anticancer agents. We also explored the potential use of toad glandular secretions and skin extractions as alternate resources for treating human cancers in combinational therapies. PMID:24734105

  9. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents

    PubMed Central

    Tanpure, Rajendra P.; George, Clinton S.; Strecker, Tracy E.; Devkota, Laxman; Tidmore, Justin K.; Lin, Chen-Ming; Herdman, Christine A.; MacDonough, Matthew T.; Sriram, Madhavi; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2014-01-01

    Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 M) and strongly cytotoxic against selected human cancer cell lines (for example, GI50 = 5.47 nM against NCI-H460 cells with fluorobenzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18 (referred to as KGP265, compound 44) and a water-soluble serinamide salt (compound 48) of KGP156 were also synthesized and evaluated in this study. PMID:24183586

  10. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate variations in podophyllotoxin concentrations in Juniperus species found in the Big Horn Mountains in Wyoming. It was found that Juniperus species in the Big Horn Mountains included three species; J. communis L. (common juniper), J. horizontalis Moench. (c...

  11. Engineering of Bacteria for the Visualization of Targeted Delivery of a Cytolytic Anticancer Agent

    PubMed Central

    Jiang, Sheng-Nan; Park, Seung-Hwan; Lee, Hee Jung; Zheng, Jin Hai; Kim, Hyung-Seok; Bom, Hee-Seung; Hong, Yeongjin; Szardenings, Michael; Shin, Myung Geun; Kim, Sun-Chang; Ntziachristos, Vasilis; Choy, Hyon E; Min, Jung-Joon

    2013-01-01

    A number of recent reports have demonstrated that attenuated Salmonella typhimurium are capable of targeting both primary and metastatic tumors. The use of bacteria as a vehicle for the delivery of anticancer drugs requires a mechanism that precisely regulates and visualizes gene expression to ensure the appropriate timing and location of drug production. To integrate these functions into bacteria, we used a repressor-regulated tetracycline efflux system, in which the expression of a therapeutic gene and an imaging reporter gene were controlled by divergent promoters (tetAP and tetRP) in response to extracellular tetracycline. Attenuated S. typhimurium was transformed with the expression plasmids encoding cytolysin A, a therapeutic gene, and renilla luciferase variant 8, an imaging reporter gene, and administered intravenously to tumor-bearing mice. The engineered Salmonella successfully localized to tumor tissue and gene expression was dependent on the concentration of inducer, indicating the feasibility of peripheral control of bacterial gene expression. The bioluminescence signal permitted the localization of gene expression from the bacteria. The engineered bacteria significantly suppressed both primary and metastatic tumors and prolonged survival in mice. Therefore, engineered bacteria that carry a therapeutic and an imaging reporter gene for targeted anticancer therapy can be designed as a theranostic agent. PMID:23922014

  12. Design, synthesis and biological evaluation of arylcinnamide hybrid derivatives as novel anticancer agents

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Chayah, Mariem; Camacho, M. Encarnacion; Prencipe, Filippo; Hamel, Ernest; Consolaro, Francesca; Basso, Giuseppe; Viola, Giampietro

    2014-01-01

    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. A series of novel antiproliferative agents designed by a pharmacophore hybridization approach, combining the arylcinnamide skeleton and an ?-bromoacryloyl moiety, was synthesized and evaluated for its antiproliferative activity against a panel of seven human cancer cell lines. In addition, the new derivatives were also active on multidrug-resistant cell lines over-expressing P-glycoprotein. The biological effects of various substituents on the N-phenyl ring of the benzamide portion were also described. In order to study the possible mechanism of action, we observed that 4p slightly increased the Reactive Oxygen Species (ROS) production in HeLa cells, but, more importantly, a remarkable decrease of intracellular reduced glutathione content was detected in treated cells compared with controls. These results were confirmed by the observation that only thiol-containing antioxidants were able to significantly protect the cells from induced cell death. Altogether our results indicate that the new derivatives are endowed with good anticancer activity in vitro, and their properties may result in the development of new cancer therapeutic strategies. PMID:24858544

  13. Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2015-01-01

    Itraconazole, a common triazole anti-fungal drug in widespread clinical use, has evidence of clinical activity that is of interest in oncology. There is evidence that at the clinically relevant doses, itraconazole has potent anti-angiogenic activity, and that it can inhibit the Hedgehog signalling pathway and may also induce autophagic growth arrest. The evidence for these anticancer effects, in vitro, in vivo, and clinical are summarised, and the putative mechanisms of their action outlined. Clinical trials have shown that patients with prostate, lung, and basal cell carcinoma have benefited from treatment with itraconazole, and there are additional reports of activity in leukaemia, ovarian, breast, and pancreatic cancers. Given the evidence presented, a case is made that itraconazole warrants further clinical investigation as an anti- cancer agent. Additionally, based on the properties summarised previously, it is proposed that itraconazole may synergise with a range of other drugs to enhance the anti-cancer effect, and some of these possible combinations are presented in the supplementary materials accompanying this paper. PMID:25932045

  14. Investigation of Degradation Properties of Poly(lactide-co-glycolide) Matrix for Anticancer Agent Delivery

    SciTech Connect

    Ghani, S. M.; Mohamed, M. S. W.; Yahya, A. F.; Noorsal, K. [Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, 09000 Kulim Kedah (Malaysia)

    2010-03-11

    Poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) is a biodegradable and biocompatible polymer. It offers tremendous potential as a basis for drug delivery, either as drug delivery system alone or in conjugate with a medical device. The PLA{sub 50}GA{sub 50} is the material of choice for relatively shorter-duration applications, while the homopolymer PLA (poly-L-lactide) and PGA (polyglycolide) are preferred for longer term delivery of drugs. This paper discusses the degradation properties of poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) at inherent viscosity of 0.89 dL/g as preliminary studies for anticancer agent delivery.

  15. Characterization of a Gene Cluster Responsible for the Biosynthesis of Anticancer Agent FK228 in Chromobacterium violaceum No. 968

    Microsoft Academic Search

    Yi-Qiang Cheng; Min Yang; Andrea M. Matter

    2007-01-01

    A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudo-

  16. The antiemetic effect of a novel tropisetron patch in anticancer agents-induced kaolin pica model using rats.

    PubMed

    Jeong, Seung Wei; Cho, Joong Woong; Hwang, Jun Seok; Song, Jin Deog; Shin, Sunhee; Jang, Ja Young; Hwang, Seok-Yeon; Kim, Okjin; Kim, Jong-Choon; Kim, Yun-Bae; Kang, Jong-Koo

    2005-07-01

    The efficacy of a novel transdermal patch containing tropisetron, a 5-hydroxytryptamine 3 (5-HT(3)) receptor antagonist, against emesis induced by anticancer agents were evaluated, in comparison with the effect of traditional tropisetron injection, in rats. The antiemetic effects were assessed via the inhibitory activity on the anticancer agent-induced kaolin-consuming behavior, a pica model representing vomiting in emesis-resistant rodents. The tropisetron patch (10mg/patch, 3.5cm(2)) was attached on the shaved back area of rats. Eight h later, each anticancer agent, cisplatin (10mg/kg, i.v.), cyclophosphamide (200mg/kg, i.p.) or doxorubicin (8mg/kg, i.v.), was administered, and thereafter, daily kaolin consumption was measured for 3 days. In comparison, the effect of daily injection of tropisetron (2mg/kg, i.v.), given 10min, 24 and 48h after the anticancer agent administration, was also evaluated. Kaolin intake greatly increased to 21, 17 and 10 folds of control ingestion on the first day after administration with the anticancer agents, cisplatin, cyclophosphamide and doxorubicin, respectively, and then gradually decreased to near control level on day 3. Such anticancer agent-induced increases in the kaolin consumption were remarkably attenuated by the attachment of tropisetron patch, resulting in the reduction to half levels, which is comparable to the efficacy of daily tropisetron injection. In particular, the blood concentration of tropisetron following patch attachment reached a maximum level of 30-40ng/ml in 12h and exhibited a plateau until detachment of the patch, in contrast to a rapid elimination with a half-life of 2.21h after injection of the drug. Taken together, it is suggested that the novel tropisetron patch could be a promising regimen for the relief of emesis, based on the long-term antiemetic effects on the diverse anticancer agents and the convenience to use the transdermal delivery system for the cancer patients who have difficulty in taking drugs due to surgical operation or gastrointestinal dysfunction. PMID:21783585

  17. In Vitro and In Vivo Evaluation of Novel Anticancer Agents in Triple Negative Breast Cancer Models

    PubMed Central

    Johnson, KiTani Parker; Johnson, Duane E.; Stoute, Diana; Burow, Matthew E.; Rhodes, Lyndsay V.; Gray, Marian; Carriere, Patrick; Tilghman, Syreeta L.; McLachlan, John A.; Ochieng, Josiah

    2013-01-01

    Triple negative breast cancer (TNBC) is subtype of breast disease devoid of the estrogen, progesterone, and Her2/neu receptors which are targets for pharmacological intervention. There is a need for novel anti-breast cancer agents that target TNBC. Therefore, novel isochalcone DJ52 was evaluated using the alamar blue dye exclusion assay, the luciferase colony assay, and xenograft models to determine its efficacy and potency. DJ52 significantly decreased proliferation of cells measured by using the alamar blue dye method and produced IC50 values of DJ52, DJ56, and DJ82 at 10-6M, 10-5M, and 10-5M, respectively. In vivo studies were conducted by injecting MDA-MB-231 cells into SCID mice to determine tumor regression was measured over 20 days. DJ52 at 50mg/kg caused significant decrease in tumor volume (p value <.05) by nearly 50% compared with the control with vehicle alone. These data suggest that DJ52 has merit for further evaluation as a novel anticancer agent. PMID:23395947

  18. Design of enzymatically cleavable prodrugs of a potent platinum-containing anticancer agent.

    PubMed

    Ding, Song; Pickard, Amanda J; Kucera, Gregory L; Bierbach, Ulrich

    2014-12-01

    Using a versatile synthetic approach, a new class of potential ester prodrugs of highly potent, but systemically too toxic, platinum-acridine anticancer agents was generated. The new hybrids contain a hydroxyl group, which has been masked with a cleavable lipophilic acyl moiety. Both butanoic (butyric) and bulkier 2-propanepentanoic (valproic) esters were introduced. The goals of this design were to improve the drug-like properties (e.g., logD) and to reduce the systemic toxicity of the pharmacophore. Two distinct pathways by which the target compounds undergo effective ester hydrolysis, the proposed activating step, have been confirmed: platinum-assisted, self-immolative ester cleavage in a low-chloride environment (LC-ESMS, NMR spectroscopy) and enzymatic cleavage by human carboxylesterase-2 (hCES-2) (LC-ESMS). The valproic acid ester derivatives are the first example of a metal-containing agent cleavable by the prodrug-converting enzyme. They show excellent chemical stability and reduced systemic toxicity. Preliminary results from screening in lung adenocarcinoma cell lines (A549, NCI-H1435) suggest that the mechanism of the valproic esters may involve intracellular deesterification. PMID:25303639

  19. Novel sugar-cholestanols as anticancer agents against peritoneal dissemination of tumor cells.

    PubMed

    Hahismoto, Shinji; Yazawa, Shin; Asao, Takayuki; Faried, Ahmad; Nishimura, Toyo; Tsuboi, Kaori; Nakagawa, Takashi; Yamauchi, Takahito; Koyama, Noriyuki; Umehara, Ken; Saniabadi, Abbi R; Kuwano, Hiroyuki

    2008-08-01

    Chemically synthesized sugar-cholestanols with mono-, di-, and tri-saccharides attached to cholestanol showed strong inhibiting activity against the proliferation of colorectal and gastric cancer cells. In contrast, cholestanol without sugar moieties was totally ineffective. Furthermore, when cancer cells were exposed to GlcNAcRbetacholestanol (R=(-) or beta1-3Gal), the compound was rapidly taken up via the lipid rafts/microdomains on the cell surface. The uptake of sugar-cholestanol in mitochondria increased gradually and was followed by the release of cytochrome c from mitochondria and the activation of apoptotic signals through the mitochondrial pathway and the caspase cascade, leading to apoptotic cell death, characterized by DNA ladder formation and nuclear fragmentation. Additionally, the examination of GlcNAcRbetacholestanol in a mouse model of peritoneal dissemination showed a dramatic reduction of tumor growth (P < 0.003) and prolonged mouse survival time (P<0.0001). Based on these observations, we believe that the sugar-cholestanols described here have clinical potential as novel anticancer agents. PMID:18327639

  20. Parthenium hysterophorus: a probable source of anticancer, antioxidant and anti-HIV agents.

    PubMed

    Kumar, Shashank; Chashoo, Gousia; Saxena, Ajit K; Pandey, Abhay K

    2013-01-01

    The present work reports the anticancer, antioxidant, lipo-protective, and anti-HIV activities of phytoconstituents present in P. hysterophorus leaf. Dried leaf samples were sequentially extracted with nonpolar and polar solvents. Ethanol fraction showed noticeable cytotoxic activity (81-85%) in SRB assay against MCF-7 and THP-1 cancer cell lines at 100? ?g/ml concentration, while lower activity was observed with DU-145 cell line. The same extract exhibited 17-98% growth inhibition of HL-60 cancer cell lines in MTT assay, showing concentration dependent response. Ethanol extract caused 12% reduction in mitochondrial membrane potential and 10% increment in sub G1 population of HL-60 cell lines. Several leaf fractions, namely, ethyl acetate, ethanol, and aqueous fractions exhibited considerable reducing capability at higher concentrations. Most of the extracts demonstrated appreciable (>75%) metal ion chelating and hydroxyl radical scavenging activities at 200?µg/ml. All the extracts except aqueous fraction accounted for about 70-80% inhibition of lipid peroxidation in rat liver homogenate indicating protective response against membrane damage. About 40% inhibition of reverse transcriptase (RT) activity was observed in hexane fraction in anti-HIV assay at 6.0?µg/ml concentration. The study showed that phytochemicals present in P. hysterophorus leaf have considerable potential as cytotoxic and antioxidant agents with low to moderate anti-HIV activity. PMID:24350290

  1. [Phase I study of a new anticancer agent CAM--results of cooperative study].

    PubMed

    Saito, T; Nakao, I; Wakui, A; Majima, H; Koyama, Y; Furue, H; Itoh, I; Ota, K; Taguchi, T; Masaoka, T; Kimura, I

    1982-11-01

    CAM is a derivative compound of mycophenolic acid produced by Penicillium brevicompactum, and is a new oral Purine antagonistic anticancer agent. The Phase I study was carried out cooperatively in ten hospitals. The results are as follows: The administration method was single administration and the starting dose was 200 mg/m2 (1n). The dose level was escalated according to varied Fibonacci formula. The number of total cases was thirty-one: three cases at 1n level, four at 2n, six at 3.3n, six at 7n and seven at 9n. Side effects were observed in five of thirteen cases over 7n dose levels, such as nausea, vomiting, anorexia and diarrhea. Leukopenia was developed in only one case at 7n dose level. Other side effects such as anemia, thrombocytopenia, and disturbances of liver function and renal function were not observed. It was estimated from above results that a dose limiting factor of CAM is nausea and vomiting. A subtoxic dose was 7n (1,400 mg/m2) and a maximum tolerated dose was 9n (1,800 mg/m2) which corresponded to 2,200-3,000 mg as a single administration. PMID:7184385

  2. Synergistic Anti-Cancer Effects of Grape Seed Extract and Conventional Cytotoxic Agent Doxorubicin Against Human Breast Carcinoma Cells

    Microsoft Academic Search

    Girish Sharma; Anil K. Tyagi; Rana P. Singh; Daniel C. F. Chan; Rajesh Agarwal

    2004-01-01

    With an approach to enhance the efficacy of chemotherapy agents against breast cancer treatment, here, we investigated the anti-cancer effects of grape seed extract (GSE) and doxorubicin (Dox), either alone or in combination, in estrogen receptor-positive MCF-7 and receptor-negative MDA-MB468 human breast carcinoma cells. GSE (25–200 µg\\/ml) treatment of cells resulted in 16–72% growth inhibition and 9–33% cell death, in

  3. Investigation on the substitution effects of the flavonoids as potent anticancer agents: a structure–activity relationships study

    Microsoft Academic Search

    Xiao-Bing Wang; Wei Liu; Lei Yang; Qing-Long Guo; Ling-Yi Kong

    Three series of flavonoid analogues substituted with different aminomethyl substitutions at C-6, C-7, and C-8 were designed\\u000a and synthesized for the structure–activity relationship studies as potent anticancer agents. The prepared analogues were evaluated\\u000a for their in vitro inhibitory activity against the growth of the hepatic cancer cell lines HepG2 and SMMC-7721. Structure–activity\\u000a relationships indicated that not only the compounds with

  4. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo

    Microsoft Academic Search

    Zuzana Zachar; James Marecek; Claudia Maturo; Sunita Gupta; Shawn D. Stuart; Katy Howell; Alexandra Schauble; Joanna Lem; Arin Piramzadian; Sameer Karnik; King Lee; Robert Rodriguez; Robert Shorr; Paul M. Bingham

    We report the analysis of CPI-613, the first member of a large set of analogs of lipoic acid (lipoate) we have investigated\\u000a as potential anticancer agents. CPI-613 strongly disrupts mitochondrial metabolism, with selectivity for tumor cells in culture.\\u000a This mitochondrial disruption includes activation of the well-characterized, lipoate-responsive regulatory phosphorylation\\u000a of the E1? pyruvate dehydrogenase (PDH) subunit. This phosphorylation inactivates flux

  5. Urokinase-targeted recombinant bacterial protein toxins — a rationally designed and engineered anticancer agent for cancer therapy

    Microsoft Academic Search

    Yizhen Liu; Shi-Yan Li

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant\\u000a fusion proteins representing a novel class of agents for cancer therapy. Bacterial protein toxins have long been known as\\u000a the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons. On the other\\u000a hand, it has been well documented

  6. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure–Activity Relationships, and Molecular Mechanisms of Action

    PubMed Central

    Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-?B and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544

  7. Anti-Cancer Agents that Inhibit Cell Motility, Angiogenesis, and Metastasis

    Cancer.gov

    The National Cancer Institute's Urologic Oncology Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize anti-cancer drugs.

  8. Preparation of Phospha Sugar Analogues and Their Evaluation as Novel Molecular Targeting Anticancer Agents

    Microsoft Academic Search

    Kenji Tsunekawa; Mitsuji Yamashita; Michio Fujie; Taishi Niimi; Takuya Suyama; Kazuhide Asai; Satoru Ito; Junko Yamashita; Manabu Yamada; Nobuhisa Ozaki; Satoki Nakamura

    2011-01-01

    Phospha sugars were prepared by a novel synthetic route starting from phosphorus heterocyclic compounds, 2-phospholenes. The anhydro- and deoxy-phospha sugar derivatives have been revealed to have potential anticancer activities against human leukemia of K562 and U937 cell lines. In this article, deoxybromophospha sugars with different numbers of bromo substituents were prepared, and their anticancer activities were evaluated by MTT method.

  9. The prince and the pauper. A tale of anticancer targeted agents

    PubMed Central

    Dueńas-González, Alfonso; García-López, Patricia; Herrera, Luis Alonso; Medina-Franco, Jose Luis; González-Fierro, Aurora; Candelaria, Myrna

    2008-01-01

    Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited public-sector resources. If these drug types eventually result in being effective, it follows that they could be much more affordable for patients with cancer; therefore, their contribution in terms of reducing cancer mortality at the global level would be greater. PMID:18947424

  10. Design, synthesis and X-ray crystallographic study of NAmPRTase inhibitors as anti-cancer agents.

    PubMed

    You, Hyun; Youn, Hyung-Seop; Im, Isak; Bae, Man-Ho; Lee, Sang-Kook; Ko, Hyojin; Eom, Soo Hyun; Kim, Yong-Chul

    2011-04-01

    NAmPRTase (PBEF/Visfatin) plays a pivotal role in the salvage pathway of NAD(+) biosynthesis. NAmPRTase has been an attractive target for anti-cancer agents that induce apoptosis of tumor cells via a declining plasma NAD(+) level. In this report, a series of structural analogs of FK866 (1), a known NAmPRTase inhibitor, was synthesized and tested for inhibitory activities against the proliferation of cancer cells and human NAmPRTase. Among them, compound 7 showed similar anti-cancer and enzyme inhibitory activities to compound 1. Further investigation of compound 7 with X-ray analysis revealed a co-crystal structure in complex with human NAmPRTase, suggesting that Asp219 in the active site of the enzyme could contribute to an additional interaction with the pyrrole nitrogen of compound 7. PMID:21330015

  11. Synthesis, anti-fungal activity evaluation and QSAR studies on podophyllotoxin derivatives

    Microsoft Academic Search

    K. Anil Kumar; Sanjay Kumar Singh; B. Siva Kumar; Mukesh Doble

    2007-01-01

    The anti-fungal and cytotoxic activites of podophyllotoxin and seven C-4 substituted podophyllotoxin ester derivatives, viz:\\u000a trans-cinnamyl, cis-cinnamyl, o-methoxy cinnamyl, dimethyl acrylyl, p-methoxy phenyl acetyl, 3,4-dimethoxy phenyl acetyl and\\u000a 2,5-dimethoxy phenyl acetyl esters were evaluated on four fungi, viz: Macrophomina phaseolina, Fusarium oxysporum, Myrrothecium verrucarria and Asperigillus candidus, The podophyllotoxin derivatives were synthesised and their structures were elucidated. Quantitative structure activity

  12. Evaluation of selected flavonoids as antiangiogenic, anticancer, and radical scavenging agents: an experimental and in silico analysis.

    PubMed

    Gacche, Rajesh N; Shegokar, Harshala D; Gond, Dhananjay S; Yang, Zhenzhou; Jadhav, Archana D

    2011-12-01

    Developing antiangiogenic agents using natural products has remained a significant hope in the mainstream of anticancer research. In the present investigation series of flavonoids possessing di-, tri-, tetra-, and penta-hydroxy substitutions were evaluated as antiangiogenic agents using in vivo choriallantoic membrane model. The MTT-based cytotoxicity against selected cancer cell lines was carried out to determine the anticancer potential. The kinetics of free radical scavenging activities of these compounds was demonstrated using 2,2-diphenyl-1-picryl hydrazine (DPPH) and superoxide anion radicals (SORs). To understand the possible antiangiogenic mechanism, the selected flavonoids were docked in silico onto the proangiogenic peptides such as vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF-1?), and vascular endothelial growth factor receptor-2 (VEGFR2) from human origin. The results of the study shows that amongst the tested flavonoids, genistein (87.1%), kaempferol, (86.3%), and quercetin (84.7%) were found to be effective inhibitors of angiogenesis in CAM model. The antiangiogenic, cytotoxic, and antioxidant activities are discussed in light of structure-activity relationship using in silico approach and other drug-related properties were also calculated using BioMed CAChe V. 6.1.10. The results of the present study focus the isoflavone genistein, kaempferol, and quercetin as lead molecules for designing novel anti-tumor/antioxidant agents targeting angiogenesis. PMID:21830125

  13. Metabolic disposition of the anti-cancer agent [(14)C]laromustine in male rats.

    PubMed

    Nassar, Ala F; Wisnewski, Adam; King, Ivan

    2015-08-01

    1.?Laromustine (VNP40101M, also known as Cloretazine) is a novel sulfonylhydrazine alkylating (anticancer) agent. This article describes the use of quantitative whole-body autoradiography (QWBA) and mass balance to study the tissue distribution, the excretion mass balance and pharmacokinetics after intravenous administration of [(14)C]VNP40101M to rats. A single 10?mg/kg IV bolus dose of [(14)C]VNP40101M was given to rats. 2.?The recovery of radioactivity from the Group 1 animals over a 7-day period was an average of 92.1% of the administered dose, which was accounted for in the excreta and carcass. Most of the radioactivity was eliminated within 48?h via urine (48%), with less excreted in feces (5%) and expired air accounted for (11%). The plasma half-life of [(14)C]laromustine was approximately 62?min and the peak plasma concentration (Cmax) averaged 8.3??g/mL. 3.?The QWBA study indicated that the drug-derived radioactivity was widely distributed to tissues through 7 days post-dose after a single 10?mg/kg IV bolus dose of [(14)C]VNP40101M to male pigmented Long-Evans rats. The maximum concentrations were observed at 0.5 or 1?h post-dose for majority tissues (28 of 42). The highest concentrations of radioactivity were found in the small intestine contents at 0.5?h (112.137?µg equiv/g), urinary bladder contents at 3?h (89.636?µg equiv/g) and probably reflect excretion of drug and metabolites. The highest concentrations in specific organs were found in the renal cortex at 1?h (28.582?µg equiv/g), small intestine at 3?h (16.946?µg equiv/g), Harderian gland at 3?h (12.332?µg equiv/g) and pancreas at 3?h (12.635?µg equiv/g). Concentrations in the cerebrum (1.978?µg equiv/g), cerebellum (2.109?µg equiv/g), medulla (1.797?µg equiv/g) and spinal cord (1.510?µg equiv/g) were maximal at 0.5?h post-dose and persisted for 7 days. 4.?The predicted total body and target organ exposures for humans given a single 100?µCi IV dose of [(14)C]VNP40101M were well within the medical guidelines for maximum radioactivity exposures in human subjects. PMID:25798740

  14. Repurposing Drugs in Oncology (ReDO)-mebendazole as an anti-cancer agent.

    PubMed

    Pantziarka, Pan; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vidula; Sukhatme, Vikas P

    2014-01-01

    Mebendazole, a well-known anti-helminthic drug in wide clinical use, has anti-cancer properties that have been elucidated in a broad range of pre-clinical studies across a number of different cancer types. Significantly, there are also two case reports of anti-cancer activity in humans. The data are summarised and discussed in relation to suggested mechanisms of action. Based on the evidence presented, it is proposed that mebendazole would synergise with a range of other drugs, including existing chemotherapeutics, and that further exploration of the potential of mebendazole as an anti-cancer therapeutic is warranted. A number of possible combinations with other drugs are discussed in the Appendix. PMID:25075217

  15. Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization.

    PubMed

    Lin, Hong-Yan; Li, Zi-Kang; Bai, Li-Fei; Baloch, Shahla Karim; Wang, Fang; Qiu, Han-Yue; Wang, Xue; Qi, Jin-Liang; Yang, Raong-Wu; Wang, Xiao-Ming; Yang, Yong-Hua

    2015-07-15

    The high incidence of cancer and the side effects of traditional anticancer drugs motivate the search for new and more effective anticancer drugs. In this study, we synthesized 17 kinds of aryl dihydrothiazol acyl shikonin ester derivatives and evaluated their anticancer activity through MTT assay. Among them, C13 showed better antiproliferation activity with IC50=3.14±0.21?M against HeLa cells than shikonin (IC50=5.75±0.47?M). We then performed PI staining assay, cell cycle distribution, and cell apoptosis analysis for C13 and found that it can cause cell arrest in G2/M phase, which leads to cell apoptosis. This derivative can also reduce the adhesive ability of HeLa cells. Docking simulation and confocal microscopy assay results further indicated that C13 could bind well to the tubulin at paclitaxel binding site, leading to tubulin polymerization and mitotic disruption. PMID:25957661

  16. Preclinical pharmacokinetics and in vitro activity of ON 01910.Na, a novel anti-cancer agent

    Microsoft Academic Search

    Amy W. Chun; Stephen C. Cosenza; David R. Taft; Manoj Maniar

    2009-01-01

    Purpose  ON 01910.Na is a novel targeted anti-cancer agent under clinical investigation in Phase I and II trials. The purpose of this\\u000a research was to evaluate the pharmacokinetic profile of ON 01910.Na across several species, and to evaluate the effects of\\u000a protein binding and duration of exposure on its in vitro cytotoxic activity.\\u000a \\u000a \\u000a \\u000a Methods  Data were collated from several preclinical investigations, where the

  17. Spectrophotometric determination of anthracycline anticancer agents with aluminum(III) and chromazurol S in a nonionic surfactant micellar medium.

    PubMed

    Nakao, Masahiro; Yamazaki, Chikako; Tominaga, Hiroshi; Yamaguchi, Takako; Fujita, Yoshikazu

    2006-02-01

    A simple and highly sensitive spectrophotometric method for the determination of anthracycline anticancer agents, such as Daunorubicin hydrochloride (DAU), was established by using aluminum(III) and Chromazurol S (CAS) in a nonionic surfactant micellar medium. In the case of determination of DAU, the apparent molar absorptivity was 1.3 x 10(5) dm3 mol(-1) cm(-1) at 615 nm. Beer's law was obeyed in the concentration range of 0.028 - 2.82 microg ml(-1) for DAU. Owing to no need for solvent extraction, this method could be applied to assays of DAU and related drugs in pharmaceutical preparations. PMID:16512429

  18. Synthesis and biological evaluation of 9?- and 9?-hydroxyamino-parthenolides as novel anticancer agents.

    PubMed

    Moumou, Mohamed; El Bouakher, Abderrahman; Allouchi, Hassan; El Hakmaoui, Ahmed; Benharref, Ahmed; Mathieu, Véronique; Guillaumet, Gérald; Akssira, Mohamed

    2014-08-15

    A series of 9?-hydroxyamino-parthenolides 3-10, 9?-hydroxyamino-parthenolides 11-13 and 9?-hydroxy-1?,10?-epoxyamino-parthenolides 15-19 were efficiently synthesized starting from 9?-hydroxyparthenolide 1 and 9?-hydroxyparthenolide 2, which were isolated from Anvillea radiata. Compounds 1-13 and 15-19 were evaluated for their in vitro anticancer activity by the MTT colorimetric assay against one murine and six human cancer cell lines. This work provides new details about the structural requisites for anticancer activity. PMID:24998377

  19. Molecular designing and in silico evaluation of darunavir derivatives as anticancer agents

    PubMed Central

    Mahto, Manoj kumar; Yellapu, Nanda Kumar; Kilaru, Ravendra Babu; Chamarthi, Naga Raju; Bhaskar, Matcha

    2014-01-01

    Darunavir is a synthetic nonpeptidic protease inhibitor which has been tested for anticancer properties. To deduce and enhance the anticancer activity of the Darunavir, we have modified its reactive moiety in an effective way. We designed 9 analogues in ChemBioOffice 2010 and minimized using the LigPrep tool of Schrödinger 2011. These analogues can obstruct the activity of other signalling pathways which are implicated in many tumors. Results of the QikProp showed that all the analogues lied in the specified range of all the pharmacokinetic (ADMET) properties required to become the successful drug. Docking study was performed to test its anticancer activity against the biomarkers of the five main types of cancers i.e. bone, brain, breast, colon and skin cancer. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptor-ligand interaction studies revealed that these nine Darunavir analogues are active against all cancer biomarkers and have the features to prove themselves as anticancer drugs, further to be synthesized and tested against the cell lines. PMID:24966524

  20. High-level expression and bulk crystallization of recombinant l -methionine ?-lyase, an anticancer agent

    Microsoft Academic Search

    Tomoaki Takakura; Takaomi Ito; Shigeo Yagi; Yoshihide Notsu; Takashi Itakura; Takumi Nakamura; Kenji Inagaki; Nobuyoshi Esaki; Robert M. Hoffman; Akio Takimoto

    2006-01-01

    l-Methionine ?-lyase is a pyridoxal 5?-phosphate-dependent enzyme which has tumor selective anticancer activity. An efficient\\u000a production process for the recombinant enzyme was constructed by using the overexpression plasmid in Escherichia coli, large-scale cultivation, and practical crystallization on an industrial scale. The plasmid was optimized with a promoter\\u000a and the region of the ribosome-binding site. Plasmid pMGLTrc03, which has a trc

  1. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    SciTech Connect

    Shashkova, Elena V.; May, Shannon M. [Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902 (United States); Barry, Michael A., E-mail: mab@mayo.ed [Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology, Mayo Clinic, Rochester, MN 55902 (United States); Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States); Translational Immunovirology Program, Mayo Clinic, Rochester, MN 55902 (United States); Cancer Center, Mayo Clinic, Rochester, MN 55902 (United States)

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.

  2. Structure-Activity Relationship for Fe(III)-Salen-Like Complexes as Potent Anticancer Agents

    PubMed Central

    Ghanbari, Zahra; Housaindokht, Mohammad R.; Izadyar, Mohammad; Bozorgmehr, Mohammad R.; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R.; Matin, Maryam M.; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R2train = 0.99, RMSE = 0.138, and Q2LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  3. Structure-activity relationship for Fe(III)-salen-like complexes as potent anticancer agents.

    PubMed

    Ghanbari, Zahra; Housaindokht, Mohammad R; Izadyar, Mohammad; Bozorgmehr, Mohammad R; Eshtiagh-Hosseini, Hossein; Bahrami, Ahmad R; Matin, Maryam M; Khoshkholgh, Maliheh Javan

    2014-01-01

    Quantitative structure activity relationship (QSAR) for the anticancer activity of Fe(III)-salen and salen-like complexes was studied. The methods of density function theory (B3LYP/LANL2DZ) were used to optimize the structures. A pool of descriptors was calculated: 1497 theoretical descriptors and quantum-chemical parameters, shielding NMR, and electronic descriptors. The study of structure and activity relationship was performed with multiple linear regression (MLR) and artificial neural network (ANN). In nonlinear method, the adaptive neuro-fuzzy inference system (ANFIS) was applied in order to choose the most effective descriptors. The ANN-ANFIS model with high statistical significance (R (2) train = 0.99, RMSE = 0.138, and Q (2) LOO = 0.82) has better capability to predict the anticancer activity of the new compounds series of this family. Based on this study, anticancer activity of this compound is mainly dependent on the geometrical parameters, position, and the nature of the substituent of salen ligand. PMID:24955417

  4. The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture.

    PubMed

    Yousefzadi, Morteza; Sharifi, Mozafar; Behmanesh, Mehrdad; Ghasempour, Alireza; Moyano, Elisabeth; Palazon, Javier

    2012-07-01

    Podophyllotoxin (PTOX) is a naturally occurring phenolic compound isolated as an active anti-tumor agent. The stimulatory influence of light on the formation of phenolic compounds has been reported, but the molecular mechanism underlying the effect of light on the expression of genes involved in phenolic biosynthesis, especially of lignans, is still not fully understood. A series of experiments was carried out using ordinary fluorescent lamps to study the influence of light irradiation on growth and PTOX accumulation in Linum album cell cultures by varying the type of light and periods of exposure. The biosynthesis of PTOX was variably affected according to the quality of light. The enhancing effects of red light on PTOX production was correlated with increased activities of the enzyme phenylalanine ammonia-lyase (PAL), and the expression of some key genes involved in the biosynthesis of this compound, including the PAL gene itself and the cinnamoyl-CoA reductase (CCR) gene. Blue light was found to have similar effects but mainly on the expression level of CCR and pinoresinol lariciresinol reductase (PLR) genes. PMID:22579943

  5. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product.

    PubMed

    Sultana, Nighat

    2011-10-01

    Medicinal plants are becoming an important research area for novel and bioactive molecules for drug discovery. Novel therapeutic strategies and agents are urgently needed to treat different incurable diseases. Many plant derived active compounds are in human clinical trials. Currently ursolic acid is in human clinical trial for treating cancer, tumor, and skin wrinkles. This review includes the clinical use of ursolic acid in various diseases including anticancer, antitumor, and antiwrinkle chemotherapies, and the isolation and purification of this tritepernoid from various plants to update current knowledge on the rapid analysis of ursolic acid by using analytical methods. In addition, the chemical modifications of ursolic acid to make more effective and water soluble derivatives, previous and current information regarding, its natural and semisynthetic analogs, focusing on its anticancer, cytotoxic, antitumor, antioxidant, anti-inflammatory, anti-HIV, acetyl cholinesterase, ?-glucosidase, antimicrobial, and hepatoprotective activities, briefly discussion is attempted here for its research perspectives. This review article contains fourteen medicinally important ursolic acid derivatives and 351 references. PMID:21417964

  6. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents.

    PubMed

    Bajaj, Shalini; Asati, Vivek; Singh, Jagadish; Roy, Partha Pratim

    2015-06-01

    Five member heterocyclic 1,3,4-oxadiazole nucleus find unique place in medicinal chemistry and plays significant role in producing anticancer activity. The small and simple 1,3,4-oxadiazole nucleus is present in various compounds involved in research aimed at evaluating new products that posses interesting pharmacological properties such as antitumour activity. Mono and 2,5-di-substituted-1,3,4-oxadiazole derivatives have attracted considerable attention owing to their effective biological activity and extensive use. The important mechanism involved during its tumour suppression is related with the inhibition of different growth factors, enzymes and kinases including telomerase enzyme, histone deacetylase (HDAC), methionine aminopeptidase (MetAP), thymidylate synthase (TS), glycogen synthase kinase-3 (GSK), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and focal adhesion kinase (FAK). The focused criteria of this review is to highlights the targeted inhibitory activity of 1,3,4-oxadiazole derivatives and their structure activity relationship to generate potential anticancer agents. PMID:25965776

  7. Synthesis and characterization of celecoxib derivatives as possible anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV agents.

    PubMed

    Küçükgüzel, ? Güniz; Co?kun, ?nci; Ayd?n, Sevil; Aktay, Göknur; Gürsoy, ?ule; Çevik, Özge; Özakp?nar, Özlem Bingöl; Özsavc?, Derya; ?ener, Azize; Kaushik-Basu, Neerja; Basu, Amartya; Talele, Tanaji T

    2013-01-01

    A series of novel N-(3-substituted aryl/alkyl-4-oxo-1,3-thiazolidin-2-ylidene)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamides 2a-e were synthesized by the addition of ethyl a-bromoacetate and anhydrous sodium acetate in dry ethanol to N-(substituted aryl/alkylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoro-methyl)-1H-pyrazol-1-yl]benzene sulfonamides 1a-e, which were synthesized by the reaction of alkyl/aryl isothiocyanates with celecoxib. The structures of the isolated products were determined by spectral methods and their anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV NS5B RNA-dependent RNA polymerase (RdRp) activities evaluated. The compounds were also tested for gastric toxicity and selected compound 1a was screened for its anticancer activity against 60 human tumor cell lines. These investigations revealed that compound 1a exhibited anti-inflammatory and analgesic activities and further did not cause tissue damage in liver, kidney, colon and brain compared to untreated controls or celecoxib. Compounds 1c and 1d displayed modest inhibition of HCV NS5B RdRp activity. In conclusion, N-(ethylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (1a) may have the potential to be developed into a therapeutic agent. PMID:23519201

  8. Discovery of novel 1,5-benzodiazepine-2,4-dione derivatives as potential anticancer agents.

    PubMed

    Chen, Yinbo; Le, Vanminh; Xu, Xiaoyong; Shao, Xusheng; Liu, Jianwen; Li, Zhong

    2014-08-15

    A series of novel 1,5-benzodiazepine-2,4-dione derivatives with C-6 amide substituents were designed and synthesized using three-component reactions. The preliminary assays showed that most of them displayed moderate to good antitumor activities against human lung carcinoma (A549), human breast epithelial carcinoma (MCF-7), human colon carcinoma (HCT116), human cervical carcinoma (Hela) and Lewis lung carcinoma (2LL). Exhilaratingly, the activity level of 6m rivaled that of 5-Fluorouracil (5-Fu) against MCF-7 cell lines, which might be used as novel lead scaffold for potential anticancer development. PMID:25017036

  9. Synthesis and cytotoxicity evaluation of novel pyrido[3,4-d]pyrimidine derivatives as potential anticancer agents

    PubMed Central

    Wei, Linyi

    2014-01-01

    A new series of 4-substituted 2-amino pyrido[3,4-d]pyrimidine derivatives has been designed and synthesized as potential anticancer agents. These compounds were prepared from a common intermediate, 4-chloro-8-methoxy pyrido[3,4-d]pyrimidin-2-amine, followed by palladium catalyzed cross-coupling reactions or nucleophilic aromatic substitutions at the C-4 position. Evaluation of the representative analogs using the US National Cancer Institute’s 60 human cancer cell line (NCI 60) panel identified some of these compounds as exhibiting highly selective activities against breast cancer and renal cancer cell lines. A structure–activity relationship (SAR) study was explored to facilitate further development of this new class of compounds. PMID:25429348

  10. Synthesis and Structure-Activity Relationship Study of 1-Phenyl-1-(quinazolin-4-yl)ethanols as Anticancer Agents.

    PubMed

    Kuroiwa, Kenta; Ishii, Hirosuke; Matsuno, Kenji; Asai, Akira; Suzuki, Yumiko

    2015-03-12

    A quinazoline derivative PVHD121 (1a) was shown to have strong antiproliferative activity against various tumor-derived cell lines, including A549 (lung), NCI-H460 (lung), HCT116 (colon), MCF7 (breast), PC3 (prostate), and HeLa (cervical) cells with IC50 values from 0.1 to 0.3 ?M. A structure-activity relationship (SAR) study at the 2- and 4-position of the quinazoline core lead to the discovery of more potent anticancer agents (14, 16, 17, 19, 24, and 31). The results of an in vitro tubulin polymerization assay and fluorescent-based colchicine site competition assay with purified tubulin indicated that 1a inhibits tubulin polymerization by binding to the colchicine site. PMID:25815147

  11. Heteroaromatic analogs of the resveratrol analog DMU-212 as potent anti-cancer agents.

    PubMed

    Penthala, Narsimha Reddy; Thakkar, Shraddha; Crooks, Peter A

    2015-07-15

    Heteroaromatic analogs of DMU-212 (8-15) have been synthesized and evaluated for their anti-cancer activity against a panel of 60 human cancer cell lines. These novel analogs contain a trans-3,4,5-trimethoxystyryl moiety attached to the C2 position of indole, benzofuran, benzothiazole or benzothiophene ring (8, 11, 13 and 14, respectively) and showed potent growth inhibition in 85% of the cancer cell lines examined, with GI50 values <1?M. Interestingly, trans-3,4- and trans-3,5-dimethoxystyryl DMU-212 analogs 9, 10, 12 and 15 exhibited significantly less growth inhibition than their 3,4,5-trimethoxystyryl counterparts, suggesting that the trans-3,4,5-trimethoxystyryl moiety is an essential structural element for the potent anti-cancer activity of these heterocyclic DMU-212 analogs. Molecular modeling studies showed that the four most active compounds (8, 11, 13 and 14) all bind to the colchicine binding site on tubulin, and that their binding modes are similar to that of DMU-212. PMID:26022840

  12. Development History and Concept of an Oral Anticancer Agent S-1 (TS-1®): Its Clinical Usefulness and Future Vistas

    PubMed Central

    Shirasaka, Tetsuhiko

    2009-01-01

    Dushinsky et al. left a great gift to human beings with the discovery of 5-fluorouracil (5-FU). Approximately 50 years have elapsed from that discovery to the development of S-1 (TS-1®). The concept of developing an anticancer agent that simultaneously possesses both efficacy-enhancing and adverse reaction-reducing effects could be achieved only with a three-component combination drug. S-1 is an oral anticancer agent containing two biochemical modulators for 5-FU and tegafur (FT), a metabolically activated prodrug of 5-FU. The first modulator, 5-chloro-2,4-dihydroxypyridine (CDHP), enhances the pharmacological actions of 5-FU by potently inhibiting its degradation. The second modulator, potassium oxonate (Oxo), localizing in mucosal cells of the gastrointestinal (GI) tract after oral administration, reduces the incidence of GI toxicities by suppressing the activation of 5-FU in the GI tract. Thus, S-1 combines FT, CDHP and Oxo at a molar ratio of 1:0.4:1. In 1999–2007, S-1 was approved for the treatment of the following seven cancers: gastric, head and neck, colorectal, non-small cell lung, breast, pancreatic and biliary tract cancers. ‘S-1 and low-dose cisplatin therapy’ without provoking Grade 3 non-hematologic toxicities was proposed to enhance its clinical usefulness. Furthermore, ‘alternate-day S-1 regimen’ may improve the dosing schedule for 5-FU by utilizing its strongly time-dependent mode of action; the former is characterized by the low incidences of myelotoxicity and non-hematologic toxicities (e.g. ?Grade 1 anorexia, fatigue, stomatitis, nausea, vomiting and taste alteration). These two approaches are considered to allow long-lasting therapy with S-1. PMID:19052037

  13. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry

    PubMed Central

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L.

    2014-01-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide–alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum–acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent. PMID:24407462

  14. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry.

    PubMed

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L; Bierbach, Ulrich

    2014-03-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide-alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum-acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent. PMID:24407462

  15. On the improvement of the podophyllotoxin production by phenylpropanoid precursor feeding to cell cultures of Podophyllum hexandrum Royle

    Microsoft Academic Search

    Wim van Uden; Niesko Pras; Theo M. Malingré

    1990-01-01

    In order to improve the production of the cytotoxic lignan podophyllotoxin, seven precursors from the phenylpropanoid-routing and one related compound were fed to cell suspension cultures derived from the rhizomes of Podophyllum hexandrum Royle. These cell cultures were able to convert only coniferin into podophyllotoxin, maximally a 12.8 fold increase in content was found. Permeabilization using isopropanol, in combination with

  16. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent.

    PubMed

    Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2015-05-01

    In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, (1)H- and (13)C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity. PMID:25706598

  17. Synthesis and biological evaluation of novel pyridine derivatives as potential anticancer agents and phosphodiesterase-3 inhibitors.

    PubMed

    Davari, Atieh Sadat; Abnous, Khalil; Mehri, Soghra; Ghandadi, Morteza; Hadizadeh, Farzin

    2014-12-01

    Phosphodiesterases (PDEs) have been studied in a variety of tumours; data have suggested that the levels of PDE activities are elevated and, therefore, the ratios of cGMP to cAMP are affected. In addition, PDE inhibitors are potential targets for tumour cell growth inhibition and induction of apoptosis. Nonselective PDE inhibitors, such as theophylline or aminophylline, are known regulators of growth in a variety of carcinoma cell lines, suggesting a potential role for PDE inhibitors as anticancer drugs. In the current study, we reported the synthesis of novel derivatives of 6-aryl-4-imidazolyl-2-imino-1,2-dihydropyridine-3-carbonitriles (Ia,b,c) and their 2-oxo isosteres (IIa,b,c,d). All the compounds were evaluated for their PDE3A inhibitory effects, as well as their cytotoxic effects on MCF-7 and HeLa cell lines. Moreover, structure-activity relationships were studied. 4-(1-benzyl-2-ethylthio-5-imidazolyl)-6-(4-bromophenyl)-2-imino-1,2-dihydropyridine-3-carbonitrile (Ib) exhibited the strongest PDE3A inhibitory effects with an IC50 of 3.76±1.03nM. Compound Ib also showed the strongest cytotoxic effects on both the HeLa and MCF-7 cells with an IC50 of 34.3±2.6?M and 50.18±1.11?M, respectively. There was a direct correlation between PDE3 inhibition and anticancer activity for the synthesised compounds. The data reported here support our view that PDEs represent promising cellular targets for antitumor treatment. PMID:25277835

  18. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy.

    PubMed

    Guertin, Amy D; Li, Jing; Liu, Yaping; Hurd, Melissa S; Schuller, Alwin G; Long, Brian; Hirsch, Heather A; Feldman, Igor; Benita, Yair; Toniatti, Carlo; Zawel, Leigh; Fawell, Stephen E; Gilliland, D Gary; Shumway, Stuart D

    2013-08-01

    Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition. We show that MK-1775, a potent and selective ATP-competitive inhibitor of WEE1, is cytotoxic across a broad panel of tumor cell lines and induces DNA double-strand breaks. MK-1775-induced DNA damage occurs without added chemotherapy or radiation in S-phase cells and relies on active DNA replication. At tolerated doses, MK-1775 treatment leads to xenograft tumor growth inhibition or regression. To begin addressing potential response markers for MK-1775 monotherapy, we focused on PKMYT1, a kinase functionally related to WEE1. Knockdown of PKMYT1 lowers the EC(50) of MK-1775 by five-fold but has no effect on the cell-based response to other cytotoxic drugs. In addition, knockdown of PKMYT1 increases markers of DNA damage, ?H2AX and pCHK1(S345), induced by MK-1775. In a post hoc analysis of 305 cell lines treated with MK-1775, we found that expression of PKMYT1 was below average in 73% of the 33 most sensitive cell lines. Our findings provide rationale for WEE1 inhibition as a potent anticancer therapy independent of a genotoxic partner and suggest that low PKMYT1 expression could serve as an enrichment biomarker for MK-1775 sensitivity. PMID:23699655

  19. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L.

    PubMed

    Sun, Qing; Liu, Kanglun; Shen, Xiaoling; Jin, Weixin; Jiang, Lingyan; Saeed Sheikh, M; Hu, Yingjie; Huang, Ying

    2014-01-01

    In an effort to search for new cancer-fighting therapeutics, we identified a novel anticancer constituent, Lappaol F, from plant Arctium Lappa L. Lappaol F suppressed cancer cell growth in a time- and dose-dependent manner in human cancer cell lines of various tissue types. We found that Lappaol F induced G(1) and G(2) cell-cycle arrest, which was associated with strong induction of p21 and p27 and reduction of cyclin B1 and cyclin-dependent kinase 1 (CDK1). Depletion of p21 via genetic knockout or short hairpin RNA (shRNA) approaches significantly abrogated Lappaol F-mediated G(2) arrest and CDK1 and cyclin B1 suppression. These results suggest that p21 seems to play a crucial role in Lappaol F-mediated regulation of CDK1 and cyclin B1 and G(2) arrest. Lappaol F-mediated p21 induction was found to occur at the mRNA level and involved p21 promoter activation. Lappaol F was also found to induce cell death in several cancer cell lines and to activate caspases. In contrast with its strong growth inhibitory effects on tumor cells, Lappaol F had minimal cytotoxic effects on nontumorigenic epithelial cells tested. Importantly, our data also demonstrate that Lappaol F exhibited strong growth inhibition of xenograft tumors in nude mice. Lappaol F was well tolerated in treated animals without significant toxicity. Taken together, our results, for the first time, demonstrate that Lappaol F exhibits antitumor activity in vitro and in vivo and has strong potential to be developed as an anticancer therapeutic. PMID:24222662

  20. Mechanistic investigation of anticancer agents that damage DNA and interact with the estrogen receptor

    E-print Network

    Gopal, Sreeja

    2009-01-01

    One of the primary goals of cancer chemotherapy is the design of antitumor agents that achieve selective targeting of tumor cells while minimizing toxicity to normal tissues. We have synthesized a series of DNA damaging ...

  1. Biosynthesis of podophyllotoxin in Linum album cell cultures.

    PubMed

    Seidel, Véronique; Windhövel, Jörg; Eaton, Graham; Alfermann, A Wilhelm; Arroo, Randolph R J; Medarde, Manuel; Petersen, Maike; Woolley, Jack G

    2002-10-01

    Cell cultures of Linum album Kotschy ex Boiss. (Linaceae) showing high accumulation of the lignan podophyllotoxin (PTOX) were established. Enzymological studies revealed highest activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-hydroxycinnamate:CoA ligase and cinnamoyl-CoA:NADP oxidoreductase immediately prior to PTOX accumulation. To investigate PTOX biosynthesis, feeding experiments were performed with [2-(13)C]3',4'-dimethoxycinnamic acid, [2-(13)C]3',4'-methylenedioxycinnamic acid (MDCA), [2-(13)C]3',4',5'-trimethoxycinnamic acid, [2-(13)C]sinapic acid, [2-(13)C]- and [2,3-(13)C(2)]ferulic acid. Analysis of the metabolites by HPLC coupled to tandem mass spectrometry revealed incorporation of label from ferulic acid into PTOX and deoxypodophyllotoxin (DOP). In addition, MDCA was also unambiguously incorporated intact into PTOX. These observations suggest that in L. album both ferulic acid and methylenedioxy-substituted cinnamic acid can be incorporated into lignans. Furthermore, it appears that, in this species, the hydroxylation of DOP is a rate-limiting point in the pathway leading to PTOX. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/wo.1007/s00425-002-0834-1. PMID:12355164

  2. Using a Build-and-Click Approach for Producing Structural and Functional Diversity in DNA-Targeted Hybrid Anticancer Agents

    PubMed Central

    Ding, Song; Qiao, Xin; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    An efficient screening method was developed for functionalized DNA-targeted platinum-containing hybrid anticancer agents based on metal-mediated amine-to-nitrile addition, a form of “click” chemistry. The goal of the study was to generate platinum–acridine agents for their use as cytotoxic “warheads” in targeted and multifunctional therapies. This was achieved by introducing hydroxyl, carboxylic acid, and azide functionalities in the acridine linker moiety and by varying the nonleaving groups attached to platinum. The assay, which was based on microscale reactions between 6 platinum–nitrile complexes and 10 acridine derivatives, yielded a small library of 60 platinum–acridines. Reactions were monitored and product mixtures were quantitatively analyzed by automated in-line high-performance liquid chromatography– electrospray mass spectrometry (LC-ESMS) analysis and subjected to cell viability screening using a non-radioactive cell proliferation assay. The new prescreening methodology proves to be a powerful tool for establishing structure–activity relationships and for identifying target compounds. PMID:23074987

  3. Perifosine as a Potential Novel Anti-Cancer Agent Inhibits EGFR/MET-AKT Axis in Malignant Pleural Mesothelioma

    PubMed Central

    Pinton, Giulia; Manente, Arcangela Gabriella; Angeli, Giovanni

    2012-01-01

    Background PI3K/AKT signalling pathway is aberrantly active and plays a critical role for cell cycle progression of human malignant pleural mesothelioma (MMe) cells. AKT is one of the important cellular targets of perifosine, a novel bio-available alkylphospholipid that has displayed significant anti-proliferative activity in vitro and in vivo in several human tumour model systems and is currently being tested in clinical trials. Methods We tested Perifosine activity on human mesothelial cells and different mesothelioma cell lines, in order to provide evidence of its efficacy as single agent and combined therapy. Results We demonstrate here that perifosine, currently being evaluated as an anti-cancer agent in phase 1 and 2 clinical trials, caused a dose-dependent reduction of AKT activation, at concentrations causing MMe cell growth arrest. In this study we firstly describe that MMe cells express aside from AKT1 also AKT3 and that either the myristoylated, constitutively active, forms of the two proteins, abrogated perifosine-mediated cell growth inhibition. Moreover, we describe here a novel mechanism of perifosine that interferes, upstream of AKT, affecting EGFR and MET phosphorylation. Finally, we demonstrate a significant increase in cell toxicity when MMe cells were treated with perifosine in combination with cisplatin. Conclusions This study provides a novel mechanism of action of perifosine, directly inhibiting EGFR/MET-AKT1/3 axis, providing a rationale for a novel translational approach to the treatment of MMe. PMID:22590625

  4. Assessment of Performance of Manufacturing Procedures in a Unit for Production of Investigational Anticancer Agents, Using a Mixed Effects Analysis

    PubMed Central

    van der Schoot, S. C.; Huitema, A. D. R.; Beijnen, J. H.

    2007-01-01

    Purpose To identify the magnitude and sources of variability of a generic, aseptic manufacturing process for experimental anticancer agents employed at our facility, and to estimate the effects on product quality. Materials and Methods In-process and quality control data of all products manufactured according to this generic process (composed of weighing, dissolution, filtration, filling, semi-stoppering and lyophilization) over a 3-year period were retrospectively analyzed using mixed-effects analysis. Results Variability in the filling process was shown to be marginal and of minor importance for product quality in terms of content and content uniformity. An overall content of 101% was found with batch-to-batch and vial-to-vial variability up to 4.21% and 2.57%, respectively. Estimation of the overall batch failure revealed that structural bias in content and a high batch-to-batch variability in content were the most prominent factors determining batch failure. Furthermore, content and not content uniformity was shown to be most important parameter influencing batch failure. Calculated Process Capability Indices (CpKs) calculated for each product showed that the process is capable of manufacturing products which will routinely comply with the specification of 90–110% for content. However, the CpK values decreased dramatically using the specification of 95–105% as required for approved drug products. Conclusion These results indicate that at the early stage of product development less tight specification limits must be applied to prevent unnecessary batch rejection of investigational agents. PMID:17245647

  5. Preparation, characterization and in vitro evaluation of sterically stabilized liposome containing a naphthalenediimide derivative as anticancer agent.

    PubMed

    Parise, Amelia; Milelli, Andrea; Tumiatti, Vincenzo; Minarini, Anna; Neviani, Paolo; Zuccari, Guendalina

    2013-11-29

    Abstract The aim of this study was to incorporate a new naphthalenediimide derivative (AN169) with a promising anticancer activity into pegylated liposomes to an extent that allows its in vitro and in vivo testing without use of toxic solvent. AN169-loaded liposomes were prepared using the thin-film hydration method and characterized for size, polydispersity index, drug content and drug release. We examined their lyophilization ability in the presence of cryoprotectants (trehalose, sucrose and lysine) and the long-term stability of the lyophilized products stored at 4?°C for 3 and 6 months by particle size changes and drug leakage. AN169 was successfully loaded into liposomes with an entrapment efficiency of 87.3?±?2.5%. The hydrodynamic diameter of these liposomes after sonication was ?145?nm with a high degree of monodispersity. Trehalose was found to be superior to the other lyoprotectants. In particular, trehalose 1:10 lipid:cryoprotectant molar ratio may provide stable lyophilized liposomes with the conservation of physicochemical properties upon freeze-drying and long-term storage conditions. We also assessed their in vitro antitumor activity in human cancer cell lines (HTLA-230 neuroblastoma, Mel 3.0 melanoma, OVCAR-3 ovarian carcinoma and SV620 prostate cancer cells). However, only after 72?h incubation, loaded liposomes showed almost the same IC50 as free AN169. In conclusion, we developed a stable lyophilized liposomal formulation for intravenous administration of AN169 as anticancer drug, with the advantage of avoiding the use of potentially toxic solubilizing agents for future in vivo experiments. PMID:24286206

  6. Co-delivery of chemosensitizing siRNA and an anticancer agent via multiple monocomplexation-induced hydrophobic association.

    PubMed

    Lee, Eunjung; Oh, Changhwoa; Kim, In-San; Kwon, Ick Chan; Kim, Sehoon

    2015-07-28

    Synergistic combination of gene targeting and chemotherapy by co-delivering siRNA and anticancer drugs has widely been investigated to develop siRNA-based therapeutics for cancer treatment. Despite clinical potential of this approach, big challenges still remain such as delivery efficiency or stability/biocompatibility of the siRNA delivery system. Here we report a simple and biocompatible co-delivering formulation based on a unique complexation method, i.e., multiple monocomplexation-induced hydrophobic association between Bcl-2 targeting siRNA and a monocationic anticancer agent (benzethonium chloride, BZT). A colloidal formulation of the hydrophobically associated multiple monocomplex (HMplex) composed of siRNA, BZT and Pluronic F-68 was spontaneously constructed by physical mixing of the ternary constituents. In vitro and in vivo studies revealed that the ternary HMplex with a low charge ratio (N/P=4) possesses a tightly complexed stable nanostructure with Pluronic surface and small colloidal size less than 10nm, which allowed for 1) suitable protection of siRNA in serum-rich physiological environment, 2) efficient intracellular transfection into the cytoplasm, and 3) successful peritumoral co-delivery into the tumor tissue with dense interstitial matrix. Compared to non-targeting HMplexes between scrambled siRNA and BZT, Bcl-2 targeting HMplexes enhanced significantly both mRNA down-regulation by siRNA and apoptosis induction by BZT, and thus greatly suppressed the tumor volume when administered to highly aggressive and resistant human breast cancer xenografts (MDA-MB-231) in mice. These results elucidate that the co-complexed siRNA and BZT were liberated by intracellular decomplexation to trigger a synergistically combined therapeutic action. The successful siRNA/chemodrug co-delivery in vivo via peritumoral route and the greatly promoted therapeutic efficacy thereby represent the clinical potential of HMplexes for adjuvant locoregional cancer treatment by gene-targeted combination therapy. PMID:25979325

  7. Design, synthesis and biological evaluation of novel sesquiterpene mustards as potential anticancer agents.

    PubMed

    Xu, Yuan-Zhen; Gu, Xue-Yan; Peng, Shou-Jiao; Fang, Jian-Guo; Zhang, Ying-Mei; Huang, De-Jun; Chen, Jian-Jun; Gao, Kun

    2015-04-13

    Several novel series of sesquiterpene mustards (SMs) bearing nitrogen mustard and glutathione (GSH)-reactive ?-methylene-?-butyrolactone groups were successfully prepared for the first time and showed excellent antiproliferative activities in vitro. Among them, compounds 2e and 2g displayed the highest antiproliferative properties with IC50 values ranging from 2.5 to 8.7 ?M. The selectivity of these two compounds was evaluated by SRB method against human cancer and normal hepatic cells (HepG2 and L02). The induction of apoptosis and effects on the cell cycle distribution with compounds 2e and 2g were investigated by Hoechst 33,258 staining and flow cytometry, which exhibited that they could induce selective cell apoptosis and cell cycle arrest in HepG2 and L02 cells. In addition, further investigation showed that compounds 2e and 2g could obviously inhibit the proliferation of HepG2 cells by inducing significant DNA cross-linking and depleting GSH in cell media. The good cytotoxicity and selectivity of compounds 2e and 2g pointed them as promising leads for anticancer drug design. PMID:25771034

  8. A modified HSP70 inhibitor shows broad activity as an anticancer agent.

    PubMed

    Balaburski, Gregor M; Leu, Julia I-Ju; Beeharry, Neil; Hayik, Seth; Andrake, Mark D; Zhang, Gao; Herlyn, Meenhard; Villanueva, Jessie; Dunbrack, Roland L; Yen, Tim; George, Donna L; Murphy, Maureen E

    2013-03-01

    The stress-induced HSP70 is an ATP-dependent molecular chaperone that plays a key role in refolding misfolded proteins and promoting cell survival following stress. HSP70 is marginally expressed in nontransformed cells, but is greatly overexpressed in tumor cells. Silencing HSP70 is uniformly cytotoxic to tumor but not normal cells; therefore, there has been great interest in the development of HSP70 inhibitors for cancer therapy. Here, we report that the HSP70 inhibitor 2-phenylethynesulfonamide (PES) binds to the substrate-binding domain of HSP70 and requires the C-terminal helical "lid" of this protein (amino acids 573-616) to bind. Using molecular modeling and in silico docking, we have identified a candidate binding site for PES in this region of HSP70, and we identify point mutants that fail to interact with PES. A preliminary structure-activity relationship analysis has revealed a derivative of PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), which shows increased cytotoxicity and ability to inhibit autophagy, along with significantly improved ability to extend the life of mice with pre-B-cell lymphoma, compared with the parent compound (P = 0.015). Interestingly, we also show that these HSP70 inhibitors impair the activity of the anaphase promoting complex/cyclosome (APC/C) in cell-free extracts, and induce G2-M arrest and genomic instability in cancer cells. PES-Cl is thus a promising new anticancer compound with several notable mechanisms of action. PMID:23303345

  9. A new paradigm for the development of anticancer agents from natural products.

    PubMed

    Subramanian, Balanehru; Nakeff, Alexander; Tenney, Karen; Crews, Phillip; Gunatilaka, Leslie; Valeriote, Fred

    2006-01-01

    A novel pharmacology paradigm has been developed which quickly and efficiently moves prospective anticancer drugs from the discovery phase through pharmacology testing and into therapeutic trial assessment. Following discovery, the drug is first assessed in a clonogenic assay which determines the cytotoxic effect of different concentrations of the drug at 3 different exposure durations: 2h, 24h and continuous (168 h). Second, pharmacokinetic information is obtained in both plasma and tumor for the drug administered at the maximum tolerated dose given intravenously. The first study defines the time-concentration profile required to obtain a specific cell survival for the tumor cells; the second study determines the concentration-time profile that can be obtained in both plasma and tumor at the maximum tolerated dose of the drug. The integration of this information determines whether a successful therapeutic trial is possible. Only when a drug shows therapeutic efficacy is a proteomics-based mechanism of action study initiated. Two drugs have been assessed in this paradigm: salicortin and fascaplysin A. PMID:16528970

  10. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    NASA Astrophysics Data System (ADS)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  11. Synthesis of novel anticancer agents through opening of spiroacetal ring of diosgenin.

    PubMed

    Hamid, A A; Hasanain, Mohammad; Singh, Arjun; Bhukya, Balakishan; Omprakash; Vasudev, Prema G; Sarkar, Jayanta; Chanda, Debabrata; Khan, Feroz; Aiyelaagbe, O O; Negi, Arvind S

    2014-09-01

    Diosgenin has been modified to furostane derivatives after opening the F-spiroacetal ring. The aldehyde group at C26 in derivative 8 was unexpectedly transformed to the ketone 9. The structure of ketone 9 was confirmed by spectroscopy and finally by X-ray crystallography. Five of the diosgenin derivatives showed significant anticancer activity against human cancer cell lines. The most potent molecule of this series i.e. compound 7, inhibited cellular growth by arresting the population at G0/G1 phase of cell division cycle. Cells undergo apoptosis after exposure to the derivative 7 which was evident by increase in sub G0 population in cell cycle analysis. Docking experiments showed caspase-3 and caspase-9 as possible molecular targets for these compounds. This was further validated by cleavage of PARP, a caspase target in apoptotic pathway. Compound 7 was found non-toxic up to 1000mg/kg dose in acute oral toxicity in Swiss albino mice. PMID:24929045

  12. Potential Anticancer Heterometallic Fe-Au and Fe-Pd Agents: Initial Mechanistic Insights

    PubMed Central

    Lease, Nicholas; Vasilevski, Vadim; Carreira, Monica; de Almeida, Andreia; Sanaú, Mercedes; Hirva, Pipsa; Casini, Angela; Contel, Maria

    2013-01-01

    A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenyl-phosphanes [{Cp-P(Ph2)=N-Ph}2Fe] (1), [{Cp-P(Ph2)=N-CH2-2-NC5H4}2Fe] (2) and [{Cp-P(Ph2)=N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)] and [{PdCl2}2(2)]. The complexes have been evaluated for their antripoliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a non-tumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin. PMID:23786413

  13. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent.

    PubMed

    Zhang, Baoxin; Duan, Dongzhu; Ge, Chunpo; Yao, Juan; Liu, Yaping; Li, Xinming; Fang, Jianguo

    2015-02-26

    The selenoprotein thioredoxin reductases (TrxRs) are attractive targets for anticancer drugs development. Xanthohumol (Xn), a naturally occurring polyphenol chalcone from hops, has received increasing attention because of its multiple pharmacological activities. We synthesized Xn and its 43 analogues and discovered that compound 13n displayed the highest cytotoxicity toward HeLa cells (IC50 = 1.4 ?M). Structure-activity relationship study indicates that the prenyl group is not necessary for cytotoxicity, and introducing electron-withdrawing group, especially on the meta-position, is favored. In addition, methylation of the phenoxyl groups generally improves the potency. Mechanistic study revealed that 13n selectively inhibits TrxR and induces reactive oxygen species and apoptosis in HeLa cells. Cells overexpressing TrxR are resistant to 13n insult, while knockdown of TrxR sensitizes cells to 13n treatment, highlighting the physiological significance of targeting TrxR by 13n. The clarification of the structural determinants for the potency would guide the design of novel potent molecules for future development. PMID:25629304

  14. Strategy for reversing resistance to a single anticancer agent in human prostate and pancreatic carcinomas

    PubMed Central

    Lebedeva, Irina V.; Washington, Ilyas; Sarkar, Devanand; Clark, Jennifer A.; Fine, Robert L.; Dent, Paul; Curiel, David T.; Turro, Nicholas J.; Fisher, Paul B.

    2007-01-01

    Effective therapies for most solid cancers, especially those that have progressed to metastasis, remain elusive because of inherent and acquired resistance of tumor cells to conventional treatments. Additionally, the effective therapeutic window for many protocols can be very narrow, frequently resulting in toxicity. The present study explores an anticancer strategy that effectively eliminates resistant cancer cells without exerting deleterious effects on normal cells. This approach employs melanoma differentiation-induced gene-7/interleukin-24 (mda-7/IL-24), a cancer-specific, apoptosis-inducing cytokine, in combination with nontoxic doses of a chemical compound from the endoperoxide class that decomposes in water generating singlet oxygen. This combinatorial regimen specifically induced in vitro apoptosis in prostate carcinoma cells, with innate resistance to chemotherapy or engineered resistance to mda-7/IL-24, as well as pancreatic carcinoma cells inherently resistant to any treatment modality, including mda-7/IL-24. Apoptosis induction correlated with increased cellular reactive oxygen species production and was prevented by general antioxidants, such as N-acetyl-l-cysteine or Tiron. Induction of apoptosis in combination-treated cancer cells correlated with a reduction in the antiapoptotic protein BCL-xL. In contrast, both normal prostate and pancreatic epithelial cells were unaffected by the single or combination treatment. These provocative findings suggest that this combinatorial strategy might provide a platform for developing effective treatments for therapy-resistant cancers. PMID:17360670

  15. Indole-3-carbinol as a chemopreventive and anti-cancer agent

    PubMed Central

    Weng, Jing-Ru; Tsai, Chen-Hsun; Kulp, Samuel K.; Chen, Ching-Shih

    2009-01-01

    During the course of oncogenesis and tumor progression, cancer cells constitutively upregulate signaling pathways relevant to cell proliferation and survival as a strategy to overcome genomic instability and acquire resistance phenotype to chemotherapeutic agents. In light of this clinical and molecular heterogeneity of human cancers, it is desirable to concomitantly target these genetic abnormalities by using an agent with pleiotropic mode of action. Indole-3-carbinol and its metabolite 3,3’-diindoylmethane (DIM) target multiple aspects of cancer cell cycle regulation and survival including Akt-NF?B signaling, caspase activation, cyclin-dependent kinase activities, estrogen metabolism, estrogen receptor signaling, endoplasmic reticulum stress, and BRCA gene expression. This broad spectrum of antitumor activities in conjunction with low toxicity underscores the translational value of indole-3-carbinol and its metabolites in cancer prevention/therapy. Furthermore, novel antitumor agents with overlapping underlying mechanisms have emerged via structural optimization of indole-3-carbinol and DIM, which may provide considerable therapeutic advantages over the parental compounds with respect to chemical stability and anti-tumor potency. Together, these agents might foster new strategies for cancer prevention and therapy. PMID:18314259

  16. A modified HSP70 inhibitor shows broad activity as an anticancer agent

    PubMed Central

    Balaburski, Gregor M.; Leu, Julia I-Ju; Beeharry, Neil; Hayik, Seth; Andrake, Mark D.; Zhang, Gao; Herlyn, Meenhard; Villanueva, Jessie; Dunbrack, Roland L.; Yen, Tim; George, Donna L.; Murphy, Maureen E.

    2013-01-01

    The stress-induced heat shock protein 70 (HSP70) is an ATP-dependent molecular chaperone that plays a key role in refolding misfolded proteins and promoting cell survival following stress. HSP70 is marginally expressed in non-transformed cells, but is greatly overexpressed in tumor cells. Silencing HSP70 is uniformly cytotoxic to tumor but not normal cells; therefore, there has been great interest in the development of HSP70 inhibitors for cancer therapy. Here we report that the HSP70 inhibitor 2-phenylethynesulfonamide (PES) binds to the substrate-binding domain of HSP70, and requires the C-terminal helical ‘lid’ of this protein (amino acids 573-616) in order to bind. Using molecular modeling and in silico docking, we have identified a candidate binding site for PES in this region of HSP70, and we identify point mutants that fail to interact with PES. A preliminary structure-activity relationship analysis has revealed a derivative of PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), which shows increased cytotoxicity and ability to inhibit autophagy, along with significantly improved ability to extend the life of mice with pre-B cell lymphoma, compared to the parent compound (p=0.015). Interestingly, we also show that these HSP70 inhibitors impair the activity of the Anaphase Promoting Complex/Cyclosome (APC/C) in cell-free extracts, and induce G2/M arrest and genomic instability in cancer cells. PES-Cl is thus a promising new anti-cancer compound with several notable mechanisms of action. PMID:23303345

  17. Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis

    Microsoft Academic Search

    Gerald A Ruiter; Marcel Verheij; Shuraila F Zerp; Wim J van Blitterswijk

    2001-01-01

    Synthetic alkyl-lysophospholipids (ALPs, also referred to as ether-phospholipids) have been studied as antitumor agents for more than a decade. Classical examples of these ALPs include 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3; Edelfosine) and hexadecylphosphocholine (HePC; Miltefosine). Unlike most currently available chemotherapeutic drugs that target the nuclear DNA, ALPs exert their action at the plasma membrane level, where they interfere with mitogenic signal transduction pathways.

  18. Evaluation of dimethylaminosulfonates of alkane diols as a novel group of anticancer agents

    Microsoft Academic Search

    U Sanyal; R Nanda; S Samanta; A Pain; S Dutta; A. S Verma; B. J Rider; K. C Agrawal

    2000-01-01

    A series of title compounds has been synthesized and evaluated by the cytotoxicity assays conducted in vitro in seven human tumor cell lines, initially in MT-4 and H-9, followed by U-937, PM-1, MCF-7, Hep-3B, and K-562. These compounds were simultaneously compared with the existing clinical drug, busulfan and also with an experimental drug, hepsulfam. IC50 values of these agents in

  19. Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes

    Microsoft Academic Search

    Monica Marra; Giuseppina Salzano; Carlo Leonetti; Pierfrancesco Tassone; Marco Scarsella; Silvia Zappavigna; Teresa Calimeri; Renato Franco; Giuseppina Liguori; Giovanni Cigliana; Roberta Ascani; Maria Immacolata La Rotonda; Alberto Abbruzzese; Pierosandro Tagliaferri; Michele Caraglia; Giuseppe De Rosa

    Zoledronic acid (ZOL) is a potent amino-bisphosphonate used for the treatment of bone metastases with recently reported antitumor activity. However, the short plasma half-life and rapid accumulation in bone limits the use of ZOL as an antitumor agent in extraskeletal tissues. Therefore, we developed stealth liposomes encapsulating ZOL (LipoZOL) to increase extraskeletal drug availability. Compared to free ZOL, LipoZOL induced

  20. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting.

    PubMed

    Chen, Huabing; Chang, Xueling; Du, Danrong; Liu, Wei; Liu, Jie; Weng, Ting; Yang, Yajiang; Xu, Huibi; Yang, Xiangliang

    2006-01-10

    The purpose of this study was to evaluate solid lipid nanoparticles as the topical carrier for epidermal targeting of podophyllotoxin (POD). The high pressure homogenization was employed to prepare drug-loaded solid lipid nanoparticles. The POD-loaded SLN stabilized by 0.5% poloxamer 188 and 1.5% soybean lecithin (P-SLN) and 2% polysorbate 80 (T-SLN) was characterized by photon correlation spectroscopy (PCS). P-SLN showed an average diameter of 73.4 nm and a zeta potential of -48.36 mV. The imaging of AFM indicated that the P-SLN had a spherical shape. DSC and X-ray diffraction analysis showed that POD was dispersed in SLN in an amorphous state. The in vitro permeation study showed that P-SLN increased the accumulative amount of POD in porcine skin 3.48 times over 0.15% tincture. But T-SLN with a diameter of 123.1 nm and a zeta potential of -17.4 mV did not show a high accumulative amount of POD when compared with P-SLN, though both P-SLN and T-SLN could avoid the systemic uptake of POD. Because of the fluorescence property of POD, fluorescence microscopy imaging was employed to visualize the penetration of POD into skin from SLN. The penetration of POD from P-SLN seemed to follow two pathways along the stratum corneum and hair follicle route. The imaging revealed that P-SLN had a strong localization of POD within epidermis. The penetration of P-SLN with low particle size into stratum corneum along the skin surface 'furrow' and the consequent controlled release of POD might lead to the epidermal targeting. P-SLN provides a good epidermal targeting effect and may be a promising carrier for topical delivery of POD. PMID:16325954

  1. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    PubMed

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations. PMID:25973667

  2. Advances in the chemistry and pharmacology of ecteinascidins, a promising new class of anti-cancer agents.

    PubMed

    Manzanares, I; Cuevas, C; García-Nieto, R; Marco, E; Gago, F

    2001-11-01

    Ecteinascidins are marine natural products consisting of two or three linked tetrahydroisoquinoline subunits and an active carbinolamine functional group. Their potent antiproliferative activity against a variety of tumor cells has made them attractive candidates for development as anticancer agents. The lead compound, ecteinascidin 743 (ET 743), is currently in phase II clinical trials but the low amounts present in its natural source, the tunicate Ecteinascidia turbinata, made it necessary to develop efficient synthetic procedures. Recent improvements on the original synthesis are reviewed as well as new strategies starting from readily available cyanosafracin B. ET 743 is known to bind to the minor groove of DNA giving rise to a covalent adduct with the exocyclic amino group at position 2 of a guanine in a fashion similar to saframycin antibiotics. Some of the resulting complexes have been studied by a variety of biochemical and spectroscopic methods and also by computer simulations. The rules for sequence specificity have been well established (preferred targets are RGC and YGG, where R and Y stand for purine and pyrimidine, respectively), and it has been shown that binding of ET 743 to DNA is accompanied by minor groove widening and DNA bending towards the major groove. Although the precise target for antitumor action remains to be unambiguously defined, a role in affecting the transcriptional regulation of some inducible genes is rapidly emerging. PMID:12678757

  3. Discovery of Akt Kinase Inhibitors through Structure-Based Virtual Screening and Their Evaluation as Potential Anticancer Agents

    PubMed Central

    Chuang, Chih-Hung; Cheng, Ta-Chun; Leu, Yu-Ling; Chuang, Kuo-Hsiang; Tzou, Shey-Cherng; Chen, Chien-Shu

    2015-01-01

    Akt acts as a pivotal regulator in the PI3K/Akt signaling pathway and represents a potential drug target for cancer therapy. To search for new inhibitors of Akt kinase, we performed a structure-based virtual screening using the DOCK 4.0 program and the X-ray crystal structure of human Akt kinase. From the virtual screening, 48 compounds were selected and subjected to the Akt kinase inhibition assay. Twenty-six of the test compounds showed more potent inhibitory effects on Akt kinase than the reference compound, H-89. These 26 compounds were further evaluated for their cytotoxicity against HCT-116 human colon cancer cells and HEK-293 normal human embryonic kidney cells. Twelve compounds were found to display more potent or comparable cytotoxic activity compared to compound H-89 against HCT-116 colon cancer cells. The best results were obtained with Compounds a46 and a48 having IC50 values (for HCT-116) of 11.1 and 9.5 µM, respectively, and selectivity indices (IC50 for HEK-293/IC50 for HCT-116) of 12.5 and 16.1, respectively. Through structure-based virtual screening and biological evaluations, we have successfully identified several new Akt inhibitors that displayed cytotoxic activity against HCT-116 human colon cancer cells. Especially, Compounds a46 and a48 may serve as useful lead compounds for further development of new anticancer agents. PMID:25648320

  4. Direct Delivery of a Cytotoxic Anticancer Agent into the Metastatic Lymph Node Using Nano/Microbubbles and Ultrasound

    PubMed Central

    Sato, Takuma; Mori, Shiro; Sakamoto, Maya; Arai, Yoichi; Kodama, Tetsuya

    2015-01-01

    Direct injection of an anticancer agent into a metastatic lymph node (LN) has not been used as a standard treatment because evidence concerning the efficacy of local administration of a drug into a metastatic LN has not been established. Here we show that the combination of intralymphatic drug delivery with nano/microbubbles (NMBs) and ultrasound has the potential to improve the chemotherapeutic effect. We delivered cis-diamminedichloroplatinum (II) (CDDP) into breast carcinoma cells in vitro and found that apoptotic processes were involved in the antitumor action. Next, we investigated the antitumor effect of intralymphatic chemotherapy with NMBs and ultrasound in an experimental model of LN metastasis using MXH10/Mo-lpr/lpr mice exhibiting lymphadenopathy. The combination of intralymphatic chemotherapy with NMBs and ultrasound has the potential to improve the delivery of CDDP into target LNs without damage to the surrounding normal tissues. The present study indicates that intralymphatic drug delivery with NMBs and ultrasound will potentially be of great benefit in the clinical setting. PMID:25897663

  5. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents.

    PubMed

    Ta?demir, Demet; Karaküçük-?yido?an, Ay?egül; Ula?li, Mustafa; Ta?kin-Tok, Tu?ba; Oruç-Emre, Em?ne Elç?n; Bayram, Hasan

    2015-02-01

    A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF-7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC-27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound exhibited the most potent activity (IC50 4.6??M) against HGC-27 as compared with the reference compound, sindaxel (IC50 10.3??M), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents. PMID:25399965

  6. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents

    PubMed Central

    2010-01-01

    Histone deacetylases (HDACs) can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL) for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents. PMID:20132536

  7. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver

    PubMed Central

    Eyal, S; Lamb, J G; Smith-Yockman, M; Yagen, B; Fibach, E; Altschuler, Y; White, H S; Bialer, M

    2006-01-01

    Background and purpose: The antiepileptic drug valproic acid, a histone deacetylase (HDAC) inhibitor, is currently being tested as an anticancer agent. However, HDAC inhibitors may interact with anticancer drugs through induction of P-glycoprotein (P-gp, MDR1) expression. In this study we assessed whether valproic acid induces P-gp function in tumour cells. We also investigated effects of valproic acid on the mRNA for P-gp and the cytochrome P450, CYP3A, in rat livers. >Experimental approach: Effects of valproic acid on P-gp were assessed in three tumour cell lines, SW620, KG1a and H4IIE. Accumulation of acetylated histone H3 in rats' livers treated for two or seven days with valproic acid was evaluated using a specific antibody. Hepatic expression of the P-gp genes, mdr1a, mdr1b and mdr2, was determined by real-time polymerase chain reaction. The effects of valproic acid on CYP3A were assessed by Northern blot analysis and CYP3A activity assays. Key results: Valproic acid (0.5–2.0?mM) induced P-gp expression and function up to 4-fold in vitro. The effect of a series of valproic acid derivatives on P-gp expression in SW620 and KG1a cells correlated with their HDAC inhibition potencies. Treatment of rats with 1?mmol kg?1 valproic acid for two and seven days increased hepatic histone acetylation (1.3- and 3.5-fold, respectively) and the expression of mdr1a and mdr2 (2.2–4.1-fold). Valpromide (0.5–2.0?mM) did not increase histone acetylation or P-gp expression in rat livers, but induced CYP3A expression. Conclusions: Valproic acid increased P-gp expression and function in human tumour cell lines and in rat liver. The clinical significance of this increase merits further investigation. PMID:16894351

  8. Hydrazino-aza and N-azapeptoids with therapeutic potential as anticancer agents.

    PubMed

    Bouget, Karine; Aubin, Sandrine; Delcros, Jean Guy; Arlot-Bonnemains, Yannick; Baudy-Floc'h, Michčle

    2003-11-17

    The ubiquitin-proteasome-mediated degradation pathway plays an important role in regulating protein turnover in eucaryotic cells and, consequently, regulates both cell proliferation and cell death. The proteasome influences many cellular regulatory signals and is thus a potential target for pharmacological agents. The study of proteasome function has led to the identification of several natural and synthetic compounds that can act as tumor cell growth inhibitors. In this study, we have developed a series of hydrazino-aza and N-azapeptoids, analogues of Ac-Leucyl-Leucyl-Norleucinal (ALLN) a non-specific peptidyl aldehyde inhibitor of the proteasome. These peptide analogues share a common backbone and bear different C- and N-terminal functions. Their antiproliferative activity on murine leukemia L1210 cells is reported here. PMID:14604649

  9. Cutaneous reactions to anticancer agents targeting the epidermal growth factor receptor: a dermatology-oncology perspective.

    PubMed

    Lacouture, M E; Melosky, B L

    2007-01-01

    The epidermal growth factor receptor (EGFR) is often overexpressed or dysregulated in solid tumors. Targeting the EGFR-mediated signaling pathway has become routine practice in the treatment of lung, pancreatic, head and neck, and colon carcinomas. Available agents with selected activity towards the EGFR include low molecular weight tyrosine kinase inhibitors, e.g., erlotinib (Tarceva, Genentech BioOncology/ OSI Pharmaceuticals/ F. Hoffmann-La Roche) and monoclonal antibodies, such as cetuximab (Erbitux, Bristol-Myers Squibb/ ImClone Systems/ Merck) and panitumumab (Vectibix, Amgen). Their use is anticipated to increase for treating other solid tumors that are dependent on this pathway for growth and proliferation. Health Canada and the US FDA have approved erlotinib for the treatment of advanced non-small cell lung carcinoma (NSCLC). It has also been approved in the US for use against pancreatic cancer in combination with gemcitabine (Gemzar, Eli Lilly). Cetuximab and most recently panitumumab (Vectibix, Amgen/ Abgenix) were approved by the US FDA for metastatic colorectal carcinoma. Cetuximab is also approved in the US for head and neck squamous cell carcinoma. The safety profile for this class of drugs is unique, with virtually no hematological toxicity, but frequent cutaneous and gastrointestinal side-effects. Although there is a dearth of randomized trials addressing treatment of the dermatological side-effects, some basic principles of management have been agreed upon and can likely improve patient compliance and decrease inappropriate dose reduction, which may negatively influence the antitumor effect. PMID:17762902

  10. Design, synthesis and biological evaluation of novel pyrenyl derivatives as anticancer agents.

    PubMed

    Bandyopadhyay, Debasish; Sanchez, Jorge L; Guerrero, Adrian M; Chang, Fang-Mei; Granados, Jose C; Short, John D; Banik, Bimal K

    2015-01-01

    Polycyclic aromatic hydrocarbons are widespread in nature with a toxicity range from non-toxic to extremely toxic. A series of pyrenyl derivatives has been synthesized following a four-step strategy where the pyrene nucleus is attached with a basic heterocyclic moiety through a carbon linker. Virtual screening of the physicochemical properties and druggability has been carried out. The cytotoxicity of the compounds (1-8) have been evaluated in vitro against a small panel of human cancer cell lines which includes two liver cancer (HepG2 and Hepa 1-6), two colon cancer (HT-29 and Caco-2) and one each for cervical (HeLa) and breast (MCF-7) cancer cell lines. The IC50 data indicate that compound 6 and 8 are the most effective cytotoxic agents in the present set of pyrenyl derivatives, suggesting that having a 4-carbon linker is more effective than a 5-carbon linker and the presence of amide carbonyl groups in the linker severely reduces the efficacy of the compound. The compounds showed selectivity toward cancer cells at lower doses (<5 ?M) when compared with the normal hepatocytes. The mechanism of action supports the cell death through apoptosis in a caspase-independent manner without cleavage of poly (ADP-ribose) polymerase (PARP), even though the compounds cause plasma membrane morphological changes. The compounds, whether highly cytotoxic or mildly cytotoxic, localize to the membrane of cells. The compounds with either a piperidine ring (6) or an N-methyl piperazine (8) in the side chain were both capable of circumventing the drug resistance in SKOV3-MDR1-M6/6 ovarian cancer cells overexpressing P-glycoprotein. Qualitative structure-activity relationship has also been studied. PMID:25462285

  11. Endophytic fungi: novel sources of anticancer lead molecules.

    PubMed

    Chandra, Sheela

    2012-07-01

    Cancer is a major killer disease all over the world and more than six million new cases are reported every year. Nature is an attractive source of new therapeutic compounds, as a tremendous chemical diversity is found in millions of species of plants, animals, and microorganisms. Plant-derived compounds have played an important role in the development of several clinically useful anti-cancer agents. These include vinblastine, vincristine, camptothecin, podophyllotoxin, and taxol. Production of a plant-based natural drug is always not up to the desired level. It is produced at a specific developmental stage or under specific environmental condition, stress, or nutrient availability; the plants may be very slow growing taking several years to attain a suitable growth phase for product accumulation and extraction. Considering the limitations associated with the productivity and vulnerability of plant species as sources of novel metabolites, microorganisms serve as the ultimate, readily renewable, and inexhaustible source of novel structures bearing pharmaceutical potential. Endophytes, the microorganisms that reside in the tissues of living plants, are relatively unstudied and offer potential sources of novel natural products for exploitation in medicine, agriculture and the pharmaceutical industry. They develop special mechanisms to penetrate inside the host tissue, residing in mutualistic association and their biotransformation abilities opens a new platform for synthesis of novel secondary metabolites. They produce metabolites to compete with the epiphytes and also with the plant pathogens to maintain a critical balance between fungal virulence and plant defense. It is therefore necessary that the relationship between the plants and endophytes during the accumulation of these secondary metabolites is studied. Insights from such research would provide alternative methods of natural product drug discovery which could be reliable, economical, and environmentally safe. PMID:22622838

  12. Meta-Analysis of 5% Imiquimod and 0.5% Podophyllotoxin in the Treatment of Condylomata Acuminata

    Microsoft Academic Search

    Jun Yan; Sheng-Li Chen; Hai-Na Wang; Tai-Xiang Wu

    2006-01-01

    Background: Genital warts are a common sexually transmitted disease caused by human papillomaviruses. Podophyllotoxin 0.5%, approved for patient self-administration, has been used most extensively in the treatment of genital warts. Imiquimod, a novel immune response modifier capable of inducing interferon-? and a variety of cytokines, has been examined as a potential treatment for genital warts. But 0.5% podophyllotoxin and 5%

  13. Bifunctional ethyl 2-amino-4-methylthiazole-5-carboxylate derivatives: synthesis and in vitro biological evaluation as antimicrobial and anticancer agents.

    PubMed

    Rostom, Sherif A F; Faidallah, Hassan M; Radwan, Mohammed F; Badr, Mona H

    2014-04-01

    Thirty thiazole compounds bearing chemotherapeutically-active pharmacophores were synthesized and evaluated for their preliminary in vitro antimicrobial and anticancer activities. Nineteen compounds displayed obvious antibacterial potential, with special bactericidal activity against Gram positive bacteria, whereas, nine analogs showed moderate to weak antifungal activity against Candida albicans. The analog 12f proved to be the most active antimicrobial member identified in this study being comparable to ampicillin and gentamicin sulfate against Staphylococcus aureus and Bacillus subtilis, together with a moderate antifungal activity. Additionally, nine derivatives were tested for their preliminary in vitro anticancer activity according to the current one-dose protocol of the NCI. Compound 9b revealed a broad spectrum of anticancer activity against 29 out of the tested 60 subpanel tumor cell lines. Collectively, compounds 4, 9b, 10b and 12f could be considered as promising dual anticancer antibiotics. PMID:24583356

  14. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents

    Microsoft Academic Search

    Brian K. Adams; Eva M. Ferstl; Matthew C. Davis; Marike Herold; Serdar Kurtkaya; Richard F. Camalier; Melinda G. Hollingshead; Gurmeet Kaur; Edward A. Sausville; Frederick R. Rickles; James P. Snyder; Dennis C. Liotta; Mamoru Shoji

    2004-01-01

    A series of novel curcumin analogs were synthesized and screened for anti-cancer and anti-angiogenesis activities at Emory University and at the National Cancer Institute (NCI). These compounds are symmetrical ?,?-unsaturated and saturated ketones. The majority of the analogs demonstrated a moderate degree of anti-cancer activity. Compounds 10, 11, and 14 exhibited a high degree of cytotoxicity in the NCI in

  15. PEG–Anticancer Drugs

    Microsoft Academic Search

    Francesca Cateni; Marina Zacchigna

    \\u000a The concept of polymer–anticancer conjugates was first proposed in 1975 by Ringsdorf, and the biological rationale for their\\u000a design and current understanding of the mechanism of action is well known. During the past 10 years, there has been a renaissance\\u000a in the field of PEG-conjugated anticancer agents. Benefits which can be achieved through application of PEGylation, i.e. the\\u000a attachment of

  16. Mutation of the p53 gene in human astrocytic tumours correlates with increased resistance to DNA-damaging agents but not to anti-microtubule anti-cancer agents.

    PubMed Central

    Iwadate, Y.; Tagawa, M.; Fujimoto, S.; Hirose, M.; Namba, H.; Sueyoshi, K.; Sakiyama, S.; Yamaura, A.

    1998-01-01

    Astrocytic tumours often become resistant to a variety of chemotherapeutic agents in advanced stages and frequently possess mutations in the p53 tumour-suppressor gene. Previous studies using established cell lines to investigate the relation between mutated p53 genes and altered resistance to anti-cancer agents brought inconsistent results. In this report, we examined the status of the p53 gene in 56 astrocytic tumour specimens by single-strand conformation polymorphism and their in vitro chemosensitivity to 30 different kinds of anti-cancer agents. The chemosensitivity was determined by drug-induced cell death using flow cytometry. We found that the mutated p53 gene correlated with increased resistance to DNA-damaging agents but the sensitivity to anti-microtubule agents was independent of the mutation, suggesting a clinical significance of the status of p53 gene in astrocytic tumours and a rational application of anti-microtubule agents to the patients with p53-mutated astrocytic tumours. PMID:9484809

  17. Topical treatment of genital warts in men, an open study of podophyllotoxin cream compared with solution

    Microsoft Academic Search

    A Strand; R M Brinkeborn; A Siboulet

    1995-01-01

    OBJECTIVE--To evaluate the clinical efficacy of a 0.15% and a 0.3% cream formulation of podophyllotoxin in comparison with the 0.5% solution in the treatment of condylomata acuminata and to compare the treatment modalities regarding side effects. DESIGN--The study was designed as an open randomised trial. Ninety male patients with signs of penile HPV infection, with either acuminate or papular lesions,

  18. Design, synthesis and biological evaluation of novel 1-hydroxyl-3-aminoalkoxy xanthone derivatives as potent anticancer agents.

    PubMed

    Yang, Zheng-Min; Huang, Jun; Qin, Jiang-Ke; Dai, Zhi-Kai; Lan, Wen-Li; Su, Gui-Fa; Tang, Huang; Yang, Feng

    2014-10-01

    A series of novel 1-hydroxyl-3-aminoalkoxy xanthone derivatives were designed, synthesized and evaluated for in vitro anticancer activity against four selected human cancer cell lines (nasopharyngeal neoplasm CNE, liver cancer BEL-7402, gastric cancer MGC-803, lung adenocarcinoma A549). Most of the synthesized compounds exhibit effective cytotoxic activity against the four tested cancer cell lines with the IC50 values at micromolar concentration level. Some preliminary structure-activity relationships were also discussed. In this series of derivatives, compound 3g shows excellent broad spectrum anticancer activity with IC50 values ranging from 3.57 to 20.07 ?M. The in vitro anticancer activity effect and action mechanism of compound 3g on human gastric carcinoma MGC-803 cell were further investigated. The results showed that compound 3g exhibits dose- and time-dependent anticancer effects on MGC-803 cells through apoptosis, which might be associated with its decreasing intracellular calcium and the mitochondrial membrane potential. PMID:25113877

  19. Antitumor agents 287. Substituted 4-amino-2H-pyran-2-one (APO) analogs reveal a new scaffold from neo-tanshinlactone with in vitro anticancer activity

    PubMed Central

    Dong, Yizhou; Nakagawa-Goto, Kyoko; Lai, Chin-Yu; Morris-Natschke, Susan L.; Bastow, Kenneth F.; Lee, Kuo-Hsiung

    2011-01-01

    4-Amino-2H-benzo[h]chromen-2-one (ABO) and 4-amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one (ATBO) analogs were found to be significant in vitro anticancer agents in our previous research. Our continuing study has now discovered a new simplified (monocyclic rather than tricyclic) class of cytotoxic agents, 4-amino-2H-pyran-2-one (APO) analogs. By incorporating various substituents on the pyranone ring, we have established preliminary structure-activity relationships (SAR). Analogs 19, 20, 23, and 26–30 displayed significant tumor cell growth inhibitory activity in vitro. The most active compound 27 exhibited ED50 values of 0.059–0.090 ?M. PMID:21420855

  20. Synthetic strategies for the design of platinum anticancer drug candidates

    E-print Network

    Wilson, Justin Jeff

    2013-01-01

    Chapter 1. The Synthetic Chemistry of Platinum Anticancer Agents Since the inception of cisplatin as a clinically approved anticancer agent, a large number of platinum compounds have been synthesized with the aim of finding ...

  1. From COX-2 inhibitor nimesulide to potent anti-cancer agent: synthesis, in vitro, in vivo and pharmacokinetic evaluation

    PubMed Central

    Chennamaneni, Snigdha; Yi, Xin; Liu, lili; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2014-01-01

    Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure–function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC50s around 100nM to 200nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC50s around 100nM to 500nM. Intraperitoneal injection with a dosage of 5mg/kg/d of CSUOH0901 to nude mice suppresses HT29 colorectal xenograft growth. Pharmacokinetic studies demonstrate the good bioavailability of the compound. PMID:22119125

  2. Synthesis of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents

    Microsoft Academic Search

    Rafia Bashir; Syed Ovais; Shafiya Yaseen; Hinna Hamid; M. S. Alam; Mohammad Samim; Surender Singh; Kalim Javed

    2011-01-01

    Thirteen new 2-pyrazoline derivatives bearing benzenesulfonamide moiety (2a–m) were synthesized by condensing appropriate chalcones with 4-hydrazinonbenzenesulfonamide hydrochloride and tested for anticancer and anti-inflammatory actions. According to the protocol of the National Cancer Institute (NCI) in vitro disease-oriented human cells screening panel assay compounds 2b, 2c, 2e, 2f and 2g exhibited considerable antitumor activities against the entire tested tumor cell lines

  3. 4'-Demethyl-deoxypodophyllotoxin glucoside isolated from Podophyllum hexandrum exhibits potential anticancer activities by altering Chk-2 signaling pathway in MCF-7 breast cancer cells.

    PubMed

    Zilla, Mahesh K; Nayak, Debasis; Amin, Hina; Nalli, Yedukondalu; Rah, Bilal; Chakraborty, Souneek; Kitchlu, Surender; Goswami, Anindya; Ali, Asif

    2014-10-18

    We investigated the root of Podophyllum hexandrum as a potential source of lead bioactive metabolites with anticancer activity. The present study led to the isolation of six known aryltetralin-type lignans designated as 4'-demethyl-deoxypodophyllotoxin (1), podophyllotoxin (2), 4'-demethyl-podophyllotoxin (3), podophyllotoxin-4-O-?-d-glucopyranoside (4), 4'-demethyl-deoxypodophyllotoxin-4-O-?-d-glucopyranoside (5), 4'-demethyl-podophyllotoxin-4-O-?-d-glucopyranoside (6), along with three known flavones Kaempferol (7), Quercetin (8), Astragalin (9) from the root of P. hexandrum. Compounds (1-9) exhibited the remarkable cytotoxic potential in diverse cancer cell lines. 5 therapeutic potential was extensively studied first time which exhibiting antiproliferative and ROS generating activity than its non-glycoside analogue 1. Furthermore, 5 augmented the apoptotic cascades in MCF-7 breast cancer cells, viz. nuclear condensation, membrane blebbing, probably by destabilizing the micro-tubular protein tubulin. Strikingly, our docking study and in vitro assays demonstrate that 5 binds to and modulate checkpoint kinase-2, a key cell cycle regulatory protein in normal and cancer cells. PMID:25446499

  4. Development and validation of a rapid HPLC method for quantitation of SP-141, a novel pyrido[b]indole anticancer agent, and an initial pharmacokinetic study in mice.

    PubMed

    Nag, Subhasree; Qin, Jiang-Jiang; Voruganti, Sukesh; Wang, Ming-Hai; Sharma, Horrick; Patil, Shivaputra; Buolamwini, John K; Wang, Wei; Zhang, Ruiwen

    2015-05-01

    There is an increasing interest in targeting the MDM2 oncogene for cancer therapy. SP-141, a novel designed small molecule MDM2 inhibitor, exerts excellent in vitro and in vivo anticancer activity. To facilitate the preclinical development of this candidate anticancer agent, we have developed an HPLC method for the quantitative analysis of SP-141. The method was validated to be precise, accurate, and specific, with a linear range of 16.2-32,400?ng/mL in plasma, 16.2-6480?ng/mL in homogenates of brain, heart, liver, kidneys, lungs, muscle and tumor, and 32.4-6480?ng/mL in spleen homogenates. The lower limit of quantification was 16.2?ng/mL in plasma and all the tissue homogenates, except for spleen homogenates, where it was 32.4?ng/mL. The intra- and inter-assay precisions (coefficient of variation) were between 0.86 and 13.39%, and accuracies (relative errors) ranged from -8.50 to 13.92%. The relative recoveries were 85.6-113.38%. SP-141 was stable in mouse plasma, modestly plasma bound and metabolized by S9 microsomal enzymes. We performed an initial pharmacokinetic study in tumor-bearing nude mice, demonstrating that SP-141 has a short half-life in plasma and wide tissue distribution. In summary, this HPLC method can be used in future preclinical and clinical investigations of SP-141. PMID:25294254

  5. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells

    PubMed Central

    2013-01-01

    Background Recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. Pharmacological interventions that effectively enhance tumor cell death through activating ER stress have attracted a great deal of attention for anti-cancer therapy. Methods A bio-evaluation on 113 curcumin analogs against four cancer cell lines was performed through MTT assay. Furthermore, real time cell assay and flow cytometer were used to evaluate the apoptotic induction of (1E,4E)-1,5-bis(5-bromo-2-ethoxyphenyl)penta-1,4-dien-3-one (B82). Western blot, RT-qPCR, and siRNA were then utilized to confirm whether B82-induced apoptosis is mediated through activating ER stress pathway. Finally, the in vivo anti-tumor effect of B82 was evaluated. Results B82 exhibited strong anti-tumor activity in non-small cell lung cancer (NSCLC) H460 cells. Treatment with B82 significantly induced apoptosis in H460 cells in vitro and inhibited H460 tumor growth in vivo. Further studies demonstrated that the B82-induced apoptosis is mediated by activating ER stress both in vitro and in vivo. Conclusions A new monocarbonyl analog of curcumin, B82, exhibited anti-tumor effects on H460 cells via an ER stress-mediated mechanism. B82 could be further explored as a potential anticancer agent for the treatment of NSCLC. PMID:24156374

  6. Effects of intra-arterial chemotherapy with a new lipophilic anticancer agent, estradiol-chlorambucil (KM2210), dissolved in lipiodol on experimental liver tumor in rats

    SciTech Connect

    Egawa, H.; Maki, A.; Mori, K.; Yamamoto, Y.; Mitsuhashi, S.; Bannai, K.; Asano, K.; Ozawa, K. (Kyoto Univ. (Japan))

    1990-06-01

    Anticancer effects and biodistribution of a new lipophilic anticancer agent, estradiol-chlorambucil (KM2210), dissolved in lipiodol (LPD) were investigated as an intra-arterial chemotherapy (IAC) on Walker 256 carcinosarcoma grown in the liver of 136 Wistar rats. All rats treated with KM2210 (10 mg)-LPD survived for 90 days after administration, whereas none of the rats with LPD alone were alive for more than 19 days. Histological examination revealed that there was no viable tumor cell in the encapsulated necrotic tumor at 21 days after administration. There was no significant liver dysfunction or leukopenia due to KM2210. The biodistribution study using (14C, 3H)KM2210-LPD solution showed that KM2210 accumulated selectively in tumor and that the tumor-to-normal-liver and tumor-to-blood ratios were 10 and 1,000, respectively, at 21 days after administration. These results suggest that KM2210 has potential clinical application in the treatment of human liver cancer.

  7. Design, Synthesis and Evaluation of Dibenzo[c,h][1,6]naphthyridines as Topoisomerase I Inhibitors and Potential Anticancer Agents

    PubMed Central

    Kiselev, Evgeny; Dexheimer, Thomas; Pommier, Yves; Cushman, Mark

    2010-01-01

    Indenoisoquinoline topoisomerase I (Top1) inhibitors are a novel class of anticancer agents. Modifications of the indenoisoquinoline A, B and D rings have been extensively studied in order to optimize Top1 inhibitory activity and cytotoxicity. To improve understanding of the forces that stabilize drug-Top1-DNA ternary complexes, the five-membered cyclopentadienone C-ring of the indenoisoquinoline system was replaced by six-membered nitrogen heterocyclic rings, resulting in dibenzo[c,h][1,6]naphthyridines that were synthesized by a novel route and tested for Top1 inhibition. This resulted in several compounds that have unique DNA cleavage site selectivities and potent antitumor activities in a number of cancer cell lines. PMID:21090809

  8. One-pot tandem copper-catalyzed library synthesis of 1-thiazolyl-1,2,3-triazoles as anticancer agents.

    PubMed

    Li, Wen-Tai; Wu, Wan-Hsun; Tang, Chien-Hsiang; Tai, Ready; Chen, Shui-Tein

    2011-01-10

    One-pot multicomponent synthesis to assemble compounds has been an efficient method for constructing a compound library. We have developed one-pot tandem copper-catalyzed azidation and CuAAC reactions that afford 1-thiazolyl-1,2,3-triazoles with anticancer activity. By utilizing this one-pot synthetic strategy, we constructed a library of 1-thiazolyl-1,2,3-triazoles in search of the potent lead compound. Furthermore, 1-thiazolyl-1,2,3-triazoles were evaluated for anticancer activity against the multidrug-resistant cancer cells MES-SA/Dx5. Most of the 1-thiazolyl-1,2,3-triazoles revealed cytotoxic effect against cancer cells at micromolar to low micromolar range. Testing some of the most potent compounds (5{4,2-4} and 5{5,1-3}) against the normal cell line Vero showed no significant toxicity (except 5{4,2}) to normal cells. This result indicates that compounds 5{4,3-4} and 5{5,1-3} possessed good potency and selectivity to cancer cells over normal cells. PMID:21247128

  9. Novel anticancer agents for multiple myeloma: a review of the evidence for their therapeutic and economic value.

    PubMed

    Gaultney, Jennifer G; Redekop, William K; Sonneveld, Pieter; Uyl-de Groot, Carin A

    2012-06-01

    Recent advances in oncology treatment have improved patient outcomes at the expense of increasing healthcare costs. The indication multiple myeloma is especially characterized by a recent and continuing flood of expensive novel agents. A review encompassing all elements necessary to perform an economic evaluation of novel agents for multiple myeloma was conducted for thalidomide, bortezomib and lenalidomide. Improvements in efficacy have led to a switch from conventional therapy to novel agents as standard therapy. Incremental cost-effectiveness ratios for novel agents alone or in combination with conventional agents were generally regarded to be within acceptable ranges. Conflicting results were reported for the incremental cost-effectiveness of bortezomib versus lenalidomide, as unresolved questions remain regarding their comparative effectiveness. Future economic evaluations will require an assessment of the cost-effectiveness of these agents in terms of sequence within the treatment paradigm and in combination with one another. PMID:22716498

  10. Preparation, characterization, and anti-tumor property of podophyllotoxin-loaded solid lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, R. R.; Qin, L. L.; Wang, M.; Wu, S. M.; Wang, S. L.; Zhang, R.; Liu, Z. X.; Sun, X. Y.; Yao, S. D.

    2009-02-01

    In an effort to develop an alternative formulation of podophyllotoxin suitable for drug release and delivery, podophyllotoxin-loaded solid lipid nanoparticles (PPT-SLNs) were constructed, characterized and examined for in vitro cytotoxicity and tumor inhibition. The SLNs were prepared by using a solvent emulsification-evaporation method, and their size was around 50 nm. TEM detection showed that the SLNs were homogeneous and spherical in shape, and differential scanning calorimetry (DSC) measurement revealed a new conformation of PPT-SLNs. An in vitro drug release study showed that PPT was released from the SLNs in a slow but time-dependent manner. Furthermore, the treatment of 293T and HeLa cells with PPT-SLNs demonstrated that PPT-SLNs were less toxic to normal cells and more effective in anti-tumor potency compared with unconjugated PPT. A colony forming efficiency assay showed an effective long-term cancer growth suppression of PPT-SLNs; in addition, they can also enhance the apoptotic and cellular uptake processes on tumor cells compared with PPT. These results collectively demonstrated that this SLN formulation has a potential application as an alternative delivery system for anti-tumor drugs.

  11. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: Ensuing energetic and oxidative stress implications

    SciTech Connect

    Pardo-Andreu, Gilberto L., E-mail: gilbertopardo@infomed.sld.cu [Centro de Estudio para las Investigaciones y Evaluaciones Biologicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, ave. 23 21425 e/214 and 222, La Coronela, La Lisa, CP 13600, Ciudad Habana (Cuba); Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP (Brazil); Nunez-Figueredo, Yanier [Centro para las Investigaciones y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600, Ciudad Habana (Cuba); Tudella, Valeria G. [Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP (Brazil); Cuesta-Rubio, Osmany [Departamento de Quimica, Instituto de Farmacia y Alimentos, Universidad de La Habana, ave. 23 21425 e/214 and 222, La Coronela, La Lisa, CP 13600, Ciudad Habana (Cuba); Rodrigues, Fernando P.; Pestana, Cezar R. [Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP (Brazil); Uyemura, Sergio A.; Leopoldino, Andreia M. [Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP (Brazil); Alberici, Luciane C.; Curti, Carlos [Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP (Brazil)

    2011-06-15

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 {mu}M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca{sup 2+} efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP{sup +} transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: > We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. > GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. > These actions could be implicated in the well-documented anti-cancer property of GA/structure related compounds.

  12. Systematic analysis of the antiproliferative effects of novel and standard anticancer agents in rhabdoid tumor cell lines.

    PubMed

    Lünenbürger, Henning; Lanvers-Kaminsky, Claudia; Lechtape, Birgit; Frühwald, Michael C

    2010-06-01

    Rhabdoid tumors are highly aggressive pediatric malignancies. Although the prognosis of children with rhabdoid tumors has improved, it still remains dismal and long-term survivors suffer from severe side effects of current therapeutic approaches. The objective of our study was to explore the toxicity of standard and novel anticancer drugs against rhabdoid tumors in vitro and to prioritize them for future preclinical and clinical studies. Antitumor activity of 10 standard anticancer drugs (doxorubicin, idarubicin, mitoxantrone, actinomycin D, temozolomide, carmustine, oxaliplatin, vinorelbine, methotrexate, thiotepa), five target-specific drugs (sorafenib, imatinib, roscovitine, rapamycin, ciglitazone) and two herbal compounds (curcumin and apigenin) was assessed by a modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell proliferation assay on three rhabdoid tumor cell lines, A204, G401, and BT16, derived from different anatomical sites. Comparable with their high clinical activity, anthracyclines inhibited tumor cell proliferation by 50% (GI50) in the nanomolar range. Actinomycin D exhibited the lowest GI50 values overall ranging from 2.8x10(-6) nmol/l for G401 to 3.8 nmol/l for A204 cells while thiotepa was the only alkylating drug that inhibited tumor cell growth in clinically relevant concentrations. Target-specific drugs, such as sorafenib, roscovitine, and rapamycin, showed promising results as well. In this report, we show for the first time that apigenin and curcumin effectively inhibit rhabdoid tumor cell growth. Supporting earlier reports we conclude that cyclin D1 seems to be an excellent target in the treatment of rhabdoid tumors. Idarubicin or mitoxantrone represent potent alternatives to doxorubicin, and vinorelbine may substitute vincristine in future clinical trials. PMID:20147838

  13. Destabilization of the MutS?’s protein-protein interface due to binding to the DNA adduct induced by anticancer agent Carboplatin via molecular dynamics simulations

    PubMed Central

    Negureanu, Lacramioara; Salsbury, Freddie R

    2013-01-01

    DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutS? in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutS? in response to the damaged DNA recognition. While the core of MutS? is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutS? and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutS?’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854

  14. Redesigning the DNA-targeted chromophore in platinum-acridine anticancer agents: a structure-activity relationship study.

    PubMed

    Pickard, Amanda J; Liu, Fang; Bartenstein, Thomas F; Haines, Laura G; Levine, Keith E; Kucera, Gregory L; Bierbach, Ulrich

    2014-12-01

    Platinum-acridine hybrid agents show low-nanomolar potency in chemoresistant non-small cell lung cancer (NSCLC), but high systemic toxicity in vivo. To reduce the promiscuous genotoxicity of these agents and improve their pharmacological properties, a modular build-click-screen approach was used to evaluate a small library of twenty hybrid agents containing truncated and extended chromophores of varying basicities. Selected derivatives were resynthesized and tested in five NSCLC cell lines representing large cell, squamous cell, and adenocarcinomas. 7-Aminobenz[c]acridine was identified as a promising scaffold in a hybrid agent (P1-B1) that maintained submicromolar activity in several of the DNA-repair proficient and p53-mutant cancer models, while showing improved tolerability in mice by 32-fold compared to the parent platinum-acridine (P1-A1). The distribution and DNA/RNA adduct levels produced by the acridine- and benz[c]acridine-based analogues in NCI-H460 cells (confocal microscopy, ICP-MS), and their ability to bind G-quadruplex forming DNA sequences (CD spectroscopy, HR-ESMS) were studied. P1-B1 emerges as a less genotoxic, more tolerable, and potentially more target-selective hybrid agent than P1-A1. PMID:25302716

  15. Discovery of novel 2-aryl-4-benzoyl-imidazoles targeting the colchicines binding site in tubulin as potential anticancer agents

    PubMed Central

    Chen, Jianjun; Wang, Zhao; Li, Chien-Ming; Lu, Yan; Vaddady, Pavan K.; Meibohm, Bernd; Dalton, James T.; Miller, Duane D.; Li, Wei

    2010-01-01

    A series of 2-aryl-4-benzoyl-imidazoles (ABI) was synthesized as a result of structural modifications based on the previous set of 2-aryl-imidazole-4-carboxylic amide (AICA) derivatives and 4-substituted methoxylbenzoyl-aryl-thiazoles (SMART). The average IC50 of the most active compound (5da) was 15.7 nM. ABI analogs have substantially improved aqueous solubility (48.9 ?g/mL for 5ga vs. 0.909 ?g/mL for SMART-1, 0.137 ?g/mL for paclitaxel, and 1.04 ?g/mL for Combretastatin A4). Mechanism of action studies indicate that the anticancer activity of ABI analogs is through inhibition of tubulin polymerization by interacting with the colchicine binding site. Unlike paclitaxel and colchicine, the ABI compounds were equally potent against multidrug resistant cancer cells and the sensitive parental melanoma cancer cells. In vivo results indicated that 5cb was more effective than DTIC in inhibiting melanoma xenograph tumor growth. Our results suggest that the novel ABI compounds may be developed to effectively treat drug-resistant tumors. PMID:20919720

  16. Synthesis of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents.

    PubMed

    Bashir, Rafia; Ovais, Syed; Yaseen, Shafiya; Hamid, Hinna; Alam, M S; Samim, Mohammad; Singh, Surender; Javed, Kalim

    2011-07-15

    Thirteen new 2-pyrazoline derivatives bearing benzenesulfonamide moiety (2a-m) were synthesized by condensing appropriate chalcones with 4-hydrazinonbenzenesulfonamide hydrochloride and tested for anticancer and anti-inflammatory actions. According to the protocol of the National Cancer Institute (NCI) in vitro disease-oriented human cells screening panel assay compounds 2b, 2c, 2e, 2f and 2g exhibited considerable antitumor activities against the entire tested tumor cell lines and showed effective growth inhibition GI(50) (MG-MID) values of 2.63, 2.57, 6.61, 3.31 and 2.57?M, respectively, beside a cyclostatic activity TGI (MG-MID) 9.54, 8.51, 24.0, 19.9 and 8.71?M, respectively. Two compounds 2g and 2k showed more potent anti-inflammatory activity than celecoxib at 5h in carrageenan-induced rat paw edema bioassay. These compounds (2g and 2k) proved to have superior gastrointestinal safety profiles as compared to celecoxib, when tested for their ulcerogenic effects. Compounds 2g and 2k showed no inhibition against the enzymatic activity of bovine COX-2 (in vitro). PMID:21664130

  17. Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents.

    PubMed

    Alt?ntop, Mehlika Dilek; Özdemir, Ahmet; Turan-Zitouni, Gülhan; Ilg?n, Sinem; Atl?, Özlem; Demirci, Fatih; Kaplanc?kl?, Zafer As?m

    2014-01-01

    Fourteen new thiazolyl hydrazone derivatives were synthesized and evaluated for their anticandidal activity using a broth microdilution assay. Among the synthesized compounds, 2-[2-((5-(4-chloro-2-nitrophenyl)furan-2-yl)methylene)hydrazinyl]-4-(4-fluorophenyl)thiazole and 2-[2-((5-(4-chloro-2-nitrophenyl)furan-2-yl)methylene) hydrazinyl]-4-(4-methoxyphenyl)thiazole were found to be the most effective antifungal compounds against Candida utilis, with a MIC value of 250 µg/mL, when compared with fluconazole (MIC=2 µg/mL). Additionally, the synthesized compounds were evaluated for their in vitro cytotoxic effects on the MCF-7 and NIH/3T3 cell lines. As a result, 2-[2-((5-(4-chloro-2-nitrophenyl)furan-2-yl)methylene)hydrazinyl]-4-(4-chlorophenyl)thiazole was identified as the most promising anticancer compound against MCF-7 cancer cells due to its inhibitory effects (IC50=125 µg/mL) and relatively low toxicity towards the NIH/3T3 cell line (IC50>500 µg/mL). PMID:25232704

  18. Polymer conjugates as anticancer nanomedicines

    Microsoft Academic Search

    Ruth Duncan

    2006-01-01

    The transfer of polymer–protein conjugates into routine clinical use, and the clinical development of polymer–anticancer-drug conjugates, both as single agents and as components of combination therapy, is establishing polymer therapeutics as one of the first classes of anticancer nanomedicines. There is growing optimism that ever more sophisticated polymer-based vectors will be a signficant addition to the armoury currently used for

  19. Antitumor Agents 281. Design, Synthesis, and Biological Activity of Substituted 4-Amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one Analogs (ATBO) as Potent In Vitro Anticancer Agents

    PubMed Central

    Dong, Yizhou; Nakagawa-Goto, Kyoko; Lai, Chin-Yu; Morris-Natschke, Susan L.; Bastow, Kenneth F.; Lee, Kuo-Hsiung

    2010-01-01

    In our exploration of new biologically active chemical entities, we designed and synthesized a novel class of antitumor agents, substituted 4-amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one (ATBO) analogs. We evaluated their cytotoxic activity against seven human tumor cell lines from different tissues, and established preliminary structure-activity relationships (SAR). All analogues, except 8, 9, and 25-27, displayed potent tumor cell growth inhibitory activity. Especially, compounds 15 and 33 with a 4-methoxyphenyl group at position C-4 were extremely potent with ED50 values of 0.008-0.064 ?M and 0.035-0.32 ?M, respectively. Compound 15 was the most potent analog compared with structurally related neo-tanshinlactone (e.g., 1) and 4-amino-2H-benzo[h]chromen-2-one (ABO, e.g., 4) analogs, and thus merits further exploration as an anti-cancer drug candidate. PMID:21087859

  20. Analysis of the antiproliferative effects of 3-deazaneoplanocin A in combination with standard anticancer agents in rhabdoid tumor cell lines.

    PubMed

    Unland, Rebekka; Borchardt, Christiane; Clemens, Dagmar; Kool, Marcel; Dirksen, Uta; Frühwald, Michael C

    2015-03-01

    Rhabdoid tumors (RTs) are highly aggressive pediatric malignancies with a rather poor prognosis. New therapeutic approaches and optimization of already established treatment protocols are urgently needed. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is highly overexpressed in RTs and associated strongly with epigenetic silencing in cancer. EZH2 is involved in aggressive cell growth and stem cell maintenance. Thus, EZH2 is an attractive therapeutic target in RTs. The aim of the study presented here was to analyze the effects of a pharmacological inhibition of EZH2 alone and in combination with other anticancer drugs on RTs cells in vitro. The antitumor activity of the S-adenosyl-homocysteine-hydrolase inhibitor 3-deazaneplanocin A (DZNep) alone and in combination with conventional cytostatic drugs (doxorubicin, etoposide) or epigenetic active compounds [5-Aza-CdR, suberoylanilide hydroxamic acid (SAHA)] was assessed by MTT cell proliferation assays on three RT cell lines (A204, BT16, G401). Combinatorial treatment with DZNep synergistically and significantly enhanced the antiproliferative activity of etoposide, 5-Aza-CdR, and SAHA. In functional analyses, pretreatment with DZNep significantly increased the effects of 5-Aza-CdR and SAHA on apoptosis, cell cycle progression, and clonogenicity. Microarray analyses following sequential treatment with DZNep and 5-Aza-CdR or SAHA showed changes in global gene expression affecting apoptosis, neuronal development, and metabolic processes. In-vitro analyses presented here show that pharmacological inhibition of EZH2 synergistically affects the antitumor activity of the epigenetic active compounds 5-Aza-CdR and SAHA. Sequential treatment with these drugs combined with DZNep may represent a new therapeutic approach in RTs. PMID:25415657

  1. Design, synthesis, and biological evaluation of benzofuran- and 2,3-dihydrobenzofuran-2-carboxylic acid N-(substituted)phenylamide derivatives as anticancer agents and inhibitors of NF-?B.

    PubMed

    Choi, Minho; Jo, Hyeju; Park, Hyun-Jung; Sateesh Kumar, Arepalli; Lee, Joonkwang; Yun, Jieun; Kim, Youngsoo; Han, Sang-Bae; Jung, Jae-Kyung; Cho, Jungsook; Lee, Kiho; Kwak, Jae-Hwan; Lee, Heesoon

    2015-06-15

    With the aim of developing novel scaffolds as anticancer agents and inhibitors of NF-?B activity, 60 novel benzofuran- and 2,3-dihydrobenzofuran-2-carboxylic acid N-(substituted)phenylamide derivatives (1a-s, 2a-k, 3a-s, and 4a-k) were designed and synthesized from the reference lead compound KL-1156, which is an inhibitor of NF-?B translocation to the nucleus in LPS-stimulated RAW 264.7 macrophage cells. The novel benzofuran- and 2,3-dihydrobenzofuran-2-carboxamide derivatives exhibited potent cytotoxic activities (measured by the sulforhodamine B assay) at low micromolar concentrations against six human cancer cell lines: ACHN (renal), HCT15 (colon), MM231 (breast), NUGC-3 (gastric), NCI-H23 (lung), and PC-3 (prostate). In addition, these compounds also inhibited LPS-induced NF-?B transcriptional activity. The +M effect and hydrophobic groups on the N-phenyl ring potentiated the anticancer activity and NF-?B inhibitory activity, respectively. However, according to the results of structure-activity relationship studies, only benzofuran-2-carboxylic acid N-(4'-hydroxy)phenylamide (3m) was the lead scaffold with both an outstanding anticancer activity and NF-?B inhibitory activity. This novel lead scaffold may be helpful for investigation of new anticancer agents that act through inactivation of NF-?B. PMID:25953156

  2. Target-based agents in neoadjuvant treatment of liver metastases from colorectal cancer: secret weapons in anti-cancer war?

    PubMed

    Marra, Monica; Giudice, Aldo; Arra, Claudio; Vitale, Giovanni; Castiglioni, Sara; Nasti, Guglielmo; Lombardi, Angela; Ottaiano, Alessandro; Facchini, Gaetano; Iaffaioli, Rosario V; Abbruzzese, Alberto; Caraglia, Michele

    2009-09-01

    The therapeutic options for liver metastases of colorectal cancer mainly include surgical resection and palliative chemotherapy. More recently, the increased availability of new and more active cytotoxic drugs has increased the appeal of a combined treatment strategy, in which chemotherapy is administered before surgery. However, the efficacy of neoadjuvant chemotherapy of CRC liver metastases is limited by: (1) the persistence of micro metastatic foci that cannot be seen by conventional imaging techniques, placed either in other sites throughout the liver and/or in the site of the previous macroscopic metastasis that has undergone to clinical complete response; (2) the occurrence of escape mechanisms. The molecular basis regulating these processes are described and the first clinical attempts to overcome these mechanisms through the use of target-based agents are also reported. Finally, biological rationales to optimize the activity of these agents in neoadjuvant setting are discussed. PMID:19729997

  3. 4Week repeated intravenous dose toxicity study of a new camptothecin anticancer agent CKD602 in dogs

    Microsoft Academic Search

    J.-C. Kim; D.-H. Shin; S.-H. Park; S.-C. Park; Y.-B. Kim; H.-C. Kim; S.-W. Cha; K.-H. Cho; B.-H. Kang; M.-K. Chung

    2005-01-01

    CKD-602 is a new camptothecin derivative antitumor agent with a formula (7-[2-(N-isopropylamino)ethyl]-(20S)-camptothecin) developed by Chong Kun Dang Pharmaceutical Company in Korea. In the present study, the subacute toxicity of CKD-602 was investigated after 4-week repeated intravenous administration of the test chemical in beagle dogs. The test chemical was administered intravenously at dose levels of 0, 0.001, 0.005, or 0.01mg\\/kg\\/day for

  4. Synthesis and biological evaluation of novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases as potential anticancer agents.

    PubMed

    Chazin, Eliza de Lucas; Sanches, Paola de Souza; Lindgren, Eric Brazil; Vellasco Júnior, Walcimar Trindade; Pinto, Laine Celestino; Burbano, Rommel Mario Rodríguez; Yoneda, Julliane Diniz; Leal, Kátia Zaccur; Gomes, Claudia Regina Brandăo; Wardell, James Lewis; Wardell, Solange Maria Silva Veloso; Montenegro, Raquel Carvalho; Vasconcelos, Thatyana Rocha Alves

    2015-01-01

    With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1) leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a-r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C) and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116) by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 ?M. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer. PMID:25633329

  5. From bench to bedside – preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1 H-indazole)ruthenate(III)] (KP1019 or FFC14A)

    Microsoft Academic Search

    Christian G. Hartinger; Stefanie Zorbas-Seifried; Michael A. Jakupec; Bernd Kynast; Haralabos Zorbas; Bernhard K. Keppler

    2006-01-01

    Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A) is just the second ruthenium-based anticancer agent after NAMI-A which was developed to the stage of clinical trials. Important steps in the mode of action of KP1019 are thought to be the binding to the serum protein transferrin and the transport into the cell via the transferrin pathway. Additionally, the selective activation by reduction in

  6. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer.

    PubMed

    Nagaprashantha, Lokesh Dalasanur; Vatsyayan, Rit; Singhal, Jyotsana; Fast, Spence; Roby, Rhonda; Awasthi, Sanjay; Singhal, Sharad S

    2011-11-01

    The present study was conducted to determine the efficacy of novel flavonoid vicenin-2 (VCN-2), an active constituent of the medicinal herb Ocimum Sanctum Linn or Tulsi, as a single agent and in combination with docetaxel (DTL) in carcinoma of prostate (CaP). VCN-2 effectively induced anti-proliferative, anti-angiogenic and pro-apoptotic effect in CaP cells (PC-3, DU-145 and LNCaP) irrespective of their androgen responsiveness or p53 status. VCN-2 inhibited EGFR/Akt/mTOR/p70S6K pathway along with decreasing c-Myc, cyclin D1, cyclin B1, CDK4, PCNA and hTERT in vitro. VCN-2 reached a level of 2.6±0.3?mol/l in serum after oral administration in mice which reflected that VCN-2 is orally absorbed. The i.v. administration of docetaxel (DTL), current drug of choice in androgen-independent CaP, is associated with dose-limiting toxicities like febrile neutropenia which has lead to characterization of alternate routes of administration and potential combinatorial regimens. In this regard, VCN-2 in combination with DTL synergistically inhibited the growth of prostate tumors in vivo with a greater decrease in the levels of AR, pIGF1R, pAkt, PCNA, cyclin D1, Ki67, CD31, and increase in E-cadherin. VCN-2 has been investigated for radioprotection and anti-inflammatory properties. This is the first study on the anti-cancer effects of VCN-2. In conclusion, our investigations collectively provide strong evidence that VCN-2 is effective against CaP progression along with indicating that VCN-2 and DTL co-administration is more effective than either of the single agents in androgen-independent prostate cancer. PMID:21803027

  7. Anti-cancer Effects of Novel Flavonoid Vicenin-2 as a Single Agent and in Synergistic Combination with Docetaxel in Prostate Cancer

    PubMed Central

    Nagaprashantha, Lokesh Dalasanur; Vatsyayan, Rit; Singhal, Jyotsana; Fast, Spence; Roby, Rhonda; Awasthi, Sanjay; Singhal, Sharad S.

    2011-01-01

    The present study was conducted to determine the efficacy of novel flavonoid vicenin-2 (VCN-2), an active constituent of the medicinal herb Ocimum Sanctum Linn or Tulsi, as a single agent and in combination with docetaxel (DTL) in carcinoma of prostate (CaP). VCN-2 effectively induced anti-proliferative, anti-angiogenic and pro-apoptotic effect in CaP cells (PC-3, DU-145 and LNCaP) irrespective of their androgen responsiveness or p53 status. VCN-2 inhibited EGFR/Akt/mTOR/ p70S6K pathway along with decreasing c-Myc, cyclin D1, cyclin B1, CDK4, PCNA and hTERT in vitro. VCN-2 reached a level of 2.6 ± 0.3 micromol/L in serum after oral administration in mice which reflected that VCN-2 is orally absorbed. The i.v. administration of docetaxel (DTL), current drug of choice in androgen-independent CaP, is associated with dose-limiting toxicities like febrile neutropenia which has lead to characterization of alternate routes of administration and potential combinatorial regimens. In this regard, VCN-2 in combination with DTL synergistically inhibited the growth of prostate tumors in vivo with a greater decrease in the levels of AR, pIGF1R, pAkt, PCNA, cyclin D1, Ki67, CD31, and increase in E-cadherin. VCN-2 has been investigated for radioprotection and anti-inflammatory properties. This is the first study on the anti-cancer effects of VCN-2. In conclusion, our investigations collectively provide strong evidence that VCN-2 is effective against CaP progression along with indicating that VCN-2 and DTL co-administration is more effective than either of the single agents in androgen-independent prostate cancer. PMID:21803027

  8. Management of Metabolic Effects Associated With Anticancer Agents Targeting the PI3K-Akt-mTOR Pathway

    PubMed Central

    Busaidy, Naifa L.; Farooki, Azeez; Dowlati, Afshin; Perentesis, John P.; Dancey, Janet E.; Doyle, Laurence A.; Brell, Joanna M.; Siu, Lillian L.

    2012-01-01

    Agents inhibiting the phosphoinositide 3–kinase–Akt–mammalian target of rapamycin (PAM) pathway are currently in various stages of clinical development in oncology, ranging from some in early-phase evaluations to others that have already received regulatory approval for treatment in advanced cancers. The administration of PAM pathway inhibitors has been associated with metabolic toxicities of hyperlipidemia and hyperglycemia. The PAM Task Force of the National Cancer Institute Investigational Drug Steering Committee convened an interdisciplinary expert panel to review the pathophysiology of hyperlipidemia and hyperglycemia induced by PAM pathway inhibitors, summarize the incidence of these metabolic toxicities induced by such agents in the current literature, advise on clinical trial screening and monitoring criteria, and provide management guidance and therapeutic goals on occurrence of these toxicities. The overarching aim of this consensus report is to raise awareness of these metabolic adverse events to enable their early recognition, regular monitoring, and timely intervention in clinical trials. Hyperglycemia and hyperlipidemia are generally not acutely toxic and most often reversible with therapeutic intervention. Dose modifications or discontinuation of PAM pathway inhibitors should only be considered in situations of severe events or if progressive metabolic derangement persists after therapeutic interventions have been attempted for a sufficient duration. Specialty consultation should be sought to aid clinical trial planning and the management of these metabolic adverse events. PMID:22778315

  9. Synthesis and antimicrobial activity of guanylhydrazones. Synthesis of 2-(2-methylthio-2-aminovinyl)-1-methylpyridinium iodides and 2-(2-methylthio-2-aminovinyl)-1-methylquinolinium iodides as potential radioprotective and anticancer agents

    SciTech Connect

    Almassian, B.

    1985-01-01

    The finding of appreciable antileukemic activity in a series of 2-(2-methylthio-2-amino)vinyl-1-methylquinolinium iodides (Foye et al., 1980, 1983) suggested that greater basicity, as compared with the corresponding dithioacetic acids, was contributing to the increase in activity. The addition of a greater degree of basicity in the design of anticancer possibilities in this series was considered worth investigation, particularly in view of the activity of a series of bis(quanylhydrazones) synthesized at Lederle Laboratories. Accordingly, a series of guanylhydrazones of 4-pyridine-,2-pyridine- and 4-quinolinecarboxyaldehydes was synthesized for anticancer as well as antibacterial screening. Also, substitution of additional basic functions in the 2-(2-methylthio-2-amino) vinyl-1-methylquinolinium and pyridinium iodide series has been made. Appreciable antimicrobial activities have been found with both 2-pyridine and 4-quinolinealdehyde guanylhydrazones, as well as with 2-(2-methylthio-2-amino)vinyl-1-methyl-pyridinium iodides. The overall approach to the synthesis of potential anticancer agents in this project is thus to observe the effect of increasing basicity of these compounds on DNA binding and anticancer activity.

  10. CIP-36, a novel topoisomerase II-targeting agent, induces the apoptosis of multidrug-resistant cancer cells in vitro.

    PubMed

    Cao, Bo; Chen, Hong; Gao, Ying; Niu, Cong; Zhang, Yuan; Li, Ling

    2015-03-01

    The need to overcome cancer multidrug resistance (MDR) has fueled considerable interest in the development of novel synthetic antitumor agents with cytotoxicity against cancer cell lines with MDR. In this study, we aimed to investigate CIP-36, a novel podophyllotoxin derivative, for its inhibitory effects on human cancer cells from multiple sources, particularly cells with MDR in vitro. The human leukemia cell line, K562, and the adriamycin-resistant subline, K562/A02, were exposed to CIP-36 or anticancer agents, and various morphological and biochemical properties were assessed by Hoechst 33342 staining under a fluorescence microscope. Subsequently, cytotoxicity, cell growth curves and the cell cycle were analyzed. Finally, the effects of CIP-36 on topoisomerase II? (Topo II?) activity were determined. Treatment with CIP-36 significantly inhibited the growth of the K562 and MDR K562/A02 cells. Our data demonstrated that CIP-36 induced apoptosis, inhibited cell cycle progression and inhibited Topo II? activity. These findings suggest that CIP-36 has the potential to overcome the multidrug resistance of K562/A02 cells by mediating Topo II? activity. PMID:25592869

  11. Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers.

    PubMed

    Kamal, Ahmed; Reddy, Vangala Santhosh; Shaik, Anver Basha; Kumar, G Bharath; Vishnuvardhan, M V P S; Polepalli, Sowjanya; Jain, Nishant

    2015-03-21

    A new class of pyrazole and isoxazole conjugates were synthesized and evaluated for their cytotoxic activity against various human cancer cell lines. These compounds have shown significant cytotoxicity with lower IC50 values. FACS results revealed that A549 cells treated with these compounds arrested cells at the G2/M phase of the cell cycle apart from activating cyclin B1 protein levels. Particularly, compounds 9a and 9b demonstrated a remarkable inhibitory effect on tubulin polymerization and showed a pronounced inhibitory effect on tubulin polymerization with IC50 values of 1.28 ?M and 0.28 ?M respectively, whereas nocodazole, a positive control, has shown lower antitubulin activity with an IC50 value of 2.64 ?M. Furthermore, these compounds induced apoptosis by loss of mitochondrial membrane potential, propidium iodide (PI) staining and the activation of caspase-3. Results of a fluorescence based competitive colchicine binding assay suggest that these conjugates bind successfully at the colchicine binding site of tubulin. These investigations reveal that such conjugates containing pyrazole with a trimethoxy phenyl ring and indole moieties have potential for the development of newer chemotherapeutic agents. PMID:25661328

  12. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  13. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents.

    PubMed

    Yang, Min Hye; Kim, Jinwoong; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2014-04-01

    Natural products are rich sources of gene modulators that may be useful in prevention and treatment of cancer. Recently, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a target of action against diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural agents have been reported to play a pivotal role in regulation of NAG-1 through multiple transcriptional mechanisms. The aim of this paper is to review the NAG-1 modulators derived from natural products including plants, marine organisms, and microorganisms. Plant extracts belonging to the families of Fabaceae (Astragalus membranaceus), Ranunculaceae (Coptis chinensis), Menispermaceae (Coscinium fenestratum), Umbelliferae (Pleurospermum kamtschaticum), Lamiaceae (Marubium vulgare), and Rosaceae (Prunus serotina) increased the protein expression of NAG-1 in human colon cancer or hepatocarcinoma cells. Phytochemicals in the class of flavonoids (apigenin, quercetin, isoliquiritigenin, and 2'-hydroxyflavanone), isoflavonoids (formononetin and genistein), catechins (epigallocatechin gallate and epicatechin gallate), stilbenoids (resveratrol and pinosylvin), phenolics (6-gingerol), phloroglucinols (rottlerin and aspidin PB), terpenoids (18 ?-glycyrrhetinic acid, platycodin D, pseudolaric acid B, and xanthorrhizol), alkaloids (berberine, capsaicin, and indole-3-carbinol), lignans (isochaihulactone), anthraquinones (damnacanthal), and allyl sulfides (diallyl disulfide) elicited NAG-1 overexpression in various cancer cells. Pectenotoxin-2 from marine organisms and prodigiosin and anisomycin from microorganisms were also reported as NAG-1 modulators. Several transcription factors including EGR-1, p53, ATF-3, Sp1 and PPAR? were involved in natural products-induced NAG-1 transcriptional signaling pathway. PMID:24530873

  14. Anticancer Studies of Aqueous Extract of Roots and Leaves of Pandanus Odoratissimus f. ferreus (Y. Kimura) Hatus: An In Vitro Approach

    PubMed Central

    Raj, Gunti Gowtham; Varghese, Hyma Sara; Kotagiri, Sarita; Vrushabendra Swamy, B. M.; Swamy, Archana; Pathan, Rafi Khan

    2014-01-01

    A number of medicinal plant extracts are being used against various diseases in different systems of medicine such as Ayurveda, Unani, and Siddha, but only a few of them have been scientifically explored. The objective of the present study was to explore the dose-dependent in vitro anticancer effects of the extracts of Pandanus odoratissimus whose scientific documentation as an anticancer agent is lacking despite being used traditionally. The dried parts of roots and leaves were extracted with methanol (MEPO) and water (AEPO). The extracts were then subjected to in vitro cytotoxic and antimitotic screening by brine shrimp lethality assay and onion root tip method, respectively. Further, the behavior of the extracts on calu-6 (non-small cell lung cancer cell lines), PBMC (peripheral blood mononuclear cells) and WI (lung fibroblast cell lines) was studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay followed by flow cytometric analysis on calu-6 cell lines. AEPO showed significant cytotoxic and antimitotic activities. It showed 100% lethality of brine shrimps at 80 ?g/ml and an LC50 of 33.33 ?g/ml, which was eightfold higher than that of synthetic standard podophyllotoxin (4.16 ?g/ml). AEPO at 10 mg/ml concentration showed significant antimitotic activity by showing 3% mitotic index. which was more than that of standard cyclophosphamide with 4% mitotic index in comparison to control. There was a significant reduction in cell proliferation of calu-6 cells, ranging from 56 to 35%, after 24-48 h of treatment with 200 ?g/ml (P < 0.001) of AEPO, while AEPO remained unaffected on PBMC and WI-38 cel lines. Cell cycle analysis revealed that AEPO at 50 ?g/ml and 100 ?g/ml significantly increased the number of cells in sub G0–G1 phase, indicating the cells entering in to apoptotic phase. These results suggest that aqueous extract of P. odoratissimus possesses better anticancer activity. The plant has the potential to be used in anticancer therapy, and this study scientifically validated the folklore use of this plant. PMID:25379472

  15. A quantitative LC-MS/MS method for determination of SP-141, a novel pyrido[b]indole anticancer agent, and its application to a mouse PK study.

    PubMed

    Nag, Subhasree; Qin, Jiang-Jiang; Patil, Shivaputra; Deokar, Hemantkumar; Buolamwini, John K; Wang, Wei; Zhang, Ruiwen

    2014-10-15

    In the present study, a specific and sensitive liquid chromatography-triple quadrupole mass spectrometry method was developed and validated for the determination of SP-141, a novel pyrido[b]indole anticancer agent. After a liquid-liquid extraction with n-hexane-dichloromethane-2-propanol (20:10:1, v/v/v) mixture, the analyte was separated on a Kinetex C18 column (50×2.1mm, 2.6?m) with mobile phases comprising of water (0.1% formic acid, v/v) and acetonitrile (0.1% formic acid, v/v) at a flow rate of 0.4mL/min. The test compound (SP-141) and the internal standard (SP-157) were analyzed in the multiple reaction-monitoring mode using the mass transitions m/z 325.1 ? 282.0. The method was linear in the concentration range of 0.648-162ng/mL with coefficients of determination (R(2)) of 0.999 in mouse plasma. The lower limit of quantification was 0.648ng/mL. The intra- and inter-day assay precisions (coefficient of variation, %CV) were less than 4.2% and accuracies (relative error, %RE) ranged from -6.1% to 2.1%. The extraction recoveries were between 97.1 and 103.1% and the relative matrix effect was minimal. In addition, SP-141 was found to be stable in the plasma after three freeze-thaw cycles, at 37°C and 4°C for 24h, and at -80°C for 4 weeks. It was also stable in the stock solution at room temperature for 24h and after preparation in the autosampler for 36h. The validated method was successfully applied to an initial pharmacokinetic study of SP-141 in CD-1 mice following intraperitoneal and intravenous administrations. PMID:25195025

  16. Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells

    PubMed Central

    Jensen, Lars H; Dejligbjerg, Marielle; Hansen, Lasse T; Grauslund, Morten; Jensen, Peter B; Sehested, Maxwell

    2004-01-01

    Background Bisdioxopiperazine anti-cancer agents are inhibitors of eukaryotic DNA topoisomerase II, sequestering this protein as a non-covalent protein clamp on DNA. It has been suggested that such complexes on DNA represents a novel form of DNA damage to cells. In this report, we characterise the cytotoxicity and DNA damage induced by the bisdioxopiperazine ICRF-187 by a combination of genetic and molecular approaches. In addition, the well-established topoisomerase II poison m-AMSA is used for comparison. Results By utilizing a panel of Saccharomyces cerevisiae single-gene deletion strains, homologous recombination was identified as the most important DNA repair pathway determining the sensitivity towards ICRF-187. However, sensitivity towards m-AMSA depended much more on this pathway. In contrast, disrupting the post replication repair pathway only affected sensitivity towards m-AMSA. Homologous recombination (HR) defective irs1SF chinese hamster ovary (CHO) cells showed increased sensitivity towards ICRF-187, while their sensitivity towards m-AMSA was increased even more. Furthermore, complementation of the XRCC3 deficiency in irs1SF cells fully abrogated hypersensitivity towards both drugs. DNA-PKcs deficient V3-3 CHO cells having reduced levels of non-homologous end joining (NHEJ) showed slightly increased sensitivity to both drugs. While exposure of human small cell lung cancer (SCLC) OC-NYH cells to m-AMSA strongly induced ?H2AX, exposure to ICRF-187 resulted in much less induction, showing that ICRF-187 generates fewer DNA double strand breaks than m-AMSA. Accordingly, when yeast cells were exposed to equitoxic concentrations of ICRF-187 and m-AMSA, the expression of DNA damage-inducible genes showed higher levels of induction after exposure to m-AMSA as compared to ICRF-187. Most importantly, ICRF-187 stimulated homologous recombination in SPD8 hamster lung fibroblast cells to lower levels than m-AMSA at all cytotoxicity levels tested, showing that the mechanism of action of bisdioxopiperazines differs from that of classical topoisomerase II poisons in mammalian cells. Conclusion Our results point to important differences in the mechanism of cytotoxicity induced by bisdioxopiperazines and topoisomerase II poisons, and suggest that bisdioxopiperazines kill cells by a combination of DNA break-related and DNA break-unrelated mechanisms. PMID:15575955

  17. Design and Evaluation of Novel Antimicrobial and Anticancer Agents Among Tetrazolo[1,5-c]quinazoline-5-thione S-Derivatives

    PubMed Central

    Antypenko, Lyudmyla M.; Kovalenko, Sergey I.; Antypenko, Olexii M.; Katsev, Andrey M.; Achkasova, Olena M.

    2013-01-01

    The novel heterocyclization of 5-(2-aminophenyl)-1H-tetrazole with potassium ethylxanthogenate or carbon disulfide was proposed. The potassium salt of the tetrazolo[1,5-c]quinazoline-5-thione was subsequently modified by alkylation with proper halogen derivatives to (tetrazolo[1,5-c]quinazolin-5-ylthio)alkyls, N,N-dialkylethylamines, 1-aryl-2-ethanones, 1-(alkyl)aryl-2-ethanols, carboxylic acids, and esters. The structures of all newly synthesized compounds were confirmed by FT-IR, UV-vis, LC-MS, 1H, 13C NMR, and elemental analysis data. The substances were screened for antibacterial and antifungal activities (100 ?g) against Escherichia coli, Staphylococcus aureus, Enterobacter aerogenes, Entrococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans. Preliminary bioluminescence inhibition tests against Photobacterium leiognathi Sh1 showed that substances 5.2–5.4, 6.1, 7.1 with ethanone or carboxylic acid substituents showed toxicity against bacteria cells. The substances chosen by the US National Cancer Institute (NCI) were screened for their ability to inhibit 60 different human tumor cell lines, where 2-(tetrazolo[1,5-c]quinazolin-5-ylthio)-1-(4-tolyl)ethanone (5.2), 3-(tetrazolo[1,5-c]quinazolin-5-ylthio)propanoic and related 3-metyl-butanoic acids (6.2, 6.3), and ethyl tetrazolo[1,5-c]quinazolin-5-ylthio)acetate (7.2) showed lethal antitumor activity (1.0 ?M) against the acute lymphoblastic leukemia cell line (CCRF-CEM), and substances 5.2 and 6.3 exhibited moderate anticancer properties inhibiting growth of the leukemia MOLT-4 and HL06-(TB) cell lines. The moderate antitumor activity was demonstrated in 1-(2,5-dimethoxyphenyl)-2-(tetrazolo[1,5-c]quinazolin-5-ylthio)ethanone (5.4) against the CNS cancer cell line SNB-75. Comparing the docking mode of the Gefitinib and synthesised substances on the ATP binding site of EGFR, it could be assumed that these compounds might act in the same way. The results of the investigation could be considered as a useful base for future development of potent antimicrobials and antitumor agents among tetrazolo[1,5-c]quinazoline-5-thione S-derivatives. PMID:23641327

  18. Design and Evaluation of Novel Antimicrobial and Anticancer Agents Among Tetrazolo[1,5-c]quinazoline-5-thione S-Derivatives.

    PubMed

    Antypenko, Lyudmyla M; Kovalenko, Sergey I; Antypenko, Olexii M; Katsev, Andrey M; Achkasova, Olena M

    2013-03-01

    The novel heterocyclization of 5-(2-aminophenyl)-1H-tetrazole with potassium ethylxanthogenate or carbon disulfide was proposed. The potassium salt of the tetrazolo[1,5-c]quinazoline-5-thione was subsequently modified by alkylation with proper halogen derivatives to (tetrazolo[1,5-c]quinazolin-5-ylthio)alkyls, N,N-dialkylethylamines, 1-aryl-2-ethanones, 1-(alkyl)aryl-2-ethanols, carboxylic acids, and esters. The structures of all newly synthesized compounds were confirmed by FT-IR, UV-vis, LC-MS, (1)H, (13)C NMR, and elemental analysis data. The substances were screened for antibacterial and antifungal activities (100 ?g) against Escherichia coli, Staphylococcus aureus, Enterobacter aerogenes, Entrococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans. Preliminary bioluminescence inhibition tests against Photobacterium leiognathi Sh1 showed that substances 5.2-5.4, 6.1, 7.1 with ethanone or carboxylic acid substituents showed toxicity against bacteria cells. The substances chosen by the US National Cancer Institute (NCI) were screened for their ability to inhibit 60 different human tumor cell lines, where 2-(tetrazolo[1,5-c]quinazolin-5-ylthio)-1-(4-tolyl)ethanone (5.2), 3-(tetrazolo[1,5-c]quinazolin-5-ylthio)propanoic and related 3-metyl-butanoic acids (6.2, 6.3), and ethyl tetrazolo[1,5-c]quinazolin-5-ylthio)acetate (7.2) showed lethal antitumor activity (1.0 ?M) against the acute lymphoblastic leukemia cell line (CCRF-CEM), and substances 5.2 and 6.3 exhibited moderate anticancer properties inhibiting growth of the leukemia MOLT-4 and HL06-(TB) cell lines. The moderate antitumor activity was demonstrated in 1-(2,5-dimethoxyphenyl)-2-(tetrazolo[1,5-c]quinazolin-5-ylthio)ethanone (5.4) against the CNS cancer cell line SNB-75. Comparing the docking mode of the Gefitinib and synthesised substances on the ATP binding site of EGFR, it could be assumed that these compounds might act in the same way. The results of the investigation could be considered as a useful base for future development of potent antimicrobials and antitumor agents among tetrazolo[1,5-c]quinazoline-5-thione S-derivatives. PMID:23641327

  19. Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors.

    PubMed

    Reddy, G Lakshma; Guru, Santosh Kumar; Srinivas, M; Pathania, Anup Singh; Mahajan, Priya; Nargotra, Amit; Bhushan, Shashi; Vishwakarma, Ram A; Sawant, Sanghapal D

    2014-06-10

    A microwave assisted strategy for synthesis of series of 1H-pyrazolo[4,3-d]pyrimidin-7(6H)-ones has been developed and their biological evaluation as anticancer agents is described. The synthetic protocol involves simple procedure by oxidative coupling of 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide with different aldehydes in presence of K2S2O8 offering 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one compounds in excellent yields. The in vitro anticancer activity screening against human cancer cell lines HeLa, CAKI-I, PC-3, MiaPaca-2, A549 gave good results. The in detailed mechanistic correlation studies of compound 3m revealed that the compound shows anticancer activity through apoptosis mechanism and also inhibits mTOR with nonomolar potency. The design was based on docking with mTOR protein. The concentration dependent cell cycle analysis, western blotting experiment and nuclear cell morphology studies have been described. PMID:24780597

  20. Synthesis of (1,4)-naphthoquinono-[3,2-c]-1H-pyrazoles and their (1,4)-naphthohydroquinone derivatives as antifungal, antibacterial, and anticancer agents.

    PubMed

    Tandon, Vishnu K; Yadav, Dharmendra B; Chaturvedi, Ashok K; Shukla, Praveen K

    2005-07-01

    A series of (1,4)-naphthoquinono [3,2-c]-1H-pyrazoles and their (1,4)-naphthohydroquinone derivatives 2-7 were synthesized and evaluated for antifungal, antibacterial, and anticancer activities. The structure-activity relationship of these compounds was studied and the results show that the compound 2b exhibited in vitro antifungal activity against Candida albicans and Cryptococcus neoformans, and also possessed antibacterial profile against Klebsiella pneumoniae and Escherichia coli whereas 1c showed anticancer activity against Walker 256 Carcinosarcoma in rats. PMID:15913995

  1. A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: synthesis, docking studies and biological evaluation.

    PubMed

    Fatahala, Samar Said; Shalaby, Emad Ahmed; Kassab, Shaymaa Emam; Mohamed, Mossad Said

    2015-01-01

    A series of N-aryl derivatives of pyrrole and its related derivatives of fused form (namely; tetrahydroindole and dihydroindenopyrroles) were prepared in fair to good yields. The newly synthesized compounds were confirmed using IR, (1)H NMR, Mass spectral and elemental analysis. Tetrahydrobenzo[b] pyrroles Ia-d, 1,4-dihydroindeno[1,2-b]pyrroles IIa,b and pyrroles IIIa-c,e were evaluated for anticancer activity, coinciding with the antioxidant activity; using Di-Phenyl Picryl Hydrazyl (DPPH) tests. The cytotoxicity of the tested compounds (at a concentration of 100 and 200 ?g /mL) was performed against HepG-2 and EACC cell lines. Compounds Ib, d and IIa showed promising antioxidant activity beside their anticancer activity. Docking studies were employed to justify the promising anticancer activity of Ib,d and IIa. Protein kinase (PKase)-PDB entry 1FCQ was chosen as target enzyme for this purpose using the MOLSOFT ICM 3.4-8C program. The docking results of the tested compounds went aligned with the respective anticancer assay results. PMID:25929576

  2. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents

    Microsoft Academic Search

    Sameena Bano; Kalim Javed; Shamim Ahmad; I. G. Rathish; Surender Singh; M. S. Alam

    2011-01-01

    Eight novel 2-pyrazolines (2a–h) were synthesized by the reaction of appropriate chalcones\\/flavanones with 4-hydrazinonbenzenesulfonamide hydrochloride and tested for anti-inflammatory and anti-cancer activities. Two compounds 2c and 2e showed good anti-inflammatory activity which is comparable to the reference drug celecoxib in carrageenan-induced rat paw edema bioassay and found safe from the point of view of ulcer induction. Compounds 2c and 2e

  3. Trial Watch: Anticancer radioimmunotherapy.

    PubMed

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautčs-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-09-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and ?-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in cancer patients. PMID:24319634

  4. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Ali, Shadan; Zaiem, Feras

    2014-01-01

    Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers. PMID:25333034

  5. Synthesis of 1-(3',4',5'-trimethoxy) phenyl naphtho[2,1b]furan as a novel anticancer agent.

    PubMed

    Srivastava, Vandana; Negi, Arvind S; Kumar, J K; Faridi, Uzma; Sisodia, Brijesh S; Darokar, M P; Luqman, Suaib; Khanuja, S P S

    2006-02-15

    3',4',5'-Trimethoxy benzoyl-naphthalene 2-O-acetic acid (5) underwent base catalysed intramolecular condensation to yield exclusively 1-(3',4',5'-trimethoxy) phenyl naphtho[2,1-b]furan 8. The cyclised product 8 has been characterised by spectroscopy. The product 8 showed significant anticancer activity against human cancer cell lines COLO320DM (colon), CaCO2 (colon) and WRL68 (liver) at 0.7, 0.65 and 0.50 microg/ml concentrations, respectively, in the in vitro MTT assay. PMID:16297622

  6. Efficacy of a Non-Hypercalcemic Vitamin-D2 Derived Anti-Cancer Agent (MT19c) and Inhibition of Fatty Acid Synthesis in an Ovarian Cancer Xenograft Model

    PubMed Central

    Moore, Richard G.; Lange, Thilo S.; Robinson, Katina; Kim, Kyu K.; Uzun, Alper; Horan, Timothy C.; Kawar, Nada; Yano, Naohiro; Chu, Sharon R.; Mao, Quanfu; Brard, Laurent; DePaepe, Monique E.; Padbury, James F.; Arnold, Leggy A.; Brodsky, Alexander; Shen, Tun-Li; Singh, Rakesh K.

    2012-01-01

    Background Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models. Methodology/Principal Finding Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3) xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c–VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR) antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN) activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K) activity independently of PPAR-gamma protein. Significance Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis. PMID:22509304

  7. Combination therapy: Opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines

    Microsoft Academic Search

    Francesca Greco; María J. Vicent

    2009-01-01

    The discovery of new molecular targets and the subsequent development of novel anticancer agents are opening new possibilities for drug combination therapy as anticancer treatment. Polymer–drug conjugates are well established for the delivery of a single therapeutic agent, but only in very recent years their use has been extended to the delivery of multi-agent therapy. These early studies revealed the

  8. Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function

    Microsoft Academic Search

    Polly E. Kintzel; Robert T. Dorr

    1995-01-01

    The narrow therapeutic index of anticancer drugs presents a clinical dilemma when these agents are administered to patients with impaired or unstable renal function. The purpose of this review is to (i) describe the nephrotoxicity of certain anticancer drugs, (ii) evaluate the fraction of renal clearance for pertinent anticancer drugs, and (iii) make general recommendations for the dosing of these

  9. Synthesis and discovery of 18?-GAMG as anticancer agent in vitro and in vivo via down expression of protein p65

    PubMed Central

    Tang, Wen-jian; Yang, Yong-an; Xu, He; Shi, Jing-bo; Liu, Xin-hua

    2014-01-01

    Glycyrrhizic acid (GA) is a natural product with favorable antitumor activity. But, glycyrrhetinic acid monoglucuronide (GAMG) showed stronger antitumor activity than GA. It is of our interest to generate and identify novel compounds with regulation telomerase for cancer therapy. So, in this study, 18?-GAMG was synthesized via biotransformation. In vitro studies showed that it displayed potent anticancer activity and high selectivity on tumor liver cell SMMC-7721 versus human normal liver cell L-02. The further results in vivo confirmed that it could significantly improve pathological changes of N,N-diethylnitrosamine (DEN)-induced rat hepatic tumor. Western blot and immunofluorescence results indicated that the expression of p65-telomerase reverse transcriptase (TERT) was clearly down-regulated treated with it. Taken together, this study for the first time identified an active compound with high selectivity on tumor liver cell in mice. Furthermore, the title compound could inhibit the expression of protein p65 and TERT. These data support further studies to assess the rational design of more efficient p65 modulators in the future. PMID:25407586

  10. Fabrication of hollow and porous structured GdVO4:Dy3+ nanospheres as anticancer drug carrier and MRI contrast agent.

    PubMed

    Kang, Xiaojiao; Yang, Dongmei; Ma, Ping'an; Dai, Yunlu; Shang, Mengmeng; Geng, Dongling; Cheng, Ziyong; Lin, Jun

    2013-01-29

    Hollow and porous structured GdVO(4):Dy(3+) spheres were fabricated via a facile self-sacrificing templated method. The large cavity allows them to be used as potential hosts for therapeutic drugs, and the porous feature of the shell allows guest molecules to easily pass through the void space and surrounding environment. The samples show strong yellow-green emission of Dy(3+) (485 nm, (4)F(9/2) ? (6)H(15/2); 575 nm, (4)F(9/2) ? (6)H(13/2)) under UV excitation. The emission intensity of GdVO(4):Dy(3+) was weakened after encapsulation of anticancer drug (doxorubicin hydrochloride, DOX) and gradually restored with the cumulative released time of DOX. These hollow spheres were nontoxic to HeLa cells, while DOX-loaded samples led to apparent cytotoxicity as a result of the sustained release of DOX. ICP measurement indicates that free toxic Gd ions can hardly dissolate from the matrix. The endocytosis process of DOX-loaded hollow spheres is observed using confocal laser scanning microscopy (CLSM). Furthermore, GdVO(4):Dy(3+) hollow spheres can be used for T(1)-weighted magnetic resonance (MR) imaging. These results implicate that the luminescent GdVO(4):Dy(3+) spheres with hollow and porous structure are promising platforms for drug storage/release and MR imaging. PMID:23281806

  11. Computational Selection and Experimental Validation of Allosteric Ribozymes That Sense a Specific Sequence of Human Telomerase Reverse Transcriptase mRNAs as Universal Anticancer Therapy Agents

    PubMed Central

    Kostova, Gergana T.

    2013-01-01

    High expression levels of telomerase reverse transcriptase messenger RNAs in differentiated cells can be used as a common marker for cancer development. In this paper, we describe a novel computational method for selection of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs. The in silico selection employed is based on computing secondary structures of RNA using the partition function in combination with a random search algorithm. We selected one of the ribozymes for experimental validation. The obtained results demonstrate that the tested ribozyme has a high-speed (?1.8 per minute) of self-cleavage and is very selective. It can distinguish well between perfectly matching effector and the closest expressed RNA sequence in the human cell with 10 mismatches, with a ?300-fold difference under physiologically relevant conditions. The presented algorithm is universal since the allosteric ribozymes can be designed to sense any specific RNA or DNA sequence of interest. Such designer ribozymes may be used for monitoring the expression of mRNAs in the cell and for developing novel anticancer gene therapies. PMID:24206267

  12. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents.

    PubMed

    Bano, Sameena; Javed, Kalim; Ahmad, Shamim; Rathish, I G; Singh, Surender; Alam, M S

    2011-12-01

    Eight novel 2-pyrazolines (2a-h) were synthesized by the reaction of appropriate chalcones/flavanones with 4-hydrazinonbenzenesulfonamide hydrochloride and tested for anti-inflammatory and anti-cancer activities. Two compounds 2c and 2e showed good anti-inflammatory activity which is comparable to the reference drug celecoxib in carrageenan-induced rat paw edema bioassay and found safe from the point of view of ulcer induction. Compounds 2c and 2e showed very mild inhibition against the enzymatic activity of ovine COX-1 and COX-2 (in vitro). The compounds 2c and 2f exhibited considerable antitumor activity against tested 60 human tumor cell lines. Specifically, compound 2f exhibited promising anti-proliferative activity with GI(50) values less than 2 ?M particularly against MOLT-4 (1.94), SR (1.28) in leukemia cancer, EKVX (1.88) in non small cell lung cancer, COLO 205 (1.69) in colon cancer. PMID:22019186

  13. CARBOXYLESTERASE-2 IS A HIGHLY SENSITIVE TARGET OF THE ANTIOBESITY AGENT ORLISTAT WITH PROFOUND IMPLICATIONS IN THE ACTIVATION OF ANTICANCER PRODRUGS

    PubMed Central

    Xiao, Da; Shi, Deshi; Yang, Dongfang; Barthel, Benjamin; Koch, Tad H.; Yan, Bingfang

    2014-01-01

    Orlistat has been the most used anti-obesity drug and the mechanism of its action is to reduce lipid absorption by inhibiting gastrointestinal lipases. These enzymes, like carboxylesterases (CESs), structurally belong to the ?/? hydrolase fold superfamily. Lipases and CESs are functionally related as well. Some CESs (e.g., human CES1) have been shown to hydrolyze lipids. This study was designed to test the hypothesis that orlistat inhibits CESs with higher potency toward CES1 than CES2, a carboxylesterase with little lipase activity. Liver microsomes and recombinant CESs were tested for the inhibition of the hydrolysis of standard substrates and the anticancer prodrugs pentyl carbamate of p-aminobenzyl carbamate of doxazolidine (PPD) and irinotecan. Contrary to the hypothesis, orlistat at 1 nM inhibited CES2 activity by 75% but no inhibition on CES1, placing CES2 one of the most sensitive targets of orlistat. The inhibition varied among some CES2 polymorphic variants. Pretreatment with orlistat reduced the cell killing activity of PPD. Certain mouse but not rat CESs were also highly sensitive. CES2 is responsible for the hydrolysis of many common drugs and abundantly expressed in the gastrointestinal track and liver. Inhibition of this carboxylesterase probably presents a major source for altered therapeutic activity of these medicines if co-administered with orlistat. In addition, orlistat has been linked to various types of organ toxicities, and this study provides an alternative target potentially involved in these toxicological responses. PMID:23228697

  14. Poly l -Glutamic Acid Anti-cancer Drug Conjugates

    Microsoft Academic Search

    Jack W. Singer; Marc McKennon; Gabriella Pezzoni; Stefano di Giovine; Mara Cassin; Paola Feudis; Cecilia Allievi; Patrizia Angiuli; Marco Natangelo; Enrico Vezzali; Stefano Fazioni

    \\u000a Cytotoxic chemotherapeutic agents are the mainstay of anti-cancer therapy. Improvements in the therapeutic ratio of cytotoxic\\u000a anti-cancer drugs remain a major unmet need as these agents are limited by toxicity to normal organs and relatively modest\\u000a anti-tumor efficacy as a result of lack of specificity. Cytotoxic drugs target rapidly dividing cells in normal tissues with\\u000a similar effects to those in

  15. Re-examination of maintenance therapy in non-small cell lung cancer with the advent of new anti-cancer agents

    PubMed Central

    Berge, Eamon M.; Doebele, Robert C.

    2014-01-01

    Metastatic non-small cell lung cancer (NSCLC) remains a disease with a high annual incidence and annual mortality worldwide, with limitations in first line treatment past a fixed amount of platinum doublet chemotherapy for patients that do not harbor a targetable genetic abnormality such as an EGFR mutation or ALK gene rearrangement. Previous attempts to extend first line treatment past four to six cycles of conventional cytotoxic chemotherapy have been disappointing, resulting in diminished quality of life and increased toxicity without improvement of progression free or overall survival. Several advances in third generation chemotherapy and targeted agents have generated a renewed interest in maintenance therapy, with several randomized phase III trials reporting a significant improvement in progression free and overall survival with manageable toxicity profiles. The availability of new chemotherapy agents, tyrosine kinase inhibitors, and immunotherapy agents with a more tolerable or nonoverlapping toxicity profile have resulted in improvement in progression free survival and median overall survival in maintenance settings with specific agents such as pemetrexed and erlotinib. Patients who are responding to first line therapy, have not suffered a detrimental decrease in quality of life or performance status, and that understand the risks and benefits of further immediate chemotherapy should be considered for maintenance treatment. PMID:23591906

  16. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    NASA Astrophysics Data System (ADS)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-01

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Ĺ for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro.

  17. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent.

    PubMed

    Mittal, Amit Kumar; Tripathy, Debabrata; Choudhary, Alka; Aili, Pavan Kumar; Chatterjee, Anupam; Singh, Inder Pal; Banerjee, Uttam Chand

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag(+) to Ag(0) and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV-Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12?g/mL nanoparticles showed good toxicity. The IC50 value of nanoparticles was found to be 4.91 and 8.23?g/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. PMID:26042698

  18. Synthesis of 7-oxo-7 H-naphtho[1,2,3- de]quinoline derivatives as potential anticancer agents active on multidrug resistant cell lines

    Microsoft Academic Search

    Maria Dzieduszycka; Maria M. Bontemps-Gracz; Barbara Stefa?ska; Sante Martelli; Agnieszka Piwkowska; Ma?gorzata Arciemiuk; Edward Borowski

    2006-01-01

    Following our earlier finding that tetracyclic anthraquinone analogs with a fused pyridone ring exhibit cytotoxic activity toward multidrug resistant tumor cells, a series of new potential antitumor agents, 7-oxo-7H-naphtho[1,2,3-de]quinoline derivatives (3, 6–8, 10–12, 14, 15, and 18), bearing one or two basic side chains and various substituents at the pyridone ring, have been synthesized. The compounds have been obtained from

  19. Multi-target drug discovery in anti-cancer therapy: fragment-based approach toward the design of potent and versatile anti-prostate cancer agents.

    PubMed

    Speck-Planche, Alejandro; Kleandrova, Valeria V; Luan, Feng; Cordeiro, M Natália D S

    2011-11-01

    Prostate cancer (PCa) is the second-leading cause of cancer deaths among men in the around the world. Understanding the biology of PCa is essential to the development of novel therapeutic strategies, in order to prevent this disease. However, after PCa make metastases, chemotherapy plays an extremely important role. With the pass of the time, PCa cell lines become resistant to the current anti-PCa drugs. For this reason, there is a necessity to develop new anti-PCa agents with the ability to be active against several PCa cell lines. The present work is an effort to overcome this problem. We introduce here the first multi-target approach for the design and prediction of anti-PCa agents against several cell lines. Here, a fragment-based QSAR model was developed. The model had a sensitivity of 88.36% and specificity 89.81% in training series. Also, the model showed 94.06% and 92.92% for sensitivity and specificity, respectively. Some fragments were extracted from the molecules and their contributions to anti-PCa activity were calculated. Several fragments were identified as potential substructural features responsible of anti-PCa activity and new molecular entities designed from fragments with positive contributions were suggested as possible anti-PCa agents. PMID:21967806

  20. CancerHSP: anticancer herbs database of systems pharmacology.

    PubMed

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-01-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php. PMID:26074488

  1. CancerHSP: anticancer herbs database of systems pharmacology

    PubMed Central

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-01-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php. PMID:26074488

  2. The anticancer effect of Huaier (Review).

    PubMed

    Song, Xiaojin; Li, Yaming; Zhang, Hanwen; Yang, Qifeng

    2015-07-01

    Trametes robiniophila Murr. (Huaier) is a sandy beige mushroom found on the trunks of trees and has been widely used in traditional Chinese medicine (TCM) for ~1,600 years. The anticancer effects of Huaier have attracted increasing worldwide interest in recent years. Accumulating evidence suggests that the anticancer mechanism of Huaier may be associated with various biological activities, such as inhibition of cell proliferation, anti-metastasis, interference with tumor angiogenesis and tumor-specific immunomodulatory effect. Animal and experimental studies suggest that Huaier is a promising anticancer agent. Further clinical research is warranted to illustrate the untapped chemopreventive and therapeutic potential of Huaier either alone or in conjunction with existing therapies. PMID:25955759

  3. The displacement of iron(III) from its complexes with the anticancer drugs piroxantrone and losoxantrone by the hydrolyzed form of the cardioprotective agent dexrazoxane.

    PubMed

    Hasinoff, B B; Tran, K T

    1999-01-01

    Piroxantrone and losoxantrone are new DNA topoisomerase II-targeting anthrapyrazole antitumor agents that display cardiotoxicity both clinically and in animal models. A study was undertaken to see whether dexrazoxane or its hydrolysis product ADR-925 could remove iron(III) from its complexes with piroxantrone or losoxantrone. Their cardiotoxicity may result from the formation of iron(III) complexes of losoxantrone and piroxantrone. Subsequent reductive activation of their iron(III) complexes likely results in oxygen-free radical-mediated cardiotoxicity. Dexrazoxane is in clinical use as a doxorubicin cardioprotective agent. Dexrazoxane presumably acts through its hydrolyzed metal ion binding form ADR-925 by removing iron(III) from its complex with doxorubicin, or by scavenging free iron(III), thus preventing oxygen-free radical-based oxidative damage to the heart tissue. ADR-925 was able to remove iron(III) from its complexes with piroxantrone and losoxantrone, though not as efficiently or as quickly as it could from its complexes with doxorubicin and other anthracyclines. This study provides a basis for utilizing dexrazoxane for the clinical prevention of anthrapyrazole cardiotoxicity. PMID:10643663

  4. Primary cultures of microglial cells for testing toxicity of anticancer drugs

    Microsoft Academic Search

    Mauro Vairano; Grazia Graziani; Lucio Tentori; Giuseppe Tringali; Pierluigi Navarra; Cinzia Dello Russo

    2004-01-01

    Toxicity of anticancer agents on normal neural cells during chemotherapy of primary or secondary brain tumors is a clinical problem of increasing relevance and concern. In this perspective, here we used primary cultures of rat cortical microglia as an in vitro paradigm of normal glia to investigate the neurotoxicity of anticancer agents. The effects of two compounds frequently used for

  5. Intracellular Distribution-based Anticancer Drug Targeting: Exploiting a Lysosomal Acidification Defect Associated with Cancer Cells

    E-print Network

    Ndolo, Rosemary A.; Jacobs, Damon T.; Forrest, Marcus Laird; Krise, Jeffrey P.

    2010-09-09

    The therapeutic usefulness of anticancer agents relies on their ability to exert maximal toxicity to cancer cells and minimal toxicity to normal cells. The difference between these two parameters defines the therapeutic index of the agent...

  6. An Improved High Yield Total Synthesis and Cytotoxicity Study of the Marine Alkaloid Neoamphimedine: An ATP-Competitive Inhibitor of Topoisomerase II? and Potent Anticancer Agent

    PubMed Central

    Li, Linfeng; Abraham, Adedoyin D.; Zhou, Qiong; Ali, Hadi; O’Brien, Jeremy V.; Hamill, Brayden D.; Arcaroli, John J.; Messersmith, Wells A.; LaBarbera, Daniel V.

    2014-01-01

    Recently, we characterized neoamphimedine (neo) as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase II?. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing. Although there are two reported syntheses of neo, both require 12 steps with low overall yields (?6%). In this article, we report an improved total synthesis of neo achieved in 10 steps with a 25% overall yield. In addition, we report an expanded cytotoxicity study using a panel of human cancer cell lines, including: breast, colorectal, lung, and leukemia. Neo displays potent cytotoxicity (nM IC50 values) in all, with significant potency against colorectal cancer (lowest IC50 = 6 nM). We show that neo is cytotoxic not cytostatic, and that neo exerts cytotoxicity by inducing G2-M cell cycle arrest and apoptosis. PMID:25244109

  7. Synthesis of 7-oxo-7H-naphtho[1,2,3-de]quinoline derivatives as potential anticancer agents active on multidrug resistant cell lines.

    PubMed

    Dzieduszycka, Maria; Bontemps-Gracz, Maria M; Stefa?ska, Barbara; Martelli, Sante; Piwkowska, Agnieszka; Arciemiuk, Ma?gorzata; Borowski, Edward

    2006-05-01

    Following our earlier finding that tetracyclic anthraquinone analogs with a fused pyridone ring exhibit cytotoxic activity toward multidrug resistant tumor cells, a series of new potential antitumor agents, 7-oxo-7H-naphtho[1,2,3-de]quinoline derivatives (3, 6-8, 10-12, 14, 15, and 18), bearing one or two basic side chains and various substituents at the pyridone ring, have been synthesized. The compounds have been obtained from 1-amino-4-chloroanthraquinone or 1-aminoanthraquinone by cyclization with diethyl malonate and the subsequent reactions of the key intermediates 2, 4, and 17. The compounds exhibited cytotoxic activity toward sensitive human leukemia cell line HL-60 and against its resistant sublines HL-60/VINC (MDR1 type) and HL-60/DX (MRP1 type). PMID:16458007

  8. A novel use of gentamicin in the ROS-mediated sensitization of NCI-H460 lung cancer cells to various anticancer agents.

    PubMed

    Cuccarese, Michael F; Singh, Amit; Amiji, Mansoor; O'Doherty, George A

    2013-12-20

    Aminoglycosides are broad-spectrum antibiotics that are used for the treatment of severe Gram-negative and Gram-positive bacterial infections. While bactericidal effects of aminoglycosides are due to binding to the 30S subunit of the bacterial ribosome, aminoglycosides can affect protein synthesis, intracellular calcium levels, and levels of reactive oxygen species (ROS) in eukaryotic cells. While aminoglycosides can be cytotoxic at high concentrations, our results show that at much lower doses, gentamicin can be implemented as a sensitizing agent for the NSCLC cell line NCI-H460, increasing the efficacy of camptothecin, digitoxin, and vinblastine in vitro. We have also established that this sensitization is reliant on the ROS response generated by gentamicin. PMID:24093441

  9. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy.

    PubMed

    Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L; Taratula, Oleh

    2015-03-01

    Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm(-2)), SiNc-NP manifested robust heat generation capability (?T = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm(-2) to 1.3 W cm(-2) the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure. PMID:25422147

  10. Development of Synthetic Lethality Anticancer Therapeutics

    PubMed Central

    2015-01-01

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy. PMID:24893124

  11. Are isothiocyanates potential anti-cancer drugs?

    PubMed Central

    Wu, Xiang; Zhou, Qing-hua; Xu, Ke

    2009-01-01

    Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anticarcinogenic activity because they reduce activation of carcinogens and increase their detoxification. Recent studies show that they exhibit anti-tumor activity by affecting multiple pathways including apoptosis, MAPK signaling, oxidative stress, and cell cycle progression. This review summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents. PMID:19417730

  12. Cell Death Signaling and Anticancer Therapy

    PubMed Central

    Galluzzi, Lorenzo; Vitale, Ilio; Vacchelli, Erika; Kroemer, Guido

    2011-01-01

    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents. PMID:22655227

  13. Anticancer Polymeric Nanomedicines

    Microsoft Academic Search

    Rong Tong; Jianjun Cheng

    2007-01-01

    Polymers play important roles in the design of delivery nanocarriers for cancer therapies. Polymeric nanocarriers with anticancer drugs conjugated or encapsulated, also known as polymeric nanomedicines, form a variety of different architectures including polymer?drug conjugates, micelles, nanospheres, nanogels, vesicles, and dendrimers. This review focuses on the current state of the preclinical and clinical investigations of polymer?drug conjugates and polymeric micelles.

  14. Selective anticancer agents suppress aging in Drosophila

    PubMed Central

    Danilov, Anton; Shaposhnikov, Mikhail; Plyusnina, Ekaterina; Kogan, Valeria; Fedichev, Peter; Moskalev, Alexey

    2013-01-01

    Mutations of the PI3K, TOR, iNOS, and NF-?B genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-?B (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-?B (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-?B (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-?B, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 ?M) and wortmannin (5 ?M) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data. PMID:24096697

  15. Phase II Trials with Anticancer Agents

    Microsoft Academic Search

    Hui K. Gan; J. Jack Lee; Lillian L. Siu

    \\u000a Following the determination of drug pharmacology, tolerability, and maximum tolerated dose (MTD) in Phase I trials, investigational\\u000a drugs usually proceed to Phase II trials. As succinctly summarized by the FDA (21 CFR 312.21) [1], these trials are “conducted\\u000a to (a) evaluate the effectiveness of the drug for a particular indication or indications in patients with the disease or condition under

  16. Cardiotoxicity of the Anticancer Therapeutic Agent Bortezomib

    PubMed Central

    Nowis, Dominika; M?czewski, Micha?; Mackiewicz, Urszula; Kujawa, Marek; Ratajska, Anna; Wieckowski, Mariusz R.; Wilczy?ski, Grzegorz M.; Malinowska, Monika; Bil, Jacek; Salwa, Pawe?; Bugajski, Marek; Wójcik, Cezary; Si?ski, Maciej; Abramczyk, Piotr; Winiarska, Magdalena; D?browska-Iwanicka, Anna; Duszy?ski, Jerzy; Jakóbisiak, Marek; Golab, Jakub

    2010-01-01

    Recent case reports provided alarming signals that treatment with bortezomib might be associated with cardiac events. In all reported cases, patients experiencing cardiac problems were previously or concomitantly treated with other chemotherapeutics including cardiotoxic anthracyclines. Therefore, it is difficult to distinguish which components of the therapeutic regimens contribute to cardiotoxicity. Here, we addressed the influence of bortezomib on cardiac function in rats that were not treated with other drugs. Rats were treated with bortezomib at a dose of 0.2 mg/kg thrice weekly. Echocardiography, histopathology, and electron microscopy were used to evaluate cardiac function and structural changes. Respiration of the rat heart mitochondria was measured polarographically. Cell culture experiments were used to determine the influence of bortezomib on cardiomyocyte survival, contractility, Ca2+ fluxes, induction of endoplasmic reticulum stress, and autophagy. Our findings indicate that bortezomib treatment leads to left ventricular contractile dysfunction manifested by a significant drop in left ventricle ejection fraction. Dramatic ultrastructural abnormalities of cardiomyocytes, especially within mitochondria, were accompanied by decreased ATP synthesis and decreased cardiomyocyte contractility. Monitoring of cardiac function in bortezomib-treated patients should be implemented to evaluate how frequently cardiotoxicity develops especially in patients with pre-existing cardiac conditions, as well as when using additional cardiotoxic drugs. PMID:20519734

  17. Ferrocene Functionalized Endocrine Modulators as Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Hillard, Elizabeth A.; Vessičres, Anne; Jaouen, Gerard

    We present here some of our studies on the synthesis and behaviour of ferrocenyl selective endocrine receptor modulators against cancer cells, particularly breast and prostate cancers. The proliferative/anti-proliferative effects of compounds based on steroidal and non-steroidal endocrine modulators have been extensively explored in vitro. Structure-activity relationship studies of such molecules, particularly the hydroxyferrocifens and ferrocene phenols, have shown the effect of (1) the presence and the length of the N,N-dimethylamino side chain, (2) the presence and position of the phenol group, (3) the role of the ferrocenyl moiety, (4) that of conjugation, (5) phenyl functionalisation and (6) the placement of the phenyl group. Compounds possessing a ferrocene moiety linked to a p-phenol by a conjugated ?-system are among the most potent of the series, with IC50 values ranging from 0.090 to 0.6µM on hormone independent breast cancer cells. Based on the SAR data and electrochemical studies, we have proposed an original mechanism to explain the unusual behaviour of these bioorganometallic species and coin the term "kronatropic" to qualify this effect, involving ROS production and bio-oxidation. In addition, the importance of formulation is underlined. We also discuss the behaviour of ferrocenyl androgens and anti-androgens for possible use against prostate cancers. In sum, ferrocene has proven to be a fascinating substituent due to its vast potential for oncology.

  18. Anticancer properties of Monascus metabolites.

    PubMed

    Yang, Tao; Liu, Junwen; Luo, Feijun; Lin, Qinlu; Rosol, Thomas J; Deng, Xiyun

    2014-08-01

    This review provides up-to-date information on the anticancer properties of Monascus-fermented products. Topics covered include clinical evidence for the anticancer potential of Monascus metabolites, bioactive Monascus components with anticancer potential, mechanisms of the anticancer effects of Monascus metabolites, and existing problems as well as future perspectives. With the advancement of related fields, the development of novel anticancer Monascus food products and/or pharmaceuticals will be possible with the ultimate goal of decreasing the incidence and mortality of malignancies in humans. PMID:24637578

  19. Oncolytic Viruses as Anticancer Vaccines

    PubMed Central

    Woller, Norman; Gürlevik, Engin; Ureche, Cristina-Ileana; Schumacher, Anja; Kühnel, Florian

    2014-01-01

    Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity, which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy. PMID:25101244

  20. Structure and function of a custom anticancer peptide, CB1a

    Microsoft Academic Search

    Jiun-Ming Wu; Pey-Shynan Jan; Hui-Chen Yu; Hsu-Yuang Haung; Huey-Jen Fang; Yuan-I Chang; Jya-Wei Cheng; Hueih Min Chen

    2009-01-01

    Several natural antimicrobial peptides including cecropins, magainins and melittins have been found to kill cancer cells. However, their efficacy may not be adequate for their development as anticancer agents. In this study, we used a natural antimicrobial peptide, cecropin B (CB), as a template to generate a novel anticancer peptide. Cecropin B is an amphipathic and polycationic peptide derived from

  1. Ultrasonic absorption frequency dependence of two widely used anti-cancer drugs

    E-print Network

    Illinois at Urbana-Champaign, University of

    Ultrasonic absorption frequency dependence of two widely used anti-cancer drugs: doxorubicin the two anti-cancer agents is observed, around 2 MHz, and may be attributed to the sole difference in the chemical make-up of the side chain of the two antibiotics. Keywords: absorption properties; anti

  2. An ortho-carbonyl substituted hydroquinone derivative is an anticancer agent that acts by inhibiting mitochondrial bioenergetics and by inducing G?/M-phase arrest in mammary adenocarcinoma TA3.

    PubMed

    Urra, Félix A; Martínez-Cifuentes, Maximiliano; Pavani, Mario; Lapier, Michel; Jańa-Prado, Fabián; Parra, Eduardo; Maya, Juan Diego; Pessoa-Mahana, Hernán; Ferreira, Jorge; Araya-Maturana, Ramiro

    2013-03-15

    Tumor cells present a known metabolic reprogramming, which makes them more susceptible for a selective cellular death by modifying its mitochondrial bioenergetics. Anticancer action of the antioxidant 9,10-dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)-one (HQ) on mouse mammary adenocarcinoma TA3, and its multiresistant variant TA3-MTXR, were evaluated. HQ decreased the viability of both tumor cells, affecting slightly mammary epithelial cells. This hydroquinone blocked the electron flow through the NADH dehydrogenase (Complex I), leading to ADP-stimulated oxygen consumption inhibition, transmembrane potential dissipation and cellular ATP level decrease, without increasing ROS production. Duroquinol, an electron donor at CoQ level, reversed the decrease of cell viability induced by HQ. Additionally, HQ selectively induced G?/M-phase arrest. Taken together, our results suggest that the bioenergetic dysfunction provoked by HQ is implicated in its anticancer action. PMID:23333614

  3. Anticancer effects of Ganoderma lucidum: a review of scientific evidence.

    PubMed

    Yuen, John W M; Gohel, Mayur Danny I

    2005-01-01

    "Lingzhi" (Ganoderma lucidum), a popular medicinal mushroom, has been used in China for longevity and health promotion since ancient times. Investigations into the anticancer activity of lingzhi have been performed in both in vitro and in vivo studies, supporting its application for cancer treatment and prevention. The proposed anticancer activity of lingzhi has prompted its usage by cancer patients. It remains debatable as to whether lingzhi is a food supplement for health maintenance or actually a therapeutic "drug" for medical proposes. Thus far there has been no report of human trials using lingzhi as a direct anticancer agent, despite some evidence showing the usage of lingzhi as a potential supplement to cancer patients. Cellular immune responses and mitogenic reactivity of cancer patients have been enhanced by lingzhi, as reported in two randomized and one nonrandomized trials, and the quality of life of 65% of lung cancer patients improved in one study. The direct cytotoxic and anti-angiogenesis mechanisms of lingzhi have been established by in vitro studies; however, clinical studies should not be neglected to define the applicable dosage in vivo. At present, lingzhi is a health food supplement to support cancer patients, yet the evidence supporting the potential of direct in vivo anticancer effects should not be underestimated. Lingzhi or its products can be classified as an anticancer agent when current and more direct scientific evidence becomes available. PMID:16351502

  4. [Anticancer activity of oxovanadium compounds].

    PubMed

    Abakumova, O Iu; Podobed, O V; Beliaeva, N F; Tochilkin, A I

    2013-01-01

    Cytotoxic and antitumor activity of the biligand vanadyl derivative of L-malic acid (bis(L-malato)oxovanadium(IV) (VO(mal)2) was investigated in comparison with inorganic vanadium(IV) compound--vanadyl sulfate (VOSO4) and also with oxovanadium monocomplex with L-malic acid (VO(mal)) and vanadyl biscomplex with acetylacetonate. In this purpose the effect of vanadyl compounds on growth of normal human skin fibroblasts and tumor cells of different lines: mouse fibrosarcoma (L929), rat pheochromocytome (PC12), human liver carcinoma (HepG2), virus transformated mouse fibroblast (NIN 3T3), virus transformated cells of human kidney (293) were investigated. The results showed that VO(mal)2 was not toxic for normal human skin fibroblasts but considerably inhibited growth of cancer cells in culture. Cytotoxic antitumor effect of vanadium complexes was found to be dependent on incubation time and concentration and on type of cells and nature of ligands of the central group of the complex (VO2+). These studies provide evidence that VO(mal)2 may be considered as a potential antitumor agent due to its low toxicity in non-tumor cells and significant anticancer activity. PMID:23987068

  5. Anticancer substances of mushroom origin.

    PubMed

    Ivanova, T S; Krupodorova, T A; Barshteyn, V Y; Artamonova, A B; Shlyakhovenko, V A

    2014-06-01

    The present status of investigations about the anticancer activity which is inherent to medicinal mushrooms, as well as their biomedical potential and future prospects are discussed. Mushroom products and extracts possess promising immunomodulating and anticancer effects, so the main biologically active substances of mushrooms responsible for immunomodulation and direct cytoto-xicity toward cancer cell lines (including rarely mentioned groups of anticancer mushroom proteins), and the mechanisms of their antitumor action were analyzed. The existing to date clinical trials of mushroom substances are mentioned. Mushroom anticancer extracts, obtained by the different solvents, are outlined. Modern approaches of cancer treatment with implication of mushroom products, including DNA vaccinotherapy with mushroom immunomodulatory adjuvants, creation of prodrugs with mushroom lectins that can recognize glycoconjugates on the cancer cell surface, development of nanovectors etc. are discussed. The future prospects of mushroom anticancer substances application, including chemical modification of polysaccharides and terpenoids, gene engineering of proteins, and implementation of vaccines are reviewed. PMID:24980757

  6. Total synthesis of bryostatin 16 using a Pd-catalyzed diyne coupling as macrocyclization method and synthesis of C20-epi-bryostatin 7 as a potent anticancer agent.

    PubMed

    Trost, Barry M; Dong, Guangbin

    2010-11-24

    Asymmetric total synthesis of bryostatin 16 was achieved in 26 steps in the longest linear sequence and in 39 total steps from aldehyde 10. A Pd-catalyzed alkyne-alkyne coupling was employed for the first time as a macrocyclization method in a natural product synthesis. A route to convert bryostatin 16 to a new family of bryostatin analogues was developed. Toward this end, 20-epi-bryostatin 7 was synthesized from a bryostatin 16-like intermediate; the key step involves a Re-catalyzed epoxidation/ring-opening reaction. Preliminary biological studies indicated that this new analogue exhibits nanomolar anti-cancer activity against several cancer cell lines. PMID:21043491

  7. Total Synthesis of Bryostatin 16 using a Pd-Catalyzed Diyne-Coupling as Macrocyclization Method and Synthesis of C20-epi-Bryostatin 7 as a Potent Anticancer Agent

    PubMed Central

    Trost, Barry M.; Dong, Guangbin

    2010-01-01

    Asymmetric total synthesis of bryostatin 16 was achieved in 26 steps in the longest linear sequence/39 total steps from aldehyde 10. A Pd-catalyzed alkyne-alkyne coupling was employed for the first-time as a macrocyclization method in a natural product synthesis. A route to convert bryostatin 16 to a new family of bryostatin analogues was developed. Toward the end, 20-epi-bryostatin 7, was synthesized from a bryostatin 16-like intermediate; and the key step involves a Re-catalyzed epoxidation/ring-opening reaction. Preliminary biological studies indicated that this new analogue exhibits nanomolar anti-cancer activity against several cancer cell lines. PMID:21043491

  8. Linker length in podophyllotoxin-acridine conjugates determines potency in vivo and in vitro as well as specificity against MDR cell lines.

    PubMed

    Rothenborg-Jensen, L; Hansen, H F; Wessel, I; Nitiss, J L; Schmidt, G; Jensen, P B; Sehested, M; Jensen, L H

    2001-12-01

    We have synthesized two podophyllotoxin-acridine conjugates-pACR6 and pACR8. In these compounds an 9-acridinyl moiety is beta linked to the C4 carbon of the four ring system in 4'-demethylepipodophyllotoxin (epiDPT) via eighter an N-6-aminohexanylamide linker (pACR6) or via an N-8-aminooctanylamide linker containing two more carbon atoms (pACR8). The acridine-linker moiety occupies the position where different glucoside moieties, dispensable for activity, are normally linked to epiDPT in the well known epipodophyllotoxins VP-16 and VM-26. As with VP-16 and VM-26, pACR6 and pACR8 show evidence of being topoisomerase II poisons as they stimulate topoisomerase II mediated DNA cleavage in vitro and induce DNA damage in vivo. This in vivo DNA damage, as well as pACR6/pACR8 mediated cytotoxicity, is antagonized by the catalytic topoisomerase II inhibitors ICRF-187 and aclarubicin, demonstrating that topoisomerase II is a functional biological target for these drugs. Despite their structural similarities, pACR6 was more potent than pACR8 in stimulating topoisomerase II mediated DNA cleavage in vitro as well as DNA damage in vivo and pACR6 was accordingly more cytotoxic towards various human and murine cell lines than pACR8. Further, marked cross-resistance to pACR6 was seen among a panel of multidrug-resistant (MDR) cell lines over-expressing the MDR1 (multidrug resistance protein 1) ABC drug transporter, while these cell lines remained sensitive towards pACR8. pACR8 was also capable of circumventing drug resistance among at-MDR (altered topoisomerase II MDR) cell lines not over-expressing drug transporters, while pACR6 was not. Two resistant cell lines, OC-NYH/pACR6 and OC-NYH/pACR8, were developed by exposure of small cell lung cancer (SCLC) OC-NYH cells to gradually increasing concentrations of pACR6 and pACR8, respectively. Here, OC-NYH/pACR6 cells were found to over-express MDR1 and, accordingly, displayed active transport of 3H-labeled vincristine, while OC-NYH/pACR8 cells did not, further suggesting that pACR6, but not pACR8, is a substrate for MDR1. Our results show that the spatial orientation of podophyllotoxin and acridine moieties in hybrid molecules determine target interaction as well as substrate specificity in active drug transport. PMID:12375883

  9. Anticancer activity, toxicity and pharmacokinetic profile of an indanone derivative.

    PubMed

    Chanda, Debabrata; Bhushan, Shashi; Guru, Santosh K; Shanker, Karuna; Wani, Z A; Rah, B A; Luqman, Suaib; Mondhe, Dilip M; Pal, Anirban; Negi, Arvind S

    2012-12-18

    The present study describes anticancer effect of gallic acid based indanone derivative (1). Indanone 1 exhibited in vivo anticancer activity against Erhlich ascites carcinoma in Swiss albino mice by inhibiting tumor growth by 54.3% at 50 mg/kg b.wt. It showed antitubulin effect by inhibiting tubulin polymerase enzyme. In cell cycle analysis, it inhibited G2/M phase and induced apoptosis. It significantly suppressed VEGF-R1, VEGF-R2 and HIF-? in human breast cancer MCF-7 cells, thus exhibiting antiangiogenic activity. In acute oral toxicity, indanone 1 was well tolerated and was found to be non-toxic up to 1000 mg/kg b.wt. in Swiss albino mice. Pharmacokinetic studies in rabbits revealed rate of absorption, half life, volume of distribution with high plasma and blood clearance after i.v. administration. Indanone 1, is a safe and moderately active anticancer agent. PMID:23017432

  10. Anticancer compounds from cyanobacterium Lyngbya species: a review.

    PubMed

    Swain, Shasank S; Padhy, Rabindra N; Singh, Pawan K

    2015-08-01

    The use of synthetic anticancer drugs and other methods followed in cancer therapy have several side effects; and ineffective methods or drugs give a way to the emergence of drug resistant cancer cells, with the intrinsic metastasis as the aftermath. Anticancer efficacy of many cyanobacterial compounds has been claimed in literature. This review considers 144 compounds isolated and characterized from seven species of the non-nitrogen fixing filamentous cyanobacterium Lyngbya, as the source of antineoplastic agents, which have been screened primarily with cancer cell lines. Structure and information of Lyngbya compounds were retrieved from databases, PubChem, ChemSpider and ChEBI. Information and clinical status of Lyngbya compounds are summarized, and those might be the future anticancer drugs for drug-resistant cancer cells even, as complementary/adduct drugs, if pursued thoroughly in pharmacology and pharmaceutics. PMID:26026796

  11. Antitumor agents. 293. Nontoxic dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylenedioxybiphenyl-2,2'-dicarboxylate (DDB) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    PubMed

    Hung, Hsin-Yi; Ohkoshi, Emika; Goto, Masuo; Bastow, Kenneth F; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung

    2012-06-14

    Novel dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylenedioxybiphenyl-2,2'-dicarboxylate (DDB) analogues were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine-resistant nasopharyngeal carcinoma) cells, a multidrug resistant cell line overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2'-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5-10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analogue 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogues against both non-MDR and MDR cells, suggesting that DDB analogues serve as novel lead compounds for the development of chemosensitizers to overcome the MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogues dramatically elevated the cellular concentration of anticancer drugs. PMID:22612652

  12. Design, microwave-mediated synthesis and biological evaluation of novel 4-aryl(alkyl)amino-3-nitroquinoline and 2,4-diaryl(dialkyl)amino-3-nitroquinolines as anticancer agents.

    PubMed

    Chauhan, Monika; Rana, Anil; Alex, Jimi Marin; Negi, Arvind; Singh, Sandeep; Kumar, Raj

    2015-02-01

    Design, microwave-assisted synthesis of novel 4-aryl (alkyl)amino-3-nitroquinoline (1a-1l) and 2,4-diaryl (dialkyl)amino-3-nitroquinolines (2a-2k and 3a) via regioselective and complete nucleophilic substitution of 2,4-dichloro-3-nitroquinoline, respectively in water are presented. The newly synthesized compounds were evaluated for the first time for antiproliferative activity against EGFR overexpressing human lung (A-549 and H-460) and colon (HCT-116-wild type and HCT-116-p53 null) cancer cell lines. Some notions about structure-activity relationships (SAR) are presented. Compounds 2e, 2f, 2j and 3a overall exhibited excellent anticancer activity comparable to erlotinib which was used as a positive control. Molecular modeling studies disclosed the recognition pattern of the compounds and also supported the observed SAR. PMID:25462621

  13. Ribonucleases as potential modalities in anticancer therapy

    PubMed Central

    Ardelt, Wojciech; Ardelt, Barbara; Darzynkiewicz, Zbigniew

    2009-01-01

    Antitumor ribonucleases are small (10–28 kDa) basic proteins. They were found among members of both, ribonuclease A and T1 superfamilies. Their cytotoxic properties are conferred by enzymatic activity, i.e., the ability to catalyze cleavages of phosphodiester bonds in RNA. They bind to negatively charged cell membrane, enter cells by endocytosis and translocate to cytosol where they evade mammalian protein ribonuclease inhibitor and degrade RNA. Here, we discuss structures, functions and mechanisms of antitumor activity of several cytotoxic ribonucleases with particular emphasis to the amphibian Onconase, the only enzyme of this class that reached clinical trials. Onconase is the smallest, very stable, less catalytically efficient and more cytotoxic than most RNase A homologues. Its cytostatic, cytotoxic and anticancer effects were extensively studied. It targets tRNA, rRNA, mRNA as well as the non-coding RNA (microRNAs). Numerous cancer lines are sensitive to Onconase; their treatment with 10 – 100 nM enzyme leads to suppression of cell cycle progression, predominantly through G1, followed by apoptosis or cell senescence. Onconase also has anticancer properties in animal models. Many effects of this enzyme are consistent with the microRNAs, one of its critical targets. Onconase sensitizes cells to a variety of anticancer modalities and this property is of particular interest, suggesting its application as an adjunct to chemotherapy or radiotherapy in treatment of different tumors. Cytotoxic RNases as exemplified by Onconase represent a new class of antitumor agents, with an entirely different mechanism of action than the drugs currently used in the clinic. Further studies on animal models including human tumors grafted on severe combined immunodefficient (SCID) mice and clinical trials are needed to explore clinical potential of cytotoxic RNases. PMID:19825371

  14. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: synthesis and in vitro biological evaluation. Part 1.

    PubMed

    Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A

    2014-09-12

    Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 ?M), 2c (12.1 ?M), 2e (13.2 ?M), 2i (14.9 ?M), 2j (16.0 ?M), 2k (7.1 ?M), 2l (8.6 ?M) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 ?M). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor. PMID:25064350

  15. Increase of miR-199a-5p by protoporphyrin IX, a photocatalyzer, directly inhibits E2F3, sensitizing mesenchymal tumor cells to anti-cancer agents

    PubMed Central

    Lee, Jung Min; Heo, Mi Jeong; Lee, Chan Gyu; Yang, Yoon Mee; Kim, Sang Geon

    2015-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Protoporphyrin IX (PPIX) has been used for photodynamic therapy. Mesenchymal cancer cells adapt to tumor microenvironments for growth and metastasis possibly in association with miRNA dysregulation. In view of the effect of PPIX on cancer-related genes, and its potential to inhibit tumor growth and migration/invasion, this study investigated whether PPIX enables mesenchymal liver tumor to restore dysregulated miRNAs, and if so, whether it sensitizes the cancer cells to chemotherapy. In addition, we explored new target(s) of the miRNA(s) that contribute to the anti-cancer effects. Of the ten miRNAs predicted by the 3?-UTR of HIF-1? mRNA, PPIX treatment increased miR-199a-5p, leading to the inhibition of E2F3 expression which is upregulated in mesenchymal liver tumor. miR-199a-5p levels were downregulated in HCC with E2F3 overexpression. An approach modulating epithelial-mesenchymal transition provided the expected changes in miR-199a-5p and E2F3 in vivo. PPIX prevented tumor cell growth and migration/invasion, and had a synergistic anti-cancer effect when combined with chemotherapeutics. In a xenograft model, PPIX treatment decreased overall growth and average tumor volume, which paralleled E2F3 inhibition. Overall, PPIX inhibited growth advantage and migratory ability of cancer cells and sensitized mesenchymal liver tumor cells to chemotherapeutics. PMID:25714015

  16. Anticancer Drug Development: The Way Forward.

    PubMed

    Connors

    1996-01-01

    Cancer chemotherapy celebrated its fiftieth anniversary last year. It was in 1945 that wartime research on the nitrogen mustards, which uncovered their potential use in the treatment of leukaemias and other cancers, was first made public. Fifty years later, more than sixty drugs have been registered in the USA for the treatment of cancer, but there are still lessons to be learnt. One problem, paradoxically, is that many anticancer agents produce a response in several different classes of the disease. This means that once a new agent has been shown to be effective in one cancer, much effort is devoted to further investigations of the same drug in various combinations for different disorders. While this approach has led to advances in the treatment of many childhood cancers and some rare diseases, a plethora of studies on metastatic colon cancer, for example, has yielded little benefit. 5-fluorouracil continues to be used in trials, yet there is no evidence for an increase in survival. The lesson to be learnt is that many common cancers are not adequately treated by present-day chemotherapy, and most trials of this sort are a waste of time. Significant increases in survival will only occur if the selectivity of present-day anticancer agents can be increased or new classes of more selective agents can be discovered. There are two fundamental problems in drug development: a lack of suitable laboratory tests and the difficulty of conducting early clinical trials. Firstly, no existing laboratory method can accurately predict which chemical will be effective against a particular class of human cancer. At best, tests can demonstrate a general 'anticancer' property. This is well exemplified by the discovery of cisplatin. The fact that cisplatin caused regression in a number of transplanted rodent tumours created no great excitement amongst chemotherapists. It was only later when it was tested clinically against ovarian cancer that results were sufficiently positive to encourage others to investigate. Only then was it discovered that metastatic teratoma was extraordinarily sensitive to the drug. This finding was made as a result of phase II trials and no laboratory model could have predicted it. The lesson to be learnt is that new drugs should be tested extensively in phase II trials before they are discarded. The second problem concerns early clinical trials. Because new drugs can only be tested against advanced and usually heavily pretreated disease, it is unlikely that dramatic responses will occur. The methods used to detect responses in solid tumours and metastases are crude, and it is likely that many useful drugs are missed. New techniques are needed to detect small but important responses. In addition to these technical problems, clinical trials are expensive and the time required for preclinical pharmacology and toxicology is lengthy. In the early days, drugs could enter clinical trials after fairly simple toxicological studies. The thalidomide disaster in the 1960s, however, led to the setting up of regulatory bodies to scrutinize drugs before clinical trials. This proved detrimental for cancer drug development because a series of fairly long-term tests is now required. These must be carried out in both rodents and one other species, usually the dog. This approach was probably a good thing for most medicines where a large margin of safety is required between the therapeutic dose and the dose which causes side effects, but was inappropriate for anticancer agents which are tested at the maximum possible dose which gives manageable side effects. These new regulations meant that the cost of one clinical trial after the 1970s was equivalent to the cost of ten before that time. Solutions to these problems are available, although to put them into practice would require the cooperation of government regulatory authorities, the pharmaceutical industry and other organisations such as the US National Cancer Institute (NCI), the UK Cancer Research Campaign (CRC) and the European Organisation for Research and Treatment of Cancer (EOR

  17. Anticancer activity of koningic acid and semisynthetic derivatives.

    PubMed

    Rahier, Nicolas J; Molinier, Nicolas; Long, Christophe; Deshmukh, Sunil Kumar; Kate, Abhijeet S; Ranadive, Prafull; Verekar, Shilpa Amit; Jiotode, Mangesh; Lavhale, Rahul R; Tokdar, Pradipta; Balakrishnan, Arun; Meignan, Samuel; Robichon, Céline; Gomes, Bruno; Aussagues, Yannick; Samson, Arnaud; Sautel, François; Bailly, Christian

    2015-07-01

    A screening program aimed at discovering novel anticancer agents based on natural products led to the selection of koningic acid (KA), known as a potent inhibitor of glycolysis. A method was set up to produce this fungal sesquiterpene lactone in large quantities by fermentation, thus allowing (i) an extensive analysis of its anticancer potential in vitro and in vivo and (ii) the semi-synthesis of analogues to delineate structure-activity relationships. KA was characterized as a potent, but non-selective cytotoxic agent, active under both normoxic and hypoxic conditions and inactive in the A549 lung cancer xenograft model. According to our SAR, the acidic group could be replaced to keep bioactivity but an intact epoxide is essential. PMID:25937235

  18. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism.

    PubMed

    Pathania, Divya; Millard, Melissa; Neamati, Nouri

    2009-11-30

    Cancer cells are characterized by self-sufficiency in the absence of growth signals, their ability to evade apoptosis, resistance to anti-growth signals, sustained angiogenesis, uncontrolled proliferation, and invasion and metastasis. Alterations in cellular bioenergetics are an emerging hallmark of cancer. The mitochondrion is the major organelle implicated in the cellular bioenergetic and biosynthetic changes accompanying cancer. These bioenergetic modifications contribute to the invasive, metastatic and adaptive properties typical in most tumors. Moreover, mitochondrial DNA mutations complement the bioenergetic changes in cancer. Several cancer management therapies have been proposed that target tumor cell metabolism and mitochondria. Glycolytic inhibitors serve as a classical example of cancer metabolism targeting agents. Several TCA cycle and OXPHOS inhibitors are being tested for their anticancer potential. Moreover, agents targeting the PDC/PDK (pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase) interaction are being studied for reversal of Warburg effect. Targeting of the apoptotic regulatory machinery of mitochondria is another potential anticancer field in need of exploration. Additionally, oxidative phosphorylation uncouplers, potassium channel modulators, and mitochondrial redox are under investigation for their anticancer potential. To this end there is an increased demand for agents that specifically hit their target. Delocalized lipophilic cations have shown tremendous potential in delivering anticancer agents selectively to tumor cells. This review provides an overview of the potential anticancer agents that act by targeting cancer cell metabolism and mitochondria, and also brings us face to face with the emerging opportunities in cancer therapy. PMID:19716393

  19. Targeting protein-protein interactions as an anticancer strategy

    Cancer.gov

    Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintenance of characteristics of cancer essential for cell transformation. Such cancer-enabling PPIs have become promising therapeutic targets. With technological advances in PPI modulator discovery and validation of PPI-targeting agents in clinical settings, targeting of PPI interfaces as an anticancer strategy has become a reality.

  20. Classification of current anticancer immunotherapies.

    PubMed

    Galluzzi, Lorenzo; Vacchelli, Erika; Bravo-San Pedro, José-Manuel; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P; Coussens, Lisa; Dhodapkar, Madhav V; Eggermont, Alexander M; Fearon, Douglas T; Fridman, Wolf H; Fu?íková, Jitka; Gabrilovich, Dmitry I; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M; Klein, Eva; Knuth, Alexander; Lewis, Claire E; Liblau, Roland; Lotze, Michael T; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J; Mittendorf, Elizabeth A; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E; Pienta, Kenneth J; Porgador, Angel; Prendergast, George C; Rabinovich, Gabriel A; Restifo, Nicholas P; Rizvi, Naiyer; Sautčs-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J; Speiser, Daniel E; Spisek, Radek; Srivastava, Pramod K; Talmadge, James E; Tartour, Eric; Van Der Burg, Sjoerd H; Van Den Eynde, Benoît J; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S; Whiteside, Theresa L; Wolchok, Jedd D; Zitvogel, Laurence; Zou, Weiping; Kroemer, Guido

    2014-12-30

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  1. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fu?íková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautčs-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  2. A Novel Anti-Cancer Agent, 1-(3,5-Dimethoxyphenyl)-4-[(6-Fluoro-2-Methoxyquinoxalin-3-yl)Aminocarbonyl] Piperazine (RX-5902), Interferes With ?-Catenin Function Through Y593 Phospho-p68 RNA Helicase.

    PubMed

    Kost, Gina Chun; Yang, Mi Young; Li, Liangwei; Zhang, Yinwei; Liu, Chia-Yi; Kim, Deog Joong; Ahn, Chang-Ho; Lee, Young Bok; Liu, Zhi-Ren

    2015-08-01

    1-(3,5-Dimethoxyphenyl)-4-[(6-fluoro-2-methoxyquinoxalin-3-yl)aminocarbonyl] piperazine (RX-5902) exhibits strong growth inhibition in various human cancer cell lines with IC50 values ranging between 10 and 20?nM. In this study, we demonstrate that p68 RNA helicase is a cellular target of RX-5902 by the drug affinity responsive target stability (DARTS) method, and confirmed the direct binding of (3) H-labeled RX-5902 to Y593 phospho-p68 RNA helicase. We further demonstrated RX-5902 inhibited the ?-catenin dependent ATPase activity of p68 RNA helicase in an in vitro system. Furthermore, we showed that treatment of cancer cells with RX-5902 resulted in the downregulation of the expression of certain genes, which are known to be regulated by the ?-catenin pathway, such as c-Myc, cyclin D1 and p-c-Jun. Therefore, our study indicates that the inhibition of Y593 phospho-p68 helicase - ?-catenin interaction by direct binding of RX-5902 to Y593 phospho-p68 RNA helicase may contribute to the anti-cancer activity of this compound. J. Cell. Biochem. 116: 1595-1601, 2015. © 2015 Wiley Periodicals, Inc. PMID:25649741

  3. Synergistic Anti-Cancer Effect of Phenformin and Oxamate

    PubMed Central

    Miskimins, W. Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young

    2014-01-01

    Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively. PMID:24465604

  4. Recent developments on thiourea based anticancer chemotherapeutics.

    PubMed

    Kumar, Vikas; Chimni, Swapandeep Singh

    2015-01-01

    The recent emergence of anticancer activity of thiourea derivatives have inspired the medicinal chemist to design and synthesize new thiourea derivatives. These thiourea based anticancer chemotherapeutics inhibit cancer propagation by acting as inhibitors of topoisomerase, protein tyrosine kinase, somatostatin agonists, sirtuins, and carbonic anhydrase (CA). This review summarizes the recent developments on the thiourea based anticancer chemotherapeutics. PMID:24712324

  5. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    PubMed Central

    Lee, Gyeong Jin; Kang, Joo-Hee

    2014-01-01

    Objective. Layered double hydroxide (LDH) nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML), 5-FU/LDH (FL), and (MTX + 5-FU)/LDH (MFL) nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy. PMID:24860812

  6. Anticancer activity of Amauroderma rude.

    PubMed

    Jiao, Chunwei; Xie, Yi-Zhen; Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  7. Anticancer Activity of Amauroderma rude

    PubMed Central

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  8. Potential anti-cancer drugs commonly used for other indications.

    PubMed

    Hanusova, Veronika; Skalova, Lenka; Kralova, Vera; Matouskova, Petra

    2015-01-01

    An increasing resistance of mammalian tumor cells to chemotherapy along with the severe side effects of commonly used cytostatics has raised the urgency in the search for new anti-cancer agents. Several drugs originally approved for indications other than cancer treatment have recently been found to have a cytostatic effect on cancer cells. These drugs could be expediently repurposed as anti-cancer agents, since they have already been tested for toxicity in humans and animals. The groups of newly recognized potential cytostatics discussed in this review include benzimidazole anthelmintics (albendazole, mebendazole, flubendazole), anti-hypertensive drugs (doxazosin, propranolol), psychopharmaceuticals (chlorpromazine, clomipramine) and antidiabetic drugs (metformin, pioglitazone). All these drugs have a definite potential to be used especially in combinations with other cytostatics; the chemotherapy targeting of multiple sites now represents a promising approach in cancer treatment. The present review summarizes recent information about the anti-cancer effects of selected drugs commonly used for other medical indications. Our aim is not to collect all the reported results, but to present an overview of various possibilities. Advantages, disadvantages and further perspectives regarding individual drugs are discussed and evaluated. PMID:25544649

  9. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design

    PubMed Central

    Singh, Yashveer; Palombo, Matthew; Sinko, Patrick J.

    2009-01-01

    Anticancer drugs are often nonselective antiproliferative agents (cytotoxins) that preferentially kill dividing cells by attacking their DNA at some level. The lack of selectivity results in significant toxicity to noncancerous proliferating cells. These toxicities along with drug resistance exhibited by the solid tumors are major therapy limiting factors that results into poor prognosis for patients. Prodrug and conjugate design involves the synthesis of inactive drug derivatives that are converted to an active form inside the body and preferably at the site of action. Classical prodrug and conjugate design has focused on the development of prodrugs that can overcome physicochemical (e.g., solubility, chemical instability) or biopharmaceutical problems (e.g., bioavailability, toxicity) associated with common anticancer drugs. The recent targeted prodrug and conjugate design, on the other hand, hinges on the selective delivery of anticancer agents to tumor tissues thereby avoiding their cytotoxic effects on noncancerous cells. Targeting strategies have attempted to take advantage of low extracellular pH, elevated enzymes in tumor tissues, the hypoxic environment inside the tumor core, and tumor-specific antigens expressed on tumor cell surfaces. The present review highlights recent trends in prodrug and conjugate rationale and design for cancer treatment. The various approaches that are currently being explored are critically analyzed and a comparative account of the advantages and disadvantages associated with each approach is presented. PMID:18691040

  10. Enhanced anticancer effect of the combination of BIBW2992 and thymidylate synthase-targeted agents in non-small cell lung cancer with the T790M mutation of epidermal growth factor receptor.

    PubMed

    Takezawa, Ken; Okamoto, Isamu; Tanizaki, Junko; Kuwata, Kiyoko; Yamaguchi, Haruka; Fukuoka, Masahiro; Nishio, Kazuto; Nakagawa, Kazuhiko

    2010-06-01

    Most non-small cell lung cancer (NSCLC) tumors with activating mutations of the epidermal growth factor receptor (EGFR) are initially responsive to first-generation, reversible EGFR tyrosine kinase inhibitors (TKI) such as gefitinib, but they subsequently develop resistance to these drugs through either acquisition of an additional T790M mutation of EGFR or amplification of the proto-oncogene MET. We have now investigated the effects of combination treatment with thymidylate synthase (TS)-targeting drugs and the second-generation, irreversible EGFR-TKI BIBW2992 on the growth of NSCLC cells with the T790M mutation. The effects of BIBW2992 on EGFR signaling and TS expression in gefitinib-resistant NSCLC cells were examined by immunoblot analysis. The effects of BIBW2992 and the TS-targeting agents S-1 (or 5-fluorouracil) or pemetrexed on the growth of gefitinib-resistant NSCLC cells were examined both in vitro and in vivo. The combination of BIBW2992 with 5-fluorouracil or pemetrexed synergistically inhibited the proliferation of NSCLC cells with the T790M mutation in vitro, whereas an antagonistic interaction was apparent in this regard between gefitinib and either of these TS-targeting agents. BIBW2992 induced downregulation of TS in the gefitinib-resistant NSCLC cells, implicating depletion of TS in the enhanced antitumor effect of the combination therapy. The combination of BIBW2992 and either the oral fluoropyrimidine S-1 or pemetrexed also inhibited the growth of NSCLC xenografts with the T790M mutation to an extent greater than that apparent with either agent alone. The addition of TS-targeting drugs to BIBW2992 is a promising strategy to overcome EGFR-TKI resistance in NSCLC with the T790M mutation of EGFR. PMID:20530710

  11. Catalytic organometallic anticancer complexes

    PubMed Central

    Dougan, Sarah J.; Habtemariam, Abraha; McHale, Sarah E.; Parsons, Simon; Sadler, Peter J.

    2008-01-01

    Organometallic complexes offer chemistry that is not accessible to purely organic molecules and, hence, potentially new mechanisms of drug action. We show here that the presence of both an iodido ligand and a ?-donor/?-acceptor phenylazopyridine ligand confers remarkable inertness toward ligand substitution on the half-sandwich “piano-stool” ruthenium arene complexes [(?6-arene)Ru(azpy)I]+ (where arene = p-cymene or biphenyl, and azpy = N,N-dimethylphenyl- or hydroxyphenyl-azopyridine) in aqueous solution. Surprisingly, despite this inertness, these complexes are highly cytotoxic to human ovarian A2780 and human lung A549 cancer cells. Fluorescence-trapping experiments in A549 cells suggest that the cytotoxicity arises from an increase in reactive oxygen species. Redox activity of these azopyridine RuII complexes was confirmed by electrochemical measurements. The first one-electron reduction step (half-wave potential ?0.2 to ?0.4 V) is assignable to reduction of the azo group of the ligand. In contrast, the unbound azopyridine ligands are not readily reduced. Intriguingly the ruthenium complex acted as a catalyst in reactions with the tripeptide glutathione (?-l-Glu-l-Cys-Gly), a strong reducing agent present in cells at millimolar concentrations; millimolar amounts of glutathione were oxidized to glutathione disulfide in the presence of micromolar ruthenium concentrations. A redox cycle involving glutathione attack on the azo bond of coordinated azopyridine is proposed. Such ligand-based redox reactions provide new concepts for the design of catalytic drugs. PMID:18687892

  12. Anticancer Principles from Medicinal Piper (?? Hú Ji?o) Plants

    PubMed Central

    Wang, Yue-Hu; Morris-Natschke, Susan L.; Yang, Jun; Niu, Hong-Mei; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-01-01

    The ethnomedical uses of Piper (?? Hú Ji?o) plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae) contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine) shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles. PMID:24872928

  13. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts**

    PubMed Central

    Liu, Zhe; Romero-Canelón, Isolda; Qamar, Bushra; Hearn, Jessica M; Habtemariam, Abraha; Barry, Nicolas P E; Pizarro, Ana M; Clarkson, Guy J; Sadler, Peter J

    2014-01-01

    Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(?5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains ?-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C?N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(?5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. PMID:24616129

  14. Anticancer principles from medicinal piper ( hú ji?o) plants.

    PubMed

    Wang, Yue-Hu; Morris-Natschke, Susan L; Yang, Jun; Niu, Hong-Mei; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-01-01

    The ethnomedical uses of Piper ( Hú Ji?o) plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae) contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine) shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles. PMID:24872928

  15. Anti-Inflammatory Agents for Cancer Therapy

    PubMed Central

    Rayburn, Elizabeth R.; Ezell, Scharri J.; Zhang, Ruiwen

    2010-01-01

    Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents. PMID:20333321

  16. [Sustainability and new anticancer drugs].

    PubMed

    Perrone, Francesco

    2015-01-01

    Economic problems have been reported ever more frequently to affect the chance of cancer treatment, and financial toxicity has become a relevant issue in many countries, including the United States. Data are lacking for Europe, but the impressive cost of all new anticancer drugs is challenging European countries like Italy, where public health systems are based on solidarity and equity of access. The increasing cost of the new drugs cannot be justified by their efficacy, because the size of their benefit is frequently marginal and may have little clinical impact. In Europe, new strategies in the management of regulatory matters are required that take into consideration economic issues as one of the main aspect to establish the value of the new anticancer drugs. PMID:25621773

  17. Novel anticancer drugs in Japan

    Microsoft Academic Search

    Makota Ogawa

    1999-01-01

    This review summarizes the results reported in preclinical and clinical trials of three novel anticancer drugs developed\\u000a and tested in Japan. In phase II trials, Irinotecan, a semisynthetic analog of camptothecin, has yielded response rates exceeding\\u000a 20% in non-small-cell lung cancer, small-cell lung cancer, breast cancer, gastric cancer, colorectal cancer, ovarian cancer,\\u000a uterine cervical cancer, and non-Hodgkini's lymphoma. It was

  18. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  19. Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells

    PubMed Central

    Wolfram, Joy; Suri, Krishna; Huang, Yi; Molinaro, Roberto; Borsoi, Carlotta; Scott, Bronwyn; Boom, Kathryn; Paolino, Donatella; Fresta, Massimo; Wang, Jianghua; Ferrari, Mauro

    2014-01-01

    Context Celastrol, a natural compound derived from the herb Tripterygium wilfordii, is known to have anticancer activity, but is not soluble in water. Objective Formation of celastrol liposomes, to avoid the use of toxic solubilizing agents. Materials and methods Two different formulations of pegylated celastrol liposomes were fabricated. Liposomal characteristics and serum stability were determined using dynamic light scattering. Drug entrapment efficacy and drug release were measured spectrophotometrically. Cellular internalization and anticancer activity was measured in prostate cancer cells. Results Liposomal celastrol displayed efficient serum stability, cellular internalization and anticancer activity, comparable to that of the free drug reconstituted in dimethyl sulfoxide. Discussion and conclusion Liposomal celastrol can decrease the viability of prostate cancer cells, while eliminating the need for toxic solubilizing agents. PMID:24654943

  20. Synthesis, antimicrobial, anticancer evaluation and QSAR studies of 3/4-bromo benzohydrazide derivatives.

    PubMed

    Kumar, Pradeep; Narasimhan, Balasubramanian; Ramasamy, Kalavathy; Mani, Vasudevan; Mishra, Rakesh Kumar; Majeed, Abu Bakar Abdul

    2015-01-01

    A series 3/4-bromo-N'-(substituted benzylidene/furan-2-ylmethylene/5-oxopentylidene/3- phenylallylidene)benzohydrazides (1-23) was synthesized and characterized by physicochemical and spectral means. The synthesized compounds were screened for their antimicrobial and anticancer potentials. Antimicrobial activity results indicated that compound 12 (pMICam = 1.67 ?M/ml) was the most potent antimicrobial agent. The synthesized benzohydrazides were also having good anticancer potential and compound 22 (IC50 = 1.20 ?M ?M) was found to be the most potent anticancer agent which was more potent than standard drugs, tetrandrine (IC50 = 1.53) and 5- fluorouracil (IC50 = 4.6 ?M). QSAR studies indicated that antimicrobial activity of synthesized compounds was best described by electronic parameter, total energy (Te) and topological parameters, valance zero order molecular connectivity index ((0)?(v)) and Wiener index (W). PMID:25860177

  1. Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer

    Microsoft Academic Search

    Jolanta F. Kukowska-Latallo; Kimberly A. Candido; Zhengyi Cao; Shraddha S. Nigavekar; Istvan J. Majoros; Thommey P. Thomas; Lajos P. Balogh; Mohamed K. Khan; James R. Baker

    2005-01-01

    Prior studies suggested that nanoparticle drug delivery might improve the therapeutic response to anticancer drugs and allow the simultaneous monitoring of drug uptake by tumors. We employed modified PAMAM dendritic polymers <5 nm in diameter as carriers. Acetylated dendrimers were conjugated to folic acid as a targeting agent and then coupled to either methotrexate or tritium and either fluorescein or

  2. Dihydromyricetin prevents cardiotoxicity and enhances anticancer activity induced by adriamycin

    PubMed Central

    Fu, Yingying; Wang, Jincheng; Dai, Jiabin; Shao, Jinjin; Yang, Xiaochun; Chang, Linlin; Weng, Qinjie; Yang, Bo; He, Qiaojun

    2015-01-01

    Adriamycin, a widely used anthracycline antibiotic in multiple chemotherapy regimens, has been challenged by the cardiotoxicity leading to fatal congestive heart failure in the worst condition. The present study demonstrated that Dihydromyricetin, a natural product extracted from ampelopsis grossedentat, exerted cardioprotective effect against the injury in Adriamycin-administrated ICR mice. Dihydromyricetin decreased ALT, LDH and CKMB levels in mice serum, causing a significant reduction in the toxic death triggered by Adriamycin. The protective effects were also indicated by the alleviation of abnormal electrocardiographic changes, the abrogation of proliferation arrest and apoptotic cell death in primary myocardial cells. Further study revealed that Dihydromyricetin-rescued loss of anti-apoptosis protein ARC provoked by Adriamycin was involved in the cardioprotection. Intriguingly, the anticancer activity of Adriamycin was not compromised upon the combination with Dihydromyricetin, as demonstrated by the enhanced anticancer effect achieved by Adriamycin plus Dihydromyricetin in human leukemia U937 cells and xenograft models, in a p53-dependent manner. These results collectively promised the potential value of Dihydromyricetin as a rational cardioprotective agent of Adriamycin, by protecting myocardial cells from apoptosis, while potentiating anticancer activities of Adriamycin, thus further increasing the therapeutic window of the latter one. PMID:25226612

  3. Nanocarriers for anticancer drugs--new trends in nanomedicine.

    PubMed

    Drbohlavova, Jana; Chomoucka, Jana; Adam, Vojtech; Ryvolova, Marketa; Eckschlager, Tomas; Hubalek, Jaromir; Kizek, Rene

    2013-06-01

    This review provides a brief overview of the variety of carriers employed for targeted drug delivery used in cancer therapy and summarizes advantages and disadvantages of each approach. Particularly, the attention was paid to polymeric nanocarriers, liposomes, micelles, polyethylene glycol, poly(lactic-co-glycolic acid), dendrimers, gold and magnetic nanoparticles, quantum dots, silica nanoparticles, and carbon nanotubes. Further, this paper briefly focuses on several anticancer agents (paclitaxel, docetaxel, camptothecin, doxorubicin, daunorubicin, cisplatin, curcumin, and geldanamycin) and on the influence of their combination with nanoparticulate transporters to their properties such as cytotoxicity, short life time and/or solubility. PMID:23687925

  4. Biomarker method validation in anticancer drug development

    PubMed Central

    Cummings, J; Ward, T H; Greystoke, A; Ranson, M; Dive, C

    2007-01-01

    Over recent years the role of biomarkers in anticancer drug development has expanded across a spectrum of applications ranging from research tool during early discovery to surrogate endpoint in the clinic. However, in Europe when biomarker measurements are performed on samples collected from subjects entered into clinical trials of new investigational agents, laboratories conducting these analyses become subject to the Clinical Trials Regulations. While these regulations are not specific in their requirements of research laboratories, quality assurance and in particular assay validation are essential. This review, therefore, focuses on a discussion of current thinking in biomarker assay validation. Five categories define the majority of biomarker assays from ‘absolute quantitation' to ‘categorical'. Validation must therefore take account of both the position of the biomarker in the spectrum towards clinical end point and the level of quantitation inherent in the methodology. Biomarker assay validation should be performed ideally in stages on ‘a fit for purpose' basis avoiding unnecessarily dogmatic adherence to rigid guidelines but with careful monitoring of progress at the end of each stage. These principles are illustrated with two specific examples: (a) absolute quantitation of protein biomarkers by mass spectrometry and (b) the M30 and M65 ELISA assays as surrogate end points of cell death. PMID:17876307

  5. Targeting cancer chemotherapeutic agents by use of lipiodol contrast medium

    SciTech Connect

    Konno, T. (Kumamoto Univ. Medical School (Japan))

    1990-11-01

    Arterially administered Lipiodol Ultrafluid contrast medium selectively remained in various malignant solid tumors because of the difference in time required for the removal of Lipiodol contrast medium from normal capillaries and tumor neovasculature. Although blood flow was maintained in the tumor, even immediately after injection Lipiodol contrast medium remained in the neovasculature of the tumor. To target anti-cancer agents to tumors by using Lipiodol contrast medium as a carrier, the characteristics of the agents were examined. Anti-cancer agents had to be soluble in Lipiodol, be stable in it, and separate gradually from it so that the anti-cancer agents would selectively remain in the tumor. These conditions were found to be necessary on the basis of the measurement of radioactivity in VX2 tumors implanted in the liver of 16 rabbits that received arterial injections of 14C-labeled doxorubicin. Antitumor activities and side effects of arterial injections of two types of anti-cancer agents were compared in 76 rabbits with VX2 tumors. Oily anti-cancer agents that had characteristics essential for targeting were compared with simple mixtures of anti-cancer agents with Lipiodol contrast medium that did not have these essential characteristics. Groups of rabbits that received oily anti-cancer agents responded significantly better than groups that received simple mixtures, and side effects were observed more frequently in the groups that received the simple mixtures. These results suggest that targeting of the anti-cancer agent to the tumor is important for treatment of solid malignant tumors.

  6. Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2013-01-01

    The in vivo zebrafish models have recently attracted great attention in molecular oncology to investigate multiple genetic alterations associated with the development of human cancers and validate novel anticancer drug targets. Particularly, the transparent zebrafish models can be used as a xenotransplantation system to rapidly assess the tumorigenicity and metastatic behavior of cancer stem and/or progenitor cells and their progenies. Moreover, the zebrafish models have emerged as powerful tools for an in vivo testing of novel anticancer agents and nanomaterials for counteracting tumor formation and metastases and improving the efficacy of current radiation and chemotherapeutic treatments against aggressive, metastatic and lethal cancers. PMID:22903142

  7. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug.

    PubMed

    Sharma, Harshita; Kumar, Krishan; Choudhary, Chetan; Mishra, Pawan K; Vaidya, Bhuvaneshwar

    2014-11-19

    The aim of the study was to prepare chemotherapeutic agent-loaded zinc oxide nanoparticles for the intracellular delivery of drug, for better therapeutic activity. Zinc oxide nanoparticles have inherent anticancer properties, hence it was envisaged that by loading the anticancer drug into zinc oxide nanoparticles, enhanced anticancer activity might be observed. Zinc oxide nanoparticles were prepared using zinc nitrate and sodium hydroxide. Starch was used as the stabilizing agent. The nanoparticles prepared were characterized for size, shape, entrapment efficiency, and drug release. Further, cell line studies were performed to evaluate cellular uptake and cytotoxicity profile using MCF-7 cells. A hemolysis study was performed to check the acute toxicity of the nanoparticles. The nanoparticles were found to be 476.4 ± 2.51 nm in size, with low PDI (0.312 ± 0.02) and high entrapment efficiency (> 85%). The nanoparticles were stable, and did not form aggregates on storage in the dispersed form. A cytotoxicity study demonstrated that drug-loaded zinc oxide nanoparticles exhibited higher anticancer activity as compared to either blank zinc oxide nanoparticles and doxorubicin (DOX) alone, or their mixture. A hemolytic test revealed that the prepared zinc oxide nanoparticles caused negligible hemolysis. Thus, it can be concluded that zinc oxide nanoparticles loaded with DOX resulted in better uptake of the chemotherapeutic agent, and at the same time, showed low toxicity towards normal cells. PMID:25406734

  8. Terrestrial Plant-Derived Anticancer Agents and Plant Species Used in Anticancer Research

    Microsoft Academic Search

    Spiridon E. Kintzios

    2006-01-01

    Cancer is a major cause of death and the number of new cases, as well as the number of individuals living with cancer, is expanding continuously. Due to the enormous propensity of plants that synthesize mixtures of structurally diverse bioactive compounds, the plant kingdom is potentially a very diverse source of chemical constituents with tumor cytotoxic activity. Despite the successful

  9. [Anticancer propaganda: myth or reality?].

    PubMed

    Demin, E V; Merabishvili, V M

    2014-01-01

    The authors raise a very important problem of anticancer propaganda aimed at the early detection of cancer to be solved nowadays by means of screening and constructive interaction between oncologists and the public. To increase the level of knowledge of the population in this area it is necessary to expand the range of its adequate awareness of tumor diseases. Only joint efforts can limit the destructive effect of cancer on people's minds, so that every person would be responsible for his own health, clearly understanding the advantages of early visit to a doctor. This once again highlights the need of educational work with the public, motivational nature of which allows strengthening the value of screening in the whole complex of measures to fight cancer. PMID:24772625

  10. Bisphosphonamidate Clodronate Prodrug Exhibits Potent Anticancer Activity in Non-Small Cell Lung Cancer cells

    PubMed Central

    Webster, Marie R.; Zhao, Ming; Rudek, Michelle A.; Hann, Christine L.; Freel Meyers, Caren L.

    2011-01-01

    Bisphoshonates are used clinically to treat disorders of calcium metabolism, hypercalcemia and osteoporosis, and malignant bone disease. Although these agents are commonly used in cancer patients and have potential direct anticancer effects, their use for the treatment of extraskeletal disease is limited as a result of poor cellular uptake. We have designed and synthesized bisphosphonamidate prodrugs that undergo intracellular activation to release the corresponding bisphosphonate and require only two enzymatic activation events to unmask multiple negative charges. We demonstrate efficient bisphosphonamidate activation and significant enhancement in anticancer activity of two bisphosphonamidate prodrugs in vitro compared to the parent bisphosphonate. These data suggest a novel approach to optimizing the anticancer activities of commonly used bisphosphonates. PMID:21863853

  11. Gelation of the genome by topoisomerase II targeting anticancer agents

    E-print Network

    Doyle, Patrick S.

    by AMP-PNP, a non-hydrolyzable analog of ATP. The results showed gelation due to the formation of a self. It binds to TOP2 in the same way as ATP, but it cannot be hydrolyzed. Triggered by the binding of AMP

  12. Novel inhibitors of basal glucose transport as potential anticancer agents

    Microsoft Academic Search

    Weihe Zhang; Yi Liu; Xiaozhuo Chen; Stephen C. Bergmeier

    2010-01-01

    Cancer cells commonly show increased levels of glucose uptake and dependence. A potential strategy for the treatment of cancer may be the inhibition of basal glucose transport. We report here the synthesis of a small library of polyphenolic esters that inhibit basal glucose transport in H1299 lung and other cancer cells. These basal glucose transport inhibitors also inhibit cancer cell

  13. Hedgehog signaling inhibitors as anti-cancer agents in osteosarcoma.

    PubMed

    Kumar, Ram Mohan Ram; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome. PMID:25985215

  14. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    PubMed Central

    Ram Kumar, Ram Mohan; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome. PMID:25985215

  15. Developments in the chemistry and nanodelivery of platinum anticancer agents

    E-print Network

    Johnstone, Timothy Charles

    2014-01-01

    Approximately half of all patients receiving cancer chemotherapy are treated with a platinum-containing drug. Despite this intense clinical use, only three platinum complexes, cisplatin, carboplatin, and oxaliplatin, are ...

  16. Plant anticancer agents XXXIX: Triterpenes from Iris missouriensis (Iridaceae).

    PubMed

    Wong, S M; Oshima, Y; Pezzuto, J M; Fong, H H; Farnsworth, N R

    1986-03-01

    Employing the roots of Iris missouriensis, two known triterpenes, iso-iridogermanal and zeorin, were isolated and identified. As presently reported, they were found to demonstrate cytotoxic activity toward cultured P-388 cells (ED50 = 0.1 and 1.1 microgram/mL, respectively). Additionally, a new triterpene that demonstrated an ED50 of 8.5 micrograms/mL was isolated. On the basis of spectral analysis and chemical correlation with zeorin, the structure was shown to be 6 6 alpha-hydroxy-A'-neogermmacer-22(29)-en-30-oic acid (missourin). PMID:3701620

  17. Potential anticancer agents. IV. Constituents of Jacaranda caucana Pittier (Bignoniaceae).

    PubMed

    Ogura, M; Cordell, G A; Farnsworth, R

    1977-01-01

    An aqueous ethanol extract of Jacaranda caucana Pittier (Bignoniaceae) showed in vivo antitumor activity against the P-388 lymphocytic leukemia system. Fractionation, accompanied by monitoring for biological activity, afforded a novel phytoquinoid derivative jacaranone, which exhibited both in vivo antitumor and in vitro cytotoxic activity. beta-Sitosterol, betulinic acid, ursolic acid, 2alpha-hydroxyursolic acid, 2alpha,3alpha-dihydroxyurs-12-en-28-oic acid and a new triterpene acid, jacarandic acid, were also isolated. The structure elucidation of jacarandic acid is described. PMID:875643

  18. The mutagenic activity of razoxane (ICRF 159): an anticancer agent.

    PubMed Central

    Albanese, R.; Watkins, P. A.

    1985-01-01

    The mutagenic activity of razoxane (ICRF 159) was studied using the Salmonella/microsome assay and rodent bone-marrow micronucleus and metaphase assays. Razoxane (up to 5000 micrograms/plate) did not cause an increase in the mutation frequency in the Salmonella/microsome assay. In the mouse micronucleus assay razoxane (200 and 400 mg kg-1 i.p.) was cytotoxic to the bone marrow cells (which limited the analysis) but an increase in micronucleated polychromatic erythrocytes was observed in razoxane dosed animals (5-fold compared to control value). In the Chinese hamster metaphase assay razoxane (up to 500 mg kg-1 orally) induced abnormal chromosome condensation and an increase in structural chromosome aberrations (7 fold compared to control value) as well as an increase in the number of polypoid cells (8-fold compared to control value). The mutagenic effect of razoxane was restricted to eukaryotic organisms and was associated with specific chromosomal changes. Images Figure 1 Figure 2 PMID:3904803

  19. Extracts from black carrot tissue culture as potent anticancer agents.

    PubMed

    Sevimli-Gur, Canan; Cetin, Burcu; Akay, Seref; Gulce-Iz, Sultan; Yesil-Celiktas, Ozlem

    2013-09-01

    Black carrots contain anthocyanins possessing enhanced physiological activities. Explants of young black carrot shoots were cultured in Murashige and Skoog (MS) medium for callus initiation and were transferred to new MS medium supplemented with four different combinations of 2,4-dichlorophenoxyacetic acid and kinetin. Subsequently, the lyophilized calli and black carrot harvested from fields were subjected to ultrasound extraction with ethanol at a ratio of 1:15 (w:v). Obtained extracts were applied to various human cancer cell lines including MCF-7 SK-BR-3 and MDA-MB-231 (human breast adenocarcinomas), HT-29 (human colon adenocarcinoma), PC-3 (human prostate adenocarcinoma), Neuro 2A (Musmusculus neuroblastoma) cancer cell lines and VERO (African green monkey kidney) normal cell line by MTT assay. The highest cytotoxic activity was achieved against Neuro-2A cell lines exhibiting viability of 38-46% at 6.25 ?g/ml concentration for all calli and natural extracts. However, a significantly high IC50 value of 170.13 ?g/ml was attained in normal cell line VERO indicating that its natural counterpart is an ideal candidate for treatment of brain cancer without causing negative effects to normal healthy cells. PMID:23828497

  20. Molecular Mechanisms of Cannabinoids as Anti-cancer Agents 

    E-print Network

    Sreevalsan, Sandeep

    2013-05-31

    Cancer is a growing health concern world-wide and is the second most common cause of death after heart diseases. Current treatment strategies such as surgery, chemotherapy and radiation provide some relief to cancer patients ...

  1. Molecular Mechanisms of Cannabinoids as Anti-cancer Agents

    E-print Network

    Sreevalsan, Sandeep

    2013-05-31

    ) and these effects were PP2 a-dependent indicating that WIN transcriptionally represses Sp protein expression by activating the phosphatase, PP2 a. We also investigated the effects of 1,1-bis(3'-indolyl)-1-(p-bromophenyl)methane (DIM-C-pPhBr) and the 2,2'-dimethyl...

  2. Sea Cucumbers Metabolites as Potent Anti-Cancer Agents.

    PubMed

    Janakiram, Naveena B; Mohammed, Altaf; Rao, Chinthalapally V

    2015-05-01

    Sea cucumbers and their extracts have gained immense popularity and interest among researchers and nutritionists due to their nutritive value, potential health benefits, and use in the treatment of chronic inflammatory diseases. Many areas of the world use sea cucumbers in traditional foods and folk medicine. Though the actual components and their specific functions still remain to be investigated, most sea cucumber extracts are being studied for their anti-inflammatory functions, immunostimulatory properties, and for cancer prevention and treatment. There is large scope for the discovery of additional bioactive, valuable compounds from this natural source. Sea cucumber extracts contain unique components, such as modified triterpene glycosides, sulfated polysaccharides, glycosphingolipids, and esterified phospholipids. Frondanol A5, an isopropyl alcohol/water extract of the enzymatically hydrolyzed epithelia of the edible North Atlantic sea cucumber, Cucumaria frondosa, contains monosulfated triterpenoid glycoside Frondoside A, the disulfated glycoside Frondoside B, the trisulfated glycoside Frondoside C, 12-methyltetradecanoic acid, eicosapentaenoic acid, and fucosylated chondroitin sulfate. We have extensively studied the efficacy of this extract in preventing colon cancer in rodent models. In this review, we discuss the anti-inflammatory, immunostimulatory, and anti-tumor properties of sea cucumber extracts. PMID:25984989

  3. Plant anticancer agents. XXX: Cucurbitacins from Ipomopsis aggregata (Polemoniaceae).

    PubMed

    Arisawa, M; Pezzuto, J M; Kinghorn, A D; Cordell, G A; Farnsworth, N R

    1984-03-01

    Isocucurbitacin B (I), 3-epi-isocucurbitacin B (II), and cucurbitacin B (III) were identified as the principal cytotoxic constituents of Ipomopsis aggregata (Pursh) V. Grant (Polemoniaceae). The structure of the new compound, II, was determined through analysis of its spectrometric characteristics. PMID:6546946

  4. Folate-mediated delivery of macromolecular anticancer therapeutic agents

    Microsoft Academic Search

    Yingjuan Lu; Philip S Low

    2002-01-01

    The receptor for folic acid constitutes a useful target for tumor-specific drug delivery, primarily because: (1) it is upregulated in many human cancers, including malignancies of the ovary, brain, kidney, breast, myeloid cells and lung, (2) access to the folate receptor in those normal tissues that express it can be severely limited due to its location on the apical (externally-facing)

  5. Involvement of P-glycoprotein and CYP 3A4 in the enhancement of etoposide bioavailability by a piperine analogue

    Microsoft Academic Search

    I. A. Najar; S. C. Sharma; G. D. Singh; S. Koul; P. N. Gupta; S. Javed; R. K. Johri

    2011-01-01

    Etoposide, a semi-synthetic derivative of podophyllotoxin, is widely used anticancer agent. Etoposide presents low bioavailability with wide inter-, and intra-patient variability after oral dosing. In an earlier study a piperine analogue, namely, 4-ethyl 5-(3, 4-methylenedioxyphenyl)-2E,4E-pentadienoic acid piperidide (PA-1), was shown to cause 2.32-fold enhancement of the absolute bioavailability of co-dosed etoposide in mice. In the present investigation a mechanistic evaluation

  6. Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids

    E-print Network

    Boyer, Nicolas

    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction ...

  7. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer treatment while reducing systemic side effects. PMID:24836529

  8. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was synthesized and incorporated in different NCPs using various binding metals. A moderate drug loading of 44.9 wt% was determined for Zr-based NCPs. This drug loading, along with a diameter less than 200 nm, make these particles promising candidates for further stabilization via lipid encapsulation.

  9. Serendipity in anticancer drug discovery

    PubMed Central

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-01

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind. PMID:22247822

  10. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials

    PubMed Central

    Vamecq, Joseph; Colet, Jean-Marie; Vanden Eynde, Jean Jacques; Briand, Gilbert; Porchet, Nicole; Rocchi, Stéphane

    2012-01-01

    The metabolic/cell signaling basis of Warburg's effect (“aerobic glycolysis”) and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date. PMID:22654896

  11. First synthesis and anticancer activity of novel naphthoquinone amides.

    PubMed

    Pradidphol, Narathip; Kongkathip, Ngampong; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Boonsong

    2012-03-01

    Sixteen novel naphthoquinone aromatic amides were synthesized by a new route starting from 1-hydroxy-2-naphthoic acid in nine or ten steps with good to excellent yield. Amide formation reaction was carried out by using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as an efficient condensing agent leading to carboxamides in high yield. The key step for converting naphthol to 3-hydroxynaphthoquinone was the Fremy's salt oxidation followed by hydroxylation with tert-butyl hydroperoxide and triton B. Anticancer activity of these new naphthoquinone amides were evaluated and benzamide 22 showed potent inhibition against NCI-H187 cell lines while naphthamides 23 and 43 were the most potent inhibition against KB cells. The decatenation assay revealed that compounds 24 and 43 at 20 ?M can inhibit hTopoII? activity while three other compounds, namely compounds 22, 23, and 45, exhibited hTopoII? inhibitory activity at final concentration of 50 ?M. Docking experiment revealed the same trend as the cytotoxicity and decatenation assay. Therefore, naphthamides 24 and 43 can be promising target molecules for anticancer drug development. PMID:22280818

  12. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    Microsoft Academic Search

    Bodil Fadnes; Řystein Rekdal; Lars Uhlin-Hansen

    2009-01-01

    BACKGROUND: Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin

  13. Targeting protein-protein interactions as an anticancer strategy | Office of Cancer Genomics

    Cancer.gov

    Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintenance of characteristics of cancer essential for cell transformation. Such cancer-enabling PPIs have become promising therapeutic targets. With technological advances in PPI modulator discovery and validation of PPI-targeting agents in clinical settings, targeting of PPI interfaces as an anticancer strategy has become a reality.

  14. Predictive Pathology of Cytostatic Drug Resistance and New Anti-cancer Targets

    Microsoft Academic Search

    Manfred Dietel

    Due to continuous technical developments and new insights into the high complexity of many diseases, in particular the pathogenesis\\u000a of cancer, molecular pathology is a rapidly growing field gaining centre stage in the clinical management of tumours as well\\u000a as in the pharmaceutical development of new anti-cancer drugs. Activated signalling components are the targets for classical\\u000a therapeutic agents and newly

  15. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis

    PubMed Central

    2011-01-01

    Background The aim of this study is to investigate in vitro antioxidant, antimicrobial and anticancer activity of the acetone extracts of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. Methods Antioxidant activity was evaluated by five separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method against six species of bacteria and ten species of fungi. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Results Of the lichens tested, Lecanora atra had largest free radical scavenging activity (94.7% inhibition), which was greater than the standard antioxidants. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. Extract of Cladonia furcata was the most active antimicrobial agent with minimum inhibitory concentration values ranging from 0.78 to 25 mg/mL. All extracts were found to be strong anticancer activity toward both cell lines with IC50 values ranging from 8.51 to 40.22 ?g/mL. Conclusions The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial and anticancer effects. That suggest that lichens may be used as as possible natural antioxidant, antimicrobial and anticancer agents to control various human, animal and plant diseases. PMID:22013953

  16. Immunosuppressors as multidrug resistance reversal agents.

    PubMed

    Morjani, Hamid; Madoulet, Claudie

    2010-01-01

    Multidrug-resistance (MDR) is the major reason for failure of cancer therapy. ATP-binding cassette (ABC) transporters contribute to drug resistance via ATP-dependent drug efflux. P-glycoprotein (Pgp), which is encoded by MDR1 gene, confers resistance to certain anticancer agents. The development of agents able to modulate MDR mediated by Pgp and other ABC transporters remained a major goal for the past 20 years. The calcium blocker verapamil was the first drug shown to be a modulator of Pgp, and since many different chemical compounds have been shown to exert the same effect in vitro by blocking Pgp activity. These included particularly immunosuppressors. Cyclosporin A (CSA) was the first immunosuppressor that have been shown to modulate Pgp activity in laboratory models and entered very early into clinical trials for reversal of MDR. The proof of reversing activity of CSA was found in phase II studies with myeloma and acute leukemia. In phase III studies, the results were less convincing regarding the response rate, progression-free survival, and overall survival, which were detected in advanced refractory myeloma. The non-immunosuppressive derivative PSC833 (valspodar) was subsequently developed. This compound showed tenfold higher potency in reversal of MDR mediated by Pgp. However, pharmacokinetic interactions required reductions in the dose of the concurrently administered anticancer agents. The pharmacokinetic interactions were likely because of decreased clearance of the anticancer agents, possibly as a result of Pgp inhibition in organs such as the gastrointestinal tract and kidney, as well as inhibition of cytochrome P450. Finally, CSA and PSC833 have been shown also to modulate the ceramide metabolism which stands as second messenger of anticancer agent-induced apoptosis. In fact, CSA and PSC833 are also able to respectively inhibit ceramide glycosylation and stimulate de novo ceramide synthesis. This could enhance the cellular level of ceramide and potentiate apoptosis induced by some anticancer agents. PMID:19949935

  17. Anticancer Properties of Phyllanthus emblica (Indian Gooseberry)

    PubMed Central

    Zhao, Tiejun; Sun, Qiang; Marques, Maud; Witcher, Michael

    2015-01-01

    There is a wealth of information emanating from both in vitro and in vivo studies indicating fruit extract of the Phyllanthus emblica tree, commonly referred to as Indian Gooseberries, has potent anticancer properties. The bioactivity in this extract is thought to be principally mediated by polyphenols, especially tannins and flavonoids. It remains unclear how polyphenols from Phyllanthus emblica can incorporate both cancer-preventative and antitumor properties. The antioxidant function of Phyllanthus emblica can account for some of the anticancer activity, but clearly other mechanisms are equally important. Herein, we provide a brief overview of the evidence supporting anticancer activity of Indian Gooseberry extracts, suggest possible mechanisms for these actions, and provide future directions that might be taken to translate these findings clinically. PMID:26180601

  18. Production of recombinant immunotherapeutics for anticancer treatment

    PubMed Central

    Pranchevicius, Maria-Cristina S; Vieira, Thiessa R

    2013-01-01

    Cancer is one of the most important health problems because many cases are difficult to prevent. Cancer still has unknown mechanisms of pathogenesis, and its capacity to produce temporary or permanent damage, besides death, is very high. Although many anticancer therapies are available, finding a cure for cancer continues to be a difficult task. Thus, many efforts have been made to develop more effective treatments, such as immunotherapy based on a new class of tumor-specific products that are produced using recombinant DNA technology. These recombinant products are used with the main objectives of killing the tumor and stimulating immune cells to respond to the cancer cells. The principal recombinant products in anticancer therapy are immunostimulants, vaccines, antibodies, immunotoxins and fusion proteins. This review focuses on the general aspects of these genetically engineered products, their clinical performance, current advances and future prospects for this type of anticancer therapy. PMID:23644447

  19. New anticancer antibiotic acts through diradical rearrangement

    SciTech Connect

    Stinson, S. (C and EN, Washington, DC (US))

    1990-05-28

    This paper reports that chemists have found and characterized an anticancer antibiotic, dynemicin A, that may be the fouth of a series of antibiotics that act by metabolic rearrangement to a diradical. If true, diradical precursors may represent an antibiotic strategy that evolved widely in nature. And, there may be many more anticancer antibiotics awaiting discovery. Also, the unique internal trigger that seems to set off the dynemicin rearrangement gives chemists a new understanding of how these compounds work. If, indeed, the anthraquinone nucleus in dynemicin A binds by intercalation between strands of DNA as is now thought, chemists will learn more about how to deliver drugs to specific sites.

  20. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles.

    PubMed

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-03-01

    Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs.This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug.Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  1. Vitamin E-based nanomedicines for anti-cancer drug delivery.

    PubMed

    Duhem, Nicolas; Danhier, Fabienne; Préat, Véronique

    2014-05-28

    This review aims to highlight the development of novel vitamin E conjugates for the vectorization of active pharmaceutical ingredients through nanotechnologies. The physico-chemical and biological properties of vitamin E derivatives offer multiple advantages in drug delivery like biocompatibility, improvement of drug solubility and anticancer activity. Nanomedicines have shown high potential in drug delivery since (i) they may offer better drug biopharmaceutical properties such as longer half-life or better bioavailability and (ii) they have shown benefits in cancer therapy by improving anticancer drug therapeutic index. Vitamin E-based nanomedicines were developed to combine the pharmaceutical properties of both vitamin E and nanomedicines for two purposes: (i) to improve water solubility of hydrophobic drugs and (ii) to enhance the therapeutic efficiency of anticancer agents. This review is divided into three parts: the first one describes the biology and the metabolic functions of vitamin E, the second one focuses on the anticancer activity of two vitamin E derivatives: vitamin E succinate (TOS) and vitamin E polyethylene glycol-succinate (TPGS). Finally, in the third part, we discuss vitamin E derivatives based-nanomedicines. PMID:24631865

  2. Anticancer and Anti-Inflammatory Activities of a Standardized Dichloromethane Extract from Piper umbellatum L. Leaves.

    PubMed

    Iwamoto, Leilane Hespporte; Vendramini-Costa, Débora Barbosa; Monteiro, Paula Araújo; Ruiz, Ana Lúcia Tasca Gois; Sousa, Ilza Maria de Oliveira; Foglio, Mary Ann; de Carvalho, Joăo Ernesto; Rodrigues, Rodney Alexandre Ferreira

    2015-01-01

    Despite the advances in anticancer drug discovery field, the worldwide cancer incidence is remarkable, highlighting the need for new therapies focusing on both cancer cell and its microenvironment. The tumor microenvironment offers multiple targets for cancer therapy, including inflammation. Nowadays, almost 75% of the anticancer agents used in chemotherapy are derived from natural products, and plants are an important source of new promising therapies. Continuing our research on Piper umbellatum species, here we describe the anticancer (in vitro antiproliferative activity and in vivo Ehrlich solid tumor model) and anti-inflammatory (carrageenan-induced paw edema and peritonitis models) activities of a standardized dichloromethane extract (SDE) from P. umbellatum leaves, containing 23.9% of 4-nerolidylcatechol. SDE showed in vitro and in vivo antiproliferative activity, reducing Ehrlich solid tumor growth by 38.7 and 52.2% when doses of 200 and 400?mg/kg, respectively, were administered daily by oral route. Daily treatments did not produce signals of toxicity. SDE also reduced paw edema and leukocyte migration on carrageenan-induced inflammation models, suggesting that the anticancer activity of SDE from Piper umbellatum leaves could involve antiproliferative and anti-inflammatory effects. These findings highlight P. umbellatum as a source of compounds against cancer and inflammation. PMID:25713595

  3. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening.

    PubMed

    Jung, Da-Woon; Oh, Eun-Sang; Park, Si-Hwan; Chang, Young-Tae; Kim, Cheol-Hee; Choi, Seok-Yong; Williams, Darren R

    2012-07-01

    The development of a relatively simple, reliant and cost-effective animal test will greatly facilitate drug development. In this study, our goal was the establishment of a rapid, simple, sensitive and reproducible zebrafish xenograft model for anti-cancer drug screening. We optimized the conditions for the cancer cell xenograft in terms of injected cell numbers, incubation temperature and time. A range of human carcinoma cell types were stained with a fluorescent dye prior to injection into the fish larvae. Subsequent cancer cell dissemination was observed under fluorescent microscopy. Differences in injected cell numbers were reflected in the rate of dissemination from the xenograft site. Paclitaxel, known as a microtubule stabilizer, dose-dependently inhibited cancer cell dissemination in our zebrafish xenograft model. An anti-migratory drug, LY294002 (phosphatidylinositol 3-kinase inhibitor) also decreased the cancer cell dissemination. Chemical modifications to increase cancer drug pharmacokinetics, such as increased solubility (17-DMAG compared to geldanamycin) could also be assessed in our xenograft model. In addition to testing our new model using known anti-cancer drugs, we carried out further validation by screening a tagged triazine library. Two novel anti-cancer drug candidates were discovered. Therefore, our zebrafish xenograft model provides a vertebrate animal system for the rapid screening and pre-clinical testing of novel anti-cancer agents, prior to the requirement for testing in mammals. Our model system should greatly facilitate drug development for cancer therapy because of its speed, simplicity and reproducibility. PMID:22569777

  4. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics.

    PubMed

    Li, Yu-Ji; Dong, Ming; Kong, Fan-Min; Zhou, Jian-Ping

    2015-07-15

    Nanoparticulate system with theranostic applications has attracted significant attention in cancer therapeutics. In the present study, we have developed a novel composite PLGA NP co-encapsulated with anticancer drug (sorafenib) and magnetic NP (SPION). We have successfully developed nanosized folate-conjugated PEGylated PLGA nanoparticles (SRF/FA-PEG-PLGA NP) with both anticancer and magnetic resonance property. We have showed that FA-conjugated NP exhibits sustained drug release and enhanced cellular uptake in BEL7402 cancer cells. The targeted NP effectively suppressed the tumor cell proliferation and has improved the anticancer efficacy than that of free drug or non-targeted one. Additionally, enhanced MRI properties demonstrate this formulation has good imaging agent characteristics. Finally, SRF/FA-PEG-PLGA NP effectively inhibited the colony forming ability indicating its superior anticancer effect. Together, these multifunctional nanoparticles would be most ideal to improve the therapeutic response in cancer and holds great potential to be a part of future nanomedicine. Our unique approach could be extended for multiple biomedical applications. PMID:25888801

  5. The secret ally: immunostimulation by anticancer drugs

    Microsoft Academic Search

    Lorenzo Galluzzi; Laura Senovilla; Laurence Zitvogel; Guido Kroemer

    2012-01-01

    It has recently become clear that the tumour microenvironment, and in particular the immune system, has a crucial role in modulating tumour progression and response to therapy. Indicators of an ongoing immune response, such as the composition of the intratumoural immune infiltrate, as well as polymorphisms in genes encoding immune modulators, have been correlated with therapeutic outcome. Moreover, several anticancer

  6. Recent Development in Carbohydrate Based Anticancer Vaccines

    Microsoft Academic Search

    Zhaojun Yin; Xuefei Huang

    2012-01-01

    The development of carbohydrate-based anticancer vaccines is of high current interest. Herein, the latest development in this exciting field is reviewed. After a general introduction about tumor-associated carbohydrate antigens and immune responses, the review focuses on the various strategies that have been developed to enhance the immunogenicity of these antigens. The results from animal studies and clinical trials are presented.

  7. Design and development of polymer conjugates as anti-angiogenic agents

    Microsoft Academic Search

    Ehud Segal; Ronit Satchi-Fainaro

    2009-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is one of the central key steps in tumor progression and metastasis. Consequently, it became an important target in cancer therapy, making novel angiogenesis inhibitors a new modality of anticancer agents. Although relative to conventional chemotherapy, anti-angiogenic agents display a safer toxicity profile, the vast majority of these agents are

  8. Cullin-RING Ligases as Attractive Anti-cancer Targets

    PubMed Central

    Zhao, Yongchao; Sun, Yi

    2014-01-01

    The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents. PMID:23151137

  9. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment

    PubMed Central

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-01-01

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer. PMID:25918934

  10. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment.

    PubMed

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-01-01

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer. PMID:25918934

  11. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit.

    PubMed

    Tang, Wai-Man; Chan, Enoch; Kwok, Ching-Yee; Lee, Yee-Ki; Wu, Jian-Hong; Wan, Chun-Wai; Chan, Robbie Yat-Kan; Yu, Peter Hoi-Fu; Chan, Shun-Wan

    2012-12-01

    The anticancer effects of traditional Chinese medicine (TCM) have attracted the attention of the public vis-ŕ-vis existing cancer therapies with various side effects. Lycium barbarum fruit, commonly known as Gou Qi Zi in China, is a potential anticancer agent/adjuvant. Its major active ingredients, L. barbarum polysaccharides (LBP), scopoletin and 2-O-?-D-glucopyranosyl-L-ascorbic acid (AA-2?G), are found to have apoptotic and antiproliferative effects on cancer cell lines. Moreover, LBP also contributes to body's immunomodulatory effects and enhances effects of other cancer therapies. It is not known whether there are any undesirable effects. Further studies on its pharmacological mechanisms and toxicology could facilitate a safe usage of this TCM herb. PMID:22189914

  12. Orthotopic transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs

    PubMed Central

    2013-01-01

    Background With high throughput screening, novel therapeutic agents can be efficiently identified. Unfortunately, researchers only resort to in vitro cell viability assays for screening of anticancer drugs for retinoblastoma, the most common intraocular cancer in the childhood. Current available animal models of retinoblastoma require more than 2 weeks for tumour formation and the investigation of the efficacy of therapeutic agents. In this study, we established a novel orthotopic transplantation model of retinoblastoma in zebrafish as an in vivo animal model for screening of anticancer drugs. Methods We injected retinoblastoma cells into the vitreous cavity of zebrafish at 48 hours after fertilization. Eyeballs of zebrafish were scanned daily under the confocal laser microscope, and the tumor population was quantitatively analyzed by measuring the mean intensity of green fluorescent protein (GFP). Transplanted retinoblastoma cells were isolated to perform further analyses including Western blotting and reverse transcriptase-polymerase chain reaction to confirm that retinoblastoma cells maintained their characteristics as tumor cells even after transplantation and further isolation. To figure out the potential of this model for screening of anticancer drugs, zebrafish were cultured in Ringer’s solution containing carboplatin and melphalan after the injection of retinoblastoma cells. Results The degree of the tumor population was dependent on the number of retinoblastoma cells injected and maintained stably for at least 4 days. Transplanted retinoblastoma cells maintain their proliferative potential and characteristics as retinoblastoma cells after isolation. Interestingly, systemic application of carboplatin and melphalan demonstrated significant reduction in the tumor population, which could be quantitatively analyzed by the estimation of the mean intensity of GFP. Conclusions This orthotopic retinoblastoma model in zebrafish is expected to be utilized for the screening of anticancer drugs for the treatment of retinoblastoma. PMID:23835085

  13. Melittin: a lytic peptide with anticancer properties.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera

    2013-09-01

    Melittin (MEL) is a major peptide constituent of bee venom that has been proposed as one of the upcoming possibilities for anticancer therapy. Recent reports point to several mechanisms of MEL cytotoxicity in different types of cancer cells such as cell cycle alterations, effect on proliferation and/or growth inhibition, and induction of apoptotic and necrotic cell death trough several cancer cell death mechanisms, including the activation of caspases and matrix metalloproteinases. Although cytotoxic to a broad spectrum of tumour cells, the peptide is also toxic to normal cells. Therefore its therapeutic potential cannot be achieved without a proper delivery vehicle which could be overcome by MEL nanoparticles that possess the ability to safely deliver significant amount of MEL intravenously, and to target and kill tumours. This review paper summarizes the current knowledge and brings latest research findings on the anticancer potential of this lytic peptide with diverse functions. PMID:23892471

  14. Anticancer Effect of Lycopene in Gastric Carcinogenesis

    PubMed Central

    Kim, Mi Jung; Kim, Hyeyoung

    2015-01-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies.

  15. Nail toxicities induced by systemic anticancer treatments.

    PubMed

    Robert, Caroline; Sibaud, Vincent; Mateus, Christina; Verschoore, Michčle; Charles, Cécile; Lanoy, Emilie; Baran, Robert

    2015-04-01

    Patients treated with systemic anticancer drugs often show changes to their nails, which are usually well tolerated and disappear on cessation of treatment. However, some nail toxicities can cause pain and functional impairment and thus substantially affect a patient's quality of life, especially if they are given taxanes or EGFR inhibitors. These nail toxicities can affect both the nail plate and bed, and might present as melanonychia, leukonychia, onycholysis, onychomadesis, Beau's lines, or onychorrhexis, as frequently noted with conventional chemotherapies. Additionally, the periungual area (perionychium) of the nail might be affected by paronychia or pyogenic granuloma, especially in patients treated with drugs targeting EGFR or MEK. We review the nail changes induced by conventional chemotherapies and those associated with the use of targeted anticancer drugs and discuss preventive or curative options. PMID:25846098

  16. Calpains as potential anti-cancer targets

    PubMed Central

    Leloup, Ludovic; Wells, Alan

    2011-01-01

    Introduction The intracellular signaling cysteine proteases, calpains (specifically the ubiquitous calpains 1 and 2), are involved in numerous physiological and pathological phenomena. Several works have notably highlighted the implication of calpains in processes crucial for cancer development and progression, including cell transformation, migration and tumor invasion, apoptosis/survival, as well as angiogenesis. For these reasons, calpains are considered by several authors as potential anti-cancer targets. Areas covered in this review This review covers the literature showing how calpains are implicated in cancer formation and development, how these enzymes are deregulated in cancer cells and how these proteases could be targeted by anti-cancer drugs. Studies published in the last 10 years are focused on. Expert opinion Targeting calpain activity with specific inhibitors could be a novel approach to limiting the development of primary tumors and the formation of metastases, by inhibiting tumor cell migration and invasion, which allows dissemination as well as tumor neovascularization, which in turn allows for expansion. However, such drugs could interfere with anti-cancer treatments, as ubiquitous calpains play crucial roles in chemotherapy-induced apoptosis. For these reasons, drugs targeting calpains would have to be used selectively to avoid interferences with other treatments and physiological processes. Finally, concerning the other members of calpain family and their potential implication in cancer development, further studies will be required before considering treatments targeting their activity. PMID:21244345

  17. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties

    PubMed Central

    2012-01-01

    Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3–19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40??M, 29.86??M and 30.99??M, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained. PMID:22748424

  18. Neurotoxicity of Biologically Targeted Agents in Pediatric Cancer Trials

    PubMed Central

    Wells, Elizabeth M.; Rao, Amulya A. Nageswara; Scafidi, Joseph; Packer, Roger J.

    2013-01-01

    Biologically targeted agents offer the promise of delivering specific anticancer effects while limiting damage to healthy tissue, including the central and peripheral nervous systems. During the past 5-10 years, these agents were examined in preclinical and adult clinical trials, and are used with increasing frequency in children with cancer. This review evaluates current knowledge about neurotoxicity from biologically targeted anticancer agents, particularly those in pediatric clinical trials. For each drug, neurotoxicity data are reviewed in adult (particularly studies of brain tumors) and pediatric studies when available. Overall, these agents are well tolerated, with few serious neurotoxic effects. Data from younger patients are limited, and more neurotoxicity may occur in the pediatric population because these agents target pathways that control not only tumorigenesis but also neural maturation. Further investigation is needed into long-term neurologic effects, particularly in children. PMID:22490765

  19. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity

    Microsoft Academic Search

    Peter Houghton; Rui Fang; Isariya Techatanawat; Glyn Steventon; Peter J. Hylands; C. C. Lee

    2007-01-01

    Since the major approach in searching for potential anticancer agents over the last 50years has been based on selective cytotoxic effects on mammalian cancer cell lines, cell-based methods for cytotoxicity are described and compared. The sulphorhodamine B (SRB) assay is described in detail as the preferred method and also a novel approach has been developed which is based on the

  20. Successful anti-cancer drug targets able to pass FDA review demonstrate the identifiable signature distinct from the signatures of random genes and initially proposed targets

    Microsoft Academic Search

    Anatoly L. Mayburd; Inna Golovchikova; James L. Mulshine

    2008-01-01

    Motivation: New efforts to guide and prioritize the selection of cancer drug targets are urgently needed, as is evident by the slow development of novel anti-cancer agents and the narrow therapeutic index of existing drugs. Given these limitations, the current study was conducted to explore the classification features defining the therapeutic success that can result from targeting a particular gene.

  1. Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells

    Microsoft Academic Search

    Xiao-Li Li; Chong-Zhi Wang; Sangeeta R. Mehendale; Shi Sun; Qi Wang; Chun-Su Yuan

    2009-01-01

    Purpose  Colorectal cancer is a major cause of morbidity and mortality for cancer worldwide. Although 5-fluorouracil (5-FU) is one\\u000a of the most widely used chemotherapeutic agents in first-line therapy for colorectal cancer, serious side effects limit its\\u000a clinical usefulness. Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. In\\u000a this study, we investigated the possible synergistic anti-cancer

  2. Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity.

    PubMed

    Huang, Wei; Seo, Jiwon; Willingham, Stephen B; Czyzewski, Ann M; Gonzalgo, Mark L; Weissman, Irving L; Barron, Annelise E

    2014-01-01

    Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance. PMID:24587350

  3. Learning from Host-Defense Peptides: Cationic, Amphipathic Peptoids with Potent Anticancer Activity

    PubMed Central

    Willingham, Stephen B.; Czyzewski, Ann M.; Gonzalgo, Mark L.; Weissman, Irving L.; Barron, Annelise E.

    2014-01-01

    Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance. PMID:24587350

  4. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with ?-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 ?M and 20 ?M can completely inhibit hTopoII? activity while at 10 ?M the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. PMID:23313636

  5. Anticancer compounds from marine macroalgae and their application as medicinal foods.

    PubMed

    Kim, Se-Kwon; Thomas, Noel Vinay; Li, Xifeng

    2011-01-01

    Cancer is one of the most challenging medical conditions that need a proper therapeutic approach for its proper management with fewer side effects. Until now, many of the phytochemicals from terrestrial origin have been assessed for their anticancer ability and few of them are in clinical trials too. However, marine environment also has been a greatest resource that harbors taxonomically diverse and a variety of life forms and serves as store house for several biologically beneficial metabolites. Hitherto, many metabolites have been isolated from marine biomasses that have exhibited excellent biological activities, especially as anticancer agents. In particular, marine macroalgae which are considered as dietary constituents in Pacific Asian region have become chief resources for their unparalleled and unique metabolites like sulfated polysaccharides (SPs), phlorotannins, and their ability in reducing the risk of cancer and its related diseases. In this chapter, we have discussed the anticancer activities of marine algae-derived SPs, phlorotannins, and carotenoids and the possibilities of marine algae as potential medicinal foods in the management of cancer. PMID:22054949

  6. Liposome formulation of a novel hydrophobic aryl-imidazole compound for anti-cancer therapy

    Microsoft Academic Search

    Jubo Liu; Helen Lee; Mario Huesca; Aiping Young; Christine Allen

    2006-01-01

    Purpose: A cholesterol-free liposome formulation formed from mixtures of egg phosphatidylcholine (ePC) and poly (ethylene glycol) conjugated distearoylphosphatidylethanolamine (DSPE-PEG 2000) was optimized and evaluated for delivery of a novel anti-cancer agent ML220 (2-(5-bromo-1H-indol-3-yl)-1H-phenanthro [9,10-d] imidazole). Results and Discussion: ML220 is highly lipophilic with a water solubility of 0.14 ?g\\/ml and calculated log P of 5.69. The ML220-loaded liposomes had a unimodal

  7. Impedimetric detection of in situ interaction between anti-cancer drug bleomycin and DNA.

    PubMed

    Erdem, Arzum; Congur, Gulsah

    2013-10-01

    Surface confined interaction of anti-cancer drug bleomycin (BLM) with nucleic acids: single stranded and double stranded DNA was investigated herein by using electrochemical impedance spectroscopy (EIS) technique in combination with a graphite sensor technology. The experimental conditions were optimized: such as, dsDNA concentration, BLM concentration and interaction time. The main features of impedimetric DNA biosensor, such as its detection limit and the repeatability, were also discussed. The in situ interaction of BLM with dsDNA was also tested impedimetrically in the absence or presence of other chemotherapeutic agents, such as mitomycin C (MC) and cis-platin (cis-DDP) for testing the selectivity. PMID:23892034

  8. The Radiosensitizing Agent 7-Hydroxystaurosporine (UCN-01) Inhibits the DNA Damage Checkpoint Kinase hChk11

    Microsoft Academic Search

    Ericka C. Busby; Dru F. Leistritz; Robert T. Abraham; Larry M. Karnitz; Jann N. Sarkaria

    2000-01-01

    The investigational anticancer agent 7-hydroxystaurosporine (UCN-01) abrogates the G2 checkpoint in tumor cells and sensitizes them to the lethal effects of genotoxic anticancer agents. On the basis of the role of the Cdc25C phosphatase in maintenance of this damage-inducible checkpoint, we hypothesized that UCN-01 inhibits a component of the signal trans- duction pathway that modulates Cdc25C phosphorylation. Of the three

  9. Biogenic gold nano-triangles: cargos for anticancer drug delivery.

    PubMed

    Dharmatti, Roopa; Phadke, Chinmay; Mewada, Ashmi; Thakur, Mukeshchand; Pandey, Sunil; Sharon, Madhuri

    2014-11-01

    We present synthesis of biogenic gold nano triangles (GNTs) using Azadirachta indica leaf extract at inherent pH (5.89) and its application in efficient drug delivery of doxorubicin (DOX) (anticancer drug). The main idea was to take advantage of large surface area of GNTs which has 3 dimensions and use the plant peptides coated on these triangles as natural linkers for the attachment of DOX. Sucrose density gradient centrifugation (SDGC) and dialysis methods were used for separation of the GNT from mixture of GNPs. Flocculation parameter (FP) was used to check stability of GNT which was found to be exceptionally high (0-0.75) due to the biological capping agents. DOX attachment to GNT was verified using Fourier transformed infra-red (FTIR) spectroscopy. The complex thus formed was found to be less toxic to normal cells (MDCK cells) and significantly toxic for the cancerous cells (HeLa cells). Drug loading efficiency was found to be 99.81% and DOX release followed first order release kinetics. Percentage drug release was found to be more than 4.5% in both acidic (5.8) as well as physiological pH (7.2) which is suitable for tumor targeting. PMID:25280684

  10. SWCNT-Polymer Nanocomplexes for Anti-Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Withey, Paul; Momin, Zoya; Bommoju, Anvesh; Hoang, Trung; Rashid, Bazlur

    2015-03-01

    Utilization of single-walled carbon nanotubes (SWCNTs) as more effective drug-delivery agents are being considered due to their ability to easily cross cell membranes, while their high aspect ratio and large surface area provide multiple attachment sites for biocompatible drug complexes. However, excessive bundling of pristine SWCNTs caused by strong attractive Van der Walls forces between CNT sidewalls is a major obstacle. We have successfully dispersed SWCNTs with both polyvinyl alcohol and Pluronic biocompatible polymers, and attached anti-cancer drugs Camptothecin (CPT) and Doxorubicin to form non-covalent CNT-polymer-drug conjugates in aqueous solution. Polymeric dispersion of SWCNTs by both polymers is confirmed by clearly identifiable near-infrared (NIR) fluorescence emission peaks of individual (7,5) and (7,6) nanotubes, and drug attachment to form complete complexes verified by UV-Vis spectroscopy. These complexes, with varying SWCNT and drug concentrations, were tested for effectiveness by exposing them to a line of human embryonic kidney cancer cells and analyzed for cell viability. Preliminary results indicate significant improvement in drug effectiveness on the cancer cells, with more successful internalization due to unaltered SWCNTs as the drug carriers. Supported by the UHCL Faculty Research Support Fund.

  11. Optical Interferometric Response of Living Tissue to Cytoskeletal Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Nolte, David; Jeong, Kwan; Turek, John

    2007-03-01

    Living tissue illuminated by short-coherence light can be optically sectioned in three dimensions using coherent detection such as interferometry. We have developed full-field coherence-gated imaging of tissue using digital holography. Two-dimensional image sections from a fixed depth are recorded as interference fringes with a CCD camera located at the optical Fourier plane. Fast Fourier transform of the digital hologram yields the depth-selected image. When the tissue is living, highly dynamic speckle is observed as fluctuating pixel intensities. The temporal autocorrelation functions are directly related to the degree of motility at depth. We have applied the cytoskeletal drugs nocodazole and colchicine to osteogenic sarcoma multicellular spheroids and observed the response holographically. Colchicine is an anticancer drug that inhibits microtubule polymerization and hence prevents spindle formation during mitosis. Nocodazole, on the other hand, depolymerizes microtubules. Both drugs preferentially inhibit rapidly-dividing cancer cells. We observe dose-response using motility as an effective contrast agent. This work opens the possibility for studies of three-dimensional motility as a multiplexed assay for drug discovery.

  12. Anticancer potential of curcumin: preclinical and clinical studies.

    PubMed

    Aggarwal, Bharat B; Kumar, Anushree; Bharti, Alok C

    2003-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. The anticancer potential of curcumin stems from its ability to suppress proliferation of a wide variety of tumor cells, down-regulate transcription factors NF-kappa B, AP-1 and Egr-1; down-regulate the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules and cyclin D1; down-regulate growth factor receptors (such as EGFR and HER2); and inhibit the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein serine/threonine kinases. In several systems, curcumin has been described as a potent antioxidant and anti-inflammatory agent. Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis. Pharmacologically, curcumin has been found to be safe. Human clinical trials indicated no dose-limiting toxicity when administered at doses up to 10 g/day. All of these studies suggest that curcumin has enormous potential in the prevention and therapy of cancer. The current review describes in detail the data supporting these studies. PMID:12680238

  13. Tetrandrine enhances the anticancer effects of arsenic trioxide in vitro.

    PubMed

    Chen, Youran; Li, Peichun; Yang, Shen; Tong, Nannan; Zhang, Jie; Zhao, Xiaoyan

    2014-05-01

    Arsenic trioxide (As2O3), an effective agent to treat leukemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden death have been implicated in the cardiotoxicity of As2O3. The present study was designed to assess whether the combination of As2O3 and tetrandrine could generate a more powerful anti-cancer effect. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed for detecting the proliferation of HepG2 and A549 cells treated with tetrandrine and As2O3. Fluorescent microscopy measurements and flow cytometry were carried out to evaluate the apoptosis in HepG2 cells. The cell cycle arrest of HepG2 cells was also determined by flow cytometry. The cell proliferation assay in HepG2 and A549 cells indicated that tetrandrine significantly enhanced the inhibit effect of As2O3. In addition, the following Isobolograms further demonstrated that combining As2O3 with tetrandrine generated synergism action. Tetrandrine also enhanced the apoptosis, necrosis and cell cycle arrest in As2O3-treated HepG2 cells. Our present study showed that tetrandrine can dramatically enhance the anti- cancer effect induced by As2O3. Combining As2O3 with tetrandrine would be a novel strategy to treat cancer in clinical practice. PMID:24548979

  14. Potential anticancer activity of carvone in N2a neuroblastoma cell line.

    PubMed

    Aydin, Elanur; Türkez, Hasan; Keles, Mevlüt Sait

    2013-04-01

    Carvone (CVN) is a monocyclic monoterpene found in the essential oils of Mentha spicata var. crispa (Lamiaceae) and Carum carvi L. (Apiaceae) plants and has been reported to have antioxidant, antimicrobial, anticonvulsant, and antitumor activities. The beneficial health properties of CVN have encouraged us to look into its anticancer activity. To the best of our knowledge, reports are not available on the anticancer activity of CVN in cultured primary rat neuron and N2a neuroblastoma (NB) cells. Therefore, the present study is an attempt toward exploring the potential anticancer activity of CVN, if any, in cultured primary rat neuron and N2a NB cells. Our results indicated that CVN (only at 25 mg/L) treatment led to an increase in the total antioxidant capacity levels in cultured primary rat neuron cells compared with control cells. Also, CVN (at concentrations higher than 100 mg/L) treatment led to an increase in the total oxidative stress levels in both cell types. The mean values of the total scores of cells showing DNA damage (for comet assay) were not found to be significantly different from the control values in both cells (p > 0.05). On the other hand, after 24 h treatment with CVN, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay showed that CVN application significantly reduced the cell viability rates in both cell types at concentrations higher than 100 mg/L. Summarizing, our data suggest that CVN represents little potential for promising anticancer agent to improve brain tumors therapy. PMID:23552268

  15. Role of ribophorin II in the response to anticancer drugs in gastric cancer cell lines

    PubMed Central

    YUAN, TEIN-MING; LIANG, RUEI-YUE; CHUEH, PIN JU; CHUANG, SHOW-MEI

    2015-01-01

    The identification of prognostic markers and establishing their value as therapeutic targets improves therapeutic efficacy against human cancers. Ribophorin II (RPN2) has been demonstrated to be a prognostic marker of human cancer, including breast and pancreatic cancers. The present study aimed to evaluate RPN2 expression in gastric cancer and to examine the possible correlation between RPN2 expression and the response of cells to clinical anticancer drugs, which has received little research attention at present. The gastric cancer AGS, TMC-1, SNU-1, TMK-1, SCM-1, MKN-45 and KATO III cell lines were used as a model to elucidate the role of RPN2 in the response of cells to six common chemotherapeutic agents, comprising oxaliplatin, irinotecan, doxorubicin, docetaxel, cisplatin and 5-fluorouricil. The functional role of RPN2 was assessed by silencing RPN2 using small interfering RNA (siRNA), and the cytotoxicity was determined by an MTS assay and analysis of apoptosis. Molecular events were evaluated by western blotting. All the anticancer drugs were found to exert a concentration-dependent decrease on the cell survival rate of each of the cell lines tested, although the RPN2 levels in the various cell lines were not directly correlated with responsiveness to clinical anticancer drugs, based on the calculated IC50 values. siRNA-mediated RPN2 downregulation enhanced cisplatin-induced apoptosis in AGS cells, but did not markedly decrease the cell survival rates of these cells in response to the tested drugs. Furthermore, RPN2 silencing in MKN-45 cells resulted in no additional increase in the cisplatin-induced apoptosis and survival rates. It was also found that RPN2 depletion increased anticancer drug-mediated cytotoxicity in gastric cancer cell lines. However, the predictive value of RPN2 expression in cancer therapy is questionable in gastric cancer models. PMID:25789057

  16. Combinatorial Effects of Thymoquinone on the Anticancer Activity and Hepatotoxicity of the Prodrug CB 1954

    PubMed Central

    Talib, Wamidh H.; AbuKhader, Majed M.

    2013-01-01

    Background: One of the major causes of clinical trial termination is the liver toxicity induced by chemotherapeutic agents. Treatment with anticancer drugs like CB 1954 (5-(Aziridin-1-yl)-2,4-dinitrobenzamide) is associated with significant hepatotoxicity. Thymoquinone (TQ), extracted from Nigella sativa, is reported to possess anticancer and hepatoprotective effects. The aims of the present study were to use TQ to reduce hepatotoxicity associated with CB 1954 and to augment its anticancer activity against the resistant mouse mammary gland cell line (66 cl-4-GFP). Method: Balb/C mice were transplanted with the 66cl-4-GFP cell line and in vivo antitumor activity was assessed for CB 1954 (141 mg/kg), TQ (10 mg/kg), and a combination of CB 1954 and TQ. Changes in tumor size and body weight were measured for each treatment. Histological examination of tumors and liver tissue samples was performed using the standard hematoxylin/eosin staining protocol, and serum levels of the liver enzymes AST and ALT were used as biomarkers of hepatotoxicity. Results: Severe liver damage and elevated plasma levels of AST and ALT were observed in the group treated with CB 1954. Treatment of tumor-bearing mice with a combination of CB 1954 and TQ caused a significant regression in tumor size and induced extensive necrosis in these tumors. The combination also protected the liver from drug-induced damage and reduced the plasma levels of AST and ALT to their normal ranges. Conclusion: These results suggest that the use of TQ with CB 1954 can reduce CB 1954-induced hepatotoxicity and enhance its anticancer activity, indicating the potential use of this combination in clinical studies. PMID:23833717

  17. Synthesis of (-)-arctigenin derivatives and their anticancer activity.

    PubMed

    Gui-Rong, Chen; Li-Ping, Cai; De-Qiang, Dou; Ting-Guo, Kang; Hong-Fu, Li; Fu-Rui, Li; Ning, Jiang

    2012-01-01

    The natural dibenzylbutyrolactone type lignanolide (-)-arctigenin, which was prepared from fructus arctii, showed obvious anticancer activity. The synthesis of four new (-)-arctigenin derivatives and their anticancer bioactivities were examined. The structures of the four new synthetic derivatives were elucidated. PMID:21867457

  18. Microtubule-binding agents: a dynamic field of cancer therapeutics

    Microsoft Academic Search

    Mary Ann Jordan; Charles Dumontet

    2010-01-01

    Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of

  19. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells

    PubMed Central

    2012-01-01

    Background Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Methods Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. Results The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40?±?0.01??g/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Conclusion Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL. PMID:23351440

  20. Anticancer nanodelivery system with controlled release property based on protocatechuate–zinc layered hydroxide nanohybrid

    PubMed Central

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Abd Gani, Shafinaz; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-01-01

    Background We characterize a novel nanocomposite that acts as an efficient anticancer agent. Methods This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors. Results The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Ĺ, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines. Conclusion PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer. PMID:25061291

  1. Systemic anticancer neural stem cells in combination with a cardiac glycoside for glioblastoma therapy.

    PubMed

    Teng, Jian; Hejazi, Seyedali; Badr, Christian E; Tannous, Bakhos A

    2014-08-01

    The tumor-tropic properties of neural stem cells (NSCs) have been shown to serve as a novel strategy to deliver therapeutic genes to tumors. Recently, we have reported that the cardiac glycoside lanatoside C (Lan C) sensitizes glioma cells to the anticancer agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we engineered an FDA-approved human NSC line to synthesize and secrete TRAIL and the Gaussia luciferase (Gluc) blood reporter. We showed that upon systemic injection, these cells selectively migrate toward tumors in the mice brain across the blood-brain barrier, target invasive glioma stem-like cells, and induce tumor regression when combined with Lan C. Gluc blood assay revealed that 30% of NSCs survived 1 day postsystemic injection and around 0.5% of these cells remained viable after 5 weeks in glioma-bearing mice. This study demonstrates the potential of systemic injection of NSCs to deliver anticancer agents, such as TRAIL, which yields glioma regression when combined with Lan C. PMID:24801379

  2. Poly-cyclodextrin functionalized porous bioceramics for local chemotherapy and anticancer bone reconstruction.

    PubMed

    Chai, Feng; Abdelkarim, Mohamed; Laurent, Thomas; Tabary, Nicolas; Degoutin, Stephanie; Simon, Nicolas; Peters, Fabian; Blanchemain, Nicolas; Martel, Bernard; Hildebrand, Hartmut F

    2014-08-01

    The progress in bone cancer surgery and multimodal treatment concept achieve only modest improvement in the overall survival, due to failure in clearing out residual cancer cells at the surgical margin and extreme side-effects of adjuvant postoperative treatments. Our study aims to propose a new method based on cyclodextrin polymer (polyCD) functionalized hydroxyapatite (HA) for achieving a high local drug concentration with a sustained release profile and a better control of residual malignant cells via local drug delivery and promotion of the reconstruction of bone defects. PolyCD, a versatile carrier for therapeutic molecules, can be incorporated into HA (bone regeneration scaffold) through thermal treatment. The parameters of polyCD treatment on the macroporous HA (porosity 65%) were characterized via thermogravimetric analysis. Good cytocompatibility of polyCD functionalized bioceramics was demonstrated on osteoblast cells by cell vitality assay. An antibiotic (gentamicin) and an anticancer agent (cisplatin) were respectively loaded on polyCD functionalized bioceramics for drug release test. The results show that polyCD functionalization leads to significantly improved drug loading quantity (30% more concerning gentamicin and twice more for cisplatin) and drug release duration (7 days longer concerning gentamicin and 3 days longer for cisplatin). Conclusively, this study offers a safe and reliable drug delivery system for bioceramic matrices, which can load anticancer agents (or/and antibiotics) to reduce local recurrence (or/and infection). PMID:24347296

  3. Systemic Anticancer Neural Stem Cells in Combination with a Cardiac Glycoside for Glioblastoma Therapy

    PubMed Central

    Teng, Jian; Hejazi, Seyedali; Badr, Christian E.; Tannous, Bakhos A.

    2015-01-01

    The tumor-tropic properties of neural stem cells (NSCs) have been shown to serve as a novel strategy to deliver therapeutic genes to tumors. Recently, we have reported that the cardiac glycoside lanatoside C (Lan C) sensitizes glioma cells to the anticancer agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we engineered an FDA-approved human NSC line to synthesize and secrete TRAIL and the Gaussia luciferase (Gluc) blood reporter. We showed that upon systemic injection, these cells selectively migrate toward tumors in the mice brain across the blood-brain barrier, target invasive glioma stem-like cells, and induce tumor regression when combined with Lan C. Gluc blood assay revealed that 30% of NSCs survived 1 day postsystemic injection and around 0.5% of these cells remained viable after 5 weeks in glioma-bearing mice. This study demonstrates the potential of systemic injection of NSCs to deliver anticancer agents, such as TRAIL, which yields glioma regression when combined with Lan C. PMID:24801379

  4. Anticancer activity of Aristolochia ringens Vahl. (Aristolochiaceae)

    PubMed Central

    Akindele, Abidemi James; Wani, Zahoor; Mahajan, Girish; Sharma, Sadhana; Aigbe, Flora Ruth; Satti, Naresh; Adeyemi, Olufunmilayo Olaide; Mondhe, Dilip Manikrao

    2014-01-01

    Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs especially from plants. The sulforhodamine B (SRB) in vitro cytotoxicity assay, sarcoma-180 (S-180) ascites and solid tumor, and L1210 lymphoid leukemia in vivo models were used to investigate the anticancer activity of root extracts of Aristolochia ringens Vahl. (Aristolochiaceae; ??? m? d?u líng). AR-A001 (IC50 values of 20 ?g/mL, 22 ?g/mL, 3 ?g/mL, and 24 ?g/mL for A549, HCT-116, PC3, and THP-1 cell lines, respectively), and AR-A004 (IC50 values of 26 ?g/mL, 19.5 ?g/mL, 12 ?g/mL, 28 ?g/mL, 30 ?g/mL, and 22 ?g/mL for A549, HCT-116, PC3, A431, HeLa, and THP-1, respectively), were observed to be significantly active in vitro. Potency was highest with AR-A001 and AR-A004 for PC3 with IC50 values of 3 ?g/mL and 12 ?g/mL, respectively. AR-A001 and AR-A004 produced significant (p < 0.05–0.001) dose-dependent inhibition of tumor growth in the S-180 ascites model with peak effects produced at the highest dose of 120 mg/kg. Inhibition values were 79.51% and 89.98% for AR-A001 and AR-A004, respectively. In the S-180 solid tumor model, the inhibition of tumor growth was 29.45% and 50.50% for AR-A001 (120 mg/kg) and AR-A004 (110 mg/kg), respectively, compared to 50.18% for 5-fluorouracil (5-FU; 20 mg/kg). AR-A001 and AR-A004 were also significantly active in the leukemia model with 211.11% and 155.56% increase in mean survival time (MST) compared to a value of 211.11% for 5-FU. In conclusion, the ethanolic (AR-A001) and dichloromethane:methanol (AR-A004) root extracts of AR possess significant anticancer activities in vitro and in vivo.

  5. Access to expensive anti-cancer drugs.

    PubMed

    Mileshkin, Linda; Sullivan, Danny

    2011-12-01

    Expensive anti-cancer drugs expose controversy underlying the process for resource allocation decisions, and intermittently result in marked publicity, emotive discussions about access to novel and expensive treatments, and political involvement which may override existing processes. This column outlines the methods of determining whether or not a treatment is considered appropriate to fund, and focuses upon the evidence of patient and doctor wishes. The existing research illustrates the complexity of patient and oncologist decision-making when these drugs are to be considered. Past litigation to obtain access to expensive treatments is discussed, along with the interactions between patients, pharmaceutical companies, health services and oncologists. This evolving field is being transformed by developments in molecular biology enabling targeted drugs, and amply demonstrates the complexity of funding decisions and how expensive treatments are considered by a range of stakeholders. PMID:22319998

  6. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  7. Anticancer activity of the phytomedicine DAS-77.

    PubMed

    Akindele, Abidemi J; Mahajan, Girish; Wani, Zahoor A; Sharma, Sadhana; Satti, Naresh K; Adeyemi, Olufunmilayo O; Mondhe, Dilip M; Saxena, Ajit K

    2015-01-01

    This study was designed to investigate the anticancer activity of extracts of the phytomedicine DAS-77. The sulforhodamine B (SRB) in vitro cytotoxicity assay, Sarcoma-180 (S-180) ascites and solid tumor, and L1210 lymphoid leukemia in vivo models were employed. DAS-A001 (ethanol extract, IC50 12 and 13 µg/mL with HCT-116 and PC3, respectively); DAS-A002 (hydroethanol extract, IC50 <5 and 13 µg/mL with HCT-116 and PC3, respectively); DAS-A003 (aqueous extract, IC50 <5 µg/mL with THP-1); and DAS-A004 (dichloromethane:methanol extract; IC50 <5 and 17 µg/mL with HCT-116 and PC3, respectively) demonstrated significant activity in vitro. DAS-A002 and DAS-A003 (80-120 mg/kg) elicited significant (P < .05-.001) dose-dependent inhibition of tumor growth in the S-180 ascites model. Peak effects were produced at the highest dose of 120 mg/kg with inhibition values of 87.50% and 89.23% for DAS-A002 and DAS-A003, respectively, compared with a value of 97.27% for 5-FU (20 mg/kg). As regards the S-180 solid tumor model, inhibition of tumor growth was found to be 52.56% and 37.95%, respectively, for DAS-A002 and DAS-A003. The effect of DAS-A002 was comparable and not significantly different (P > .05) from that of 5-FU (20 mg/kg; 50.18% inhibition). DAS-A003 but not DAS-A002 showed significant activity in the leukemia model with 177.78% increase in mean survival time relative to 211.11% for 5-FU. Findings in this study suggest that the hydroethanol and aqueous extracts of DAS-77 possess significant anticancer activity. PMID:25351406

  8. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    PubMed Central

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-01-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  9. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    PubMed

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  10. Immune-mediated mechanisms influencing the efficacy of anticancer therapies.

    PubMed

    Coffelt, Seth B; de Visser, Karin E

    2015-04-01

    Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease. PMID:25857662

  11. Lobelia chinensis: chemical constituents and anticancer activity perspective.

    PubMed

    Chen, Mei-Wan; Chen, Wen-Rong; Zhang, Jin-Ming; Long, Xiao-Ying; Wang, Yi-Tao

    2014-02-01

    Research has demonstrated that many chemical constituents dominated by piperidine alkaloids and flavonoids, such as lobelanidine, lobeline, and lobelanine, have been obtained from Lobelia chinensis Lour. Experimental studies and clinical applications have also indicated that L. chinensis possesses a number of pharmacological activities (e.g., diuretic, choleretic, breathing excitement, anti-venom, anti-bacterial, and anticancer). This paper focuses on the properties, chemical constituents, and anticancer activity of L. chinensis to clarify the connection among them, and identify the active anticancer compounds. This work serves as the foundation for further research and development of L. chinensis. PMID:24636059

  12. Biological Agents

    MedlinePLUS

    Biological agents include bacteria, viruses, fungi, other microorganisms and their associated toxins. They have the ability to ... about some of the most virulent and prevalent biological agents. Anthrax . Anthrax is an acute infectious disease ...

  13. Mitochondrial permeability transition as target of anticancer drugs.

    PubMed

    Dalla Via, Lisa; García-Argáez, Aida N; Martínez-Vázquez, Mariano; Grancara, Silvia; Martinis, Pamela; Toninello, Antonio

    2014-01-01

    Mitochondria are the cell powerhouses but also contain the mechanisms leading to cell death. Many signals converge on mitochondria to cause the permeabilization of mitochondrial membranes by the mitochondrial permeability transition (MPT) induction and the opening of transition pores (PTPs). These events cause loss of ionic homeostasis, matrix swelling, outer membrane rupture leading to pro-apoptotic factors release, and impairment of bioenergetics functions. The molecular mechanism underlying MPT induction is not completely elucidated however, a growing body of evidence supports the concept that pharmacological induction of PTPs in mitochondria of neoplastic cells is an effective and promising strategy for therapeutic approaches against cancer. The first part of this article presented as a review also evidences the main constituents of PTP and several compounds targeting them for inducing the phenomenon. The second part of the article regards the recent experimental development in the field, in particular, the effects of peniocerol (PEN), a sterol isolated from the root of Myrtillocactus geometrizans, at cellular and mitochondrial level. PEN exhibits a cytotoxic activity on some human tumor cell lines, whose mechanism is attributable to the oxidation of critical thiols located on adenine nucleotide translocase, the protein mainly involved in PTP. This event in the presence of Ca(2+) induces the MPT with the release of the pro-apoptotic factors cytochrome c and apoptosis inducing factor. These observations evidence that PEN may trigger both the caspase-dependent and caspaseindependent apoptotic pathways. This characteristic renders PEN a very interesting compound that could be developed to obtain more effective antiproliferative agents targeting mitochondria for anticancer therapy. PMID:23701547

  14. Investigations into the Mechanisms of Cell Death: The Common Link between Anticancer Nanotherapeutics and Nanotoxicology

    NASA Astrophysics Data System (ADS)

    Minocha, Shalini

    Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to breast cancer cells for inducing apoptosis. Cytochrome c is an endogenous mitochondrial protein and upon its release to cytosol, leads to apoptotic cell death. Although the mechanism by which Cyt c induces apoptosis theoretically makes it an attractive anti-cancer therapeutic agent, the lack of physicochemical characteristics required for successful cell permeation requires the use of delivery systems such as nanocarriers to facilitate its intracellular delivery. Cytochrome c, being a protein, is susceptible to changes in structural integrity and aggregation which might occur upon exposure to organic solvents and high shear/stress conditions, often used during nanoparticle preparation. Furthermore, successful delivery to cell cytosol requires endosomal release. Therefore, to deliver Cyt c intracellularly, while maintaining conditions for its stability, entrapment was performed using a film hydration method with 1,2-dioleoyl-3-trimethylammonium-propane and cholesterol (DOTAP-Chol) liposomes. It was shown that modulation of hydration buffer pH from 7 to 8.5 increased entrapment of Cyt c in DOTAP-Chol liposomes from 2% to 30%. The optimized formulation showed apoptotic activity in MDA-MB-231 cells. It was also shown that no aggregation, secondary and heme crevice structure change and deamidation was observed for Cyt c released from optimized formulation and that released Cyt c retained apoptotic activity after storage of formulation for twenty eight days at 4 °C.

  15. OLIGODEOXYNUCLEOTIDES AS ANTI-CANCER THERAPEUTICS AND DIAGNOSTICS

    Cancer.gov

    The National Cancer Institute Laboratory of Experimental Immunology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize anti-cancer oligodeoxynucleotides.

  16. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    Microsoft Academic Search

    Chris Oerlemans; Wouter Bult; Mariska Bos; Gert Storm; J. Frank W. Nijsen; Wim E. Hennink

    2010-01-01

    Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic\\u000a drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of\\u000a which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be\\u000a improved in different ways. Targeting ligands can

  17. Quantitative High-Throughput Drug Screening Identifies Novel Classes of Drugs with Anticancer Activity in Thyroid Cancer Cells: Opportunities for Repurposing

    PubMed Central

    Zhang, Lisa; He, Mei; Zhang, Yaqin; Nilubol, Naris; Shen, Min

    2012-01-01

    Context: Despite increased understanding of the pathogenesis and targets for thyroid cancer and other cancers, developing a new anticancer chemical agent remains an expensive and long process. An alternative approach is the exploitation of clinically used and/or bioactive compounds. Objective: Our objective was to identify agents with an anticancer effect in thyroid cancer cell lines using quantitative high-throughput screening (qHTS). Design: We used the newly assembled National Institutes of Health Chemical Genomic Center's pharmaceutical collection, which contains 2816 clinically approved drugs and bioactive compounds to perform qHTS. Results: Multiple agents, across a variety of therapeutic categories and with different modes of action, were found to have an antiproliferative effect. We found the following therapeutic categories were the most enriched categories with antiproliferative activity: cardiotonic and antiobesity agents. Sixteen agents had an efficacy of greater than 60% and a 50% inhibitory concentration (IC50) in the nanomolar range. We validated the results of the qHTS using two agents (bortezomib and ouabain) in additional cell lines representing different histological subtypes of thyroid cancer and with different mutations (BRAF V600E, RET/PTC1, p53, PTEN). Both agents induced apoptosis, and ouabain also caused cell cycle arrest. Conclusions: To our knowledge, this is the first study to use qHTS of a large drug library to identify candidate drugs for anticancer therapy. Our results indicate such a screening approach can lead to the discovery of novel agents in different therapeutic categories and drugs with nonclassic chemotherapy mode of action. Our approach could lead to drug repurposing and accelerate clinical trials of compounds with well-established pharmacokinetics and toxicity profiles. PMID:22170715

  18. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells.

    PubMed

    Daduang, Jureerut; Palasap, Adisak; Daduang, Sakda; Boonsiri, Patcharee; Suwannalert, Prasit; Limpaiboon, Temduang

    2015-01-01

    Cervical cancer (CxCa) is the most common cancer in women and a prominent cause of cancer mortality worldwide. The primary cause of CxCa is human papillomavirus (HPV). Radiation therapy and chemotherapy have been used as standard treatments, but they have undesirable side effects for patients. It was reported that gallic acid has antioxidant, antimicrobial, and anticancer activities. Gold nanoparticles are currently being used in medicine as biosensors and drug delivery agents. This study aimed to develop a drug delivery agent using gold nanoparticles conjugated with gallic acid. The study was performed in uninfected (C33A) cervical cancer cells, cervical cancer cells infected with HPV type 16 (CaSki) or 18 (HeLa), and normal Vero kidney cells. The results showed that GA inhibited the proliferation of cancer cells by inducing apoptosis. To enhance the efficacy of this anticancer activity, 15-nm spherical gold nanoparticles (GNPs) were used to deliver GA to cancer cells. The GNPs-GA complex had a reduced ability compared to unmodified GA to inhibit the growth of CxCa cells. It was interesting that high-concentration (150 ?M) GNPs-GA was not toxic to normal cells, whereas GA alone was cytotoxic. In conclusion, GNPs-GA could inhibit CxCa cell proliferation less efficiently than GA, but it was not cytotoxic to normal cells. Thus, gold nanoparticles have the potential to be used as phytochemical delivery agents for alternative cancer treatment to reduce the side effects of radiotherapy and chemotherapy. PMID:25640346

  19. Part 4: Pharmacogenetic Variability in Anticancer Pharmacodynamic Drug Effects

    PubMed Central

    Deenen, Maarten J.; Cats, Annemieke; Beijnen, Jos H.

    2011-01-01

    Response to treatment with anticancer drugs is subject to wide interindividual variability. This variability is expressed not only as differences in severity and type of toxicity, but also as differences in effectiveness. Variability in the constitution of genes involved in the pharmacokinetic and pharmacodynamic pathways of anticancer drugs has been shown to possibly translate into differences in treatment outcome. The overall knowledge in the field of pharmacogenetics has tremendously increased over the last couple of years, and has thereby provided opportunities for patient-tailored anticancer therapy. In previous parts of this series, we described pharmacogenetic variability in anticancer phase I and phase II drug metabolism and drug transport. This fourth part of a four-part series of reviews is focused on pharmacodynamic variability and encompasses genetic variation in drug target genes such as those encoding thymidylate synthase, methylene tetrahydrofolate reductase, and ribonucleotide reductase. Furthermore, genetic variability in other pharmacodynamic candidate genes involved in response to anticancer drugs is discussed, including genes involved in DNA repair such as those encoding excision repair crosscomplementing group 1 and group 2, x-ray crosscomplementing group 1 and group 3, and breast cancer genes 1 and 2. Finally, somatic mutations in KRAS and the gene encoding epidermal growth factor receptor (EGFR) and implications for EGFR-targeted drugs are discussed. Potential implications and opportunities for patient and drug selection for genotype-driven anticancer therapy are outlined. PMID:21659612

  20. Combination treatment with doxorubicin and gamitrinib synergistically augments anticancer activity through enhanced activation of Bim

    PubMed Central

    2014-01-01

    Background A common approach to cancer therapy in clinical practice is the combination of several drugs to boost the anticancer activity of available drugs while suppressing their unwanted side effects. In this regard, we examined the efficacy of combination treatment with the widely-used genotoxic drug doxorubicin and the mitochondriotoxic Hsp90 inhibitor gamitrinib to exploit disparate stress signaling pathways for cancer therapy. Methods The cytotoxicity of the drugs as single agents or in combination against several cancer cell types was analyzed by MTT assay and the synergism of the drug combination was evaluated by calculating the combination index. To understand the molecular mechanism of the drug synergism, stress signaling pathways were analyzed after drug combination. Two xenograft models with breast and prostate cancer cells were used to evaluate anticancer activity of the drug combination in vivo. Cardiotoxicity was assessed by tissue histology and serum creatine phosphokinase concentration. Results Gamitrinib sensitized various human cancer cells to doxorubicin treatment, and combination treatment with the two drugs synergistically increased apoptosis. The cytotoxicity of the drug combination involved activation and mitochondrial accumulation of the proapoptotic Bcl-2 family member Bim. Activation of Bim was associated with increased expression of the proapoptotic transcription factor C/EBP-homologous protein and enhanced activation of the stress kinase c-Jun N-terminal kinase. Combined drug treatment with doxorubicin and gamitrinib dramatically reduced in vivo tumor growth in prostate and breast xenograft models without increasing cardiotoxicity. Conclusions The drug combination showed synergistic anticancer activities toward various cancer cells without aggravating the cardiotoxic side effects of doxorubicin, suggesting that the full therapeutic potential of doxorubicin can be unleashed through combination with gamitrinib. PMID:24927938

  1. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    SciTech Connect

    Huang, C.-P. [Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan (China); Fang, W.-H.; Lin, L.-I. [Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan (China); Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan (China); Chiou, Robin Y. [Department of Food Science, National Chiayi University, Chiayi, Taiwan (China); Kan, L.-S. [Institute of Chemistry, Academia Sinica, Taipei, Taiwan (China); Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y. [Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan (China); Lin, S.-B. [Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan (China); Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan (China)], E-mail: sblin@ntu.edu.tw

    2008-03-15

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo II{alpha} activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC{sub 50} of 0.9 {mu}M, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC{sub 50} of 9.6 {mu}M, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 {mu}M. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC{sub 50} about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design.

  2. Development of liposomal Ginsenoside Rg3: formulation optimization and evaluation of its anticancer effects.

    PubMed

    Yu, Huan; Teng, Lirong; Meng, Qingfan; Li, Yuhuan; Sun, Xiaocheng; Lu, Jiahui; J Lee, Robert; Teng, Lesheng

    2013-06-25

    The Ginsenoside Rg3 has been shown to possess antiangiogenic and anticancer properties. Because of its limited water solubility, we decided to design and synthesize liposomal Rg3 (L-Rg3), to optimize preparation conditions, and to investigate further whether liposome could enhance the anticancer activity of Rg3. L-Rg3 was prepared using a film-dispersion method and the preparation conditions were optimized with response surface methodology (RSM). The mean encapsulation efficiency (EE) of 82.47% was close to the predicted value of 89.69%. Therefore, the optimized preparation condition was predicted correctly. We evaluated the cytotoxicity, pharmacokinetics, biodistribution and antitumor activities of L-Rg3. HepG2 and A549 cells were treated with Rg3 or L-Rg3 at different concentrations in vitro. Pharmacokinetics and biodistribution studies were carried out in Wistar rats. Tumor model was established by inoculating a suspension of A549 cells into BALB/c nude mice. The mice were divided into Saline, Rg3 solution, and L-Rg3 groups with the drug given by i.p. injection. Survival of the mice and tumor volume were monitored. In addition, CD34 immunohistochemical analysis was used for measuring microvessel density (MVD) of the tumor tissues. The cytotoxicity and ratio of tumor inhibition of L-Rg3 group were significantly higher than the Rg3 solution group. MVD values in the Rg3 solution and L-Rg3 groups decreased, especially in the L-Rg3 group. Compared to Rg3 solution, the L-Rg3 showed increased Cmax and AUC of Rg3 by 1.19- and 1.52-fold, respectively. This liposomal formulation could potentially produce a viable clinical agent for improving the anticancer activity of Rg3. PMID:23628402

  3. Anticancer activity of selected Colocasia gigantia fractions.

    PubMed

    Pornprasertpol, Apichai; Sereemaspun, Amornpun; Sooklert, Kanidta; Satirapipatkul, Chutimon; Sukrong, Suchada

    2015-01-01

    The objective of this study is to investigate the anticancer potential of the extract of Colocasia gigantea C. gigantea), a plant member of the Araceae family. In the present study, we investigated the cytotoxic activity of C. gigantea extract on cervical cancer (Hela) and human white blood cells (WBC) in vitro. The authors then identified the bioactive ingredients that demonstrated cytotoxicity on tested cells and evaluated those bioactive ingredients using the bioassay-guided fractionation method. The results showed that not all parts of C. gigantea promote cytotoxic activity. The dichloromethane leaf fraction showed significant cell proliferation effect on Hela cells, but not on WBCs. Only the n-hexane tuber fraction (Fr. 1T) exhibited significant cytotoxicity on Hela cells (IC50 = 585 ?g/ml) and encouraged WBC cell proliferation. From GC-Mass spectrometry, 4,22-Stigmastadiene-3-one, Diazoprogesterone, 9-Octadecenoic acid (Z)-, hexyl ester and Oleic Acid were the components of Fr 1T that demonstrated cytotoxic potential. In conclusion, C. gigantea's Fr 1T shows potential for cervical cancer treatment. PMID:25764620

  4. Potential Anticancer Properties of Grape Antioxidants

    PubMed Central

    Zhou, Kequan; Raffoul, Julian J.

    2012-01-01

    Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera), one of the world's largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR) and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted. PMID:22919383

  5. Metal Complexes of Curcumin for Cellular Imaging, Targeting, and Photoinduced Anticancer Activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-?B besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure. PMID:26158541

  6. Software agents

    Microsoft Academic Search

    Michael R. Genesereth; Steven P. Ketchpel

    1994-01-01

    this paper, we discuss these questions and describe someemerging technologies that provide answers. In the final section, we mention some additionalissues and summarize the key points of the paper. (For more information onagent-based software engineering, see [Genesereth 1989] and [Genesereth 1992]. See also[Shoham 1993] for a description of a variation of agent-based software engineering knownas "agent-oriented programming".)2. Agent Communication Language

  7. p53 and Ca2+ signaling from the endoplasmic reticulum: partners in anti-cancer therapies

    PubMed Central

    Bittremieux, Mart; Bultynck, Geert

    2015-01-01

    Ca2+ transfer from the endoplasmic reticulum (ER) to the mitochondria critically controls cell survival and cell death decisions. Different oncogenes and deregulation of tumor suppressors exploit this mechanism to favor the survival of altered, malignant cells. Two recent studies of the Pinton team revealed a novel, non-transcriptional function of cytosolic p53 in cell death. During cell stress, p53 is recruited to the ER and the ER-mitochondrial contact sites. This results in augmented ER Ca2+ levels by enhancing sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) activity, ultimately promoting mitochondrial Ca2+ overload. The boosting of “toxic” Ca2+ signaling by p53 appears to be a critical component of the cell death-inducing properties of chemotherapeutic agents and anti-cancer treatments, like photodynamic stress. Strikingly, the resistance of p53-deficient cancer cells to these treatments could be overcome by facilitating Ca2+ transfer between the ER and the mitochondria via overexpression of SERCA or of the mitochondrial Ca2+ uniporter (MCU). Importantly, these concepts have also been supported by in vivo Ca2+ measurements in tumor masses in mice. Collectively, these studies link for the first time the major tumor suppressor, p53, to Ca2+ signaling in dictating cell-death outcomes and by the success of anti-cancer treatments. PMID:25897426

  8. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects.

    PubMed

    Liu, Chaoqun; Ho, Paul Chi-Lui; Wong, Fang Cheng; Sethi, Gautam; Wang, Ling Zhi; Goh, Boon Cher

    2015-06-28

    Garcinol is the main medicinal component of the dried fruit rind of Garcinia indica (G. indica), which has traditionally been extensively used to treat gastric ailments and skin irritation. In vitro studies of garcinol revealed its potential therapeutic effects, such as its anti-oxidative, anti-inflammatory and anti-cancer properties. Similarly, in vivo studies in animal models also demonstrated the efficacy of garcinol for the treatment of various inflammatory and cancerous conditions. Despite being well tolerated in preclinical studies, the toxicological profile of garcinol remains elusive. More importantly, systematic pharmacokinetics (PK) studies of garcinol to establish an appropriate route of administration and its effective concentration range under physiological conditions have not yet been performed. PK studies play an essential role in translating the preclinical findings of garcinol from cell line models and animal species to humans, thereby facilitating dose selection, the characterization of the therapeutic index, identification of a metabolic pathway, and the determination of garcinol's potency and tolerability. This paper reviews the current studies of garcinol as a potential anti-oxidant, anti-inflammatory and anti-cancer agent and highlights the importance of performing preclinical PK and toxicological studies on garcinol for its development pipeline. PMID:25796441

  9. Synthesis and Biological Evaluation of Novel 3-Alkylpyridine Marine Alkaloid Analogs with Promising Anticancer Activity

    PubMed Central

    Gonçalves, Alessandra Mirtes Marques Neves; de Lima, Aline Brito; Barbosa, Maria Cristina da Silva; de Camargos, Luiz Fernando; de Oliveira, Júlia Teixeira; Barbosa, Camila de Souza; Villar, José Augusto Ferreira Perez; Costa, André Carvalho; da Silva, Isabella Viana Gomes; Silva, Luciana Maria; Varotti, Fernando de Pilla; dos Santos, Fabio Vieira; Viana, Gustavo Henrique Ribeiro

    2014-01-01

    Cancer continues to be one of the most important health problems worldwide, and the identification of novel drugs and treatments to address this disease is urgent. During recent years, marine organisms have proven to be a promising source of new compounds with action against tumoral cell lines. Here, we describe the synthesis and anticancer activity of eight new 3-alkylpyridine alkaloid (3-APA) analogs in four steps and with good yields. The key step for the synthesis of these compounds is a Williamson etherification under phase-transfer conditions. We investigated the influence of the length of the alkyl chain attached to position 3 of the pyridine ring on the cytotoxicity of these compounds. Biological assays demonstrated that compounds with an alkyl chain of ten carbon atoms (4c and 5c) were the most active against two tumoral cell lines: RKO-AS-45-1 and HeLa. Micronucleus and TUNEL assays showed that both compounds are mutagenic and induce apoptosis. In addition, Compound 5c altered the cellular actin cytoskeleton in RKO-AS-45-1 cells. The results suggest that Compounds 4c and 5c may be novel prototype anticancer agents. PMID:25089949

  10. Scalable Purification and Characterization of the Anticancer Lunasin Peptide from Soybean

    PubMed Central

    Seber, Lauren E.; Barnett, Brian W.; McConnell, Elizabeth J.; Hume, Steven D.; Cai, Jian; Boles, Kati; Davis, Keith R.

    2012-01-01

    Lunasin is a peptide derived from the soybean 2S albumin seed protein that has both anticancer and anti-inflammatory activities. Large-scale animal studies and human clinical trials to determine the efficacy of lunasin in vivo have been hampered by the cost of synthetic lunasin and the lack of a method for obtaining gram quantities of highly purified lunasin from plant sources. The goal of this study was to develop a large-scale method to generate highly purified lunasin from defatted soy flour. A scalable method was developed that utilizes the sequential application of anion-exchange chromatography, ultrafiltration, and reversed-phase chromatography. This method generates lunasin preparations of >99% purity with a yield of 442 mg/kg defatted soy flour. Mass spectrometry of the purified lunasin revealed that the peptide is 44 amino acids in length and represents the original published sequence of lunasin with an additional C-terminal asparagine residue. Histone-binding assays demonstrated that the biological activity of the purified lunasin was similar to that of synthetic lunasin. This study provides a robust method for purifying commercial-scale quantities of biologically-active lunasin and clearly identifies the predominant form of lunasin in soy flour. This method will greatly facilitate the development of lunasin as a potential nutraceutical or therapeutic anticancer agent. PMID:22514740

  11. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release

    PubMed Central

    Qian, Wen-Yu; Sun, Dong-Mei; Zhu, Rong-Rong; Du, Xi-Ling; Liu, Hui; Wang, Shi-Long

    2012-01-01

    Strontium carbonate nanoparticles (SCNs), a novel biodegradable nanosystem for the pH-sensitive release of anticancer drugs, were developed via a facile mixed solvent method aimed at creating smart drug delivery in acidic conditions, particularly in tumor environments. Structural characterization of SCNs revealed that the engineered nanocarriers were uniform in size and presented a dumbbell-shaped morphology with a dense mass of a scale-like spine coating, which could serve as the storage structure for hydrophobic drugs. Chosen as a model anticancer agent, etoposide was effectively loaded into SCNs based on a simultaneous process that allowed for the formation of the nanocarriers and for drug storage to be accomplished in a single step. The etoposide-loaded SCNs (ESCNs) possess both a high loading capacity and efficient encapsulation. It was found that the cumulative release of etoposide from ESCNs is acid-dependent, and that the release rate is slow at a pH of 7.4; this rate increases significantly at low pH levels (5.8, 3.0). Meanwhile, it was also found that the blank SCNs were almost nontoxic to normal cells, and ESCN systems were evidently more potent in antitumor activity compared with free etoposide, as confirmed by a cytotoxicity test using an MTT assay and an apoptosis test with fluorescence-activated cell sorter (FACS) analysis. These findings suggest that SCNs hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy. PMID:23185118

  12. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines – in vitro studies

    PubMed Central

    Legut, Mateusz; Lipka, Dominik; Filipczak, Nina; Piwoni, Adriana; Kozubek, Arkadiusz; Gubernator, Jerzy

    2014-01-01

    This paper describes a novel formulation of antineoplastic drug: mitoxantrone loaded into liposomal carriers enriched with encapsulated anacardic acid in the liposomal bilayer using a vitamin C gradient. Anacardic acid is a potent epigenetic agent with anticancer activity. This is the first liposomal formulation to combine an actively encapsulated drug and anacardic acid. The liposomes were characterized in terms of basic parameters, such as size, zeta potential, optimal drug-to-lipid ratio, loading time and temperature, and stability at 4°C and in human plasma in vitro. The formulation was found to be stable, and the loading process was rapid and efficient (drug-to-lipid ratio of up to 0.3 with over 90% efficiency in 5 minutes). The cytotoxicity of these formulations was assessed using the human melanoma cell lines A375 and Hs294T and the normal human dermal fibroblast line. The results showed that anacardic acid and to a smaller extent vitamin C significantly increased the cytotoxicity of the drug towards melanoma compared to ammonium sulfate liposomes. On the other hand, vitamin C and anacardic acid both protected normal cells from damage caused by the drug. The formulation combining anacardic acid, vitamin C, and mitoxantrone showed promising results in terms of cytotoxicity and cytoprotection. Therefore, it has potential for anticancer treatment. PMID:24489469

  13. Classification of stimuli-responsive polymers as anticancer drug delivery systems.

    PubMed

    Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab

    2015-02-01

    Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed. PMID:24547737

  14. Synthesis and biological evaluation of novel 3-alkylpyridine marine alkaloid analogs with promising anticancer activity.

    PubMed

    Gonçalves, Alessandra Mirtes Marques Neves; de Lima, Aline Brito; da Silva Barbosa, Maria Cristina; de Camargos, Luiz Fernando; de Oliveira, Júlia Teixeira; de Souza Barbosa, Camila; Villar, José Augusto Ferreira Perez; Costa, André Carvalho; Silva, Isabella Viana Gomes da; Silva, Luciana Maria; de Pilla Varotti, Fernando; dos Santos, Fabio Vieira; Viana, Gustavo Henrique Ribeiro

    2014-08-01

    Cancer continues to be one of the most important health problems worldwide, and the identification of novel drugs and treatments to address this disease is urgent. During recent years, marine organisms have proven to be a promising source of new compounds with action against tumoral cell lines. Here, we describe the synthesis and anticancer activity of eight new 3-alkylpyridine alkaloid (3-APA) analogs in four steps and with good yields. The key step for the synthesis of these compounds is a Williamson etherification under phase-transfer conditions. We investigated the influence of the length of the alkyl chain attached to position 3 of the pyridine ring on the cytotoxicity of these compounds. Biological assays demonstrated that compounds with an alkyl chain of ten carbon atoms (4c and 5c) were the most active against two tumoral cell lines: RKO-AS-45-1 and HeLa. Micronucleus and TUNEL assays showed that both compounds are mutagenic and induce apoptosis. In addition, Compound 5c altered the cellular actin cytoskeleton in RKO-AS-45-1 cells. The results suggest that Compounds 4c and 5c may be novel prototype anticancer agents. PMID:25089949

  15. Improving the anticancer activity of curcumin using nanocurcumin dispersion in water.

    PubMed

    Basniwal, Rupesh Kumar; Khosla, Ritu; Jain, Nidhi

    2014-01-01

    Curcumin is a highly potent, nontoxic bioactive agent found in turmeric and is known to have significant anticancer properties against different types of cancer cells. The major disadvantage associated with the use of curcumin, however, is its low systemic bioavailability due to its poor aqueous solubility. The focus of the present study was to generate nanoparticles of curcumin with improved aqueous phase solubility, and to investigate their efficacy in treating cancer cells. Curcumin nanoparticles having particle size in the range 2-40 nm and aqueous solubility of up to a maximum of 3 mg/mL were prepared. Evaluation of anticancer properties of curcumin nanodispersion was carried out in 3 different cancer cell lines: lung (A549), liver (HepG2), and skin (A431). The results demonstrated that under aqueous conditions curcumin nanoparticles exhibited similar or a much stronger antiproliferative effect on the cancer cells compared to normal curcumin in DMSO. Our results lead way toward unharnessed potential of curcumin in the form of its nanoparticles as an adjuvant therapy for clinical application in treating various cancers. PMID:25068616

  16. Characterization of the Phytochemical Constituents of Taif Rose and Its Antioxidant and Anticancer Activities

    PubMed Central

    Abdel-Hameed, El-Sayed S.; Bazaid, Salih A.; Salman, Mahmood S.

    2013-01-01

    Ward Taifi (Taif rose) is considered one of the most important economic products of Taif, Saudi Arabia. In this study both fresh and dry Taif rose were biologically and phytochemically investigated. The 80% methanol extracts and n-butanol fractions of dry and fresh Taif rose had high radical scavenging activity toward artificial 1,1-diphenyl picrylhydrazyl (DPPH)• radical with SC50 values range 5.86?12.24?µg/ml whereas the aqueous fractions showed weak activity. All samples had in vitro anticancer activity toward HepG2 with IC50 < 20?µg/ml which fall within the criteria of the American Cancer Institute. High positive correlation appeared between the antioxidant activity and total phenolics whereas there is no correlation between total phenolics and anticancer activity. The LC-ESI(? ve)-MS analysis of all extracts indicate the presence of phenolic compounds belonging to hydrolysable tannins and flavonol glycosides. In conclusion, the presence of this is considered to be the first phytochemical report that identifies the major compounds in dry and fresh roses using HPLC-ESI-MS. The methanol extracts and its n-butanol and aqueous fractions for both fresh and dry Taif rose could be used as preventive and therapeutic effective natural agents for diseases in which free radicals involved after more in vitro and in vivo studies. PMID:24282813

  17. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    PubMed

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-29

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens. PMID:22460905

  18. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    PubMed Central

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  19. Recent developments in mushrooms as anti-cancer therapeutics: a review.

    PubMed

    Patel, Seema; Goyal, Arun

    2012-03-01

    From time immemorial, mushrooms have been valued by humankind as a culinary wonder and folk medicine in Oriental practice. The last decade has witnessed the overwhelming interest of western research fraternity in pharmaceutical potential of mushrooms. The chief medicinal uses of mushrooms discovered so far are as anti-oxidant, anti-diabetic, hypocholesterolemic, anti-tumor, anti-cancer, immunomodulatory, anti-allergic, nephroprotective, and anti-microbial agents. The mushrooms credited with success against cancer belong to the genus Phellinus, Pleurotus, Agaricus, Ganoderma, Clitocybe, Antrodia, Trametes, Cordyceps, Xerocomus, Calvatia, Schizophyllum, Flammulina, Suillus, Inonotus, Inocybe, Funlia, Lactarius, Albatrellus, Russula, and Fomes. The anti-cancer compounds play crucial role as reactive oxygen species inducer, mitotic kinase inhibitor, anti-mitotic, angiogenesis inhibitor, topoisomerase inhibitor, leading to apoptosis, and eventually checking cancer proliferation. The present review updates the recent findings on the pharmacologically active compounds, their anti-tumor potential, and underlying mechanism of biological action in order to raise awareness for further investigations to develop cancer therapeutics from mushrooms. The mounting evidences from various research groups across the globe, regarding anti-tumor application of mushroom extracts unarguably make it a fast-track research area worth mass attention. PMID:22582152

  20. Anticancer activity of hispidin via reactive oxygen species-mediated apoptosis in colon cancer cells.

    PubMed

    Lim, Ji-Hong; Lee, Yoon-Mi; Park, Sa Ra; Kim, Da Hye; Lim, Beong Ou

    2014-08-01

    Few studies have been performed on the anticancer activity of hispidin, a phenolic compound produced from the medicinal mushroom Phellinus linteus. Herein, we studied hispidin-induced apoptosis, which is associated with the generation of reactive oxygen species (ROS) in colon cancer cells. Hispidin was found to reduce cell viability both in mouse and human colon cancer cells. Apoptotic cell morphological changes were observed by microscopy, and apoptosis was assessed in hispidin-treated cells using a biochemical method. The results showed accumulation of the sub-G1 cell population and increase in early apoptosis in a dose-dependent manner. In addition, hispidin induced apoptosis through up-regulation of both intrinsic and extrinsic apoptotic pathways. Although the molecular mechanism underlying hispidin-induced apoptosis is known to involve the generation of ROS, however hispidin did not show any apoptosis in the pre-treatment with a ROS scavenger, N-acetyl-L-cysteine. In conclusion, hispidin induces both intrinsic and extrinsic apoptotic pathways mediated by ROS in colon cancer cells, thereby suggesting that hispidin could be a promising new anticancer agent. PMID:25075033

  1. From antimicrobial to anticancer peptides. A review

    PubMed Central

    Gaspar, Diana; Veiga, A. Salomé; Castanho, Miguel A. R. B.

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  2. Ginsenoside Rp1 from Panax ginseng Exhibits Anti-cancer Activity by Down-regulation of the IGF-1R\\/Akt Pathway in Breast Cancer Cells

    Microsoft Academic Search

    Ju-Hee Kang; Ki-Hoon Song; Jong-Kyu Woo; Myung Hwan Park; Man Hee Rhee; Changsun Choi; Seung Hyun Oh

    Cancer prevention is effective and reduces health care costs because cancer is often a preventable disease that can be affected\\u000a by lifestyle factors. Therefore, researchers are interested in discovering natural compounds that have anticancer activities,\\u000a such as delaying the development of cancer and preventing its progression. One such natural agent is ginseng (Panax ginseng), which is traditionally used in some

  3. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents.

    PubMed

    Ralph, Stephen J; Low, Pauline; Dong, Langfeng; Lawen, Alfons; Neuzil, Jiri

    2006-11-01

    Mitochondria are proving to be worthy targets for activating specific killing of cancer cells in tumors and a diverse range of mitochondrial targeted drugs are currently in clinical trial to determine their effectiveness as anti-cancer therapies. The mechanism of action of mitochondrial targeted anti-cancer drugs relies on their ability to disrupt the energy producing systems of cancer cell mitochondria, leading to increased reactive oxygen species and activation of the mitochondrial dependent cell death signaling pathways inside cancer cells. We propose that this emerging class of drugs be called "mitocans", a term that reflects their mitochondrial targeting and anti-cancer roles. They are discussed in this review in the context of their mode of action whereby they target the functional differences and altered properties of the mitochondria inside cancerous but not normal cells. Hence, mitocans include drugs affecting the following mitochondrial associated activities: hexokinase inhibitors; electron transport/respiratory chain blockers; activators of the mitochondrial membrane permeability transition pore targeting constituent protein subunits, either the voltage dependent anion-selective channel (VDAC) or adenine nucleotide transporter (ANT); inhibitors of Bcl-2 anti-apoptotic family proteins and Bax/Bid pro-apoptotic mimetics. In particular, a recent surge has occurred in the number of patent documents describing small molecule inhibitors and BH3 mimetic blockers of Bcl-2/Bcl-x(L) function as obvious and important targets for promoting mitochondrial induced cancer cell death and for enhancing the actions of other chemotherapeutic agents. One of the other highly significant results to emerge from clinical applications of mitochondrial targeted drugs as cancer therapies to date is that they have shown limited side-effects on the normal "healthy" cell populations in vivo. It is still too early to judge the clinical impact that mitocans will make in treating cancer. Further clinical studies will be required before these novel drugs become established as single modality anti-cancer therapies or are used in conjunction with existing chemotherapies. However, it is clear from the present studies that mitocans offer great potential as effective and exciting new developments in cancer therapy, providing direct activation of cancer cell death by mitochondrial mediated apoptosis and that this complements the other pathways by which existing treatments kill cancer cells. Undoubtedly, mitocans will become an integral part of modern weaponry in the fight to eliminate cancer. PMID:18221044

  4. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    PubMed

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Pot??ková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Ma?ecki, Jan G; Sajewicz, Mieczys?aw; Ratuszna, Alicja; Muchowicz, Angelika; Go??b, Jakub; Sim?nek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination. PMID:25329549

  5. Anti-Cancer Vaccines — A One-Hit Wonder?

    PubMed Central

    Liu, Justin K.H.

    2014-01-01

    Immunization against common bacterial and viral diseases has helped prevent millions of deaths worldwide. More recently, the concept of vaccination has been developed into a potentially novel strategy to treat and prevent cancer formation, progression, and spread. Over the past few years, a handful of anti-cancer vaccines have been licensed and approved for use in clinical practice, thus providing a breakthrough in the field. However, the path has not always been easy, with many hurdles that have had to be overcome in order to reach this point. Nevertheless, with more anti-cancer vaccines currently in development, there is still hope that they can eventually become routine tools used in the treatment and prevention of cancer in the future. This review will discuss in detail both types of anti-cancer vaccine presently used in clinical practice — therapeutic and preventive — before considering some of the more promising anti-cancer vaccines that are currently in development. Finally, the issue of side effects and the debate surrounding the overall cost-effectiveness of anti-cancer vaccines will be examined. PMID:25506282

  6. Anti-cancer vaccines - a one-hit wonder?

    PubMed

    Liu, Justin K H

    2014-12-01

    Immunization against common bacterial and viral diseases has helped prevent millions of deaths worldwide. More recently, the concept of vaccination has been developed into a potentially novel strategy to treat and prevent cancer formation, progression, and spread. Over the past few years, a handful of anti-cancer vaccines have been licensed and approved for use in clinical practice, thus providing a breakthrough in the field. However, the path has not always been easy, with many hurdles that have had to be overcome in order to reach this point. Nevertheless, with more anti-cancer vaccines currently in development, there is still hope that they can eventually become routine tools used in the treatment and prevention of cancer in the future. This review will discuss in detail both types of anti-cancer vaccine presently used in clinical practice - therapeutic and preventive - before considering some of the more promising anti-cancer vaccines that are currently in development. Finally, the issue of side effects and the debate surrounding the overall cost-effectiveness of anti-cancer vaccines will be examined. PMID:25506282

  7. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds.

    PubMed

    Martín, María Jesús; Coello, Laura; Fernández, Rogelio; Reyes, Fernando; Rodríguez, Alberto; Murcia, Carmen; Garranzo, María; Mateo, Cristina; Sánchez-Sancho, Francisco; Bueno, Santiago; de Eguilior, Carlos; Francesch, Andrés; Munt, Simon; Cuevas, Carmen

    2013-07-10

    Microtubules continue to be one of the most successful anticancer drug targets and a favorite hit for many naturally occurring molecules. While two of the most successful representative agents in clinical use, the taxanes and the vinca alkaloids, come from terrestrial sources, the sea has also proven to be a rich source of new tubulin-binding molecules. We describe herein the first isolation, structural elucidation and total synthesis of two totally new polyketides isolated from the Madagascan sponge Lithoplocamia lithistoides . Both PM050489 and PM060184 show antimitotic properties in human tumor cells lines at subnanomolar concentrations and display a distinct inhibition mechanism on microtubules. The development of an efficient synthetic procedure has solved the supply problem and, following pharmaceutical development, has allowed PM060184 to start clinical studies as a promising new drug for cancer treatment. PMID:23750450

  8. Synthesis, molecular docking and anticancer studies of peptides and iso-peptides.

    PubMed

    Jabeen, Farukh; Panda, Siva S; Kondratyuk, Tamara P; Park, Eun-Jung; Pezzuto, John M; Ihsan-Ul-Haq; Hall, C Dennis; Katritzky, Alan R

    2015-08-01

    Chiral peptides and iso-peptides were synthesized in excellent yield by using benzotriazole mediated solution phase synthesis. Benzotriazole acted both as activating and leaving group, eliminating frequent use of protection and subsequent deprotection. The procedure was based on the hypothesis that epimerization should be suppressed in solution due to a faster coupling rate than SPPS. All the synthesized peptides complied with Lipinski's Ro5 except for the rotatable bonds. Inhibition of cell proliferation of cancer cell lines is one of the most commonly used methods to study the effectiveness of any anticancer agents. Synthesized peptides and iso-peptides were tested against three cancer cell lines (MCF-7, MDA-MB 231) to determine their anti-proliferative potential. NFkB was also determined. Molecular docking studies were also carried out to complement the experimental results. PMID:26048799

  9. Anticancer Role of PPAR? Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes

    PubMed Central

    Simpson-Haidaris, P. J.; Pollock, S. J.; Ramon, S.; Guo, N.; Woeller, C. F.; Feldon, S. E.; Phipps, R. P.

    2010-01-01

    The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-? agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPAR? agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPAR? agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPAR? and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow. PMID:20204067

  10. Bisethylnorspermine Lipopolyamine as Potential Delivery Vector for Combination Drug/Gene Anticancer Therapies

    PubMed Central

    Dong, Yanmei; Li, Jing; Wu, Chao

    2013-01-01

    Purpose To design novel synthetic gene delivery system in which the carrier molecule functions dually as a carrier and a cytotoxic agent targeting dysregulated polyamine metabolism in cancer. Methods Bisethylnorspermine (BENSpm) lipopolyamine was synthesized and its toxicity evaluated by MTS assay in MCF-7 and MCF-10A cells. Transfection activity was determined using luciferase plasmid DNA. Results Asymmetrical lipid analogue of polyamine anticancer drug BENSpm was synthesized using nucleophilic ring opening of azetidinium ion. The synthesized LipoBENSpm showed cytotoxicity comparable to that of parent BENSpm in human breast cancer cell line MCF-7 but mediated 3–4 orders magnitude higher transfection activity. Importantly, cytostatic activity of BENSpm, typically in a low µM range, falls within a relevant and typical concentration range required for efficient gene delivery. Conclusions These findings make gene delivery vectors based on BENSpm promising candidates for combination drug/gene approaches to the treatment of cancer. PMID:20577786

  11. Cyclosporin a aerosol improves the anticancer effect of Paclitaxel aerosol in mice.

    PubMed Central

    Knight, Vernon; Koshkina, N. V.; Golunski, E.; Roberts, L. E.; Gilbert, B. E.

    2004-01-01

    Paclitaxel (PTX) is a lipophilic agent with broad anticancer activity. In the present study we examined the antitumor effect and toxicity of co-administration of cyclosporine A (CsA) and PTX in liposomal aerosol using the Renca lung metastases mouse model. The untreated and PTX-only groups exhibited cancer growth while CsA aerosol plus PTX had more favorable effects on tumor growth. Weight loss was seen in mice treated with CsA/PTX+CsA by day 9 to 22. Histopathological examination showed no toxicity following treatment. The findings offer evidence that a combination of CsA and PTX may be suitable for aerosol treatment of lung cancer if it is possible to control toxicity of the therapy. Images Fig. 1 PMID:17060982

  12. Turning Tumor-Promoting Copper into an Anti-Cancer Weapon via High-Throughput Chemistry

    PubMed Central

    Wang, F.; Jiao, P.; Qi, M.; Frezza, M.; Dou, Q.P.; Yan, B.

    2013-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn “cancer-promoting” copper into anti-cancer agents. PMID:20586723

  13. HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier?

    PubMed Central

    Nunnari, Giuseppe; Smith, Johanna A; Daniel, René

    2008-01-01

    The acquired immunodeficiency syndrome (AIDS) is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis. This review focuses on newly discovered connections of the HIV-1 protein Tat, as well as cellular co-factors of Tat, to double-strand break DNA repair. We propose that the Tat-induced DNA repair deficiencies may play a significant role in the development of AIDS-associated cancer. PMID:18577246

  14. Evaluation of Extrahepatic Perfusion of Anticancer Drugs in the Right Gastric Arterial Region on Fused Images Using Combined CT/SPECT: Is Extrahepatic Perfusion Predictive of Gastric Toxicity?

    SciTech Connect

    Ikeda, Osamu, E-mail: osamu-3643ik@do9.enjoy.ne.jp; Tamura, Yoshitaka; Nakasone, Yutaka; Shiraishi, Shinya; Kawanaka, Kouichi; Tomiguchi, Seiji; Morishita, Shouji [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Diagnostic Radiology (Japan); Takamori, Hiroshi; Chikamoto, Akira; Kanemitsu, Keiichirou [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Gastroenterological Surgery (Japan); Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Diagnostic Radiology (Japan)

    2007-06-15

    Background. Hepatic arterial infusion (HAI) chemotherapy is effective for treating primary and metastatic carcinomas of the liver. Since hepatic arteries also supply the stomach and duodenum, HAI may result in unwanted infusion into the upper gastrointestinal tract and consequent gastric toxicity. Using fused images obtained with a combined SPECT/CT system, we assessed extrahepatic perfusion (EHP) and its correlation with gastrointestinal toxicity in patients receiving HAI. Methods. We studied 41 patients with primary or metastatic carcinoma of the liver who received HAI chemotherapy consisting of 5-fluorouracil and cisplatin. All underwent abdominal SPECT using a {sup 99m}Tc-MAA (185 MBq) instrument and an injection rate of 0.1 ml/min, identical to the chemotherapy infusion rate. Delivery was through an implantable port. We analyzed the distribution of the anticancer agent on fused images and the relationship between EHP of the right gastric arterial region and gastric toxicity. All patients underwent esophagogastroduodenoscopy (EGDS). Results. Of the 41 patients, 11 (27%) manifested enhancement of the duodenal and gastric pyloric region on fused images. EGDS at the time of reservoir placement detected gastric ulcers in 10 of these patients. Conclusion. Fusion imaging with combined SPECT/CT reflects the actual distribution of the infused anticancer agents. The detection of EHP on fused images is predictive of the direct gastric toxicity from anticancer agents in patients undergoing HAI.

  15. Continuing pursuit for ideal systemic anticancer radiotherapeutics.

    PubMed

    Cona, Marlein Miranda; Wang, Huaijun; Li, Junjie; Feng, Yuanbo; Chen, Feng; de Witte, Peter; Verbruggen, Alfons; Ni, Yicheng

    2012-10-01

    Cancer is one of the major causes of death for non-transmissible chronic diseases worldwide. Conventional treatments including surgery, chemotherapy and external beam radiotherapy are generally far from curative. Complementary therapies are attempted for achieving more successful treatment response. Systemic targeted radiotherapy (STR) is a radiotherapeutic modality based on systemic administration of radioactive agents for selectively delivering high doses of energy to destroy cancer cells. For this purpose, diverse tumour-target specific agents including monoclonal antibodies (MoAb), MoAb fragments and peptides have been tested and some of them have already got FDA approval for clinical use. However, MoAbs and their tailored analogues have shown non-homogeneous tumour distribution, limited diffusion, insufficient intratumoral accumulation and retention, unwanted uptake in normal tissues and scarcity of identified cancer antigens for generating new MoAbs. Similarly, peptides have also exhibited retention in normal organs, lacks of favourable membrane permeability or drug cell internalization and short-term residence in cancer cells. Recently, a new category of target-specific agent with strong affinity for necrosis has emerged as an excellent option for developing targeted radiotherapeutic agents to be used after necrosis-inducing treatments (NITs). The combination of their high, specific and long-term accumulation and retention at necrotic sites with the crossfire effect of ionizing particle-emitters allows irradiating adjacent residual viable tumour cells during a prolonged period of time. It may considerably enhance the therapeutic response and open a new horizon for improved cancer treatability or curability. PMID:22006160

  16. Macromolecular nanotheranostics for multimodal anticancer therapy

    NASA Astrophysics Data System (ADS)

    Huis in't Veld, Ruben; Storm, Gert; Hennink, Wim E.; Kiessling, Fabian; Lammers, Twan

    2011-10-01

    Macromolecular carrier materials based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized drug delivery systems that have been extensively evaluated in the past two decades, both at the preclinical and at the clinical level. Using several different imaging agents and techniques, HPMA copolymers have been shown to circulate for prolonged periods of time, and to accumulate in tumors both effectively and selectively by means of the Enhanced Permeability and Retention (EPR) effect. Because of this, HPMA-based macromolecular nanotheranostics, i.e. formulations containing both drug and imaging agents within a single formulation, have been shown to be highly effective in inducing tumor growth inhibition in animal models. In patients, however, as essentially all other tumor-targeted nanomedicines, they are generally only able to improve the therapeutic index of the attached active agent by lowering its toxicity, and they fail to improve the efficacy of the intervention. Bearing this in mind, we have recently reasoned that because of their biocompatibility and their beneficial biodistribution, nanomedicine formulations might be highly suitable systems for combination therapies. In the present manuscript, we briefly summarize several exemplary efforts undertaken in this regard in our labs in the past couple of years, and we show that long-circulating and passively tumor-targeted macromolecular nanotheranostics can be used to improve the efficacy of radiochemotherapy and of chemotherapy combinations.

  17. Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity.

    PubMed

    Manitchotpisit, Pennapa; Watanapokasin, Ramida; Watanapoksin, Ramida; Price, Neil P J; Bischoff, Kenneth M; Tayeh, Malatee; Teeraworawit, Sudarat; Kriwong, Saranya; Leathers, Timothy D

    2014-08-01

    Liamocins are structurally unique, heavier-than-water “oils” produced by certain strains of Aureobasidium pullulans. The aim of the current study is to identify new sources of liamocins and evaluate their potential as anticancer agents. Nine strains of A. pullulans from phylogenetic clades 8, 9, and 11 were examined for the first time for production of liamocins. Strains in these clades have only been isolated from tropical environments, and all strains tested here were from various locations in Thailand. Strains RSU 9, RSU 21, and RSU 29, all from clade 11, produced from 7.0 to 8.6 g liamocins/l from medium containing 5 % sucrose. These are the highest yields of liamocins that we have found thus far. These strains also produced from 9.4 to 17 g pullulan/l. The structural identity of liamocins was confirmed by matrix-assisted laser desorption/ionization mass spectrometry; differential spectra were obtained in which the dominant ion was either at about m/z 805.5 or m/z 949.6, consistent with the structure of liamocins. Liamocins from A. pullulans strains RSU 9 and RSU 21 inhibited two human breast cancer cell lines and a human cervical cancer cell line (IC50 values of 32.2 ± 1.4 to 63.1 ± 2.4 ?g liamocins/ml) but were not toxic to a normal cell line. Liamocins weakly inhibited a strain of Enterococcus faecalis, but did not inhibit strains of Lactobacillus fermentum, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Thus, A. pullulans phylogenetic clade 11 is a promising source of liamocins, and these compounds merit further examination as potential anticancer agents. PMID:24659335

  18. Characterization of novel MPS1 inhibitors with preclinical anticancer activity.

    PubMed

    Jemaŕ, M; Galluzzi, L; Kepp, O; Senovilla, L; Brands, M; Boemer, U; Koppitz, M; Lienau, P; Prechtl, S; Schulze, V; Siemeister, G; Wengner, A M; Mumberg, D; Ziegelbauer, K; Abrieu, A; Castedo, M; Vitale, I; Kroemer, G

    2013-11-01

    Monopolar spindle 1 (MPS1), a mitotic kinase that is overexpressed in several human cancers, contributes to the alignment of chromosomes to the metaphase plate as well as to the execution of the spindle assembly checkpoint (SAC). Here, we report the identification and functional characterization of three novel inhibitors of MPS1 of two independent structural classes, N-(4-{2-[(2-cyanophenyl)amino][1,2,4]triazolo[1,5-a]pyridin-6-yl}phenyl)-2-phenylacetamide (Mps-BAY1) (a triazolopyridine), N-cyclopropyl-4-{8-[(2-methylpropyl)amino]-6-(quinolin-5-yl)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2a) and N-cyclopropyl-4-{8-(isobutylamino)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2b) (two imidazopyrazines). By selectively inactivating MPS1, these small inhibitors can arrest the proliferation of cancer cells, causing their polyploidization and/or their demise. Cancer cells treated with Mps-BAY1 or Mps-BAY2a manifested multiple signs of mitotic perturbation including inefficient chromosomal congression during metaphase, unscheduled SAC inactivation and severe anaphase defects. Videomicroscopic cell fate profiling of histone 2B-green fluorescent protein-expressing cells revealed the capacity of MPS1 inhibitors to subvert the correct timing of mitosis as they induce a premature anaphase entry in the context of misaligned metaphase plates. Hence, in the presence of MPS1 inhibitors, cells either divided in a bipolar (but often asymmetric) manner or entered one or more rounds of abortive mitoses, generating gross aneuploidy and polyploidy, respectively. In both cases, cells ultimately succumbed to the mitotic catastrophe-induced activation of the mitochondrial pathway of apoptosis. Of note, low doses of MPS1 inhibitors and paclitaxel (a microtubular poison) synergized at increasing the frequency of chromosome misalignments and missegregations in the context of SAC inactivation. This resulted in massive polyploidization followed by the activation of mitotic catastrophe. A synergistic interaction between paclitaxel and MPS1 inhibitors could also be demonstrated in vivo, as the combination of these agents efficiently reduced the growth of tumor xenografts and exerted superior antineoplastic effects compared with either compound employed alone. Altogether, these results suggest that MPS1 inhibitors may exert robust anticancer activity, either as standalone therapeutic interventions or combined with microtubule-targeting chemicals. PMID:23933817

  19. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles.

    PubMed

    Xu, Rong; Wang, QuanQiu

    2015-06-01

    Targeted anticancer drugs such as imatinib, trastuzumab and erlotinib dramatically improved treatment outcomes in cancer patients, however, these innovative agents are often associated with unexpected side effects. The pathophysiological mechanisms underlying these side effects are not well understood. The availability of a comprehensive knowledge base of side effects associated with targeted anticancer drugs has the potential to illuminate complex pathways underlying toxicities induced by these innovative drugs. While side effect association knowledge for targeted drugs exists in multiple heterogeneous data sources, published full-text oncological articles represent an important source of pivotal, investigational, and even failed trials in a variety of patient populations. In this study, we present an automatic process to extract targeted anticancer drug-associated side effects (drug-SE pairs) from a large number of high profile full-text oncological articles. We downloaded 13,855 full-text articles from the Journal of Oncology (JCO) published between 1983 and 2013. We developed text classification, relationship extraction, signaling filtering, and signal prioritization algorithms to extract drug-SE pairs from downloaded articles. We extracted a total of 26,264 drug-SE pairs with an average precision of 0.405, a recall of 0.899, and an F1 score of 0.465. We show that side effect knowledge from JCO articles is largely complementary to that from the US Food and Drug Administration (FDA) drug labels. Through integrative correlation analysis, we show that targeted drug-associated side effects positively correlate with their gene targets and disease indications. In conclusion, this unique database that we built from a large number of high-profile oncological articles could facilitate the development of computational models to understand toxic effects associated with targeted anticancer drugs. PMID:25817969

  20. ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells.

    PubMed

    Krech, Till; Scheuerer, Elisa; Geffers, Robert; Kreipe, Hans; Lehmann, Ulrich; Christgen, Matthias

    2012-02-28

    Contribution of the ABCB1/MDR1/P-glycoprotein drug transporter to breast cancer resistance has been controversial. One issue is that ABCB1-dependent drug-resistance has primarily been investigated in mammary epithelial cell models technically manipulated to overexpress ABCB1, either by gene transfer using appropriate expression vectors or by chronic anticancer drug-selection. However, an unmodified human breast cancer cell line with an endogenous overexpression of ABCB1 has not been described thus far. Using Affymetrix microarray analyses, we identified an endogenous overexpression of several tumor-biologically relevant transcripts including ABCB1, BCAR4, CCL28, SCGB2A2 and PIP in IPH-926, an anticancer drug-resistant human lobular breast cancer cell line derived from a chemo-refractory mammary carcinoma patient. In a panel of twenty breast cancer cell lines examined, overexpression of ABCB1 mRNA and protein was exclusively detected in IPH-926. This was further validated using chronically in vitro drug-selected KB-V-1 cells as a widely used reference model to accurately define an ABCB1 overexpression. IPH-926 and KB-V-1 displayed a similar overexpression of ABCB1. Flow cytometric analyses showed that IPH-926 but not ABCB1-negative breast cancer cells extruded the anticancer agent doxorubicin, a classical substrate of the ABCB1 drug transporter. PSC-833 (valspodar), a selective ABCB1 inhibitor, blocked this efflux, restored apoptotic PARP cleavage and increased doxorubicin sensitivity in IPH-926 and KB-V-1. To our knowledge, IPH-926 represents the first human breast cancer cell line with a genuine, endogenous overexpression of ABCB1. IPH-926 provides evidence that ABCB1 can occasionally cause anticancer drug-resistance in breast cancer patients and offers a new tool for the evaluation of compounds to overcome drug-resistance. PMID:22118813

  1. Anti-cancer natural products isolated from chinese medicinal herbs

    PubMed Central

    2011-01-01

    In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, ?-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed. PMID:21777476

  2. Anti-cancer natural products isolated from chinese medicinal herbs.

    PubMed

    Tan, Wen; Lu, Jinjian; Huang, Mingqing; Li, Yingbo; Chen, Meiwan; Wu, Guosheng; Gong, Jian; Zhong, Zhangfeng; Xu, Zengtao; Dang, Yuanye; Guo, Jiajie; Chen, Xiuping; Wang, Yitao

    2011-01-01

    In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, ?-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed. PMID:21777476

  3. Plant derived and dietary phenolic antioxidants: anticancer properties.

    PubMed

    Roleira, Fernanda M F; Tavares-da-Silva, Elisiário J; Varela, Carla L; Costa, Saul C; Silva, Tiago; Garrido, Jorge; Borges, Fernanda

    2015-09-15

    In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion. PMID:25863633

  4. Evolution of acquired resistance to anti-cancer therapy Jasmine Foo a

    E-print Network

    Review Evolution of acquired resistance to anti-cancer therapy Jasmine Foo a , Franziska Michor b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1. Luria­Delbrück models of bacterial resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1. Stochastic models of anti-cancer therapy

  5. DIACAN: Integrated Database for Antidiabetic and Anticancer Medicinal Plants

    PubMed Central

    James, Priyanka; Mathai, Vipin Anithottam; Shajikumar, Silpa; Pereppadan, Priya Antony; Sudha, Parvathi; Keshavachandran, Raghunath; Nazeem, Puthiyaveetil Abdulla

    2013-01-01

    Medicinal plants and plant derived molecules are widely used in traditional cultures all over the world and they are becoming large popular among biomedical researchers and pharmaceutical companies as a natural alternative to synthetic medicine. Information related to medicinal plants and herbal drugs accumulated over the ages are scattered and unstructured which make it prudent to develop a curated database for medicinal plants. The Antidiabetic and Anticancer Medicinal Plants Database (DIACAN) aims to collect and provide an integrated platform for plants and phytochemiclas having antidiabetic or anticancer activity. Availability http://www.kaubic.in/diacan PMID:24307774

  6. Viral genes as oncolytic agents for cancer therapy.

    PubMed

    Gupta, Shishir Kumar; Gandham, Ravi Kumar; Sahoo, A P; Tiwari, A K

    2015-03-01

    Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents. PMID:25408521

  7. Luminescent cyclometalated platinum(II) complex forms emissive intercalating adducts with double-stranded DNA and RNA: differential emissions and anticancer activities.

    PubMed

    Zou, Taotao; Liu, Jia; Lum, Ching Tung; Ma, Chensheng; Chan, Ruth Chau-Ting; Lok, Chun-Nam; Kwok, Wai-Ming; Che, Chi-Ming

    2014-09-15

    Luminescent metallo-intercalators are potent biosensors of nucleic acid structure and anticancer agents targeting DNAs. There are few examples of luminescent metallo-intercalators which can simultaneously act as emission probes of nucleic acid structure and display promising anticancer activities. Herein, we describe a luminescent platinum(II) complex, [Pt(C^N^N)(C?NtBu)]ClO4 (1?a, HC^N^N= 6-phenyl-2,2'-bipyridyl), that intercalates between the nucleobases of nucleic acids, accompanied by an increase in emission intensity and/or a significant change in the maximum emission wavelength. The changes in emission properties measured with double-stranded RNA (dsRNA) are different from those with dsDNA used in the binding reactions. Complex 1?a exhibited potent anticancer activity towards cancer cells in?vitro and inhibited tumor growth in a mouse model. The stabilization of the topoisomerase?I-DNA complex with resulting DNA damage by 1?a is suggested to contribute to its anticancer activity. PMID:25044924

  8. Antimicrobial agents

    Microsoft Academic Search

    Karen Bush; Anuwat Keerasuntonpong; B Zabriskie; Chitsanu Pancharoen; Terapong Tantawichien

    1997-01-01

    Antimicrobial agents active against multi-resistant Gram-positive bacteria are considered to be of major commercial potential. Commercially viable agents that have been included in recent successful trials include the streptogramins, novel glycopeptides, oxazolidinones and potent quinolones. Cationic peptides have generated much interest, but their utility as successful drug candidates remains questionable. Novel compound classes for possible exploitation include non-?-lactam ?-lactamaseinhibitors, inhibitors

  9. Novel anticancer prodrugs of butyric acid. 2.

    PubMed

    Nudelman, A; Ruse, M; Aviram, A; Rabizadeh, E; Shaklai, M; Zimrah, Y; Rephaeli, A

    1992-02-21

    The antitumor activity of novel prodrugs butyric acid was examined. The in vitro effect of the compounds on induction of cytodifferentiation and on inhibition of proliferation and clonogenicity showed that (pivaloyloxy)methyl butyrate (1a) (labeled AN-9) was the most active agent. SAR's suggested that its activity stemmed from hydrolytically released butyric acid. In vivo, 1a displayed antitumor activity in B16F0 melanoma primary cancer model, manifested by a significant increase in the life span of the treated animals. Murine lung tumor burden, induced by injection of the highly metastatic melanoma cells (B16F10.9), was decreased by 1a. It also displayed a significant therapeutic activity against spontaneous metastases which were induced by 3LL Lewis lung carcinoma cells. Moreover, 1a has the advantage of low toxicity, with an acute LD50 = 1.36 +/- 0.1 g/kg (n = 5). These results suggest that 1a is a potential antineoplastic agent. PMID:1542095

  10. Amaryllidaceae Isocarbostyril Alkaloids and Their Derivatives as Promising Antitumor Agents

    PubMed Central

    Ingrassia, Laurent; Lefranc, Florence; Mathieu, Véronique; Darro, Francis; Kiss, Robert

    2008-01-01

    This review covers the isolation, total synthesis, biologic activity, and more particularly the in vitro and in vivo antitumor activities of naturally occurring isocarbostyril alkaloids from the Amaryllidaceae family. Starting from these natural products, new derivatives have been synthesized to explore structure-activity relationships within the chemical class and to obtain potential candidates for preclinical development. This approach appears to be capable of providing novel promising anticancer agents. PMID:18607503

  11. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice.

    PubMed

    Mayer, Lawrence D; Harasym, Troy O; Tardi, Paul G; Harasym, Natashia L; Shew, Clifford R; Johnstone, Sharon A; Ramsay, Euan C; Bally, Marcel B; Janoff, Andrew S

    2006-07-01

    Anticancer drug combinations can act synergistically or antagonistically against tumor cells in vitro depending on the ratios of the individual agents comprising the combination. The importance of drug ratios in vivo, however, has heretofore not been investigated, and combination chemotherapy treatment regimens continue to be developed based on the maximum tolerated dose of the individual agents. We systematically examined three different drug combinations representing a range of anticancer drug classes with distinct molecular mechanisms (irinotecan/floxuridine, cytarabine/daunorubicin, and cisplatin/daunorubicin) for drug ratio-dependent synergy. In each case, synergistic interactions were observed in vitro at certain drug/drug molar ratio ranges (1:1, 5:1, and 10:1, respectively), whereas other ratios were additive or antagonistic. We were able to maintain fixed drug ratios in plasma of mice for 24 hours after i.v. injection for all three combinations by controlling and overcoming the inherent dissimilar pharmacokinetics of individual drugs through encapsulation in liposomal carrier systems. The liposomes not only maintained drug ratios in the plasma after injection, but also delivered the formulated drug ratio directly to tumor tissue. In vivo maintenance of drug ratios shown to be synergistic in vitro provided increased efficacy in preclinical tumor models, whereas attenuated antitumor activity was observed when antagonistic drug ratios were maintained. Fixing synergistic drug ratios in pharmaceutical carriers provides an avenue by which anticancer drug combinations can be optimized prospectively for maximum therapeutic activity during preclinical development and differs from current practice in which dosing regimens are developed empirically in late-stage clinical trials based on tolerability. PMID:16891472

  12. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models

    PubMed Central

    Tiwari, Amit K.; Sodani, Kamlesh; Dai, Chun-ling; Abuznait, Alaa H.; Singh, Satyakam; Xiao, Zhi-Jie; Patel, Atish; Talele, Tanaji T.; Fu, Liwu; Kaddoumi, Amal; Gallo, James M.; Chen, Zhe-Sheng

    2012-01-01

    A panel of clinically used tyrosine kinase inhibitors was compared and nilotinib was found to most potently sensitize specific anticancer agents by blocking the functions of ABCB1/P-glycoprotein, ABCG2/BCRP and ABCC10/MRP7 transporters involved in multi-drug resistance. Nilotinib appreciably enhanced the antitumor response of 1) paclitaxel in the ABCB1- and novel ABCC10-xenograft models, and 2) doxorubicin in a novel ABCG2-xenograft model. With no apparent toxicity observed in the above models, nilotinib attenuated tumor growth synergistically and increased paclitaxel concentrations in ABCB1-overexpressing tumors. The beneficial actions of nilotinib warrant consideration as viable combinations in the clinic with agents that suffer from MDR-mediated insensitivity. PMID:23063650

  13. Anticancer biology of Azadirachta indica L (neem): a mini review.

    PubMed

    Paul, Rajkumar; Prasad, Murari; Sah, Nand K

    2011-09-15

    Neem (Azadirachta indica), a member of the Meliaceae family, is a fast growing tropical evergreen tree with a highly branched and stout, solid stem. Because of its tremendous therapeutic, domestic, agricultural and ethnomedicinal significance, and its proximity with human culture and civilization, neem has been called "the wonder tree" and "nature's drug store." All parts of this tree, particularly the leaves, bark, seed-oil and their purified products are widely used for treatment of cancer. Over 60 different types of biochemicals including terpenoids and steroids have been purified from this plant. Pre-clinical research work done during the last decade has fine-tuned our understanding of the anticancer properties of the crude and purified products from this plant. The anticancer properties of the plant have been studied largely in terms of its preventive, protective, tumor-suppressive, immunomodulatory and apoptotic effects against various types of cancer and their molecular mechanisms. This review aims at scanning scattered literature on "the anticancer biology of A. indica," related toxicity problems and future perspectives. The cogent data on the anticancer biology of products from A. indica deserve multi-institutional clinical trials as early as possible. The prospects of relatively cheaper cancer drugs could then be brighter, particularly for the under-privileged cancer patients of the world. PMID:21743298

  14. Anticancer evaluation of some newly synthesized N-nicotinonitrile derivative.

    PubMed

    Shamroukh, Ahmed H; El-Shahat, Mahmoud; Drabowicz, Józef; Ali, Mamdouh M; Rashad, Aymn E; Ali, Hatem S

    2013-11-01

    Some novel N-nicotinonitrile derivatives 3-14 have been synthesized starting with compound 1. The key step of this work is the coupling between compound 1 and activated sugars to afford the corresponding cyclic nucleosides 3-6. Moreover, the cytotoxicity and in vitro anticancer evaluation of the prepared compounds have also been assessed against breast MCF-7 cancer, liver HepG2 cancer and lung A549 carcinoma cell lines with investigation the effect of the synthesized compounds on the expression of urokinase plasminogen activator (uPA). The results revealed that, although all the compounds showed no anticancer activity against A549 cells without showing any effect on the expression of uPA, the tested compounds exhibited remarkable cytotoxicity activity against MCF-7 and HepG2 cell lines. Among the tested compounds, compounds 11 and 12 revealed promising anticancer activity compared to the activity of the commonly used anticancer drug, doxorubicin with inhibiting the expression of uPA. PMID:24095746

  15. 2005 Nature Publishing Group AntiCancer Inc. and

    E-print Network

    Cai, Long

    of cancer in living animals, including tumour cell mobility, invasion, metastasis and angiogenesis© 2005 Nature Publishing Group AntiCancer Inc. and Department of Surgery, University of California into interstitial spaces. THE MULTIPLE USES OF FLUORESCENT PROTEINS TO VISUALIZE CANCER IN VIVO Robert M. Hoffman

  16. Current concepts of treatment in medical oncology: new anticancer drugs

    Microsoft Academic Search

    Clemens Unger

    1996-01-01

    General principles for anticancer drug development include traditional drug-screening methods in biological test systems. Today, testing of a drug in a panel of selected human tumor xenografts in mice is assumed to have the best predictive value for clinical efficacy. Chemical modification of well-known antitumor drugs from compound groups such as purine analogs, vinca alkaloids, antifolates and platinum analogs are

  17. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    PubMed Central

    Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2012-01-01

    Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971

  18. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  19. Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration biopsy as a platform for novel prospective ex vivo drug sensitivity assays

    Microsoft Academic Search

    Belen Rubio-Viqueira; Heather Mezzadra; Matthew E. Nielsen; Antonio Jimeno; Xianfeng Zhang; Christine Iacobuzio-Donahue; Anirban Maitra; Manuel Hidalgo; Soner Altiok

    At the present time, the optimal development of mole- cularly targeted anticancer agents is limited by the lack of clinically applicable tools to predict drugeffects. This study aimed to develop methods that might be useful in predicting the efficacy of targeted agents in a novel model system of human pancreatic cancer. A series of xeno- grafts were established in nude

  20. A water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia attenuates the small intestinal injury induced by anti-cancer drugs.

    PubMed

    Kashimoto, Naoki; Ishii, Satomi; Myojin, Yuki; Ushijima, Mitsuyasu; Hayama, Minoru; Watanabe, Hiromitsu

    2010-01-01

    The present study investigated whether a water-soluble extract from the culture medium of Ganoderma lucidum (Reishi) mycelia (MAK) is able to protect the small intestine against damage induced by anti-cancer drugs. Six-week-old male B6C3F1/Crlj mice were fed a basal diet (MF) alone or with various doses of MAK or Agarics blazei Murrill (AGA) beginning one week before treatment with the anti-cancer drugs. Mice were sacrificed 3.5 days after injection of the anti-cancer drug, the small intestine was removed and tissue specimens were examined for the regeneration of small intestinal crypts. In experiment 1, the number of regenerative crypts after the administration of 5-fluorouracil (5FU) intravenously (250 mg/kg) or intraperitoneally (250 or 500 mg/kg) was compared after treatment with MAK or AGA. MAK protected against 5FU-induced small intestinal injury whereas AGA did not. In experiment 2, we investigated the protective effect of MAK against small intestinal injury induced by the anti-cancer drugs: UFT (tegafur with uracil; 1,000 mg/kg, orally), cisplatin (CDDP; 12.5 and 25 mg/kg, intraperitoneally), cyclophosphamide (CPA; 250 mg/kg, orally) and gefitinib (Iressa; 2,000 and 4,000 mg/kg, orally). UFT and CDDP decreased the number of regenerative crypts, but treatment with MAK attenuated the extent of UFT- or CDDP-induced small intestinal injury. CPA or Iressa plus MAK up-regulated crypt regeneration. The present results indicate that MAK ameliorates the small intestinal injury caused by several anti-cancer drugs, suggesting that MAK is a potential preventive agent against this common adverse effect of chemotherapy. PMID:22966257

  1. Luteolin nanoparticle in chemoprevention – in vitro and in vivo anticancer activity

    PubMed Central

    Majumdar, Debatosh; Jung, Kyung-Ho; Zhang, Hongzheng; Nannapaneni, Sreenivas; Wang, Xu; Amin, A.R.M Ruhul; Chen, Zhengjia; Chen, Zhuo (G).; Shin, Dong M.

    2013-01-01

    Cancer prevention (chemoprevention) by using naturally occurring dietary agents has gained immense interest due to the broad safety window of these compounds. However, many of these compounds are hydrophobic and poorly soluble in water. They frequently display low bioavailability, poor systemic delivery, and low efficacy. To circumvent this problem, we explored a novel approach towards chemoprevention using nanotechnology to deliver luteolin, a natural compound present in green vegetables. We formulated water soluble polymer-encapsulated Nano-Luteolin from hydrophobic luteolin, and studied its anticancer activity against lung cancer and head and neck cancer. In vitro studies demonstrated that, like luteolin, Nano-Luteolin inhibited the growth of lung cancer cells (H292 cell line) and squamous cell carcinoma of head and neck (SCCHN) cells (Tu212 cell line). In Tu212 cells, the IC50 value of Nano-Luteolin was 4.13?M, and that of luteolin was 6.96?M. In H292 cells, the IC50 of luteolin was 15.56?M, and Nano-Luteolin was 14.96?M. In vivo studies using a tumor xenograft mouse model demonstrated that Nano-Luteolin has a significant inhibitory effect on the tumor growth of SCCHN in comparison to luteolin. Our results suggest that nanoparticle delivery of naturally occurring dietary agents like luteolin has many advantages and may have potential application in chemoprevention in clinical settings. PMID:24403290

  2. Synergistic Anti-Cancer Effects of Icariin and Temozolomide in Glioblastoma.

    PubMed

    Yang, Lijuan; Wang, Yuexun; Guo, Hua; Guo, Meiling

    2014-11-11

    Glioblastoma is an aggressive malignancy, which is associated with poor prognosis. Temozolomide (TMZ) has been showed to be an effective chemotherapeutic agent for glioblastoma treatment; however, the response rate is not satisfactory. Icariin is a natural compound with anti-cancer activity against a variety of cancers. This study is designed to determine whether icariin could potentiate the antitumor activity of TMZ in glioblastoma. Cell proliferation and apoptosis were measured using MTT assay and flow cytometry, respectively. Expression of apoptosis and proliferation-related molecules was detected by Western blotting while NF-?B activity was detected by ELISA. Icariin dose-dependently inhibited proliferation and induced apoptosis in tested glioblastoma cell lines. Icariin enhanced the anti-tumor activity of TMZ in vitro. The anti-tumor activity of icariin and the enhanced anti-tumor activity of TMZ by icariin correlated with suppression of NF-?B activity. Our results showed that icariin exhibited anti-tumor activity and potentiated the anti-tumor activity of TMZ in glioblastoma, at least in part, by inhibiting NF-?B activity. Although more studies including clinical trials are needed, this study provides insight for using icariin as a chemosensitizing agent in clinic settings. PMID:25384619

  3. ER-Golgi network– a future target for anti-cancer therapy

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; McGuinness, Dagmara; Hillier, Chris; Darzynkiewicz, Zbigniew

    2009-01-01

    Tumor cell demise is an important event in the elimination of abnormal malignant cells and provides an important mechanism of natural tumor suppression. Abnormalities incapacitating these finely tuned processes provide a strong advantage for cancer clones to succeed in evading both the physiological control systems and therapeutic intervention. Expanding our knowledge of the molecular “cross-talks” that regulate tumor cell demise is crucial in guiding the successful design of future anti-cancer therapeutics. Although currently available data indicate that elimination of malignant cells often depends on classical apoptotic pathways (mitochondrial and/or death receptor pathways), the evidence is mounting that alternative apoptotic and non-apoptotic pathways may effectively contribute to tumor cell death. The assumption that every organelle is capable of sensing, amplificating and executing cell death is also a relatively novel and unexplored concept. As recently shown, the secretory pathway can be actively involved in sensing stress stimuli and possibly even initiating and propagating cell death signaling. Experimental evidence indicates that ER and Golgi apparatus can activate both pro-survival (recovery) mechanisms as well as cell suicide programs if the stress-signaling threshold is exceeded. It is thus conceivable that the fragile balance of protein trafficking between various subcellular compartments provides an exceptional therapeutic opportunity. Interestingly, a growing number of reports recognize novel therapeutic targets, including proteins in control of endoplasmic reticulum (ER) and Golgi homeostasis. Further studies are, however, needed to elucidate precise signaling pathways emanating from ER-Golgi compartment. Development of more potent and selective small-molecule drugs that activate ER-Golgi mediated cell demise is also needed. As the interest in the role of ER-Golgi network during cancer cell death has been gaining momentum, we attempt here to critically appraise current status of development of investigational anti-cancer agents that target ER and/or Golgi. PMID:19595459

  4. Linum narbonense: A new valuable tool for biotechnological production of a potent anticancer lignan Justicidine B

    PubMed Central

    Ionkova, Iliana; Sasheva, Pavlina; Ionkov, Todor; Momekov, Georgi

    2013-01-01

    Background: Arylnaphthalene lignan Justicidin B is a lead compound in the management of bone cancer and osteoclastogenesis. The compound is the main cytotoxic principle of rare medicinal plant Linum narbonense L. (Linaceae). However, there have been no reports on the bioreactor production of justicidin B. Objective: to develop cost-effective biotechnology for production of this anticancer metabolite. Materials and Methods: The genetic transformation in hairy roots induced by Agrobacterium rhizogenes strain ATCC 15834, was proven by PCR analysis. The control of bioreactor was synthesized by gradient method. The optimal values of the controlling parameters were estimated with presence of technological limitation. The general structure of control system was based on “Hardware in the Loop” (HIL). Results: Hairy roots produced five-fold higher yields of justicidin B (7.78mg/g DW) compared to callus. A rapidly growing root line was selected for cultivation in 2-L stirred tank bioreactor. After optimization, maximum biomass of 22.5 g.l-1 dry wt was harvested from the bioreactor culture vessel (recording about 8 times increase over initial inoculum), with 1.42 % ± 0.12 Justicidine B, greater than contents from flasks were obtained. The extracts were tested in a panel of human tumor cell lines, using the MTT-dye reduction assay, exert inhibitory effects against malignant cells. Conclusion: Our findings are the first work on large cultivation of L. narbonense hairy roots and bioreactor production of plant anticancer agent Justicidin B. To extend the research to human clinical studies, we have found a reliable biotechnological supply of plant material, produced this target compound. PMID:23661992

  5. Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts.

    PubMed

    Selvendiran, Karuppaiyah; Tong, Liyue; Bratasz, Anna; Kuppusamy, M Lakshmi; Ahmed, Shabnam; Ravi, Yazhini; Trigg, Nancy J; Rivera, Brian K; Kálai, Tamás; Hideg, Kálmán; Kuppusamy, Periannan

    2010-05-01

    The purpose of this study was to evaluate the anticancer potency and mechanism of a novel difluorodiarylidenyl piperidone (H-4073) and its N-hydroxypyrroline modification (HO-3867) in human ovarian cancer. Studies were done using established human ovarian cancer cell lines (A2870, A2780cDDP, OV-4, SKOV3, PA-1, and OVCAR3) as well as in a murine xenograft tumor (A2780) model. Both compounds were comparably and significantly cytotoxic to A2780 cells. However, HO-3867 showed a preferential toxicity toward ovarian cancer cells while sparing healthy cells. HO-3867 induced G(2)-M cell cycle arrest in A2780 cells by modulating cell cycle regulatory molecules p53, p21, p27, cyclin-dependent kinase 2, and cyclin, and promoted apoptosis by caspase-8 and caspase-3 activation. It also caused an increase in the expression of functional Fas/CD95 and decreases in signal transducers and activators of transcription 3 (STAT3; Tyr705) and JAK1 phosphorylation. There was a significant reduction in STAT3 downstream target protein levels including Bcl-xL, Bcl-2, survivin, and vascular endothelial growth factor, suggesting that HO-3867 exposure disrupted the JAK/STAT3 signaling pathway. In addition, HO-3867 significantly inhibited the growth of the ovarian xenografted tumors in a dosage-dependent manner without any apparent toxicity. Western blot analysis of the xenograft tumor tissues showed that HO-3867 inhibited pSTAT3 (Tyr705 and Ser727) and JAK1 and increased apoptotic markers cleaved caspase-3 and poly ADP ribose polymerase. HO-3867 exhibited significant cytotoxicity toward ovarian cancer cells by inhibition of the JAK/STAT3 signaling pathway. The study suggested that HO-3867 may be useful as a safe and effective anticancer agent for ovarian cancer therapy. PMID:20442315

  6. Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts

    PubMed Central

    Selvendiran, Karuppaiyah; Tong, Liyue; Bratasz, Anna; Lakshmi Kuppusamy, M.; Ahmed, Shabnam; Ravi, Yazhini; Trigg, Nancy J.; Rivera, Brian K.; Kálai, Tamás; Hideg, Kálmán; Kuppusamy, Periannan

    2010-01-01

    The purpose of this study was to evaluate the anticancer potency and mechanism of a novel difluorodiarylidenyl piperidone (H-4073) and its N-hydroxypyrroline modification (HO-3867) in human ovarian cancer. Studies were performed using established human ovarian cancer cell lines (A2870, A2780cDDP, OV-4, SKOV3, PA-1 and OVCAR3), as well as in a murine xenograft tumor (A2780) model. Both compounds were comparably and significantly cytotoxic to A2780 cells. However, HO-3867 demonstrated a preferential toxicity towards ovarian cancer cells, while sparing healthy cells. HO-3867 induced G2/M cell-cycle arrest in A2780 cells by modulating cell-cycle regulatory molecules p53, p21, p27, cdk2 and cyclin, and promoted apoptosis by caspase-8 and caspase-3 activation. It also caused an increase in the expression of functional Fas/CD95 and decreases in STAT3 (Tyr705) and JAK1 phosphorylation. There was a significant reduction in STAT3 downstream target protein levels including Bcl-xL, Bcl-2, survivin, and vascular endothelial growth factor (VEGF), suggesting that HO-3867 exposure disrupted the JAK/STAT3 signaling pathway. In addition, HO-3867 significantly inhibited the growth of the ovarian xenografted tumors in a dosage-dependent manner without any apparent toxicity. Western-blot analysis of the xenograft tumor tissues showed that HO-3867 inhibited pSTAT3 (Tyr705 and Ser727) and JAK1 and increased apoptotic markers cleaved caspase-3 and PARP. HO-3867 exhibited significant cytotoxicity towards ovarian cancer cells by inhibition of the JAK/STAT3-signaling pathway. The study suggested that HO-3867 may be useful as a safe and effective anticancer agent for ovarian cancer therapy. PMID:20442315

  7. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  8. Synthesis and evaluation of modified oximidine analogues as anticancer agents and of terephthalaldehyde-bis-guanylhydrazones as endotoxin sequestering agents

    E-print Network

    Khownium, Kriangsak

    2009-12-15

    DR=OH25ZEoxieh 10, ltmie E: , , -im ter l iF i 3,oximidne I:C12-3 =!-epoxide, R= OH, 18Z 4ii 1Zlfin 5,xii I: - -xi, , E 14, apicularen A: R= H 5ilBN-acetyl-"D-glucosamine12, CJ-12,950: 23Z 337E N OMe18 25 Figure 1. Macrocycle benzolactone enamide... the intermediate 42 in 70% yield. The acetate group of 42 was cleaved in the presence of CsCO 3 and Et 3 N in MeOH at 0 ?C to provide the primary alcohol 43. Subsequent Swern oxidation furnished aldehyde 44 in good yield. The macrolactone containing epoxide 45...

  9. Antiparasitic agents.

    PubMed

    Wilby, R

    1998-12-01

    Parasitic diseases predominantly affect the developing world because of poor sanitation, poor living conditions, and lack of medical care. The relative insulation of the developed countries has been protective until recently, when several factors have made populations worldwide potentially at risk of infection by any transmissible agent. Emigration, forced migration of refugees, increasing and rapid world travel, and increased susceptibility of immunocompromised populations, have been methods by which parasites, and quite often their associated vectors, have been imported into and have taken hold in regions previously unaffected. Health officials, clinicians, blood banks and pathologists who have not routinely encountered such diseases are, however, at the forefront in efforts to control these diseases. With regard to antiparasitic agents, the emphasis at this meeting was placed on their current increasing importance. Accompanying the greater incidence and disease spread are the withdrawal of prevention measures and vaccines, the resistance to chemotherapeutic agents and lack of awareness and vigilance in medical communities to the threats of resurgent and emerging diseases. A snapshot of these diseases was presented at the symposia. This report highlights the discovery, re-emergence, epidemiology, transmission, diagnosis and therapy of parasitic diseases. A common theme to the presentations was the emergence or re-emergence of organisms previously thought to be under control. Modern biotechnology and biochemical methods are being applied to the problems of causative agent identification and characterization. With better surveillance methods, no doubt the detection of more diseases will continue. No tremendous breakthroughs in parasite prevention, chemotherapy, or successes of antiparasitic agents in clinical trials were reported and are unlikely to be forthcoming in the near future unless greater changes are made in the research community, including the pharmaceutical industry. It was of note that no symposia were devoted wholly to parasites as such, but were directed towards the exposition of emerging pathogens, of which parasites comprise only a segment of the spectrum of causative organisms. PMID:16196468

  10. Convenient Synthesis of an Isoxazole Compound, KRIBB3, as an Anticancer Agent

    Microsoft Academic Search

    Hyeong Kyu Lee; Eunju Yun; Ji Hye Min; Kab Seog Yoon; Dong-Ho Choung; Sangku Lee

    2012-01-01

    A diaryl isoxazole compound, KRIBB3, which exhibits strong antimigratory and antimitotic activities against cancer cells, was prepared in a practical synthetic way. The synthetic method may provide easy access to KRIBB3 analogs with various substituents at an aryl moiety for structure–activity relationships (SAR), as well as a large quantity of KRIBB3 for in vivo studies.

  11. Polycyclic Aromatic Compounds as Anticancer Agents: Synthesis and Biological Evaluation of Methoxy Dibenzofluorene Derivatives

    NASA Astrophysics Data System (ADS)

    Banik, Bimal; Becker, Frederick

    2014-08-01

    Synthesis of a new methoxy dibenzofluorene through alkylation, cyclodehydration and aromatization in a one-pot operation is achieved for the first time. Using this hydrocarbon, a few derivatives are prepared through aromatic nitration, catalytic hydrogenation, coupling reaction with a side chain and reduction. The benzylic position of this hydrocarbon with the side chain is oxidized and reduced. Some of these derivatives have demonstrated excellent antitumor activities in vitro. This study confirms antitumor activity depends on the structures of the molecules.

  12. Aqueous chemistry and antiproliferative activity of a pyrone-based phosphoramidate Ru(arene) anticancer agent.

    PubMed

    Meier, Samuel M; Novak, Maria S; Kandioller, Wolfgang; Jakupec, Michael A; Roller, Alexander; Keppler, Bernhard K; Hartinger, Christian G

    2014-07-14

    A water-stable phosphoramidate Ru(arene) metallodrug shows antiproliferative activity comparable to KP1019 in human cancer cell lines. This novel compound can cross-link the peptide backbone of cytochrome c, but features low apoptosis inducing properties. PMID:24872129

  13. Repurposing Drugs in Oncology (ReDO)-clarithromycin as an anti-cancer agent.

    PubMed

    Van Nuffel, An Mt; Sukhatme, Vidula; Pantziarka, Pan; Meheus, Lydie; Sukhatme, Vikas P; Bouche, Gauthier

    2015-01-01

    Clarithromycin (CAM) is a well-known macrolide antibiotic available as a generic drug. CAM is traditionally used for many types of bacterial infections, treatment of Lyme disease and eradication of gastric infection with Helicobacter pylori. Extensive preclinical and clinical data demonstrate a potential role for CAM to treat various tumours in combination with conventional treatment. The mechanisms of action underlying the anti-tumour activity of CAM are multiple and include prolonged reduction of pro-inflammatory cytokines, autophagy inhibition, and anti-angiogenesis. Here, we present an overview of the current preclinical (in vitro and in vivo) and clinical evidence supporting the role of CAM in cancer. Overall these findings justify further research with CAM in many tumour types, with multiple myeloma, lymphoma, chronic myeloid leukaemia (CML), and lung cancer having the highest level of evidence. Finally, a series of proposals are being made to further investigate the use of CAM in clinical trials which offer the greatest prospect of clinical benefit to patients. PMID:25729426

  14. Design and synthesis of pyrazole-oxindole conjugates targeting tubulin polymerization as new anticancer agents.

    PubMed

    Kamal, Ahmed; Shaik, Anver Basha; Jain, Nishant; Kishor, Chandan; Nagabhushana, Ananthamurthy; Supriya, Bhukya; Bharath Kumar, G; Chourasiya, Sumit S; Suresh, Yerramsetty; Mishra, Rakesh K; Addlagatta, Anthony

    2015-03-01

    A series of twenty one compounds with pyrazole and oxindole conjugates were synthesized by Knoevenagel condensation and investigated for their antiproliferative activity on different human cancer cell lines. The conjugates are comprised of a four ring scaffold; the structural isomers 12b and 12c possess chloro-substitution in the D ring. Among the congeners 12b, 12c, and 12d manifested significant cytotoxicity and inhibited tubulin assembly. Treatments with 12b, 12c and 12d resulted in accumulation of cells in G2/M phase, disruption of microtubule network, and increase in cyclin B1 protein. Zebrafish screening revealed that 12b, and 12d caused developmental defects. Docking analysis demonstrated that the congeners occupy the colchicine binding pocket of tubulin. PMID:25599948

  15. Biological effects of PEMF (Pulsing Electromagnetic Field): An attempt to modify cell resistance to anticancer agents

    Microsoft Academic Search

    P. Pasquinelli; M. Petrini; L. Mattii; M. Saviozzi; G. Malvaldi; S. Galimberti

    2009-01-01

    Pulsing Electromagnetic Field (PEMF) effects lead to a modification of the multidrug resistance (MDR) of cells in vitro and in vivo. The murine leukemic doxorubicin-resistant cell line, P388\\/Dx, subjected to PEMF irradiation in vitro, showed a significant difference in thymidine incorporation when the concentration of doxorubicin reached a level of 1 [mu]g\\/mL, which corresponds to the inhibition dose 50 (ID[sub

  16. Design and synthesis of novel 2'-hydroxy group substituted 2-pyridone derivatives as anticancer agents.

    PubMed

    Lv, Zhiliang; Zhang, Yikai; Zhang, Mingfeng; Chen, Huan; Sun, Zhenliang; Geng, Dongping; Niu, Chunjuan; Li, Ke

    2013-09-01

    We have synthesized a series of novel 2-pyridone derivatives with 1,2,3-triazole and evaluated their anti-tumor activities in vitro. The bioassays showed that the majority of the resultant compounds exerted inhibitory effects on six human cancer cell lines to various extents. In particular, compound 10k showed the best anti-tumor activities (IC50 values of A549, HeLa and SW480 cancer cell lines were 0.86 ± 0.17 ?M, 0.54 ± 0.23 ?M and 0.21 ± 0.13 ?M, respectively). PMID:23920246

  17. A photochemical approach to pyridopyrroloquinoline derivatives as new potential anticancer agents.

    PubMed

    Aragon, Pierre-Jean; Yapi, Ange-Désiré; Pinguet, Frédéric; Chezal, Jean-Michel; Teulade, Jean-Claude; Chapat, Jean-Pierre; Blache, Yves

    2004-06-01

    Indoloquinoline alkaloid cryptolepine and pyridocarbazole alkaloid ellipticine are of great interest because in vitro and in vivo studies revealed their good cytotoxic properties. In order to obtain some biologically active analogs of these compounds, we developped a synthesis based on the photocyclisation of tertiary N-methylated enaminones derived from cyclopentane-1,3-dione and 3 or 6-aminoquinoline. The angular cyclised compounds thus obtained were submitted to Beckmann rearrangement, preceded by the formation of a Z oxime. Finally, the delta-lactame ring was oxidized using 10% palladium/carbon in diphenylether and pyridopyrroloquinolines were obtained. These compounds and the intermediate lactams and cyclopentanopyrroloquinolines were tested in vitro on K 562 cells and A 2780 doxorubicine sensitive and resistant cells. All compounds were less effective than doxorubicine in sensitive cells but their activity wasn't decreased by MDR resistance. PMID:15187384

  18. Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents.

    PubMed

    Zhang, X; Chen, L-X; Ouyang, L; Cheng, Y; Liu, B

    2012-10-01

    Natural compounds derived from plant sources are well characterized as possessing a wide variety of remarkable anti-tumour properties, for example modulating programmed cell death, primarily referring to apoptosis, and autophagy. Distinct from apoptosis, autophagy (an evolutionarily conserved, multi-step lysosomal degradation process in which a cell destroys long-lived proteins and damaged organelles) may play crucial regulatory roles in many pathological processes, most notably in cancer. In this review, we focus on highlighting several representative plant natural compounds such as curcumin, resveratrol, paclitaxel, oridonin, quercetin and plant lectin - that may lead to cancer cell death - for regulation of some core autophagic pathways, involved in Ras-Raf signalling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 signalling and p53. Taken together, these findings would provide a new perspective for exploiting more plant natural compounds as potential novel anti-tumour drugs, by targeting the pathways of autophagy, for future cancer therapeutics. PMID:22765290

  19. Mechanistic investigation of an anticancer agent that damages DNA and interacts with the androgen receptor

    E-print Network

    Proffitt, Kyle David

    2009-01-01

    The 11[beta] molecule comprises a ligand for the androgen receptor (AR), which is crucial to progression and survival of many prostate cancers, tethered to a DNA-damaging aniline mustard. The compound was designed to exhibit ...

  20. Bismuth nitrate-induced novel nitration of estradiol: an entry to new anticancer agents.

    PubMed

    Bandyopadhyay, Debasish; Rivera, Gildardo; Sanchez, Jorge L; Rivera, Jesse; Granados, Jose C; Guerrero, Adrian M; Chang, Fang-Mei; Dearth, Robert K; Short, John D; Banik, Bimal K

    2014-07-23

    Direct nitration of estradiol was carried out using metal nitrates on solid surfaces under mild condition, and a combination of bismuth nitrate pentahydrate impregnated KSF clay was found to be the best reagent to synthesize 2- and 4-nitroestradiol effectively. Furthermore, various basic side chains were introduced, through O-linker at C-3, to these nitroestradiols. The ability of these derivatives to cause cytotoxicity in Estrogen Receptor (ER)-positive and ER-negative breast cancer cell lines, as well as cancer cell lines of other origins, was examined. Qualitative structure activity relationship (SAR) has also been studied. We found that a basic side chain containing either a piperidine or morpholine ring, when conjugated to 2-nitroestradiol, was particularly effective at causing cytotoxicity in each of the cancer cell lines examined. Surprisingly, this effective cytotoxicity was even seen in ER-negative breast cancer cells. PMID:24946145

  1. Xanthatin and xanthinosin from the burs of Xanthium strumarium L. as potential anticancer agents.

    PubMed

    Ramírez-Erosa, Irving; Huang, Yaoge; Hickie, Robert A; Sutherland, Ronald G; Barl, Branka

    2007-11-01

    Xanthatin and xanthinosin, 2 sesquiterpene lactones isolated from the burs of Xanthiun strumarium L. (cocklebur), showed moderate to high in vitro cytotoxic activity in the human cancer cell lines WiDr ATCC (colon), MDA-MB-231 ATCC (breast), and NCI-417 (lung). Xanthatin and xanthinosin were purified as the result of a multi-screening bioassay-guided study of wild plant species of the family Asteraceae, collected from various sites in Saskatchewan, Canada. Seventy-five extracts at a single concentration of 100 microg/mL were evaluated for in vitro cytotoxicity to the human cancer cell lines used. The chloroform extract of Carduus nutans L. (nodding thistle) aerial parts (IC50, 9.3 microg/mL) and the hexane extract of Echinacea angustifolia DC. (narrow-leaved purple coneflower) root (IC50, 4.0 microg/mL) were moderately to highly cytotoxic to the lung cancer cell line. The chloroform extracts of X. strumarium L. burs and Tanacetum vulgare L. (tansy) aerial parts exhibited the highest cytotoxicity for all cell lines tested; their IC50 values, obtained from multidose testing, ranged from 0.1 to 6.2 microg/mL (X. strumarium) and from 2.4 to 9.1 microg/mL (T. vulgare). Further purification of the chloroform fraction of X. strumarium yielded xanthatin and xanthinosin in high yields. This is the first time that these compounds have been reported in the burs of X. strumarium. Their IC50 values are also reported herein. PMID:18066118

  2. Natural Product-Based Anti-Cancer Agents: Aza-Englerin Analogues

    Cancer.gov

    SKIP ALL NAVIGATION SKIP TO SUB MENU Search Site Standard Forms & Agreements Co-Development & Resources Careers & Training Intellectual Property & Inventions About TTC Overview Biomarkers Available Opportunities Resources Get Connected with TTC Complete

  3. Anticancer agent icaritin induces apoptosis through caspase-dependent pathways in human hepatocellular carcinoma cells.

    PubMed

    Sun, Li; Peng, Qisong; Qu, Lili; Gong, Lailing; Si, Jin

    2015-04-01

    Icaritin is an active ingredient derived from the plant Herba epimedium, which exhibits various pharmacological and biological activities. However, the function, and the underlying mechanisms of icaritin on the growth of SMMC?7721 human hepatoma cells have yet to be elucidated. The present study aimed to investigate the function and underlying mechanisms of icaritin in the growth of SMMC?7721 cells. The cells were treated with varying concentrations of icaritin for 12, 24 and 48 h, respectively, prior to cytotoxic analysis. Apoptosis of SMMC?7721 cells following treatment with icaritin was measured using flow cytometry. The gene expression of mitochondria? and Fas?mediated caspase?dependent pathways was detected by reverse transcription?quantitative polymerase chain reaction and western blotting. Statistical analysis was performed by Student's t?test and one?way analysis or variance. The present study demonstrated that treatment with icaritin significantly inhibited growth, and induced apoptosis of SMMC?7721 cells, in a time? and dose?dependent manner. In addition, icaritin triggered the mitochondrial/caspase apoptotic pathway, by decreasing the Bcl?2/Bax protein ratio and increasing activation of caspase?3. Icaritin also activated the Fas?mediated apoptosis pathway, as was evident by the increased expression levels of Fas and activation of caspase?8. These data suggest that icaritin may be a potent growth inhibitor and induce apoptosis of SMMC?7721 cells through the mitochondria? and Fas?mediated caspase?dependent pathways. The present study may provide experimental evidence for preclinical and clinical evaluations of icaritin for HCC therapy. PMID:25434584

  4. Mechanisms of Action of Metformin as an Anti-cancer Agent 

    E-print Network

    Ramachandran Nair Vasanthakum, Vijayalekshmi

    2014-08-13

    reasons for the increase in incidence of cancer in modern society. Exposure to carcinogenic environmental factors due to industrialization and lifestyle habits such as tobacco use and diet are some of the major reasons for the increased cancer... to coal tar [16]. Coal tar is the byproduct when coal is carbonized and it is a complex chemical mixture of phenols, polycyclic aromatic hydrocarbons and heterocyclic compounds. The carcinogenic factors in coal tar are known to be in the higher boiling...

  5. Potential anticancer agents. XIV. Isolation of spruceanol and montanin from Cunuria spruceana (Euphorbiaceae).

    PubMed

    Gunasekera, S P; Cordell, G A; Farnsworth, N R

    1979-01-01

    Montanin (1) and spruceanol (2), two quite different diterpenes, were found to be responsible for the cytotoxic and antitumor activity of the root and root bark of Cunuria spruceana (Euphorbiaceae). The structure of spruceanol (2) was deduced from spectral interpretation and chemical correlation with 12-methoxycleistanth-8,11,13-trien-3-one (4). PMID:541688

  6. Mechanisms of Action of Metformin as an Anti-cancer Agent

    E-print Network

    Ramachandran Nair Vasanthakum, Vijayalekshmi

    2014-08-13

    factors (TFs) belong to the Sp/Kruppel-like family of transcription factors (KLFs). Sp1 and other Sp proteins are overexpressed in many tumors and regulate the expression of genes essential for cancer cell proliferation, growth, angiogenesis, and survival...

  7. Anti-cancer agents derived from solid-state fermented Antrodia camphorata mycelium.

    PubMed

    Yen, I-Chuan; Yao, Chen-Wen; Kuo, Mao-Tien; Chao, Chen-Liang; Pai, Chien-Yi; Chang, Wen-Liang

    2015-04-01

    Three new ubiquinone derivatives, antrocamol LT1, antrocamol LT2, and antrocamol LT3, along with two known compounds, were isolated from Antrodia camphorata (Polyporaceae) mycelium. The structures of these compounds were established on the basis of extensive 1D and 2D NMR spectroscopic analyses. These ubiquinones exhibited selective cytotoxicities against five human cancer cell lines (CT26, A549, HepG2, PC3 and DU-145) with IC50 values ranging from 0.01 to 1.79??. PMID:25721423

  8. Plant anticancer agents, XLVIII. New cytotoxic flavonoids from Muntingia calabura roots.

    PubMed

    Kaneda, N; Pezzuto, J M; Soejarto, D D; Kinghorn, A D; Farnsworth, N R; Santisuk, T; Tuchinda, P; Udchachon, J; Reutrakul, V

    1991-01-01

    From a cytotoxic Et2O-soluble extract of Muntingia calabura roots, twelve new flavonoids were isolated, constituting seven flavans 1-7, three flavones 8, 10, and 12, and two biflavans 9 and 11. The structures of compounds 1-12 were established by the interpretation of spectral data, with the nmr assignments of these constituents being based on 1H-1H COSY, 1H-13C HETCOR, and selective INEPT experiments. This is the first report of the occurrence of 7,8-di-O-substituted flavans, biflavans, and flavones. Most of the isolates demonstrated cytotoxic activity when tested against cultured P-388 cells, with the flavans being more active than the flavones. Furthermore, certain of these structurally related flavonoids exhibited somewhat selective activities when evaluated with a number of human cancer cell lines. PMID:2045815

  9. Microfluidic fabrication of cationic curcumin nanoparticles as an anti-cancer agent

    NASA Astrophysics Data System (ADS)

    Dev, Selvi; Prabhakaran, Praseetha; Filgueira, Luis; Iyer, K. Swaminathan; Raston, Colin L.

    2012-03-01

    Curcumin nanoparticles of less than 50 nm in diameter are accessible using a continuous flow microfluidic rotating tube processor (RTP) under scalable conditions, at room temperature. A mixture of DDAB and Pluronic F127 renders higher stability of the curcumin nanoparticles in physiological pH 7.4 for up to eight hours. The nanoparticles have enhanced cytotoxicity in estrogens receptor negative and positive breast cancer cell lines compared with free curcumin.Curcumin nanoparticles of less than 50 nm in diameter are accessible using a continuous flow microfluidic rotating tube processor (RTP) under scalable conditions, at room temperature. A mixture of DDAB and Pluronic F127 renders higher stability of the curcumin nanoparticles in physiological pH 7.4 for up to eight hours. The nanoparticles have enhanced cytotoxicity in estrogens receptor negative and positive breast cancer cell lines compared with free curcumin. Electronic supplementary information (ESI) available: Materials and methods, DLS, DSC, Fluorescence, UV. See DOI: 10.1039/c2nr11502f

  10. Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent

    PubMed Central

    Kirscher, Lorenz; Deán-Ben, Xosé Luis; Scadeng, Miriam; Zaremba, Angelika; Zhang, Qian; Kober, Christina; Fehm, Thomas Felix; Razansky, Daniel; Ntziachristos, Vasilis; Stritzker, Jochen; Szalay, Aladar A.

    2015-01-01

    We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system. PMID:26199644

  11. New uses for old drugs: attempts to convert quinolone antibacterials into potential anticancer agents containing ruthenium.

    PubMed

    Kljun, Jakob; Bratsos, Ioannis; Alessio, Enzo; Psomas, George; Repnik, Urška; Butinar, Miha; Turk, Boris; Turel, Iztok

    2013-08-01

    Continuing the study of the physicochemical and biological properties of ruthenium-quinolone adducts, four novel complexes with the general formula [Ru([9]aneS3)(dmso-?S)(quinolonato-?(2)O,O)](PF6), containing the quinolones levofloxacin (1), nalidixic acid (2), oxolinic acid (3), and cinoxacin (4), were prepared and characterized in solid state as well as in solution. Contrary to their organoruthenium analogues, these complexes are generally relatively stable in aqueous solution as substitution of the dimethylsulfoxide (dmso) ligand is slow and not quantitative, and a minor release of the quinolonato ligand is observed only in the case of 4. The complexes bind to serum proteins displaying relatively high binding constants. DNA binding was studied using UV-vis spectroscopy, cyclic voltammetry, and performing viscosity measurements of CT DNA solutions in the presence of complexes 1-4. These experiments show that the ruthenium complexes interact with DNA via intercalation. Possible electrostatic interactions occur in the case of compound 4, which also shows the most pronounced rate of hydrolysis. Compounds 2 and 4 also exhibit a weak inhibition of cathepsins B and S, which are involved in the progression of a number of diseases, including cancer. Furthermore, complex 2 displayed moderate cytotoxicity when tested on the HeLa cell line. PMID:23886077

  12. Novel Antimicrobial Peptides with High Anticancer Activity and Selectivity

    PubMed Central

    Chen, Kuan-Hao; Yu, Hui-Yuan; Chih, Ya-Han; Cheng, Hsi-Tsung; Chou, Yu-Ting; Cheng, Jya-Wei

    2015-01-01

    We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid ?-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics. PMID:25970292

  13. Harnessing synthetic lethal interactions in anticancer drug discovery

    PubMed Central

    Chan, Denise A.; Giaccia, Amato J.

    2013-01-01

    Unique features of tumours that can be exploited by targeted therapies are a key focus of current cancer research. One such approach is known as synthetic lethality screening, which involves searching for genetic interactions of two mutations whereby the presence of either mutation alone has no effect on cell viability but the combination of the two mutations results in cell death. The presence of one of these mutations in cancer cells but not in normal cells can therefore create opportunities to selectively kill cancer cells by mimicking the effect of the second genetic mutation with targeted therapy. Here, we summarize strategies that can be used to identify synthetic lethal interactions for anticancer drug discovery, describe examples of such interactions that are currently being investigated in preclinical and clinical studies of targeted anticancer therapies, and discuss the challenges of realizing the full potential of such therapies. PMID:21532565

  14. Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.

    PubMed

    Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J

    2015-06-01

    The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies. PMID:26080737

  15. Inhibition of HSP70: a challenging anti-cancer strategy.

    PubMed

    Goloudina, Anastasia R; Demidov, Oleg N; Garrido, Carmen

    2012-12-28

    HSP70 is a chaperone that accumulates in the cells after many different stresses promoting cell survival in response to the adverse conditions. In contrast to normal cells, most cancer cells abundantly express HSP70 at the basal level to resist to various insults at different stages of tumorigenesis and during anti-cancer treatment. This cancer cells addiction for HSP70 is the rational for its targeting in cancer therapy. Much effort has been dedicated in the last years for the active search of HSP70 inhibitors. Additionally, the recent clinical trials on highly promising inhibitors of another stress protein, HSP90, showed compensatory increase in HSP70 levels and raised the question of necessity to combine HSP90 inhibitors with simultaneous inhibition of HSP70. Here we analyzed the recent advancement in creation of novel HSP70 inhibitors and different strategies for their use in anti-cancer therapy. PMID:22750096

  16. Thrombopoietic agents.

    PubMed

    Stasi, Roberto; Bosworth, Jenny; Rhodes, Elizabeth; Shannon, Muriel S; Willis, Fenella; Gordon-Smith, Edward C

    2010-01-01

    Thrombopoietin (TPO) is the key cytokine involved in thrombopoiesis, and is the endogenous ligand for the thrombopoietin receptor that is expressed on the surface of platelets, megakaryocytes, and megakaryocytic precursors. First-generation thrombopoietic agents were recombinant forms of human TPO, and their development was discontinued after prolonged thrombocytopenia due to neutralizing auto-antibodies cross-reacting with endogenous TPO was observed. Second-generation thrombopoiesis-stimulating molecules are now available, which have unique pharmacological properties and no sequence homology to endogenous TPO. Two of these new agents, romiplostim and eltrombopag, have already completed phase III trials in primary immune thrombocytopenia and have been granted marketing authorization for use in this disease. Phase II and III trials with these novel drugs are ongoing in other conditions characterized by thrombocytopenia, such as chemotherapy, chronic liver disease, and the myelodysplastic syndromes. Most of the other second-generation thrombopoietic growth factors are in early phase clinical development. PMID:20493600

  17. Lectins with potential for anti-cancer therapy.

    PubMed

    Yau, Tammy; Dan, Xiuli; Ng, Charlene Cheuk Wing; Ng, Tzi Bun

    2015-01-01

    This article reviews lectins of animal and plant origin that induce apoptosis and autophagy of cancer cells and hence possess the potential of being developed into anticancer drugs. Apoptosis-inducing lectins encompass galectins, C-type lectins, annexins, Haliotis discus discus lectin, Polygonatum odoratum lectin, mistletoe lectin, and concanavalin A, fucose-binding Dicentrarchus labrax lectin, and Strongylocentrotus purpuratus lectin, Polygonatum odoratum lectin, and mistletoe lectin, Polygonatum odoratum lectin, autophagy inducing lectins include annexins and Polygonatum odoratum lectin. PMID:25730388

  18. Anticancer activity of flavane gallates isolated from Plicosepalus curviflorus

    PubMed Central

    Fawzy, Ghada Ahmed; Al-Taweel, Areej Mohammad; Perveen, Shagufta

    2014-01-01

    Background: Previous investigation of the methanol extract of Plicosepalus curviflorus leaves led to the isolation of two new flavane gallates (1, 2), together with other compounds including quercetin (3). The stems of P. curviflorus are used traditionally for the treatment of cancer in Yemen. Objective: The aim of this study was to evaluate the anticancer activity of the plant methanol extract as well as isolated compounds (1-3). Materials and Methods: The human cancer cell lines used were; MCF-7, HepG-2, HCT-116, Hep-2, HeLa and normal, Vero cell line using the Crystal Violet Staining method (CVS). Results: Quercetin (3) possessed the highest anticancer effect against all five cell lines (IC50 ranging from 3.6 to 16.2 ?g/ml). It was followed by 2S, 3R-3, 3?, 4?, 5, 7-pentahydroxyflavane-5-O-gallate (1), with IC50 ranging from 11.6 to 38.8 ?g/ml. The weakest anticancer activity was given by 2S, 3R-3,3?,4?,5,5?,7-hexahydroxyflavane-3?,5-di-O-gallate (2) with IC50 ranging from 39.8 to above 50 ?g/ml, compared to vinblastine sulphate as reference drug. Colon, liver and breast cell lines seemed to be more sensitive to the tested compounds than the cervical and laryngeal cell lines. Concerning the cytotoxic effect on Vero cell line, the pentahydroxyflavane-5-O-gallate (1) showed the highest IC50 ( 138.2 ?g/ml), while quercetin exhibited the lowest IC50 to Vero cells (30.5 ?g/ml), compared to vinblastine sulphate as reference drug (IC50: 39.7 ?g/ml). Conclusion: The results suggest the possible use of compounds 1 and 3 as anticancer drugs especially against colon and liver cancers. PMID:25298669

  19. Herbal interactions with anticancer drugs: mechanistic and clinical considerations.

    PubMed

    Yang, An-Kui; He, Shu-Ming; Liu, Liang; Liu, Jun-Ping; Wei, Ming Qian; Zhou, Shu-Feng

    2010-01-01

    A large number of herbal remedies (e.g. garlic, mistletoe, Essiac, Lingzhi, and astragalus) are used by cancer patients for treating the cancer and/or reducing the toxicities of chemotherapeutic drugs. Some herbal medicines have shown potentially beneficial effects on cancer progression and may ameliorate chemotherapy-induced toxicities. However, there is no or weak scientific basis for the clinical use of these herbal medicines in cancer management and almost none of these plant medicines have been tested in rigorous clinical trials. There are increased reports on the interaction of herbal medicines and anticancer drugs that is becoming a safety concern. For example, a clinical study in cancer patients reported that treatment of St John's wort at 900 mg/day orally for 18 days decreased the plasma levels of the active metabolite of irinotecan, SN-38, by 42%. In healthy subjects, 2 weeks of treatment with St John's wort at 900 mg/day significantly decreased the systemic exposure of imatinib by 32%. In women with advanced breast cancer, coadministration of garlic supplement reduced the clearance of docetaxol by 23.1-35.1%, although the difference did not achieve statistical significance. Most anticancer drugs undergo Phase I and/or II metabolism and are substrates of P-glycoprotein, breast cancer resistance protein, multidrug resistance associated proteins, and/or other transporters. Induction and inhibition of these enzymes and transporters is considered an important mechanism for herb-anticancer drug interactions. Further studies are warranted to investigate potentially harmful herbal interactions with anticancer drugs in patients. PMID:20345351

  20. Salmonella pathogenicity island-2 and anticancer activity in mice

    Microsoft Academic Search

    John M Pawelek; Stefano Sodi; Ashok K Chakraborty; James T Platt; Samuel Miller; David W Holden; Michael Hensel; K Brooks Low

    2002-01-01

    Salmonella enterica servovar Typhimurium is capable of targeting, colonizing, and eliciting growth suppression of tumors in mice. We examined the effects of mutations on this anticancer phenotype in two Salmonella virulence gene clusters. Salmonella pathogenicity island (SPI)-1 genes promote systemic invasion from the intestine, whereas SPI-2 genes support systemic survival within macrophages and other cells. Disabling SPI-1 (prgH?) strongly reduced

  1. Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes

    Microsoft Academic Search

    Yaw Kai Yan; Michael Melchart; Abraha Habtemariam; Peter J. Sadler

    2005-01-01

    Our work has shown that certain ruthenium(II) arene complexes exhibit promising anticancer activity in vitro and in vivo. The complexes are stable and water-soluble, and their frameworks provide considerable scope for optimising the design, both in terms of their biological activity and for minimising side-effects by variations in the arene and the other coordinated ligands. Initial studies on amino acids

  2. Evaluation of native and exotic Brazilian plants for anticancer activity

    Microsoft Academic Search

    Helvécio Martins dos Santos Júnior; Denilson Ferreira Oliveira; Douglas Antônio de Carvalho; Joyce Mendes Andrade Pinto; Viviane Aparecida Costa Campos; Ana Raquel Braga Mourăo; Cláudia Pessoa; Manoel Odorico de Moraes; Letícia Veras Costa-Lotufo

    2010-01-01

    Native and exotic Brazilian plants collected in the State of Minas Gerais were evaluated for their anticancer potential. Methanol\\u000a extracts from leaves of 51 plant species were tested for cytotoxicity against four tumor cell lines: B16 (murine skin), HL-60\\u000a (human leukemia), MCF-7 (human breast), and HCT-8 (human colon). Plant extracts that exhibited IC50 values less than 30 ?g\\/ml against any tumor

  3. Part 3: Pharmacogenetic Variability in Phase II Anticancer Drug Metabolism

    PubMed Central

    Deenen, Maarten J.; Cats, Annemieke; Beijnen, Jos H.

    2011-01-01

    Equivalent drug doses may lead to wide interpatient variability in drug response to anticancer therapy. Known determinants that may affect the pharmacological response to a drug are, among others, nongenetic factors, including age, gender, use of comedication, and liver and renal function. Nonetheless, these covariates do not explain all the observed interpatient variability. Differences in genetic constitution among patients have been identified to be important factors that contribute to differences in drug response. Because genetic polymorphism may affect the expression and activity of proteins encoded, it is a key covariate that is responsible for variability in drug metabolism, drug transport, and pharmacodynamic drug effects. We present a series of four reviews about pharmacogenetic variability. This third part in the series of reviews is focused on genetic variability in phase II drug-metabolizing enzymes (glutathione S-transferases, uridine diphosphoglucuronosyl transferases, methyltransferases, sulfotransferases, and N-acetyltransferases) and discusses the effects of genetic polymorphism within the genes encoding these enzymes on anticancer drug therapy outcome. Based on the literature reviewed, opportunities for patient-tailored anticancer therapy are proposed. PMID:21659608

  4. [Studies on molecular mechanism of toxicity of anticancer drugs].

    PubMed

    Takahashi, Tsutomu

    2011-03-01

    The clinical utility of anticancer drugs is seriously limited by the development of adverse effects and acquisition of resistance to these drugs by tumor cells. The mechanism underlying the toxicity of anticancer drugs is still not fully understood. To elucidate the mechanisms underlying the toxicity of anticancer drugs in greater detail, we performed a screen for determinants of sensitivity to adriamycin, an anthracycline antitumor antibiotic, using budding yeast as a model eukaryote. We found that overexpression of Akl1, a protein kinase of uncertain function, confers resistance to adriamycin. We investigated the function of Akl1 in adriamycin resistance and found that downregulation of the internalization step in endocytosis by Akl1 might be closely involved in the mechanism of adriamycin resistance. In human cells, overexpression of AAK1 and a human homologue of Akl1, also decreased adriamycin toxicity, suggesting that downregulation of endocytosis via phosphorylaiotn might be involved in the acquisition of adriamycin resistance not only in yeast cells but also in human cells. Further detailed investigation of the relationship between the endocytosis pathway and adriamycin toxicity might contribute further information for the improvement of chemotherapy with adriamycin. PMID:21372529

  5. Targeting and delivery of platinum-based anticancer drugs.

    PubMed

    Wang, Xiaoyong; Guo, Zijian

    2013-01-01

    Platinum-based anticancer drugs occupy a crucial role in the treatment of various malignant tumours. However, the efficacy and applicability of platinum drugs are heavily restricted by severe systemic toxicities and drug resistance. Different drug targeting and delivery (DTD) strategies have been developed to prevent the shortcomings of platinum-based chemotherapy. These approaches can be roughly categorized into two groups; namely, active and passive tactics. Active DTD is realized through specific molecular interactions between the drugs and cell or tissue elements, while passive DTD is achieved by exploiting the enhanced permeability and retention effect in tumour tissues. The principal methods for active DTD include conjugation of platinum drugs with selective targeting moieties or encapsulation of platinum drugs in host molecules. Bioactive substances such as hormones, carbohydrates, bisphosphonates, peptides and proteins are commonly used in active DTD. Passive DTD generally involves the fabrication of functionalized polymers or nanoparticles and the subsequent conjugation of platinum drugs with such entities. Polymeric micelles, liposomes, nanotubes and nanoparticles are frequently used in passive DTD. In some cases, both active and passive mechanisms are involved in one DTD system. This review concentrates on various targeting and delivery techniques for improving the efficacy and reducing the side effects of platinum-based anticancer drugs. The content covers most of the related literatures published since 2006. These innovative tactics represent current state-of-the-art developments in platinum-based anticancer drugs. PMID:23042411

  6. Green tea and anticancer perspectives: updates from last decade.

    PubMed

    Butt, Masood Sadiq; Ahmad, Rabia Shabir; Sultan, M Tauseef; Qayyum, Mir M Nasir; Naz, Ambreen

    2015-01-01

    Green tea is the most widely consumed beverage besides water and has attained significant attention owing to health benefits against array of maladies, e.g., obesity, diabetes mellitus, cardiovascular disorders, and cancer insurgence. The major bioactive molecules are epigallocatechin-3-gallate, epicatechin, epicatechin-3-gallate, epigallocatechin, etc. The anticarcinogenic and antimutagenic activities of green tea were highlighted some years ago. Several cohort studies and controlled randomized trials suggested the inverse association of green tea consumption and cancer prevalence. Cell culture and animal studies depicted the mechanisms of green tea to control cancer insurgence, i.e., induction of apoptosis to control cell growth arrest, altered expression of cell-cycle regulatory proteins, activation of killer caspases, and suppression of nuclear factor kappa-B activation. It acts as carcinoma blocker by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation, and metastasis. However, results generated from some research interventions conducted in different groups like smokers and nonsmokers, etc. contradicted with aforementioned anticancer perspectives. In this review paper, anticancer perspectives of green tea and its components have been described. Recent findings and literature have been surfed and arguments are presented to clarify the ambiguities regarding anticancer perspectives of green tea and its component especially against colon, skin, lung, prostate, and breast cancer. The heading of discussion and future trends is limelight of the manuscript. The compiled manuscript provides new avenues for researchers to be explored in relation to green tea and its bioactive components. PMID:24915354

  7. Synergistic anticancer effects of combined ?-tocotrienol and celecoxib treatment are associated with suppression in Akt and NF?B signaling

    PubMed Central

    Shirode, Amit B.; Sylvester, Paul W.

    2009-01-01

    The selective cyclooxygenase (COX)-2 inhibitor, celecoxib, and the vitamin E isoform, ?-tocotrienol, both display potent anticancer activity. However, high dose clinical use of selective COX-2 inhibitors has been limited by gastrointestinal and cardiovascular toxicity, whereas limited absorption and transport of ?-tocotrienol by the body has made it difficult to obtain and sustain therapeutic levels in the blood and target tissues. Studies were conducted to characterize the synergistic anticancer antiproliferative effects of combined low dose celecoxib and ?-tocotrienol treatment on mammary tumor cells in culture. The highly malignant mouse +SA mammary epithelial cells were maintained in culture on serum-free defined control or treatment media. Treatment effects on COX-1, COX-2, Akt, NF?B and prostaglandin E2 (PGE2) synthesis was assessed following a 3- or 4-day culture period. Treatment with 3–4 ?M ?-tocotrienol or 7.5–10 ?M celecoxib alone significantly inhibited +SA cell growth in a dose-responsive manner. However, combined treatment with subeffective doses of ?-tocotrienol (0.25 ?M) and celecoxib (2.5 ?M) resulted in a synergistic antiproliferative effect, as determined by isobologram analysis, and this growth inhibitor effect was associated with a reduction in PGE2 synthesis, and decrease in COX-2, phospho-Akt (active), and phospho-NF?B (active) levels. These results demonstrate that the synergistic anticancer effects of combined celecoxib and ?-tocotrienol therapy are mediated by COX-2 dependent and independent mechanisms. These findings also suggest that combination therapy with these agents may provide enhanced therapeutic response in breast cancer patients, while avoiding the toxicity associated with high-dose COX-2 inhibitor monotherapy. PMID:19954924

  8. Calpain-mediated integrin deregulation as a novel mode of action for the anticancer gallium compound KP46.

    PubMed

    Jungwirth, Ute; Gojo, Johannes; Tuder, Theresa; Walko, Gernot; Holcmann, Martin; Schöfl, Thomas; Nowikovsky, Karin; Wilfinger, Nastasia; Schoonhoven, Sushilla; Kowol, Christian R; Lemmens-Gruber, Rosa; Heffeter, Petra; Keppler, Bernhard K; Berger, Walter

    2014-10-01

    On the basis of enhanced tumor accumulation and bone affinity, gallium compounds are under development as anticancer and antimetastatic agents. In this study, we analyzed molecular targets of one of the lead anticancer gallium complexes [KP46, Tris(8-quinolinolato)gallium(III)] focusing on colon and lung cancer. Within a few hours, KP46 treatment at low micromolar concentrations induced cell body contraction and loss of adhesion followed by prompt cell decomposition. This rapid KP46-induced cell death lacked classic apoptotic features and was insensitive toward a pan-caspase inhibitor. Surprisingly, however, it was accompanied by upregulation of proapoptotic Bcl-2 family members. Furthermore, a Bax- but not a p53-knockout HCT-116 subline exhibited significant KP46 resistance. Rapid KP46-induced detachment was accompanied by downregulation of focal adhesion proteins, including several integrin subunits. Loss of integrin-?1 and talin plasma membrane localization corresponded to reduced binding of RGD (Arg-Gly-Asp) peptides to KP46-treated cells. Accordingly, KP46-induced cell death and destabilization of integrins were enhanced by culture on collagen type I, a major integrin ligand. In contrast, KP46-mediated adhesion defects were partially rescued by Mg(2+) ions, promoting integrin-mediated cell adhesion. Focal adhesion dynamics are regulated by calpains via cleavage of multiple cell adhesion molecules. Cotreatment with the cell-permeable calpain inhibitor PD150606 diminished KP46-mediated integrin destabilization and rapid cell death induction. KP46 treatment distinctly inhibited HCT-116 colon cancer xenograft in vivo by causing reduced integrin plasma membrane localization, tissue disintegration, and intense tumor necrosis. This study identifies integrin deregulation via a calpain-mediated mechanism as a novel mode of action for the anticancer gallium compound KP46. PMID:25082959

  9. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract(decoction)of Antigonon leptopus Hook. &Arn.

    PubMed

    Balasubramani, Govindasamy; Ramkumar, Rajendiran; Krishnaveni, Narayanaswamy; Pazhanimuthu, Annamalai; Natarajan, Thillainathan; Sowmiya, Rajamani; Perumal, Pachiappan

    2015-04-01

    Tea is an aromatic beverage prepared by pouring boiling water over alleviated leaves of the tea plant. Tea prepared from the aerial parts of Antigonon leptopus has been traditionally used as remedy for cold, diabetes and pain in many countries. The gold nanoparticles (Au NPs) synthesized from powdered leaf extract (decoction) of A. leptopus were characterized by UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern and energy dispersive X-ray (EDX) analyses to define the formation of Au NPs. Further, the synthesized Au NPs were well characterized based on their strong surface plasmon resonance (SPR), crystalline nature, functional groups, size and dispersed shapes, purity and Bragg's reflections of face centered cubic (fcc) structure of metallic gold. The Au NPs showed higher free radical scavenging property when compared to the effect of leaf extract. Cytotoxicity study of synthesized Au NPs exhibited the growth inhibitory property at the concentration (GI50) of 257.8 ?g/mL in human adenocarcinoma breast cancer (MCF-7) cells after 48 h. Thus, the Au NPs synthesized from the Mexican creeper, A. leptopus revealed the important biological properties: as a free radical as well as anticancer agent. We conclude that the A. leptopus derived biological materials have promising potential as a source for the development of anticancer drug in future. PMID:25432487

  10. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs

    PubMed Central

    KUE, Chin Siang; TAN, Kae Yi; LAM, May Lynn; LEE, Hong Boon

    2015-01-01

    The chick embryo chorioallantoic membrane (CAM) is a preclinical model widely used for vascular and anti-vascular effects of therapeutic agents in vivo. In this study, we examine the suitability of CAM as a predictive model for acute toxicology studies of drugs by comparing it to conventional mouse and rat models for 10 FDA-approved anticancer drugs (paclitaxel, carmustine, camptothecin, cyclophosphamide, vincristine, cisplatin, aloin, mitomycin C, actinomycin-D, melphalan). Suitable formulations for intravenous administration were determined before the average of median lethal dose (LD50) and median survival dose (SD50) in the CAM were measured and calculated for these drugs. The resultant ideal LD50 values were correlated to those reported in the literature using Pearson’s correlation test for both intravenous and intraperitoneal routes of injection in rodents. Our results showed moderate correlations (r2=0.42 ? 0.68, P<0.005–0.05) between the ideal LD50 values obtained using the CAM model with LD50 values from mice and rats models for both intravenous and intraperitoneal administrations, suggesting that the chick embryo may be a suitable alternative model for acute drug toxicity screening before embarking on full toxicological investigations in rodents in development of anticancer drugs. PMID:25736707

  11. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer

    PubMed Central

    Zou, Peng; Zhang, Junru; Xia, Yiqun; Kanchana, Karvannan; Guo, Guilong; Chen, Wenbo; Huang, Yi; Wang, Zhe; Yang, Shulin; Liang, Guang

    2015-01-01

    Gastric cancer is one of the leading causes of cancer mortality in the world, and finding novel agents and strategies for the treatment of advanced gastric cancer is of urgent need. Curcumin is a well-known natural product with anti-cancer ability, but is limited by its poor chemical stability. In this study, an analog of curcumin with high chemical stability, WZ35, was designed and evaluated for its anti-cancer effects and underlying mechanisms against human gastric cancer. WZ35 showed much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, our data showed that WZ35 induced reactive oxygen species (ROS) production, resulting in the activation of both JNK-mitochondrial and ER stress apoptotic pathways and eventually cell apoptosis in SGC-7901 cells. Blockage of ROS production totally reversed WZ35-induced JNK and ER stress activation as well as cancer cell apoptosis. In vivo, WZ35 showed a significant reduction in SGC-7901 xenograft tumor size in a dose-dependent manner. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human gastric cancer treatment. PMID:25714022

  12. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer.

    PubMed

    Zou, Peng; Zhang, Junru; Xia, Yiqun; Kanchana, Karvannan; Guo, Guilong; Chen, Wenbo; Huang, Yi; Wang, Zhe; Yang, Shulin; Liang, Guang

    2015-03-20

    Gastric cancer is one of the leading causes of cancer mortality in the world, and finding novel agents and strategies for the treatment of advanced gastric cancer is of urgent need. Curcumin is a well-known natural product with anti-cancer ability, but is limited by its poor chemical stability. In this study, an analog of curcumin with high chemical stability, WZ35, was designed and evaluated for its anti-cancer effects and underlying mechanisms against human gastric cancer. WZ35 showed much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, our data showed that WZ35 induced reactive oxygen species (ROS) production, resulting in the activation of both JNK-mitochondrial and ER stress apoptotic pathways and eventually cell apoptosis in SGC-7901 cells. Blockage of ROS production totally reversed WZ35-induced JNK and ER stress activation as well as cancer cell apoptosis. In vivo, WZ35 showed a significant reduction in SGC-7901 xenograft tumor size in a dose-dependent manner. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human gastric cancer treatment. PMID:25714022

  13. Is the reactivity of M(II)-arene complexes of 3-hydroxy-2(1H)-pyridones to biomolecules the anticancer activity determining parameter?

    PubMed

    Hanif, Muhammad; Henke, Helena; Meier, Samuel M; Martic, Sanela; Labib, Mahmoud; Kandioller, Wolfgang; Jakupec, Michael A; Arion, Vladimir B; Kraatz, Heinz-Bernhard; Keppler, Bernhard K; Hartinger, Christian G

    2010-09-01

    Hydroxypyr(id)ones are versatile ligands for the synthesis of organometallic anticancer agents, equipping them with fine-tunable pharmacological properties. Herein, we report on the preparation, mode of action, and in vitro anticancer activity of Ru(II)- and Os(II)-arene complexes with alkoxycarbonylmethyl-3-hydroxy-2-pyridone ligands. The hydrolysis and binding to amino acids proceed quickly, as characterized by NMR spectroscopy and ESI mass spectrometry. However, the reaction with amino acids causes cleavage of the pyridone ligands from the metal center because the amino acids act as multidentate ligands. A similar behavior was also observed during the reactions with the model proteins ubiquitin and cytochrome c, yielding mainly [protein + M(eta(6)-p-cymene)] adducts (M = Ru, Os). Notably the ligand cleavage of the Os derivative was significantly slower than of its Ru analogue, which could explain its higher activity in in vitro anticancer assays. Furthermore, the reaction of the compounds to 5'-GMP was characterized and coordination to the N7 of the guanine moiety was demonstrated by (1)H NMR spectroscopy and X-ray diffraction analysis. CDK2/Cyclin A protein kinase inhibition studies revealed potent activity of the Ru and Os complexes. PMID:20704358

  14. UMBC AgentWeb: Intelligent Software Agents

    NSDL National Science Digital Library

    This site, sponsored and maintained by the University of Maryland Baltimore County (UMBC) Laboratory for Advanced Information Technology (LAIT), focuses on intelligent agents, known alternatively as software agents, knowbots, infobots or intentional agents. The site is divided into several parts, some of which are annotated and some of which contain only links to resources. Annotated resources include a bibliography titled Introduction to Agents (under Introductory Material), a list of research projects involving agent technology, and abstracts of and links to articles on a variety of topics such as Agents and Security and Agents in Manufacturing.

  15. Histone deacetylase inhibitors enhance the anticancer activity of nutlin-3 and induce p53 hyperacetylation and downregulation of MDM2 and MDM4 gene expression

    Microsoft Academic Search

    Chithra D. Palani; James F. Beck; Jürgen Sonnemann

    Summary  Nutlin-3, a small-molecule MDM2 inhibitor, restores p53 function and is, thus, an appealing candidate for the treatment of\\u000a cancers retaining wild-type p53. However, nutlin-3 applied as single agent may be insufficient for cancer therapy. Therefore,\\u000a we explored whether the anticancer activity of nutlin-3 could be enhanced by combination with histone deacetylase inhibitors\\u000a (HDACi), i.e. vorinostat, sodium butyrate, MS-275 and apicidin.

  16. Texaphyrins and water-soluble zinc(II) ionophores: development, mechanism of anticancer activity, and synergistic effects

    PubMed Central

    Preihs, Christian; Magda, Darren J.

    2014-01-01

    Texaphyrins, first prepared by Sessler and coworkers in the 1980s, represent early examples of expanded porphyrins. This class of pentaaza, oligopyrrolic macrocycles demonstrates excellent tumor localization and metal-chelating properties. In biological milieus, texaphyrins act as redox mediators and are able to produce reactive oxygen species. Furthermore, texaphyrins have been shown to upregulate zinc in vivo, an important feature that inspired us to develop new zinc ionophores that might allow the same function to be elicited but via a simpler chemical means. In this review, the basic properties of texaphyrins and the zinc ionophores they helped spawn will be discussed in the cadre of developing an understanding that could lead to the preparation of new, redox-active anticancer agents. PMID:25295224

  17. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy.

    PubMed

    Jiang, Q-L; Zhang, S; Tian, M; Zhang, S-Y; Xie, T; Chen, D-Y; Chen, Y-J; He, J; Liu, J; Ouyang, L; Jiang, X

    2015-02-01

    Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy. PMID:25488051

  18. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  19. Targeting Cytochrome P450 Enzymes: A New Approach in Anti-cancer Drug Development

    PubMed Central

    Bruno, Robert D.; Njar, Vincent C.O.

    2007-01-01

    Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in Phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e. inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of Vitamin D3 and Vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer. PMID:17544277

  20. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin.

    PubMed

    Do, Nhung; Weindl, Günther; Grohmann, Lisa; Salwiczek, Mario; Koksch, Beate; Korting, Hans Christian; Schäfer-Korting, Monika

    2014-05-01

    Cationic antimicrobial peptides are ancient natural broad-spectrum antibiotics, and several compounds also exhibit anticancer activity. However, most applications pertain to bacterial infections, and treatment for skin cancer is less frequently considered. The cytotoxicity of melittin, cecropin A, protegrin-1 and histatin 5 against squamous skin cancer cell lines and normal human keratinocytes was evaluated and compared to established drugs. The results show that melittin clearly outperforms 5-fluorouracil regarding antitumor activity. Importantly, combined melittin and 5-fluorouracil enhanced cytotoxic effects on cancer cells and reduced toxicity on normal keratinocytes. Additionally, minimum inhibitory concentrations indicate that melittin also shows superior activity against clinical and laboratory strains of Candida albicans compared to amphotericin B. To evaluate its potential for topical applications, human skin penetration of melittin was investigated ex vivo and compared to two non-toxic cell-penetrating peptides (CPPs), low molecular weight protamine (LMWP) and penetratin. The stratum corneum prevents penetration into viable epidermis over 6 h; however, the peptides gain access to the viable skin after 24 h. Inhibition of digestive enzymes during skin penetration significantly enhances the availability of intact peptide. In conclusion, melittin may represent an innovative agent for non-melanoma skin cancer and infectious skin diseases. In order to develop a drug candidate, skin absorption and proteolytic digestion by skin enzymes need to be addressed. PMID:24661024